WO2015144080A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2015144080A1
WO2015144080A1 PCT/CN2015/075169 CN2015075169W WO2015144080A1 WO 2015144080 A1 WO2015144080 A1 WO 2015144080A1 CN 2015075169 W CN2015075169 W CN 2015075169W WO 2015144080 A1 WO2015144080 A1 WO 2015144080A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
end surface
semiconductor refrigerating
refrigerating sheet
Prior art date
Application number
PCT/CN2015/075169
Other languages
English (en)
French (fr)
Inventor
陶海波
张奎
李鹏
王晶
刘建如
李春阳
戚斐斐
刘昀曦
Original Assignee
海尔集团公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔股份有限公司 filed Critical 海尔集团公司
Publication of WO2015144080A1 publication Critical patent/WO2015144080A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a semiconductor refrigeration refrigerator.
  • the semiconductor refrigerator has the characteristics of environmental protection and high volume ratio, and is widely welcomed by the market. However, limited by the characteristics of the semiconductor refrigeration sheet, it can only achieve the purpose of refrigeration, and can not meet the freezing standard, and is greatly limited in application.
  • the compression refrigeration system and the semiconductor refrigeration system are usually used for hybrid cooling, and the hot end or the hot end radiator of the semiconductor refrigerating sheet is usually set to be combined with the compression refrigerating system.
  • the compressor evaporator is in direct contact.
  • the amount of cold generated by the compressor evaporator is conducted to the hot end of the semiconductor refrigeration chip to cool it down.
  • the scheme for heat-dissipating and cooling the hot end of the semiconductor refrigerating sheet in a contact conduction manner is complicated and costly.
  • the compression refrigeration system is bulky, occupies the storage space of the refrigerator; and is noisy during operation.
  • An object of the present invention is to overcome at least one of the drawbacks of the prior art semiconductor refrigerator with a refrigerating compartment and a freezing compartment, and to provide a refrigerator having a refrigerating and freezing function which can be efficiently cooled.
  • a further object of the present invention is to make the working noise of the refrigerator small and the storage space large.
  • the present invention provides a refrigerator comprising:
  • a first semiconductor refrigerating sheet having a first cold end surface that generates a cooling amount and a first hot end surface that generates heat
  • a second semiconductor refrigerating sheet having a second cold end surface that generates a cooling amount and a second hot end surface that generates heat
  • a first heat exchanger configured to transfer a cooling amount of the first cold end surface to a freezer compartment of the refrigerator
  • a second heat exchanger configured to transfer a portion of the cold amount of the second cold end surface to the refrigerating chamber of the refrigerator, and to reduce the remaining cooling amount of the second cold end surface to the first hot end surface Heat
  • a third heat exchanger configured to dissipate heat from the second hot end face to the surrounding environment.
  • the third heat exchanger comprises:
  • a third refrigerant tank defining a cavity for accommodating the refrigerant in which the gas-liquid two phases coexist, and configured to allow the refrigerant to undergo phase change heat therein;
  • a third refrigerant line communicating with the inner cavity of the third refrigerant tank, configured to allow the refrigerant to flow therein and undergoing phase change heat;
  • a heat bridge having an upper inner side surface in thermal contact with the second hot end surface, and a lower end outer surface in thermal contact with an inner side surface of the third refrigerant tank to transmit a portion of the heat generated by the second hot end surface downward To the third refrigerant tank.
  • the third heat exchanger further includes:
  • the upper heat radiating fin is disposed on an outer side surface of the upper end of the heat bridge.
  • the third heat exchanger further includes:
  • the upper heat dissipating fan is fixed to the outer side of the upper heat dissipating fin by a fastening mechanism to perform forced convection heat dissipation on heat transferred from the second hot end surface to the upper heat dissipating fin.
  • the third heat exchanger further includes:
  • the lower heat radiating fins are disposed on an outer side surface of the third refrigerant tank.
  • the third heat exchanger further includes:
  • the lower heat dissipating fan is fixed to the outer side of the lower heat dissipating fin by a fastening mechanism to perform forced convection heat dissipation on heat transferred from the second hot end surface to the lower heat dissipating fin.
  • the first heat exchanger comprises:
  • a first refrigerant tank defining a cavity for containing a refrigerant in which two phases of gas and liquid coexist, and configured to allow a refrigerant to undergo phase change heat therein, the first refrigerant tank and the first refrigerant tank
  • the first cold end face is in thermal contact;
  • the first refrigerant line is in communication with the inner cavity of the first refrigerant tank, configured to allow the refrigerant to flow therein and undergo phase change heat.
  • the second heat exchanger comprises:
  • a second refrigerant tank defining a cavity for accommodating the refrigerant in which the gas-liquid two phases coexist, and configured to allow the refrigerant to undergo phase change heat therein, two of the second refrigerant tanks
  • the opposite surfaces are in thermal contact with the first hot end face and the second cold end face, respectively;
  • the second refrigerant line is in communication with the inner cavity of the second refrigerant tank, configured to allow the refrigerant to flow therein and phase change heat occurs.
  • the refrigerator further includes:
  • a first temperature sensor configured to detect a temperature of the refrigerating compartment
  • a second temperature sensor configured to detect a temperature of the freezer compartment
  • a controller configured to control a cooling amount generated by the first semiconductor refrigerating sheet and the second semiconductor refrigerating sheet according to a temperature of the refrigerating chamber and a temperature of the freezing chamber to cause the refrigerating chamber and the freezing
  • the chambers are maintained at a refrigerating set temperature and a freezing set temperature, respectively.
  • the controller is further configured to: control the temperature when the temperature of the refrigerating compartment is higher than the refrigerating set temperature and/or the temperature of the freezing compartment is higher than the freezing set temperature
  • a semiconductor refrigerating sheet and the second semiconductor refrigerating sheet respectively generate a maximum amount of cooling; wherein the second semiconductor refrigerating sheet generates a maximum amount of cooling greater than a maximum amount of cooling generated by the first semiconductor refrigerating sheet.
  • the refrigeration and heat dissipation system of the refrigerator of the invention adopts the two-stage semiconductor refrigeration technology, and replaces the compressor and the compartment where the compressor is placed, so that the effective use space of the refrigerator becomes larger than the conventional compression type refrigeration.
  • the cold end of the second semiconductor refrigerating sheet sufficiently cools and cools the first thermal end surface of the first semiconductor refrigerating sheet, the heat dissipating efficiency of the first thermal end surface of the first semiconductor refrigerating sheet can be improved, thereby improving the first The cooling effect of the cold end face.
  • a heat dissipating fin for dissipating heat from the second hot end surface of the second semiconductor refrigerating sheet, a heat dissipating fan, and a refrigerant pipe are provided, which can effectively reduce the second hot end surface and the ambient temperature.
  • the temperature difference increases the cooling capacity of the second cold end face.
  • FIG. 1 is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the first heat exchanger shown in Figure 1;
  • FIG 3 is a schematic structural view of the third heat exchanger shown in Figure 1;
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigerating sheet and a cooling efficiency and a cooling capacity according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing the structure of a refrigerator in accordance with one embodiment of the present invention.
  • the refrigerator of the present invention may include a casing 10 in which a chamber defining two chambers, a freezing compartment 11 and a refrigerating compartment 12, is defined by a liner.
  • the refrigerating compartment 12 is located above the casing 10 and the freezing compartment 11 is located below the casing 10.
  • the first semiconductor refrigerating sheet 21, the second semiconductor refrigerating sheet 22, the first heat exchanger 310, the second heat exchanger 320, and the third heat exchanger 330 are disposed on the side wall or the backing plate of the casing 10.
  • the first semiconductor refrigerating sheet 21 has a first cold end surface that generates a cooling amount and a first hot end surface that generates heat.
  • the first heat exchanger 310 is configured to transfer the cold amount of the first cold end face into the freezing compartment 11. In one embodiment, a portion of the first heat exchanger 310 is thermally coupled to the first cold end face and another portion is thermally coupled to the freezer compartment 11 to effect transfer of the cold amount of the first cold end face into the freezer compartment 11.
  • the second semiconductor cooling sheet 22 has a second cold end face that generates a cooling amount and a second hot end face that generates heat.
  • the second heat exchanger 320 is configured to transfer a portion of the cold amount of the second cold end face into the refrigerating chamber 12 and to dissipate the remaining amount of cold of the second cold end face against the heat of the first hot end face of the first semiconductor refrigerating sheet 21.
  • the third heat exchanger 330 is configured to dissipate heat from the second hot end face of the second semiconductor refrigerating sheet 22 to the surrounding environment.
