WO2015143626A1 - Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur - Google Patents

Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur Download PDF

Info

Publication number
WO2015143626A1
WO2015143626A1 PCT/CN2014/074040 CN2014074040W WO2015143626A1 WO 2015143626 A1 WO2015143626 A1 WO 2015143626A1 CN 2014074040 W CN2014074040 W CN 2014074040W WO 2015143626 A1 WO2015143626 A1 WO 2015143626A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pressure
well
wellhead
displacement
Prior art date
Application number
PCT/CN2014/074040
Other languages
English (en)
Chinese (zh)
Inventor
辛宏
朱天寿
慕立俊
曾亚勤
黄伟
甘庆明
李明
张磊
杨海涛
韩二涛
李明江
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to PCT/CN2014/074040 priority Critical patent/WO2015143626A1/fr
Publication of WO2015143626A1 publication Critical patent/WO2015143626A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B47/009Monitoring of walking-beam pump systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • E21B43/127Adaptations of walking-beam pump systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor

Definitions

  • the invention relates to the field of oil field test well, and is a method for real-time monitoring of bottomhole flow pressure data by using digital wellsite field test, collecting data and oil well basic data, realizing monitoring of bottomhole flow pressure data based on dynamometer diagram and method for obtaining formation parameters based on dynamometer system. Background technique
  • the oil well dynamic surface and bottom hole flow pressure are important data for oil well evaluation; the oil well dynamic surface data can directly reflect the liquid supply situation of the formation and the relationship between underground supply and discharge is the evaluation and optimization of the oil production process.
  • the important basis is that the bottom hole flow pressure refers to the pressure at the bottom of the well during normal production, and it is one of the most important parameters determining the output of the well.
  • the present invention proposes to make full use of the existing test and acquisition data, obtain the bottom hole flow pressure by using the oil well dynamic surface, and does not need to shut down the well pressure measurement, and only needs to change the working system to change the output and obtain an accurate formation. Parameters, for well test analysis.
  • the present invention provides a method for two-flow well test analysis based on a dynamometer diagram, the method comprising: measuring a wellhead casing pressure by a pressure gauge installed at a wellhead, by installing on a wellhead suspension rope Load sensor and displacement sensor under the beam of the pumping unit, measure the load and displacement of the sucker rod of the pumping unit, collect and acquire the load and time curve, and the displacement and time curve; according to the load and time curve, and a displacement and time curve, generating a light pole dynamometer of the load amount and displacement of the sucker rod as a function of time; To the pump work diagram; establish a mathematical model of the dynamic liquid surface calculation according to the pump work diagram, and obtain the oil well surface data; under a working system, obtain the bottom hole flow pressure data according to the oil well dynamic surface data and the wellhead casing pressure calculation Adjusting the parameters of the working system, monitoring the change of the wellhead casing pressure in real time, obtaining the change of the bottomhole flow pressure data by
  • the present invention also provides a system for two-flow well test analysis based on a dynamometer, the system comprising: a data acquisition device and a data processing device; wherein the data acquisition device is configured to be installed
  • the pressure gauge at the wellhead measures the wellhead casing pressure, and measures the load and displacement of the sucker rod of the pumping unit through the load sensor installed on the wellhead suspension and the displacement sensor below the pumping beam, and collects and acquires the load.
  • the data processing device includes: an oil well moving liquid surface acquisition module, a bottom hole flow pressure calculation module, a well test data processing module, a well test data analysis module; wherein, the oil well fluid a surface acquisition module, configured to generate a light pole indicator diagram of the load amount and displacement of the sucker rod according to the load and time curve, and the displacement and time curve; and obtain pump work according to the light pole work diagram Drawing a mathematical model for calculating the dynamic liquid surface according to the pump work diagram, obtaining oil well surface data; the bottom hole flow pressure The calculation module is configured to obtain bottom hole flow pressure data according to the oil well dynamic surface data and the wellhead casing pressure calculation under a working system; the well test data processing module is configured to adjust parameters of the working system, real-time monitoring The change of the wellhead casing pressure is obtained by calculating the change of the bottomhole flow pressure data, and fitting a wellhead casing pressure variation curve and a bottomhole flow pressure variation curve; the well testing data analysis module is configured according to the well
  • the method and system for the two-flow well test analysis based on the dynamometer of the present invention realizes the real-time calculation of the bottomhole flow pressure by using the dynamometer graph without breaking any collection instrument and equipment, and breaks the traditional method for shutting down the well.
