WO2015143726A1 - 一种脉搏信息测量方法、相关装置和通信系统 - Google Patents

一种脉搏信息测量方法、相关装置和通信系统 Download PDF

Info

Publication number
WO2015143726A1
WO2015143726A1 PCT/CN2014/074323 CN2014074323W WO2015143726A1 WO 2015143726 A1 WO2015143726 A1 WO 2015143726A1 CN 2014074323 W CN2014074323 W CN 2014074323W WO 2015143726 A1 WO2015143726 A1 WO 2015143726A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pulse information
pulse
pressure sensor
artery
Prior art date
Application number
PCT/CN2014/074323
Other languages
English (en)
French (fr)
Inventor
孙尙传
李西峙
Original Assignee
深圳市大富网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富网络技术有限公司 filed Critical 深圳市大富网络技术有限公司
Priority to PCT/CN2014/074323 priority Critical patent/WO2015143726A1/zh
Priority to CN201480030182.5A priority patent/CN105358048B/zh
Publication of WO2015143726A1 publication Critical patent/WO2015143726A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits

Definitions

  • the invention utilizes a pressure sensor to measure pulse information technology, and in particular relates to a pulse information measuring method, a related device and a communication system.
  • the current method of measuring blood pressure is usually the traditional oscillometric method, which has been used for more than 100 years. It uses an inflatable cuff or wristband to block arterial blood flow. During slow deflation, the blood vessel wall is detected. The vibration wave, and find the relationship between the envelope of the vibration wave and the vibration wave to estimate the blood pressure.
  • the existing oscillometric method requires the use of a pneumatic cuff and a built-in air pump, so that the measuring device has a large volume and weight, and the method requires a slow deflation, which generally takes several hundred seconds, and the measurement takes a long time.
  • Embodiments of the present invention provide a pulse information measuring method, a related device, and a communication system, which can reduce the volume and weight of the measuring device and reduce the time-consuming measurement when the pulse information is measured without the need for inflation and air pump.
  • an embodiment of the present invention provides a pulse information measurement method, including the following steps: a pulse information detecting device worn on a user's limb receives a user's hand pressing pressure, and the pressure sensor of the pulse information detecting device passes through a peripheral sleeve The elastic gas is pressed to press the position of the artery of the user's limb; the pressure sensor continuously detects the pressure of the artery position; and the pulse information detecting device calculates the body pulse information according to the pressure detected by the pressure sensor.
  • the human body pulse information includes a human body systolic pressure and a diastolic pressure
  • the step of the pulse information detecting device worn by the user's limb accepting the user's hand pressing pressure further comprises: the hand pressing pressure is first to small, and then From large to small, the blood flow of the user's limb arteries is smoothed to blocked, and then blocked to unblocked.
  • the step of calculating the body pulse information according to the pressure detected by the pressure sensor comprises: acquiring the pressure sensor detecting the position of the artery during the increasing and/or decreasing pressure of the hand grip pressure Pressure, obtaining a continuous pressure signal; respectively, establishing an upper envelope, a baseline, and a lower envelope according to the pressure signal; finding a first inflection point and a second inflection point of the lower envelope and the baseline, The first inflection point corresponds to the maximum value of the pressure signal as the systolic blood pressure of the arterial position, and the maximum value of the pressure signal corresponding to the second inflection point is taken as the diastolic pressure of the arterial position.
  • the pressure sensor comprises an upper pressure sensor disposed back to back and a lower pressure sensor having a lower elastic air pocket disposed on the outer circumference, the human body pulse information including a pulse instantaneous waveform of the artery position; the pressure sensor on the position of the artery
  • the step of continuously performing the pressure detection comprises: detecting, by the upper pressure sensor, a pressing force of the hand, the lower pressure sensor detecting the pressure of the artery position by the lower elastic gas; the pulse information detecting device according to the
  • the step of calculating the pressure information of the human body by the pressure detected by the pressure sensor includes: the pulse information detecting device synchronously acquiring the upper pressure and the output of the upper pressure sensor during the increase and/or decrease of the grip pressure Depressing the downward pressure of the pressure sensor output to obtain continuous upper and lower pressure signals; the pulse information detecting device acquiring a difference or ratio between the lower pressure signal and the upper pressure signal as a pulse instantaneous waveform of the artery position .
  • the step of the pulse information detecting device acquiring the difference or the ratio between the lower pressure signal and the upper pressure signal as the pulse instantaneous waveform of the artery position includes: the pulse information detecting device according to the difference Or the ratio calculates the systolic and diastolic pressures of the arterial position.
  • the step of calculating the systolic pressure and the diastolic pressure of the artery position according to the difference or the ratio specifically includes: acquiring the lower pressure signal and the upper pressure during the increase and/or decrease of the grip pressure The difference between the signals is closest to 0 or the two upper pressure values corresponding to the two times closest to 1; the larger of the two upper pressure values is taken as the systolic pressure of the arterial position, which is less worthwhile Diastolic blood pressure at the location of the artery.
  • the pressure sensor includes at least two lower pressure sensors disposed at intervals in the outer circumference of the lower elastic air, the method further comprising: simultaneously acquiring the pulse information detecting device when the pressing pressure is not received
  • the at least two lower pressure sensors respectively detect the pressures of different arterial positions by the lower elastic air entanglement of the outer circumference, and obtain at least one pulse of the continuous output of each of the lower pressure sensors.
  • the pulse information detecting means outputs a difference between peaks or valleys of the pulse pressure signals according to any two of the lower pressure sensors and the corresponding arterial position of the any two lower pressure sensors
  • the inter-distance calculation calculates the attenuation relationship between the arterial position blood pressure and the artery position and the distance between the hearts
  • the step of calculating the body pulse information according to the pressure detected by the pressure sensor comprises: receiving the hand grip according to one of the lower pressure sensors
  • the systolic blood pressure and the diastolic blood pressure of the corresponding arterial position of the human body pulse information are calculated according to the pressure detected during the pressure process, and the systolic blood pressure of the heart is obtained according to the attenuation relationship, the systolic blood pressure and the diastolic blood pressure of the corresponding arterial position.
  • the pressure sensor comprises three lower pressure sensors each having a lower elastic air pocket and spaced apart from each other, and the artery position of the user limb includes three arterial positions of the user's limb, inch and ruler, and the human body pulse
  • the information includes human body pulse information
  • the step of continuously detecting the pressure of the arterial position by the pressure sensor comprises: the three lower pressure sensors respectively detecting pressures of three arterial positions of the user's limbs, inches, and feet; the pulse
  • the step of calculating the body pulse information based on the pressure detected by the pressure sensor by the information detecting device includes: the pulse information detecting device performs pulse image analysis according to the pressure detected by the three down pressure sensors to obtain body pulse information.
  • the pulse information detecting device performs pulse image analysis according to the pressure detected by the three lower pressure sensors, and the step of obtaining the human body pulse information includes: the pulse information detecting device synchronously acquiring the pressure of the three lower pressure sensors in the hand When the pressure of the corresponding artery position of the left wrist is detected, three consecutive lower left pressure signals are obtained, and the pressures of the three lower pressure sensors detecting the position of the corresponding artery of the right wrist when the pressure is applied by the hand are synchronously obtained, and three consecutive The lower right pressure signal; the step of calculating the body pulse information according to the pressure detected by the pressure sensor comprises: the pulse information detecting device performing pulse analysis according to the three lower left pressure signals and three lower right pressure signals, Get pulse information.
  • the time of the hand pressing is a value greater than 4 seconds.
  • the embodiment of the invention provides a pulse information detecting device, comprising: a pressure sensor, and an elastic gas sleeve sleeved on an outer circumference of the pressure sensor, wherein the pressure sensor is elastically sheathed through the outer circumference when receiving the user's hand pressing pressure
  • the position of the artery that squeezes the limb of the user the processor, and the pressure sensor Electrical connection; the processor calculates body pulse information according to the pressure detected by the pressure sensor.
  • the processor includes a pressure acquisition module and a pulse information calculation module, and the pressure acquisition module is configured to acquire a pressure detected by the pressure sensor when the pulse information detecting device receives a hand pressing pressure;
  • the information calculation module calculates the body pulse information based on the pressure detected by the pressure sensor.
  • the body pulse information includes a human body systolic pressure and a diastolic pressure;
  • the pressure acquisition module is specifically configured to acquire a pressure detected by the pressure sensor at the artery position during the increase and/or decrease of the hand pressure, and obtain continuous
  • the pressure information calculation module is specifically configured to respectively establish an upper envelope, a baseline, and a lower envelope according to the pressure signal, and find a first inflection point and a second in the lower envelope and the baseline. Inflection point, the maximum value of the pressure signal corresponding to the first inflection point is taken as the systolic pressure of the artery position, and the maximum value of the pressure signal corresponding to the second inflection point is used as the diastolic pressure of the artery position.
  • the pressure sensor includes an upper and lower pressure sensors disposed back to back, the outer circumference of the lower pressure sensor is provided with an elastic gas, and the pulse information of the human body includes a pulse instantaneous waveform of the artery position;
  • the pressure acquiring module Specifically, the upper pressure of the output of the upper pressure sensor and the lower pressure of the output of the lower pressure sensor during the increase and/or decrease of the grip pressure are synchronously acquired, and continuous upper and lower pressure signals are obtained;
  • the pulse information calculation module is specifically configured to acquire a difference or a ratio between the lower pressure signal and the upper pressure signal as a pulse instantaneous waveform of the artery position.
  • the pulse information of the human body includes a human systolic pressure and a diastolic pressure; and the pulse information calculation module is further configured to calculate a systolic pressure and a diastolic pressure of the artery position according to a difference or a ratio between the lower pressure signal and the upper pressure signal.
  • the pulse information calculation module is specifically configured to acquire two of the difference between the lower pressure signal and the upper pressure signal in the process of increasing and/or decreasing the hand pressing pressure, which is closest to 0 or the ratio is closest to 1.
  • the two upper pressure values corresponding to the time, the larger of the two upper pressure values is taken as the systolic blood pressure of the arterial position, and the smaller is worth the diastolic pressure of the arterial position.
  • the pressure sensor includes at least two lower pressure sensors disposed at intervals in the outer circumference of the lower elastic air, and the pressure acquiring module is further configured to synchronously acquire the The two lower pressure sensors respectively detect the pressures of the different arterial positions through the outer elastic air pockets of the outer circumference, and obtain a continuous pulse pressure signal including at least one pulse period outputted by each of the lower pressure sensors; Also included is an attenuation calculation module and a blood pressure conversion module, the attenuation calculation module is configured to output a difference between peaks or valleys of pulse pressure signals according to any two of the lower pressure sensors, and any two of the lower pressure sensors Calculating an attenuation relationship between the positional blood pressure of the artery and the distance between the artery and the heart according to the distance between the positions of the arteries; the blood pressure conversion module is configured to reduce the contraction of the corresponding artery position obtained by the module according to the attenuation relationship and the pulse information calculation module Compression and diastolic pressure, the systolic and diastolic blood
  • the pressure sensor comprises three lower pressure sensors which are respectively disposed on the outer circumference and are provided with a lower elastic air and are arranged at intervals.
  • the three lower sensors respectively press the lower elastic air sleeve of the outer circumference to press the user's inch, off,
  • the body pulse information includes human body pulse information;
  • the processor includes a pressure acquisition module and a pulse information calculation module; and the pressure acquisition module is configured to receive a manual pressure pressing process at the pulse information detecting device
  • the pressure detected by the three lower pressure sensors is synchronously acquired; the pulse information calculation module is configured to perform pulse image analysis according to the pressures detected by the three lower pressure sensors to obtain pulse information.
  • the pressure acquiring module is specifically configured to synchronously acquire the pressures of the three lower pressure sensors detecting the position of the corresponding artery of the left wrist when the pressure is applied by the hand, and obtain three consecutive lower left pressure signals, and acquire the three synchronously.
  • the lower pressure sensor detects the pressure of the corresponding artery position of the right wrist when the pressure is applied by the hand, and obtains three consecutive lower right pressure signals;
  • the pulse information calculation module is specifically configured to use the three lower left pressure signals and three right
  • the down-pressure signal is subjected to pulse analysis to obtain pulse information.
  • the pressure sensor is a silicon piezoresistive sensor or a thin film piezoresistive sensor.
  • the outer circumference of the elastic gas chamber is convex hemispherical shape, and the elastic gas material is made of rubber.
  • the pulse detection device further includes at least one of a display, an operation key, a voice prompt module, a communication module, and an I/O interface, wherein the display is electrically connected to the processor for displaying the pulse Detecting information about the device; the operation key is electrically connected to the processor, and is used for inputting a control command; the voice prompting module is electrically connected to the processor, and is used to give an operation process of the pulse detecting device And a voice prompt of the test result; the communication module is electrically connected to the processor, configured to input personal information of the user and send the detection information of the user, to implement a communication connection between the pulse detecting device and the external mobile terminal; The I/O interface is electrically coupled to the processor for causing the pulse detection device to be wired to the external mobile terminal or to charge the pulse detection device.
  • the communication module is a Bluetooth module, a wireless network module or an NFC near field communication module.
  • an embodiment of the present invention provides a smart wristband, comprising a pulse information detecting device fixed on a wristband, the pulse information detecting device comprising: a pressure sensor, and a sleeve disposed on an outer circumference of the pressure sensor Elastic air, the pressure sensor presses the elastic gas pocket of the outer circumference to press the artery position of the user's limb when receiving the user's hand pressing pressure; the processor is electrically connected to the pressure sensor; The pressure detected by the pressure sensor calculates the pulse information of the human body.
  • the wristband is a rubber band loop, a wristband in the form of an elastic fiber tape, a metal bracelet or a leather strap.
  • the smart wristband further includes a function expanding device, and the function expanding device is fixed on the wristband, wherein the function expanding device is an hour hand watch dial, a smart watch dial, a wireless MP3, a power source, and a small communication device.
  • the function expanding device is an hour hand watch dial, a smart watch dial, a wireless MP3, a power source, and a small communication device.
  • One or more of the functions of the function expansion device and the wristband are bundled, snapped or hinged.
  • the pulse detecting device fixes the wristband in a detachable manner
  • the fixed position of the pulse detecting device on the wristband includes a left-hand fixed position adapted to the left wrist inch and a right fit The right hand position of the wrist inch is fixed.
  • an embodiment of the present invention provides a smart watch, including a dial, a watchband, and a time display device.
  • the time display device is fixed on the dial, and the dial is fixed on the strap.
  • the device includes: a pulse information detecting device fixed on the watchband, the pulse information detecting device comprising: a pressure sensor, and an elastic gas sleeve sleeved on an outer circumference of the pressure sensor, the pressure sensor receiving the user's hand pressing pressure Extrusion of the arterial position of the user's limb by the elastic gas sheath of the outer circumference; a processor electrically connected to the pressure sensor; the processor detecting the pressure according to the pressure sensor.
  • an embodiment of the present invention provides a communication system, where the communication system includes a pulse information detecting device and a terminal, and the pulse information detecting device includes: a pressure sensor, and an elasticity that is sleeved around the periphery of the pressure sensor.
  • the pressure sensor presses the elastic gas pocket of the outer circumference to press the artery position of the user's limb when receiving the user's hand pressing pressure;
  • the processor is electrically connected with the pressure sensor; the processor is according to the pressure
  • the pressure information detected by the sensor is used to calculate the body pulse information;
  • the pulse information detecting device further includes a first communication module, the terminal includes a second communication module, and the first and second communication modules can be connected to each other. The communication between the pulse information detecting device and the terminal is described.
  • the present invention adopts a hand-held measuring method, which does not need to provide an air-filling air pump and an air pump, greatly reduces the volume and weight, makes the detecting device light, and the present embodiment passes the peripheral device.
  • Elastic gas is used to obtain accurate pressure signals, so you can get accurate blood pressure values without spending too much time.
  • FIG. 1 is a schematic structural view of a first embodiment of a pulse information detecting apparatus of the present application
  • Figure 2 is a schematic view showing the operation of the pulse information detecting device in the embodiment shown in Figure 1;
  • FIG. 3 is a schematic structural diagram of a processor in the embodiment shown in FIG. 1;
  • Figure 4 is a waveform diagram showing the pressure sensed by the pressure sensor during the pressing process of the embodiment shown in Figure 1;
  • FIG. 5 is a schematic view showing the waveform of the processed pressure outputted by the pressure sensor in the pressing force reduction process in the embodiment shown in Figure 1;
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a pulse information detecting apparatus of the present application
  • 7 is a schematic structural diagram of Embodiment 4 of a pulse information detecting apparatus of the present application
  • Embodiment 8 is a schematic structural diagram of Embodiment 5 of a pulse information detecting apparatus of the present application.
  • Embodiment 6 of a pulse information detecting apparatus of the present application.
  • Embodiment 10 is a flowchart of Embodiment 1 of a pulse information measuring method of the present application.
  • Embodiment 11 is a flowchart of Embodiment 2 of a pulse information measurement method of the present application.
  • Embodiment 13 is a flowchart of Embodiment 4 of a pulse information measurement method of the present application.
  • FIG. 14 is a schematic perspective structural view of a first embodiment of the smart wristband of the present application.
  • FIG. 15 is a schematic perspective structural view of a second embodiment of the smart wristband of the present application.
  • Embodiment 16 is a schematic structural diagram of Embodiment 1 of a communication system according to the present application.
  • FIG. 17 is a schematic structural diagram of Embodiment 2 of a communication system according to the present application.
  • Pulse signal detecting device embodiment 1 Pulse signal detecting device embodiment 1:
  • FIG. 1 is a schematic structural view of a first embodiment of the pulse information detecting apparatus of the present application
  • FIG. 2 is a schematic diagram of the operation of the pulse information detecting apparatus of the embodiment shown in FIG. 1
  • FIG. 4 is a schematic diagram showing the waveform of the pressure sensed by the pressure sensor during the pressing process of the embodiment shown in FIG. 1.
  • FIG. 5 is a diagram showing the pressure sensor in the embodiment shown in FIG. Schematic diagram of the processed pressure waveform output during the process.
  • the pulse information detecting device 100 includes a pressure sensor 110, an elastic chamber 111 that is sleeved with the outer circumference of the pressure sensor 110, and a processor 120.
  • the elastic balloon 111 is used to at least partially contact the position of the artery of the human limb.
  • the elastic gas ⁇ 111 is squeezed by the artery, it is elastically deformed, causing gas pressure in its confined space to occur.
  • the pressure sensor 110 indirectly measures the pressure at the location of the artery by sensing the value of the gas pressure.
  • the elastic gas cylinder 111 has a convex hemispherical shape so as to be in good contact with the arterial position of the human wrist.
  • the shape of the elastic gas diaphragm 111 is not limited thereto, and can function well with the human wrist artery. Contact can be used.
  • the elastic gas cylinder 111 is made of a soft material such as rubber.
  • the contact area of the elastic air ⁇ 111 and the wrist is 4 , for example, the contact area is 5 to 10 mm circumferential area, preferably 8 mm, and the force of the pressure sensor 110 is only related to the pressure in the elastic gas ⁇ 111, and the elastic gas
  • the position of the surface of the ⁇ m is independent of the force, so it is not sensitive to the measurement of the accuracy of the position of the artery, and is not sensitive to small changes in the measurement posture.
  • the angle is not strictly required. This can reduce the operational requirements for the user while ensuring measurement accuracy.
  • the pulse information detecting device 100 when performing pulse information measurement, the pulse information detecting device 100 is placed on the user's limb as shown in FIG. 2( a ), and the elastic gas ⁇ 111 and the arterial position of the human body (ie, the soft tissue of the human epidermis at the arterial position, For example, the soft tissue of the human epidermis of the radial artery is in contact with each other.
  • the pulse information detecting device 100 is provided with the pressure sensor 110 as the lower side.
  • the pulse information detecting device 100 receives the hand pressing force from the upper side.
  • the pressing force acts on the pressure sensor 110, and the arterial position is pressed by the elastic gas entanglement 111 which is sheathed around the circumference.
  • the pressure sensor 110 is sensitive to the pressure transmitted by the elastic gas velocity 111 to the position of the artery, wherein the pressure is specifically the resultant force of the reaction force of the pressing force and the pulse pressure of the arterial position.