  • a portion of the third heat exchanger 330 can be thermally coupled to the second hot end face, and another portion can dissipate heat from the second hot end face to the surrounding environment. Since the second semiconductor refrigerating sheet 22 absorbs heat from the first thermal end face of the first semiconductor refrigerating sheet 21 in addition to the cooling of the refrigerating chamber 12, the second semiconductor refrigerating sheet 22 should have a stronger refrigerating capacity.
  • the semiconductor refrigerating sheet is a temperature difference refrigerating device applying a thermoelectric effect
  • the solution can improve the first cold end surface and the second semi-conductive surface of the first semiconductor refrigerating sheet 21.
  • the cooling effect of the second cold end surface of the body cooling sheet 22 achieves efficient cooling of the refrigerator.
  • the first heat exchanger 310, the second heat exchanger 320, and the third heat exchanger 330 may include a refrigerant tank and a refrigerant line, respectively.
  • the refrigerant tank defines a cavity for accommodating the refrigerant in which the gas-liquid two phases coexist, and is configured to allow the refrigerant to undergo phase change heat therein.
  • the refrigerant line is in communication with the interior of the refrigerant tank and is configured to allow the refrigerant to flow therein and undergo phase change heat.
  • the inside of the refrigerant tank is filled with a refrigerant in which two phases of gas and liquid coexist.
  • the refrigerant tank When the refrigerant tank is in heat exchange with the heat source or the cold source, the refrigerant is thermally conducted by the gas-liquid phase change in the refrigerant tank and the refrigerant line.
  • the refrigerant poured in the refrigerant tank and the refrigerant pipeline may be carbon dioxide or other refrigerant, and the amount of refrigerant perfusion may be obtained through experimental tests.
  • the refrigerant pipe may be a copper pipe, a stainless steel pipe, an aluminum pipe or the like, and is preferably a copper pipe.
  • thermal contact in the embodiments of the present invention, the most straightforward embodiment known to those skilled in the art is direct heat transfer by means of heat conduction. If a thermal grease (graphite or other medium) is applied against the contact surface, it can be considered to be a part of the contact surface as a thermally conductive layer that improves the thermal connection (or thermal contact).
  • Fig. 2 is a view showing the structure of a first heat exchanger according to an embodiment of the present invention.
  • the first heat exchanger 310 may include a first refrigerant tank 312, and a first refrigerant line 311.
  • the first refrigerant line 311 extends downward from the first end (the upper right end of the first refrigerant line 311 in FIG. 2), which is formed as an open end, and then is bent downwardly to the lowest position thereof, It is then bent upwardly and then extends vertically upwardly to a second end which is formed as an open end (such as the upper left end of the first refrigerant line 311 in FIG. 2).
  • first end and the second end of the first refrigerant line 311 formed to be open ends are in communication with the bottom of the first refrigerant tank 312, respectively.
  • the first refrigerant tank 312 may have a flat rectangular parallelepiped shape with oppositely disposed forward and rearward sidewalls having an area larger than other surfaces, and the outer surface of the rear side wall is used as A heat exchange surface that abuts against the first cold end surface of the first semiconductor refrigerant sheet 21.
  • the front side wall of the first refrigerant tank 312 has a mounting flange 313 extending to the left and right sides, and each mounting flange 313 is provided with one or more mounting holes 314 for utilizing
  • the fastener mounts and fixes the first refrigerant tank 312 to the cabinet 10 of the refrigerator.
  • the first heat exchanger 310 may also include two refrigerant pipes. The first ends of the two refrigerant pipes are open ends, and the second end is a closed end, and the first end is respectively cooled and cooled. The lower part of the body cavity of the agent tank is connected. Two systems The refrigerant tubes extend vertically downward from the first end thereof and then extend obliquely downwardly to terminate at a second end which is formed as a closed end.
  • the second heat exchanger 320 of the present invention includes a second refrigerant tank and a second refrigerant line 321 .
  • the second refrigerant pipe 321 is bent downwardly from the first end formed as the open end to the lowest position, and then bent obliquely upward to extend to the second end thereof formed as the open end, bent downwardly and upwardly
  • the pipelines that are bent and extended need to ensure that the liquid refrigerant can flow freely by gravity.
  • the first end and the second end of the second refrigerant line 321 formed to be open ends communicate with the bottom of the second refrigerant tank, respectively.
  • the second heat exchanger 320 may also include two refrigerant tubes.
  • the first ends of the two refrigerant tubes are open ends, and the second end is a closed end, and the first end is respectively cooled and cooled.
  • the lower part of the body cavity of the agent tank is connected.
  • the two refrigerant tubes are each bent obliquely downward from the first end thereof to terminate at a second end formed as a closed end.
  • FIG. 3 is a schematic view showing the structure of a third heat exchanger 330 according to an embodiment of the present invention.
  • the third heat exchanger 330 also includes a third refrigerant tank 338 and two third refrigerant lines 331.
  • the two third refrigerant tubes 331 are respectively bent upwardly from the first end thereof formed as an open end (such as the lower ends of the two third refrigerant tubes 331 in FIG. 3), and terminate in a second portion formed as a closed end.
  • the ends (such as the upper ends of the two third refrigerant tubes 331 in FIG. 3); the first ends of the two third refrigerant tubes 331 formed as the open ends and the upper portions of the inner chambers of the third refrigerant tank 338, respectively Connected.
  • the third heat exchanger 330 may further include a three-way device 339 having a first end, a second end, and a third end that communicate with each other, wherein the first end of the three-way device 339 and the inside of the third refrigerant tank 338
  • the chamber is in communication with a second end connected to a first end of a third refrigerant line 331 formed as an open end, and a third end is a normally closed end configured to be operatively opened to receive refrigerant injected from the outside.
  • the use of the three-way device 339 reduces the difficulty of the process of injecting the refrigerant and provides convenience for maintenance.
  • the third heat exchanger 330 may also include a refrigerant line, the first end and the second end of the refrigerant line are both open ends, and the first end and the second end are respectively cooled
  • the upper part of the body cavity of the agent tank is connected.
  • the refrigerant pipe is bent from the first end thereof to the highest position and then bent obliquely downward to extend to the second end thereof.
  • the side adjacent to the rear wall of the inner liner of the refrigerator in the present invention may be referred to as the inner side, and the side away from the rear wall of the inner liner of the refrigerator may be referred to as the outer side.
  • the inner side surface of the first refrigerant tank 312 can be mounted on the back plate portion of the refrigerator casing 10 by fasteners, and the first cold end surface of the first semiconductor refrigerating sheet 21 is first and first.
  • the outer side surface of the refrigerant tank 312 is in thermal contact.
  • the outer surface of the inner liner contacts the abutment.
  • the inner side surface of the second refrigerant case is in thermal contact with the first hot end face of the first semiconductor refrigerating sheet 21, and the outer side surface thereof is in thermal contact with the second cold end face of the second semiconductor refrigerating sheet 22.
  • At least a portion of the conduit of the second refrigerant line 321 is in contact with the outer surface of the bladder forming the refrigerating chamber 12.
  • the third refrigerant tank 338 may be supported by the plastic member 337 near the middle of the back panel of the refrigerator cabinet 10 (for example, above the freezing chamber 11).
  • the third refrigerant line 331 is in contact with the inner surface of the outer casing of the refrigerator.
  • the third heat exchanger 330 may further include a heat bridge 332 whose upper inner side surface is in thermal contact with the second hot end surface, and the lower end outer surface is in thermal contact with the inner side surface of the third refrigerant tank 338 to generate the second hot end surface. Part of the heat is transferred downward to the third refrigerant tank 338.
  • thermal conductive grease graphite or other medium
  • the refrigerator of the present invention can have three operating states: separately cooling the refrigerating compartment 12, separately cooling the freezing compartment 11, and simultaneously cooling the refrigerating compartment 12 and the freezing compartment 11.
  • the first semiconductor refrigerating sheet 21 is not energized, and the second semiconductor refrigerating sheet 22 is separately energized.
  • the second semiconductor refrigerating sheet 22 is only responsible for cooling the refrigerating chamber 12 without dissipating heat to the first semiconductor refrigerating sheet 21.
  • the temperature of the second cold end surface thereof is lowered, and the gas refrigerant in the second refrigerant tank is condensed by the phase change when it is cooled, and becomes a low-temperature liquid refrigerant.
