WO2015141043A1 - パーキングロック機構の制御装置及び制御方法 - Google Patents

パーキングロック機構の制御装置及び制御方法 Download PDF

Info

Publication number
WO2015141043A1
WO2015141043A1 PCT/JP2014/076030 JP2014076030W WO2015141043A1 WO 2015141043 A1 WO2015141043 A1 WO 2015141043A1 JP 2014076030 W JP2014076030 W JP 2014076030W WO 2015141043 A1 WO2015141043 A1 WO 2015141043A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking lock
electric actuator
lock mechanism
control device
parking
Prior art date
Application number
PCT/JP2014/076030
Other languages
English (en)
French (fr)
Inventor
祐二 能登
関口 秀樹
正悟 宮本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015141043A1 publication Critical patent/WO2015141043A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • F16D63/006Positive locking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission

Definitions

  • the present invention relates to a control device for a parking lock mechanism of a vehicle.
  • parking lock is performed by engaging and disengaging a parking gear on the drive shaft side of the in-wheel motor and an engagement piece on the fixed side with an electric actuator.
  • -A parking lock mechanism for releasing is provided for each drive wheel.
  • a problem to be solved by the present invention that addresses such problems is to provide a control device for a parking lock mechanism that can avoid inconsistencies between the left and right parking lock states.
  • a control device for a parking lock mechanism controls an electric actuator of a parking lock mechanism provided for at least a pair of left and right drive wheels among a plurality of drive wheels of a vehicle.
  • the processor controls the timing of the electric actuator of the parking lock mechanism provided for each of the pair of left and right drive wheels. It is characterized by being driven by shifting.
  • control device of the parking lock mechanism According to the control device of the parking lock mechanism according to the present invention, it is possible to avoid inconsistency between the left and right parking lock states.
  • FIG. 2 is a schematic exploded perspective view of a parking lock mechanism in the system of FIG. 1. It is a figure which shows the example of a behavior of the consumption current and power supply voltage in the case of driving two electric actuators simultaneously. It is a figure which shows the example of a behavior of the consumption current and power supply voltage in the case of driving only one electric actuator. It is a flowchart which shows the state switching operation
  • the parking lock mechanism of the present embodiment is realized as one function of the transmission range switching mechanism, and performs parking lock when the transmission range is set to “P”.
  • the parking lock control system of the present embodiment implements parking lock of the left and right transmissions 1L and 1R in a vehicle having a drive motor and a transmission for at least one pair of left and right wheels. It includes a shifter 2, a control device 3, left and right parking lock mechanisms 4 ⁇ / b> L and 4 ⁇ / b> R, and a power source 5.
  • the shifter 2 indicates a range position to be set.
  • the shifter 2 has a range select switch that can be operated by the driver so that a range position such as “P”, “R”, “N”, “D”, etc. can be designated. It has become.
  • the control device 3 receives the signal of the range position designated by the shifter 2, changes the ranges of the left and right transmissions 1L, 1R to the designated ranges, and responds to the parking lock state (execution, release).
  • the left and right parking lock mechanisms 4L, 4R are drive-controlled to set the state to be performed, and include a shifter instruction input unit, a power input unit, an electric actuator drive circuit, and a control unit.
  • the shifter instruction acquisition unit is an interface that acquires information on a range position indicated by the shifter 2.
  • the power supply input unit is an interface that receives power supply from the power supply 5.
  • the electric actuator drive circuit supplies electric power to the electric actuators 6L and 6R of the parking lock mechanisms 4L and 4R and drives them.
  • the electric actuator is a three-phase brushless motor
  • a three-phase bridge circuit is provided, PWM (Pulse Width Modulation) control of each phase is performed, and the motor is driven with a predetermined power in a predetermined rotation direction.
  • the control unit controls the electric actuator drive circuit to drive the electric actuators 6L and 6R of the parking lock mechanisms 4L and 4R according to the range position instruction information acquired by the shifter instruction acquisition unit.
  • the CPU Central Processing
  • a unit 3 a DRAM (Dynamic Random Access Memory), a ROM (Read Only Memory), and the like, and operate according to a program stored in the ROM.
  • the control device 3 of the present embodiment further has an interface for acquiring outputs of various sensors described later. Note that instructions and control operations by the control device 3 are actually performed by the processor 3a. However, in this specification, it is described that the control device 3 performs instructions and control for the sake of simplicity.
  • control device 3 has an electric actuator drive circuit inside and directly drives the electric actuators 6L and 6R.
  • control device 3 is indirectly driven by sending a PWM signal to an external drive circuit.
  • it may be driven indirectly by sending a current command value or a speed command value to an external controller.
  • the parking lock mechanisms 4L and 4R are attached to the left and right transmissions, and perform and release the parking lock in accordance with instructions from the control device 3. Further, as described above, it also has a function of shifting the ranges of the transmissions 1L and 1R. Since the parking lock mechanisms 4L and 4R have the same structure, when the left and right are not designated, they are simply referred to as “parking lock mechanism 4”. The other elements present on the left and right are also called in the same way.
  • the parking lock mechanism 4 includes an electric actuator 6 including a motor 6a and a speed reducer 6b, a range switching shaft 7, a detent lever 8, a detent spring 9, a spool 10, and a spool valve 11.
  • the motor 6a is a DC motor such as a three-phase brushless motor, and is capable of rotating in both directions upon receiving power from the control device 3.
  • a worm is attached to the output shaft of the motor 6a, engages with the worm wheel of the speed reducer 6b to form a worm gear, and decelerates the rotation of the motor 6a.
  • the output shaft of the speed reducer 6b is connected to the range switching shaft 7 to rotate it, and the detent lever 8 attached thereto is rotated.
  • the detent lever 8 is formed in a fan shape with its rotation axis as the center, and a concave portion 8a corresponding to each range is formed on the arc, and depending on the rotation position of the detent lever 8, either one of these is used as a detent spring.
  • 9 is engaged with a roller 9a at the tip end portion.
  • the roller 9a engages with a recess corresponding to the “P” range.
  • one end of the parking rod 12 is connected to the detent lever 8, and when the detent lever 8 rotates, the parking rod 12 moves in the axial direction (L-shaped long axis direction in FIG. 2) accordingly.
  • the other end of the parking rod 12 is provided with a cam 13 inserted therein, and is pressed against a stopper (not shown) of the other end by a buffer spring 12a.
  • the parking pole 14 is slidably provided by being urged by a spring (not shown) so as to contact the side surface of the cam 13.
  • the parking pole 14 swings so that the pawl 14 a of the parking pole 14 can be engaged with or disengaged from the recess 15 a of the parking gear 15. Since the parking gear 15 is attached to the output shaft (not shown) of the transmission, the parking lock is executed / released by meshing / disengaging with the pawl 14a of the parking pole 14.
  • the cam 13 When the parking lock mechanism 4 is in the “P” range position, the cam 13 is in the rear side position in FIG. 2, and the pawl 14 a of the parking pole 14 meshes with the recess 15 a of the parking gear 15 to lock the parking.
  • the cam 13 when the parking lock mechanism 4 is outside the “P” range, the cam 13 is in the position on the front side in FIG. 2, and the pawl 14 a of the parking pole 14 is disengaged from the recess 15 a of the parking gear 15. Is released.
  • the power source 5 is a device that supplies electric power (DC 12 V) to the control device 3 and is composed of an automobile battery.
  • the power source 5 supplies power to various control devices such as an engine control device in addition to the control device 3.
  • the parking lock control system of the present embodiment is configured to provide the control device 3 with various state information.
  • acceleration sensors or tire pressure sensors 18L and 18R, electric actuator current sensors 19L and 19R, and a power supply voltage sensor 20 are included.
  • the current sensors 19L and 19R and the power supply voltage sensor 20 may be incorporated in the control device 3.
  • the shifter 2 controls a signal corresponding to the designated position.
  • the control device 3 drives and controls the left and right parking lock mechanisms (range switching mechanisms) 4L and 4R so as to change the left and right transmissions to the instructed ranges.
  • the parking lock is performed.
  • the parking lock is released.
  • the driving of the electric actuator 6 of one parking lock mechanism 4 is performed at a different timing from the driving of the electric actuator 6 of the other parking lock mechanism 4.