  • the processor 120 calculates the body pulse information, such as the systolic blood pressure and the diastolic pressure of the human body, based on the positional pressure detected by the elastic diaphragm 111 during the hand grip of the pressure sensor 110.
  • the processor 120 in the embodiment includes a pressure acquisition module 121 and a pulse information calculation module 122.
  • the pressure acquiring module 121 is configured to acquire the pressure detected by the pressure sensor when the pulse information detecting device receives the hand pressing pressure, and the pulse information calculating module 122 calculates the human body according to the pressure detected by the pressure sensor. Pulse information.
  • the user holds the pulse information detecting device 100 for a few seconds as shown in FIG. 2, wherein, During the pressing process, the pressure value changes from small to large, and then changes from large to small, so that the blood flow of the user's limb artery is smoothed to blocked, and then blocked to unblocked.
  • the pressure acquiring module 121 repeatedly samples the pressure detected by the pressure sensor 110, and all the pressure values from the sample form a continuous pressure signal.
  • the pressure was equal to the time of systolic pressure and diastolic pressure ( Tl, t2 during pressurization, t3, t4) during depressurization, so the blood pressure value can be calculated from the pressure signal of the pressurization or depressurization process alone, or two groups can be obtained according to the two processes of pressurization and depressurization. Blood pressure values, more accurate blood pressure values from the two groups of blood pressure values.
  • the pulse information calculation module 122 acquires a pressure signal during the increase and/or decrease of the pressing force, and discriminates the systolic blood pressure and the diastolic blood pressure of the measured human body from the pressure signal by using a waveform characteristic method or an amplitude coefficient method.
  • the waveform feature method discriminates blood pressure by recognizing the waveform characteristics of the pressure wave at the systolic pressure and the diastolic pressure.
  • the amplitude coefficient method determines and recognizes the relationship between the amplitude of the systolic pressure, the amplitude of the diastolic pressure and the maximum amplitude. Discriminate blood pressure. Since the systolic blood pressure and the diastolic blood pressure obtained by specifically obtaining the arterial position pressure signal during pressing are prior art, they are not specifically described herein.
  • the inflection point of the envelope of the pressure signal wave (i.e., the point where the second derivative is equal to zero) of the pressure signal outputted by the pressure sensor at the time of pressing corresponds to a representative point of the systolic pressure and the diastolic pressure. Therefore, in the embodiment, the pulse information calculation module 122 obtains the pressure signal according to the process of increasing and/or decreasing the pressure in the hand, and filtering the pressure signal to establish the upper envelope L3 and the baseline L2, respectively.
  • the lower envelope L1 wherein the peak of the periodic pressure signal obtained during the pressing is connected to obtain the upper envelope L3, and the valley connection is obtained to obtain the lower envelope L1.
  • the pulse information calculation module 122 searches for the first inflection point A of the lower envelope and the baseline, and the second inflection point B (the inflection point is the point where the second derivative is equal to zero), wherein the inflection point of the upper envelope is referenced when determining the baseline inflection point, and then
  • the first inflection point A and the second inflection point B respectively correspond to the maximum value of the pressure signal as the systolic blood pressure and the diastolic blood pressure of the arterial position.
  • the pressure sensor uses a higher sensitivity pressure sensor, such as a silicon piezoresistive pressure sensor, and the silicon piezoresistive pressure sensor includes a silicon bridge, a micromechanical structure, an ADC circuit, and a temperature sensing structure. And serial interface, etc., its specific principle and working process are technical people in the field Well known to the staff, and will not be repeated here.
  • the pressure sensor is small in size, for example, it can be less than 9 x 9mm.
  • the pressure sensor can employ a pressure sensor with a smaller installation size to make the overall structure of the pulse information detecting device smaller and more portable, such as a membrane piezoresistive pressure sensor.
  • the mounting size can be less than 6 x 6mm.
  • a pressure sensor having a smaller size can be customized as needed in accordance with an embodiment of the present invention.
  • the present invention adopts a hand-held measuring method, which does not need to provide an air-filling air pump and an air pump, greatly reduces the volume and weight, makes the detecting device light, and the present embodiment passes the peripheral device.
  • the elastic gas cylinder obtains an accurate pressure signal, which requires no time and can get accurate blood pressure in just a few seconds.
  • the pressing force is increased (pressurized) and decreased (depressed) during the hand, the pressing force is equal to the systolic or diastolic pressure, and the present application does not require the air pump to apply air pressure, so the application can select plus One of the processes of pressure or blood pressure measures blood pressure, or both pressure and decompression processes can be used to measure the blood pressure values on both sides, and the blood pressure value is obtained by the average value.
  • Pulse signal detecting device embodiment 2 :
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of the pulse information detecting apparatus of the present application.
  • the pressure sensor in the pulse information detecting device 600 in this embodiment specifically includes an upper pressure sensor 6101 and a lower pressure sensor 6102, and the elastic gas specifically includes a lower elastic gas hopper 6112.
  • the upper pressure sensor 6101 and the lower pressure sensor 6102 are disposed opposite to each other and are electrically connected to the processor 620, respectively.
  • the lower pressure sensor 6102 is provided with a closed lower elastic air enthalpy 6112 on the outer circumference, and an external pressure is detected by the lower elastic air ⁇ 6112.
  • the upper pressure sensor 6101 and the lower pressure sensor 61022 respectively measure the pressure from the hand pressing pressure (referred to as the upper pressure) and the pressure from the artery position (referred to as Down pressure).
  • the pressure at the position of the artery during the pressing of the hand is specifically the combined force of the reaction force of the hand pressing force and the pulse pressure of the arterial position.
  • the pressure acquisition module 621 of the processor 620 synchronously acquires the gripping process during the grip and the grip of the grip
  • the upper pressure of the upper pressure sensor 6101 and the lower pressure output by the lower pressure sensor 6102 during the increase and/or decrease of the force obtain continuous upper and lower pressure signals.
  • the pulse information calculation module 622 of the processor 620 calculates the systolic blood pressure and the diastolic pressure of the arterial position based on the difference or ratio between the lower pressure signal and the upper pressure signal. For example, when the user holds the pulse information detecting device 600, the pressure acquiring module 621 obtains a continuous upper pressure signal and a lower pressure signal by multiple times in the process of increasing the pressing force of the hand.
  • the pulse information calculation module 622 acquires two times (the tl, t2 in FIG. 5) at which the difference between the lower and upper pressure signals is closest to 0 or the ratio is closest to 1 during the increase of the grip pressure.
  • the two upper pressure values the larger of the two upper pressure values as the systolic blood pressure of the arterial position, are less worthy of being the diastolic pressure of the arterial position.
  • the upper and lower pressure sensors can respectively use different types of pressure sensors.
  • the lower pressure sensor uses a silicon piezoresistive sensor. Because of its high sensitivity, a lower elastic gas is disposed on the outside. The pressure value is detected by the change of the internal air pressure of the lower elastic gas, and the upper pressure sensor can use other types of pressure sensors, such as a column pressure sensor, etc., the external can be provided without elastic gas, and the direct sensitive application pressure. Which type of upper and lower pressure sensors are used is not limited here.
  • the pulse information detecting device of this embodiment can accurately measure the blood pressure parameter of the human body by utilizing the mutual correction of the upper and lower pressure sensors while utilizing the property that the elastic gas is insensitive to the position and direction of the force.
  • the processor acquires the difference or ratio between the pressures detected by the upper and lower pressure sensors, directly outputting the difference or the ratio, that is, the pulse instantaneous waveform of the artery position, to the display. Or sent to a terminal capable of communicating with the pulse information detecting device for the user or the terminal to compare, analyze and evaluate the pulse waveform of the arterial position.
  • the pulse information detecting device in this embodiment may further include an upper elastic air jacket disposed on an outer circumference of the upper pressure sensor, and the upper pressure sensor is sealed in the upper elastic air chamber.
  • the material and structure of the elastic gas and the matching principle with the upper pressure sensor are the same as those of the lower elastic gas, and will not be described in detail here.
  • the elastic coefficient of the upper elastic gas can be larger than the elastic coefficient of the lower elastic gas.
  • the difference is 20-50 times, so that the dynamic response of the upper elastic pressure sensor with the elastic coefficient of the upper elastic sleeve is lower than that of the lower elastic pressure sensor with the lower elastic modulus.
  • the upper and lower pressure sensors are provided with elastic air rafts, which can make the measurement data of the upper pressure sensor more accurate, and also has a good protection effect on the upper pressure sensor.
  • the human body pulse information may also be a pulse instantaneous waveform of the arterial position
  • the pressure sensor in the other pulse information detecting device includes an upper pressure sensor disposed back to back and a lower pressure of the outer elastic sleeve disposed on the outer circumference.
  • the pulse information detecting device obtains the pulse instantaneous waveform of the artery position after the pressure or the ratio of the pressure is detected by the lower and upper pressure sensors during the pressing process.
  • the pulse information detecting device transmitting a pulse instantaneous waveform of the artery position to the mobile terminal, to display a pulse waveform of the artery position to the user through the mobile terminal, and a pulse waveform of the artery or the user to the artery
  • the amplitude, phase, frequency and other information are compared, analyzed and evaluated to obtain the internal state of the artery position. More precisely, the pulse information detecting device can be pressed at different arterial positions to obtain pulse waveforms of different arterial positions, and the movement is performed. Terminal analysis of different arterial locations Stroke waveform parameters such as amplitude, phase, frequency, give the body condition.
  • Embodiment 3 of the pulse information detecting device is
  • the third embodiment is basically the same as the first embodiment or the second embodiment, and the difference is that the processor further includes a proportional calculation module.
  • the pressure acquisition module is also used for the pulse to be placed in the arterial position When the information detecting device does not receive the pressing force of the hand, the pressure detected by the pressure sensor is acquired, and a continuous pulse pressure signal including at least one pulse period is obtained.
  • the ratio calculation module is configured to search for the highest pulse pressure value and the lowest pressure pulse low pressure value from the pulse pressure signal, and calculate a proportional relationship between the pulse high pressure value and the pulse low pressure value, as the human systolic blood pressure and the diastolic blood pressure. ratio. .
  • the pulse information calculation module calculates a systolic blood pressure or a diastolic blood pressure of the artery position according to the pressure signal obtained during the pressing force increase and/or decrease d, and according to the proportional relationship between the human body systolic pressure and the diastolic blood pressure Calculate the corresponding diastolic or systolic pressure.
  • the manner in which the pulse information calculation module specifically obtains the systolic or diastolic pressure of the pulsation position is as described in the above embodiment, and is not described herein. Pulse signal detecting device embodiment four:
  • FIG. 7 is a schematic structural diagram of Embodiment 4 of the pulse information detecting apparatus of the present application.
  • the pressure sensor in the pulse information detecting device includes at least two lower pressure sensors 7102 disposed at intervals, and at least two lower elastic air pockets respectively disposed on outer circumferences of the at least two lower pressure sensors 7102.
  • a processor 720 Specifically, the at least two lower pressure sensors 7102 are spaced apart and respectively correspond to different arterial positions of the human limb, and the lower pressure sensors 6102 are mutually independent.
  • the lower pressure sensor 7102 is disposed on the circuit board, and in order to ensure the independence of the pressure sensor, a dividing line is formed between adjacent pressure sensors on the circuit board.
  • Processor 720 also includes an attenuation calculation module 724 and a blood pressure conversion module 725.
  • the pressure acquiring module 721 is configured to detect, when the pulse information detecting device does not receive the pressing pressure of the hand, the at least two lower pressure sensors 7102 of the synchronous acquisition interval respectively detect the pressures of the different arterial positions by the elastic gas entangled by the outer circumference, A continuous pulse pressure signal including at least one pulse period output by each of the lower pressure sensors 7102 is obtained.
  • the attenuation calculation module 724 is configured to calculate an artery according to a difference between peaks or valleys of pulse pressure signals output by any two of the lower pressure sensors 7102 and a distance between the corresponding arterial positions of the any two lower pressure sensors 7102.
  • the positional blood pressure is related to the attenuation relationship between the position of the artery and the distance between the hearts.
  • the attenuation calculation module 724 obtains the difference between the peak values of the pulse pressure signals output by the two pressure sensors 7102 or the difference between the valley values, and calculates the pulse blood pressure according to the distance L between the corresponding pulse positions of the two pressure sensors 7102.
  • the attenuation relationship between the pulse position and the distance between the hearts is.
  • the pulse information calculation module 722 is configured to obtain, according to any one of the pressure sensors 7102, a pressure signal outputted during the pressing of the pressure information detecting device by the pulse information detecting device and the pressure increasing and/or decreasing process. Systolic and diastolic blood pressure at the site of the artery.
  • the blood pressure conversion module 725 is configured to obtain systolic blood pressure and diastolic blood pressure of the heart based on the attenuation relationship, the systolic blood pressure and the diastolic blood pressure of the corresponding arterial position.
  • FIG. 8 is a schematic structural diagram of Embodiment 5 of the pulse information detecting apparatus of the present application.
  • the pressure sensor in the pulse information detecting device specifically includes a first lower pressure sensor, a second lower pressure sensor, and a third lower pressure sensor, and a total of three lower pressure sensors 8102
  • the elastic gas includes the first elastic gas. ⁇ , the second lower elastic gas ⁇ , the third lower elastic gas ⁇ a total of three elastic gas ⁇ 8112.
  • the first, second, and third lower pressure sensors 8102 are spaced apart and respectively correspond to the three pulse positions of the inch, the off, and the foot of the human body pulse, and the three pressure sensors are independent of each other.
  • the processor 820 is electrically coupled to the first, second, and third pressure sensors, respectively, and performs pulse analysis based on the pressures measured by the first, second, and third lower pressure sensors 8102.
  • the processor 820 specifically includes a pressure acquisition module 826 and a pulse information calculation module.
  • the pulse information detecting device is sleeved on the left wrist of the human body, so that the three lower elastic air bubbles are respectively in contact with the inch, the off, and the pulse position of the left wrist of the human body, and the pulse information detecting device is pressed by the user's hand.
  • the three lower pressure sensors are sensitive to the pulse force of the inch, off, and ulnar position of the left wrist.
  • the pressure acquiring module 826 synchronously acquires the pressures of the first, second, and third pressure sensors respectively detecting the left wrist, the closing, and the pulse position of the user, and obtains that the first pressure sensor detects the left wrist during the receiving pressing pressure.
  • the pulse information detecting device is sleeved on the right wrist, and the pressure acquiring module 826 synchronously acquires the first, second, and third pressures while the pulse information detecting device is worn on the right wrist and receives the pressing force of the hand.
  • the sensor detects the pressure of the user's right wrist, the off, and the pulse position respectively, and obtains a continuous first right lower pressure signal, a second right lower pressure signal, and a third right lower pressure signal.
  • the pulse information calculation module 827 calculates a first average pressure signal of the first, second, and third lower left pressure signals, a second average pressure signal of the first, second, and third lower right pressure signals, and the first a third, third lower left, first, second, third lower right pressure signal, a third average pressure signal, the first, second, third lower left, first, second, third right lower pressure signals,
  • the first, second, and third average pressure signals are respectively proportional to the values obtained by processing each of the other downforce signals, and 36 combined relative pulse pressure signals are obtained.
  • the pulse information calculation module 827 performs intelligent comparison on the further data analysis, identification and classification of the pulse data of the 36 combined relative pulse pressure signals, and obtains 16 or 28 kinds of pulse signals, which is convenient for making TCM pulse diagnosis and wrist wear.
  • the physical condition makes pulse diagnosis results and disposal suggestions, and even provides a continuous, long-term, tracking form of cloud services.
  • the present application innovatively uses three pressure sensors to obtain different pulse images by analyzing pulse curves of different combinations, which is easier than the existing pulse measuring instrument, and uses a relative value algorithm to make the measured results opponents.
  • the difference in the method of holding the pressure, and the pressure disturbance in the measurement Insensitive, the differences and perturbations can be offset or homogenized by the numerator and denominator of the relative data.
  • the wrist wraps of this application are simple, time-consuming, lightweight and accurate in measurement, superior to traditional inflatable cuffs or wristbands.
  • Pulse information detecting device embodiment six the above embodiments may be combined according to functional requirements. Pulse information detecting device embodiment six:
  • FIG. 9 is a schematic structural diagram of Embodiment 6 of the pulse information detecting apparatus of the present application.
  • the pulse information detecting apparatus 900 may further include a display 940, an operation key 950, a voice prompt module 960, a communication module 970, an I/O interface 980, and a housing 990 each connected to the processor 920.
  • the processor 920 and the pressure sensor 910 are fixedly disposed inside the housing 990, and the elastic air bubbles protrude from the lower surface of the housing 990, respectively, so that the elastic air can contact the position of the artery of the human body during the pressing process. , such as the position of the radial artery of the wrist.
  • a display 940 is provided on the upper surface of the housing 990 for displaying related data information, preferably a liquid crystal or LED screen as the display 940.
  • the operation key 950 is disposed on the side or the upper surface of the housing 990 for inputting the relevant operation control command to the pulse information detecting device.
  • the number of the operation keys 950 may be one or more, and the setting position is not limited.
  • the number and setting positions of the operation keys 950 are not limited herein.
  • the voice prompt module 960 such as a speaker, can issue a voice prompt for the operation process and test results, which is convenient for the user to use and enhance the human-machine communication experience.
  • the communication module 970 is preferably in the form of wireless communication, specifically a Bluetooth module, a wireless network module or an NFC near field communication module.
  • the communication module 970 can also use wired communication, such as through a USB interface or an Ethernet interface and an external terminal. Communication.
  • the communication module 970 can also be provided with a unique device identification (ID) number, the user can set the personal account by entering the personal information, and the communication module 970 can compare the corresponding ID number and the data information measured by the pulse information detecting device. Send to far On the server or mobile terminal, to further analyze and store the data.
  • the form of entering the personal information may be inputting the user's name or inputting the user's fingerprint through the fingerprint identification device.
  • the I/O interface 980 is mainly used for wired connection between the pulse information detecting device and an external device, for example, can be connected to a computer through a USB interface for data transmission, charging a pulse information detecting device through a charging interface, etc., Within the understanding of personnel, it will not be detailed here.
  • the pulse information detecting device may also include only one or more of a display, an operation key, a voice prompt module, a communication module, an I/O interface, and a housing.
  • Embodiment 1 of the pulse information measuring method :
  • FIG. 10 is a flowchart of Embodiment 1 of a pulse information measurement method of the present application.
  • the pulse information detecting device in the present embodiment is the pulse information detecting device as described in the above embodiment, and will not be described herein.
  • the pulse information measurement method includes the following steps:
  • Step S1001 The pulse information detecting device worn on the limb of the user receives the pressing force of the user's hand, and the pressure sensor of the pulse information detecting device presses the position of the limb artery of the user through the elastic gas entangled in the outer circumference.
  • the user wears the pulse information detecting device on the limb of the user, and causes the elastic gas of the pulse information detecting device to at least partially touch the position of the artery of the wrist, and the hand presses the pulse information detecting device for several seconds, such as 4 to 10. Seconds, preferably 6 seconds.
  • Seconds preferably 6 seconds.
  • Step S1002 The pressure sensor continuously detects the pressure of the user's limb artery position.
  • Step S1003 The processor of the pulse information detecting device calculates the body pulse information according to the pressure detected by the pressure sensor.
  • the processor compresses the pressure output from the pressure sensor multiple times to form a continuous pressure signal from all the pressure values (as shown in Figure 3). Since the blood flow at the arterial position experienced a smooth flow to block, and then from block to smooth during the whole process of pressing, during the pressure increase and decrease, the pressure was equal to the time of systolic pressure and diastolic pressure ( Tl, t2 during pressurization, t3, t4) during depressurization, so the blood pressure value can be calculated from the pressure signal of the pressurization or depressurization process alone, or two groups can be obtained according to the two processes of pressurization and depressurization. Blood pressure values, more accurate blood pressure values from the two groups of blood pressure values.