  • the liquid refrigerant flows downward along the inner wall of the second refrigerant pipe 321 by gravity, and the refrigerant that condenses the downstream flows in the second refrigerant pipe 321 by the heat inside the absorbing refrigerator 12 to be evaporated by the heat phase, and changes into a gaseous state. .
  • the gaseous vapor rises under the pressure of the heat source, and the gaseous refrigerant rises to the second refrigerant tank to continue to condense, thereby circulating refrigeration to transfer the cold quantity from the second cold end surface of the second semiconductor refrigeration sheet 22 to the refrigeration.
  • the third heat exchanger 330 can dissipate heat from the second thermal end face of the second semiconductor refrigerating sheet 22.
  • both the first semiconductor cooling fin 21 and the second semiconductor refrigerating sheet 22 are energized, and the second semiconductor refrigerating sheet 22 is used only for dissipating heat to the first thermal end surface of the first semiconductor refrigerating sheet 21. .
  • the waste of the refrigerating chamber 12 may be wasted by the second refrigerant line 321 to be wasted, and the connection between the second refrigerant line 321 and the second refrigerant tank may be provided. Controlled shut-off valve (not shown).
  • the shutoff valve is closed so that the second semiconductor refrigerating sheet 22 does not refrigerate the refrigerating compartment 12, thereby achieving the separate operation of the freezing compartment 11.
  • the temperature of the first cold end surface of the first semiconductor refrigerating sheet 21 is lowered, and the temperature of the first hot end surface thereof is increased; meanwhile, the second semiconductor refrigerating sheet 22 is The temperature of the second cold end face is lowered, The temperature of the second hot end face rises.
  • the second semiconductor refrigerating sheet 22 has a larger cooling capacity than the first semiconductor refrigerating sheet 21, as the temperature of the second cold end surface of the second semiconductor refrigerating sheet 22 decreases, the temperature of the second refrigerant chamber decreases correspondingly.
  • the temperature of the first hot end surface of the first semiconductor refrigerating sheet 21 is lowered; accordingly, the temperature of the first cold end surface is further decreased, thereby transmitting more cooling capacity to the freezing chamber 11, so that the freezing chamber The temperature of 11 meets the needs.
  • the temperature of the first refrigerant tank 312 is correspondingly decreased, and the refrigerant in the gaseous state undergoes phase change condensation when it is cold, and changes into a low-temperature liquid refrigerant, and the liquid refrigerant
  • the gravity flows down the inner wall of the first refrigerant pipe 311, and the refrigerant that has condensed and flows down in the first refrigerant pipe 311 is evaporated by the heat of the inside of the absorption freezing chamber 11 to change into a gaseous state.
  • the gaseous vapor rises under the pressure of the heat source, and the gaseous refrigerant rises to the first refrigerant tank 312 to continue to condense, thereby circulating refrigeration to transfer the cold amount from the first cold end surface of the first semiconductor refrigeration sheet 21 to Inside the freezer compartment 11.
  • the second semiconductor refrigerating sheet 22 dissipates heat from the first thermal end face of the first semiconductor refrigerating sheet 21, and the temperature of the second cold end surface of the second semiconductor refrigerating sheet 22 is higher than that of the first semiconductor refrigerating sheet 21.
  • the temperature of a cold end face causes the temperature of the second hot end face of the second semiconductor refrigerating sheet 22 to be higher.
  • the third refrigerant tank 338 is heat-exchanged with the second hot end surface of the second semiconductor refrigerating sheet 22 through the heat bridge 332, and forms an evaporator in which the liquid refrigerant undergoes phase change evaporation when heated, and the temperature changes to a high temperature. Gaseous refrigerant.
  • the gaseous refrigerant will rise along the third refrigerant line 331 under the heat source pressure, transfer heat to the refrigerator casing, and then transfer heat to the external space by natural convection, at which time the third refrigerant line 331 forms a condenser.
  • the refrigerant condenses and releases into a liquid state, and flows back to the third refrigerant tank 338 by gravity, and reabsorbs the heat of the second heat surface to evaporate to form a heat cycle.
  • both the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 are energized, since the second semiconductor refrigerating sheet 22 needs to refrigerate the refrigerating compartment 12 while absorbing
  • the heat generated by the first semiconductor refrigerating sheet 21 is therefore required to generate more cooling capacity than in the case of separately cooling the freezing chamber 11, and correspondingly, it generates more heat.
  • the temperature of the second cold end surface of the second semiconductor refrigerating sheet 22 decreases, the temperature of the second refrigerant tank decreases, and the shutoff valve on the second refrigerant line 321 is turned on to cool the refrigerating chamber 12.
  • the first refrigerant tank 312 cools the freezing compartment 11.
  • the third refrigerant tank 338 and the third refrigerant line dissipate heat to the second hot end face of the second semiconductor refrigerant sheet 22.
  • the process of cooling the freezing compartment 11 and the process of dissipating heat to the second hot end face can be referred to the freezing compartment 11 separately. Cold situation.
  • the second semiconductor refrigerating sheet 22 absorbs heat from the first thermal end face of the first semiconductor refrigerating sheet 21 in addition to cooling of the refrigerating chamber 12, the second semiconductor refrigerating sheet 22 has a large cooling capacity. The corresponding will generate a lot of heat. If the heat is not well dissipated, the cooling efficiency of the two semiconductor refrigerating sheets is greatly reduced, so that the cold end faces of the two semiconductor refrigerating sheets are difficult to reach a lower cooling temperature, thereby making it difficult to secure the refrigerating chamber 12 and the freezing compartment. The temperature in 11 reaches the refrigerating set temperature and the freezing set temperature, respectively.
  • upper heat dissipating fins 333 may be disposed on the outer side outer surface of the thermal bridge 332.
  • the upper heat dissipating fins 333 can greatly increase the heat dissipating area, and facilitate the heat dissipating of the second hot end surface relatively quickly.
  • the third heat exchanger 330 may further include an upper heat dissipation fan (or upper heat dissipation fan) 334 fixed to the upper heat dissipation fins 333 by a fastening mechanism to transmit from the second heat surface The heat to the upper heat radiating fins 333 is forced to convect heat.
  • the air outlet portion of the upper heat dissipation fan 334 may be disposed facing the upper heat dissipation fins 333.
  • the third heat exchanger 330 may further include lower heat dissipating fins 335 disposed on an outer surface of the third refrigerant tank 338.
  • the third heat exchanger 330 may further include a lower heat dissipation fan (or lower heat dissipation fan) 336 that is fixed to the lower heat dissipation fins 335 by a fastening mechanism to transmit from the second heat surface
  • the heat to the lower heat dissipating fins 335 is forced to convect heat.
  • the wind exit portion of the lower heat sink fan 336 can be disposed facing the lower heat sink fins 335.
  • the third refrigerant tank 338 and the third refrigerant line 331 included in the third heat exchanger 330 are effective for the heat dissipation problem of the second hot end face of the second semiconductor refrigerating sheet 22.
  • Lowering the heat flux density of the second hot end face of the second semiconductor refrigerating sheet 22; heat dissipating fins disposed on the outer side surface of the upper end of the heat bridge 332 and the outer surface of the third refrigerant tank 338, respectively, and the heat dissipating fan can be effectively produced The heat is discharged to the outside space.
  • the third heat exchanger 330 can dissipate the heat of the second hot end face to the external environment in time, even when both the first semiconductor cooling fin 21 and the second semiconductor refrigerating sheet 22 are in the working state in which the maximum cooling capacity is generated, The temperature of the second hot end face can be prevented from being too high, thereby avoiding burning out the second semiconductor refrigerating sheet 22, thereby effectively ensuring stable operation of the refrigerator.
  • the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 may both be in a small amount of cooling.
  • Working status Since the heat generated by the second hot end surface of the second semiconductor refrigerating sheet 22 is small, one of the heat dissipating fans in the third heat exchanger 330 can be turned off at this time, and even the two heat dissipating fans are all turned off, and only the third refrigerating agent tank is used.
  • the body 338, the third refrigerant pipe 331, the upper heat dissipating fins 333, and the lower heat dissipating fins 335 dissipate heat, so that the noise and energy consumption of the refrigerator can be effectively reduced, and the phenomenon of large horse-drawn cars can be avoided.
  • FIG. 5 is a block diagram showing the structure of a refrigerator in accordance with one embodiment of the present invention.
  • the refrigerator of the present invention may include a first temperature sensor 501, a second temperature sensor 502, and a controller 503 in addition to the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22.
  • the first temperature sensor 501 is configured to detect the temperature of the refrigerating compartment 12; the second temperature sensor 502 is configured to detect the temperature of the freezing compartment 11.