  • the electric actuator 6 includes the DC motor 6a, a large amount of electric power is required at startup. That is, when the motor 6a is rotated, a current that is obtained by dividing the difference between the counter electromotive voltage generated by the rotation from the voltage applied to the motor 6a by the resistance of the coil flows. There is no back electromotive force generated by the above, and the current flowing through the motor 6a increases. Therefore, if a plurality of electric actuators 6 are activated at the same time, the current at the time of activation further increases and the power supply voltage tends to decrease. As a result, when the power supply voltage is lower than the necessary minimum voltage, malfunction of the electric actuator 6 itself tends to occur.
  • the maximum current immediately after the electric actuator 6 is activated is large and a large power supply voltage drop occurs.
  • the maximum current immediately after starting the electric actuator 6 is about 50% of FIG. 3, and the power supply voltage drop is suppressed to about 50% of FIG. ing. Therefore, even when the two electric actuators 6 are driven, the power supply voltage drop can be suppressed to the same level as in FIG. 4 by shifting the start timing.
  • control device 3 performs the timing shift when releasing the parking lock and does not perform the timing shift when performing the parking lock.
  • the timing shift is performed only when the parking lock is released to reduce the peak current, thereby suppressing the decrease in the power supply voltage and the malfunction of the electric actuator 6 and the timing shift when performing the parking lock. Parking lock can be performed in a short time without performing.
  • the roller 9a of the detent spring 9 in FIG. 2 is engaged with the recess 8a corresponding to the above range of the detent lever 8.
  • the detent lever 8 In order to release this engaged state, the detent lever 8 must be rotated so as to push up the detent spring 9 against the biasing force, so that a load is applied to the electric actuator 6 and the current consumption increases.
  • the detent lever 8 is rotated to the rotation angle at which the engagement between the recess 8a and the detent spring 9 is released, and then the driving of the other electric actuator 6 is started.
  • the peak currents of these electric actuators 6 can be shifted, and it becomes difficult for the electric actuators 6 to malfunction and the power supply voltage to decrease.
  • Whether or not the detent lever 8 has rotated to a predetermined rotation angle can be determined from the output of the rotation angle sensor 14 of the electric actuator 6, for example.
  • the power supply voltage can be measured by the power supply voltage sensor 20 or a detection circuit (not shown) in the control device 3.
  • the control device 3 performs the timing shift when the temperature of the parking lock mechanism 4 detected by the temperature sensor 17 is outside a predetermined range. If the temperature of the parking lock mechanism 4 is lower than a predetermined temperature, it is considered that the load of the electric actuator 6 increases because the viscosity of the lubricating oil is high. On the other hand, when the temperature of the parking lock mechanism 4 is higher than a predetermined temperature, the viscosity of the lubricating oil is too low to form an appropriate oil film, resulting in insufficient lubrication, and the load on the electric actuator 6 is also increased. there is a possibility. In such a case, the operation shift of the electric actuator 6 and the decrease of the power supply voltage are less likely to occur by performing the timing shift to lower the total peak current.
  • the control device 3 controls the current supplied to the electric actuator 6 so that the current value of each electric actuator 6 does not exceed a predetermined upper limit current.
  • the control device 3 since the control device 3 has a function of controlling the power supplied to the electric actuator 6, the current value detected by the sensor 16 that measures the current flowing through the electric actuator is fed back to obtain the current. The value can be controlled below a predetermined upper limit value. As a result, although the operation of the electric actuator 6 is delayed, the power supply voltage drop is less likely to occur.
  • the electric actuator 6 having a small operation amount within a predetermined time is considered to have a large load and a large current consumption.
  • the operation of the other electric actuator 6 is successful and the parking lock state of the parking lock mechanism 4 connected thereto (
  • the electric actuator 6 having an operation amount smaller than a predetermined value becomes inoperable and the parking lock state of the parking lock mechanism 4 connected thereto may not be switched.
  • the parking lock state may be different between the left and right drive wheels.
  • the control device 3 has an interface for acquiring the output of a stroke sensor, an acceleration sensor, or a tire air pressure sensor of the suspension device, drives each electric actuator 6 for a predetermined time, and generates any one or more of the sensors 17 generated at that time.
  • the electric actuator 6, the stroke sensor of the suspension device, the acceleration sensor, and the tire pressure sensor may be provided corresponding to each drive wheel.
  • the electric actuator 6 corresponding to each drive wheel is operated, the mechanical vibration generated by the electric actuator 6 can be detected by each sensor 17.
  • the control device 3 acquires the waveform of any one or more of these sensors 17 and analyzes it (for example, compares it with a stored waveform or the like during low-load operation) to load the electric actuator 6. Judging. After that, the electric actuators 6 that are determined to have a large load are driven first, and the electric actuators 6 that are determined to have a low load are driven at different timings. In addition, the problem that the parking lock state (execution or release) becomes inconsistent between the left and right drive wheels can be avoided.
  • the control device 3 detects the parking lock state actually applied to the parking lock mechanisms 4L, 4R from the outputs of the rotational position sensors 16L, 16R of the electric actuators 6L, 6R. If they are different, a signal to that effect is sent to the engine control device 21.
  • the engine control device 21 prohibits driving of the electronically controlled throttle body (ETB) and the electric parking brake is electrically operated. By actuating the actuator (EPB) to actuate the brake of each wheel, the vehicle is prevented from moving.
  • ETB electronically controlled throttle body
  • the control device 3 detects the parking lock states of the parking lock mechanisms 4L and 4R from the outputs of the rotational position sensors 16L and 16R of the electric actuators 6L and 6R. In the case where all of the electric actuators 6L and 6R are in operation, the state before operation is restored. Specifically, by returning the parking lock mechanism 4 that can be switched by the operation of the electric actuator 6 to the original state, it becomes the same as the state of the parking lock mechanism 4 that could not be switched due to a malfunction of the electric actuator 6, The parking lock state of each drive wheel can be unified.
  • the control device 3 first refers to the instruction signal from the shifter 2 and determines whether or not there is a range switching instruction. If there is no range switching instruction, the processing cycle ends, and the process proceeds to step S101 of the next cycle. On the other hand, when there is a range switching instruction, the process proceeds to step S102 (step S101).
  • Control device 3 determines whether the range switching instruction is a switching instruction from the “P” range to a range other than “P”. When it is determined that the instruction is to switch from the “P” range to a range other than “P”, the operation is determined to be a high load operation, and the process proceeds to step S103. On the other hand, if it is determined that the switching instruction is other than that, it is determined that the operation is a low load operation and the process proceeds to step S111 (step S102).
  • the control device 3 starts driving the left and right electric actuators 6L and 6R simultaneously (step S103).
  • the control device 3 determines whether or not the power supply voltage after a predetermined time from the start of driving is less than the specified value A. If the power supply voltage is less than the specified value A, the control device 3 determines that the power supply voltage is low and proceeds to step S105. Is equal to or greater than the specified value A, it is determined that the voltage is normal and the process proceeds to step S111 (step S104).
  • the control device 3 determines whether or not the operation amount of each electric actuator 6 within a predetermined time from the start of driving in step S103 is less than the specified value B. Then, the process proceeds to step S111. On the other hand, if at least one electric actuator 6 is less than the specified value B, it is determined that there is an abnormality, and the process proceeds to step S106 (step S105).
  • the control device 3 compares the load states of the left and right electric actuators 6L and 6R, and determines which is the higher load.
  • the comparison may be performed using the above-described operation amount (see operation example 7), or may be performed using signals from the suspension device stroke sensor, acceleration sensor, and tire pressure sensors 17L and 17R (see operation example 8). These may be combined and compared (step S106).
  • the control device 3 activates a warning light and a buzzer, and sends a signal to that effect to the engine control device 21.
  • the engine control device 21 sends the electric parking brake electric actuator (EPB) and Driving of the electronically controlled throttle body (ETB) is prohibited (see operation example 9) (step S107).
  • control device 3 drives only the electric actuator 6 on the high load side and stops the electric actuator 6 on the low load side (step S108).
  • the control device 3 continues to drive the high load side electric actuator 6 until the operation is completed (until the parking lock state is switched), and then drives the low load side electric actuator 6 (step S109).
  • the control device 3 drives the electric actuator 6 on the low load side until the operation is completed, and cancels the safety process after the operation is completed. Specifically, a signal to that effect is sent to the engine control device 21, and the engine control device 21 releases the drive prohibition of the electric parking brake electric actuator (EPB) and the electronic control throttle body (ETB), The control device 3 cancels the operation of the warning light and the buzzer (step S110).
  • EPB electric parking brake electric actuator
  • ETB electronic control throttle body
  • both electric actuators 6L and 6R are normally operated, that is, the simultaneous driving of both electric actuators 6L and 6R is started or continued to complete the operation (step S111). ).
