WO2015145723A1 - 風車翼及びそれを備えた風力発電装置 - Google Patents

風車翼及びそれを備えた風力発電装置 Download PDF

Info

Publication number
WO2015145723A1
WO2015145723A1 PCT/JP2014/059127 JP2014059127W WO2015145723A1 WO 2015145723 A1 WO2015145723 A1 WO 2015145723A1 JP 2014059127 W JP2014059127 W JP 2014059127W WO 2015145723 A1 WO2015145723 A1 WO 2015145723A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind turbine
tip
wing
turbine blade
Prior art date
Application number
PCT/JP2014/059127
Other languages
English (en)
French (fr)
Inventor
泰孝 和田
晴仁 久保田
幸政 山村
一郎 内山
圭二 尾山
寿樹 山▲崎▼
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2014/059127 priority Critical patent/WO2015145723A1/ja
Priority to EP14887028.0A priority patent/EP3130799A4/en
Priority to JP2015512413A priority patent/JP5805913B1/ja
Publication of WO2015145723A1 publication Critical patent/WO2015145723A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/307Blade tip, e.g. winglets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine blade and a wind turbine generator provided with the wind turbine blade.
  • Wind power generation is domestic energy that uses clean natural energy, does not need to depend on overseas suppliers, and does not emit greenhouse gases. Large, highly efficient windmills are used on a commercial basis.
  • the outer edge of the wing (especially near the tip) is in the high Re number region, and therefore an aircraft wing type represented by the NACA series can be used as the wing.
  • an aircraft wing type represented by the NACA series can be used as the wing.
  • negative pressure is generated on the upper surface side (rear surface side) and positive pressure is generated on the lower surface side (abdominal surface side), so that a vortex flowing from the lower surface toward the upper surface due to the pressure difference between the upper and lower surfaces at the wing tip ( A tip vortex) is generated.
  • This vortex induces an airflow different from the traveling direction (rotation direction) around the wing, and acts in a direction to reduce the airflow impinging on the wing, that is, a direction to reduce the angle of attack of the wing.
  • the direction of the aerodynamic force acting on the wing is inclined backward by an angle corresponding to the decrease in the angle of attack (guide angle of attack), but the component parallel to the traveling direction (rotation direction) is In practice, it will act as a drag.
  • This drag is an induced drag (inductive resistance) and becomes a power loss of the windmill.
  • noise is generated by the tip vortex.
  • Inductive drag is a drag that cannot be avoided as long as the wings generate lift, and is a drag that occurs due to the presence of a wing tip.
  • the induced drag can be reduced. If the induced drag is reduced, the drag is reduced as a whole, and as a result, the lift-drag ratio is increased, so that the required thrust or the required horsepower can be reduced.
  • Wind turbine blades also use blades with a large aspect ratio to reduce the chord length at the blade tip and reduce the drag caused by the vortex at the blade tip as much as possible. Absent.
  • the sound power level of the windmill with respect to the rotor diameter tends to increase as the rotor diameter increases in large windmills. From this, it is considered that the influence of the peripheral speed at the blade tip due to the increase in the noise is greater than the influence of the rotational speed.
  • wind turbine noise is classified into wing aerodynamic noise, mechanical noise from nacelles, towers, etc., but wing aerodynamic noise is dominant in large wind turbines of 1 to 3 MW class currently constructed in wind farms. is there. For this reason, it is necessary to reduce aerodynamic noise generated from the blades in order to reduce wind turbine noise. Although the noise due to the blade tip vortex is limited, the flow at the blade tip portion is disturbed and causes power loss.
  • Patent Document 1 describes a wind turbine blade provided with a winglet formed by bending the blade tip portion at a predetermined angle (15 ° to 55 °) on the back side or the abdomen side. According to the wind turbine blade having such a configuration, the vortex generated at the blade tip portion of the wind turbine blade can be reduced, so that the power loss due to the blade tip vortex can be reduced. In addition, the generation of noise due to vortices generated at the tip of the wind turbine blade can be reduced.
  • the wind turbine blade described in Patent Document 1 can reduce power loss and noise generation compared to a wind turbine blade without a winglet, it has a large rotor diameter of 1 to 3 MW class or more. When applied to a wind turbine blade of a wind turbine, generation of power loss and noise cannot be sufficiently reduced.
  • the present invention has been made in view of the above-described conventional problems, and even when applied to a wind turbine blade of a large wind turbine of 1 to 3 MW class or larger in which the rotor diameter is increased, It is an object of the present invention to provide a wind turbine blade capable of sufficiently reducing loss and noise generation and a wind turbine generator having the wind turbine blade.
  • the present invention employs the following means. That is, the present invention relates to a wind turbine blade used in a horizontal axis lift type wind turbine, wherein the blade body has a streamlined cross-sectional shape in which the chord length gradually decreases from the blade root to the blade tip, and the blade tip of the blade body.
  • a small winglet with a pointed tip provided integrally with the winglet, the tip of which is behind the trailing edge of the wing tip of the wing body and in the wing length direction of the wing body. The shape is set so that it is located in the direction.
  • the pressure difference between the upper and lower surfaces at the blade tip portion of the wind turbine blade can be reduced, so that the blade tip vortex generated at the blade tip portion can be weakened.
  • the generated noise can be reduced.
  • the tip of the winglet is positioned behind the trailing edge of the wing tip of the wing body in the rotational direction and outward in the blade length direction of the wing body, so that the position of the wing tip vortex is generated on the wing body. It can be separated from the rear edge of the blade tip and outward, and the influence of the blade tip vortex on the wind turbine blade can be reduced, so that the induced drag can be reduced and the power loss can be reduced.