  • the first temperature sensor 501 and the second temperature sensor 502 may be disposed on the inner walls of the refrigerating compartment 12 and the freezing compartment 11, respectively.
  • the controller 503 is electrically connected to the first temperature sensor 501, the second temperature sensor 502, the first semiconductor refrigerating sheet 21, and the second semiconductor refrigerating sheet 22, respectively.
  • the controller 503 receives the refrigerating compartment temperature and the freezing compartment temperature transmitted by the first temperature sensor 501 and the second temperature sensor 502, and controls the generation of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 according to the refrigerating compartment temperature and the freezing compartment temperature.
  • the amount of cooling is such that the refrigerating compartment 12 and the freezing compartment 11 are respectively maintained at the refrigerating set temperature and the freezing set temperature.
  • the controller 503 can separately control the amount of cooling (i.e., the amount of cooling) generated by controlling the magnitudes of the supply voltages of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22, respectively.
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigeration chip, a cooling efficiency, and a cooling capacity according to an embodiment of the present invention.
  • the voltage U m1 and the voltage U m2 are respectively determined according to experiments to determine the maximum values of the supply voltages of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 (corresponding diagrams) 4 U m); voltage U s1 and U s2 voltages are determined experimentally as the minimum value of the first sheet 21 and a second peltier cooling semiconductor chip 22 with the supply voltage (corresponding to FIG. 4 U s).
  • the supply voltages of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 are located within voltage ranges defined by U s1 - U m1 and U s2 - U m2 , respectively.
  • U s1 - U m1 and U s2 - U m2 are respectively located at U s1 , U s2 .
  • the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 have the largest respectively.
  • the cooling efficiency P s1 , P s2 (corresponding to P s in Fig. 4)
  • the cooling capacities are Q cs1 and Q cs2 (corresponding to Q cs in Fig. 4).
  • the semiconductor refrigeration chip does not correspond to the maximum cooling capacity when it operates at its maximum cooling efficiency, and its cooling capacity is the smallest within the supply voltage range determined according to the experiment (between U s -U m ).
  • the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 have maximum cooling capacities Q cm1 and Q cm2 , respectively. (corresponding to Q cm in Fig. 4), the cooling efficiencies P m1 , P m2 (corresponding to P m in Fig.
  • the operating states thereof are mainly classified into a stable operation phase and a pull-down recovery phase.
  • the temperatures in the refrigerating chamber 12 and the freezing chamber 11 in the stable operation phase are respectively within the range of the refrigerating set temperature and the freezing set temperature.
  • the refrigerating set temperature and the freezing set temperature are 5 ° C and -18 ° C, respectively.
  • the steady-state operation phase maintains 5 ° C for the refrigerating chamber 12 and the freezing chamber 11 maintains the temperature of -18 ° C. the process of.
  • the pull-down recovery phase is a process in which the temperature in the refrigerating compartment 12 is lowered from an ambient temperature of 25 ° C to 5 ° C, and the temperature in the freezing compartment 11 is lowered from an ambient temperature of 25 ° C to -18 ° C; or the refrigerating compartment 12 and the freezing compartment 11 are caused by opening a door or the like.
  • the temperature was recovered from temperatures above 5 ° C and -18 ° C to 5 ° C and -18 ° C, respectively.
  • the refrigerator is in a stable operation phase.
  • Table 1 The parameters of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 when the refrigerator is in a stable operation phase are shown in Table 1.
  • the controller 503 specifies that the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 operate in the corresponding operation of Table 1.
  • the voltage and current of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 are not the maximum value, and the power is not the maximum.
  • the cooling capacity of the two semiconductor refrigerating sheets is not the highest, but can satisfy the steady state operation. The amount of cooling required for the stage, at which time the cooling efficiency of the two semiconductor refrigerating sheets is an optimum value or a relatively high value close to the optimum value.
