WO2015146025A1 - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2015146025A1
WO2015146025A1 PCT/JP2015/001306 JP2015001306W WO2015146025A1 WO 2015146025 A1 WO2015146025 A1 WO 2015146025A1 JP 2015001306 W JP2015001306 W JP 2015001306W WO 2015146025 A1 WO2015146025 A1 WO 2015146025A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
base material
mask material
mask
axis direction
Prior art date
Application number
PCT/JP2015/001306
Other languages
English (en)
French (fr)
Inventor
裕利 中尾
佐藤 誠一
智志 柴
雄也 坂内
孔 木村
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020167029741A priority Critical patent/KR20160136439A/ko
Priority to JP2016509978A priority patent/JP6227757B2/ja
Priority to EP15768863.1A priority patent/EP3124649A4/en
Priority to CN201580015142.8A priority patent/CN106133188A/zh
Publication of WO2015146025A1 publication Critical patent/WO2015146025A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Definitions

  • the present invention relates to a film forming apparatus and a film forming method, and more specifically, while a sheet-like base material is traveling at a predetermined speed, a film forming material is supplied through a mask and continuously in a predetermined pattern on one side of the base material. Then, it is related with what forms a film.
  • Patent Document 1 This type of film forming apparatus is known from Patent Document 1, for example.
  • This includes a substrate running means for running a sheet (band) -like substrate, a transfer substrate running means for running the sheet-like transfer substrate in an annular shape, and a film-forming material for the sheet-like transfer substrate portion.
  • the film forming means for supplying the film and the sheet-like mask material (shadow mask) that is partially in close contact with the transfer substrate and limits the supply range of the film-forming material to the transfer substrate are synchronized with the sheet-like transfer substrate.
  • a mask material traveling means a mask material traveling means.
  • a film-forming material is supplied to the transfer substrate through a mask, and a film continuously formed in a predetermined pattern on one side of the transfer substrate is transferred to the sheet-like substrate, so that one side of the sheet-like substrate is transferred.
  • a predetermined film is continuously formed in a predetermined pattern.
  • both the sheet-like base material portion and the sheet-like transfer substrate portion are located in parallel in the vertical direction, and in the transfer region including the portion to be transferred to the sheet-like base material, Since a gap is provided between the portions, an alignment mechanism is provided to align the transfer substrate with respect to the portion of the base material.
  • the alignment mechanism aligns the transfer substrate with respect to the base material by adjusting the position and angle in the width direction of the pair of guide rolls arranged so as to sandwich the transfer portion.
  • the tension applied to the sheet-like transfer substrate or the sheet-like mask material becomes non-uniform, and distortion occurs in the sheet-like transfer substrate and the sheet-like mask material. There is a possibility that it cannot be aligned.
  • the present invention supplies a film-forming material through a mask while continuously running a sheet-like base material at a predetermined speed, and continuously forms a film in a predetermined pattern on one side of the base material.
  • a film-forming apparatus and a film-forming method capable of aligning a sheet-like base material portion and a sheet-like transfer substrate portion with high accuracy and reducing apparatus cost and running cost It is the subject to provide.
  • a film forming apparatus of the present invention includes a substrate traveling means for traveling a sheet-like substrate at a predetermined speed in a vacuum processing chamber, and a sheet-like substrate traveling in one direction.
  • a film forming means for supplying a film forming material to the portion, and a mask material running means for running a sheet-like mask material for restricting a supply range of the film forming material to the sheet-like base material.
  • the mask material traveling means makes the portion of the sheet-like mask material located below the part of the sheet-like base material that travels in one direction parallel It has a parallel running area forming part that runs and a driving part that runs the sheet-like mask material in synchronization with the sheet-like base material, and the parallel running area forming part and the driving part are installed on a single frame. It is characterized by that.
  • the film-formation material is supplied directly from the film-formation source while the sheet-like mask material portion is running in parallel with the sheet-like base material portion that runs in one direction. Since the film is formed over the mask material, a mechanism for once transferring to another substrate is not required as in the conventional example, and the apparatus cost and running cost can be reduced. Also, the elements that run the sheet-like mask material are installed on a single frame to form a unit, and the frame itself is moved to align the sheet-shaped mask material portion with the sheet-like base material portion.
  • the configuration is adopted, when the position of the sheet-like mask material portion relative to the sheet-like base material portion is aligned, the running state of the sheet-like mask material to which a certain tension is applied does not change, the sheet No forced distortion occurs in the mask material and thus the mask pattern. Therefore, it is possible to continuously form a film on the sheet-like substrate with a precise pattern in a state where the sheet-like substrate portion and the sheet-like mask material portion are aligned with high accuracy.
  • a film forming apparatus that has a sheet-like mask material that has been cleaned is set.
  • the film formation on the sheet-like substrate can be resumed as soon as possible.
  • the speed detection means for detecting the speed of traveling the sheet-like base material or the sheet-like mask material, and the direction in which the portion of the sheet-like base material travels in one direction is the X-axis direction. And a relative displacement amount in the X-axis direction of the sheet-shaped mask material with respect to the sheet-shaped substrate in a region where the sheet-shaped base material portion and the sheet-shaped mask material portion are positioned vertically.
  • a first detecting means for detecting, either one of the sheet-like base material and the sheet-like mask material is matched with the detected value of the other speed detecting means, and both are synchronized, According to a detection value of the first detection means, either one of the base material traveling means and the drive unit is controlled to correct the position of the sheet-like mask material with respect to the sheet-like base material. preferable.
  • the direction in which the sheet-like base material portion travels in one direction is the X-axis direction, the direction orthogonal to the Y-axis direction, and the rotation direction about the Z-axis as the vertical direction is ⁇ z.
  • the pedestal is placed on a Y- ⁇ z stage, and in the region where the sheet-like base material portion and the sheet-like mask material portion are positioned vertically, the sheet-like base material
  • the mask traveling means travels in parallel with the sheet-shaped mask material portion with a predetermined interval in the vertical direction with respect to the sheet-shaped substrate portion traveling in one direction.
  • the Y- ⁇ z stage is provided with driving means for moving the Y- ⁇ z stage up and down, and in the region where the sheet-like base material portion and the sheet-like mask material portion are positioned vertically, the sheet-like
  • the third detection means for detecting the vertical gap between the base material and the sheet-like mask material is provided, and the Y- ⁇ z stage is moved up and down by the drive means in accordance with the detection value of the third detection means. It is preferable that the height position of the sheet-shaped mask material with respect to the substrate is corrected.
  • the sheet-like base material portion is pressed toward the sheet-like mask material portion, and the sheet-like base material and the sheet-like mask material are brought into contact with each other. It can also comprise so that the press means to make it further be provided.
  • the mask material traveling unit includes a moving unit that can move in the Y-axis direction between the vacuum processing chamber and the outside of the vacuum processing chamber.
  • the film forming method of the present invention for forming a film on a sheet-like substrate using the film-forming apparatus includes a sheet-like substrate and a sheet-like mask in the X-axis direction. Alignment marks are arranged at intervals, and both the first and second detection means are imaging means, and the imaging means causes an alignment arc between the sheet-like base material portion and the sheet-like mask material portion. The captured image is analyzed, and the captured image is analyzed.
  • the relative displacement amount ( ⁇ X) of the sheet-shaped mask material with respect to the sheet-shaped base material in the X-axis direction and the Y of the sheet-shaped mask material with respect to the sheet-shaped base material At least one of an axial relative displacement ( ⁇ Y) and an angle ( ⁇ z) between the traveling direction of the sheet-like base material and the traveling direction of the sheet-like mask material is detected, and the detected relative displacement amount ( ⁇ X) based on the substrate running means and the drive
  • the amount of increase or decrease of the traveling speed of the sheet-like base material or the sheet-like mask is commanded to any one of the sections, and the detected relative displacement ( ⁇ Y) and angle ( Based on at least one of [Delta] [theta] z), the Y- [theta] z stage is instructed to move at least one of movement of the gantry in the Y-axis direction and rotation in the [theta] direction, and a sheet-like mask for the sheet-like substrate.
  • the traveling speed and position of the material
  • the film-forming material is passed over the mask with respect to the sheet-like base material that runs at a predetermined speed.
  • the sheet-like mask material portion is caused to run in parallel with a predetermined interval in the vertical direction with respect to the sheet-like substrate portion that is moved in one direction by the mask traveling means, and film formation is performed in the region.
  • the sheet-like mask material portion is slightly inclined with respect to the sheet-like base material portion, and there is a region with a relatively wide gap between them, mask blur occurs in the region, and high accuracy is achieved. I can't do it.
  • the third detection means is arranged in the X-axis direction. A plurality of rows are arranged at predetermined intervals, and the sheet with respect to the sheet-like base material is determined from the distance in the Z-axis direction between the sheet-like base material portion and the sheet-like mask material portion detected by the third detecting means.
  • the inclination of the mask-shaped mask material is detected, and based on the detected inclination, the tilting amount of the sheet-shaped mask material relative to the sheet-shaped substrate is commanded to the tilting means to correct the tilt, and after the tilt correction, the travel speed And the position are preferably corrected.
  • the image picked up by the image pickup means is analyzed to detect at least one of the relative displacement amount ( ⁇ X) in the X-axis direction, the relative displacement amount ( ⁇ Y) and the angle ( ⁇ z) in the Y-axis direction.
  • the inclination of the sheet-like mask material with respect to the sheet-like substrate is detected from the interval in the Z-axis direction between the sheet-like substrate portion and the sheet-like mask material portion detected by the third detection means, respectively.
  • the tilting means of the sheet-like mask material with respect to the sheet-like base material is instructed to the tilting means to correct the inclination, and the sheet-like base material with respect to the sheet-like base material accompanying the tilt correction is corrected.
  • the movement error of the mask material in the X-axis direction and the Y-axis direction is calculated, and the movement error is calculated as a relative displacement amount ( ⁇ X) and / or a relative displacement amount ( ⁇ Y) and an angle ( ⁇ z) in the Y-axis direction.
  • any of the substrate running means and the drive unit The amount of change in the traveling speed of the sheet-like base material or the sheet-like mask is commanded to one of them, and at least one of the movement of the gantry in the Y-axis direction and the rotation in the ⁇ direction is synchronized with this command.
  • the amount can be commanded to correct the running speed and position of the sheet-like mask material relative to the sheet-like substrate. According to this, it may be possible to correct the position of the sheet-like mask material with respect to the sheet-like base material as quickly as possible.
  • FIG. 1 is a schematic perspective view showing a configuration of a film forming apparatus according to an embodiment of the present invention.
  • the schematic cross section of the film-forming apparatus shown in FIG. (A) And (b) is a figure explaining the position shift of the sheet-like base material with respect to a sheet-like mask material. The figure explaining the alignment of the sheet-like base material with respect to a sheet-like mask material.
  • (A) And (b) is the front view and side view which expand and show the principal part of the film-forming apparatus which concerns on the further another modification of this invention.