  • the processor obtains a pressure signal during the increase and/or decrease of the pressing force, and uses the waveform characteristic method or the amplitude coefficient method to discriminate the systolic pressure and the diastolic pressure of the measured human body from the pressure signal.
  • the specific method for the processor to determine the blood pressure value according to the pressure signal is: the processor acquires the pressure signal obtained during the pressing increase or decrease, according to the pressurization or depressurization process
  • the waveforms of the obtained pressure signals respectively establish an upper envelope, a baseline and a lower envelope; the processor finds a first inflection point and a second inflection point of the lower envelope and the baseline, and the first inflection point corresponds to the pressure signal
  • the maximum value is used as the arterial position systolic pressure, and the maximum value of the second inflection point corresponding to the pressure signal is taken as the arterial position diastolic pressure.
  • the processor then converts the measured blood pressure value to the high and low blood pressure values of the heart based on the blood pressure ratio between the heart and the arterial position. Since the blood pressure conversion between the wrist and the heart is common knowledge in the art, it will not be specifically described, and in the following embodiment, after obtaining the high and low blood values measured at the arterial position, the conversion to the high and low blood pressure values at the heart is performed by default. step.
  • ms milliseconds
  • 6s the time of the hand pressure
  • a sample of data greatly improves the accuracy of each heartbeat signal, so that only the 3 to 6 heartbeat signals can be used to accurately calculate the actual heartbeat cycle or blood pressure. It can be seen that the measurement consumption of the application 6s
  • the second embodiment is a few hundred seconds shorter than the conventional method, and the second embodiment of the t pulse information measurement method is shortened:
  • FIG. 11 is a flowchart of Embodiment 2 of the pulse information measurement method of the present application.
  • the pulse information detecting apparatus of this embodiment is specifically the pulse information detecting apparatus described in the above embodiments, and can be used for measuring human body parameters such as pulse and blood pressure.
  • the specific structure is as described above, and will not be described herein.
  • the pulse information measurement method includes the following steps:
  • Step S1101 The pulse information detecting device worn on the user's limb receives the user's hand pressing pressure, wherein the pulse information detecting device is provided with a back-to-back upper pressure sensor and a lower pressure sensor with a lower elastic air pocket on the outer circumference.
  • the pressure sensor described above compresses the position of the artery of the human limb through the outer elastic air sleeving.
  • the measurer at least partially contacts the lower elastic gas of the pulse information detecting device with the pulse position of the wrist to ensure that the lower pressure sensor can sense the pressure generated at the artery through the lower elastic gas, and the other hand Press the upper pressure sensor for a few seconds, such as 4 to 10 seconds, preferably 6 seconds.
  • the change in the upper pressure generated by the pressing of the other hand from loose to tight, the blood flow of the wrist artery is from smooth to blocked, then the pressure is tightened and then released, and the blood flow of the wrist artery is blocked from smooth to smooth. , to ensure that the measurer's high and low blood pressure values can be measured.
  • the lower pressure sensor compresses the position of the artery of the human limb by the lower elastic air jacket that is sheathed around the outer circumference, so that the artery generates a downward pressure when pressed.
  • Step S1102 The upper pressure sensor detects the pressing force of the opponent, and the lower pressure sensor detects the pressure of the artery position by the lower elastic air.
  • the upper and lower pressure sensors are respectively sensitive to an upper pressure from a hand pressing and a lower pressure at the artery during pressing, wherein the lower pressure is a resultant force of the upper pressure reaction force and the pulse pressure.
  • Step S1103 The pulse information detecting device synchronously acquires the upper pressure of the upper pressure sensor output and the lower pressure of the lower pressure sensor output during the increase and/or decrease of the grip pressure, and obtains continuous upper and lower Pressure signal.
  • Step S1104 The pulse information detecting device is based on the difference between the down pressure signal and the upper pressure signal Or the ratio calculates the systolic and diastolic pressures of the arterial position.
  • the blood flow of the wrist artery is from The smooth flow becomes blocked.
  • the blood pressure is 0, that is, the lower pressure sensor senses that the pulse pressure is 0; when the pressure of the hand grip is gradually reduced from large to systolic pressure, the blood flow of the wrist artery is blocked again.
  • the lower pressure sensor senses that the pulse pressure is also 0.
  • the processor acquires two moments when the difference between the lower pressure signal and the upper pressure signal is closest to 0 or the ratio is closest to 1 during the increase and/or decrease of the grip pressure.
  • the larger of the two upper pressure values is taken as the systolic blood pressure of the arterial position, and the smaller is worth the tension of the arterial position.
  • the pulse information detecting apparatus of the embodiment may further obtain the period of the difference or the ratio signal during the grip pressing, or is not pressed. It is the period of the pulse pressure signal detected by the lower pressure sensor as a heartbeat period, wherein the average heart rate is obtained by performing a reciprocal processing on the heartbeat period.
  • the method of the foregoing embodiment may further include:
  • the pulse information detecting means acquires the pressure detected by the lower pressure sensor when the pulse information detecting means does not receive the grip pressure, and obtains a continuous pulse pressure signal including at least one pulse period.
  • the pulse information detecting device searches for the highest pulse pressure value and the lowest pressure pulse low voltage value from the pulse pressure signal, and calculates a proportional relationship between the pulse high voltage value and the pulse low pressure value as a ratio of human systolic blood pressure and diastolic blood pressure. relationship.
  • the pulse information detecting means calculates the systolic blood pressure or diastolic blood pressure of the arterial position based on the pressure signal obtained during the pressing force increase and/or decrease as in the above embodiment mode.
  • the pulse information detecting device calculates a corresponding diastolic blood pressure or systolic blood pressure based on a proportional relationship between the human systolic blood pressure and the diastolic blood pressure.
  • Embodiment 3 of pulse information measurement method :
  • FIG. 12 is a flowchart of Embodiment 3 of a pulse information measurement method according to the present application.
  • the pulse information detecting device in the present embodiment is the pulse information detecting device as described in the above embodiment, and will not be described herein.
  • the method for measuring the pulse information is basically the same as the steps of the first embodiment and the second embodiment. The difference is that the method further includes the following steps:
  • Step S1201 When the hand pressing pressure is not received, the pulse information detecting device synchronously acquires the pressure of the at least two lower pressure sensors respectively detecting the position of the different arterials through the lower elastic air entanglement of the outer circumference, and obtains each of the A continuous pulse pressure signal including at least one pulse period of the pressure sensor output is described.
  • the pulse information detecting device is provided with at least two lower pressure sensors at intervals, wherein the outer circumferences of the at least two lower pressure sensors are respectively sleeved with a lower elastic gas, and the at least two lower pressure sensors respectively pass the lower elastic gas ⁇ Detects pulse pressure at different arterial locations in the human limb.
  • Step S1202 The pulse information detecting device calculates the artery position according to the difference between the peak values or valleys of the pulse pressure signals output by any two of the lower pressure sensors and the distance between the arterial positions of the arbitrary two lower pressure sensors. The relationship between blood pressure and the attenuation of the distance between the artery and the heart.
  • Step S1203 The pulse information detecting means calculates the systolic blood pressure and the diastolic pressure of the corresponding arterial position of the pressure sensor according to the pressure outputted by the lower pressure sensor during the process of receiving the hand pressing pressure.
  • the specific method of the blood pressure value calculated by the pulse information detecting means based on the pressure outputted by the pressure sensor during the pressing process is as described in the above embodiment, and will not be repeatedly described herein.
  • Step S1204 The pulse information detecting means obtains the systolic blood pressure and the diastolic blood pressure of the heart based on the attenuation relationship, the contraction pressure and the diastolic pressure of the corresponding arterial position.
  • the arterial position blood pressure is obtained, and the fixed preset value is converted into the blood pressure value of the heart.
  • the pulse pressure signal is acquired when the pressure is not received, thereby dynamically calculating the blood pressure of the artery at the heart.
  • the attenuation relationship can flexibly derive the attenuation relationship between the position of each human artery and the blood pressure of the heart, making the measurement result more accurate.
  • FIG. 13 is a flowchart of Embodiment 4 of the pulse information measurement method of the present application.
  • the pulse information detecting device in the present embodiment is the pulse information detecting device as described in the above embodiment, and will not be described herein.
  • the method includes the following steps:
  • Step S1301 The pulse information detecting device worn on the user's limb receives an external pressing force, and the pressure sensor includes a first, a second, and a third lower pressure sensor disposed at intervals, and a total of three lower pressure sensors, the first and the third Second, the third lower pressure sensor is provided with elastic air slings on the outer circumference, and the three elastic artery positions of the left wrist, the closed and the ulnar are squeezed by the elastic air sputum.
  • Step S1302 The three lower pressure sensors respectively detect the pressures of the three arterial positions of the user's limbs, inches, and feet.
  • Step S1303 The pulse information detecting device performs pulse image analysis based on the pressures detected by the three down pressure sensors to obtain human body pulse information.
  • the user separately obtains the pressures of the three arterial positions of the inch, the off, and the foot detected by the three lower pressure sensors when the pulse information detecting device wears the left and right wrists and receives the external pressure.
  • the pressure of the three arterial positions of the inch, the off, and the foot when wearing the left wrist is the three lower left pressure signals
  • the pressures of the three arterial positions of the inch, the off, and the foot when wearing the right wrist are the three right lower pressure signals.
  • the pulse information detecting means performs pulse analysis based on the three lower left pressure signals and the three right lower pressure signals to obtain pulse information.
  • the processor obtains 36 combined combined pulse pressure signals according to different ratio signals by three lower left pressure signals and three lower right pressure signals, and further data of 36 combined relative pulse pressure signals. Analyze, identify, and classify the type of pulse data, perform intelligent comparisons, and obtain 16 or 28 pulse types.
  • Smart wristband embodiment 1 :
  • FIG. 14 is a perspective view of a first embodiment of a smart wristband according to the present application.
  • the smart wristband includes a wristband 1410 and a pulse information detecting device 1420, wherein the pulse information detecting device 1420 is the pulse information detecting device in the above embodiment, and the pulse information detecting device 1420 is fixed to the wrist band 1410, and the elastic gas trap 1421 of the pulse information detecting device 1420 protrudes from the inner side of the wrist band 1410.
  • the wristband 1410 is a rubber band, and the wristband 1410 and the pulse information detecting device 1420 can be bundled, snapped or connected.
  • the smart wristband further includes a function expanding device 1430, which may be one or more of an hour hand watch dial, a smart watch dial, a wireless MP3, a backup power source, and a small communication device, so that the smart wristband is It can be used to detect body pulse and blood pressure parameters, as well as a variety of other functions.
  • a function expanding device 1430 may be one or more of an hour hand watch dial, a smart watch dial, a wireless MP3, a backup power source, and a small communication device, so that the smart wristband is It can be used to detect body pulse and blood pressure parameters, as well as a variety of other functions.
  • a corresponding card slot or fixing mechanism for the other extended peripherals such as the receiving function expansion device 1430 is reserved on the wristband, so that the user can personally install the favorite extended peripherals as needed to realize the corresponding additional functions.
  • the card slot or the fixing mechanism may further be provided with electrode terminals for communication and for supplying power, and the electrode terminals are connected to a pressure sensor, a processor, and the like in the pulse information detecting device 1420, and the peripheral device is extended ( Including the pulse information detecting device, the electrode terminals for communication or power supply are respectively provided at corresponding positions, and the electrode terminals of the peripheral device and the wrist strap 1410 are extended when the extended peripheral device is fixed to the card slot or the fixing mechanism on the wristband 1.
  • the electrode terminals are electrically connected to enable communication between the extended peripheral and the smart wristband, and to power the smart wristband with a battery in the extended peripheral, or to power the extended peripheral with a battery in the smart wristband.
  • the end or connection of the wrist strap 1410 can be provided in the form of a USB or other connection terminal to facilitate the charging of the extended peripheral (including the pulse information detecting device) or the implementation of the extended peripheral (including the pulse information detecting device) by the wrist strap 1410. Physical connection to other devices.
  • FIG. 15 is a schematic perspective structural view of a second embodiment of the smart wristband of the present application.
  • This embodiment is basically the same as the structure of the first embodiment except that the wristband 1510 is a wristband in the form of an elastic fiber tape, and the pulse information detecting device 1520 is fixed to the wristband 1510.
  • the wristband of the smart wristband of the present application may also be a metal bracelet or a leather strap or the like, which is not limited herein.
  • the wristband of the smart wristband of the present application may be configured to be wirelessly charged, and the wristband is electrically connected to the pulse information detecting device. If there is a coil in the wristband, wireless charging is performed by electromagnetic induction and an external power source, and the radio energy can be transmitted to the pulse information detecting device.
  • the invention also discloses a smart watch, which comprises a dial, a watchband and a time display device, the time display device is fixed on the dial, the dial is fixed on the watchband, and the smart watch Further, the pulse information detecting device described in the above embodiment is provided, and the smart watch is provided with a pulse analysis function.
  • a smart watch which comprises a dial, a watchband and a time display device, the time display device is fixed on the dial, the dial is fixed on the watchband, and the smart watch Further, the pulse information detecting device described in the above embodiment is provided, and the smart watch is provided with a pulse analysis function.
  • Communication system embodiment 1 refer to the above-described embodiment of the pulse information detecting device, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 1 of a communication system according to the present application.
  • the communication system includes the pulse information detecting device 1610 and the terminal 1620 described in the above embodiment, the pulse information detecting device 1610 includes a first communication module 1611, and the terminal includes a second communication module 1621.
  • the first communication module 1611 and the second communication module 1621 can implement wired or wireless communication, and send related information of the pulse information detecting device to the terminal for performing depth analysis and long-term preservation of the user pulse data.
  • the first communication module 1611 is configured to communicate with the second communication module 1621 in the terminal 1620 according to the instruction of the processor in the pulse information detecting device 1610 to implement information interaction between the pulse information detecting device 1610 and the terminal 1620.
  • the second communication module 1621 is configured to communicate with the first communication module 1611 according to an instruction of the terminal 1620.
  • the first communication module 1611 and the second communication module 1621 may be Bluetooth, infrared, wifi, or wired communication modules, which are not limited herein.
  • the first communication module 1611 may be directly fixedly disposed inside or on the surface of the pulse information detecting device 1610, or the first communication module 1611 may be detachably disposed on the pulse information detecting device 1610, for example, the first communication module 1611 is inserted.
  • An interface such as a USB interface is provided on the pulse information detecting device 1610.
  • the first communication module 1611 is the communication circuit of the pulse information detecting device of the above embodiment.
  • the pulse information detecting device 1610 and the terminal 1620 are connected by the first communication module 1611 and the second communication module 1621.
  • the pulse information detecting device 1610 is provided with a unique identification number, and the measurer uses the pulse information detecting device 1610 to perform measurement to obtain measurement results such as a pulse pressure curve, an average heart rate, high and low blood pressure (systolic and diastolic blood pressure), and a human body parameter such as a pulse. And when measuring the time and the tester's name, the processor of the pulse information detecting device 1510 actively or when receiving the input command of the measurer, according to the communication protocol with the first and second communication modules, the measurement result and the identity
  • the identification number packs and controls the first communication module 1611 to transmit the data packet to the second communication module 1621 of the terminal 1620.
  • the second communication module 1621 of the terminal 1620 parses the data packet to obtain a measurement result and an identification number of the wrist device that sends the measurement result.
  • the terminal 1620 identifies the identity identification number. If it is determined that the identity identification number information is not stored in the local database, the file of the identity identification number is created, and the measurement result is stored in the file; if it is determined that the local database has been established, The file of the identification number directly stores the measurement result in the file of the identification number.
  • the terminal 1620 can also be used to further analyze the data, identify the pulse data, make an evaluation of the physical condition of the measurer, and give corresponding suggestions. Specifically, the terminal 1620 determines the physical condition of the measurer according to the measurer's pulse, blood pressure data, pulse image through locally stored pathological feature data, or through the Internet to perform related pathological feature search, and searches for a related treatment plan, or diet. Suggest. Further, the terminal 1620 is pre-set with a pulse, a blood pressure data reference value, and pulse reference data, and when determining that the pulse, blood pressure or pulse data of the measurer exceeds the reference value, sends a help signal to the preset third party, for example, measuring Relatives or hospitals automatically call for help.
  • the measurer places the pulse information detecting device on the wristband and wears it on the wrist, and raises the pressure sensor correspondingly to the pulse position. Since the pulse information detecting device is a wristband type, the measuring person's wrist can be freely moved after being worn, and does not cause any inconvenience to the measurer.
  • the measurer can select whether to connect with the terminal and select which terminal, such as an IPHONE mobile phone, through the relevant button on the pulse information detecting device. When the measurer selects the connection, the communication function selected by the terminal and the corresponding software has been installed, such as Bluetooth, wifi, etc. and pulse information.
  • the detection device is connected.
  • the terminal forms a communication system with the pulse information detecting device on the wrist.
  • the pulse information detecting device can measure the pulse pressure data, the average heart rate, the blood pressure and the like of the measurer.
  • the pulse information detecting device automatically transmits the measured data to the terminal, and the terminal saves the data, and the current pulse curve, the average heart rate, the blood pressure value, the pulse information, etc. are calculated according to the pulse pressure data to the measurer, and according to the above data Make a diagnosis and search for a treatment plan and display it on the screen.
  • the measurer can clear the current physical condition through the terminal, and can send the data to other terminals through the terminal, such as a computer held by the doctor, a tablet computer, etc., so that the doctor can know the physical condition of the measurer in time.
  • the pulse information detecting device and the terminal form a small communication system, and the transmission of the human body parameters is realized, and the storage of the human body parameters by the terminal facilitates tracking of the measured historical data of the measurer and real-time monitoring of the physical condition of the measurer. .
  • the human body parameters can be analyzed more comprehensively, and the diagnosis and treatment plan can be provided to the measurer to realize the intelligent integration of human body parameter measurement and diagnosis.
  • Embodiment 2 of the communication system :
  • FIG. 17 is a schematic structural diagram of Embodiment 2 of a communication system according to the present application.
  • the communication system includes a pulse information detecting device 1710, a terminal 1720, and a cloud server 1730.
  • the communication mode between the pulse information detecting device 1710 and the terminal 1720 is the same as that of the previous embodiment, and details are not described herein.
  • the terminal 1720 further includes a third communication module 1722 for connecting to the cloud server 1730, for example, through an Ethernet connection.
  • the different pulse information detecting device 1710 enters the Internet through the terminal 1720, and forms a huge real-time cloud service system with the terminal 1720 and the cloud server 1730 through the cloud service software of the Internet server, so as to provide a continuous, long-term, tracking form to the detecting device. Cloud service.
  • the terminal 1720 is configured to be connected only to the pulse information detecting device 1710, and the different pulse information detecting devices 1710 form a cloud service system with the cloud server 1730 through different terminals 1720.
  • different pulse information detecting devices may be connected to the same terminal and form a cloud through the same terminal and server. End service system.
  • the present application performs measurement by hand, without the need to provide an air-filling air pump and air pump, which greatly reduces the volume and weight, and makes the detecting device lighter. Further, since the pulse information detecting device of the present application is light and can be set as a wrist-worn type, real-time detection of the pulse and blood pressure of the human body can be realized, and an intelligent monitoring system is formed by connecting with the terminal or the server, thereby realizing measurement, tracking and diagnosis of the human body parameters. Intelligent integration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明提供了一种脉搏信息测量方法、相关装置和通信系统,其中,所述方法包括以下步骤:佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力,所述脉搏信息检测装置的压力传感器通过外周套设的弹性气囊挤压用户肢体的动脉位置;所述压力传感器对所述动脉位置的压力进行持续检测;所述脉搏信息检测装置根据所述压力传感器检测到的压力计算得到人体脉搏信息。通过上述方式,能够在测量脉搏信息时,无需充气和气泵,实现测量装置的体积和重量的减小和测量耗时的减短。