  • the voltage of the first semiconductor cooling fin 21 is U s1
  • the current is I s1
  • the input power is P s1
  • the voltage of the second semiconductor cooling fin 22 is U s2
  • the current is I s2
  • the input power is P s2
  • the generated cooling amount is Q cs2 . Since the second semiconductor refrigerating sheet 22 is not only responsible for refrigerating the refrigerating chamber 12 but also absorbing the heat generated by the first hot end surface of the first semiconductor refrigerating sheet 21, the cooling amount Q cs2 generated by the second semiconductor refrigerating sheet 22 is required to be low. heat to the refrigerating chamber cold end surface 12 of the first heat demands Q c of the first sheet 21 of the peltier sum Q hs1.
  • the first temperature sensor 501 and the second temperature sensor 502 detect that the temperatures of the refrigerating compartment 12 and the freezing compartment 11 are higher than 5 ° C and -18 ° C, respectively.
  • the controller 503 specifies that the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 operate in the corresponding operation of Table 2. Under the parameters.
  • the cooling efficiency of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 is not optimal at this time, the voltage and current of the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 are maximum values, and the power is maximum.
  • the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 generate the maximum amount of cooling (or the maximum amount of cooling generated), wherein the maximum cooling amount generated by the second semiconductor refrigerating sheet 22 is larger than that generated by the first semiconductor refrigerating sheet 21.
  • Maximum cooling capacity Since the amount of cooling generated by the first semiconductor refrigerating sheet 21 and the second semiconductor refrigerating sheet 22 is much higher than the cooling capacity of the refrigerator, the temperature can be rapidly lowered with higher cooling efficiency.
  • the voltage of the first semiconductor cooling sheet 21 is U m1
  • the current is I m1
  • the input power is P m1
  • the voltage of the second semiconductor refrigerating sheet 22 is U m2
  • the current is I m 2
  • the input power is P m2
  • the generated cooling amount is Q cm 2 , which is much higher than the cooling demand Q c of the refrigerating chamber 12

Abstract

一种冰箱,包括:第一半导体制冷片(21),具有产生冷量的第一冷端面和产生热量的第一热端面;第二半导体制冷片(22),具有产生冷量的第二冷端面和产生热量的第二热端面;第一热交换器(310),配置成将第一冷端面的冷量传递到冰箱的冷冻室(11)中;第二热交换器(320),配置成将第二冷端面的一部分冷量传递到冰箱的冷藏室(12)中,且将第二冷端面的其余冷量消抵第一热端面的热量;以及第三热交换器(330),配置成将第二热端面的热量散发到周围环境中。该冰箱由于第二半导体制冷片(22)的冷端对第一半导体制冷片(21)的热端进行充分散热降温,可以提高第一半导体制冷片(21)的热端的散热效率,从而提高其冷端的制冷效果。

Description

冰箱 技术领域
本发明涉及制冷设备,特别是涉及一种半导体制冷冰箱。
背景技术
半导体冰箱具有环保和容积率高等特点,广受市场欢迎。但受半导体制冷片特性的限制,只能达到冷藏的目的,达不到冷冻的标准,在应用上受到很大的限制。在现有技术的包括冷藏室和冷冻室的半导体冰箱中,通常采用压缩式制冷系统和半导体制冷系统进行混合制冷,半导体制冷片的热端或热端散热器通常被设置成与压缩式制冷系统的压缩机蒸发器直接接触。压缩机式蒸发器产生的冷量传导给半导体制冷片的热端,对其进行散热降温。这种对半导体制冷片的热端以接触传导的方式进行散热降温的方案工艺复杂、成本较高。此外,压缩式制冷系统体积大,占用冰箱的储藏空间;且工作时噪音大。
发明内容
本发明的一个目的旨在克服现有技术中带有冷藏室和冷冻室的半导体冰箱的至少一个缺陷,提供一种可高效制冷的具有冷藏冷冻功能的冰箱。
本发明一个进一步的目的是要使得冰箱的工作噪音小,储藏空间大。
为此,本发明提供了一种冰箱,包括:
第一半导体制冷片,具有产生冷量的第一冷端面和产生热量的第一热端面;
第二半导体制冷片,具有产生冷量的第二冷端面和产生热量的第二热端面;
第一热交换器,配置成将所述第一冷端面的冷量传递到所述冰箱的冷冻室中;
第二热交换器,配置成将所述第二冷端面的一部分冷量传递到所述冰箱的冷藏室中,且将所述第二冷端面的其余冷量消抵所述第一热端面的热量;以及
第三热交换器,配置成将所述第二热端面的热量散发到周围环境中。
可选地,所述第三热交换器包括:
第三制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热;
第三制冷剂管路,与所述第三制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热;以及
热桥,其上端内侧表面与所述第二热端面热接触,下端外侧表面与所述第三制冷剂箱体的内侧表面热接触,以将所述第二热端面产生的部分热量向下传递到所述第三制冷剂箱体。
可选地,所述第三热交换器还包括:
上部散热翅片,设置在所述热桥的上端外侧表面上。
可选地,所述第三热交换器还包括:
上部散热风机,通过紧固机构固定在所述上部散热翅片的外侧,以对从所述第二热端面传至所述上部散热翅片的热量进行强制对流散热。
可选地,所述第三热交换器还包括:
下部散热翅片,设置在所述第三制冷剂箱体的外侧表面上。
可选地,所述第三热交换器还包括:
下部散热风机,通过紧固机构固定在所述下部散热翅片的外侧,以对从所述第二热端面传至所述下部散热翅片的热量进行强制对流散热。
可选地,所述第一热交换器包括:
第一制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热,所述第一制冷剂箱体与所述第一冷端面热接触;以及
第一制冷剂管路,与所述第一制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热。
可选地,所述第二热交换器包括:
第二制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热,所述第二制冷剂箱体的两个相对的表面分别与所述第一热端面和第二冷端面热接触;以及
第二制冷剂管路,与所述第二制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热。
可选地,所述冰箱还包括:
第一温度传感器,配置成检测所述冷藏室的温度;
第二温度传感器,配置成检测所述冷冻室的温度;以及
控制器,配置成根据所述冷藏室的温度和所述冷冻室的温度控制所述第一半导体制冷片和所述第二半导体制冷片产生的冷量,以使所述冷藏室和所述冷冻室分别保持在冷藏设定温度和冷冻设定温度。
可选地,所述控制器进一步配置成:当所述冷藏室的温度高于所述冷藏设定温度和/或所述冷冻室的温度高于所述冷冻设定温度时,控制所述第一半导体制冷片和所述第二半导体制冷片分别产生最大冷量;其中所述第二半导体制冷片产生的最大冷量大于所述第一半导体制冷片产生的最大冷量。
本发明冰箱的制冷散热系统采用双级半导体制冷技术,相对于传统的压缩式制冷,取代了压缩机及放置压缩机的舱室,使冰箱的有效利用空间变大。此外,冰箱内部无风道、蒸发器盖板,外部散热管路全部贴附在外壳内侧,外观优美,整洁大方,空间利用率大大提升。
本发明的冰箱由于第二半导体制冷片的冷端对第一半导体制冷片的第一热端面进行充分散热降温,因此能提高第一半导体制冷片的第一热端面的散热效率,从而提高第一冷端面的制冷效果。