  • the film forming means is a resistance board, and a case where a predetermined thin film is continuously formed over a mask Sm while the sheet substrate Sw is traveling at a predetermined speed is taken as an example.
  • An embodiment of a membrane device will be described.
  • the direction in which the part Sw1 of the sheet-like base material Sw is transferred in one direction in the film forming chamber 1a is the X-axis direction (the left-right direction in FIG. 2), and the direction orthogonal to this is the same plane.
  • the direction perpendicular to the Y-axis direction, the X-axis direction, and the Y-axis direction is the Z-axis direction (the vertical direction in FIG. 2)
  • the rotation direction around the Z-axis is the ⁇ z direction
  • the upper direction in the X-axis direction and the Z-axis direction The terms indicating directions such as down, left and right are based on FIG.
  • DM is a film forming apparatus according to an embodiment of the present invention.
  • the film forming apparatus DM includes a vacuum processing chamber 1 connected to a vacuum pump (not shown) and evacuated to a predetermined pressure.
  • the vacuum processing chamber 1 performs a film forming process on the sheet-like substrate Sw.
  • the film chamber 1a is composed of an upstream auxiliary chamber 1b and a downstream auxiliary chamber 1c connected to the left and right in the X-axis direction of the film forming chamber 1a.
  • a sheet-like base material Sw is held in a wound state, and a feeding roller 21 rotated by a motor DM1 and a sheet-like base material Sw fed from the feeding roller 21 are wound.
  • An upstream guide roller 22 and a downstream guide roller 23 that are hung and guide to the upper space of the film forming chamber 1a are provided.
  • the upstream auxiliary chamber 1b is provided with a dancer roller 24 which is located between the upstream guide roller 22 and the downstream guide roller 23 and is movable in the Z-axis direction.
  • a spring 24b for urging the rotary shaft 24a upward is attached to the rotary shaft 24a of the dancer roller 24, and the tension of the sheet-like substrate Sw inserted through the film forming chamber 1a is maintained at a predetermined value. I am doing so.
  • tensile_strength of the sheet-like base material Sw at a predetermined value is not limited to this, It is good also as variable the tension
  • the downstream guide roller 23 is provided with a sensor 25 as speed detecting means for detecting the rotational speed, and the feed speed of the sheet-like substrate Sw fed to the film forming chamber 1a based on the rotational speed is set. It can be detected.
  • each of the elements 21 to 24 and 31, 32 described above constitutes a base material traveling means for traveling on the sheet-like base material Sw at a predetermined speed.
  • the mask material traveling means 4 includes a single base 41 composed of a rectangular substrate portion 41a and four plate-like support portions 41b erected at the four corners of the substrate portion 41a.
  • Two rollers 42a to 42d are pivotally supported at predetermined intervals in the vertical direction on the surface of the support 41 in the gantry 41 facing the Y-axis direction.
  • the rotating shaft of the roller 42d located on the lower left side is connected to the motor DM2.
  • the sheet-like mask material Sm is wound around the rollers 42a to 42d in an endless manner, and the sheet-like mask material Sm travels by the rotational drive of the motor DM2.
  • the upper left roller 42a and the upper right roller 42b arranged at a predetermined interval in the X-axis direction are formed on the sheet-like substrate Sw that is transported horizontally in the film forming chamber 1a.
  • a roller 42d with a motor DM2 located on the lower left side forms a parallel running region forming portion that horizontally moves the portion Sm1 of the sheet-like mask material Sm with a predetermined interval in the vertical direction with respect to the portion Sw1.
  • the drive part which drives the sheet-like mask material Sm synchronizing with the substrate-shaped substrate Sw is comprised.
  • the rotational speed of the motor DM2 is calculated from the feed speed of the sheet-like base material Sw corresponding to the detection value of the sensor 25, and the feed speed of the sheet-like base material Sw is set to the sheet-like mask material Sm. It is controlled so as to be equal to the feed rate.
  • the sheet-like mask material Sm a material in which holes or slits corresponding to a pattern to be formed on the sheet-like base material Sw are formed as a mask pattern is used.
  • the sheet-like mask material for the sheet-like substrate Sw is positioned on the same X-axis at both ends in the width direction (Y-axis direction) of the sheet-like substrate Sw and the sheet-like mask material Sm.
  • Alignment marks Am1 and Am2 for detecting relative displacement amounts ⁇ X, ⁇ Y, and ⁇ z of Sm are formed in the Y-axis direction at predetermined intervals (for example, in the range of 5 to 10 mm), respectively (see FIG. 3).
  • the alignment mark Am1 of the sheet-like base material Sw is configured by a through hole having a predetermined diameter in a plan view, and the alignment mark Am2 of the sheet-like mask material Sw is smaller in diameter than the alignment mark Am1.
  • the alignment marks Am1, Am2 are aligned so that the centers thereof coincide with each other.
  • the width direction (Y-axis direction) of the sheet-like base material Sw is arranged at both ends so that the start position and the end position of the film forming can be specified.
  • the marks Sp and Ep are formed to indicate the detection start point and the detection end point in distinction from the alignment marks Am1 and Am2.
  • the marks Sp and Ep can be formed by a through hole having a larger diameter than the alignment marks Am1 and Am2, a through hole having a triangular shape in plan view, or the like.
  • the alignment marks Am1 and Am2 are formed only at one end in the width direction (Y-axis direction) between the sheet-like base material Sw and the sheet-like mask material Sm, and the sheet is formed on the sheet-like base material Sw.
  • the mask material Sm can be aligned.
  • the film forming chamber 1a is provided with a Y- ⁇ z stage 5 that supports the gantry 41, and the Y- ⁇ z stage 5 is provided with a linear actuator 6 that can move up and down.
  • the Y- ⁇ z stage 5 has a known structure capable of moving the gantry 41 in the Y-axis direction and rotating the gantry 41 in the ⁇ z direction, and the linear actuator 6 has the gantry 41 as the Y- ⁇ z. Since a known structure that can move up and down with respect to each stage can be used, detailed description is omitted here.
  • a rail member 71 extending in the Y-axis direction is provided on the lower surface of the film forming chamber 1a, and a carriage 72 that can travel along the rail member 71 is provided.
  • a - ⁇ z stage 5 and a gantry 41 are installed.
  • an opening / closing door (not shown) is provided on the wall surface defining the film forming chamber 1a so that the mask material running means 4 can be moved back and forth to the film forming chamber 1a.
  • the rail member 71 and the carriage 72 constitute a moving means that allows the mask material traveling means 4 to move in the Y-axis direction between the film forming chamber 1a and the outside of the film forming chamber 1a.
  • two viewing windows 12 are provided on the upper wall surface 11 defining the film forming chamber 1a at a predetermined interval in the Y-axis direction.
  • imaging means 81 and 82 such as a CCD camera are arranged above the viewing window 12.
  • the imaging units 81 and 82 are sheet-like with respect to the portion Sw1 of the sheet-like substrate Sw that is horizontally transferred in the film forming chamber 1a at both ends in the width direction (Y-axis direction) of the sheet-like substrate Sw.
  • the relative position of the portion Sm1 of the mask material Sm and the alignment marks Am1, Am2 are imaged.
  • the imaging units 81 and 82 are configured such that the relative displacement amount ⁇ Y in the Y-axis direction of the sheet-like mask material Sm with respect to the sheet-like substrate Sw or the traveling direction of the sheet-like substrate Sw and the sheet shape.
  • the second detection means for detecting the angle ⁇ z formed with the traveling direction of the mask material Sm of the first and second imaging means 81, 82 includes the part Sw 1 of the sheet-like base material Sw and the sheet-like mask material Sm.
  • the first detecting means for detecting the relative displacement amount ⁇ X in the X-axis direction of the sheet-like mask material Sm with respect to the sheet-like base material Sw is also used.
  • the images captured by the image capturing units 81 and 82 are analyzed by a known image analyzing unit, and the Y- ⁇ z stage 5 is appropriately moved or rotated in accordance with the analyzed value (detected value), so that the sheet-like substrate Sw The position of the sheet-like mask material Sm with respect to is corrected.
  • FIG. 3A when the sheet-like mask material Sm is displaced in one direction in the Y-axis direction with respect to the sheet-like base material Sw ⁇ b> 1, imaging is performed by the imaging units 81 and 82. The obtained image is analyzed by a known image analysis means to calculate the displacement amount ⁇ Y, and the Y- ⁇ z stage 5 is moved in one direction in the Y-axis direction and corrected accordingly.
  • FIG. 3B when the sheet-like mask material Sm meanders with respect to the sheet-like base material Sw, the images captured by the imaging units 81 and 82 are known image analysis.
  • the angle between the traveling direction of the sheet-like base material Sw and the traveling direction of the sheet-like mask material Sm (inclination of the sheet-like mask material Sm with respect to the sheet-like base material Sw in the XY plane) ) ⁇ z is calculated, and the Y- ⁇ z stage 5 is appropriately moved in the ⁇ z-axis direction accordingly to thereby rotate the Y- ⁇ z stage 5 about the Z-axis to correct it.
  • the images picked up by the image pickup means 81 and 82 are similarly analyzed, and the number of rotations of the motor DM1 or the motor DM2 is increased or decreased in accordance with the analyzed value (detection value), thereby both alignment marks Am1,
  • the position of the sheet-like mask material Sm with respect to the sheet-like base material Sw is corrected so that Am2 overlaps vertically in the Z-axis direction, and the sheet-like base material Sw and the sheet-like mask material Sm travel in synchronization.
  • a viewing window (not shown) is also provided on the side wall surface in the Y-axis direction that defines the film forming chamber 1a, and an imaging means 83 such as a CCD camera is disposed on the side of the viewing window.
  • the imaging unit 83 is configured such that the sheet-like base material Sw and the sheet-like mask are located in a region where the portion Sw1 of the sheet-like base material Sw and the portion Sm1 of the sheet-like mask material Sm are positioned vertically.
  • a third detection means for detecting a vertical gap with the material Sm is configured.
  • the image picked up by the image pickup means 83 is analyzed by a known image analysis means, and the linear actuator 6 is appropriately moved up and down in accordance with the analyzed value (detection value) to make a sheet-like shape with respect to the sheet-like base material Sw.
  • the height position of the mask material Sm is corrected. Control for matching the feeding speed of the sheet-like base material Sw and the feeding speed of the sheet-like mask material Sm, and the sheet-like shape with respect to the portion Sw1 of the sheet-like base material Sw transferred horizontally in the film forming chamber 1a.
  • a film forming means 9 is disposed in a portion located below the portion Sm1 of the sheet-like mask material Sm in the space inside the support portion 41b of the gantry 41.
  • the film forming means 9 stores a film forming material (not shown) selected according to the composition of the thin film to be formed on the sheet-like base material Sw, and a resistance board 91 for evaporating the film forming material by resistance heating.
  • a box 92 in which the resistance board 91 is stored, and is supported by a side wall surface in the Y-axis direction that defines the film forming chamber 1a.
  • the box 92 may be configured to be movable back and forth in the film forming chamber 1a so that the evaporation material can be easily replenished and maintained. If it is necessary to prepare a plurality of boxes 92 in which film forming materials are set in advance on the resistance board 91 and maintenance of the ones in use is required, another box 92 is set as much as possible. The film formation on the substrate Sw may be resumed.
  • the film forming apparatus DM includes a control unit Cu including a personal computer, a sequencer, and the like for controlling the overall operation, and the control unit Cu is synchronized with the sheet-like base material Sw and the sheet-like mask material Sm. Travel, calculation of a correction amount based on input of image data captured by the imaging means 81, 82, 83, correction of the position of the sheet-like mask material Sm with respect to the sheet-like base material Sw by the Y- ⁇ z stage 5, etc. .
  • a control unit Cu including a personal computer, a sequencer, and the like for controlling the overall operation
  • the control unit Cu is synchronized with the sheet-like base material Sw and the sheet-like mask material Sm. Travel, calculation of a correction amount based on input of image data captured by the imaging means 81, 82, 83, correction of the position of the sheet-like mask material Sm with respect to the sheet-like base material Sw by the Y- ⁇ z stage 5, etc.