Description

一种« ^息测量方法、 相关装置和通信系统
【技术领域】
本发明利用压力传感器测量脉搏信息技术领域, 具体是涉及一种脉搏信息 测量方法、 相关装置和通信系统。
【背景技术】
现有测量血压的方法通常是釆用传统的示波法, 这种方法已有 100 多年历 史, 其利用充气袖带或腕带阻断动脉血流, 在慢速放气过程中, 检测血管壁的 振动波, 并找出振动波的包络与振动波的关系, 来估算血压。
然而, 现有的示波法必须釆用充气袖带和内置气泵, 使得测量设备的体积 和重量均较大, 而且该方法需要緩慢放气, 一般需要几百秒, 测量耗时大。
【发明内容】
本发明实施例提供一种脉搏信息测量方法、 相关装置和通信系统, 能够在测量 脉搏信息时, 无需充气和气泵, 实现测量装置的体积和重量的减小和测量耗时 的减短。
为解决上述问题, 本发明实施例提供了一种脉搏信息测量方法, 包括以下步骤: 佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力, 所述脉搏信息检测 装置的压力传感器通过外周套设的弹性气嚢挤压用户肢体的动脉位置; 所述压 力传感器对所述动脉位置的压力进行持续检测; 所述脉搏信息检测装置根据所 述压力传感器检测到的压力计算得到人体脉搏信息。
其中, 所述人体脉搏信息包括人体收缩压和舒张压, 所述佩戴于用户肢体的脉 搏信息检测装置接受用户手握按压力的步骤还包括: 所述手握按压力先由小到 大, 再由大到小, 使得用户肢体动脉的血流由畅通到阻断, 再由阻断到畅通。 其中, 所述根据所述压力传感器检测到的压力计算得到人体脉搏信息的步骤包 括: 在所述手握按压力增大和 /或减小过程中获取压力传感器检测到动脉位置的 压力, 获得连续的压力信号; 根据所述压力信号, 分别建立上包络线、 基线和 下包络线; 查找出所述下包络线和基线的第一拐点和第二拐点, 将所述第一拐 点对应压力信号的最大值作为动脉位置的收缩压, 将所述第二拐点对应压力信 号的最大值作为动脉位置的舒张压。
其中, 所述压力传感器包括背对背设置的上压力传感器和外周套设有下弹性气 嚢的下压力传感器, 所述人体脉搏信息包括所述动脉位置的脉搏瞬时波形; 所 述压力传感器对动脉位置的压力进行持续检测的步骤包括: 所述上压力传感器 对手握按压力进行检测, 所述下压力传感器通过所述下弹性气嚢对所述动脉位 置的压力进行检测; 所述脉搏信息检测装置根据所述压力传感器检测到的压力 计算得到人体脉搏信息的步骤包括: 所述脉搏信息检测装置同步获取在所述手 握按压力增大和 /或减小过程中所述上压力传感器输出的上压力和所述下压力传 感器输出的下压力, 获得连续的上、 下压力信号; 所述脉搏信息检测装置获取 所述下压力信号和上压力信号间的差值或者比值, 作为所述动脉位置的脉搏瞬 时波形。
其中, 所述脉搏信息检测装置获取所述下压力信号和上压力信号间的差值或者 比值, 作为所述动脉位置的脉搏瞬时波形的步骤之后包括: 所述脉搏信息检测 装置根据所述差值或者比值计算动脉位置的收缩压和舒张压。
其中, 所述根据所述差值或者比值计算动脉位置的收缩压和舒张压的步骤具体 包括: 获取在所述手握按压力增大和 /或减小过程中, 所述下压力信号和上压力 信号间的差值最接近 0或者比值最接近 1的两个时刻所对应的两个上压力值; 将所述两个上压力值中的较大值作为动脉位置的收缩压, 较小值得作为动脉位 置的舒张压。
其中, 所述压力传感器包括外周套设有下弹性气嚢的间隔设置的至少两个下压 力传感器, 所述方法还包括: 在未接受手握按压力时, 所述脉搏信息检测装置 同步获取所述至少两个下压力传感器分别通过外周套设的下弹性气嚢检测到不 同动脉位置的压力, 获得每个所述下压力传感器输出的连续的至少包括一个脉 搏周期的脉搏压力信号; 所述脉搏信息检测装置根据任意两个所述下压力传感 器输出脉搏压力信号的峰值之间或谷值之间的差值以及所述任意两个下压力传 感器对应动脉位置之间距离计算得到动脉位置血压随动脉位置与心脏间距离的 衰减关系; 所述根据所述压力传感器检测到的压力计算得到人体脉搏信息的步 骤包括: 根据其中一个所述下压力传感器在接收手握按压力过程中检测到的压 力计算得到人体脉搏信息所述对应动脉位置的收缩压和舒张压, 再根据所述衰 减关系、 所述对应动脉位置的收缩压和舒张压, 得到心脏的收缩压和舒张压。 其中, 所述压力传感器包括三个外周均套设有下弹性气嚢且间隔设置的下压力 传感器, 所述用户肢体的动脉位置包括用户肢体寸、 关、 尺三个动脉位置, 所 述人体脉搏信息包括人体脉象信息, 所述压力传感器对所述动脉位置的压力进 行持续检测的步骤包括: 所述三个下压力传感器分别检测用户肢体寸、 关、 尺 三个动脉位置的压力; 所述脉搏信息检测装置根据所述压力传感器检测到的压 力计算得到人体脉搏信息的步骤包括: 所述脉搏信息检测装置根据三个下压力 传感器检测到的压力进行脉象分析, 得到人体脉象信息。
其中, 所述脉搏信息检测装置根据三个下压力传感器检测到的压力进行脉象分 析, 得到人体脉象信息的步骤包括: 所述脉搏信息检测装置同步获取所述三个 下压力传感器在手握按压力时检测到左手腕相应动脉位置的压力, 得到三个连 续的左下压力信号, 同步获取所述三个下压力传感器在手握按压力时检测到右 手腕相应动脉位置的压力, 得到三个连续的右下压力信号; 所述根据所述压力 传感器检测到的压力计算得到人体脉搏信息的步骤包括: 所述脉搏信息检测装 置根据所述三个左下压力信号和三个右下压力信号进行脉象分析, 得到脉象信 息。
其中, 所述手握按压的时间为大于 4秒的数值。
本发明实施例提供了一种脉搏信息检测装置, 包括: 压力传感器, 以及套设于 所述压力传感器外周的弹性气嚢, 所述压力传感器在接受用户手握按压力时通 过外周套设的弹性气嚢挤压用户肢体的动脉位置; 处理器, 与所述压力传感器 电连接; 所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息。 其中, 所述处理器包括压力获取模块和脉搏信息计算模块, 所述压力获取模块 用于在所述脉搏信息检测装置接受手握按压力时, 获取所述压力传感器检测到 的压力; 所述脉搏信息计算模块根据所述压力传感器检测到的压力计算得到人 体脉搏信息。
其中, 所述人体脉搏信息包括人体收缩压和舒张压; 所述压力获取模块具体用 于在所述手握按压力增大和 /或减小过程中获取压力传感器检测到动脉位置的压 力, 获得连续的压力信号; 所述脉搏信息计算模块具体用于根据所述压力信号, 分别建立上包络线、 基线和下包络线, 查找出所述下包络线和基线的第一拐点 和第二拐点, 将所述第一拐点对应压力信号的最大值作为动脉位置的收缩压, 将所述第二拐点对应压力信号的最大值作为动脉位置的舒张压。
其中, 所述压力传感器包括背对背设置的上、 下压力传感器, 所述下压力传感 器的外周套设有弹性气嚢, 所述人体脉搏信息包括所述动脉位置的脉搏瞬时波 形; 所述压力获取模块具体用于同步获取在所述手握按压力增大和 /或减小过程 中所述上压力传感器输出的上压力和所述下压力传感器输出的下压力, 获得连 续的上、 下压力信号; 所述脉搏信息计算模块具体用于获取所述下压力信号和 上压力信号间的差值或者比值, 作为所述动脉位置的脉搏瞬时波形。
其中, 所述人体脉搏信息包括人体收缩压和舒张压; 所述脉搏信息计算模块还 用于根据所述下压力信号和上压力信号间的差值或者比值计算动脉位置的收缩 压和舒张压。
其中, 所述脉搏信息计算模块具体用于获取在所述手握按压力增大和 /或减小过 程中所述下压力信号和上压力信号间的差值最接近 0或者比值最接近 1 的两个 时刻所对应的两个上压力值, 将所述两个上压力值中的较大值作为动脉位置的 收缩压, 较小值得作为动脉位置的舒张压。
其中, 所述压力传感器包括外周套设有下弹性气嚢的间隔设置的至少两个下压 力传感器, 所述压力获取模块还用于在未接受手握按压力时, 同步获取所述至 少两个下压力传感器分别通过外周套设的下弹性气嚢检测到不同动脉位置的压 力, 获得每个所述下压力传感器输出的连续的至少包括一个脉搏周期的脉搏压 力信号; 所述处理器还包括衰减计算模块和血压转换模块, 所述衰减计算模块 用于根据任意两个所述下压力传感器输出脉搏压力信号的峰值之间或谷值之间 的差值以及所述任意两个下压力传感器对应动脉位置之间距离计算得到动脉位 置血压随动脉位置与心脏间距离的衰减关系; 所述血压转换模块用于根据所述 衰减关系、 所述脉搏信息计算模块得到的所述对应动脉位置的收缩压和舒张压, 得到心脏的收缩压和舒张压。
其中, 所述压力传感器包括三个外周均套设有下弹性气嚢且间隔设置的下压力 传感器, 所述三个下传感器分别通过外周套设的下弹性气嚢挤压用户的寸、 关、 尺三个动脉位置, 所述人体脉搏信息包括人体脉象信息; 所述处理器包括压力 获取模块和脉搏信息计算模块; 所述压力获取模块用于在所述脉搏信息检测装 置接受手握按压力过程中同步获取所述三个下压力传感器检测到的压力; 所述 脉搏信息计算模块用于根据所述三个下压力传感器检测到的压力进行脉象分 析, 得到脉象信息。
其中, 所述压力获取模块具体用于同步获取所述三个下压力传感器在手握按压 力时检测到左手腕相应动脉位置的压力, 得到三个连续的左下压力信号, 同步 获取所述三个下压力传感器在手握按压力时检测到右手腕相应动脉位置的压 力, 得到三个连续的右下压力信号; 所述脉搏信息计算模块具体用于根据所述 三个左下压力信号和三个右下压力信号进行脉象分析, 得到脉象信息。
其中, 所述压力传感器为硅压阻式传感器或薄膜压阻式传感器。
其中, 所述弹性气嚢的外周呈凸半球形, 所述弹性气嚢的材质为橡胶。
其中, 所述脉象检测装置还包括显示器、操作键、语音提示模块、通讯模块、 I/O 接口中的至少一项, 其中, 所述显示器与所述处理器电连接, 用于显示所述脉 象检测装置的相关信息; 所述操作键与所述处理器电连接, 用于输入控制命令; 所述语音提示模块与所述处理器电连接, 用于给出所述脉象检测装置操作过程 及测试结果的语音提示; 所述通讯模块与所述处理器电连接, 用于输入用户的 个人信息及发送所述用户的检测信息, 实现所述脉象检测装置与外部移动终端 的通讯连接; 所述 I/O接口与所述处理器电连接,用于使所述脉象检测装置与所 述外部移动终端有线连接或对所述脉象检测装置充电。
其中, 所述通讯模块为蓝牙模块、 无线网络模块或 NFC近场通讯模块。
为解决上述问题, 本发明实施例提供了一种智能腕带, 包括固定于腕带上的脉 搏信息检测装置, 所述脉搏信息检测装置包括: 压力传感器, 以及套设于所述 压力传感器外周的弹性气嚢, 所述压力传感器在接受用户手握按压力时通过外 周套设的弹性气嚢挤压用户肢体的动脉位置; 处理器, 与所述压力传感器电连 接; 所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息。 其中, 所述腕带为橡胶材质的带环、 弹性纤维布带形式的护腕、 金属材质的手 链或皮革材质的表带。
其中, 所述智能腕带还包括功能拓展装置, 所述功能拓展装置固定在所述腕带 上, 所述功能拓展装置为时针手表表盘、 智能手表表盘、 无线 MP3、 电源和小 型通讯设备中的一种或几种, 所述功能拓展装置与所述腕带的固定形式为捆绑 式、 卡合式或铰接式。
其中, 所述脉象检测装置釆用可拆卸形式固定所述腕带上, 所述脉象检测装置 在所述腕带上的固定位置包括适配左手腕寸关尺的左手固定位置、 及适配右手 腕寸关尺的右手固定位置。
为解决上述问题, 本发明实施例提供了一种智能手表, 包括表盘、 表带和时间 显示装置, 所述时间显示装置固定于所述表盘上, 所述表盘固定于所述表带上, 还包括: 固定于表带上的脉搏信息检测装置, 所述脉搏信息检测装置包括: 压 力传感器, 以及套设于所述压力传感器外周的弹性气嚢, 所述压力传感器在接 受用户手握按压力时通过外周套设的弹性气嚢挤压用户肢体的动脉位置; 处理 器, 与所述压力传感器电连接; 所述处理器根据所述压力传感器检测到的压力 为解决上述问题, 本发明实施例提供了一种通信系统, 所述通信系统包括脉搏 信息检测装置和终端, 所述脉搏信息检测装置包括: 压力传感器, 以及套设于 所述压力传感器外周的弹性气嚢, 所述压力传感器在接受用户手握按压力时通 过外周套设的弹性气嚢挤压用户肢体的动脉位置; 处理器, 与所述压力传感器 电连接; 所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息; 所述脉搏信息检测装置还包括第一通信模块, 所述终端包括第二通信模块, 所 述第一、 第二通信模块之间能够进行连接, 实现所述脉搏信息检测装置与终端 间的通信。
区别于传统的气泵式血压检测装置, 本申请釆用手握式测量方法, 无需设置充 气作用的气嚢和气泵, 大大减少了体积和重量, 使得检测装置轻便化, 而且本 实施例通过外设弹性气嚢获得精确的压力信号, 实现无需耗费过多时间, 即可 得到准确的血压值。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1图 1是本申请脉搏信息检测装置实施例一的结构示意图;
图 2是对图 1所示的实施例中脉搏信息检测装置的操作示意图;
图 3是图 1所示实施例中处理器的结构示意图;
图 4是图 1所示实施例在按压过程中压力传感器敏感到的压力的波形示意 图;
图 5是图 1所示实施例中压力传感器在按压力减小过程中输出的经处理压 力波形示意图;
图 6是本申请脉搏信息检测装置实施例二的结构示意图; 图 7是本申请脉搏信息检测装置实施例四的结构示意图;
图 8是本申请脉搏信息检测装置实施例五的结构示意图;
图 9是本申请脉搏信息检测装置实施例六的结构示意图;
图 10是本申请脉搏信息测量方法实施例一的流程图;
图 11是本申请脉搏信息测量方法实施例二的流程图;
图 12是本申请脉搏信息测量方法实施例三的流程图;
图 13是本申请脉搏信息测量方法实施例四的流程图;
图 14是本申请智能腕带实施例一的立体结构示意图;
图 15是本申请智能腕带实施例二的立体结构示意图;
图 16是本申请通信系统实施例一的结构示意图;
图 17是本申请通信系统实施例二的结构示意图。
【具体实施方式】
下面结合附图和实施例, 对本申请作进一步的详细描述。 特别指出的是, 以下实施例仅用于说明本申请, 但不对本申请的范围进行限定。 同样的, 以下 实施例仅为本申请的部分实施例而非全部实施例, 本领域普通技术人员在没有 作出创造性劳动前提下所获得的所有其它实施例, 都属于本申请保护的范围。
脉搏信息检测装置实施例一:
请参阅图 1至图 5 ,图 1是本申请脉搏信息检测装置实施例一的结构示意图, 图 2是对图 1所示的实施例中脉搏信息检测装置的操作示意图, 图 3为图 1所 示实施例中处理器的结构示意图, 图 4是图 1所示实施例在按压过程中压力传 感器敏感到的压力的波形示意图, 图 5是图 1所示实施例中压力传感器在按压 力减小过程中输出的经处理压力波形示意图。 脉搏信息检测装置 100 包括压力 传感器 110、 套设与压力传感器 110外周的弹性气嚢 111以及处理器 120。
具体而言, 该弹性气嚢 111 用于至少部分贴触人体肢体的动脉位置。 当弹 性气嚢 111 受到动脉挤压时发生弹性形变, 导致其密闭空间内的气体压力发生 变化, 压力传感器 110通过敏感该气体压力的值以间接测得该动脉位置的压力。 优选地, 该弹性气嚢 111 呈凸半球形, 以便能够与人体手腕部的动脉位置很好 地接触, 当然, 弹性气嚢 111 的形状不限于此, 能够起到与人体手腕部动脉很 好地接触作用即可。 另外, 弹性气嚢 111由橡胶等软质材料制成。
由于弹性气嚢 111与手腕的接触面积 4艮大, 例如, 接触面积为 5〜10mm圓 周面积, 优选 8mm, 而压力传感器 110的受力仅仅与弹性气嚢 111 内的压力有 关, 而与弹性气嚢 m 表面受力的位置无关, 因此对于测量动脉位置精度并不 敏感, 同时对测量姿态微小的变化也不敏感。 换句话说, 在测量时, 并不要求 作用力必须作用在压力传感器 110的几何中心线上, 只要压力传感器 110外部 的弹性气嚢 111 能够接触到动脉位置即可, 即对受力的位置和角度没有严格要 求。 这就可以在保证测量精度的情况下, 降低了对用户的操作要求。
具体在进行脉搏信息测量时, 如图 2 ( a )所示将脉搏信息检测装置 100套 设在用户肢体上, 并使弹性气嚢 111 与人体肢体的动脉位置 (即动脉位置的人 体表皮软组织, 如桡动脉的人体表皮软组织)相贴触。 以脉搏信息检测装置 100 设置压力传感器 110—侧作为下侧, 当用户如图 2 ( b )所示手握该脉搏信息检 测装置时,脉搏信息检测装置 100接受到来自上侧的手握按压力 ,该按压力 作 用于压力传感器 110, 并通过外周套设的弹性气嚢 111挤压该动脉位置。 此时压 力传感器 110敏感到动脉位置通过弹性气嚢 111传递的压力 ,其中压力 具体为 按压力 的反作用力和动脉位置的脉搏压力的合力。