  • the second flow well test analysis method is applied to realize the accurate acquisition of the bottom hole parameters.
  • the analytical results are milder than the measured and measured data, and the fitting parameters are reliable. It has guiding significance for the optimization and adjustment of the oil well working system, reducing the workload of the pressure measuring operation and reducing The impact of shut-in on production, solving the contradiction between obtaining formation parameters and oilfield production, reducing testers, reducing labor costs and production test costs, and meeting the needs of oilfield digital production management.
  • FIG. 1 is a flow chart of a method for two-flow well test analysis based on a power diagram according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a system structure of a two-flow well test analysis based on a power diagram according to an embodiment of the present invention.
  • 3A and 3B are schematic views showing the structure of a beam pumping unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power diagram of a light pole dynamometer transfer pump according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a double logarithmic fitting curve according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a semi-logarithmic fitting curve according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a pressure history fitting curve according to an embodiment of the present invention. detailed description
  • FIG. 1 is a flow chart of a method for two-flow well test analysis based on a power diagram according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • Step S101 measuring the wellhead casing pressure by a pressure gauge installed at the wellhead, and measuring the load and displacement of the sucker rod of the pumping unit by a load sensor installed on the wellhead suspension rope and a displacement sensor below the pumping beam of the pumping unit , Collect and acquire load versus time curves, and displacement versus time curves.
  • Step S102 according to the load and time curve, and the displacement and time curve, generate a light rod indicator diagram of the load amount and displacement of the sucker rod as a function of time.
  • Step S103 obtaining a pump power map according to the polished light diagram.
  • Step S104 a mathematical model for calculating the dynamic liquid surface is established according to the pump work diagram, and the oil well surface data is obtained.
  • Step S105 obtaining a bottomhole flow pressure data according to the oil well surface data and the wellhead casing pressure calculation under a working system.
  • Step S106 adjusting the parameters of the working system, real-time monitoring the change of the wellhead casing pressure, obtaining the change of the bottomhole flow pressure data through calculation, fitting the wellhead casing pressure variation curve and the bottomhole flow pressure variation curve.
  • Step S107 performing well test analysis according to the wellhead casing pressure change curve and the bottom hole flow pressure change curve, and obtaining the analysis result.
  • the collected data is transmitted to the data acquisition device of the wellhead through the cable line, and then uploaded to the remote data terminal of the well site through the data acquisition device. Then, the collected data is uploaded to the data processing device of the primary station through the well group antenna.
  • a mathematical model for calculating the dynamic liquid surface is established according to the pump power map, and obtaining the oil well surface data includes: using a sinking pressure as a node, establishing a balance model in which the fixed valve in the stroke and the floating valve act on the plunger The force is analyzed for the plunger to obtain the first sinking pressure, and then the first sinking pressure is compared with the second sinking pressure obtained by the oil jacket annulus pressure distribution, and the oil well moving surface data is obtained.
  • the formula for obtaining the bottomhole flow pressure data using the oil well dynamic surface data and the wellhead casing pressure calculation is as follows:
  • the oil column annular space liquid column density kg / m3;
  • / w water content
  • A is crude oil density, kg / m3;
  • is the water density, kg / m3; for the pump hanging depth, m;
  • P e is the wellhead casing pressure, Mpa
  • m is the bottom hole flow pressure data, Mpa.
  • step S106 adjusting the parameters of the working system can obtain the well test data under different working systems by changing parameters such as stroke, stroke, pump diameter, pumping and the like when the pumping unit is working; wherein, the pumping and pumping paths need to be renewed.
  • parameters such as stroke, stroke, pump diameter, pumping and the like when the pumping unit is working; wherein, the pumping and pumping paths need to be renewed.
  • changing the working system generally means changing the stroke and the stroke.
  • step S107 After obtaining the analysis result in step S107, the system network structure can be established, and the analysis result is released in units of the oil production plant.
  • a two-flow well test analysis system based on the dynamometer is also provided in the embodiment of the present invention, as described in the following embodiments. Since the principle of solving the problem by the two-flow well testing analysis system based on the dynamometer is similar to the two-flow well testing analysis method based on the dynamometer, the implementation of the two-flow well testing analysis system based on the dynamometer can be referred to the aforementioned well testing analysis. The implementation of the method, the repetition will not be repeated.