  • the winglet may be provided integrally with the blade tip of the wing body so that the upper and lower surfaces rise at a predetermined angle with respect to the upper and lower surfaces of the wing body.
  • the position of the blade tip vortex generated at the blade tip of the wind turbine blade is above the upper surface of the blade tip of the blade body and behind the trailing edge of the blade tip of the blade body, Moreover, it can be separated outward from the blade tip of the blade body. Therefore, the power loss of the wind turbine blade can be reduced, and the moment generated at the blade root of the wind turbine blade by the induced drag can be reduced.
  • the rising angle of the winglet may be 30 ° to 90 °.
  • the wind turbine blade of the present invention even when applied to various wind turbine blades having different cross-sectional shapes by appropriately setting the rising angle of the small blade within a range of 30 ° to 90 °, Loss and generation of aerodynamic noise can be reliably reduced.
  • the winglet may be formed in a substantially sickle shape in plan view with a sharp tip.
  • the blade tip vortex generated at the tip of the wind turbine blade can be weakened by the small blade having a substantially sickle shape in a plan view with a sharp tip, and power loss and aerodynamic noise can be reduced. Generation can be reduced.
  • the winglet may be formed in a substantially triangular shape in plan view with a sharp tip.
  • the blade tip vortex generated at the blade tip portion of the wind turbine blade can be weakened by a small triangular blade having a pointed tip in a plan view, and power loss and aerodynamic noise can be reduced. Generation can be reduced.
  • the winglet can be easily manufactured.
  • the trailing edge of the winglet has a cross-sectional streamline shape having the same size and shape as the wing tip of the wing body, and the trailing edge of the winglet is integrated with the wing tip of the wing body. It is good also as being attached.
  • the connecting portion between the small blade and the blade body can be smoothed, it is possible to prevent turbulence from occurring at the connecting portion between the two.
  • the present invention also includes a windmill comprising a plurality of windmill blades according to any one of claims 1 to 6 and a generator that changes the rotational energy of the windmill into electrical energy.
  • the pressure difference between the upper and lower surfaces at the blade tip portion of the wind turbine blade can be reduced, so that it occurs at the blade tip portion. It is possible to weaken the blade tip vortex and reduce power loss.
  • the position where the blade tip vortex is generated can be separated from the wind turbine blade tip in the rotational direction and outward and upward in the blade length direction of the wind turbine blade. Generation of noise can be reduced.
  • FIG. 2 is a plan view showing an embodiment of a wind turbine blade according to the present invention, and is a plan view of a right side portion of the line AA in FIG. 1 as viewed from the front side of FIG.
  • FIG. 4 is a front view of FIG. 3, and is a front view of a right side portion of the line AA in FIG. 1 as viewed from a direction B of FIG. 1.
  • FIG. 2 is a plan view of the winglet, and is a plan view of the winglet at the tip of the right portion of the line AA in FIG. 1 as viewed from the front side of FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is the top view which showed other embodiment of the windmill blade by this invention.
  • the wind turbine generator 1 of the present embodiment includes a horizontal axis lift type windmill 2, a generator 5 that converts rotational energy of the windmill 2 into electrical energy, Ancillary equipment 6 is provided.
  • the windmill 2 includes a tower 3 standing on the ground or the like, a nacelle 4 installed at the upper end of the tower 3 so as to face substantially in the horizontal direction, and a tip of the nacelle 4. And a plurality of wind turbine blades 11 attached rotatably.
  • the nacelle 4 has a box shape having a void inside, and the generator 5 and its associated equipment 6 are accommodated in the void of the nacelle 4.
  • a rotating shaft 7 on the generator 5 side protrudes from the tip of the nacelle 4 by a predetermined length, and a rotor hub 8 is attached to the protruding portion of the rotating shaft 7.
  • the rotor hub 8 has, for example, a cylindrical shape, and is integrally attached to the tip of the rotating shaft 7 by means such as fitting.
  • a plurality of support shafts 9 are integrally attached radially to the rotary shaft 7, and wind turbine blades 11 are attached to the respective support shafts 9.
  • the rotor hub 8 and the support shaft 9 are closed by a cover 10 whose tip is formed in a spherical shape, and only the wind turbine blades 11 are configured to project radially outward from the cover 10.
  • the wind turbine blade 11 is formed of fiber reinforced plastic such as glass fiber reinforced plastic or carbon fiber reinforced plastic. As shown in FIGS. 3 to 6, the one end 15 side in the length direction is on the rotor hub 8 side.
  • the blade main body 12 has a hollow plate shape attached to the support shaft 9 and a small blade 25 provided integrally with the other end 16 of the blade main body 12 in the blade length direction. 3 to 6, the attachment portion of the blade body 12 with the rotor hub 8 is not shown.
  • one end 15 of the wing body 12 is referred to as a blade root 15 and the other end 16 is referred to as a blade tip 16.
  • the blade main body 12 has a streamline shape in cross section as shown in FIG. 6, and the chord length a gradually decreases from the blade root 15 to the blade tip 16 in the blade length direction as shown in FIG.
  • the chord length a and the blade thickness b are set so that the blade thickness b gradually decreases from the blade root 15 to the blade tip 16 in the blade length direction, and the chord length a and the blade thickness b are minimized.
  • a small wing 25 is integrally provided at the wing tip 16 of the wing body 12.
  • the cross-sectional streamline shape means a cross-sectional shape in which the front edge 18 in the rotation direction is round and the rear edge 19 in the rotation direction is sharp, as shown in FIG.
  • the chord length a means the length of a straight line (also referred to as a chord line) connecting the leading edge 18 and the trailing edge 19 of the wing body 12, and the blade thickness b is the chord length a. It means the distance between the upper surface 13 and the lower surface 14 of the wing body 12 in the orthogonal direction.