处理器 120根据压力传感器 110在手握过程中通过弹性气嚢 111检测到的动 脉位置压力计算得到人体脉搏信息, 例如人体的收缩压和舒张压。 具体, 本实 施例中该处理器 120包括压力获取模块 121和脉搏信息计算模块 122。 其中, 压 力获取模块 121 用于在所述脉搏信息检测装置接受手握按压力时, 获取所述压 力传感器检测到的压力, 脉搏信息计算模块 122 则根据所述压力传感器检测到 的压力计算得到人体脉搏信息。
例如, 用户如图 2所示手握按压脉搏信息检测装置 100数秒, 其中, 在按 压过程中, 按压力值从小到大, 再从大到小变化, 使得所述用户肢体动脉的血 流由畅通到阻断, 再由阻断到畅通。 在手握按压过程中, 压力获取模块 121 多 次釆样压力传感器 110检测到的压力 , 由釆样到的所有压力值组成连续的压力 信号 。 由于在按压整个过程中, 动脉位置血流经历了从畅通到阻断, 再从阻断 到畅通, 期间在按压力增大和减小过程中均经历了按压力等于收缩压 、 舒张压 的时刻 (加压过程中的 tl、 t2, 降压过程中的 t3、 t4 ), 故可单根据加压或者降 压过程的压力信号计算得到血压值, 或者根据加压和降压两过程分别得到两组 血压值, 由两组血压值得到更准确的人体血压值。 脉搏信息计算模块 122获取 在按压力增大和 /或减小过程中的压力信号 ,釆用波形特征法或者幅度系数法从 该压力信号中判别得到测量者人体的收缩压和舒张压。 需要说明的是, 波形特 征法即通过识别压力波在收缩压和舒张压处的波形特征来判别血压, 幅度系数 法即通过确定并辨识收缩压幅度、 舒张压幅度与最大幅度之间的关系来判别血 压。 由于具体获得按压过程中的动脉位置压力信号得到收缩压和舒张压属于现 有技术, 在此不作具体说明。
进一步具体地, 根据大量研究表明, 按压时压力传感器输出的压力信号波 性上包络线的拐点 (即二阶导数等于零值的点)对应于收缩压与舒张压的代表点。 故本实施例中, 脉搏信息计算模块 122具体根据在手握按压力增大和 /或减小过 程得到所述压力信号, 将该压力信号进行过滤处理后分别建立上包络线 L3、 基 线 L2和下包络线 L1 , 其中, 将按压过程中获得的周期性压力信号的峰值连接 得到上包络线 L3 , 谷值连接得到下包络线 Ll。 脉搏信息计算模块 122寻找下包 络线和基线的第一拐点 A, 第二拐点 B (拐点即为二阶导数等于零值的点), 其 中确定基线拐点时参考了上包络线的拐点, 再分别将第一拐点 A, 第二拐点 B 对应压力信号的最大值作为动脉位置的收缩压和舒张压。
优选地, 本实施例中压力传感器釆用灵敏度较高的压力传感器, 例如硅压 阻式压力传感器,硅压阻式压力传感器内部包括硅片电桥、微型机械结构、 ADC 电路、 温度传感结构及串行接口等, 其具体的原理与工作过程为本领域技术人 员所熟知, 此处不再赘述。 该压力传感器安装尺寸小, 比如可以小于 9 x 9mm。 或者, 在另一要求体积精巧的实施例中, 压力传感器可以釆用安装尺寸更小的 压力传感器, 以便使脉搏信息检测装置的整体结构更加小巧、 便携, 例如釆用 薄膜压阻式压力传感器, 其安装尺寸可以小于 6 x 6mm。 另外, 根据本发明实施 例的需要还可以定制尺寸更小的压力传感器。
区别于传统的气泵式血压检测装置, 本申请釆用手握式测量方法, 无需设 置充气作用的气嚢和气泵, 大大减少了体积和重量, 使得检测装置轻便化, 而 且本实施例通过外设弹性气嚢获得精确的压力信号, 实现无需耗费过多时间, 仅需几秒即可得到准确的血压值。 另外, 利用在手握按压力增大(加压)和减 小 (降压)过程中按压力等于收缩压或舒张压的情况, 且本申请无需气泵加气 加压, 故本申请可以选取加压或降压中的一个过程测量血压, 或者可同时选取 加压和减压过程分别测量出两侧血压值, 通过平均值得到更为准确的血压值。 脉搏信息检测装置实施例二:
请参阅图 6 , 图 6是本申请脉搏信息检测装置实施例二的结构示意图。作为 上实施例一的优化实施例, 本实施例中脉搏信息检测装置 600 中的压力传感器 具体包括上压力传感器 6101、 下压力传感器 6102 , 弹性气嚢具体包括下弹性气 嚢 6112。
具体而言, 该上压力传感器 6101、 下压力传感器 6102背对设置, 并分别与 处理器 620电连接。 下压力传感器 6102外周套设有密闭的下弹性气嚢 6112 , 并 通过下弹性气嚢 6112检测到外部压力。
在进行血压测量时, 当用户手握按压脉搏信息检测装置 600 时, 上压力传 感器 6101、 下压力传感器 61022分别对应测量来自手握按压力 (称为上压力) 和来自动脉位置的压力 (称为下压力)。 其中手握按压过程中动脉位置的压力 具体为手握按压力 的反作用力和动脉位置的脉搏压力的合力。
处理器 620的压力获取模块 621 同步获取在手握按压过程且所述手握按压 力增大和 /或减小过程中上压力传感器 6101输出的上压力和下压力传感器 6102 输出的下压力, 获得连续的上、 下压力信号。 处理器 620 的脉搏信息计算模块 622 根据所述下压力信号和上压力信号间的差值或者比值计算动脉位置的收缩 压和舒张压。 例如, 用户手握按压脉搏信息检测装置 600时, 压力获取模块 621 在手握按压力增大过程中通过多次同步釆样获得连续的上压力信号和下压力信 号。 脉搏信息计算模块 622获取在所述手握按压力增大过程中下、 上压力信号 间的差值最接近 0或者比值最接近 1的两个时刻(如图 5中的 tl、 t2 )所对应的 两个上压力值, 将所述两个上压力值中的较大值作为动脉位置的收缩压, 较小 值得作为动脉位置的舒张压。
在其他实施例中, 上、 下压力传感器可以分别釆用不同类型的压力传感器, 譬如, 下压力传感器釆用硅压阻式传感器, 因为其灵敏度高, 所以在其外部设 置有下弹性气嚢, 通过下弹性气嚢内部空气压力的变化来检测压力值, 而上压 力传感器则可以釆用其他形式的压力传感器, 譬如柱式压力传感器等, 外部可 以不设置有弹性气嚢, 而直接敏感施加的压力。 上、 下压力传感器具体选用哪 种类型此处不做限定。
此实施例的脉搏信息检测装置通过上、 下压力传感器的相互校正的同时利 用弹性气嚢对受力位置和方向不敏感的性质, 可以准确测量出人体血压参数。
当然, 在另一实施例中, 处理器获取该上、 下压力传感器检测到的压力间 的差值或比值后, 直接将该差值或比值即为该动脉位置的脉搏瞬时波形输出到 显示器上或者发送给与脉搏信息检测装置能够通信的终端, 以供用户或者该终 端对该动脉位置的脉搏波形进行比较、 分析和评估。
在另一优化实施例中, 本实施例中的脉搏信息检测装置还可以包括上弹性 气嚢, 该上弹性气嚢套设在上压力传感器的外周, 上压力传感器密闭于上弹性 气嚢内, 上弹性气嚢的材质、 结构形式以及与上压力传感器的配合原理与下弹 性气嚢对应相同, 此处不再详述。
值得一提的是, 上弹性气嚢的弹性系数可以比下弹性气嚢的弹性系数要大, 相差 20-50倍,使套有弹性系数大的上弹性气嚢的上压力传感器的动态响应比套 有弹性系数小的下弹性气嚢的下压力传感器低。 通过上、 下压力传感器外均套 设有弹性气嚢, 可以使上压力传感器的测量数据也更加准确, 同时也对上压力 传感器起到很好的保护作用。
区别于传统示波法需要大量运算才能间接求得血压, 本申请利用足够灵敏 的压力传感器和上述简单的算法即可直接测量出血压值, 极大降低了运算量和 运算时间, 且建立在大量实验数据上, 得到的血压值相对准确, 是在血压测量 领域的一大创新。 同时, 传统的示波法需要耗费较长时间以获得大量脉搏信号, 保证从脉搏信号归一化的包络线的准确性。 而釆用本申请上述直接获得血压值 的方法, 完全脱离包络线, 故无需耗费过多时间, 仅需几秒即可得到准确的血 压值。
需要说明的是, 所述人体脉搏信息还可以为动脉位置的脉搏瞬时波形, 在 另一脉搏信息检测装置中的压力传感器包括背对背设置的上压力传感器和外周 套设有下弹性气嚢的下压力传感器的实施例中, 该脉搏信息检测装置在接受按 压力过程中, 获得下、 上压力传感器检测到压力间的差值或比值后, 由该差值 或比值作为动脉位置的脉搏瞬时波形, 即该动脉位置的脉搏压力信号, 脉搏信 息检测装置向移动终端发送该动脉位置的脉搏瞬时波形, 以通过该移动终端向 用户显示该动脉位置的脉搏波形, 用户或者该移动终端对动脉的脉搏波形的幅 值、 相位、 频率等信息进行比较、 分析和评估, 得到该动脉位置的内部状态, 更优化地, 还可将脉搏信息检测装置按压在不同动脉位置上, 获得不同动脉位 置的脉搏波形, 移动终端分析不同动脉位置的脉搏波形的参数如幅值、 相位、 频率, 得到人体状况。 脉搏信息检测装置的实施例三:
优化地, 本实施例三与上实施例一或二结构基本相同, 其区别在于: 处理 器还包括比例计算模块。 压力获取模块还用于要在套设在动脉位置的所述脉搏 信息检测装置没有接受手握按压力时, 获取所述压力传感器检测到的压力, 获 得连续的至少包括一个脉搏周期的脉搏压力信号。
比例计算模块用于从所述脉搏压力信号中查找压力最高的脉搏高压值和压 力最低的脉搏低压值, 并计算所述脉搏高压值和脉搏低压值的比例关系, 作为 人体收缩压和舒张压的比例关系。。
脉搏信息计算模块根据在所述按压力增大和 /或减 d、过程中所获得的所述压 力信号计算得到动脉位置的收缩压或舒张压, 再根据所述人体收缩压和舒张压 的比例关系计算对应的舒张压或收缩压。 其中, 脉搏信息计算模块具体获得动 脉位置收缩压或舒张压的方式如上面实施例, 在此不作赘述。 脉搏信息检测装置实施例四:
请参阅图 7 , 图 7为本申请脉搏信息检测装置实施例四的结构示意图。优化 于实施例一, 该脉搏信息检测装置中压力传感器具体包括间隔设置的至少两个 下压力传感器 7102、分别套设于所述至少两个下压力传感器 7102外周的至少两 个下弹性气嚢, 以及处理器 720。 具体而言, 该至少两个下压力传感器 7102间 隔设置并分别对应人体肢体的不同动脉位置, 下压力传感器 6102间受力相互独 立。 具体, 下压力传感器 7102设置在电路板上, 且为了保证压力传感器受力的 独立性, 电路板上相邻的压力传感器之间开有分割线。
处理器 720还包括衰减计算模块 724和血压转换模块 725。
压力获取模块 721 用于在所述脉搏信息检测装置未接受手握按压力时, 同 步获取间隔设置的至少两个下压力传感器 7102分别通过外周套设的弹性气嚢检 测到不同动脉位置的压力, 获得每个所述下压力传感器 7102输出的连续的至少 包括一个脉搏周期的脉搏压力信号。
衰减计算模块 724用于根据任意两个所述下压力传感器 7102输出脉搏压力 信号的峰值之间或谷值之间的差值以及所述任意两个下压力传感器 7102对应动 脉位置之间距离计算得到动脉位置血压随动脉位置与心脏间距离的衰减关系。 例如, 衰减计算模块 724获得两个压力传感器 7102输出的脉搏压力信号的峰值 间的差值或者谷值间的差值 , 并根据两压力传感器 7102对应脉位间的距离 L 计算得到脉位血压随脉位与心脏间距离的衰减关系为 。
脉搏信息计算模块 722用于根据任意一个所述压力传感器 7102在所述脉搏 信息检测装置接受手握按压力且所述按压力增大和 /或减小过程中输出的压力信 号得到所述压力传感器对应动脉位置的收缩压和舒张压。
血压转换模块 725 用于根据所述衰减关系、 所述对应动脉位置的收缩压和 舒张压, 得到心脏的收缩压和舒张压。 脉搏信息检测装置实施例五:
请参阅图 8 , 图 8为本申请脉搏信息检测装置实施例五的结构示意图。优化 于实施例一, 该脉搏信息检测装置中的压力传感器具体包括第一下压力传感器、 第二下压力传感器、 第三下压力传感器共三个下压力传感器 8102, 弹性气嚢包 括第一弹性气嚢、 第二下弹性气嚢、 第三下弹性气嚢共三个下弹性气嚢 8112。 具体而言, 第一、 第二、 第三下压力传感器 8102间隔设置并分别对应人体脉搏 的寸、 关、 尺三个脉位, 三个压力传感器受力相互独立。 处理器 820与第一、 第二、第三压力传感器分别电连接,并根据第一、第二和第三下压力传感器 8102 测得的压力进行脉象分析。
本实施例中, 处理器 820具体包括压力获取模块 826和脉搏信息计算模块
827。
在测量时, 将脉搏信息检测装置套设在人体左手腕, 使得三个下弹性气嚢 分别与人体左手腕部的寸、 关、 尺脉位相贴触, 脉搏信息检测装置在接受用户 手握按压力时, 三个下压力传感器分别敏感到左手腕的寸、 关、 尺脉位的脉搏 力。 压力获取模块 826 同步获取所述第一、 第二、 第三压力传感器分别检测到 用户左手腕寸、 关、 尺脉位的压力, 获得在接收按压力过程中, 第一压力传感 器检测到左手腕寸脉位产生的连续的第一左下压力信号、 第二压力传感器检测 到左手腕关脉位产生的连续的第二左下压力信号、 第三压力传感器检测到左手 腕尺脉位产生的连续的第三左下压力信号。 同理将脉搏信息检测装置套设在右 手腕, 压力获取模块 826在所述脉搏信息检测装置佩戴在右手腕且接受手握按 压力过程中, 同步获取所述第一、 第二、 第三压力传感器分别检测到用户右手 腕寸、 关、 尺脉位的压力, 获得连续的第一右下压力信号、 第二右下压力信号、 第三右下压力信号。
脉搏信息计算模块 827根据所述第一左下压力信号、 第二左下压力信号、 第三左下压力信号、 第一右下压力信号、 第二右下压力信号、 第三右下压力信 号进行脉象分析, 得到脉象信息。 例如, 脉搏信息计算模块 827根据将第一、 第二和第三下压力传感器测得的压力信号通过不同比值方式得到不同组合信 号, 由获得的不同组合信号得到脉象分析结果。 具体如脉搏信息计算模块 827 将第一、 第二、 第三左下压力信号、 第一、 第二、 第三右下压力信号中每个下 压力信号均与其他下压力信号在按压过程中的平均压力值进行比值, 得到 6 x 6=36种组合的相对脉搏压力信号。或者,脉搏信息计算模块 827计算得到第一、 第二、 第三左下压力信号的第一平均压力信号, 第一、 第二、 第三右下压力信 号的第二平均压力信号, 以及第一、 第二、 第三左下、 第一、 第二、 第三右下 压力信号的第三平均压力信号, 将第一、 第二、 第三左下、 第一、 第二、 第三 右下压力信号、 第一、 第二、 第三平均压力信号分别与其他每个下压力信号经 处理获得的数值作比值, 获得 36种组合的相对脉搏压力信号。
脉搏信息计算模块 827对 36种组合的相对脉搏压力信号的进一步数据分 析、 识别和分类脉搏数据的类型, 进行智能比对, 获得 16种或 28种脉象, 便 于作出中医脉诊、 对腕戴人的身体状况做出脉诊结果以及处置建议, 甚至提供 连续的、 长期的、 跟踪形式的云端服务。
本申请创新地釆用三个压力传感器, 通过不同组合的脉搏变化曲线进行分 析即可获得不同脉象, 相对现有脉象测量仪来说更加简便, 同时釆用相对值算 法, 使得得到的测量结果对手握压力的方法上的差异, 以及测量中压力扰动并 不敏感, 其差异和扰动能够被相对数据的分子和分母所抵消或均化。 相对于传 统充气袖带或腕带, 本申请腕式釆集装测量简单、 耗时短、 轻便而且测量结果 准确, 优胜于传统充气袖带或腕带。
需要说明的是, 在其他实施例中, 可根据功能需求, 将上述实施例进行组 合。 脉搏信息检测装置实施例六:
请参阅图 9 , 图 9为本申请脉搏信息检测装置实施例六的结构示意图。作为 前述实施例的进一步拓展,该脉搏信息检测装置 900还可以包括均与处理器 920 连接的显示器 940、操作键 950、语音提示模块 960、通讯模块 970、 I/O接口 980 和壳体 990。
其中, 处理器 920以及压力传感器 910固定设在壳体 990的内部, 且弹性 气嚢则分别突出于壳体 990 的下表面, 以便在按压过程中, 弹性气嚢能够接触 到人体肢体的动脉位置, 如手腕部桡动脉位置。
显示器 940设于壳体 990的上表面, 用于显示相关数据信息, 优选液晶或 者 LED屏作为显示器 940。
操作键 950则设在壳体 990的侧边或者上表面, 用于对该脉搏信息检测装 置进行相关操作控制命令的输入, 操作键 950 的数量可以为一个或多个, 且设 置位置也不限为侧边或上表面, 此处对操作键 950的数量和设置位置不做限定。
语音提示模块 960, 如扬声器, 可以发出操作过程及测试结果的语音提示, 方便用户使用, 增强人机交流体验。
通讯模块 970优选釆用无线通讯的形式, 具体可以为蓝牙模块、 无线网络 模块或 NFC近场通讯模块等,当然通讯模块 970也可釆用有线通讯,如通过 USB 接口或者以太网接口与外部终端通信。 该通讯模块 970还可设置有唯一的设备 标识 (ID ) 号, 用户可以通过录入个人信息的形式进行设置个人账号, 通讯模 块 970则可以将对应 ID号和该脉搏信息检测装置测量得到的数据信息发送到远 程服务器或移动终端上, 以便对数据进一步分析及存储。 其中, 录入个人信息 的形式又可以为输入用户姓名或通过指紋识别装置输入用户指紋等。
I/O接口 980则主要用于该脉搏信息检测装置与外部设备的有线连接, 譬如 可以通过 USB接口连接到计算机上进行数据的传输, 通过充电接口对脉搏信息 检测装置充电等, 在本领域技术人员的理解范围内, 此处不再详述。