  • the term "unit” or "module” may implement a combination of software and/or hardware for a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 2 is a schematic diagram of a system structure of a two-flow well test analysis based on a dynamometer diagram according to an embodiment of the present invention. The structure will be specifically described below.
  • the system includes: a data acquisition device 1 and a data processing device 2;
  • the data collecting device 1 is configured to measure the wellhead casing pressure by a pressure gauge installed at the wellhead, and is installed by hanging at the wellhead
  • the load sensor on the rope and the displacement sensor under the beam of the pumping unit measure the load and displacement of the sucker rod of the pumping unit, collect and acquire the load and time curve, and the displacement and time curve;
  • the data processing device 2 includes: an oil well dynamic liquid surface acquisition module 21, a bottom hole flow pressure calculation module 22, a well test data processing module 23, and a well test data analysis module 24;
  • the oil well moving liquid surface obtaining module 21 is configured to generate a light rod indicator diagram of the load amount and the displacement of the sucker rod according to the load and time curve, and the displacement and time curve; and obtain a pump power map according to the light rod indicator diagram; According to the pump work diagram, the mathematical model of the dynamic liquid surface is calculated, and the oil well surface data is obtained;
  • the bottom hole flow pressure calculation module 22 is configured to obtain bottom hole flow pressure data according to the oil well dynamic surface data and the wellhead casing pressure calculation under a working system;
  • the well test data processing module 23 is configured to adjust the parameters of the working system, monitor the change of the wellhead casing pressure in real time, obtain the change of the bottomhole flow pressure data through calculation, and fit to generate the wellhead casing pressure variation curve and the bottomhole flow pressure variation curve;
  • the well test data analysis module 24 is configured to perform well test analysis according to the wellhead casing pressure change curve and the bottom hole flow pressure change curve, and obtain the analysis result.
  • the data acquisition device 1 transmits the collected data to the data acquisition device 1 of the wellhead through the cable line, and then passes through the data acquisition device 1
  • the remote data terminal (RTU) uploaded to the well site transmits the collected data to the data processing device 2 of the primary station through the well group antenna.
  • the oil well moving surface acquisition module 21 establishes a mathematical model for calculating the dynamic liquid surface according to the pump work diagram, and obtaining the oil well dynamic surface data includes:
  • sinking pressure as a node, establish a balance model in which the fixed valve in the stroke and the floating valve act on the plunger to perform force analysis on the plunger to obtain the first sinking pressure, and then the first sinking pressure and the oil jacket The second sinking pressure obtained by the annulus pressure distribution is compared to obtain the oil well surface data.
  • the formula for calculating the bottomhole flow pressure data by the bottom hole flow pressure calculation module 22 is as follows:
  • A is the liquid column density of the oil jacket annular space, kg/m3;
  • A is the density of crude oil, kg/m3; ⁇ is the water density, kg / m3; for the pump hanging depth, m; for the wellhead casing pressure, Mpa;
  • R D is the bottom hole flow pressure data, Mpa.
  • the parameters of the test data processing module 23 to adjust the working system include: changing the stroke, stroke, pump diameter, and pumping of the pumping unit.
  • system further includes: a result issuing device, configured to establish a system network structure after obtaining the analysis result, and release the analysis result in units of the oil production plant.
  • a result issuing device configured to establish a system network structure after obtaining the analysis result, and release the analysis result in units of the oil production plant.
  • the beam pumping unit in the well field mainly comprises: a power mechanism 31, a bracket 32, a beam center shaft 33, a beam 34, a hammer 35, a crankshaft link 36, and a sucker rod 37. , the suspension cable 38 and the electric control box 39; wherein the beam 34 is mounted on the bracket 32 through the beam center shaft 33, the hammer 35 is mounted on the beam 34 end, and the other end of the beam 34 is connected by the crank link 36.
  • the sucker rod 37 is connected to the hammer 35, and the suspension rod 38 is disposed on the sucker rod 37, and the electric control box 39 is used to control the power of the entire pumping unit.
  • the pumping unit is further provided with a displacement sensor 41, a load sensor 42, a pressure gauge 43 and a data acquisition device 44; the displacement sensor 41 is disposed below the beam 34, and the load sensor 42 is disposed on the suspension cable 38.
  • the pressure gauge 43 is disposed at the wellhead, and the data collection device 44 is disposed between the brackets 32 of the pumping well.
  • the power mechanism 31 drives the beam 34 and the hoe.