  • the feeding roller 21 holds the sheet-like base material Sw, and the leading end of the sheet-like base material Sw is passed through the upstream guide roller 22, the downstream guide roller 23, and the dancer roller 24. It passes through the upper space of the film forming chamber 1 a where the mask material running means 4 is set in advance, and is further wound around the winding roller 31 via the guide roller 32. At this time, the sheet-like mask material Sm is moved manually or the like so that the alignment marks Am1, Am2 substantially coincide with the Z-axis direction.
  • the motors DM1 and DM2 are driven to rotate and travel on the sheet-like substrate Sw from the feeding roller 21.
  • the sheet-like mask material Sm is caused to travel in synchronization therewith.
  • the rotational speed of the motor DM2 is calculated from the feed speed of the sheet-like base material Sw according to the detection value of the sensor 25, and the feed speed of the sheet-like base material Sw is the feed speed of the sheet-like mask material Sm.
  • the sheet-like base material Sw and the sheet-like mask material Sm are run by the same length (travel amount) per hour by controlling to be equal to the speed.
  • Am1u and Am2u are the alignment marks of the sheet-like base material Sw and the sheet-like mask material Sm located on the upper side
  • Am1d and Am2d are the alignment marks located on the lower side.
  • the control means Cu the next imaged alignment arc Am1u, Am2u, Am1d of the part Sw1 of the sheet-like base material Sw and the part Sm1 of the sheet-like mask material Sm
  • the Am2d image is analyzed to detect at least one of the relative displacement amount ⁇ X in the X-axis direction and the relative displacement amount ⁇ Y and the angle ⁇ z in the Y-axis direction. Specifically, as shown in FIG.
  • the alignment means Am1u and Am2u are simultaneously imaged by the imaging means 82, image analysis is performed to detect the positional difference in the X-axis direction and the Y-axis direction, and 2 )
  • the imaging means 81 simultaneously images the alignment marks Am1d and Am2d, and analyzes the images to detect positional differences in the X-axis direction and the Y-axis direction, respectively.
  • the average values of the positional differences detected in the above 1) and 2) in the X-axis direction and the Y-direction are calculated, respectively, and a midpoint Am1c between both alignment arcs Am1u, Am1d of the sheet-like substrate Sw;
  • the relative displacement amounts ⁇ X and ⁇ Y at the midpoint Am2c between the alignment arcs Am2u and Am2d of the sheet-like mask material Sm are obtained.
  • ⁇ z is calculated by calculating the difference between the above 1) and 2) in the X-axis direction of the positional difference and dividing it by the distance between the imaging means 81 and 82.
  • the control means Cu calculates and commands the amount of change in the rotational speed of the motor DM2 (that is, the amount of acceleration or deceleration) based on the detected relative displacement amount ( ⁇ X), and instructs the sheet-like base material Sw.
  • the position of the sheet-like mask material Sm in the X-axis direction is corrected.
  • the amount of movement in the Y-axis direction of the Y- ⁇ z stage 5 is commanded based on the detected relative displacement amount ( ⁇ Y), for example, the displacement in the ⁇ z direction is performed. If so, based on the angle ( ⁇ z), a rotation amount is commanded around the Z axis of the Y- ⁇ z stage 5 to correct the position of the sheet-like mask material Sm with respect to the sheet-like substrate Sw.
  • control means Cu analyzes the image of the gap in the Z-axis direction between the sheet-like base material Sw and the sheet-like mask material Sm imaged by the imaging means 83, and applies the sheet-like base material Sw to the sheet-like base material Sw.
  • the relative displacement amount ( ⁇ Z) in the Z-axis direction of the sheet-like mask material Sm is detected. Then, based on the detected relative displacement amount ( ⁇ Z), the amount of movement of the linear actuator 6 in the vertical direction is commanded to set the gap (height position) between the sheet-like base material Sw and the sheet-like mask material Sm. to correct.
  • the control means Cu for example, a part Sw1 of the sheet-like substrate Sw and the sheet at a predetermined cycle.
  • the alignment arcs Am1 and Am2 are imaged with the portion Sm1 of the mask-shaped mask material Sm, at least one of the relative displacement amount ⁇ X, the relative displacement amount ⁇ Y and the angle ⁇ z, the sheet-like base material Sw and the sheet.
  • the rollers 42a to 42d as the parallel running region forming unit and the driving unit that run on the sheet-like mask material Sm are installed on the single gantry 41 as a unit, and the sheet-like base member is formed as a unit.
  • the traveling state of the sheet-like mask material Sm to which a certain tension is applied is determined. There is no change, and no forced distortion occurs in the sheet-like mask material Sm, and hence the mask pattern.
  • the sheet has a precise pattern.
  • a film can be formed on the substrate Sw.
  • the gantry 41 is installed on the moving means 71 and 72, when the maintenance is performed after taking out from the vacuum processing chamber 1, the work can be easily performed.
  • a plurality of rollers 42a to 42d may be installed on a single frame 41 to form a unit, and a plurality of sheet-shaped mask materials Sm may be set in advance.
  • thermal expansion may occur due to radiant heat generated when the film forming material is evaporated by resistance heating on the resistance board 91.
  • the sheet-like base material Sw is thermally expanded in the X-axis direction, the sheet-like base material Sw and the sheet-like mask material Sm are caused to travel by the same length (travel amount) per hour as described above. Even if the control is performed, the sheet-like base material Sw is delayed with respect to the sheet-like mask material Sm.
  • the Y- ⁇ z stage 5 is configured to be movable in the X-axis direction to correct the relative displacement amount ⁇ X accompanying thermal expansion.
  • the relative displacement amount ⁇ X can only be corrected within the range of the movement amount in the X-axis direction, and the sheet-like substrate Sw to be formed is very long, so the delay of the sheet-like substrate Sw is accumulated. As a result, the position of the sheet-shaped mask material Sn with respect to the sheet-shaped substrate Sw may not be corrected.
  • the change amount (that is, the speed increase amount or the speed decrease amount) of the motor DM2 is calculated and commanded based on the detected relative displacement amount ( ⁇ X), and the same per unit time.
  • the relative displacement amount ⁇ X is added to or subtracted from the travel amount when the sheet-like base material Sw and the sheet-like mask material Sm travel by the travel amount, the sheet-like base material generated by thermal expansion in the X-axis direction. Sw delay can also be corrected, and even when the sheet-like substrate Sw is very long, it can be corrected permanently. Further, even when the sheet-like base material Sw is thermally expanded in the Y-axis direction, the displacement amount ⁇ Y and the angle ⁇ z are calculated as described above, and thus the influence of the thermal expansion of the sheet-like base material Sw. Alignment can be performed to minimize the above.
  • the present invention has been described above, but the present invention is not limited to the above.
  • the example in which the mask material traveling means 4 to the carriage 72 are arranged in the vacuum processing chamber 1 has been described as an example.
  • the volume of the film forming chamber 1a may be reduced.
  • the sheet-shaped mask material Sm is wound around each of the rollers 42a to 42d in an endless manner.
  • the present invention is not limited to this. It can also be configured to wind.
  • the deposition using a resistance board is described as an example of the film forming unit.
  • the film forming unit may be a predetermined thin film formed by a sputtering cathode or a CVD method. It is good also as a raw material gas supply means for forming.
  • the downstream guide roller 23 is provided with a sensor 25 as a speed detection unit, and the feeding speed of the sheet-like base material Sw is set according to the detection value of the sensor 25 of the sheet-like mask material Sm.
  • the feed rate of the sheet-like mask material Sm is detected, and the motor DM1 is detected according to the detected value.
  • the feeding speed of the sheet-like base material Sw fed from the feeding roller 21 may be corrected.
  • the position of the sheet-like mask material Sm with respect to the sheet-like base material Sw is corrected such that the number of rotations of the motor DM2 is increased or decreased so that the alignment marks Am1, Am2 overlap each other in the Z-axis direction. .
  • a can roller Cr is provided on the upper side of the sheet-like base material Sw so as to face the box 92 in which the resistance board 91 is stored.
  • a direct-acting actuator (not shown) is attached to the can roller Cr so that the can roller Cr can move up and down in the Z-axis direction.
  • two presses are made at predetermined intervals in the X-axis direction on the upper side of the sheet-like base material Sw so as to face the box 92 in which the resistance board 91 is stored.
  • Rollers R1 and R2 are provided.
  • a linear motion actuator (not shown) is attached to each of the pressing rollers R1 and R2, and the rollers R1 and R2 can move up and down in the Z-axis direction in conjunction with each other.
  • the Y- ⁇ z stage 5 when the portion Sw1 of the sheet-like base material Sw and the portion Sm1 of the sheet-like mask material Sm travel in parallel with a predetermined interval in the Z-axis direction, the Y- ⁇ z stage 5 is moved.
  • tilting means 60 for tilting the portion Sm1 of the sheet-like mask material Sm traveling in parallel with respect to the portion Sw1 of the sheet-like base material Sw.
  • the mask travel means 40 moves up and down in the Z-axis direction on the Y- ⁇ z stage 5 installed on the carriage 72.
  • Three linear motion actuators 60 are provided at predetermined intervals, and operation rods 62 are connected to the linear motion actuators 60 via free (spherical) joints 61, respectively.
  • a frame 64 that supports each of .about.42d is supported.
  • each linear motion actuator 60, the joint 61 and the support rod 62 constitute the tilting means of this embodiment.
  • a third detection means is provided on the side wall surface in the Y-axis direction that defines the film forming chamber 1a.
  • the imaging means 83a to 83c such as a CCD camera are arranged at predetermined intervals in the X-axis direction.
  • the sheet-like base material Sw and the sheet-like mask material Sm can be imaged at a plurality of locations in an area where the sheet-like base material Sw and the sheet-like mask material Sm are vertically positioned. It is like that.
  • the control means Cu controls the sheet with respect to the sheet-like base material Sw from the interval in the Z-axis direction between the portion Sw1 of the sheet-like base material Sw detected by the imaging means 83a to 83c and the portion Sm1 of the sheet-like mask material Sm.
  • the inclination of the sheet-like mask material Sm is detected, and based on the detected inclination, the amount of tilt of the sheet-like mask material Sm relative to the sheet-like base material Sw is commanded to the linear motion actuator 60 as the tilting means to correct the tilt. To do.
  • the alignment marks Am1, Am2 are displaced in at least one direction of the X-axis direction and the Y-axis direction.
  • the sheet-like mask material Sm travel speed and position are corrected for the sheet-like base material Sw in accordance with the above-described procedure.
  • the images taken by the imaging means 81 and 82 are analyzed and the X axis is corrected as in the above embodiment.
  • the inclination of the sheet-like mask material Sm with respect to the sheet-like base material Sw is detected from the interval in the direction, and the tilt amount of the sheet-like mask material Sm with respect to the sheet-like base material Sw is used as a tilting means based on the detected inclination.
  • the linear motion actuator 60 is commanded to correct the tilt.
  • the control unit Cu calculates a movement error in the X-axis direction and the Y-axis direction of the sheet-shaped mask material Sm relative to the sheet-shaped substrate Sw accompanying the tilt correction, and calculates the relative displacement amount ⁇ X and the Y-axis.
  • the movement error is calculated for at least one of the relative displacement ⁇ Y and the angle ⁇ z in the direction.
  • the amount of movement of the linear actuator 6 in the vertical direction is commanded, and the gap (high height) between the sheet-like substrate Sw and the sheet-like mask material Sm is determined. Position) is corrected.
  • DM ... Film forming apparatus 1 ... Vacuum processing chamber, 21 ... Feeding roller (base material traveling means), 22, 23, 32 ... Guide roller (base material traveling means), 31 ... Winding roller (base material traveling means), DM1... Motor (base material traveling means) 4, 40... Mask traveling means, 41 .. frame, 42a, 42b... Roller (parallel region forming part of mask material traveling means), 42d. (Driving unit), 5 ... Y- ⁇ z stage, 6 ... linear motion actuator (driving means), 60 ... linear motion actuator (tilting means), 61 ... joint, 62 ... support rod, 71 ... cart (moving means), 81- 83 ... Imaging means (first to third detection means), 9 ... Film forming means, Sw ... Sheet-like substrate, Sw1 ... Sheet-like substrate portion, Sm ... Sheet-like mask material, Sm1 ... Part of sheet-like mask material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