  • FIG. 6 is a timing chart showing the behavior of the power consumption and the operation amount of each electric actuator 6L, 6R in the parking lock state switching operation performed when the operation is determined to be normal.
  • this corresponds to an example in which S111 is performed after steps S101 to S105.
  • the current peaks during operation of both the left and right electric actuators 6L and 6R are low, so that the power supply voltage is not significantly reduced. Since the power supply voltage does not fall below the specified value A, and both the left and right electric actuators 6L and 6R have an operation amount within the predetermined time equal to or greater than the specified value B, the simultaneous driving is continued and the operation is finished.
  • FIG. 7 is a timing chart showing the behavior of the power consumption and the operation amount of each electric actuator 6L, 6R in the parking lock state switching operation performed when the operation is determined to be abnormal.
  • this corresponds to an example in which S106 to S110 are performed after steps S101 to S105.
  • the current peak during operation of the left electric actuator 6L is high, and therefore the power supply voltage drops below the specified value A. Since the amount of operation of the left electric actuator 6L within a predetermined time is less than the specified value B, the left and right loads are compared.
  • the right electric actuator 6R determined to have a small load is temporarily stopped, and after the operation of the left electric actuator 6L having a large load is completed, the right electric actuator 6R is operated.
  • the current peaks of the left and right electric actuators 6L and 6R are shifted to suppress further reduction of the power supply voltage, thereby completing the operations of the left and right electric actuators 6L and 6R.
  • the parking lock mechanism is realized as one function of the transmission range switching mechanism, but may be an independent mechanism.
  • a parking lock mechanism is provided on a pair of left and right drive wheels.
  • the parking lock control device Not only the drive timings of the electric actuators, but also the drive timings of the front and rear electric actuators may be similarly shifted.
  • the present invention can be applied not only to the parking lock mechanism shown in FIGS. 1 and 2, but also to the following parking lock mechanism.
  • a circuit breaker capable of interrupting the output of the sub-microcomputer, a drive circuit for driving the SBW actuator based on the output of the sub-microcomputer, and a monitor circuit for monitoring the output of the drive circuit.
  • the main microcomputer shuts off the breaker and shuts off the output of the sub-microcomputer (see FIG. 1 and the like).
  • the control device of the present invention is applied to this SBW system, for example, the main microcomputer is common to the left and right drive wheels, and the sub-microcomputer, breaker, drive circuit, monitor circuit, and parking lock mechanism are for the left and right drive wheels. Provided. Thereby, it becomes the same as the structure which added the circuit breaker to the structure of FIG. 1 of this invention.
  • the main microcomputer shifts the timing to the left and right sub-microcomputers to instruct the drive so that the current peaks of the left and right actuators can be shifted (Operation Example 1 of the present invention).
  • the operation examples 2 to 10 of the present invention can be implemented by inputting the output of various sensors such as a rotary encoder directly or via a sub-microcomputer, and the main microcomputer controls the left and right sub-microcomputers.
  • the blocking function of this publication is a function that prevents the actuator from operating when it should not be operated, whereas the present invention is a countermeasure when the actuator does not operate when it should be operated. These can be used in combination.
  • the parking lock mechanism is a general parking lock mechanism including a detent mechanism, a parking rod, a cam, a parking pawl, and a parking pawl.
  • a socket is further provided, and the SBW actuator moves the socket forward and backward in the axial direction of the parking pole, thereby driving the cam, the parking rod, and the detent mechanism to switch the range and set / release the parking lock. Yes.
  • the detent mechanism can also be rotated by a manual release lever, so that the parking lock can be released by pulling the parking rod and pulling out the cam.