  • the winglet 25 has a reference line 20 (a line connecting positions corresponding to 1/4 of the chord length a) and a reference line 34 (1/4 of the chord length a). Lines connecting corresponding positions) are integrally attached to the blade tip 16 of the blade body 12 by a bonding means such as an adhesive so as to obtain relevance.
  • the reference line 34 changes the direction of rotation while drawing a substantially sickle-shaped curve in plan view.
  • the winglet 25 is formed, for example, in a shape in which the tip 28 is pointed, the rear end 29 is formed in a straight line, and the front edge 30 and the rear edge of the tip 28 and the rear end 29.
  • the front side line 32 and the rear side line 33 that connect to 31 have a substantially sickle shape in a plan view formed in a curve with a predetermined curvature, respectively, and the straight portion of the rear end 29 is the blade tip 16 of the blade body 12. It is attached to the unit.
  • the small blade 25 has a cross-sectional streamline shape in which the cross-sectional shape of the rear end 29 is the same as the cross-sectional shape of the blade tip 16 of the blade main body 12, and the rear end 29 is attached to the blade tip 16 of the blade main body 12. Furthermore, the leading edge 30 and trailing edge 31 of the trailing edge 29 of the winglet 25 are continuous with the leading edge 18 and trailing edge 19 of the blade tip 16 of the wing body 12, and the upper surface 26 and the lower surface 27 of the trailing edge 29 of the winglet 25. Is integrally attached to the blade tip 16 of the blade body 12 so as to be continuous with the upper surface 13 and the lower surface 14 of the blade body 12.
  • the winglet 25 has a tip 28 positioned behind the trailing edge 19 of the wing tip 16 of the wing body 12, and the tip 28 is outward from the wing tip 16 of the wing body 12 (
  • the lengths of the front side line 32 and the rear side line 33 connecting the front end 28 and the front edge 30 and the rear edge 31 of the rear end 29, the front side line 32 and the rear side An angle formed with the side line 33 is set.
  • the small wing 25 is formed on the blade tip 16 of the wing body 12 so that the upper and lower surfaces 26 and 27 rise at a predetermined angle with respect to the upper and lower surfaces 13 and 14 of the wing body 12.
  • An attachment angle (hereinafter referred to as a rising angle) ⁇ is set.
  • the small blade 25 is attached to the blade tip 16 of the blade body 12 so that the rising angle ⁇ is 30 °.
  • the above-described rising angle ⁇ can be appropriately set within a range of 30 ° to 90 °.
  • the small blade 25 is integrally attached to the blade tip 16 of the blade main body 12 by a bonding means such as an adhesive, but the small blade 25 may be formed integrally with the blade main body 12.
  • the winglet 25 is formed in a substantially sickle shape in plan view, but the winglet 25 may be formed in a substantially triangular shape in plan view for easy manufacture.
  • the small blade 25 having a substantially sickle shape with a sharp tip provided at the blade tip 16 of the blade body 12 of the wind turbine blade 11 is provided.
  • a large pressure difference between the upper and lower surfaces 13 and 14 at the blade tip 16 of the blade body 12 of the wind turbine blade 11 can be converted into a small pressure difference by the tapered small blade 25. it can. That is, since the winglet 25 is formed in a shape in which the cross-sectional area becomes smaller toward the tip, the pressure difference between the upper and lower surfaces 26 and 27 of the winglet 25 becomes smaller toward the tip of the winglet 25 and becomes smaller.
  • the pressure difference at the blade tip of the wind turbine blade 11 can be made smaller than that without the blade 25.
  • the blade tip vortex generated at the blade tip of the wind turbine blade 11 can be weakened. 11 can reduce the induced drag generated at the blade tip, reduce the power loss of the windmill 2 as a whole, and increase the output of the windmill 2.
  • the tip 28 of the winglet 25 is sharpened so that the tip 28 of the winglet 25 is behind the trailing edge 19 of the wing tip 16 of the wing body 12 and is longer than the wing tip 16 of the wing body 12.
  • a large pressure difference at the upper and lower surfaces 13 and 14 at the blade tip 16 of the blade body 12 of the wind turbine blade 11 can be converted into a small pressure difference by the tapered small blade 25.
  • the blade tip vortex generated at the blade tip portion of the wind turbine blade 11 (portion corresponding to the small blade 25) can be weakened, and the position where the weak blade tip vortex is generated is determined at the tip 28 of the small blade 25, that is, the blade body 12. It can be separated from the rear edge 19 of the blade tip 16 and outward in the blade length direction of the blade body 12.
  • the position of the blade tip vortex generated at the blade tip portion of the wind turbine blade 11 is The blade body 12 is spaced above the upper surface 13 of the blade tip 16, behind the trailing edge 19 of the blade tip 16 of the blade body 12, and outward in the blade length direction from the blade tip 16 of the blade body 12. be able to.
  • the power loss required by multiplying the induced resistance generated at the blade tip portion of the wind turbine blade 11 by the blade length and the moment generated at the blade root of the wind turbine blade 11 are expressed by using the upper and lower surfaces 26 and 27 of the small blade 25 as the blade body. Therefore, the efficiency of the wind turbine 2 as a whole can be improved without strengthening the structure of the wind turbine blades 11.
  • FIG. 7 shows another embodiment of the wind turbine generator 1 according to the present invention.
  • the blade tip 16 of the blade body 12 of the wind turbine blade 11 is advanced in a cross-sectional streamline shape in which the cross-sectional shape of one end 22 is the same size and shape as the blade tip 16 of the blade main body 12.
  • the wing portion 21 is integrally formed with an advancing wing portion 21 in which a reference line 24 is inclined forward by a predetermined angle with respect to the reference line 20 of the wing body 12, and the other end 23 (the wing tip 23) of the advancing wing portion 21 is formed.
  • a small blade 25 having the same configuration as that of the above-described embodiment is integrally attached, and the other configurations are the same as those shown in the above-described embodiment.