 シート状の基材を所定速度で走行させながら、マスク越しに成膜材料を供給して基材の片面に所定のパターンで連続して成膜するときに、シート状の基材の部分とシート状の転写基板の部分とを高精度で位置合わせすることができ、しかも、装置コスト及びランニングコストを削減することができる成膜装置を提供する。 成膜手段9からシート状の基材Swに向かう方向を上として、マスク材走行手段4は、一方向に走行されるシート状の基材の部分Sw1に対してシート状のマスク材Smの部分Sm1を上下方向に所定間隔を持って平行に走行させる平行走行領域形成部42a,42bと、シート状の基材に同期させてシート状のマスク材を走行させる駆動部42d、DM2とを有し、平行走行領域形成部と駆動部とが単一の架台41に設置される。

Description

成膜装置及び成膜方法
 本発明は、成膜装置及び成膜方法に関し、より詳しくは、シート状の基材を所定速度で走行させながら、マスク越しに成膜材料を供給して基材の片面に所定のパターンで連続して成膜するものに関する。
 この種の成膜装置は例えば特許文献1で知られている。このものは、シート(帯)状の基材を走行する基材走行手段と、シート状の転写基板を環状に走行させる転写基板走行手段と、シート状の転写基板の部分に対して成膜材料を供給する成膜手段と、転写基板と部分的に密着して当該転写基板に対する成膜材料の供給範囲を制限するシート状のマスク材(シャドウマスク)をシート状の転写基板に同期させて走行するマスク材走行手段とを備える。そして、転写基板にマスク越しに成膜材料を供給して転写基板の片面に所定のパターンで連続して成膜したものをシート状の基材に転写することで、シート状の基材の片面に所定のパターンで連続して所定の膜を形成している。このものは、マスク越しに転写基板に所定の膜を成膜した後、これをシート状の基材に転写するため、工程の増加分だけ装置自体が大型化及び複雑化し、装置コスト高を招くだけでなく、転写基板が必要となって製造コスト高も招来する。
 ところで、上記従来例のものでは、シート状の基材の部分とシート状の転写基板の部分とが上下に平行に位置し、シート状の基材に転写する箇所を含む転写領域にて、両部分間にはギャップが設けられているため、基材の部分に対する転写基板の位置合わせを行うために、アライメント機構が設けられている。この場合、アライメント機構は、転写箇所を挟むようにして配設された一対のガイドロールの幅方向の位置及び角度を調整することによって基材に対する転写基板の位置合わせを行っている。然し、このような方法では、シート状の転写基板若しくはシート状のマスク材に付与される張力が不均一になってシート状の転写基板やシート状のマスク材に歪が発生し、高精度で位置合わせできない虞がある。
特開2003-173870号公報
 そこで、本発明は、以上の点に鑑み、シート状の基材を所定速度で走行させながら、マスク越しに成膜材料を供給して基材の片面に所定のパターンで連続して成膜するときに、シート状の基材の部分とシート状の転写基板の部分とを高精度で位置合わせすることができ、しかも、装置コスト及びランニングコストを削減することができる成膜装置及び成膜方法を提供することをその課題とするものである。
 上記課題を解決するために、本発明の成膜装置は、真空処理室内に、シート状の基材を所定速度で走行する基材走行手段と、一方向に走行されるシート状の基材の部分に対して成膜材料を供給する成膜手段と、シート状の基材に対する成膜材料の供給範囲を制限するシート状のマスク材を走行するマスク材走行手段とを備え、成膜手段からシート状の基材に向かう方向を上として、マスク材走行手段は、一方向に走行されるシート状の基材の部分に対してその下側に位置するシート状のマスク材の部分を平行に走行させる平行走行領域形成部と、シート状の基材に同期させてシート状のマスク材を走行させる駆動部とを有し、平行走行領域形成部と駆動部とが単一の架台に設置されることを特徴とする。
 本発明によれば、一方向に走行されるシート状の基材の部分に対してシート状のマスク材の部分を平行に走行させながら、成膜源から直接成膜材料を供給してシート状のマスク材越しに成膜するため、上記従来例の如く、一旦他の基材に転写する機構等が不要になって装置コスト及びランニングコストを削減することができる。また、シート状のマスク材を走行する要素を単一の架台に設置してユニット化し、架台自体を移動させてシート状のマスク材の部分をシート状の基材の部分に対して位置合わせする構成を採用したため、シート状の基材の部分に対するシート状のマスク材の部分の位置合わせを行う際に、一定の張力が加わったシート状のマスク材の走行状態が変化するものではなく、シート状のマスク材、ひいては、そのマスクパターンに強制的な歪が発生することはない。従って、シート状の基材の部分とシート状のマスク材の部分とを高精度で位置合わせした状態で精密なパターンでシート状の基材に連続して成膜を行うことができる。なお、上記の如く、シート状のマスク材を走行する要素を単一の架台に設置してユニット化し、シート状のマスク材を予めセットしたものを複数用意しておくことが好ましい。これによれば、使用中のものをメンテナンス(シート状のマスク材の交換やクリーニング等)する必要が生じた場合、例えばクリーニング済のシート状のマスク材がセットされた他のものを成膜装置にセットし、可及的速やかにシート状の基材への成膜を再開できる。
 本発明においては、前記シート状の基材または前記シート状のマスク材を走行する速度を検出する速度検出手段と、前記シート状の基材の部分が一方向に走行される方向をX軸方向とし、前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、前記シート状の基材に対する前記シート状のマスク材のX軸方向の相対変位量を検出する第1の検出手段とを備え、前記シート状の基材と前記シート状のマスク材のうちいずれか一方を、その他方の前記速度検出手段の検出値に一致させて両者を同期させ、第1の検出手段の検出値に応じて前記基材走行手段及び前記駆動部のいずれか一方を制御してシート状の基材に対するシート状のマスク材の位置を補正するように構成することが好ましい。
 また、本発明においては、前記シート状の基材の部分が一方向に走行される方向をX軸方向、これに直交する方向をY軸方向、上下方向としてのZ軸回りの回転方向をθz方向とし、前記架台はY-θzステージ上に設置され、前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、シート状の基材に対するシート状のマスク材のY軸方向の相対変位量またはシート状の基材の走行方向とシート状のマスク材の走行方向とのなす角度を検出する第2の検出手段を備え、第2の検出手段の検出値に応じて、Y-θzステージにより架台のY軸方向への移動及びθ方向への回転の少なくとも一方を行ってシート状の基材に対するシート状のマスク材の位置を補正するように構成することが好ましい。
 更に、本発明において、マスク走行手段が、一方向に走行されるシート状の基材の部分に対して上下方向に所定間隔を持ってシート状のマスク材の部分を平行に走行する場合には、前記Y-θzステージに、当該Y-θzステージを上下動する駆動手段を備え、前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、シート状の基材とシート状のマスク材との上下方向の間隙を検出する第3の検出手段を備え、第3の検出手段の検出値に応じて駆動手段によりY-θzステージを上下動させてシート状の基材に対するシート状のマスク材の高さ位置を補正するように構成することが好ましい。
 他方で、前記成膜手段の上方領域にて、このシート状の基材の部分をシート状のマスク材の部分に向けて押圧し、シート状の基材とシート状のマスク材とを互いに接触させる押圧手段を更に備えるように構成することもできる。
 なお、本発明においては、メンテナンス性等を考慮して、前記マスク材走行手段を前記真空処理室内と真空処理室外との間でY軸方向に移動自在とする移動手段を備えることが好ましい。
 また、上記課題を解決するために、上記成膜装置を用いシート状の基材に成膜する本発明の成膜方法は、シート状の基材とシート状のマスクとをX軸方向に所定間隔でアライメントマークが夫々列設されたもの、第1及び第2の両検出手段を夫々撮像手段として、撮像手段でシート状の基材の部分とシート状のマスク材の部分とのアライメントアークを撮像し、この撮像した画像を解析して、シート状の基材に対するシート状のマスク材のX軸方向の相対変位量(△X)と、シート状の基材に対するシート状のマスク材のY軸方向の相対変位量(△Y)及びシート状の基材の走行方向とシート状のマスク材の走行方向とのなす角度(△θz)の少なくとも一方を夫々検出し、検出した相対変位量(△X)に基づいて基材走行手段及び前記駆動部のいずれか一方に対してシート状の基材またはシート状のマスクの走行速度の増速量または減速量を指令し、これに同期させて、検出した相対変位量(△Y)及び角度(△θz)の少なくとも一方に基づいてY-θzステージに対して架台のY軸方向への移動及びθ方向への回転の少なくとも一方の移動量を指令してシート状の基材に対するシート状のマスク材の走行速度と位置とを補正することを特徴とする。
 これによれば、シート状の基材の部分とシート状のマスク材の部分とを高精度で位置合わせした状態で、所定速度で走行させるシート状の基材に対してマスク越しに成膜材料を供給して基材の片面に所定のパターンで連続して成膜することができる。