  • the displacement sensor 41 and the load sensor 42 are used to measure the displacement and load of the pumping rod 37;
  • the pressure gauge 43 is used to measure the real-time casing pressure value of the oil well;
  • the data acquisition device 44 collects the above data and sends it to the well.
  • the remote data terminal uploads the logging data to the main station computer through the well group antenna.
  • the displacement sensor 41 is composed of a magnetic steel and a Hall probe, and is respectively installed at a corresponding position of the pumping beam 34 and the bracket 32.
  • the displacement sensor has a range of 0 ⁇ 5m and an accuracy of 0.5%.
  • the load cell has a range of 0 to 150 kN and an accuracy of 0.5%.
  • the displacement sensor 41 measures the displacement of the sucker rod of the pumping unit
  • the load sensor 42 measures the load amount of the sucker rod of the pumping unit
  • the pressure gauge 43 measures the real-time casing pressure value of the oil well, and respectively measures the respective values through the cable line.
  • the displacement, load and casing values are transmitted as electrical signals to a data acquisition device 44 on a respective pumping unit.
  • the data acquisition device 44 can upload the collected load amount, displacement and casing pressure value to the remote data terminal of the well site, and the remote data terminal of the well site uploads the collected data to the main station computer of the primary station through the well group antenna.
  • the main station computer monitors and displays the oil well data in real time, such as pump work diagram, oil well dynamic surface, bottom hole flow pressure, and second flow well test analysis results.
  • the result distribution device set in each well site receives the well data and results sent from the main station computer, all the data is stored and the web page information is released in the well site.
  • Fig. 4 is a schematic view showing the work diagram of the light pole dynamometer transfer pump according to an embodiment of the present invention.
  • the master station computer uses the variation of the load and displacement of the sucker rod 37 to obtain the polished rod diagram. Then, through the establishment of the sucker rod 37, the tubing finite element model and the liquid column difference calculation model, the load diagram of the pumping port of the deep well, the load of the sucker rod and the displacement versus time are solved iteratively, that is, the pump power diagram is obtained.
  • the mathematical model of the moving liquid surface is established by the pump power diagram, and the sinking pressure is used as a node to establish a balance model in which the fixed valve in the stroke and the floating valve act on the plunger.
  • the sinking pressure corresponding to the pumping degree is compared with the suction pressure of the pump during the upper stroke, and then compared with the sinking pressure obtained by the oil ring annulus pressure distribution, and the oil well surface data is estimated.
  • a mathematical model of the bottom hole flow pressure is established, and the bottom hole flow pressure is calculated according to the real-time calculation of the oil well dynamic surface and the wellhead casing pressure.
  • a light rod dynamometer map is acquired every 10 minutes, corresponding to solving a well hydraulic surface and bottom hole flow pressure. Collecting 144 dynamometers a day can solve 144 downhole flow pressures.
  • the well testing method described in Figure 1 by changing the working principle of the oil well, such as adjusting the stroke, stroke, etc., continuously monitoring the oil-liquid surface and casing pressure change data before and after the adjustment, and using the vertical pipe flow for liquid level conversion and two-flow
  • the well test analysis method is combined with the "change well storage + skin + homogeneous infinite reservoir model" for fitting analysis, and the reservoir pressure coefficient, effective permeability, and skin factor of the near well zone are obtained.
  • the two flow test wells are based on the principle of seepage mechanics.
  • the pressure change process reflects the properties of the formation and fluid and the boundary conditions of the well. This is the theoretical basis for determining the parameters of the formation and pumping well by using the variable flow test curve of the working parameters of the well.
  • an oil well on May 16, 2012 in the working system is pump diameter ⁇ 32 (mm) stroke 2. 5 (m) X punch times 3. 8 (min 1 ) X pump hanging 813. 74 (m) stable Production for 10 days, monitoring casing pressure, bottom hole pressure data, and then changing the working system to pump diameter ⁇ 32 (mm) X stroke 2. 5 (m) X punching 2. 3 (min 1 ) X pump hanging 813.74 (m) Stable production for 10 days, monitoring casing pressure, bottom hole pressure, casing pressure test through the wellhead pressure test chart and remote transmission to the main station computer, the bottom hole pressure is calculated by the collected dynamometer data, as shown in Table 1 below.
  • the comprehensive analysis of the test results shows that the pressure coefficient is 0.92, which belongs to the atmospheric reservoir.
  • the effective permeability of the fitting result is 2.019 ⁇ 10 ⁇ 3 ⁇ 2 , indicating that it is a low permeability reservoir.
  • the skin factor of the near well zone is 0.06, indicating a slight pollution in the near-well zone.
  • the pressure coefficient is 0.92.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