  • the parking lock mechanism is provided on the left and right drive wheels, and each SBW actuator is driven and controlled by the control device of the present invention. Operation can be realized. This is because, unless the release lever is operated, range switching and parking lock setting / release are performed by the SBW actuator. It should be noted that only one manual release lever is provided and connected to both the left and right parking lock mechanisms so that the parking lock can be released simultaneously.
  • the SBW control circuit forcibly sets the range to the N range when the airbag control circuit detects a collision in order to reduce the damage when the driver accidentally steps on the accelerator instead of the brake.
  • SBW device range switching device including a parking lock mechanism
  • the range switching mechanism is provided on the left and right drive wheels, and each electric actuator is driven and controlled by the control device of the present invention. Can be realized. This is because, as long as no collision occurs, range switching and parking lock setting / release are performed by the electric actuator.
  • the rotational position sensor 16 of the actuator is used for the control of the electric actuator 6, but in addition to this, a sensor for detecting the rotational angle of the range switching shaft 7 is provided and the output is provided. It feeds back to the control device 3, and based on this, the electric actuator 6 can be driven and controlled. As a result, the function of the parking lock mechanism and the operations of the operation examples 1 to 10 of the present invention can be realized.
  • an SBW range switching device that pulls the engaging member into the range valley by rotating the motor forward or backward after a predetermined time from stopping the motor so as to reliably pull the engaging member into the range valley of the detent lever.
  • Including a locking mechanism When the control device of the present invention is applied to this parking lock mechanism, the parking lock mechanism is provided on the left and right drive wheels, the respective SBW actuators are driven and controlled by the control device of the present invention, and the operations of the first to tenth operation examples are performed. realizable.
  • this parking lock mechanism method can be combined. It is.
  • each motor is driven and controlled by the control device of the present invention, and the operations of the first to tenth operation examples of the present invention can be realized. Since the operation examples 1 to 10 of the present invention are mainly required when the range is switched from parking to parking, the application target of the operation examples 1 to 10 is mainly the main motor.
  • each operation example of the present invention is unnecessary, and only the target operation example 2 is unnecessary at this switching time.
  • the operation examples 1 to 10 are applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

 左右のパーキングロックの状態の不整合を回避する。 左右パーキングロックを解除する際に(S102)、電動アクチュエータを所定時間駆動したときの電源電圧が規定値A未満(S103-104)、かつ、前記所定時間内の各電動アクチュエータの動作量が規定値B未満(S105-106)のときに、前記各電動アクチュエータを時間的にずらして駆動する(S108-109)。

Description

パーキングロック機構の制御装置及び制御方法
 本発明は、車両のパーキングロック機構の制御装置に関する。
 少なくとも左右1対の駆動輪をそれぞれモータ等で駆動するインホイールシステムにおいて、駆動輪ごとにパーキングロック機構を有するシステムが提案されている。
 例えば、特許文献1および特許文献2のインホイールシステムでは、インホイールモータの駆動軸側のパーキングギアと、固定側の係合片とを、電動アクチュエータにより噛合、離脱することにより、パーキングロックの実施・解除を行うパーキングロック機構を各駆動輪に対応してそれぞれ設けている。
特開2008-151308号公報 特開2006-224819号公報
 しかし、このようなシステムにおいて、左右の駆動輪のパーキングロックを同時に実施又は解除すると、電動アクチュエータを駆動する電流が大きくなるため、バッテリの充電量が足りない場合等、電源電圧の低下の問題を生じうる。この結果、一方の電動アクチュエータが動作不能となり、左右のパーキングロックの状態の不整合が発生する可能性がある。
 そこで、このような問題点に対処し、本発明が解決しようとする課題は、左右のパーキングロックの状態の不整合を回避することができるパーキングロック機構の制御装置を提供することである。
 前記課題を解決するために、本発明によるパーキングロック機構の制御装置は、車両の複数の駆動輪のうち、少なくとも左右一対の駆動輪それぞれについて設けられたパーキングロック機構の電動アクチュエータを制御する、プロセッサを有する制御装置であって、前記プロセッサは、前記左右一対の駆動輪に対してパーキングロックを実施又は解除する場合に、該左右一対の駆動輪それぞれについて設けられるパーキングロック機構の電動アクチュエータをタイミングをずらして駆動することを特徴とする。
 本発明によるパーキングロック機構の制御装置によれば、左右のパーキングロックの状態の不整合を回避することができる。
パーキングロック制御システムの一例を示す概念図である。 図1のシステムにおけるパーキングロック機構の概略分解斜視図である。 2つの電動アクチュエータを同時に駆動する場合の消費電流と電源電圧の挙動例を示す図である。 1つの電動アクチュエータのみを駆動する場合の消費電流と電源電圧の挙動例を示す図である。 本実施形態によるパーキングロックの状態切替動作を示すフローチャートである。 正常時に実施するパーキングロックの状態切替動作における、各電動アクチュエータの消費電力と動作量の挙動を示すタイミングチャートである。 低電圧時またはアクチュエータ動作不良時に実施するパーキングロックの状態切替動作における、各電動アクチュエータの消費電力と動作量の挙動を示すタイミングチャートである。
(装置構成)
 以下、本発明の実施の形態を添付図面に基づいて説明する。
 本実施形態のパーキングロック機構は、変速機のレンジ切替機構の1つの機能として実現されており、変速機のレンジが「P」に設定されたときにパーキングロックを実施する。
 図1に示すように、本実施形態のパーキングロック制御システムは、少なくとも1対の左右それぞれの車輪について駆動モータ及び変速機を有する車両において、その左右の変速機1L、1Rのパーキングロックを実施するもので、シフタ2と、制御装置3と、左右のパーキングロック機構4L、4Rと、電源5と、を備えてなる。