 ところで、マスク走行手段により一方向に走行されるシート状の基材の部分に対して上下方向に所定間隔を持ってシート状のマスク材の部分を平行に走行させ、当該領域にて成膜する場合、シート状の基材の部分に対してシート状のマスク材の部分が若干傾き、両者間に比較的に隙間が広い領域が生じていると、当該領域でマスクボケが生じ、高精度に成膜できない。
 本発明においては、マスク走行手段が互いに平行に走行するシート状のマスク材の部分をシート状の基材に対して傾ける傾動手段を更に有するような場合、第3の検出手段をX軸方向に所定間隔で複数列設されたものとし、第3の検出手段で夫々検出したシート状の基材の部分とシート状のマスク材の部分とのZ軸方向の間隔からシート状の基材に対するシート状のマスク材の傾きを検出し、検出した傾きに基づいてシート状の基材に対するシート状のマスク材の傾動量を傾動手段に指令して上記傾きを補正し、傾きの補正後に上記走行速度と位置とを補正することが好ましい。これにより、マスクボケを生じることなく、高精度で基材の片面に所定のパターンで連続して成膜することができる。
 他方で、前記撮像手段で撮像した画像を解析してX軸方向の相対変位量(△X)と、Y軸方向の相対変位量(△Y)及び角度(△θz)の少なくとも一方を夫々検出した後、第3の検出手段で夫々検出したシート状の基材の部分とシート状のマスク材の部分とのZ軸方向の間隔からシート状の基材に対するシート状のマスク材の傾きを検出し、この検出した傾きに基づいてシート状の基材に対するシート状のマスク材の傾動量を傾動手段に指令して上記傾きを補正すると共に、傾き補正に伴うシート状の基材に対するシート状のマスク材のX軸方向及びY軸方向の移動誤差を算出し、相対変位量(△X)とY軸方向の相対変位量(△Y)及び角度(△θz)の少なくとも一方とに上記移動誤差を加えて、基材走行手段及び前記駆動部のいずれか一方に対してシート状の基材またはシート状のマスクの走行速度の変化量を指令し、これに同期させて、架台のY軸方向への移動及びθ方向への回転の少なくとも一方の移動量を指令してシート状の基材に対するシート状のマスク材の走行速度と位置とを補正することができる。これによれば、可及的速やかにシート状の基材に対するシート状のマスク材の位置を補正することができてよい。
本発明の実施形態の成膜装置の構成を示す模式斜視図。 図1に示す成膜装置の模式断面図。 (a)及び(b)は、シート状のマスク材に対するシート状の基材の位置ずれを説明する図。 シート状のマスク材に対するシート状の基材の位置合わせを説明する図。 本発明の変形例に係る成膜装置の要部を拡大して示す断面図。 本発明の他の変形例に係る成膜装置の要部を拡大して示す断面図。 (a)および(b)は、本発明の更に他の変形例に係る成膜装置の要部を拡大して示す正面図及び側面図。
 以下、図面を参照して、成膜手段を抵抗ボードとし、シートの基材Swを所定速度で走行させながらマスクSm越しに所定の薄膜を連続して成膜する場合を例に本発明の成膜装置の実施形態を説明する。以下においては、成膜室1a内でシート状の基材Swの部分Sw1が一方向に移送される方向をX軸方向(図2中の左右方向)、同一平面内でこれに直交する方向をY軸方向、X軸方向及びY軸方向に直交する方向をZ軸方向(図2中の上下方向)、Z軸回りの回転方向をθz方向とし、また、X軸方向及びZ軸方向における上、下、左、右といった方向を示す用語は図2を基準とする。
 図1及び図2を参照して、DMは、本発明の実施形態の成膜装置である。成膜装置DMは、図示省略の真空ポンプが接続されて所定圧力に真空引きされる真空処理室1を備え、真空処理室1は、シート状の基材Swに対して成膜処理を施す成膜室1aと、成膜室1aのX軸方向の左右に夫々連設された上流側補助室1bと、下流側補助室1cとで構成されている。
 上流側補助室1bには、シート状の基材Swを巻回した状態で保持し、モータDM1で回転駆動される繰出ローラ21と、繰出ローラ21から繰り出されたシート状の基材Swが巻き掛けられて成膜室1aの上部空間へと案内する上流側ガイドローラ22及び下流側ガイドローラ23とが設けられている。また、上流側補助室1bには、上流側ガイドローラ22と下流側ガイドローラ23との間に位置してZ軸方向に移動自在なダンサーローラ24が設けられている。ダンサーローラ24の回転軸24aには、この回転軸24aを上方に向けて付勢するばね24bが付設され、成膜室1a内を挿通するシート状の基材Swの張力を所定値に保持するようにしている。なお、シート状の基材Swの張力を所定値に保持する構成はこれに限定されるものではなく、公知のアクチュエータによりシート状の基材Swの張力を可変としてもよい。また、下流側ガイドローラ23には、その回転速度を検出する速度検出手段としてのセンサ25が付設され、回転速度に基づいて成膜室1aへと送られるシート状の基材Swの送り速度を検出できるようにしている。
 下流側補助室1cには、成膜室1aを通して成膜処理されたシート状の基材Swを巻き取って回収する巻取ローラ31と、成膜室1aから巻取ローラ31へとシート状の基材Swを案内するガイドローラ32とが設けられている。そして、上流側補助室1b内の下流側ガイドローラ23と下流側補助室1c内のガイドローラ32とにより、シート状の基材Swが成膜室1aの上部空間をX軸方向に水平に移送され、その下面が成膜面となる。本実施形態においては、上述の各要素21~24及び31,32がシート状の基材Swを所定速度で走行する基材走行手段を構成する。
 成膜室1aには、この成膜室1a内を移送されるシート状の基材Swの部分Sw1に対して、シート状の基材Swに対する成膜材料の供給範囲を制限するシート状のマスク材Smを走行するマスク材走行手段4が設けられている。マスク材走行手段4は、矩形の基板部41aと基板部41aの四隅に夫々立設した4本の板状の支持部41bとで構成される単一の架台41を備える。架台41の支持部41bのY軸方向に向かい合う面には、上下方向に所定間隔で2本のローラ42a~42dが夫々軸支されている。また、左下側に位置するローラ42dの回転軸はモータDM2に接続されている。そして、シート状のマスク材Smが無端状に各ローラ42a~42dに巻き掛けられ、モータDM2の回転駆動によりシート状のマスク材Smが走行する。本実施形態においては、X軸方向に所定間隔を置いて配置される左上側のローラ42aと右上側のローラ42bとが、成膜室1a内を水平に移送されるシート状の基材Swの部分Sw1に対してシート状のマスク材Smの部分Sm1を上下方向に所定間隔を持って水平に走行させる平行走行領域形成部を構成し、左下側に位置するモータDM2付きのローラ42dが、シート状の基材Swに同期させてシート状のマスク材Smを走行させる駆動部を構成する。
 具体的には、センサ25での検知値に応じたシート状の基材Swの送り速度から、モータDM2の回転速度を算出し、シート状の基材Swの送り速度がシート状のマスク材Smの送り速度と同等になるように制御される。なお、シート状のマスク材Smとしては、シート状の基材Swに成膜しようとするパターンに応じた孔またはスリットがマスクパターンとして形成されたものが用いられる。また、シート状の基材Swとシート状のマスク材Smとの幅方向(Y軸方向)の両端には、同一X軸上に位置させて、シート状の基材Swに対するシート状のマスク材Smの相対変位量△X,△Y及び△θzを検出するためのアライメントマークAm1,Am2がY軸方向に所定間隔(例えば、5~10mmの範囲)で夫々形成されている(図3参照)。シート状の基材SwのアライメントマークAm1としては、例えば、平面視円形で所定径を有する透孔で構成される一方、シート状のマスク材SwのアライメントマークAm2としては、アライメントマークAm1より小径の透孔等で構成され、例えば、両アライメントマークAm1,Am2の中心が一致するようにアライメントされる。また、シート状の基材Swに対する成膜処理の管理等のため、成膜の開始位置や終了位置を特定できるように、シート状の基材Swの幅方向(Y軸方向)の両端には、アライメントマークAm1,Am2とは区別して、検出開始点や検出終了点を指示するマークSp,Epが形成されている。この場合、マークSp,Epは、アライメントマークAm1,Am2より大径の透孔や平面視三角形の透孔等で形成することができる。なお、アライメントマークAm1,Am2は、シート状の基材Swとシート状のマスク材Smとの幅方向(Y軸方向)の一端にのみ形成しておき、シート状の基材Swに対してシート状のマスク材Smを位置合わせすることもできる。
 また、成膜室1aには、架台41を支持するY-θzステージ5が設けられ、Y-θzステージ5には、上下動自在な直動アクチュエータ6が付設されている。Y-θzステージ5としては、架台41のY軸方向への移動及び、架台41のθz方向への回転を行い得る公知の構造のもの、また、直動アクチュエータ6としては架台41をY-θzステージごと上下動し得る公知の構造のものが利用できるためここでは詳細な説明は省略する。更に、成膜室1aの下面にはY軸方向に延びるレール部材71が設けられ、レール部材71に沿って走行可能な台車72が設けられ、台車72上に、直動アクチュエータ6を介してY-θzステージ5及び架台41が設置されている。この場合、成膜室1aを画成する壁面には図示省略の開閉扉が設けられ、マスク材走行手段4を成膜室1aに進退自在としている。本実施形態では、レール部材71と台車72とがマスク材走行手段4を成膜室1a内と成膜室1a外との間でY軸方向に移動自在とする移動手段を構成する。