Abstract

【課題】 風車翼の翼端部に生じる翼端渦を弱く、かつ風車翼の翼端から離した位置に発生させることにより、風車翼の動力損失を低減させるとともに、風車翼による空力騒音を低減させる。 【解決手段】 水平軸揚力型の風車に用いられる風車翼11であって、翼根15から翼端16にかけて翼弦長が漸次小さくなる断面流線形状の翼本体12と、該翼本体12の翼端16に一体に設けられる先端28が尖った形状の小翼25とを備え、前記小翼25は、先端28が前記翼本体12の翼端16の後縁19よりも回転方向の後方、かつ、前記翼本体12の翼長方向の外方に位置するように、形状が設定されている。風車翼11の翼端部の上下面の圧力差を小さくすることができるので、風車翼11の翼端部に発生する翼端渦を弱く、かつ翼端から離れた位置に発生させることができ、動力損失及び空気騒音の発生を低減させることができる。

Description

風車翼及びそれを備えた風力発電装置
 本発明は、風車翼及びそれを備えた風力発電装置に関する。
 風力発電は、クリーンな自然エネルギーを利用する、供給先を海外に頼る必要のない国産エネルギーで、かつ、温暖化ガスを放出しないカーボンクレジットコスト不要なエネルギーであり、現在、欧州等において研究開発された大型で高効率な風車が商用ベースで利用されている。
 例えば、水平軸揚力型の風車においては、翼外縁(特に先端部付近)が高Re数領域であるため、NACA系列に代表される航空機翼型を翼として使用できる。このような翼では、上面側(背面側)に負圧が、下面側(腹面側)に正圧が生じることにより、翼端部では上下面の圧力差によって下面から上面に向かって流れる渦(翼端渦)が生じる。この渦は、翼周りに進行方向(回転方向)とは異なった気流を誘起し、翼に当たる気流を下げる方向、すなわち、翼の迎え角を減少させる方向に作用する。その結果、翼に作用する空気力の方向は、迎え角の減少分に相当する角度(誘導迎え角)だけ後方に傾くことになるが、このうち、進行方向(回転方向)に平行な成分は、実際上は抗力として働くことになる。この抗力が誘導抗力(誘導抵抗)であり、風車の動力損失となる。また、翼端渦により騒音も発生する。
 誘導抗力は、翼が揚力を発生している限り、その発生を避けることができない抗力であり、翼端があるために生じる抗力であるから、翼弦長に対して翼幅を大きくする等、翼端の渦による影響をできる限り小さくしてやることにより、誘導抗力も小さくすることができる。誘導抗力を小さくすれば全体として抗力も減少し、その結果、揚抗比が増加するので、必要推力又は必要馬力を軽減できる。風車翼においても、アスペクト比の大きな翼を採用し、翼端部の翼弦長を斬減させ、翼端の渦による影響をできる限り小さくして誘導抗力を低減させているが、それでも十分ではない。
 また、ローター直径に対する風車の音響パワーレベルは、大型風車では、ローター直径の長大化に伴い音響パワーレベルが増加している傾向がある。このことから、騒音は、回転数の影響に比べ長大化による翼先端での周速の影響の方が大きいと考えられる。
 従来、風車の騒音は翼空力音、ナセル、タワー等からの機械音に分類されているが、現在、ウインドファームに建設されている1~3MWクラスの大型風車では、翼空力音が支配的である。そのため、風車の騒音低減のためには、翼から発生する空力騒音を低減する必要がある。翼端渦による騒音は限定的とはいえ、翼端部の流れを乱し動力損失の原因にもなるため、低減が望まれる。
 特許文献1には、翼端部に背側又は腹側に所定の角度(15°~55°)で折り曲げて形成したウイングレットを備えた風車翼が記載されている。このような構成の風車翼によれば、風車翼の翼端部に発生する渦を低減させることができるので、翼端渦による動力損失を低減させることができる。また、風車翼の翼端部に発生する渦による騒音の発生も低減させることができる。
特開2012-180770号公報
 しかし、特許文献1に記載の風車翼は、ウイングレットのないものに比べて、動力損失及び騒音の発生を低減させることができるが、ローター直径が長大化された1~3MWクラスかそれ以上の大型風車の風車翼に適用した場合には、動力損失及び騒音の発生を十分に低減させることができない。
 本発明は、上記のような従来の問題に鑑みなされたものであって、ローター直径が長大化された1~3MWクラスかそれ以上の大型風車の風車翼に適用した場合であっても、動力損失及び騒音の発生を十分に低減させることができる風車翼及びそれを備えた風力発電装置を提供することを目的とする。
 上記のような課題を解決するために、本発明は、以下のような手段を採用している。
 すなわち、本発明は、水平軸揚力型の風車に用いられる風車翼であって、翼根から翼端にかけて翼弦長が漸次小さくなる断面流線形状の翼本体と、該翼本体の翼端に一体に設けられる先端が尖った形状の小翼とを備え、前記小翼は、先端が前記翼本体の翼端の後縁よりも回転方向の後方、かつ、前記翼本体の翼長方向の外方に位置するように、形状が設定されていることを特徴とする。
 本発明の風車翼によれば、風車翼の翼端部での上下面の圧力差を小さくすることができるので、翼端部に発生する翼端渦を弱くすることができ、翼端渦により発生する騒音を低減させることができる。
 また、小翼の先端を翼本体の翼端の後縁よりも回転方向の後方、かつ、翼本体の翼長方向の外方に位置させたことにより、翼端渦の発生位置を翼本体の翼端の後縁よりも後方、かつ、外方に離すことができ、風車翼への翼端渦による影響を低減させることができるため、誘導抗力を低減させて動力損失を低減させることができる。
 また、本発明において、前記小翼は、上下面が前記翼本体の上下面に対して所定の角度立上るように、前記翼本体の翼端に一体に設けられていることとしてもよい。
 本発明の風車翼によれば、風車翼の翼端部に発生する翼端渦の位置を、翼本体の翼端の上面よりも上方、かつ、翼本体の翼端の後縁よりも後方、かつ、翼本体の翼端よりも外方に離すことができる。従って、風車翼の動力損失を低減させることができるとともに、誘導抗力によって風車翼の翼根に生じるモーメントも低減させることができる。