La présente invention concerne un procédé et un système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur. Le procédé comprend : la mesure de pression et de charge d'une colonne de surface et le déplacement d'une tige de pompage d'une machine de pompage de pétrole, et la collecte et l'acquisition d'une courbe de charge et de temps et d'une courbe de déplacement et de temps ; la génération d'un diagramme d'indicateur de tige polie variant dans le temps d'une capacité de charge et le déplacement de la tige de pompage conformément à la courbe de charge et de temps et à la courbe de déplacement et de temps ; l'acquisition d'un diagramme de pompe conformément au diagramme d'indicateur de tige polie ; la construction d'un modèle mathématique de calcul de niveau de fluide de travail conformément au diagramme de pompe, et l'acquisition de données de niveau de fluide de travail d'un puits de pétrole ; l'acquisition, au moyen de calcul, de données de pression de fond d'écoulement conformément aux données de niveau de fluide de travail du puits de pétrole et à la pression de colonne de surface dans un système de travail ; l'ajustement d'un paramètre du système de travail, la surveillance des variations de la pression de colonne de surface en temps réel, l'acquisition, au moyen de calcul, des variations des données de pression de fond d'écoulement, et la génération, au moyen d'un ajustement, d'une courbe de variation de pression de colonne de surface et d'une courbe de variation de pression de fond d'écoulement ; et la conduite d'une analyse d'essai de puits conformément à la courbe de variation de pression de colonne de surface et à la courbe de variation de pression de fond d'écoulement, et l'acquisition d'un résultat d'analyse.
PCT/CN2014/074040 2014-03-25 2014-03-25 Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur WO2015143626A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074040 WO2015143626A1 (fr) 2014-03-25 2014-03-25 Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074040 WO2015143626A1 (fr) 2014-03-25 2014-03-25 Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur

Publications (1)

Publication Number Publication Date
WO2015143626A1 true WO2015143626A1 (fr) 2015-10-01

Family

ID=54193869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074040 WO2015143626A1 (fr) 2014-03-25 2014-03-25 Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur

Country Status (1)

Country Link
WO (1) WO2015143626A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257279A (zh) * 2015-10-26 2016-01-20 中国石油天然气股份有限公司 一种抽油机井动液面的测量方法
CN106884644A (zh) * 2017-04-26 2017-06-23 中国石油大学(华东) 基于时序地面示功图的抽油机井实时工况诊断方法
CN106917612A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 抽油机井供采协调控制方法及装置
CN108979624A (zh) * 2018-08-07 2018-12-11 东北大学 一种基于示功图矩特征的有杆抽油系统摩擦因数辨识方法
CN109356569A (zh) * 2018-09-30 2019-02-19 西安海联石化科技有限公司 集散式动液面监测平台
CN109538186A (zh) * 2018-11-15 2019-03-29 辽宁弘毅科技有限公司 基于激光测距技术及卡光杆技术综合测试仪的测试方法
CN109815543A (zh) * 2018-12-20 2019-05-28 中国石油集团川庆钻探工程有限公司 计算气田动态储量的方法
CN110056343A (zh) * 2018-01-15 2019-07-26 中国石油天然气股份有限公司 电泵井动液面的确定方法和装置
CN111625757A (zh) * 2020-06-09 2020-09-04 承德石油高等专科学校 一种数字化油田预测单井产量的算法
CN111946329A (zh) * 2020-09-08 2020-11-17 中国石油天然气股份有限公司 一种油井动液面求取方法
CN111963151A (zh) * 2020-09-01 2020-11-20 中国石油天然气股份有限公司 一种通过抽油机悬点静载荷确定地层压力的方法
CN111963147A (zh) * 2020-09-01 2020-11-20 中国石油天然气股份有限公司 通过抽油机悬点静载荷监测动液面及动液面确定方法
CN111963161A (zh) * 2020-09-03 2020-11-20 中国石油天然气股份有限公司 确定隐性不正常油井的方法及装置
CN111980664A (zh) * 2020-07-28 2020-11-24 中国石油天然气股份有限公司 一种特殊工况油井的窄条状功图分析方法
CN112031748A (zh) * 2020-09-14 2020-12-04 南京富岛信息工程有限公司 一种基于示功图特征的抽油机井异常工况诊断方法
CN112096370A (zh) * 2020-09-09 2020-12-18 中国石油天然气股份有限公司 一种间开制度自学习方法
CN112196519A (zh) * 2020-09-05 2021-01-08 黑龙江省荣泽石油设备有限公司 一种油井非稳态连续动液面的检测方法
CN112253102A (zh) * 2020-11-05 2021-01-22 中国石油天然气股份有限公司 油井套管放气压力的确定方法和装置
CN112360427A (zh) * 2019-07-26 2021-02-12 中国石油天然气股份有限公司 抽油泵供排关系变化趋势的报警方法
CN112392466A (zh) * 2020-11-20 2021-02-23 中国石油天然气股份有限公司 一种基于油井示功图的能量计算动液面方法
CN112627804A (zh) * 2020-12-14 2021-04-09 赛洇科技(北京)有限公司 一种示功图获取方法、电路板及系统
CN114075969A (zh) * 2021-11-17 2022-02-22 国网河北省电力有限公司沧州供电分公司 动液面的检测方法、装置及油田机采系统
CN114412438A (zh) * 2021-12-31 2022-04-29 沈阳中科奥维科技股份有限公司 一种数字化条件下电泵井的工况分析与液量计量方法
CN114517673A (zh) * 2022-02-28 2022-05-20 沈阳中科奥维科技股份有限公司 一种基于电参的示功图预测方法
CN115434690A (zh) * 2021-06-04 2022-12-06 中国科学院沈阳自动化研究所 基于贝叶斯的抽油机无监督在线突变点检测及融合方法
CN115707855A (zh) * 2021-08-19 2023-02-21 中国石油天然气股份有限公司 基于水力管式泵的排采控制方法、装置、设备和存储介质
CN117722173A (zh) * 2024-02-06 2024-03-19 灵知科技(大庆)有限公司 一种监测多场景动态参数的智能诊断测控系统及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052304A1 (fr) * 2007-10-16 2009-04-23 Vermeer Manufacturing Company Dispositifs et procédés pour commande de puissance dans le forage directionnel horizontal
CN102877832A (zh) * 2012-09-14 2013-01-16 中国石油天然气股份有限公司 一种油井动液面的测量方法及系统
CN203420705U (zh) * 2013-07-31 2014-02-05 中国石油天然气股份有限公司 一种实时监测井底流压的系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052304A1 (fr) * 2007-10-16 2009-04-23 Vermeer Manufacturing Company Dispositifs et procédés pour commande de puissance dans le forage directionnel horizontal
CN102877832A (zh) * 2012-09-14 2013-01-16 中国石油天然气股份有限公司 一种油井动液面的测量方法及系统
CN203420705U (zh) * 2013-07-31 2014-02-05 中国石油天然气股份有限公司 一种实时监测井底流压的系统