进一步地,在本发明的冰箱中,设有用于对第二半导体制冷片的第二热端面进行散热的散热翅片、散热风机以及制冷剂管路,可有效降低第二热端面与环境温度的温差,提高第二冷端面的制冷量。在冰箱负荷较低时,可以适当关闭散热风机,这样可以有效的降低冰箱的噪音和能耗,使得其整体运行更加安全可靠。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是图1所示第一热交换器的示意性结构图;
图3是图1所示第三热交换器的示意性结构图;
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图;
图5是根据本发明一个实施例的冰箱的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在本发明的描述中,术语“上”、“下”、“前”、“后”“内”“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的冰箱的示意性结构图。本发明的冰箱可包括箱体10,箱体10内由内胆限定形成冷冻室11和冷藏室12两个腔室。在一个实施例中,冷藏室12位于箱体10的上方,冷冻室11位于箱体10的下方。箱体10的侧壁或背板上设置有第一半导体制冷片21,第二半导体制冷片22,第一热交换器310,第二热交换器320以及第三热交换器330。其中,第一半导体制冷片21具有产生冷量的第一冷端面和产生热量的第一热端面。第一热交换器310配置成将第一冷端面的冷量传递到冷冻室11中。在一个实施例中,第一热交换器310的一部分与第一冷端面热连接,另一部分与冷冻室11热连接,以实现将第一冷端面的冷量传递到冷冻室11中。第二半导体制冷片22具有产生冷量的第二冷端面和产生热量的第二热端面。第二热交换器320配置成将第二冷端面的一部分冷量传递到冷藏室12中,且将第二冷端面的其余冷量消抵第一半导体制冷片21的第一热端面的热量。例如可通过使第二热交换器320的一部分与第二冷端面热连接,另一部分与冷藏室12热连接来实现。第三热交换器330配置成将第二半导体制冷片22的第二热端面的热量散发到周围环境中。例如可通过使第三热交换器330的一部分与第二热端面热连接,另一部分将第二热端面的热量散发到周围环境中。由于第二半导体制冷片22除了担负对冷藏室12的制冷,还要吸收来自第一半导体制冷片21第一热端面的热量,因此,第二半导体制冷片22应具有更强的制冷能力。由于半导体制冷片为应用温差电效应的温差制冷装置,这种方案可以提高第一半导体制冷片21的第一冷端面和第二半导 体制冷片22的第二冷端面的制冷效果,从而实现对冰箱的高效制冷。
在本发明的一些实施例中,第一热交换器310,第二热交换器320以及第三热交换器330可分别包括制冷剂箱体和制冷剂管路。其中,制冷剂箱体限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热。制冷剂管路与制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热。热交换器工作时,制冷剂箱体内部填充气液两相共存的制冷剂。当制冷剂箱体与热源或冷源相接触换热时,制冷剂在制冷剂箱体和制冷剂管路中通过发生气液相变进行热传导。制冷剂箱体和制冷剂管路中灌注的制冷剂可为二氧化碳或其他制冷工质,且制冷剂的灌注量可以通过试验测试得出。制冷剂管路可以选用铜管、不锈钢管、铝管等,优选为铜管。
本发明实施例中的“热连接”或“热接触”,本领域技术人员可以知晓的最直接的实施方式是直接抵靠接触,采用热传导的方式进行传热。若抵靠接触面涂覆导热硅脂(石墨或其他介质),可将其认为是抵靠接触面上的一部分,作为改善热连接(或热接触)的导热层。
图2示出了本发明一个实施例的第一热交换器的结构示意图。如图2所示,第一热交换器310可包括第一制冷剂箱体312,以及第一制冷剂管路311。第一制冷剂管路311从其形成为开口端的第一端(如图2中第一制冷剂管路311的右上端)沿竖直方向向下延伸之后向下地弯折延伸至其最低位置,然后向上地弯折延伸,接着竖直向上延伸至其形成为开口端的第二端(如图2中第一制冷剂管路311的左上端)。向下地弯折延伸和向上地弯折延伸的管路均需要保证液态的制冷剂可以依靠重力自由地在其中流动。第一制冷剂管路311的形成为开口端的第一端和第二端分别与第一制冷剂箱体312的底部连通。在一个实施例中,第一制冷剂箱体312可为扁平长方体状,其相对设置的前向侧壁与后向侧壁的面积大于其他面的面积,且后向侧壁的外表面用作与第一半导体制冷片21的第一冷端面接触贴靠的换热面。在一个实施例中,第一制冷剂箱体312的前向侧壁向左右两侧分别延伸出一个安装凸缘313,每个安装凸缘313上设有一个或多个安装孔314,以便利用紧固件将第一制冷剂箱体312安装固定到冰箱的箱体10上。在一个实施例中,第一热交换器310也可包括两根制冷剂管路,两根制冷剂管路的第一端为开口端,第二端为封闭端,其第一端分别与制冷剂箱体内腔的下部连通。两根制 冷剂管路分别从其第一端竖直向下延伸后再倾斜向下地弯折延伸,终结于其形成为封闭端的第二端。
本发明的第二热交换器320包括第二制冷剂箱体和第二制冷剂管路321。第二制冷剂管路321从其形成为开口端的第一端倾斜向下地弯折延伸至最低位置后再倾斜向上地弯折延伸至其形成为开口端的第二端,向下地弯折延伸和向上地弯折延伸的管路均需要保证液态的制冷剂可以依靠重力自由地在其中流动。第二制冷剂管路321的形成为开口端的第一端和第二端分别与第二制冷剂箱体的底部连通。在一个实施例中,第二热交换器320也可包括两根制冷剂管路,两根制冷剂管路的第一端为开口端,第二端为封闭端,其第一端分别与制冷剂箱体内腔的下部连通。两根制冷剂管路分别从其第一端倾斜向下地弯折延伸,终结于其形成为封闭端的第二端。
图3示出了本发明实施例的第三热交换器330的结构示意图。第三热交换器330也包括第三制冷剂箱体338和两根第三制冷剂管路331。两根第三制冷剂管路331分别从其形成为开口端的第一端(如图3中两根第三制冷剂管路331的下端)向上弯折延伸,终结于其形成为封闭端的第二端(如图3中两根第三制冷剂管路331的上端);两根第三制冷剂管路331的形成为开口端的第一端分别与第三制冷剂箱体338的内腔的上部连通。第三热交换器330还可包括三通装置339,其具有相互连通的第一端、第二端和第三端,其中三通装置339的第一端与第三制冷剂箱体338的内腔连通,其第二端与一根第三制冷剂管路331的形成为开口端的第一端相连,第三端为配置成可操作地打开以接收从外部注入的制冷剂的常闭端。利用三通装置339降低了灌注制冷剂工艺的难度,并为维修提供了方便。在一个实施例中,第三热交换器330也可包括一根制冷剂管路,制冷剂管路的第一端和第二端均为开口端,其第一端和第二端分别与制冷剂箱体内腔的上部连通。制冷剂管路从其第一端倾斜向上地弯折延伸至最高位置后再倾斜向下地弯折延伸至其第二端。
为了便于描述本发明冰箱的结构,本发明中邻近冰箱内胆后壁的一侧可称为内侧,远离冰箱内胆后壁的一侧可称为外侧。在图1所示的实施例中,第一制冷剂箱体312的内侧表面可通过紧固件安装在冰箱箱体10的背板上部,第一半导体制冷片21的第一冷端面与第一制冷剂箱体312的外侧表面热接触。第一制冷剂管路311的弯折延伸的至少部分管路与形成冷冻室11 的内胆外表面接触贴靠。第二制冷剂箱体的内侧表面与第一半导体制冷片21的第一热端面热接触,其外侧表面与第二半导体制冷片22的第二冷端面热接触。第二制冷剂管路321的至少部分管路与形成冷藏室12的内胆外表面接触贴靠。第三制冷剂箱体338可通过塑料件337支撑在冰箱箱体10的背板中部附近(例如冷冻室11的上方)。第三制冷剂管路331与冰箱的外壳内表面接触贴靠。第三热交换器330还可包括热桥332,其上端内侧表面与第二热端面热接触,下端外侧表面与第三制冷剂箱体338的内侧表面热接触,以将第二热端面产生的部分热量向下传递到第三制冷剂箱体338。为保证传热效率各连接部件间可采用导热硅脂(石墨或其他介质)接触。
本发明的冰箱可具有三种工作状态:对冷藏室12单独制冷、对冷冻室11单独制冷以及对冷藏室12与冷冻室11同时制冷。
当对冷藏室12单独制冷时,第一半导体制冷片21不通电,第二半导体制冷片22单独通电工作。此时第二半导体制冷片22只负责为冷藏室12制冷而不对第一半导体制冷片21散热。对第二半导体制冷片22通电后,其第二冷端面温度下降,通过第二制冷剂箱体内壁的传导,其内气态的制冷剂遇冷时发生相变冷凝,变化成为低温的液态制冷剂,液态的制冷剂会靠重力沿着第二制冷剂管路321内壁下流,冷凝下流的制冷剂在第二制冷剂管路321中由于吸收冷藏室12内部的热量受热相变蒸发,变化成为气态。气态蒸汽在热源压力的推动下会上升,气态制冷剂上升到第二制冷剂箱体处继续冷凝,由此循环制冷,以将来自第二半导体制冷片22第二冷端面的冷量传至冷藏室12内。在该工作过程中,第三热交换器330可对第二半导体制冷片22的第二热端面进行散热。
当对冷冻室11单独制冷时,第一半导体制冷片21和第二半导体制冷片22均通电工作,此时第二半导体制冷片22仅用于为第一半导体制冷片21的第一热端面散热。为防止第二半导体制冷片22工作的同时会通过第二制冷剂管路321对冷藏室12制冷而造成浪费,可在第二制冷剂管路321与第二制冷剂箱体的连接处设置可控的截止阀(图中未示出)。当对冷冻室11单独制冷时,关闭该截止阀,以使第二半导体制冷片22不对冷藏室12制冷,由此实现冷冻室11的单独工作。在分别对第一半导体制冷片21和第二半导体制冷片22通电后,第一半导体制冷片21的第一冷端面温度下降,其第一热端面温度上升;同时,第二半导体制冷片22的第二冷端面温度下降,其 第二热端面温度上升。由于第二半导体制冷片22具有比第一半导体制冷片21具有更大的制冷能力,随着第二半导体制冷片22的第二冷端面温度下降,第二制冷剂箱体温度相应下降,通过第二制冷剂箱体内壁的传导,第一半导体制冷片21的第一热端面温度下降;相应地,第一冷端面的温度进一步下降,从而传递给冷冻室11更多的冷量,使得冷冻室11的温度满足需要。通过第一制冷剂箱体312内壁的传导,第一制冷剂箱体312温度相应下降,其内气态的制冷剂遇冷时发生相变冷凝,变化成为低温的液态制冷剂,液态的制冷剂会靠重力沿着第一制冷剂管路311内壁下流,冷凝下流的制冷剂在第一制冷剂管路311中由于吸收冷冻室11内部的热量受热相变蒸发,变化成为气态。气态蒸汽在热源压力的推动下会上升,气态制冷剂上升到第一制冷剂箱体312处继续冷凝,由此循环制冷,以将来自第一半导体制冷片21第一冷端面的冷量传至冷冻室11内。
在该工作过程中,第二半导体制冷片22为第一半导体制冷片21的第一热端面散热,第二半导体制冷片22的第二冷端面的温度要高于第一半导体制冷片21的第一冷端面的温度;进而导致第二半导体制冷片22的第二热端面的温度较高。第三制冷剂箱体338由于通过热桥332与第二半导体制冷片22的第二热端面进行热交换,其形成蒸发器,其内液态的制冷剂遇热时发生相变蒸发,变化成为高温的气态的制冷剂。气态的制冷剂会在热源压力下沿着第三制冷剂管路331上升,将热量传递给冰箱外壳,然后通过自然对流将热量传递给外部空间,此时第三制冷剂管路331形成冷凝器,制冷剂冷凝放热后成为液态,依靠重力向下回流至第三制冷剂箱体338,重新吸收第二热端面热量进行蒸发,形成热循环。