 更に、成膜室1aを画成する上壁面11には、Y軸方向に所定間隔を存して2個の覗き窓12が設けられている。覗き窓12の上方には、CCDカメラ等の撮像手段81,82が配置されている。この場合、撮像手段81,82は、シート状の基材Swの幅方向(Y軸方向)両端で成膜室1a内を水平に移送されるシート状の基材Swの部分Sw1に対するシート状のマスク材Smの部分Sm1の相対位置やアライメントマークAm1,Am2を撮像するようになっている。本実施形態においては、両撮像手段81,82が、シート状の基材Swに対するシート状のマスク材SmのY軸方向の相対変位量△Yまたはシート状の基材Swの走行方向とシート状のマスク材Smの走行方向とのなす角度△θzを検出する第2の検出手段を構成すると共に、両撮像手段81,82が、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とが上下に位置する領域にて、シート状の基材Swに対するシート状のマスク材SmのX軸方向の相対変位量△Xを検出する第1の検出手段を兼用する。そして、撮像手段81,82で撮像した画像を公知の画像解析手段で解析し、この解析した値(検出値)に応じてY-θzステージ5を適宜移動または回転させてシート状の基材Swに対するシート状のマスク材Smの位置が補正される。
 具体的には、図3(a)に例示するように、シート状の基材Sw1に対してシート状のマスク材SmのY軸方向一方に変位している場合、撮像手段81,82で撮像した画像を公知の画像解析手段で解析して変位量△Yを算出し、これに応じてY-θzステージ5をY軸方向一方に移動させて補正する。他方で、図3(b)に例示するように、シート状の基材Swに対してシート状のマスク材Smが蛇行している場合、撮像手段81,82で撮像した画像を公知の画像解析手段で解析して、シート状の基材Swの走行方向とシート状のマスク材Smの走行方向とのなす角度(X-Y平面におけるシート状の基材Swに対するシート状のマスク材Smの傾き)△θzを算出し、これに応じてY-θzステージ5をθz軸方向に適宜移動させることでY-θzステージ5をZ軸回りに回転させて補正する。それに加えて、撮像手段81,82で撮像した画像を同様に解析し、この解析した値(検出値)に応じてモータDM1またはモータDM2の回転数を増加または減少させて、両アライメントマークAm1,Am2がZ軸方向で上下に重なるようにシート状の基材Swに対するシート状のマスク材Smの位置が補正され、シート状の基材Swとシート状のマスク材Smとが同期して走行される。
 成膜室1aを画成するY軸方向の側壁面にもまた、図示省略の覗き窓が設けられ、覗き窓の側方には、CCDカメラ等の撮像手段83が配置されている。本実施形態では、撮像手段83が、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とが上下に位置する領域にて、シート状の基材Swとシート状のマスク材Smとの上下方向の間隙を検出する第3の検出手段を構成する。そして、撮像手段83で撮像した画像を公知の画像解析手段で解析し、この解析した値(検出値)に応じて直動アクチュエータ6を適宜上下動させてシート状の基材Swに対するシート状のマスク材Smの高さ位置が補正される。シート状の基材Swの送り速度とシート状のマスク材Smの送り速度とを一致させる制御や、成膜室1a内を水平に移送されるシート状の基材Swの部分Sw1に対するシート状のマスク材Smの部分Sm1のX軸方向及びY軸方向の相対位置の補正及び、シート状の基材Swとシート状のマスク材Smとの上下方向の間隙の補正は、成膜中、常時行うことができる。これにより、シート状の基材Swに対してシート状のマスク材Smが高精度で位置合わせされ、精密なパターンの成膜を行うことができると共に、上下方向の間隙が広がり過ぎて基材Swに成膜した薄膜にマスクボケが生じることを防止できる。
 成膜室1aには、架台41の支持部41b内側の空間でシート状のマスク材Smの部分Sm1の下方に位置する部分には成膜手段9が配置されている。成膜手段9は、シート状の基材Swに成膜しようする薄膜の組成に応じて選択させる成膜材料(図示せず)が収納され、この成膜材料を抵抗加熱により蒸発させる抵抗ボード91と、抵抗ボード91が格納されるボックス92とを備え、成膜室1aを画成するY軸方向の側壁面で支持されている。この場合、ボックス92を成膜室1aに進退自在に構成し、蒸発材料の補充やメンテナンスを容易にできるようにしてもよい。なお、成膜材料を抵抗ボード91に予めセットしたボックス92を複数用意してしておき、使用中のものをメンテナンスする必要が生じた場合、他のボックス92をセットして可及的にシート状の基材Swへの成膜を再開できるようにしてもよい。
 上記成膜装置DMは、その全体的な動作を制御するパーソナルコンピュータやシーケンサー等からなる制御手段Cuを備え、制御手段Cuは、シート状の基材Swとシート状のマスク材Smとの同期した走行や、撮像手段81,82,83で撮像した画像データの入力に基づく補正量の算出やY-θzステージ5によるシート状の基材Swに対するシート状のマスク材Smの位置の補正等を行う。以下に、図4も参照して、上述の成膜装置DMを用いた成膜方法の一例を説明する。
 上流側補助室1bにて、繰出ローラ21にシート状の基材Swを保持させ、シート状の基材Swの先端を上流側ガイドローラ22、下流側ガイドローラ23及びダンサーローラ24を介して、予めマスク材走行手段4がセットされた成膜室1aの上部空間を通し、更にガイドローラ32を介して巻取ローラ31に巻き掛ける。このとき、シート状のマスク材Smを手動等で移動させてアライメントマークAm1,Am2をZ軸方向に略一致するようにしておく。そして、成膜室1a、上流側補助室1b及び下流側補助室1cを所定圧力まで真空引きされると、モータDM1、DM2を回転駆動し、繰出ローラ21からのシート状の基材Swを走行させると共に、これに同期させてシート状のマスク材Smを走行させる。このとき、センサ25での検知値に応じたシート状の基材Swの送り速度から、モータDM2の回転速度を算出し、シート状の基材Swの送り速度がシート状のマスク材Smの送り速度と同等になるように制御して単時間当たり同じ長さ(走行量)だけシート状の基材Swとシート状のマスク材Smとが走行される。
 次に、図4中、上側に位置するシート状の基材Sw及びシート状のマスク材SmのアライメントマークをAm1u,Am2u、下側に位置するアライメントマークをAm1d,Am2dとし、撮像手段82で検出開始点のマークSpが撮像されると、制御手段Cuは、次に撮像した、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とのアライメントアークAm1u,Am2u,Am1d,Am2dの画像を解析して、X軸方向の相対変位量△Xと、Y軸方向の相対変位量△Y及び角度△θzの少なくとも一方を夫々検出する。具体的には、図4に示すように、1)撮像手段82でアライメントマークAm1uとAm2uとを同時に撮像し、画像解析してX軸方向及びY軸方向の位置差を夫々検出すると共に、2)撮像手段81でアライメントマークAm1dとAm2dとを同時に撮像し、画像解析してX軸方向及びY軸方向の位置差を夫々検出する。そして、上記1)及び2)で検出した上記位置差のX軸方向及びY方向の平均値を夫々算出し、シート状の基材Swの両アライメントアークAm1u,Am1dの間の中点Am1cと、シート状のマスク材Smの両アライメントアークAm2u,Am2dの間の中点Am2cにおける相対変位量△X及び△Yを求める。他方、上記位置差のX軸方向について上記1)と2)との差を算出し、それを撮像手段81,82間の距離で割ると、△θzが算出される。そして、制御手段Cuは、検出した相対変位量(△X)に基づいてモータDM2の回転数の変化量(即ち、増速量または減速量)を算出して指令し、シート状の基材Swに対するシート状のマスク材SmのX軸方向の位置を補正する。また、例えばY軸方向に変位している場合には、検出した相対変位量(△Y)に基づいてY-θzステージ5のY軸方向の移動量を指令し、例えばθz方向に変位している場合には、角度(△θz)に基づいてY-θzステージ5のZ軸回りに回転量を指令してシート状の基材Swに対するシート状のマスク材Smの位置を補正する。
 上記に併せて、制御手段Cuは、撮像手段83で撮像したシート状の基材Swとシート状のマスク材SmとのZ軸方向の間隙の画像を解析して、シート状の基材Swに対するシート状のマスク材SmのZ軸方向の相対変位量(△Z)を検出する。そして、検出した相対変位量(△Z)に基づいて直動アクチュエータ6の上下方向の移動量を指令してシート状の基材Swとシート状のマスク材Smとの隙間(高さ位置)を補正する。
 シート状の基材Swに対するシート状のマスク材Smの走行速度と位置と高さ位置とが補正された後、制御手段Cuは、例えば所定の周期でシート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とのアライメントアークAm1,Am2の撮像する毎に、相対変位量△Xと、相対変位量△Y及び角度△θzの少なくとも一方と、シート状の基材Swとシート状のマスク材Smとの隙間とを夫々検出し、所定の範囲から外れると、上記に従い、シート状の基材Swに対するシート状のマスク材Smの位置と走行速度を補正する。