通过对上述实施例的脉搏信息检测装置功能进一步优化, 使该脉搏信息检 测装置功能更加完善, 同时兼容性及实用性更强。 当然, 在其他实施例中, 脉 搏信息检测装置也可以只包括显示器、 操作键、 语音提示模块、 通讯模块、 I/O 接口和壳体的一项或多项。 脉搏信息测量方法的实施例一:
请参阅图 10, 图 10是本申请脉搏信息测量方法实施例一的流程图。 本实施 例中的脉搏信息检测装置如上面实施例所述的脉搏信息检测装置, 在此不作赘 述。 本脉搏信息测量方法包括以下步骤:
步骤 S1001 : 佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力, 所 述脉搏信息检测装置的压力传感器通过外周套设的弹性气嚢挤压用户肢体动脉 位置。
例如, 用户将脉搏信息检测装置佩戴在用户肢体上, 并使脉搏信息检测装 置的弹性气嚢至少部分与手腕部的动脉位置相贴触, 并且手握按压脉搏信息检 测装置数秒, 如 4〜10秒, 优选 6秒。 通过先由小到大, 再由大到小, 使得手腕 部动脉位置的血流从畅通到阻断, 又从阻断到畅通, 保证能够测得用户的血压 值。 该压力传感器通过外周套设的弹性气嚢挤压人体肢体的动脉位置, 使得该 动脉位置在手握按压时向弹性气嚢产生压力。
步骤 S1002: 压力传感器对用户肢体动脉位置的压力进行持续检测。
压力传感器在按压过程中敏感到来自动脉位置的下压力, 其中, 该下压力 为手握按压力的反作用力和脉搏压力的合力。 步骤 S1003:所述脉搏信息检测装置的处理器根据所述压力传感器检测到的 压力计算得到人体脉搏信息。
例如, 处理器通过多次釆样压力传感器输出的压力, 由釆样到的所有压力 值组成连续的压力信号(如图 3所示)。 由于在按压整个过程中, 动脉位置血流 经历了从畅通到阻断, 再从阻断到畅通, 期间在按压力增大和减小过程中均经 历了按压力等于收缩压 、 舒张压 的时刻(加压过程中的 tl、 t2, 降压过程中的 t3、 t4 ), 故可单根据加压或者降压过程的压力信号计算得到血压值, 或者根据 加压和降压两过程分别得到两组血压值, 由两组血压值得到更准确的人体血压 值。
处理器获取在按压力增大和 /或减小过程中的压力信号, 釆用波形特征法或 者幅度系数法从该压力信号中判别得到测量者人体的收缩压和舒张压。 本实施 例中, 处理器根据压力信号判别得到血压值的具体方法为: 处理器获取所述按 压力增大或者减小过程中所获得的所述压力信号, 根据该在加压或降压过程得 到的压力信号的波形分别建立上包络线、 基线和下包络线; 处理器查找出所述 下包络线和基线的第一拐点和第二拐点, 将所述第一拐点对应压力信号的最大 值作为动脉位置收缩压, 将所述第二拐点对应压力信号的最大值作为动脉位置 舒张压。 处理器再根据心脏与动脉位置之间血压比例, 将上述测量的血压值换 算为心脏出的高低血压值。 由于手腕与心脏之间的血压换算为本领域公知常识, 故不作具体说明, 并且, 在后面实施方式中, 在获得动脉位置测得的高低血液 值后, 默认执行换算为心脏处高低血压值的步骤。
需要说明的是, 在用于测量血压时, 为使测量的压力信号更准确, 处理器 的釆样周期设置为毫秒(ms ), 例如为 l〜10ms, 优选为 2ms, 手握压力的时间 为大于 4 秒, 例如为 6s , 那么每条压力值在按压过程中变化曲线的数据有 6000/2=3000点, 期间至少经历了 3 ~ 6个完整的心跳周期, 且每个心跳周期至 少有 500个釆样数据, 极大提高了每个心跳信号的准确度, 使得仅利用该 3 ~ 6 个心跳信号即可较精确计算出的实际心跳周期或血压。 可见本申请 6s的测量耗 时比传统方法几百秒, 缩短了几十倍 t 脉搏信息测量方法的实施例二:
请参阅图 11 , 图 11是本申请脉搏信息测量方法实施例二的流程图。 本实施 例的脉搏信息检测装置具体为上面实施例所述的脉搏信息检测装置, 可用于测 量人体参数, 如脉搏、 血压。 其具体结构如上相关说明, 在此不作赘述。 其中, 该脉搏信息测量方法包括以下步骤:
步骤 S1101 : 佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力, 其 中, 所述脉搏信息检测装置内设置有背对背的上压力传感器和外周套设有下弹 性气嚢的下压力传感器, 所述下压力传感器通过外周套设的下弹性气嚢挤压人 体肢体的动脉位置。
例如, 测量者将脉搏信息检测装置的下弹性气嚢至少部分与手腕部的脉位 相贴触, 以保证下压力传感器能够通过该下弹性气嚢感应到动脉处产生的压力, 并且另一只手按压上压力传感器数秒, 如 4〜10秒, 优选 6秒。 通过另一只手按 压产生的上压力的变化, 从松到紧, 腕动脉的血流从畅通到阻断, 然后上压力 再从紧到松开, 腕动脉的血流又从阻断到畅通, 保证能够测得测量者的高、 低 血压值。 该下压力传感器通过外周套设的下弹性气嚢挤压人体肢体的动脉位置, 使得该动脉处在按压时产生下压力。
步骤 S1102: 所述上压力传感器对手握按压力进行检测, 所述下压力传感器 通过所述下弹性气嚢对所述动脉位置的压力进行检测。
所述上、 下压力传感器在按压过程中分别敏感到来自手握按压的上压力和 动脉处的下压力, 其中, 该下压力为上压力的反作用力和脉搏压力的合力。
步骤 S1103: 脉搏信息检测装置同步获取在所述手握按压力增大和 /或减小 过程中所述上压力传感器输出的上压力和所述下压力传感器输出的下压力, 获 得连续的上、 下压力信号。
步骤 S1104:脉搏信息检测装置根据所述下压力信号和上压力信号间的差值 或者比值计算动脉位置的收缩压和舒张压。
例如, 根据大量实验数据, 在手握按压力具体由小到大, 再由大到小过程 中, 当手握按压力逐渐增大至收缩压 (高血压值) 时, 腕动脉的血流从畅通变 成阻断, 在阻断状态下, 血压为 0, 即下压力传感器感应到脉搏压力为 0; 当手 握按压力从大逐渐减小至收缩压时, 腕动脉的血流又从阻断到畅通, 直到手握 按压力减小至舒张压(低血压值)时, 下压力传感器感应到脉搏压力也为 0, 理 论和实验相结合下发现, 除上述两种情况外, 下压力传感器感应到的脉搏压力 均不为 0。
基于上述实验分析结果, 处理器获取在所述手握按压力增大和 /或减小过程 中所述下压力信号和上压力信号间的差值最接近 0或者比值最接近 1 的两个时 刻所对应的两个上压力值, 再将所述两个上压力值中的较大值作为动脉位置的 收缩压, 较小值得作为动脉位置的张压。
可选地, 由于脉搏压力的变化是周期性的, 且其周期等于心跳周期, 本实 施例脉搏信息检测装置还可在获取手握按压过程中上述差值或比值信号的周 期、 或在未按压是下压力传感器检测到的脉搏压力信号的周期作为心跳周期, 其中, 对心跳周期作倒数处理即获得平均心率。
更进一步地, 上述实施例方法还可包括:
脉搏信息检测装置在所述脉搏信息检测装置没有接受手握按压力时获取下 压力传感器检测到的压力, 获得连续的至少包括一个脉搏周期的脉搏压力信号。
脉搏信息检测装置从所述脉搏压力信号中查找压力最高的脉搏高压值和压 力最低的脉搏低压值, 并计算所述脉搏高压值和脉搏低压值的比例关系, 作为 人体收缩压和舒张压的比例关系。
脉搏信息检测装置如上述实施例方式根据在所述按压力增大和 /或减小过程 中所获得的所述压力信号计算得到动脉位置的收缩压或舒张压。
脉搏信息检测装置根据所述人体收缩压和舒张压的比例关系计算对应的舒 张压或收缩压。 脉搏信息测量方法的实施例三:
请参阅图 12, 图 12为本申请脉搏信息测量方法实施例三的流程图。 本实施 例中的脉搏信息检测装置如上面实施例所述的脉搏信息检测装置, 在此不作赘 述。 本脉搏信息测量方法与上实施例一、 二的步骤基本一致, 其区别在于, 该 方法还包括以下步骤:
步骤 S1201 : 在未接受手握按压力时, 所述脉搏信息检测装置同步获取所述 至少两个下压力传感器分别通过外周套设的下弹性气嚢检测到不同动脉位置的 压力, 获得每个所述下压力传感器输出的连续的至少包括一个脉搏周期的脉搏 压力信号。
所述脉搏信息检测装置内间隔设置有至少两个下压力传感器, 其中, 所述 至少两个下压力传感器外周分别套设有下弹性气嚢, 所述至少两个下压力传感 器分别通过下弹性气嚢检测人体肢体的不同动脉位置的脉搏压力。
步骤 S1202:脉搏信息检测装置根据任意两个所述下压力传感器输出脉搏压 力信号的峰值之间或谷值之间的差值以及所述任意两个下压力传感器对应动脉 位置之间距离计算得到动脉位置血压随动脉位置与心脏间距离的衰减关系。
步骤 S1203:脉搏信息检测装置根据所述下压力传感器在接受手握按压力过 程中输出的压力计算得到所述压力传感器对应动脉位置的收缩压和舒张压。
脉搏信息检测装置根据接受按压力过程中压力传感器输出的压力计算的到 血压值的具体方法如上面实施例所述, 在此不作重复说明。
步骤 S1204: 脉搏信息检测装置根据所述衰减关系、所述对应动脉位置的收 缩压和舒张压, 得到心脏的收缩压和舒张压。
区别于现有技术中获得动脉位置血压后, 釆用固定预设值换算为心脏血压 值, 本实施例通过在未接受按压时获取脉搏压力信号, 从而动态地计算得到动 脉位置于心脏处血压的衰减关系, 能够灵活得出每个人动脉位置与心脏血压的 衰减关系, 使得测量结果更精确。 脉搏信息测量方法的实施例四:
请参阅图 13 , 图 13为本申请脉搏信息测量方法实施例四的流程图。 本实施 例中的脉搏信息检测装置如上面实施例所述的脉搏信息检测装置, 在此不作赘 述。 该方法包括以下步骤:
步骤 S1301 : 佩戴于用户肢体的脉搏信息检测装置接受外部的按压力, 所述 压力传感器包括间隔设置的第一、 第二、 第三下压力传感器共三个下压力传感 器, 所述第一、 第二、 第三下压力传感器外周均套设有弹性气嚢, 并通过所述 弹性气嚢挤压左手腕寸、 关、 尺三个动脉位置。
步骤 S1302: 所述三个下压力传感器分别检测用户肢体寸、 关、 尺三个动脉 位置的压力。
步骤 S1303:所述脉搏信息检测装置根据三个下压力传感器检测到的压力进 行脉象分析, 得到人体脉象信息。
具体地, 为获得更准确的脉象分析, 用户分别获取脉搏信息检测装置佩戴 左、 右手腕并接收外部压力时, 三个下压力传感器分别检测到的寸、 关、 尺三 个动脉位置的压力, 其中, 佩戴左手腕时获得寸、 关、 尺三个动脉位置的压力 即为三个左下压力信号, 佩戴右手腕时获得寸、 关、 尺三个动脉位置的压力即 为三个右下压力信号。 脉搏信息检测装置根据所述三个左下压力信号和三个右 下压力信号进行脉象分析, 得到脉象信息。 例如, 处理器根据将三个左下压力 信号和三个右下压力信号通过不同比值方式得到不同组合信号, 获得 36种组合 的相对脉搏压力信号, 再对 36种组合的相对脉搏压力信号的进一步数据分析、 识别和分类脉搏数据的类型, 进行智能比对, 获得 16种或 28种脉象。 智能腕带实施例一:
请一并参阅图 14, 图 14是本申请智能腕带实施例一的立体结构示意图, 该 智能腕带包括腕带 1410和脉搏信息检测装置 1420, 其中, 该脉搏信息检测装置 1420为上面实施例中的脉搏信息检测装置,该脉搏信息检测装置 1420固定在腕 带 1410上, 且该脉搏信息检测装置 1420的弹性气嚢 1421突出与腕带 1410内 侧。 本实施例中, 腕带 1410为橡胶材质的带环, 腕带 1410与脉搏信息检测装 置 1420的固定形式可以为捆绑式、 卡合式或较接等。
进一步地, 智能腕带还包括功能拓展装置 1430, 功能拓展装置 1430可以为 时针手表表盘、 智能手表表盘、 无线 MP3、 备用电源和小型通讯设备中的一种 或几种, 使该智能腕带除了可以用于检测人体脉搏和血压参数外, 同时具备多 种其他功能。
在腕带上预留有容置功能拓展装置 1430等其他扩展外设的相应卡槽或固定 机构, 以方便用户按需要个性化装设喜欢的扩展外设, 实现相应的附加功能。 更具体地, 卡槽或固定机构上可以进一步设有分别用于通信和用于供电的电极 端子,这些电极端子连接至脉搏信息检测装置 1420中的压力传感器、处理器等, 而扩展外设(包括脉搏信息检测装置)相应位置分别设有用于通信或供电的电 极端子, 在将扩展外设固定于腕带 1 上的卡槽或固定机构时, 扩展外设的电极 端子和腕带 1410上的电极端子相应实现电连接, 以实现扩展外设与智能腕带之 间的通信, 以及利用扩展外设中的电池为智能腕带供电, 或利用智能腕带中的 电池为扩展外设供电。 腕带 1410的端部或连接部可以设置成 USB或者其他连 接端子的形式, 以方便腕带 1410给扩展外设 (包括脉搏信息检测装置)充电或 实现扩展外设(包括脉搏信息检测装置) 与其他设备的物理连接。 智能腕带实施例二:
请参阅图 15 , 图 15是本申请智能腕带实施例二的立体结构示意图。 本实施 例与上实施例一结构基本相同, 其区别在于, 该腕带 1510为弹性纤维布带形式 护腕, 脉搏信息检测装置 1520固定在腕带 1510上。
需要说明的是, 在其他实施例中, 本申请智能腕带的腕带还可为金属材质 的手链或皮革材质的表带等, 在此不作限定。 另外, 在另一实施例中, 本申请智能腕带的腕带可设置为无线充电式, 且 腕带与脉搏信息检测装置电连接。 如腕带内设有线圈, 通过电磁感应与外部电 源实现无线充电, 将无线电能传送给脉搏信息检测装置。 智能手表实施例:
本发明还公开了一种智能手表, 该智能手表包括表盘、 表带和时间显示装 置, 所述时间显示装置固定于所述表盘上, 所述表盘固定于所述表带上, 此外 该智能手表还包括上述实施例所述的脉搏信息检测装置, 使该智能手表具备脉 象分析的功能, 脉搏信息检测装置的结构及工作原理请参阅上述关于脉搏信息 检测装置的实施例, 此处不再赘述。 通信系统实施例一:
请参阅图 16, 图 16为本申请通信系统实施例一的结构示意图。 该通信系统 包括上述实施例中所述的脉搏信息检测装置 1610和终端 1620,脉搏信息检测装 置 1610包括第一通信模块 1611 , 终端中包括第二通信模块 1621。 其中, 第一 通信模块 1611与第二通信模块 1621 间可以实现有线或无线通信, 将脉搏信息 检测装置的相关信息发送到终端, 以进行对用户脉象数据深度分析和长久保存。
具体, 第一通信模块 1611用于根据脉搏信息检测装置 1610中处理器的指 令与终端 1620中的第二通信模块 1621进行通信,以实现脉搏信息检测装置 1610 与终端 1620之间的信息交互。 第二通信模块 1621用于根据终端 1620的指令与 第一通信模块 1611通信。 其中, 该第一通信模块 1611、 第二通信模块 1621具 体可以为蓝牙、 红外、 wifi、 或者有线通讯模块, 在此不作限定。 具体, 第一通 信模块 1611 可以直接固定设置在脉搏信息检测装置 1610内部或者表面, 或者 该第一通信模块 1611可拆卸地设置在脉搏信息检测装置 1610上, 例如, 该第 一通信模块 1611通过插入接口如 USB接口设置在脉搏信息检测装置 1610上。 本实施方式中, 第一通信模块 1611为上实施例脉搏信息检测装置的通讯电路。 例如, 脉搏信息检测装置 1610与终端 1620通过第一通信模块 1611、 第二 通信模块 1621 实现连接。 脉搏信息检测装置 1610设置有唯一的身份标识号, 测量者使用脉搏信息检测装置 1610进行测量获得测量结果, 如脉搏压力变化曲 线、 平均心率、 高低血压 (收缩压和舒张压)、 脉象等人体参数以及测量时间、 测试者名称时, 脉搏信息检测装置 1510的处理器主动或者在接收到测量者的输 入发送命令时, 根据与第一、 第二通信模块之间的通信协议, 将测量结果和身 份标识号打包并控制第一通信模块 1611将数据包发送至终端 1620的第二通信 模块 1621。
终端 1620的第二通信模块 1621对该数据包进行解析, 得到测量结果和发 送该测量结果的腕式设备的身份标识号。 终端 1620对该身份标识号进行识别, 如果判断本地数据库中未存储该身份标识号信息, 则建立该身份标识号的档案, 并将测量结果存储在该档案中; 如果判断本地数据库中已建立该身份标识号的 档案, 则直接将测量结果存储在该身份标识号的档案中。
进一步地, 终端 1620还可用于进一步分析数据、 识别脉搏数据、 对测量者 的身体状况做成评价, 并给出对应的建议。具体, 终端 1620根据测量者的脉搏、 血压数据、 脉象通过本地存储的病理特征数据、 或通过进入互联网进行相关病 理特征搜索, 判断出测量者的身体状况, 并搜索出相关的治疗方案、 或者饮食 建议。 更进一步地, 终端 1620预设有脉搏、 血压数据参考值、 脉象参考数据, 在判断测量者的脉搏、 血压或脉象数据超过参考值时, 向预设的第三方发出求 助信号, 例如, 向测量者的亲属或医院自动拨打求助电话。