 また、本発明において、前記小翼の立上角度は、30°~90°であることとしてもよい。
 本発明の風車翼によれば、小翼の立上角度を30°~90°の範囲内で適宜に設定することにより、断面形状の異なる各種の風車翼に適用した場合であっても、動力損失及び空力騒音の発生を確実に低減させることができる。
 また、本発明において、前記小翼は、先端が尖った平面視略鎌形状に形成されていることとしてもよい。
 本発明の風車翼によれば、先端が尖った平面視略鎌形状の小翼により、風車翼の翼端部に発生する翼端渦を弱くすることができ、動力の損失、及び空力騒音の発生を低減させることができる。
 また、本発明において、前記小翼は、先端が尖った平面視略三角形状に形成されていることとしてもよい。
 本発明の風車翼によれば、先端が尖った平面視略三角形状の小翼により、風車翼の翼端部に発生する翼端渦を弱くすることができ、動力の損失、及び空力騒音の発生を低減させることができる。また、小翼を簡便に製作することができる。
 また、本発明において、前記小翼の後端は、前記翼本体の翼端と同一大きさ、形状の断面流線形状をなし、該小翼の後端が前記翼本体の翼端に一体に取り付けられていることとしてもよい。
 本発明の風車翼によれば、小翼と翼本体との連結部を滑らかにすることができるので、両者の連結部に乱流が発生するのを防止できる。
 また、本発明は、請求項1~6の何れか1項に記載の風車翼を複数備えてなる風車と、該風車の回転エネルギーを電気エネルギーに変化する発電機とを備えていることを特徴とする。
 以上、説明したように、本発明の風車翼及びそれを備えた風力発電装置によれば、風車翼の翼端部での上下面の圧力差を小さくすることができるので、翼端部に発生する翼端渦を弱くでき、動力損失を低減させることができる。
 また、翼端渦の発生する位置を、風車翼の翼端よりも回転方向の後方、かつ、風車翼の翼長方向の外方、かつ、上方に離すことができるので、翼端渦による空気騒音の発生を低減させることができる。
本発明による風力発電装置の一実施の形態を示した正面図である。 図1の側面図である。 本発明による風車翼の一実施の形態を示した平面図であって、図1のA-A線の図中右側の部分を図1の手前側から見た平面図である。 図3の正面図であって、図1のA-A線の図中右側の部分を図1のB方向から見た正面図である。 小翼の平面図であって、図1のA-A線の右側の部分の先端の小翼を図1の手前側から見た平面図である。 図1のA-A線に沿って見た断面図である。 本発明による風車翼の他の実施の形態を示した平面図である。
 以下、図面を参照しながら本発明の実施の形態について説明する。
 図1~図6には、本発明による風力発電装置の一実施の形態が示されている。本実施の形態の風力発電装置1は、図1及び図2に示すように、水平軸揚力型の風車2と、風車2の回転エネルギーを電気エネルギーに変換する発電機5と、発電機5の付帯設備6と備えている。
 風車2は、図1及び図2に示すように、地上等に立設された塔3と、塔3の上端部に略水平方向を向くように設置されたナセル4と、ナセル4の先端に回転可能に取り付けられた複数の風車翼11とを備えている。
 ナセル4は、内部に空所を有する箱状をなすものであって、ナセル4の空所内に発電機5及びその付帯設備6が収容されている。ナセル4の先端から発電機5側の回転軸7が所定の長さ突出し、この突出している回転軸7の部分にローターハブ8が取り付けられている。
 ローターハブ8は、例えば、円筒状をなすものであって、回転軸7の先端に嵌合等の手段によって一体に取り付けられている。ローターハブ8の周面には、複数の支持軸9が回転軸7に対して放射状に一体に取り付けられ、各支持軸9にそれぞれ風車翼11が取り付けられている。ローターハブ8及び支持軸9は、先端が球面状に形成されたカバー10によって閉塞され、風車翼11のみがカバー10から外方に放射状に突出するように構成されている。
 風車翼11は、ガラス繊維強化プラスチック、炭素繊維強化プラスチック等の繊維強化プラスチックから形成されるものであって、図3~図6に示すように、長さ方向の一端15側がローターハブ8側の支持軸9に取り付けられる中空板状の翼本体12と、翼本体12の翼長方向の他端16に一体に設けられる小翼25とから構成されている。
 なお、図3~図6では、翼本体12のローターハブ8との取付部は図示を省略している。
 また、以下において、翼本体12の一端15を翼根15といい、他端16を翼端16という。
 翼本体12は、図6に示すように、断面流線形状をなすものであって、図3に示すように、翼長方向の翼根15から翼端16にかけて翼弦長aが漸次小さくなるように、かつ、翼長方向の翼根15から翼端16にかけて翼厚bが漸次薄くなるように、翼弦長a及び翼厚bがそれぞれ設定され、翼弦長a及び翼厚bが最小となる翼本体12の翼端16に小翼25が一体に設けられている。
 なお、ここで、断面流線形状とは、図6に示すように、回転方向の前縁18が丸く、回転方向の後縁19が尖った断面形状を意味する。
 また、翼弦長aとは、翼本体12の前縁18と後縁19とを結ぶ直線(翼弦線ともいう。)の長さを意味し、翼厚bとは、翼弦長aと直交する方向の翼本体12の上面13と下面14との間の距離を意味する。
 小翼25は、図3に示すように、翼本体12の基準線20(翼弦長aの1/4に相当する位置を結ぶ線)と基準線34(翼弦長aの1/4に相当する位置を結ぶ線)が、関連性を得るように、翼本体12の翼端16に接着剤等の接合手段によって一体に取り付けられている。また、基準線34は、平面視略鎌形状のカーブを描きながら回転方向へ方向を変える。
 小翼25は、図3及び図5に示すように、例えば、先端28が尖った形状に形成され、後端29が直線状に形成され、先端28と後端29の前縁30及び後縁31とを結ぶ前側線32及び後側線33がそれぞれ所定の曲率の曲線に形成される平面視略鎌形状をなすものであって、後端29の直線状の部分が翼本体12の翼端16に一体に取り付けられている。