 シフタ2は、設定すべきレンジ位置を指示するもので、運転者が操作できるレンジセレクトスイッチを有し、「P」、「R」、「N」、「D」等のレンジ位置を指定できるようになっている。
 制御装置3は、シフタ2の指定したレンジ位置の信号を受領して、左右の変速機1L、1Rのレンジを、指定されたレンジへ変更するとともに、パーキングロックの状態(実施、解除)を対応する状態に設定すべく、左右のパーキングロック機構4L、4Rを駆動制御するもので、シフタ指示入力部と、電源入力部と、電動アクチュエータ駆動回路と、制御部と、を含む。
 シフタ指示取得部は、シフタ2の指示するレンジ位置の情報を取得するインターフェースである。
 電源入力部は、電源5から電力の供給を受け取るインターフェースである。
 電動アクチュエータ駆動回路は、パーキングロック機構4L、4Rの各電動アクチュエータ6L、6Rに電力を供給し、これらを駆動するものである。例えば、電動アクチュエータが3相ブラシレスモータである場合、3相ブリッジ回路を備え、各相のPWM(Pulse Width Modulation)制御を行って、モータを所定の電力で所定の回転方向へ駆動する。
 制御部は、シフタ指示取得部が取得したレンジ位置の指示情報に従って、パーキングロック機構4L、4Rの各電動アクチュエータ6L、6Rを駆動すべく、電動アクチュエータ駆動回路を制御するもので、CPU(Central Processing Unit)等のプロセッサ3aとDRAM(Dynamic Random Access Memory)とROM(Read Only Memory)等を有し、ROMに格納されたプログラムに従って動作するようになっている。
 本実施形態の制御装置3は、さらに後述する各種センサの出力を取得するインターフェースを有している。
 なお、制御装置3による指示や制御の動作は実際には前記プロセッサ3aにより行われるが、本明細書では、簡単のために制御装置3が指示や制御を行うように記載している。
 なお、本例では制御装置3は、内部に電動アクチュエータ駆動回路を有し、電動アクチュエータ6L、6Rを直接駆動しているが、例えば、外部の駆動回路にPWM信号を送ることにより間接的に駆動しても良く、また外部のコントローラに電流指令値や速度指令値を送ることにより間接的に駆動しても良い。
 パーキングロック機構4L、4Rは、左右の変速機に取付けられ、制御装置3の指示に従って、パーキングロックの実施・解除を行うものである。また、上述のように変速機1L、1Rのレンジをシフトさせる機能も兼ね備えている。パーキングロック機構4L、4Rは、構造が同様なので、左右を指定しない場合、単に「パーキングロック機構4」と呼ぶ。左右それぞれに存在する他の要素も同様に呼ぶものとする。
 パーキングロック機構4は、図2に示すように、モータ6aおよび減速機6bからなる電動アクチュエータ6と、レンジ切替シャフト7と、ディテントレバー8と、ディテントスプリング9と、スプール10と、スプールバルブ11と、パーキングロッド12と、カム13と、パーキングポール14と、パーキングギア15と、を含む。
 モータ6aは、3相ブラシレスモータ等のDCモータであり、制御装置3から電力の供給を受けて双方向に回転できるようになっている。モータ6aの出力軸にはウォームが取付けられ、減速機6bのウォームホイールと係合してウォームギアを構成し、モータ6aの回転を減速している。減速機6bの出力軸は、レンジ切替シャフト7と連結してこれを回転させ、これに取付けられたディテントレバー8を回転するようになっている。
 ディテントレバー8は、その回転軸を中心とする扇形状に形成され、その円弧上に各レンジに対応する凹部8aが形成され、ディテントレバー8の回転位置に応じて、これらのいずれかにディテントスプリング9の先端部のローラ9aが係合するようになっている。例えば、パーキングロック機構4が「P」レンジ位置にあるときは、ローラ9aは「P」レンジに対応する凹部と係合する。
 ディテントレバー8には、スプール10が係合され、ディテントレバー8が回転すると、スプール10がスプールバルブ11内で軸方向に変位することで、レンジ切替に応じてトルクコンバータオイルのポートの開閉が切り替わるようになっている。
 また、ディテントレバー8には、パーキングロッド12の一端が連結され、ディテントレバー8が回転すると、それに応じてパーキングロッド12がその軸方向(図2のL字型の長軸方向)に移動する。パーキングロッド12の他端部には、カム13が挿通されて設けられ、緩衝スプリング12aにより、前記他端部の抜け止め(図示省略)に押し付けられている。
 このカム13の側面に当接するように、ばね(図示省略)により付勢されて、パーキングポール14が搖動可能に設けられている。パーキングロッド12の移動により、カム13が移動すると、パーキングポール14は搖動し、パーキングポール14の爪14aがパーキングギア15の凹部15aと噛合又は離脱できるようになっている。パーキングギア15は、変速機の出力軸(図示省略)に取付けられているので、パーキングポール14の爪14aとの噛合・離脱により、パーキングロックの実施・解除がなされる。
 パーキングロック機構4が「P」レンジ位置にあるときは、カム13は図2の奥側の位置にあり、パーキングポール14の爪14aはパーキングギア15の凹部15aと噛合して、パーキングロックがなされる。一方、パーキングロック機構4が「P」レンジ以外にあるときは、カム13は図2の手前側の位置にあり、パーキングポール14の爪14aはパーキングギア15の凹部15aから離脱して、パーキングロックが解除される。
 電源5は、制御装置3に、電力(直流12V)を供給する装置で、自動車用バッテリからなる。なお、電源5は、制御装置3以外にも、エンジン制御装置等、各種の制御装置へ電力を供給している。
 さらに、本実施形態のパーキングロック制御システムは、制御装置3に様々な状態情報を提供するための、電動アクチュエータの回転位置センサ16L、16R、パーキングロック機構の温度センサ17L、17R、懸架装置ストロークセンサ又は加速度センサ又はタイヤ空気圧センサ18L、18R、電動アクチュエータの電流センサ19L、19R、および電源電圧センサ20を含んでいる。
 なお、上記電流センサ19L、19R、および電源電圧センサ20は、制御装置3に内蔵されていても良い。
 次に、このように構成されたパーキングロック機構の制御装置3の動作の例について説明する。
(動作例1:ピーク電流低減動作1)
 制御装置3が、一方の電動アクチュエータ6の駆動を他の電動アクチュエータ6の駆動からタイミングをずらして行うこと(以下「タイミングシフト」という)を行う例である。
 運転者が、シフタ2のレンジセレクタスイッチを操作して、「P」、「R」、「N」、「D」等のレンジ位置を指定すると、シフタ2はその指定位置に対応する信号を制御装置3に送出する。
 制御装置3は、左右の変速機を指示されたレンジに変更させるように左右のパーキングロック機構(レンジ切替機構)4L、4Rを駆動制御する。レンジが「P」以外から「P」へ変更される場合にパーキングロックを実施し、「P」から「P」以外へ変更される場合にパーキングロックを解除するが、これらの際に、左右のうち一方のパーキングロック機構4の電動アクチュエータ6の駆動を他のパーキングロック機構4の電動アクチュエータ6の駆動からタイミングをずらして行う。
 電動アクチュエータ6はDCモータ6aを含むため、起動時に大きな電力を必要とする。すなわち、モータ6aの回転時には、モータ6aへの印加電圧から回転により発生する逆起電圧の差をコイルの抵抗で割った電流が流れるが、起動時にはまだモータ6aが回転していないため、この回転により生ずる逆起電圧がなく、モータ6aを流れる電流が大きくなる。したがって、複数の電動アクチュエータ6を同時に起動すると、起動時の電流がさらに大きくなり、電源電圧が低下しやすい。その結果、電源電圧が必要最低電圧を下回ると、電動アクチュエータ6自体の動作不良等が生じやすくなる。
 但しこの電流は、モータ6aの起動後回転数の増加に伴って急速に低下するため、本動作例により、複数の電動アクチュエータ6相互の起動タイミングを僅かでもずらせば、大電流が流れるタイミングがずれて、合計のピーク電流値を下げることができ、電動アクチュエータ6の動作不良や電源電圧の低下が発生しにくくなる。
 図3に示す、2つの電動アクチュエータ6を同時に駆動する場合の例では、電動アクチュエータ6起動直後の最大電流は大きく、大きな電源電圧低下が発生している。一方、図4に示す、1つの電動アクチュエータ6のみ駆動する場合の例では、電動アクチュエータ6起動直後の最大電流は図3の約50%で、電源電圧低下は図3の約50%に抑えられている。したがって、2つの電動アクチュエータ6を駆動する場合でも、起動タイミングをずらすことにより、電源電圧低下を図4の場合と同程度に抑えられる。
(動作例2:ピーク電流低減動作2)
 制御装置3が、パーキングロックの解除を行う際に前記タイミングシフト行い、パーキングロックの実施を行う際にはタイミングシフト行わない例である。
 パーキングロックを実施する際は、図2に示すカム13を、緩衝スプリング12aを介して押し込むので、ディテントレバー8の初動のために必要なトルクは小さく、電動アクチュエータ6の負荷は小さい。
 一方、パーキングロックを解除する際は、パーキングポール14と当接して動きにくいカム13を、パーキングレバー11端部の抜け止めで直接引き出すので、ディテントレバー8の初動のために必要なトルクは大きく、電動アクチュエータ6の負荷は大きい。
 したがって、パーキングロックを解除する際にのみタイミングシフトを行ってピーク電流を下げることにより、電源電圧の低下や電動アクチュエータ6の動作不良の発生を抑えるともに、パーキングロックを実施する際には、タイミングシフトを行わず、短時間にパーキングロック実施を行うことができる。
(動作例3:ピーク電流低減動作3)
 制御装置3が、先に駆動した電動アクチュエータ6により、ディテントレバー8の凹部8aとディテントスプリング9のローラ9aとの係合が解除される回転角まで、該ディテントレバー8を回転させたのち、他の電動アクチュエータ6の駆動を開始する例である。
 変速機が、あるレンジに設定されているときは、図2のディテントスプリング9のローラ9aが、ディテントレバー8の上記レンジに対応する凹部8aに係合している。この状態から電動アクチュエータ6を駆動して、他のレンジ状態に移行するには、ディテントレバー8を回転させて、まずディテントスプリング9を凹部8aとの係合状態から解除させる必要がある。この係合状態から解除させるには、ディテントスプリング9をその付勢力に抗して押し上げるようにディテントレバー8を回転させなければならないので、電動アクチュエータ6に負荷がかかり、消費電流も大きくなる。