为更好了解本申请通信系统的应用, 作出具体举例。 测量者将脉搏信息检 测装置设置在腕带上佩戴在手腕处, 并将压力传感器相应提出与脉位处。 由于 该脉搏信息检测装置为腕带式, 测量者腕戴好之后, 可自由活动, 并不会对测 量者造成任何的不便。 测量者可通过脉搏信息检测装置上的相关按键选择与终 端是否连接以及选择与哪一台终端如 IPHONE手机连接。在测量者选择连接时, 选择的且已安装对应软件的终端自带的通信功能如蓝牙、 wifi等方式与脉搏信息 检测装置进行连接。 在连接成功后, 终端与腕戴上的脉搏信息检测装置形成通 信系统。 在需要测量时, 测量者仅需用另一只手握压该腕式设备数秒, 脉搏信 息检测装置即可测量出测量者的脉搏压力数据、 平均心率、 血压等数据。 脉搏 信息检测装置自动将测量出的数据发送给终端, 终端对该数据进行保存, 并根 据脉搏压力数据向测量者现实出当前脉搏变化曲线、 平均心率以及血压值、 脉 象信息等, 并根据上述数据作出诊断和搜索治疗方案, 并在屏幕上显示。 测量 者通过终端即可清除当前身体情况, 并可将该数据通过终端发送给其他终端, 如医生所持的电脑、 平板电脑等, 使得医生及时获知该测量者的身体情况。
本实施例将脉搏信息检测装置与终端形成小型的通信系统, 实现了对人体 参数的传输, 通过终端对人体参数的存储, 便于对测量者历史测量数据的追踪 和对测量者身体情况的实时监控。 而且, 依靠终端较强的处理能力, 可对人体 参数更为全面进行分析, 并向测量者提供诊断和治疗方案, 实现人体参数测量 与诊断的智能一体化。 通信系统的实施例二:
请参阅图 17, 图 17是本申请通信系统实施例二的结构示意图。 该通信系统 包括脉搏信息检测装置 1710、 终端 1720和云端服务器 1730, 其中, 脉搏信息 检测装置 1710与终端 1720之间的通信方式与上实施例相同, 在此不作赘述。 本实施例中, 终端 1720还包括第三通信模块 1722, 用于与云端服务器 1730连 接, 例如通过以太网连接。 不同的脉搏信息检测装置 1710通过终端 1720 , 进入 互联网, 通过互联网服务器的云端服务软件, 与终端 1720、 云端服务器 1730构 成庞大实时云端服务系统, 以实现向检测装置提供连续的、 长期的、 跟踪形式 的云端服务。 本实施例中, 考虑到终端的处理速度和网络传输速率, 终端 1720 设置为仅能与脉搏信息检测装置 1710连接, 不同的脉搏信息检测装置 1710通 过不同的终端 1720与云端服务器 1730构成云端服务系统。 但在其他实施例中, 不同的脉搏信息检测装置可与同一终端连接, 并通过同一终端与服务器构成云 端服务系统。
通过上述方案, 本申请釆用手握式进行测量, 无需设置充气作用的气嚢和 气泵, 大大减少了体积和重量, 使得检测装置轻便化。 进一步地, 由于本申请 脉搏信息检测装置轻便, 可设置为腕戴式, 可实现实时检测人体脉搏、 血压情 况, 通过与终端或服务器连接, 形成智能监控系统, 实现对人体参数测量、 追 踪以及诊断的智能一体化。
以上所述仅为本发明的一种实施例, 并非因此限制本发明的保护范围, 凡 是利用本发明说明书及附图内容所作的等效装置或等效流程变换, 或直接或间 接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1、 一种脉搏信息测量方法, 其特征在于, 包括以下步骤:
佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力, 所述脉搏信息 检测装置的压力传感器通过外周套设的弹性气嚢挤压用户肢体的动脉位置; 所述压力传感器对所述动脉位置的压力进行持续检测;
所述脉搏信息检测装置根据所述压力传感器检测到的压力计算得到人体脉 搏信息。
2、 根据权利要求 1所述的测量方法, 其特征在于, 所述人体脉搏信息包括 人体收缩压和舒张压,
所述佩戴于用户肢体的脉搏信息检测装置接受用户手握按压力的步骤还包 括:
所述手握按压力先由小到大, 再由大到小, 使得用户肢体动脉的血流由畅 通到阻断, 再由阻断到畅通。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据所述压力传感器检 测到的压力计算得到人体脉搏信息的步骤包括:
在所述手握按压力增大和 /或减小过程中获取压力传感器检测到动脉位置 的压力, 获得连续的压力信号;
根据所述压力信号, 分别建立上包络线、 基线和下包络线;
查找出所述下包络线和基线的第一拐点和第二拐点, 将所述第一拐点对应 压力信号的最大值作为动脉位置的收缩压, 将所述第二拐点对应压力信号的最 大值作为动脉位置的舒张压。
4、 根据权利要求 2所述的测量方法, 其特征在于, 所述压力传感器包括背 对背设置的上压力传感器和外周套设有下弹性气嚢的下压力传感器, 所述人体 脉搏信息包括所述动脉位置的脉搏瞬时波形;
所述压力传感器对动脉位置的压力进行持续检测的步骤包括: 所述上压力传感器对手握按压力进行检测, 所述下压力传感器通过所述下 弹性气嚢对所述动脉位置的压力进行检测;
所述脉搏信息检测装置根据所述压力传感器检测到的压力计算得到人体脉 搏信息的步骤包括:
所述脉搏信息检测装置同步获取在所述手握按压力增大和 /或减小过程中 所述上压力传感器输出的上压力和所述下压力传感器输出的下压力, 获得连续 的上、 下压力信号;
所述脉搏信息检测装置获取所述下压力信号和上压力信号间的差值或者比 值, 作为所述动脉位置的脉搏瞬时波形。
5、 根据权利要求 4所述的测量方法, 其特征在于, 所述脉搏信息检测装置 获取所述下压力信号和上压力信号间的差值或者比值, 作为所述动脉位置的脉 搏瞬时波形的步骤之后包括:
所述脉搏信息检测装置根据所述差值或者比值计算动脉位置的收缩压和舒 张压。
6、 根据权利要求 5所述的测量方法, 其特征在于, 所述根据所述差值或者 比值计算动脉位置的收缩压和舒张压的步骤具体包括:
获取在所述手握按压力增大和 /或减小过程中, 所述下压力信号和上压力信 号间的差值最接近 0或者比值最接近 1的两个时刻所对应的两个上压力值; 将所述两个上压力值中的较大值作为动脉位置的收缩压, 较小值得作为动 脉位置的舒张压。
7、 根据权利要求 2至 6任一项所述的测量方法, 其特征在于, 所述压力传 感器包括外周套设有下弹性气嚢的间隔设置的至少两个下压力传感器,
所述方法还包括:
在未接受手握按压力时, 所述脉搏信息检测装置同步获取所述至少两个下 压力传感器分别通过外周套设的下弹性气嚢检测到不同动脉位置的压力, 获得 每个所述下压力传感器输出的连续的至少包括一个脉搏周期的脉搏压力信号; 所述脉搏信息检测装置根据任意两个所述下压力传感器输出脉搏压力信号 的峰值之间或谷值之间的差值以及所述任意两个下压力传感器对应动脉位置之 间距离计算得到动脉位置血压随动脉位置与心脏间距离的衰减关系;
所述根据所述压力传感器检测到的压力计算得到人体脉搏信息的步骤包 括:
根据其中一个所述下压力传感器在接收手握按压力过程中检测到的压力计 算得到人体脉搏信息所述对应动脉位置的收缩压和舒张压, 再根据所述衰减关 系、 所述对应动脉位置的收缩压和舒张压, 得到心脏的收缩压和舒张压。
8、 根据权利要求 1至 7任一项所述的测量方法, 其特征在于, 所述压力传 感器包括三个外周均套设有下弹性气嚢且间隔设置的下压力传感器, 所述用户 肢体的动脉位置包括用户肢体寸、 关、 尺三个动脉位置, 所述人体脉搏信息包 括人体脉象信息,
所述压力传感器对所述动脉位置的压力进行持续检测的步骤包括: 所述三个下压力传感器分别检测用户肢体寸、 关、 尺三个动脉位置的压力; 所述脉搏信息检测装置根据所述压力传感器检测到的压力计算得到人体脉 搏信息的步骤包括:
所述脉搏信息检测装置根据三个下压力传感器检测到的压力进行脉象分 析, 得到人体脉象信息。
9、 根据权利要求 8所述的测量方法, 其特征在于, 所述脉搏信息检测装置 根据三个下压力传感器检测到的压力进行脉象分析, 得到人体脉象信息的步骤 包括:
所述脉搏信息检测装置同步获取所述三个下压力传感器在手握按压力时检 测到左手腕相应动脉位置的压力, 得到三个连续的左下压力信号, 同步获取所 述三个下压力传感器在手握按压力时检测到右手腕相应动脉位置的压力, 得到 三个连续的右下压力信号;
所述根据所述压力传感器检测到的压力计算得到人体脉搏信息的步骤包 括:
所述脉搏信息检测装置根据所述三个左下压力信号和三个右下压力信号进 行脉象分析, 得到脉象信息。
10、 根据权利要求 1至 9任一项所述的测量方法, 其特征在于, 所述手握 按压的时间为大于 4秒的数值。
11、 一种脉搏信息检测装置, 其特征在于, 包括:
压力传感器, 以及套设于所述压力传感器外周的弹性气嚢, 所述压力传感 器在接受用户手握按压力时通过外周套设的弹性气嚢挤压用户肢体的动脉位 置;
处理器, 与所述压力传感器电连接;
所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息。
12、 根据权利要求 11所述的装置, 其特征在于, 所述处理器包括压力获取 模块和脉搏信息计算模块,
所述压力获取模块用于在所述脉搏信息检测装置接受手握按压力时, 获取 所述压力传感器检测到的压力;
所述脉搏信息计算模块根据所述压力传感器检测到的压力计算得到人体脉 搏信息。
13、 根据权利要求 11所述的装置, 其特征在于, 所述人体脉搏信息包括人 体收缩压和舒张压;
所述压力获取模块具体用于在所述手握按压力增大和 /或减小过程中获取 压力传感器检测到动脉位置的压力, 获得连续的压力信号;
所述脉搏信息计算模块具体用于根据所述压力信号, 分别建立上包络线、 基线和下包络线, 查找出所述下包络线和基线的第一拐点和第二拐点, 将所述 第一拐点对应压力信号的最大值作为动脉位置的收缩压, 将所述第二拐点对应 压力信号的最大值作为动脉位置的舒张压。
14、 根据权利要求 13所述的装置, 其特征在于, 所述压力传感器包括背对 背设置的上、 下压力传感器, 所述下压力传感器的外周套设有弹性气嚢, 所述 人体脉搏信息包括所述动脉位置的脉搏瞬时波形;
所述压力获取模块具体用于同步获取在所述手握按压力增大和 /或减小过 程中所述上压力传感器输出的上压力和所述下压力传感器输出的下压力, 获得 连续的上、 下压力信号;
所述脉搏信息计算模块具体用于获取所述下压力信号和上压力信号间的差 值或者比值, 作为所述动脉位置的脉搏瞬时波形。
15、 根据权利要求 14所述的装置, 其特征在于, 所述人体脉搏信息包括人 体收缩压和舒张压;
所述脉搏信息计算模块还用于根据所述下压力信号和上压力信号间的差值 或者比值计算动脉位置的收缩压和舒张压。
16、 根据权利要求 15所述的装置, 其特征在于, 所述脉搏信息计算模块还 具体用于获取在所述手握按压力增大和 /或减小过程中所述下压力信号和上压力 信号间的差值最接近 0或者比值最接近 1的两个时刻所对应的两个上压力值, 将所述两个上压力值中的较大值作为动脉位置的收缩压, 较小值得作为动脉位 置的舒张压。
17、 根据权利要求 13、 15或 16所述的装置, 其特征在于, 所述压力传感 器包括外周套设有下弹性气嚢的间隔设置的至少两个下压力传感器,
所述压力获取模块还用于在未接受手握按压力时, 同步获取所述至少两个 下压力传感器分别通过外周套设的下弹性气嚢检测到不同动脉位置的压力, 获 得每个所述下压力传感器输出的连续的至少包括一个脉搏周期的脉搏压力信 号;
所述处理器还包括衰减计算模块和血压转换模块,
所述衰减计算模块用于根据任意两个所述下压力传感器输出脉搏压力信号 的峰值之间或谷值之间的差值以及所述任意两个下压力传感器对应动脉位置之 间距离计算得到动脉位置血压随动脉位置与心脏间距离的衰减关系; 所述血压转换模块用于根据所述衰减关系、 所述脉搏信息计算模块得到的 所述对应动脉位置的收缩压和舒张压, 得到心脏的收缩压和舒张压。
18、 根据权利要求 12至 17任一项所述的装置, 其特征在于, 所述压力传 感器包括三个外周均套设有下弹性气嚢且间隔设置的下压力传感器, 所述三个 下传感器分别通过外周套设的下弹性气嚢挤压用户的寸、 关、 尺三个动脉位置, 所述人体脉搏信息包括人体脉象信息;
所述压力获取模块具体用于在所述脉搏信息检测装置接受手握按压力过程 中同步获取所述三个下压力传感器检测到的压力;
所述脉搏信息计算模块具体用于根据所述三个下压力传感器检测到的压力 进行脉象分析, 得到脉象信息。
19、 根据权利要求 18所述的装置, 其特征在于, 所述压力获取模块具体用 于同步获取所述三个下压力传感器在手握按压力时检测到左手腕相应动脉位置 的压力, 得到三个连续的左下压力信号, 同步获取所述三个下压力传感器在手 握按压力时检测到右手腕相应动脉位置的压力, 得到三个连续的右下压力信号; 所述脉搏信息计算模块具体用于根据所述三个左下压力信号和三个右下压 力信号进行脉象分析, 得到脉象信息。
20、 根据权利要求 11至 19任一项所述的装置, 其特征在于, 所述压力传 感器为硅压阻式传感器或薄膜压阻式传感器。
21、 根据权利要求 11至 29任一项所述的装置, 其特征在于, 所述弹性气 嚢的外周呈凸半球形, 所述弹性气嚢的材质为橡胶。
22、 根据权利要求 11至 21任一项所述的装置, 其特征在于, 所述脉象检 测装置还包括显示器、 操作键、 语音提示模块、 通讯模块、 I/O接口中的至少一 项, 其中,
所述显示器与所述处理器电连接,用于显示所述脉象检测装置的相关信息; 所述操作键与所述处理器电连接, 用于输入控制命令;
所述语音提示模块与所述处理器电连接, 用于给出所述脉象检测装置操作 过程及测试结果的语音提示;
所述通讯模块与所述处理器电连接, 用于输入用户的个人信息及发送所述 用户的检测信息, 实现所述脉象检测装置与外部移动终端的通讯连接;
所述 I/O接口与所述处理器电连接, 用于使所述脉象检测装置与所述外部 移动终端有线连接或对所述脉象检测装置充电。
23、根据权利要求 22所述的装置,其特征在于,所述通讯模块为蓝牙模块、 无线网络模块或 NFC近场通讯模块。
24、 一种智能腕带, 其特征在于, 包括固定于腕带上的脉搏信息检测装置, 所述脉搏信息检测装置包括:
压力传感器, 以及套设于所述压力传感器外周的弹性气嚢, 所述压力传感 器在接受用户手握按压力时通过外周套设的弹性气嚢挤压用户肢体的动脉位 置;
处理器, 与所述压力传感器电连接;
所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息。
25、 根据权利要求 24所述的智能腕带, 其特征在于, 所述腕带为橡胶材质 的带环、 弹性纤维布带形式的护腕、 金属材质的手链或皮革材质的表带。
26、 根据权利要求 24或 25所述的智能腕带, 其特征在于, 所述智能腕带 还包括功能拓展装置, 所述功能拓展装置固定在所述腕带上, 所述功能拓展装 置为时针手表表盘、 智能手表表盘、 无线 MP3、 电源和小型通讯设备中的一种 或几种, 所述功能拓展装置与所述腕带的固定形式为捆绑式、 卡合式或铰接式。
27、 根据权利要求 24至 26任一项所述的智能腕带, 其特征在于, 所述脉 象检测装置釆用可拆卸形式固定所述腕带上, 所述脉象检测装置在所述腕带上 的固定位置包括适配左手腕寸关尺的左手固定位置、 及适配右手腕寸关尺的右 手固定位置。
28、 一种智能手表, 包括表盘、 表带和时间显示装置, 所述时间显示装置 固定于所述表盘上, 所述表盘固定于所述表带上, 其特征在于, 还包括: 固定 于表带上的脉搏信息检测装置, 所述脉搏信息检测装置包括:
压力传感器, 以及套设于所述压力传感器外周的弹性气嚢, 所述压力传感 器在接受用户手握按压力时通过外周套设的弹性气嚢挤压用户肢体的动脉位 置;
处理器, 与所述压力传感器电连接;
所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息。
29、 一种通信系统, 其特征在于, 所述通信系统包括脉搏信息检测装置和 终端, 所述脉搏信息检测装置包括:
压力传感器, 以及套设于所述压力传感器外周的弹性气嚢, 所述压力传感 器在接受用户手握按压力时通过外周套设的弹性气嚢挤压用户肢体的动脉位 置;
处理器, 与所述压力传感器电连接;
所述处理器根据所述压力传感器检测到的压力计算得到人体脉搏信息; 所述脉搏信息检测装置还包括第一通信模块,所述终端包括第二通信模块, 所述第一、 第二通信模块之间能够进行连接, 实现所述脉搏信息检测装置与终 端间的通信。
PCT/CN2014/074323 2014-03-28 2014-03-28 一种脉搏信息测量方法、相关装置和通信系统 WO2015143726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/074323 WO2015143726A1 (zh) 2014-03-28 2014-03-28 一种脉搏信息测量方法、相关装置和通信系统
CN201480030182.5A CN105358048B (zh) 2014-03-28 2014-03-28 一种脉搏信息测量方法、相关装置和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074323 WO2015143726A1 (zh) 2014-03-28 2014-03-28 一种脉搏信息测量方法、相关装置和通信系统