 以上の実施形態によれば、シート状のマスク材Smを走行する、平行走行領域形成部及び駆動部としての各ローラ42a~42dを単一の架台41に設置してユニット化し、シート状の基材Swの部分Sw1に対するシート状のマスク材Smの部分Sm1の位置合わせを行う場合には、架台41自体を移動または回転させるため、一定の張力が加わったシート状のマスク材Smの走行状態が変化するものではなく、シート状のマスク材Sm、ひいてはそのマスクパターンに強制的な歪が発生することはない。従って、シート状の基材Swの部分Sw1に対してシート状のマスク材Smの部分Sm1が上下方向に所定間隔を持って常時平行に走行されることと相俟って、精密なパターンでシート状の基材Swに成膜を行うことができる。しかも、架台41が移動手段71,72上に設置されているため、真空処理室1から取り出してメンテナンス等を行う場合、その作業を容易にすすめることができる。なお、各ローラ42a~42dを単一の架台41に設置してユニット化し、シート状のマスク材Smを予めセットしたものを複数用意しておいてもよい。そして、使用中のものをメンテナンス(シート状のマスク材Smの交換やクリーニング等)する必要が生じた場合、例えばクリーニング済のシート状のマスク材Smがセットされた他のものを用いて可及的速やかにシート状の基材への成膜を再開できるようにしてもよい。
 ところで、シート状の基材Swによっては、抵抗ボード91にて成膜材料を抵抗加熱により蒸発させるときの輻射熱で熱膨張する場合がある。シート状の基材SwがX軸方向に熱膨張している場合、上記の如く、単時間当たり同じ長さ(走行量)だけシート状の基材Swとシート状のマスク材Smとを走行させる制御を行っていても、シート状のマスク材Smに対してシート状の基材Swに遅れが生じることになる。このような場合、Y-θzステージ5をX軸方向にも移動できるように構成して熱膨張に伴う相対変位量△Xを補正することが考えられるが、これでは、Y-θzステージ5のX軸方向の移動量の範囲内でしか相対変位量△Xが補正できず、成膜処理しようとするシート状の基材Swが非常に長いことで、シート状の基材Swの遅れが累積してくると、シート状の基材Swに対するシート状のマスク材Snの位置を補正することができない場合が生じる。それに対して、上記実施形態では、検出した相対変位量(△X)に基づいてモータDM2の回転数の変化量(即ち、増速量または減速量)を算出して指令し、単時間当たり同じ走行量だけシート状の基材Swとシート状のマスク材Smとが走行させるときの走行量に相対変位量△Xを加算または減算するため、X軸方向の熱膨張によって生じるシート状の基材Swの遅れも補正でき、しかも、シート状の基材Swが非常に長いような場合でも永続的に補正することができる。更に、シート状の基材SwのY軸方向に熱膨張している場合でも、上記の如く、変位量△Yや角度θzを算出しているため、シート状の基材Swの熱膨張の影響を最小限に抑えるアライメントを行うことができる。
 以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、マスク材走行手段4から台車72までを含めて真空処理室1に配置したものを例に説明したが、例えば、マスク材走行手段4とY-θzステージ5のみを真空処理室1に配置する構成とし、成膜室1aの容積が小さくなるようにしてもよい。また、上記実施形態では、シート状のマスク材Smを無端状に各ローラ42a~42dに巻き掛けたものを例に説明したが、これに限定されるものではなく、繰出ローラから巻取軸に巻き取るように構成することもできる。
 また、上記実施形態では、成膜手段として抵抗ボードを用いて蒸着するものを例に説明したが、これに限定されるものではなく、成膜手段は、スパッタリングカソードや、CVD法により所定の薄膜を形成するための原料ガス供給手段としてもよい。更に、上記実施形態では、下流側ガイドローラ23に速度検出手段としてのセンサ25を設け、センサ25での検出値に応じて、シート状の基材Swの送り速度がシート状のマスク材Smの送り速度と同等になるように制御するものを例に説明したが、これに限定されるものではなく、例えば、シート状のマスク材Smの送り速度を検出し、この検出値に応じてモータDM1を制御し、繰出ローラ21から繰り出されたシート状の基材Swの送り速度を補正するようにしてもよい。この場合、モータDM2の回転数を増加または減少させて、両アライメントマークAm1,Am2がZ軸方向で上下に重なるようにシート状の基材Swに対するシート状のマスク材Smの位置が補正される。
 更に、上記実施形態では、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とが上下方向に所定間隔を持って平行に走行されるものを例に説明したが、これに限定されるものではなく、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とを接触させた状態で成膜するように構成することができる。例えば、図5に示す変形例に係る実施形態では、抵抗ボード91が格納されるボックス92に対向させてシート状の基材Swの上側にはキャンローラCrが設けられている。キャンローラCrには図示省略の直動アクチュエータが付設され、キャンローラCrをZ軸方向に上下動自在としている。他方で、図6に示す他の変形例に係る実施形態では、抵抗ボード91が格納されるボックス92に対向させてシート状の基材Swの上側にX軸方向に所定間隔で2本の押圧ローラR1,R2が設けられている。各押圧ローラR1,R2には、図示省略の直動アクチュエータが付設され、各ローラR1,R2を連動してZ軸方向に上下動自在としている。
 また、上記実施形態では、シート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とがZ軸方向に所定間隔を持って平行に走行させる際に、Y-θzステージ5に付設した直動アクチュエータ6により各ローラ42a~42dを一体にZ軸方向に上下動させてZ軸方向の間隔を補正するものを例に説明したが、変形例に係るマスク走行手段40では、互いに平行に走行するシート状のマスク材Smの部分Sm1をシート状の基材Swの部分Sw1に対して傾ける傾動手段60を更に備えている。
 上記実施形態と同一の部材または要素について同一の符号を用いて説明する図7を参照して、マスク走行手段40では、台車72上に設置したY-θzステージ5にZ軸方向に上下動する3個の直動アクチュエータ60が所定間隔で設けられ、各直動アクチュエータ60には、自由(球面)ジョイント61を介して操作ロッド62が夫々連結され、3本の操作ロッド62で、各ローラ42a~42dを夫々軸支するフレーム64が支持されている。この場合、各直動アクチュエータ60、ジョイント61及び支持ロッド62が本実施形態の傾動手段を構成する。また、成膜室1aを画成するY軸方向の側壁面には第3の検出手段が設けられ、本実施形態では、CCDカメラ等の撮像手段83a~83cがX軸方向に所定間隔で3個列設され、シート状の基材Swとシート状のマスク材Smの部分とが上下に位置する領域にて、シート状の基材Swとシート状のマスク材Smとを複数箇所で撮像できるようになっている。
 制御手段Cuは、各撮像手段83a~83cで夫々検出したシート状の基材Swの部分Sw1とシート状のマスク材Smの部分Sm1とのZ軸方向の間隔からシート状の基材Swに対するシート状のマスク材Smの傾きを検出し、検出した傾きに基づいてシート状の基材Swに対するシート状のマスク材Smの傾動量を傾動手段としての直動アクチュエータ60に指令して上記傾きを補正する。この場合、直動アクチュエータ60によりシート状のマスク材Smの傾きを補正すると、アライメントマークAm1,Am2をX軸方向及びY軸方向の少なくとも一方向にずれることになるので、上記傾きの補正後に、上述の手順に従って、シート状の基材Swに対するシート状のマスク材Sm走行速度と位置との補正が行われる。
 他方で、可及的速やかにシート状の基材Swに対するシート状のマスク材Smの位置を補正するために、上記実施形態の如く、撮像手段81,82で撮像した画像を解析してX軸方向の相対変位量△Xと、Y軸方向の相対変位量△Y及び角度△θzの少なくとも一方を夫々検出した後に、第3の検出手段としての各撮像手段83a~83cで夫々検出したZ軸方向の間隔からシート状の基材Swに対するシート状のマスク材Smの傾きを検出し、検出した傾きに基づいてシート状の基材Swに対するシート状のマスク材Smの傾動量を傾動手段としての直動アクチュエータ60に指令して上記傾きを補正する。これと同時に、制御手段Cuは、傾き補正に伴うシート状の基材Swに対するシート状のマスク材SmのX軸方向及びY軸方向の移動誤差を算出し、相対変位量△Xと、Y軸方向の相対変位量△Y及び角度△θzの少なくとも一方とに上記移動誤差を算出する。そして、例えば、算出した相対変位量(△Z±α)に基づいて直動アクチュエータ6の上下方向の移動量を指令してシート状の基材Swとシート状のマスク材Smとの隙間(高さ位置)が補正される。
 DM…成膜装置、1…真空処理室、21…繰出ローラ(基材走行手段)、22,23,32…ガイドローラ(基材走行手段)、31…巻取ローラ(基材走行手段)、DM1…モータ(基材走行手段)、4,40…マスク走行手段、41…架台、42a,42b…ローラ(マスク材走行手段の平行領域形成部)、42d…モータ付きローラ(マスク材走行手段の駆動部)、5…Y-θzステージ、6…直動アクチュエータ(駆動手段)、60…直動アクチュエータ(傾動手段)、61…ジョイント、62…支持ロッド、71…台車(移動手段)、81~83…撮像手段(第1~第3の各検出手段)、9…成膜手段、Sw…シート状の基材、Sw1…シート状の基材の部分、Sm…シート状のマスク材、Sm1…シート状のマスク材の部分。