当对冷藏室12与冷冻室11同时制冷时,第一半导体制冷片21和第二半导体制冷片22均通电工作,由于第二半导体制冷片22既需要对冷藏室12进行制冷,同时还要吸收第一半导体制冷片21产生的热量,因此相比在对冷冻室11单独制冷的情况下,其需要其产生更多的冷量,对应地其也会产生更多的热量。此时,随着第二半导体制冷片22的第二冷端面温度下降,第二制冷剂箱体温度相应下降,第二制冷剂管路321上的截止阀导通,对冷藏室12制冷。同时,第一制冷剂箱体312对冷冻室11制冷。第三制冷剂箱体338和第三制冷剂管路对第二半导体制冷片22的第二热端面散热。其中,对冷冻室11制冷的过程和对第二热端面散热的过程可参见冷冻室11单独制 冷的情况。
由上述描述可知,由于第二半导体制冷片22除了担负对冷藏室12的制冷,还要吸收来自第一半导体制冷片21第一热端面的热量,因此,第二半导体制冷片22制冷能力很大,对应的将产生很多的热量。如果不能很好地对这些热量进行散热,会较大地降低两个半导体制冷片的制冷效率,使得两个半导体制冷片的冷端面难以达到较低的制冷温度,从而难以保证冷藏室12和冷冻室11内的温度分别达到冷藏设定温度和冷冻设定温度。
在一个实施例中,为了更好地对第二热端面进行散热,在热桥332的上端外侧表面上可设置上部散热翅片333。上部散热翅片333可较大地增加散热面积,有利于较快地对第二热端面进行散热。在进一步的实施例中,第三热交换器330还可包括上部散热风机(或上部散热风扇)334,通过紧固机构固定在上部散热翅片333上,以对从所述第二热端面传至上部散热翅片333的热量进行强制对流散热。这样可较快地将第二热端面的热量散发到周围环境中。在一个实施例中,上部散热风机334的出风部位可面对上部散热翅片333布置。在更进一步的实施例中,第三热交换器330还可包括设置在第三制冷剂箱体338外侧表面上的下部散热翅片335。在进一步优选的实施例中,第三热交换器330还可包括下部散热风机(或下部散热风扇)336,其通过紧固机构固定在下部散热翅片335上,以对从第二热端面传至下部散热翅片335的热量进行强制对流散热。在一个实施例中,下部散热风机336的出风部位可面对下部散热翅片335布置。
在本发明的优选实施例中,针对第二半导体制冷片22的第二热端面的散热问题,第三热交换器330包括的第三制冷剂箱体338和第三制冷剂管路331可有效降低第二半导体制冷片22的第二热端面的热流密度;分别设置在热桥332的上端外侧表面和第三制冷剂箱体338外侧表面上的散热翅片以及散热风机可有效地将产生的热量排出至外部空间。由于第三热交换器330能够及时地把第二热端面的热量散到外部环境中,即使当第一半导体制冷片21和第二半导体制冷片22均处于产生最大制冷量的工作状态时,也能够避免第二热端面温度过高,从而避免烧坏第二半导体制冷片22,有效保证了冰箱的稳定运行。
当冰箱负荷较小(例如冷藏室12和/或冷冻室11内存储的物品较少)时,第一半导体制冷片21和第二半导体制冷片22可均处于产生较小制冷量 的工作状态。由于第二半导体制冷片22的第二热端面产生的热量较少,此时可以关闭第三热交换器330中的一个散热风机,甚至将两个散热风机全部关闭,仅依靠第三制冷剂箱体338、第三制冷剂管路331、上部散热翅片333以及下部散热翅片335进行散热,这样可以有效的降低冰箱的噪音和能耗,避免出现大马拉小车的现象。
图5是根据本发明一个实施例的冰箱的结构框图。参见图5,本发明的冰箱除了具有第一半导体制冷片21和第二半导体制冷片22外,还可包括第一温度传感器501、第二温度传感器502以及控制器503。第一温度传感器501配置成检测冷藏室12的温度;第二温度传感器502配置成检测冷冻室11的温度。第一温度传感器501和第二温度传感器502可分别布置在冷藏室12和冷冻室11的内壁上。控制器503分别与第一温度传感器501、第二温度传感器502、第一半导体制冷片21和第二半导体制冷片22电连接。控制器503接收第一温度传感器501和第二温度传感器502发送的冷藏室温度和冷冻室温度,并根据冷藏室温度和冷冻室温度控制第一半导体制冷片21和第二半导体制冷片22产生的冷量,以使冷藏室12和冷冻室11分别保持在冷藏设定温度和冷冻设定温度。在一个实施例中,控制器503可通过分别控制第一半导体制冷片21和第二半导体制冷片22的供电电压的大小进而分别控制其产生的冷量大小(即制冷量)。
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图。在本发明的实施例中,根据对冰箱制冷效率的要求,电压Um1和电压Um2分别是根据实验确定所用第一半导体制冷片21和第二半导体制冷片22供电电压的最大值(对应图4中Um);电压Us1和电压Us2分别是根据实验确定所用第一半导体制冷片21和第二半导体制冷片22供电电压的最小值(对应图4中Us)。第一半导体制冷片21和第二半导体制冷片22的供电电压分别位于Us1-Um1和Us2-Um2所限定的电压范围内。由图4可以看出,当第一半导体制冷片21和第二半导体制冷片22的工作电压分别位于Us1、Us2时,第一半导体制冷片21和第二半导体制冷片22分别具有最大的制冷效率Ps1、Ps2(对应图4中Ps),其制冷量分别为Qcs1和Qcs2(对应图4中Qcs)。可见半导体制冷片工作在其最大制冷效率时并不对应产生最大制冷量,而且其制冷量在根据实验确定的供电电压范围内(Us-Um之间)最小。当第一半导体制冷片21和第二半导体制冷片22的 工作电压分别位于Um1、Um2时,第一半导体制冷片21和第二半导体制冷片22分别具有最大的制冷量Qcm1和Qcm2(对应图4中Qcm),其制冷效率Pm1、Pm2(对应图4中Pm)在根据实验确定的供电电压范围内(第一半导体制冷片21和第二半导体制冷片22的供电电压分别在Us1-Um1之间和Us2-Um2之间)最小。
在本发明的冰箱中,对于第一半导体制冷片21和第二半导体制冷片22来说,其工作状态主要分为稳定运行阶段和下拉恢复阶段。其中,稳定运行阶段即冷藏室12和冷冻室11内的温度分别处于冷藏设定温度和冷冻设定温度范围内。例如,冷藏设定温度和冷冻设定温度分别为5℃和-18℃,当环境温度为25℃时,稳态运行阶段为冷藏室12维持5℃,冷冻室11维持-18℃温度不变的过程。下拉恢复阶段为冷藏室12内温度由环境温度25℃降至5℃,冷冻室11内温度由环境温度25℃降至-18℃的过程;或者由于开门等导致冷藏室12和冷冻室11的温度分别从高于5℃和-18℃的温度恢复至5℃和-18℃的过程。
当第一温度传感器501、第二温度传感器502检测到冷藏室12和冷冻室11的温度分别为5℃和-18℃时,此时,冰箱处于稳定运行阶段。本发明中,优选在对第一半导体制冷片21和第二半导体制冷片22进行设计选型时,尽可能使其满足在稳定运行阶段,使半导体制冷片具有最高的制冷效率或接近最高制冷效率。冰箱处于稳定运行阶段时第一半导体制冷片21和第二半导体制冷片22参数如表1所示。
表1
  电压 电流 功率 芯片冷量 芯片热量
第一半导体制冷片 Us1 Is1 Ps1 Qcs1 Qhs1
第二半导体制冷片 Us2 Is2 Ps2 Qcs2 Qhs2
为保持达到冷藏室12的温度为5℃,冷冻室11的温度为-18℃的稳定运行阶段,控制器503规定第一半导体制冷片21和第二半导体制冷片22运行在表1对应的工作参数下,此时第一半导体制冷片21和第二半导体制冷片22的电压和电流并非为其最大值,功率也非最大,两半导体制冷片产生的冷量非最高,但是可以满足稳态运行阶段所需要的冷量,此时两半导体制冷片的制冷效率为最佳值或者为某一接近最佳值的较高数值。
此时,第一半导体制冷片21的电压为Us1,电流为Is1,输入功率为Ps1,产生的冷量为Qcs1。由于第一半导体制冷片21负责为冷冻室11制冷,因此,第一半导体制冷片21产生的冷量Qcs1需满足不低于冷冻室11的热负荷或者冷量需求Qd,由于冷量从第一半导体制冷片21的第一冷端面传递至冷冻室11空间存在不可避免的热损失,因此,Qcs1要大于Qd,一般Qcs1为1.5至2倍的Qd。若第一半导体制冷片21的第一热端面产生的热量为Qhs1,则Qhs1=Ps1+Qcs1
相应地,第二半导体制冷片22的电压为Us2,电流为Is2,输入功率为Ps2,产生的冷量为Qcs2。由于第二半导体制冷片22不仅负责为冷藏室12制冷,而且负责吸收第一半导体制冷片21第一热端面产生的热量,因此,第二半导体制冷片22产生的冷量Qcs2需满足不低于冷藏室12的冷量需求Qc与第一半导体制冷片21的第一热端面的热量Qhs1之和。由于冷量从第二半导体制冷片22传至冷藏室12及吸收第一半导体制冷片21热量的过程中不可避免的存在损失,因此Qcs2要大于Qc与Qhs1之和,一般可取Qcs2为Qc与Qhs1之和的1.5至2倍。若第二半导体制冷片22第二热端面产生的热量为Qhs2,则Qhs2=Qcs2+Ps2
当冰箱处于下拉恢复阶段时,此时第一温度传感器501、第二温度传感器502检测到冷藏室12和冷冻室11的温度分别高于5℃和-18℃。为尽快达到冷藏室12的温度为5℃,冷冻室11的温度为-18℃的稳定运行状态,控制器503规定第一半导体制冷片21和第二半导体制冷片22运行在表2对应的工作参数下。尽管此时第一半导体制冷片21和第二半导体制冷片22的制冷效率并非最佳值,但第一半导体制冷片21和第二半导体制冷片22的电压和电流为最大值,功率最大。此时第一半导体制冷片21和第二半导体制冷片22产生最大冷量(或者说产生的冷量最大),其中第二半导体制冷片22产生的最大冷量大于第一半导体制冷片21产生的最大冷量。由于第一半导体制冷片21和第二半导体制冷片22产生的冷量远远高于冰箱的冷量需求,因此能够以较高的制冷效率迅速降低温度。
表2
  电压 电流 功率 芯片冷量 芯片热量
第一半导体制冷片 Um1 Im1 Pm1 Qcm1 Qhm1
第二半导体制冷片 Um2 Im2 Pm2 Qcm2 Qhm2
此时,第一半导体制冷片21的电压为Um1,电流为Im1,输入功率为Pm1,产生的冷量为Qcm1,其远远高于冷冻室11的冷量需求Qd。若第一半导体制冷片21第一热端面产生的热量为Qhm1,则Qhm1=Pm1+Qcm1
相应地,第二半导体制冷片22的电压为Um2,电流为Im2,输入功率为Pm2,产生的冷量为Qcm2,其远远高于冷藏室12的冷量需求Qc与第一半导体制冷片21的第一热端面的热量Qhm1之和。若第二半导体制冷片22的第二热端面产生的热量为Qhm2,则Qhm2=Qcm2+Pm2
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括:
    第一半导体制冷片,具有产生冷量的第一冷端面和产生热量的第一热端面;
    第二半导体制冷片,具有产生冷量的第二冷端面和产生热量的第二热端面;
    第一热交换器,配置成将所述第一冷端面的冷量传递到所述冰箱的冷冻室中;