 小翼25は、後端29の断面形状が翼本体12の翼端16の断面形状と同一大きさの断面流線形状に形成され、翼本体12の翼端16に後端29を取り付けた際に、小翼25の後端29の前縁30及び後縁31が翼本体12の翼端16の前縁18及び後縁19に連続し、小翼25の後端29の上面26及び下面27が翼本体12の上面13及び下面14に連続するように、翼本体12の翼端16に一体に取り付けられている。
 小翼25は、図3に示すように、先端28が翼本体12の翼端16の後縁19よりも後方に位置し、かつ、先端28が翼本体12の翼端16よりも外方(翼本体12の長さ方向の外方)に位置するように、先端28と後端29の前縁30及び後縁31とを結ぶ前側線32及び後側線33の長さ、前側線32と後側線33とのなす角度等が設定されている。
 また、小翼25は、図4に示すように、翼本体12の上下面13、14に対して上下面26、27が所定の角度で立上るように、翼本体12の翼端16への取付角度(以下、立上角度という)θが設定されている。
 なお、本実施の形態においては、立上角度θが30°となるように、翼本体12の翼端16に小翼25を取り付けている。但し、これに限定することなく、上記の立上角度θは、30°~90°の範囲内で適宜に設定することができる。
 なお、本実施の形態においては、小翼25を翼本体12の翼端16に接着剤等の接合手段によって一体に取り付けたが、小翼25を翼本体12と一体に形成してもよい。
 また、本実施の形態においては、小翼25を平面視略鎌形状に形成しているが、簡便に製作するために、小翼25を平面視略三角形状に形成してもよい。
 上記のように構成した本実施の形態の風力発電装置1にあっては、風車翼11の翼本体12の翼端16に先端が尖った略鎌形形状の小翼25を設けて、小翼25を風車翼11の翼端としたことにより、風車翼11の翼本体12の翼端16での上下面13、14での大きな圧力差を先細の小翼25によって小さい圧力差に変換することができる。つまり、小翼25は、先端に行くほど断面積が小さくなる形状に形成されているので、小翼25の上下面26、27での圧力差は小翼25の先端に行くほど小さくなり、小翼25のないものに比べて、風車翼11の翼端部での圧力差を小さくすることができる。
 従って、1~3MWの大型風車2のアスペクト比の大きい細長い風車翼11に適用した場合であっても、風車翼11の翼端部に発生する翼端渦を弱くすることができるので、風車翼11の翼端部に発生する誘導抗力を低減させることができ、風車2全体としての動力損失を低減させることができ、風車2の出力を高めることができる。
 また、小翼25の先端28を尖った形状にして、小翼25の先端28を翼本体12の翼端16の後縁19よりも後方、かつ、翼本体12の翼端16よりも翼長方向の外方に位置させたことにより、風車翼11の翼本体12の翼端16での上下面13、14での大きな圧力差を先細の小翼25で小さい圧力差に変換することができ、風車翼11の翼端部(小翼25に相当する部分)に発生する翼端渦を弱くできるとともに、この弱い翼端渦の発生位置を小翼25の先端28、つまり、翼本体12の翼端16の後縁19よりも後方、かつ、翼本体12の翼長方向の外方に離すことができる。
 従って、1~3MWの大型風車のアスペクト比の大きい細長い風車翼11に適用した場合であっても、風車翼11の翼端部の翼端渦による影響を低減させることができるので、小翼25のないものに比べて、翼端渦により発生する騒音を大幅に低減させることができ、風車2全体としての空力騒音を大幅に低減させることができる。
 また、小翼25の上下面26、27を翼本体12の上下面13、14に対して約30°立ち上げたことにより、風車翼11の翼端部に発生する翼端渦の位置を、翼本体12の翼端16の上面13よりも上方、かつ、翼本体12の翼端16の後縁19よりも後方、かつ、翼本体12の翼端16よりも翼長方向の外方に離すことができる。
 従って、風車翼11の翼端部に発生する誘導抵抗に翼長を乗じることによって求められる動力損失、及び風車翼11の翼根に生じるモーメントを、小翼25の上下面26、27を翼本体12の上下面13、14と面一に形成したものよりも低減させることができるので、風車翼11の構造を強化することなく、風車2全体としての効率を高めることができる。
 図7には、本発明による風力発電装置1の他の実施の形態が示されている。本実施の形態の風力発電装置1は、風車翼11の翼本体12の翼端16に、一端22の断面形状が翼本体12の翼端16と同一大きさ、形状の断面流線形状の前進翼部21を、翼本体12の基準線20に対して基準線24が回転方向前方に所定の角度傾く前進翼部21を一体に形成し、この前進翼部21の他端23(翼端23)に前記実施の形態と同様の構成の小翼25を一体に取り付けたものであって、その他の構成は前記実施の形態に示すものと同様である。
 そして、本実施の形態の風力発電装置1にあっても、前記実施の形態に示すものと同様の効果を奏する他、前進翼部21の翼端23(小翼25との連結部)から翼根(翼本体12との連結部)方向への空気の流れ(インフロー現象)を発生させることができるので、前進翼部21のない翼本体12の翼端部17よりも翼端部17に発生する翼端渦を弱くすることができ、翼端渦による動力損失及び空力騒音を大幅に低減させることができる。
 1 風力発電装置
 2 風車
 3 塔
 4 ナセル
 5 発電機
 6 付帯設備
 7 回転軸
 8 ローターハブ
 9 支持軸
 10 カバー
 11 風車翼
 12 翼本体
 13 上面(背面)
 14 下面(腹面)
 15 一端(翼根)
 16 他端(翼端)
 17 翼端部
 18 前縁
 19 後縁
 20 基準線
 21 前進翼部
 22 一端
 23 他端(翼端)
 24 基準線
 25 小翼
 26 上面(背面)
 27 下面(腹面)
 28 先端
 29 後端
 30 前縁
 31 後縁
 32 前側線
 33 後側線
 34 基準線
 a 翼弦長(翼弦線)
 b 翼厚
 θ 立上角度