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257279A (zh) * 2015-10-26 2016-01-20 中国石油天然气股份有限公司 一种抽油机井动液面的测量方法
CN106917612A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 抽油机井供采协调控制方法及装置
CN106917612B (zh) * 2015-12-24 2019-08-02 中国石油天然气股份有限公司 抽油机井供采协调控制方法及装置
CN106884644A (zh) * 2017-04-26 2017-06-23 中国石油大学(华东) 基于时序地面示功图的抽油机井实时工况诊断方法
CN106884644B (zh) * 2017-04-26 2020-12-15 中国石油大学(华东) 基于时序地面示功图的抽油机井实时工况诊断方法
CN110056343A (zh) * 2018-01-15 2019-07-26 中国石油天然气股份有限公司 电泵井动液面的确定方法和装置
CN108979624A (zh) * 2018-08-07 2018-12-11 东北大学 一种基于示功图矩特征的有杆抽油系统摩擦因数辨识方法
CN109356569A (zh) * 2018-09-30 2019-02-19 西安海联石化科技有限公司 集散式动液面监测平台
CN109356569B (zh) * 2018-09-30 2023-11-03 西安海联石化科技有限公司 集散式动液面监测平台
CN109538186A (zh) * 2018-11-15 2019-03-29 辽宁弘毅科技有限公司 基于激光测距技术及卡光杆技术综合测试仪的测试方法
CN109815543A (zh) * 2018-12-20 2019-05-28 中国石油集团川庆钻探工程有限公司 计算气田动态储量的方法
CN112360427B (zh) * 2019-07-26 2023-11-28 中国石油天然气股份有限公司 抽油泵供排关系变化趋势的报警方法
CN112360427A (zh) * 2019-07-26 2021-02-12 中国石油天然气股份有限公司 抽油泵供排关系变化趋势的报警方法
CN111625757B (zh) * 2020-06-09 2024-03-01 承德石油高等专科学校 一种数字化油田预测单井产量的算法
CN111625757A (zh) * 2020-06-09 2020-09-04 承德石油高等专科学校 一种数字化油田预测单井产量的算法
CN111980664A (zh) * 2020-07-28 2020-11-24 中国石油天然气股份有限公司 一种特殊工况油井的窄条状功图分析方法
CN111963147A (zh) * 2020-09-01 2020-11-20 中国石油天然气股份有限公司 通过抽油机悬点静载荷监测动液面及动液面确定方法
CN111963151B (zh) * 2020-09-01 2024-05-28 中国石油天然气股份有限公司 一种通过抽油机悬点静载荷确定地层压力的方法
CN111963151A (zh) * 2020-09-01 2020-11-20 中国石油天然气股份有限公司 一种通过抽油机悬点静载荷确定地层压力的方法
CN111963161A (zh) * 2020-09-03 2020-11-20 中国石油天然气股份有限公司 确定隐性不正常油井的方法及装置
CN111963161B (zh) * 2020-09-03 2023-08-22 中国石油天然气股份有限公司 确定隐性不正常油井的方法及装置
CN112196519A (zh) * 2020-09-05 2021-01-08 黑龙江省荣泽石油设备有限公司 一种油井非稳态连续动液面的检测方法
CN112196519B (zh) * 2020-09-05 2023-05-09 黑龙江省荣泽石油设备有限公司 一种油井非稳态连续动液面的检测方法
CN111946329A (zh) * 2020-09-08 2020-11-17 中国石油天然气股份有限公司 一种油井动液面求取方法
CN111946329B (zh) * 2020-09-08 2023-09-26 中国石油天然气股份有限公司 一种油井动液面求取方法
CN112096370A (zh) * 2020-09-09 2020-12-18 中国石油天然气股份有限公司 一种间开制度自学习方法
CN112096370B (zh) * 2020-09-09 2023-12-26 中国石油天然气股份有限公司 一种间开制度自学习方法
CN112031748B (zh) * 2020-09-14 2023-09-01 南京富岛信息工程有限公司 一种基于示功图特征的抽油机井异常工况诊断方法
CN112031748A (zh) * 2020-09-14 2020-12-04 南京富岛信息工程有限公司 一种基于示功图特征的抽油机井异常工况诊断方法
CN112253102B (zh) * 2020-11-05 2023-09-26 中国石油天然气股份有限公司 油井套管放气压力的确定方法和装置
CN112253102A (zh) * 2020-11-05 2021-01-22 中国石油天然气股份有限公司 油井套管放气压力的确定方法和装置
CN112392466A (zh) * 2020-11-20 2021-02-23 中国石油天然气股份有限公司 一种基于油井示功图的能量计算动液面方法
CN112627804A (zh) * 2020-12-14 2021-04-09 赛洇科技(北京)有限公司 一种示功图获取方法、电路板及系统
CN115434690A (zh) * 2021-06-04 2022-12-06 中国科学院沈阳自动化研究所 基于贝叶斯的抽油机无监督在线突变点检测及融合方法
CN115434690B (zh) * 2021-06-04 2024-05-14 中国科学院沈阳自动化研究所 基于贝叶斯的抽油机无监督在线突变点检测及融合方法
CN115707855A (zh) * 2021-08-19 2023-02-21 中国石油天然气股份有限公司 基于水力管式泵的排采控制方法、装置、设备和存储介质
CN114075969A (zh) * 2021-11-17 2022-02-22 国网河北省电力有限公司沧州供电分公司 动液面的检测方法、装置及油田机采系统
CN114412438A (zh) * 2021-12-31 2022-04-29 沈阳中科奥维科技股份有限公司 一种数字化条件下电泵井的工况分析与液量计量方法
CN114517673A (zh) * 2022-02-28 2022-05-20 沈阳中科奥维科技股份有限公司 一种基于电参的示功图预测方法
CN117722173A (zh) * 2024-02-06 2024-03-19 灵知科技(大庆)有限公司 一种监测多场景动态参数的智能诊断测控系统及装置
CN117722173B (zh) * 2024-02-06 2024-04-30 灵知科技(大庆)有限公司 一种监测多场景动态参数的智能诊断测控系统及装置