Publications (1)

Publication Number Publication Date
WO2015143726A1 true WO2015143726A1 (zh) 2015-10-01

Family

ID=54193957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074323 WO2015143726A1 (zh) 2014-03-28 2014-03-28 一种脉搏信息测量方法、相关装置和通信系统

Country Status (2)

Country Link
CN (1) CN105358048B (zh)
WO (1) WO2015143726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3566639A1 (en) * 2018-05-08 2019-11-13 Koninklijke Philips N.V. Apparatus for determining a blood pressure measurement

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106108875A (zh) * 2016-07-29 2016-11-16 济南舜风科技有限公司 诊脉腕带及具有该诊脉腕带的复合式电子诊脉仪
CN108937880A (zh) * 2018-08-23 2018-12-07 上海掌门科技有限公司 用于脉搏检测的可穿戴设备以及脉搏检测方法
JP6472153B1 (ja) * 2018-11-08 2019-02-20 兆奇 胡 脈拍測定による健康状態評価システムとその作動方法
TWI721585B (zh) * 2019-10-01 2021-03-11 友達光電股份有限公司 脈搏量測設備
CN112641433B (zh) * 2020-12-21 2023-05-05 上海连尚网络科技有限公司 一种利用诊脉设备测量脉搏信息的方法与设备
CN112603272A (zh) * 2020-12-24 2021-04-06 中科彭州智慧产业创新中心有限公司 一种脉象快速区分检测仪
CN117678988A (zh) * 2023-08-30 2024-03-12 荣耀终端有限公司 血压测量方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2305163Y (zh) * 1997-08-27 1999-01-27 邢燕 一种自动数字血压计
DE20219565U1 (de) * 2002-12-17 2003-03-06 Hsu Jui Tzen Elektronisches Armband-Blutdruckmeßgerät
CN101340845A (zh) * 2005-12-20 2009-01-07 欧姆龙健康医疗事业株式会社 计算血压值的电子血压计
CN103645625A (zh) * 2013-11-14 2014-03-19 成都博约创信科技有限责任公司 具有脉搏和血压检测功能的按摩手表及其使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346740C (zh) * 2003-05-20 2007-11-07 香港中文大学 基于桡动脉脉搏信息的血压测量装置
CN101077300A (zh) * 2007-06-25 2007-11-28 许建平 血压的监测方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2305163Y (zh) * 1997-08-27 1999-01-27 邢燕 一种自动数字血压计
DE20219565U1 (de) * 2002-12-17 2003-03-06 Hsu Jui Tzen Elektronisches Armband-Blutdruckmeßgerät
CN101340845A (zh) * 2005-12-20 2009-01-07 欧姆龙健康医疗事业株式会社 计算血压值的电子血压计
CN103645625A (zh) * 2013-11-14 2014-03-19 成都博约创信科技有限责任公司 具有脉搏和血压检测功能的按摩手表及其使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3566639A1 (en) * 2018-05-08 2019-11-13 Koninklijke Philips N.V. Apparatus for determining a blood pressure measurement

Also Published As

Publication number Publication date
CN105358048A (zh) 2016-02-24
CN105358048B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2015143726A1 (zh) 一种脉搏信息测量方法、相关装置和通信系统
CA2900904C (en) Personal health data collection
CN203852342U (zh) 一种基于智能腕带的通信系统
CN113520357B (zh) 一种血压测量装置及方法
CN203953630U (zh) 一种脉象检测装置、智能腕带、智能手表和通信系统
WO2015143723A1 (zh) 人体健康数据云端处理方法、移动终端和通信系统
CN203953636U (zh) 一种血压检测装置、智能腕带、智能手表和通信系统
CN203953635U (zh) 一种压力传感器组件及动脉搏动检测装置
WO2016119656A1 (zh) 心血管健康监测装置及方法
WO2015143728A1 (zh) 一种血压检测装置及测量方法、相关装置和通信系统
WO2015143729A1 (zh) 一种脉象检测装置及测量方法、相关装置和通信系统
CN110022763A (zh) 一种手表腕带
CN108289625A (zh) 用于控制静脉血液流量、改进静脉扩张并实现血压测量的夹持设备、系统及方法
CN204147018U (zh) 一种动脉搏动检测装置、压力传感器组件、智能腕带、智能手表和通信系统
CN204500717U (zh) 一种便携式生理参数检测仪
WO2018168792A1 (ja) 生体情報測定装置、方法及びプログラム
CN106037695A (zh) 血压检测设备、血压监测系统及方法
US20230095971A1 (en) Comprehensive wearable vital signs monitor
WO2022111422A1 (zh) 血压测量装置及其加压方法
WO2015143725A1 (zh) 一种血压检测装置及相关测量方法、装置和通信系统
CN104138252A (zh) App设置手环式光量子桡动脉检测与治疗一体装置
US20180206736A1 (en) Blood pressure measurement device and method
EP3222211A1 (en) Blood pressure measurement device and method of blood pressure measurement
TWI586319B (zh) Cardiovascular health monitoring device and method
JP6710318B2 (ja) 生体情報測定装置、方法及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030182.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887663

Country of ref document: EP

Kind code of ref document: A1