    第二热交换器,配置成将所述第二冷端面的一部分冷量传递到所述冰箱的冷藏室中,且将所述第二冷端面的其余冷量消抵所述第一热端面的热量;以及
    第三热交换器,配置成将所述第二热端面的热量散发到周围环境中。
  2. 根据权利要求1所述的冰箱,其中
    所述第三热交换器包括:
    第三制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热;
    第三制冷剂管路,与所述第三制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热;以及
    热桥,其上端内侧表面与所述第二热端面热接触,下端外侧表面与所述第三制冷剂箱体的内侧表面热接触,以将所述第二热端面产生的部分热量向下传递到所述第三制冷剂箱体。
  3. 根据权利要求2所述的冰箱,其中
    所述第三热交换器还包括:
    上部散热翅片,设置在所述热桥的上端外侧表面上。
  4. 根据权利要求3所述的冰箱,其中
    所述第三热交换器还包括:
    上部散热风机,通过紧固机构固定在所述上部散热翅片的外侧,以对从所述第二热端面传至所述上部散热翅片的热量进行强制对流散热。
  5. 根据权利要求4所述的冰箱,其中
    所述第三热交换器还包括:
    下部散热翅片,设置在所述第三制冷剂箱体的外侧表面上。
  6. 根据权利要求5所述的冰箱,其中
    所述第三热交换器还包括:
    下部散热风机,通过紧固机构固定在所述下部散热翅片的外侧,以对从所述第二热端面传至所述下部散热翅片的热量进行强制对流散热。
  7. 根据权利要求1所述的冰箱,其中
    所述第一热交换器包括:
    第一制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热,所述第一制冷剂箱体与所述第一冷端面热接触;以及
    第一制冷剂管路,与所述第一制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热。
  8. 根据权利要求1所述的冰箱,其中
    所述第二热交换器包括:
    第二制冷剂箱体,限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热,所述第二制冷剂箱体的两个相对的表面分别与所述第一热端面和第二冷端面热接触;以及
    第二制冷剂管路,与所述第二制冷剂箱体的内腔连通,配置成允许制冷剂在其内流动且发生相变换热。
  9. 根据权利要求1-8中任一项所述的冰箱,还包括:
    第一温度传感器,配置成检测所述冷藏室的温度;
    第二温度传感器,配置成检测所述冷冻室的温度;以及
    控制器,配置成根据所述冷藏室的温度和所述冷冻室的温度控制所述第一半导体制冷片和所述第二半导体制冷片产生的冷量,以使所述冷藏室和所述冷冻室分别保持在冷藏设定温度和冷冻设定温度。
  10. 根据权利要求9所述的冰箱,其中
    所述控制器进一步配置成:当所述冷藏室的温度高于所述冷藏设定温度和/或所述冷冻室的温度高于所述冷冻设定温度时,控制所述第一半导体制冷片和所述第二半导体制冷片分别产生最大冷量;其中所述第二半导体制冷片产生的最大冷量大于所述第一半导体制冷片产生的最大冷量。
PCT/CN2015/075169 2014-03-28 2015-03-26 冰箱 WO2015144080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410123544.7A CN104329857B (zh) 2014-03-28 2014-03-28 冰箱
CN201410123544.7 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015144080A1 true WO2015144080A1 (zh) 2015-10-01

Family

ID=52404628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075169 WO2015144080A1 (zh) 2014-03-28 2015-03-26 冰箱

Country Status (2)

Country Link
CN (1) CN104329857B (zh)
WO (1) WO2015144080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759238A (zh) * 2018-08-28 2018-11-06 浙江聚珖科技股份有限公司 半导体制冷真空冰箱

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329857B (zh) * 2014-03-28 2016-04-27 海尔集团公司 冰箱
CN106679230A (zh) * 2016-12-08 2017-05-17 青岛海尔股份有限公司 半导体制冷装置
CN106766348A (zh) * 2017-01-17 2017-05-31 中国科学院深圳先进技术研究院 一种半导体制冷冰箱
US10718558B2 (en) * 2017-12-11 2020-07-21 Global Cooling, Inc. Independent auxiliary thermosiphon for inexpensively extending active cooling to additional freezer interior walls
KR20210001074A (ko) * 2019-06-26 2021-01-06 엘지전자 주식회사 열전 모듈 및 이를 구비한 냉장고

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382374A (zh) * 2008-10-23 2009-03-11 王志平 热电双温双控电冰箱
CN201348413Y (zh) * 2008-11-21 2009-11-18 珠海熙玛电子科技有限公司 深冷热电冰箱
US20100326096A1 (en) * 2008-11-10 2010-12-30 Brent Alden Junge Control sytem for bottom freezer refrigerator with ice maker in upper door
CN202267296U (zh) * 2011-08-18 2012-06-06 蔡平 一种半导体双制冷冷藏柜
CN202915625U (zh) * 2012-10-21 2013-05-01 谢相孔 半导体电子冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104329857A (zh) * 2014-03-28 2015-02-04 海尔集团公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382374A (zh) * 2008-10-23 2009-03-11 王志平 热电双温双控电冰箱
US20100326096A1 (en) * 2008-11-10 2010-12-30 Brent Alden Junge Control sytem for bottom freezer refrigerator with ice maker in upper door
CN201348413Y (zh) * 2008-11-21 2009-11-18 珠海熙玛电子科技有限公司 深冷热电冰箱
CN202267296U (zh) * 2011-08-18 2012-06-06 蔡平 一种半导体双制冷冷藏柜
CN202915625U (zh) * 2012-10-21 2013-05-01 谢相孔 半导体电子冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104329857A (zh) * 2014-03-28 2015-02-04 海尔集团公司 冰箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759238A (zh) * 2018-08-28 2018-11-06 浙江聚珖科技股份有限公司 半导体制冷真空冰箱

Also Published As

Publication number Publication date
CN104329857A (zh) 2015-02-04
CN104329857B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2015144080A1 (zh) 冰箱
CN203810826U (zh) 冰箱
US20100071386A1 (en) Cooling Device for Installation in an Aircraft
JP5636871B2 (ja) 冷凍装置
CN110671865A (zh) 并联双循环冰箱及其控制方法
CN106766484A (zh) 一种具有半导体风冷间室的冰箱
JP6101926B2 (ja) 冷蔵庫
CN106585318B (zh) 电动车的电池冷却系统
JP3826998B2 (ja) スターリング冷凍システム及びスターリング冷蔵庫
WO2016192298A1 (zh) 传冷装置及具有该传冷装置的半导体制冷箱
JP4503045B2 (ja) 保存庫及び冷蔵用保存庫
CN217952747U (zh) 用于半导体制冷片的换热系统
CN204693888U (zh) 散热装置及具有该散热装置的半导体制冷箱
WO2022262378A1 (zh) 冰箱及其食材处理装置
CN206073777U (zh) 一种重力热管散热器
CN104329827B (zh) 一种热交换装置及半导体冰箱
CN114076465A (zh) 冷藏冷冻装置
WO2012062205A1 (zh) 一种全方位放置冷热互补式综合换热器
JP4956318B2 (ja) 冷却貯蔵庫の露付き防止装置
WO2012062204A1 (zh) 一种半导体冷藏暖藏箱
WO2020042459A1 (zh) 空调设备
CN105485969B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
US20180073796A1 (en) Refrigerator
US10495367B2 (en) Refrigeration appliance with a heat circuit
JP6543811B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769945

Country of ref document: EP

Kind code of ref document: A1