Similar Documents

Publication Publication Date Title
WO2015143626A1 (fr) Procédé et système d'analyse d'essai de puits à deux flux sur la base d'un diagramme d'indicateur
CN103899300A (zh) 一种基于示功图的二流量试井分析的方法及系统
CN201460877U (zh) 钻孔压水试验综合测试系统
CN102877832A (zh) 一种油井动液面的测量方法及系统
WO2014040264A1 (fr) Procédé et système de mesure du niveau dynamique de liquide d'un puits de pétrole
CN105067435A (zh) 一种土体原位钻孔剪切测试装置
CN103471647B (zh) 一种盾构隧道远程自动化监测方法
CN111963151B (zh) 一种通过抽油机悬点静载荷确定地层压力的方法
CN111963147A (zh) 通过抽油机悬点静载荷监测动液面及动液面确定方法
CN104297129A (zh) 基于注水式自由振荡法的水文地质试验方法
CN203847097U (zh) 一种油井数据监测装置
CN105041298A (zh) 连续油管作业管柱无线实时深度定位装置及方法
CN107269265A (zh) 一种优化调整油井产液量的系统及方法
CN204903300U (zh) 一种土体原位钻孔剪切测试装置
CN103590811A (zh) 一种大位移井钻柱卡点测量实验装置及方法
CN202330235U (zh) 在线全孔连续检测的稳定流抽水试验设备
CN209619984U (zh) 铁路高陡岩质边坡微震监测系统
CN106932129A (zh) 煤矿深立井井壁安全监测装置及其监测方法
CN116455946B (zh) 一种基于云端高频井口压力生产数据分析方法
CN203394508U (zh) 抽水试验全自动多参数采集系统
CN202991008U (zh) 一种用于模拟底部钻具组合力学特性的测力装置
CN205654334U (zh) 一种连续油管实验数据采集系统
CN105003238B (zh) 利用井筒压力温度剖面分析井下蒸汽干度方法
CN204613033U (zh) 原位岩体力学试验系统
CN105545283A (zh) 一种连续油管实验数据采集系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887262

Country of ref document: EP

Kind code of ref document: A1