Claims (7)

  1.  水平軸揚力型の風車に用いられる風車翼であって、
     翼根から翼端にかけて翼弦長が漸次小さくなる断面流線形状の翼本体と、該翼本体の翼端に一体に設けられる先端が尖った形状の小翼とを備え、
     前記小翼は、先端が前記翼本体の翼端の後縁よりも回転方向の後方、かつ、前記翼本体の翼長方向の外方に位置するように、形状が設定されていることを特徴とする風車翼。
  2.  前記小翼は、上下面が前記翼本体の上下面に対して所定の角度立上るように、前記翼本体の翼端に一体に設けられていることを特徴とする請求項1に記載の風車翼。
  3.  前記小翼の立上角度は、30°~90°であることを特徴とする請求項2に記載の風車翼。
  4.  前記小翼は、先端が尖った平面視略鎌形状に形成されていることを特徴とする請求項1~3の何れか1項に記載の風車翼。
  5.  前記小翼は、先端が尖った平面視略三角形状に形成されていることを特徴とする請求項1~3の何れか1項に記載の風車翼。
  6.  前記小翼の後端は、前記翼本体の翼端と同一大きさ、形状の断面流線形状をなし、該小翼の後端が前記翼本体の翼端に一体に取り付けられていることを特徴とする請求項1~5の何れか1項に記載の風車翼。
  7.  請求項1~6の何れか1項に記載の風車翼を複数備えてなる風車と、該風車の回転エネルギーを電気エネルギーに変化する発電機とを備えていることを特徴とする風力発電装置。
PCT/JP2014/059127 2014-03-28 2014-03-28 風車翼及びそれを備えた風力発電装置 WO2015145723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/059127 WO2015145723A1 (ja) 2014-03-28 2014-03-28 風車翼及びそれを備えた風力発電装置
EP14887028.0A EP3130799A4 (en) 2014-03-28 2014-03-28 Wind turbine blade and wind power generator provided with same
JP2015512413A JP5805913B1 (ja) 2014-03-28 2014-03-28 風車翼及びそれを備えた風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059127 WO2015145723A1 (ja) 2014-03-28 2014-03-28 風車翼及びそれを備えた風力発電装置