 したがって、最初の電動アクチュエータ6の駆動により凹部8aと前記ディテントスプリング9との係合が解除される回転角まで、該ディテントレバー8を回転させたのち、他の電動アクチュエータ6の駆動を開始することにより、これらの電動アクチュエータ6のピーク電流をずらすことができ、電動アクチュエータ6の動作不良や電源電圧の低下が発生しにくくなる。
 なお、ディテントレバー8が所定の回転角まで回転したか否かは、例えば、電動アクチュエータ6の回転角センサ14の出力から判断することができる。
(動作例4:ピーク電流低減動作4)
 制御装置3が、電動アクチュエータ6の駆動開始前、または駆動開始直後の電源電圧が所定値以下の場合、前記タイミングシフトを行う例である。例えば、左右の電動アクチュエータ6L、6Rを所定時間駆動させ、その際の電源電圧が所定値以下の場合、左右の電動アクチュエータ6L、6Rの一方の駆動を所定時間停止することにより、左右の電動アクチュエータ6L、6Rの駆動を、タイミングをずらして行う。
 車両の使用状況、充電状況によって、電源5であるバッテリの電圧が低下している場合、パーキングロックのために電動アクチュエータ6を駆動すると、さらなる電圧低下により電動アクチュエータ6自体の動作不良等が発生する恐れがある。
 このような場合にタイミングシフトを行って合計のピーク電流を下げることにより、車両の動作不良が発生しにくくなる。なお、電源電圧は、電源電圧センサ20や制御装置3内の検出回路(図示省略)により測定できる。
(動作例5:ピーク電流低減動作5)
 制御装置3が、温度センサ17により検出されるパーキングロック機構4の温度が所定の範囲外の場合、前記タイミングシフトを行う例である。
 パーキングロック機構4の温度が所定の温度より低いと、潤滑油の粘性が高いため、電動アクチュエータ6の負荷が大きくなると考えられる。
 一方、パーキングロック機構4の温度が所定の温度より高い場合は、潤滑油の粘性が低すぎて適切な油膜が形成されず、潤滑が不十分になって、やはり電動アクチュエータ6の負荷が大きくなる可能性がある。
 このような場合にタイミングシフトを行って合計のピーク電流を下げることにより、電動アクチュエータ6の動作不良や電源電圧の低下が発生しにくくなる。
(動作例6:ピーク電流低減動作6)
 制御装置3が、各電動アクチュエータ6の電流値が所定の上限電流を超えないように、該電動アクチュエータ6へ供給する電流を制御する例である。
 前記のように、制御装置3は、電動アクチュエータ6への供給電力を制御する機能を有しているので、電動アクチュエータに流れる電流を測定するセンサ16により検出される電流値をフィードバックして、電流値を所定の上限値以下に制御することができる。
 これにより、電動アクチュエータ6の動作は遅くなるものの、電源電圧低下はさらに発生しにくくなる。
(動作例7:左右不整合回避動作1)
 制御装置3が、各電動アクチュエータ6を所定時間駆動させ、その際の回転位置センサ16で検知された動作量が最も少ない電動アクチュエータ6のみを継続して駆動し、他の電動アクチュエータ6の駆動を停止し、前記動作量が最も少ない電動アクチュエータ6の動作が完了した後、前記他の電動アクチュエータ6を駆動する例である。
 所定時間内の動作量が少ない電動アクチュエータ6は、負荷が大きく、消費電流が大きいと考えられる。
 この場合、他の電動アクチュエータ6と同時に、または、他の電動アクチュエータ6を先に駆動すると、他の電動アクチュエータ6の動作は成功してこれに接続されたパーキングロック機構4のパーキングロックの状態(実施または解除)は切り替わる一方、動作量が所定値より少ない電動アクチュエータ6は動作不能になり、これに接続されたパーキングロック機構4のパーキングロックの状態は切り替わらない可能性がある。その結果、左右の駆動輪間でパーキングロックの状態が異なってしまう可能性がある。
 この問題を避けるため、動作量がより少ない電動アクチュエータ6のみ先に駆動し、その動作が完了した後、他の電動アクチュエータ6を駆動させれば、すべての電動アクチュエータ6の動作が成功しやすくなる。その場合、すべての駆動輪のパーキングロックの状態の切替がなされるので、パーキングロックの状態は同一になる。
 また、万一前記動作量がより少ない電動アクチュエータ6の動作が失敗した場合は、他の電動アクチュエータ6を動作させないので、左右の駆動輪でパーキングロックの状態の切替はされず、左右の駆動輪間でパーキングロックの状態が異なってしまうという問題は回避できる。ここで、電動アクチュエータ6の動作が失敗したか否かは、ディテントスプリング9先端部のローラ9aがディテントレバー8の凹部8aの間の凸部に到達する前に判断する。これにより、動作が失敗した電動アクチュエータ6が停止しても、その後ディテントスプリング9の反力によりディテントレバー8が逆回転して、ローラ9aが移動前の凹部8aまで戻ることができ、左右の駆動輪間でパーキングロックの状態が異なってしまうという問題が回避できる。
 なお、本動作は、前記動作量が所定の規定値より少ない電動アクチュエータ6があった場合のみ実施しても良い。
(動作例8:左右不整合回避動作2)
 制御装置3が、懸架装置のストロークセンサ、加速度センサ、またはタイヤ空気圧センサ、の出力を取得するインターフェースを有し、各電動アクチュエータ6を所定時間駆動させ、その時発生する上記いずれか1以上のセンサ17から得られる波形から、各電動アクチュエータ6の負荷を判断し、その負荷が大きい電動アクチュエータ6を先に駆動させ、タイミングをずらして負荷の小さい電動アクチュエータ6を駆動させる、例である。
 インホイールシステムでは、電動アクチュエータ6、懸架装置のストロークセンサ、加速度センサ、およびタイヤ空気圧センサが、各駆動輪に対応して設けられている場合がある。各駆動輪に対応する電動アクチュエータ6を動作させると、それにより発生する機械的振動を上記各センサ17で検出することができる。これらのいずれか1以上のセンサ17の波形等を、制御装置3が取得し、それを解析(例えば、記憶している低負荷動作時の波形等と比較)して各電動アクチュエータ6の負荷状態を判断する。
 その後、負荷が大きいと判断する電動アクチュエータ6を先に駆動させ、タイミングをずらして負荷が小さいと判断する電動アクチュエータ6を駆動させることにより、動作例7と同様、各々の電動アクチュエータ6に接続された左右の駆動輪間でパーキングロックの状態(実施または解除)が不整合になってしまうという問題を回避できる。
(動作例9:フェールセーフ処理1)
 電動アクチュエータ6の動作不良により、パーキングロック機構4L、4R間で異なったパーキングロックの状態(実施または解除)になっていることが検出された場合は、制御装置3が、その旨を通知する信号をエンジン制御装置21に送付する例である。
 パーキングロック機構4L、4R間で異なったパーキングロックの状態なっていると、パーキングロックが解除されている駆動輪は回転する一方、パーキングロックが実施されている駆動輪は回転しないため、左右の駆動輪の動作が異なり車両の正常な動作ができない。
 このような事態を回避するため、制御装置3は、各パーキングロック機構4L、4Rに実際になされているパーキングロックの状態を、各電動アクチュエータ6L、6Rの回転位置センサ16L、16Rの出力から検出し、これらが異なっている場合は、その旨を通知する信号をエンジン制御装置21に送付し、該エンジン制御装置21が、電子制御スロットルボディ(ETB)の駆動を禁止するとともに、電動パーキングブレーキ電動アクチュエータ(EPB)を作動させて各車輪のブレーキを作動させることにより、車両が移動するのを防いでいる。
(動作例10:フェールセーフ処理2)
 電動アクチュエータ6の動作不良により、パーキングロック機構4L、4R間で異なったパーキングロックの状態(実施または解除)になっていることが検出された場合は、制御装置3が、すべての電動アクチュエータ6を動作前の状態に戻す例である。
 上記のように、駆動輪間でパーキングロックの状態が異なった状態で、エンジンを起動し車両を走行させると車両の正常な動作ができない。
 このような事態を回避するため、制御装置3は、各パーキングロック機構4L、4Rのパーキングロックの状態を、各電動アクチュエータ6L、6Rの回転位置センサ16L、16Rの出力から検出し、これらが異なっている場合は、すべての電動アクチュエータ6L、6Rを動作前の状態に戻している。具体的には、電動アクチュエータ6が動作して切替できたパーキングロック機構4を元の状態に戻すことにより、電動アクチュエータ6の動作不良で切替できなかったパーキングロック機構4の状態と同一になり、各駆動輪のパーキングロックの状態を統一できる。
(実際の動作例)
 制御装置3のより実際的な動作例について、図5のフローチャートを参照して説明する。本動作例は、左右2つのパーキングロック機構4L、4Rを駆動する例で、上記動作例2、4、7、8および9を組み合わせたものである。
 制御装置3は、まずシフタ2からの指示信号を参照し、レンジ切替指示があったか否かについて判断する。レンジ切替指示がなかった場合、処理サイクルは終了し、次のサイクルのステップS101に移行する。一方、レンジ切替指示があった場合、ステップS102に移行する(ステップS101)。
 制御装置3は、レンジ切替指示が「P」レンジから「P」以外のレンジへの切替指示か否か判断する。「P」レンジから「P」以外のレンジへの切替指示と判断する場合、高負荷動作と判断してステップS103に移行する。一方、それ以外の切替指示と判断する場合、低負荷動作と判断してステップS111に移行する(ステップS102)。
 制御装置3は、左右の電動アクチュエータ6L、6Rを同時に駆動開始する(ステップS103)。
 制御装置3は、駆動開始から所定時間後の電源電圧が規定値A未満か否か判断し、電源電圧が規定値A未満の場合は低電圧と判断してステップS105に移行する一方、電源電圧が規定値A以上の場合は正常電圧と判断してステップS111に移行する(ステップS104)。
 制御装置3は、ステップS103の駆動開始から所定時間内の各電動アクチュエータ6の動作量が規定値B未満か否か判断し、両電動アクチュエータ6L、6Rとも規定値B以上の場合は正常と判断して、ステップS111に移行する一方、少なくとも1つの電動アクチュエータ6が規定値B未満の場合は異常と判断してステップS106に移行する(ステップS105)。
 制御装置3は、左右の電動アクチュエータ6L、6Rの負荷状態を比較し、どちらがより高負荷か判断する。比較は、上記動作量で行ってもよく(動作例7参照)、懸架装置のストロークセンサ、加速度センサ、およびタイヤ空気圧センサ17L、17Rなどの信号で比較しても良く(動作例8参照)、これらを組み合わせて比較しても良い(ステップS106)。