Claims (9)

  1.  真空処理室内に、シート状の基材を所定速度で走行する基材走行手段と、一方向に走行されるシート状の基材の部分に対して成膜材料を供給する成膜手段と、シート状の基材に対する成膜材料の供給範囲を制限するシート状のマスク材を走行するマスク材走行手段とを備え、
     成膜手段からシート状の基材に向かう方向を上として、マスク材走行手段は、一方向に走行されるシート状の基材の部分に対してその下側に位置するシート状のマスク材の部分を平行に走行させる平行走行領域形成部と、シート状の基材に同期させてシート状のマスク材を走行させる駆動部とを有し、平行走行領域形成部と駆動部とが単一の架台に設置されることを特徴とする成膜装置。
  2.  前記シート状の基材または前記シート状のマスク材を走行する速度を検出する速度検出手段と、前記シート状の基材の部分が一方向に走行される方向をX軸方向とし、前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、前記シート状の基材に対する前記シート状のマスク材のX軸方向の相対変位量を検出する第1の検出手段とを備え、
     前記シート状の基材と前記シート状のマスク材のうちいずれか一方を、その他方の前記速度検出手段の検出値に一致させて両者を同期させ、第1の検出手段の検出値に応じて前記基材走行手段及び前記駆動部のいずれか一方を制御してシート状の基材に対するシート状のマスク材の位置を補正するように構成したことを特徴とする請求項1記載の成膜装置。
  3.  前記シート状の基材の部分が一方向に走行される方向をX軸方向、これに直交する方向をY軸方向、上下方向としてのZ軸回りの回転方向をθz方向とし、
     前記架台はY-θzステージ上に設置され、
     前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、シート状の基材に対するシート状のマスク材のY軸方向の相対変位量またはシート状の基材の走行方向とシート状のマスク材の走行方向とのなす角度を検出する第2の検出手段を備え、第2の検出手段の検出値に応じて、Y-θzステージにより架台のY軸方向への移動及びθ方向への回転の少なくとも一方を行ってシート状の基材に対するシート状のマスク材の位置を補正するように構成したことを特徴とする請求項1または請求項2記載の成膜装置。
  4.  請求項3記載の成膜装置であって、マスク走行手段が、一方向に走行されるシート状の基材の部分に対して上下方向に所定間隔を持ってシート状のマスク材の部分を平行に走行するものにおいて、 
     前記Y-θzステージに、当該Y-θzステージを上下動する駆動手段を備え、前記シート状の基材の部分とシート状のマスク材の部分とが上下に位置する領域にて、シート状の基材とシート状のマスク材との上下方向の間隙を検出する第3の検出手段を備え、第3の検出手段の検出値に応じて駆動手段によりY-θzステージを上下動させてシート状の基材に対するシート状のマスク材の高さ位置を補正するように構成したことを特徴とする成膜装置。
  5.  前記成膜手段の上方領域にて、このシート状の基材の部分をシート状のマスク材の部分に向けて押圧し、シート状の基材とシート状のマスク材とを互いに接触させる押圧手段を更に備えることを特徴とする請求項1~3の何れか1項に記載の成膜装置。
  6.  前記マスク材走行手段を前記真空処理室内と真空処理室外との間でY軸方向に移動自在とする移動手段を備えることを特徴とする請求項2~5の何れか1項に記載の成膜装置。
  7.  請求項3~請求項6の何れか1項に記載の成膜装置を用いてシート状の基材に成膜する成膜方法であって、
     シート状の基材とシート状のマスクとをX軸方向に所定間隔でアライメントマークが夫々列設されたもの、第1及び第2の両検出手段を夫々撮像手段として、
     撮像手段でシート状の基材の部分とシート状のマスク材の部分とのアライメントアークを撮像し、この撮像した画像を解析して、シート状の基材に対するシート状のマスク材のX軸方向の相対変位量(△X)と、シート状の基材に対するシート状のマスク材のY軸方向の相対変位量(△Y)及びシート状の基材の走行方向とシート状のマスク材の走行方向とのなす角度(△θz)の少なくとも一方を夫々検出し、
     検出した相対変位量(△X)に基づいて基材走行手段及び前記駆動部のいずれか一方に対してシート状の基材またはシート状のマスクの走行速度の変化量を指令し、これに同期させて、検出した相対変位量(△Y)及び角度(△θz)の少なくとも一方に基づいてY-θzステージに対して架台のY軸方向への移動及びθ方向への回転の少なくとも一方の移動量を指令してシート状の基材に対するシート状のマスク材の走行速度と位置とを補正することを特徴とする成膜方法。
  8.  請求項7記載の成膜方法であって、マスク走行手段が互いに平行に走行するシート状のマスク材の部分をシート状の基材に対して傾ける傾動手段を更に有するものにおいて、
     第3の検出手段をX軸方向に所定間隔で複数列設されたものとし、
     第3の検出手段で夫々検出したシート状の基材の部分とシート状のマスク材の部分とのZ軸方向の間隔からシート状の基材に対するシート状のマスク材の傾きを検出し、検出した傾きに基づいてシート状の基材に対するシート状のマスク材の傾動量を傾動手段に指令して上記傾きを補正し、傾きの補正後に上記走行速度と位置とを補正することを特徴とする成膜方法。
  9.  請求項7記載の成膜方法であって、マスク走行手段が互いに平行に走行するシート状のマスク材の部分をシート状の基材に対して傾ける傾動手段を更に有するものにおいて、
     第3の検出手段をX軸方向に所定間隔で複数列設されたものとし、
     上記撮像手段で撮像した画像を解析してX軸方向の相対変位量(△X)と、Y軸方向の相対変位量(△Y)及び角度(△θz)の少なくとも一方を夫々検出した後、第3の検出手段で夫々検出したシート状の基材の部分とシート状のマスク材の部分とのZ軸方向の間隔からシート状の基材に対するシート状のマスク材の傾きを検出し、この検出した傾きに基づいてシート状の基材に対するシート状のマスク材の傾動量を傾動手段に指令して上記傾きを補正すると共に、傾き補正に伴うシート状の基材に対するシート状のマスク材のX軸方向及びY軸方向の移動誤差を算出し、
     相対変位量(△X)とY軸方向の相対変位量(△Y)及び角度(△θz)の少なくとも一方とに上記移動誤差を加えて、基材走行手段及び前記駆動部のいずれか一方に対してシート状の基材またはシート状のマスクの走行速度の変化量を指令し、これに同期させて、架台のY軸方向への移動及びθ方向への回転の少なくとも一方の移動量を指令してシート状の基材に対するシート状のマスク材の走行速度と位置とを補正することを特徴とする成膜方法。
PCT/JP2015/001306 2014-03-25 2015-03-10 成膜装置及び成膜方法 WO2015146025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167029741A KR20160136439A (ko) 2014-03-25 2015-03-10 성막 장치 및 성막 방법
JP2016509978A JP6227757B2 (ja) 2014-03-25 2015-03-10 成膜装置及び成膜方法
EP15768863.1A EP3124649A4 (en) 2014-03-25 2015-03-10 Film-formation device and film-formation method
CN201580015142.8A CN106133188A (zh) 2014-03-25 2015-03-10 成膜装置及成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014062751 2014-03-25
JP2014-062751 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146025A1 true WO2015146025A1 (ja) 2015-10-01

Family

ID=54194579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001306 WO2015146025A1 (ja) 2014-03-25 2015-03-10 成膜装置及び成膜方法

Country Status (6)

Country Link
EP (1) EP3124649A4 (ja)
JP (1) JP6227757B2 (ja)
KR (1) KR20160136439A (ja)
CN (1) CN106133188A (ja)
TW (1) TWI597999B (ja)
WO (1) WO2015146025A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031066A (ja) * 2016-08-26 2018-03-01 株式会社アルバック マスク材走行ユニット
JP2018031040A (ja) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 ロールツーロール方式の表面処理装置並びにこれを用いた成膜方法及び成膜装置
JP2022057676A (ja) * 2020-09-30 2022-04-11 キヤノントッキ株式会社 成膜装置、調整方法及び電子デバイスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748785A (zh) * 2020-06-09 2020-10-09 江苏菲沃泰纳米科技有限公司 镀膜设备及其镀膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173870A (ja) * 2001-12-04 2003-06-20 Sony Corp 有機エレクトロルミネッセンス素子の製造装置及び製造方法
JP2011225932A (ja) * 2010-04-20 2011-11-10 Fuji Electric Co Ltd パターン成膜のためのスパッタリング成膜装置
JP2012134043A (ja) * 2010-12-22 2012-07-12 Nitto Denko Corp 有機el素子の製造方法及び製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495752B2 (ja) * 2007-11-06 2010-07-07 東京エレクトロン株式会社 基板処理装置及び塗布装置
WO2011099563A1 (ja) * 2010-02-12 2011-08-18 株式会社ニコン 基板処理装置
JP5833959B2 (ja) * 2011-09-28 2015-12-16 株式会社Screenホールディングス 基板処理装置および基板処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173870A (ja) * 2001-12-04 2003-06-20 Sony Corp 有機エレクトロルミネッセンス素子の製造装置及び製造方法
JP2011225932A (ja) * 2010-04-20 2011-11-10 Fuji Electric Co Ltd パターン成膜のためのスパッタリング成膜装置
JP2012134043A (ja) * 2010-12-22 2012-07-12 Nitto Denko Corp 有機el素子の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124649A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031040A (ja) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 ロールツーロール方式の表面処理装置並びにこれを用いた成膜方法及び成膜装置
JP2018031066A (ja) * 2016-08-26 2018-03-01 株式会社アルバック マスク材走行ユニット
JP2022057676A (ja) * 2020-09-30 2022-04-11 キヤノントッキ株式会社 成膜装置、調整方法及び電子デバイスの製造方法
JP7185674B2 (ja) 2020-09-30 2022-12-07 キヤノントッキ株式会社 成膜装置、調整方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
EP3124649A4 (en) 2017-08-16
EP3124649A1 (en) 2017-02-01
KR20160136439A (ko) 2016-11-29
CN106133188A (zh) 2016-11-16
TWI597999B (zh) 2017-09-01
TW201601593A (zh) 2016-01-01
JPWO2015146025A1 (ja) 2017-04-13
JP6227757B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6308247B2 (ja) パターン形成方法
JP6227757B2 (ja) 成膜装置及び成膜方法
EP2264212B1 (en) Thin film deposition apparatus
JP6509696B2 (ja) 真空処理装置
US20070137568A1 (en) Reciprocating aperture mask system and method
TWI592353B (zh) Conveying apparatus and substrate processing apparatus
WO2016080235A1 (ja) 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
TW201335053A (zh) 引導一移動中之網狀物的裝置
WO2011099563A1 (ja) 基板処理装置
JP7170524B2 (ja) 基板載置方法、成膜方法、成膜装置、有機elパネルの製造システム
JP4304165B2 (ja) 露光方法および露光装置
JP7290988B2 (ja) アライメント装置、成膜装置、アライメント方法、成膜方法および電子デバイスの製造方法
TW202124306A (zh) 用於製造玻璃帶的方法及裝置
JP6796970B2 (ja) マスク材走行ユニット
KR102516387B1 (ko) 5차원 위치 제어 장치를 활용한 롤투롤 레지스터 정밀 제어 시스템 및 방법
JP5787216B2 (ja) 薄膜積層体製造装置およびその運転方法
JP2008137157A (ja) 同期補間のスクリーン印刷装置
JP4738887B2 (ja) 露光装置
KR101445065B1 (ko) 동기화 오차를 보정하는 인쇄 장치
JP2014086449A (ja) 搬送装置及び基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509978

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015768863

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768863

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029741

Country of ref document: KR

Kind code of ref document: A