Publications (1)

Publication Number Publication Date
WO2015145723A1 true WO2015145723A1 (ja) 2015-10-01

Family

ID=54194312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059127 WO2015145723A1 (ja) 2014-03-28 2014-03-28 風車翼及びそれを備えた風力発電装置

Country Status (3)

Country Link
EP (1) EP3130799A4 (ja)
JP (1) JP5805913B1 (ja)
WO (1) WO2015145723A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664052A (zh) * 2020-06-24 2020-09-15 曹正武 一种叶梢小翼式螺旋桨(风扇)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310179A (ja) * 1999-04-27 2000-11-07 Fuji Heavy Ind Ltd 水平軸風車用ロータ
JP2006521483A (ja) * 2003-01-02 2006-09-21 アロイス・ヴォベン 風力発電設備用のローターブレード
US20110150664A1 (en) * 2009-12-22 2011-06-23 Siegfried Mickeler Aeroacoustic rotor blade for a wind turbine, and wind turbine equipped therewith
JP2012180771A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 風車翼およびこれを備えた風力発電装置
JP2012233445A (ja) * 2011-05-02 2012-11-29 Birumen Kagoshima:Kk 風力発電装置用の風車の翼及び風力発電装置用の風車
JP2012251448A (ja) * 2011-06-01 2012-12-20 Toru Fukushima 直径10m以上のプロペラ型風力発電機のブレード減音の形状形態

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362091A1 (en) * 2010-06-30 2011-08-31 Envision Energy (Denmark) ApS Rotor blade vibration damping system
WO2013083130A1 (en) * 2011-12-09 2013-06-13 Vestas Wind Systems A/S Wind turbine including blades with suction side winglet
US9920741B2 (en) * 2012-01-25 2018-03-20 Siemens Aktiengesellschaft Wind turbine blade having a geometric sweep
US20150132141A1 (en) * 2013-11-08 2015-05-14 Siemens Aktiengesellschaft Rotor blade of a wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310179A (ja) * 1999-04-27 2000-11-07 Fuji Heavy Ind Ltd 水平軸風車用ロータ
JP2006521483A (ja) * 2003-01-02 2006-09-21 アロイス・ヴォベン 風力発電設備用のローターブレード
US20110150664A1 (en) * 2009-12-22 2011-06-23 Siegfried Mickeler Aeroacoustic rotor blade for a wind turbine, and wind turbine equipped therewith
JP2012180771A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 風車翼およびこれを備えた風力発電装置
JP2012233445A (ja) * 2011-05-02 2012-11-29 Birumen Kagoshima:Kk 風力発電装置用の風車の翼及び風力発電装置用の風車
JP2012251448A (ja) * 2011-06-01 2012-12-20 Toru Fukushima 直径10m以上のプロペラ型風力発電機のブレード減音の形状形態

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3130799A4 *

Also Published As

Publication number Publication date
JP5805913B1 (ja) 2015-11-10
JPWO2015145723A1 (ja) 2017-04-13
EP3130799A4 (en) 2017-04-12
EP3130799A1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US8932024B2 (en) Wind turbine blade and wind power generator using the same
CN103089536B (zh) 安装在风力涡轮机叶片上的失速栅上的副翼面
EP3037656B1 (en) Rotor blade with vortex generators
EP2275672B1 (en) Boundary layer fins for wind turbine blade
KR101520898B1 (ko) 평평한 뒷전형상을 갖는 복합재 풍력 블레이드의 제작방법
US7837442B2 (en) Root sleeve for wind turbine blade
US10690112B2 (en) Fluid turbine rotor blade with winglet design
US10100808B2 (en) Rotor blade extension body and wind turbine
EP2990643B1 (en) Rotor blade of a wind turbine
EP3453872B1 (en) Methods for mitigating noise during high wind speed conditions of wind turbines
US20120217754A1 (en) Wind turbine blade, wind turbine generator with the same, and design method of wind turbine blade
KR101216252B1 (ko) 풍력발전기 블레이드의 팁 에어포일
AU2016228275A1 (en) A turbine blade assembly
JP6101240B2 (ja) 後縁側パネル
WO2018046067A1 (en) Wind turbine blade comprising an airfoil profile
JP2017166324A (ja) タービン用t形先端翼
WO2009093337A1 (ja) 垂直軸型風車
JP5805913B1 (ja) 風車翼及びそれを備えた風力発電装置
WO2012053424A1 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
US20130149161A1 (en) Conical wind turbine
JP6158019B2 (ja) 軸流水車発電装置
KR20110092609A (ko) 소음도가 저감된 도시형 저풍속/정속운전용 풍력발전기 블레이드의 팁 에어포일
JP2009299650A (ja) 整流型流体車
KR101216308B1 (ko) 풍력발전기 블레이드의 루트 에어포일
KR101331133B1 (ko) 풍력발전기용 블레이드

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512413

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887028

Country of ref document: EP