 制御装置3は、次に安全処理として、警告灯およびブザーを作動させ、その旨を通知する信号をエンジン制御装置21に送付し、該エンジン制御装置21が、電動パーキングブレーキ電動アクチュエータ(EPB)及び電子制御スロットルボディ(ETB)の駆動を禁止する(動作例9参照)(ステップS107)。
 制御装置3は、次に高負荷側の電動アクチュエータ6のみ駆動し、低負荷側の電動アクチュエータ6を停止する(ステップS108)。
 制御装置3は、高負荷側の電動アクチュエータ6の駆動を動作完了まで(パーキングロックの状態が切り替わるまで)継続し、終了後、低負荷側の電動アクチュエータ6を駆動する(ステップS109)。
 制御装置3は、低負荷側の電動アクチュエータ6を動作完了まで駆動し、終了後、安全処理を解除する。具体的には、その旨を通知する信号をエンジン制御装置21に送付し、該エンジン制御装置21が、電動パーキングブレーキ電動アクチュエータ(EPB)及び電子制御スロットルボディ(ETB)の駆動禁止を解除し、制御装置3は警告灯およびブザーの作動を解除する(ステップS110)。
 一方、ステップS102、S104およびS105からステップS111に移行した場合、両電動アクチュエータ6L、6Rを通常動作、すなわち、両電動アクチュエータ6L、6Rの同時駆動を開始または継続し、動作を完了させる(ステップS111)。
 図6は、動作が正常と判断された場合に実施するパーキングロックの状態切替動作における、各電動アクチュエータ6L、6Rの消費電力と動作量の挙動を示すタイミングチャートである。図5のフローチャートにおいて、ステップS101~S105の後、S111を実施した例等に相当する。
 この場合、左右の電動アクチュエータ6L、6Rとも動作時の電流ピークが低く、そのため、電源電圧の低下も小さい。電源電圧が規定値Aを下回らず、また、左右の電動アクチュエータ6L、6Rとも所定時間内の動作量が規定値B以上なので、同時駆動を継続し、動作を終了している。
 一方、図7は、動作が異常と判断された場合に実施するパーキングロックの状態切替動作における、各電動アクチュエータ6L、6Rの消費電力と動作量の挙動を示すタイミングチャートである。図5のフローチャートにおいて、ステップS101~S105の後、S106~S110を実施した例に相当する。
 この場合、特に左側の電動アクチュエータ6Lの動作時の電流ピークが高く、そのため、電源電圧が規定値Aを下回って低下している。左側の電動アクチュエータ6Lの所定時間内の動作量が規定値B未満なので、左右の負荷比較を行っている。その結果、負荷が小さいと判断した右側の電動アクチュエータ6Rを一旦停止し、負荷の大きい左側の電動アクチュエータ6Lの動作終了後、右側の電動アクチュエータ6Rを動作させている。その結果、左右の電動アクチュエータ6L、6Rの電流ピークがずれて、電源電圧のさらなる低下を抑え、左右の電動アクチュエータ6L、6Rの動作を完了させている。
 以上、本発明の実施の形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、種々の変更が可能である。
 例えば、上記実施形態では、パーキングロック機構は変速機のレンジ切替機構の1つの機能として実現されているが、独立した機構であっても良い。
 また、上記実施形態では、左右1対の駆動輪にパーキングロック機構を設けた例を示したが、4輪駆動車でその4輪全てにパーキングロック機構を設け場合、パーキングロック制御装置は、左右の電動アクチュエータの駆動タイミングのみならず、前後の電動アクチュエータの駆動タイミングを同様にずらしても良い。
 本発明は、図1及び2に示すパーキングロック機構に限らず、次のようなパーキングロック機構等にも適用することができる。
(適用例1:特開2014-118989号公報記載のパーキングロック機構)
 本公報は、SBW(シフトバイワイヤ)アクチュエータの誤動作を防ぐため、該アクチュエータの駆動電圧をモニターし、異常があった場合、メインマイコンが制御ユニット(サブマイコン)の出力電圧を遮断するSBWシステム(パーキングロック機構を含む)を開示している。
 具体的には、SBW用ECU(電子制御ユニット)は、シフトレンジの指令値等を取得しレンジ切替指令を出すメインマイコンと、該レンジ切替指令を受けてSBWアクチュエータの動作を制御するサブマイコンと、該サブマイコンの出力を遮断できる遮断機と、前記サブマイコンの出力に基づいてSBWアクチュエータを駆動する駆動回路と、該駆動回路の出力をモニターするモニター回路を有し、該モニター回路により駆動回路の出力の異常が検出された場合、メインマイコンは、前記遮断機を遮断して前記サブマイコンの出力を遮断する(図1等参照)。
 本発明の制御装置をこのSBWシステムに適用する場合、例えば、メインマイコンは左右の駆動輪共通とし、サブマイコン、遮断機、駆動回路、モニター回路、及びパーキングロック機構は、左右それぞれの駆動輪用に設ける。これにより、本発明の図1の構成に遮断機が加わった構成と同様になる。
 メインマイコンが、左右のサブマイコンにタイミングをずらして駆動指示を行うことにより、左右のアクチュエータの電流ピークをずらして駆動することができる(本発明の動作例1)。また、ロータリーエンコーダ等各種センサの出力を直接又はサブマイコン経由でメインマイコンに入力し、メインマイコンが左右のサブマイコンを制御することにより、本発明の動作例2~10を実施することができる。
 この公報の遮断機能は、動作すべきでない時にアクチュエータが動作することを防ぐ機能であるのに対し、本願発明は、動作すべき時にアクチュエータが動作しない場合の対処法なので、両者は互いに干渉せず、これらは併用できる。
(適用例2:特開2013-95251号公報記載のパーキングロック機構)
 本公報は、SBWアクチュエータが故障しても、解除レバーの操作により、手動でパーキングロックを解除できるパーキングロック機構を示している(図1等)。
 具体的には、パーキングロック機構は、ディテント機構と、パーキングロッドと、カムと、パーキングポールと、パーキングポールとからなる一般的なパーキングロック機構において、パーキングポールに挿通されカムの先端側に当接するソケットをさらに設け、SBWアクチュエータがこのソケットをパーキングポールの軸方向に前進後退させることにより、カムとパーキングロッドとディテント機構とを駆動してレンジ切替とパーキングロックの設定・解除を行うようになっている。さらに、ディテント機構は、手動の解除レバーでも回転でき、これにより、パーキングロッドを引いてカムを引き抜き、パーキングロックを解除できるようになっている。
 本発明の制御装置をこのパーキングロック機構に適用する場合、パーキングロック機構を左右の駆動輪に設け、それぞれのSBWアクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。前記解除レバーを操作しない限り、レンジ切替とパーキングロックの設定・解除はSBWアクチュエータにより行われるからである。尚、手動の解除レバーは、1つのみ設け、これを左右のパーキングロック機構の両方に接続し、両方同時にパーキングロックの解除操作を行えるようにする。
(適用例3:特開2012-106539号公報記載のパーキングロック機構)
 本公報は、運転者が誤ってブレーキの代わりにアクセルを踏んで衝突した場合の損害を軽減するために、エアバッグ制御回路が衝突を検知した場合、SBW制御回路は強制的にレンジをNレンジに切替えて、推進力を遮断するSBW装置(パーキングロック機構を含むレンジ切替装置)を開示している。
 本発明の制御装置をこのSBW装置に適用する場合、レンジ切替機構を左右の駆動輪に設け、それぞれの電動アクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。衝突が発生しない限り、レンジ切替とパーキングロックの設定・解除は電動アクチュエータにより行われるからである。
(適用例4:特開2010-223355号公報記載のパーキングロック機構)
 本公報は、モータの回転角度センサの故障を判定し、故障時には、該モータにより回転駆動されるマニュアルシャフトの回転位置センサにより検出される回転位置の時間変化量に基づいてモータを制御するSBW装置(パーキングロック機構を含むレンジ切替装置)を開示している。
 本発明の制御装置をこのSBW装置に適用する場合、レンジ切替機構を左右の駆動輪に設け、それぞれの電動アクチュエータを本発明の制御装置で駆動制御する。本発明の実施例では、電動アクチュエータ6の制御には、該アクチュエータの回転位置センサ16を用いているが、これに加えてレンジ切替シャフト7の回転角を検出するセンサを設けて、その出力を制御装置3にフィードバックし、これ基づいて電動アクチュエータ6を駆動制御することもできるようにする。これにより、本パーキングロック機構の機能と、本発明の動作例1~10の動作を実現できる。
(適用例5:特開2008-151210号公報記載のパーキングロック機構)
 本公報は、パーキングから他のレンジに確実に切り替わるように、減速機がパーキングと他のレンジとの間の切替時に減速比を大きくするSBW用レンジ切替装置(パーキングロック機構を含む)を開示している。この減速機は、ピッチ円が楕円形状の2つの歯車を噛合せ、レンジの機械的な位置がD→N→R→Pと移動するにつれて減速比が大きくなるものである。減速比変更のための電気的制御は不要である。
 本発明の制御装置をこのSBW用レンジ切替装置に適用する場合、レンジ切替装置を左右の駆動輪に設け、それぞれの電動アクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。
(適用例6:特開2008-121807号公報記載のパーキングロック機構)
 本公報は、ディテントレバーを回転させるマニュアルシャフトを駆動するための、モータと減速機構を小型化したSBW式レンジ切替装置を開示している。
 具体的には、モータの回転を減速してボールねじ軸を回転させ、ボールナットをリニア駆動し、出力軸に設けられたレバーを搖動して出力軸とこれに接続されたマニュアルシャフトを回転させている。通常の機構との違いは機構のみで電気制御上は同一である。尚、このパーキングロック機構では、ディテント機構に接続された機構としてはスプール弁のみが記載されているが、パーキングロック機構を接続することも可能と考えられる。
 本発明の制御装置をこのパーキングロック機構に適用する場合、レンジ切替装置を左右の駆動輪に設け、それぞれの電動アクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。
(適用例7:特開2007-309393号公報記載のパーキングロック機構)
 本公報は、アクチュエータ異常時に手動レバー5で操作可能なSBWシステム(パーキングロック機構を含む)を開示している。コントローラ2が異常を検知した際に、操作ハンドル5を収納した部分の蓋82を開くようにもなっている。
 本発明の制御装置をこのパーキングロック機構に適用する場合、適用例2と同様に、パーキングロック機構を左右の駆動輪に設け、それぞれのSBWアクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。前記手動レバーを操作しない限り、レンジ切替とパーキングロックの設定・解除はSBWアクチュエータにより行われるからである。尚、手動の解除レバーは、1つのレバー左右のパーキングロック機構の両方に接続し、両方同時にパーキングロックの解除操作を行えるようにする。
(適用例8:特開2007-270920号公報記載のパーキングロック機構)
 本公報は、係合部材をディテントレバーのレンジ谷に確実に引き込むように、モータの停止から所定時間経過後にモータを正転又は逆転させ、レンジ谷に係合部材を引き込むSBWレンジ切替装置(パーキングロック機構を含む)を開示している。
 本発明の制御装置をこのパーキングロック機構に適用する場合、パーキングロック機構を左右の駆動輪に設け、それぞれのSBWアクチュエータを本発明の制御装置で駆動制御し、前記動作例1~10の動作を実現できる。本発明では、レンジ変更時に、ディテントレバーが目的のレンジに対応する回転角度になったか否かは、電動アクチュエータの角度位置センサで確認しているので、このパーキングロック機構の方法を組み合わせることは可能である。
(適用例9:特開2005-69295号公報記載のパーキングロック機構)
 本公報は、走行中にメインモータの故障による誤動作で、パーキングレンジへ切り替わることを防止するために、パーキングのディテント谷を大きくするとともに、パーキングから又はパーキングへのレンジ切替時には、高トルクのサブモータを使用し、パーキング以外のレンジ間の切替時には、低トルク高速のメインモータを使用する、レンジ切替装置(パーキングロック機構を含む)を開示している。
 本発明の制御装置をこのパーキングロック機構に適用する場合、パーキングロック機構を左右の駆動輪に設け、各パーキングロック機構にメインモータとサブモータを並列に設け、制御装置に上記メインモータとサブモータの使い分け制御を追加した上で、それぞれのモータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。本発明の動作例1~10は、主にパーキングから又はパーキングへのレンジ切替時に必要になるので、動作例1~10の適用対象は主にメインモータになる。
(適用例10:特開2000-74211号公報記載のパーキングロック機構)
 本公報は、パーキングから又はパーキングへのレンジ切替時のみ、アクチュエータの大電力駆動を行う自動変速機のパーキング機構を開示している。
 本発明の制御装置をこのパーキングロック機構に適用する場合、適用例9と同様に、パーキングロック機構を左右の駆動輪に設け、制御装置に上記駆動電力の使い分け制御を追加した上で、それぞれのSBWアクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。本発明の動作例1~10は、主にパーキングから又はパーキングへのレンジ切替時に必要になるので、動作例1~10の適用対象は主に大電力駆動時になる。
(適用例11:特開平7-137555号公報記載のパーキングロック機構)
 本公報は、パーキングレンジから他のレンジへの切替の際、パーキングカムをパーキングポールの押込み位置から脱出させるための別途の油圧アクチュエータを採用し、これにより小さいモータを使用できるようにした自動変速機のロック装置を開示している。
 本発明の制御装置をこのパーキングロック機構に適用する場合、パーキングロック機構を左右の駆動輪に設け、各パーキングロック機構に油圧アクチュエータを追加し、制御装置に上記モータと油圧アクチュエータの使い分け制御を追加した上で、それぞれのモータを本発明の制御装置で駆動制御し、本発明の動作例1及び3~10の動作を実現できる。但し、パーキングレンジから他のレンジへの切替時には、油圧アクチュエータを用いるので、本発明の各動作例は不要であり、この切替時のみが対象の動作例2は全く不要である。但し、それ以外のレンジ切替時には、モータを用いるので、動作例1~10の適用対象になる。
(適用例12:特開平5-118436号公報記載のパーキングロック機構)
 本公報は、変速機構及びパーキングロック機構の回転方向の遊び量を、係合部材が自走してディテントレバーのレンジ谷に落ち込むのに必要最小限の量にすることにより、機構をコンパクト化した、自動変速機の制御装置を開示している。
 本発明の制御装置をこのパーキングロック機構に適用する場合、パーキングロック機構を左右の駆動輪に設け、それぞれのSBWアクチュエータを本発明の制御装置で駆動制御し、本発明の動作例1~10の動作を実現できる。このパーキングロック機構は、従来の装置の機械的な遊び量を変更したにすぎず、電気的制御は従来と同一からである。
(適用例13:特表2013-525201号公報記載の操作装置)
 本公報は、レンジ位置を指示する直動可能な操作ノブを有する、SBW用直動型操作装置を開示している。この操作ノブは、ラッチ手段を介して操作装置アクチュエータ(レンジ切替アクチュエータとは異なる)に接続され、変速機で実際に実現されているレンジ位置に動くように構成されている。これにより、誤操作を触感的及び視覚的に警告可能にしている。
 本願発明は、このパーキングロック機構の操作装置と組み合わせることができる。実際に実現されているレンジ位置は、本発明の制御装置3が電動アクチュエータ6の回転位置センサ16から把握可能なので、これを操作装置へ送り、操作装置は操作ノブをその位置に移動させることができる。本発明の場合、左右の駆動輪それぞれにパーキングロック機構を含むレンジ切替機構がある一方、操作装置は1つなので、左右の実際のレンジ位置(及びパーキングロック状態)が不整合の場合に、操作ノブをどの位置にするが問題になる。その場合は、警告(0057参照)を行うことが考えられる。但し、本発明の動作例1~12により、このような不整合が回避されやすいので、この操作装置を含むパーキングロック機構に本発明を適用することは有利である。
 1L、1R…変速機
 2…シフタ
 3…制御装置
 3a…プロセッサ
 4、4L、4R…パーキングロック機構
 5…電源
 6、6L、6R…電動アクチュエータ
 6a…モータ
 6b…減速機
 7…レンジ切替シャフト
 8…ディテントレバー
 8a…凹部
 9…ディテントスプリング
 9a…ローラ
 10…スプール
 11…スプールバルブ
 12…パーキングロッド
 12a…緩衝スプリング
 13…カム
 14…パーキングポール
 14a…爪
 15…パーキングギア
 15a…凹部
 16、16L、16R…回転位置センサ
 17、17L、17R…温度センサ
 18L、18R…懸架装置ストロークセンサ又は加速度センサ又は車輪空気圧センサ
 19L、19R…電流センサ
 20…電源電圧センサ
 21…エンジン制御装置

Claims (15)

  1.  車両の複数の駆動輪のうち、少なくとも左右一対の駆動輪それぞれについて設けられたパーキングロック機構の電動アクチュエータを制御する、プロセッサを有する制御装置であって、
     前記プロセッサは、前記左右一対の駆動輪に対してパーキングロックを実施又は解除する場合に、該左右一対の駆動輪それぞれについて設けられるパーキングロック機構の電動アクチュエータをタイミングをずらして駆動することを特徴とする、パーキングロック機構の制御装置。
  2.  前記プロセッサは、前記左右一対の駆動輪に対してパーキングロックを解除する場合にのみ、該左右一対の駆動輪それぞれについて設けられるパーキングロック機構の電動アクチュエータをタイミングをずらして駆動する、請求項1に記載のパーキングロック機構の制御装置。
  3.  前記パーキングロック機構は、各レンジ位置に対応する凹部を有し各レンジ位置に応じた回転位置に前記電動アクチュエータにより回転駆動されるディテントレバーと、該ディテントレバーが各レンジ位置にあるときに対応する凹部に係合するディテントスプリングと、を有し、
     前記プロセッサは、先に駆動した電動アクチュエータにより、前記ディテントレバーの凹部と前記との係合が解除される回転角まで、該ディテントレバーを回転させたのち、他の電動アクチュエータの駆動を開始する、請求項1に記載のパーキングロック機構の制御装置。
  4.  前記プロセッサは、電源電圧が所定値以下の場合、前記各電動アクチュエータをタイミングをずらして駆動する、請求項1に記載のパーキングロック機構の制御装置。
  5.  前記プロセッサは、パーキングロック機構の温度が所定の範囲外の場合、前記各電動アクチュエータをタイミングをずらしての駆動する、請求項1に記載のパーキングロック機構の制御装置。
  6.  前記プロセッサは、前記各電動アクチュエータへ供給する電流を所定の上限電流に制御する、請求項1に記載のパーキングロック機構の制御装置。
  7.  前記プロセッサは、前記電動アクチュエータをタイミングをずらして駆動する場合に、前記各電動アクチュエータのうち負荷が高いものから駆動する、請求項1に記載のパーキングロック機構の制御装置。
  8.  前記プロセッサは、前記各電動アクチュエータを駆動させて、各電動アクチュエータの負荷を判断する、請求項7に記載のパーキングロック機構の制御装置。
  9.  前記プロセッサは、前記パーキングロックの実施又は解除に先立って前記各電動アクチュエータを所定時間駆動させ、その際の動作量が最も少ない電動アクチュエータの負荷が高いと判断する、請求項8に記載のパーキングロック機構の制御装置。
  10.  前記プロセッサは、懸架装置のストロークセンサ、加速度センサ、またはタイヤ空気圧センサ、の出力を取得するように構成され、前記パーキングロックの実施又は解除に先立って各電動アクチュエータを所定時間駆動させ、その時発生する前記いずれか1以上のセンサから得られる波形から、各電動アクチュエータの負荷を判断する、請求項8に記載のパーキングロック機構の制御装置。
  11.  前記プロセッサは、前記電動アクチュエータの駆動の結果、パーキングロック機構間で異なるパーキングロックの状態になっていることが検出された場合は、その旨を通知する信号をエンジン制御装置に送付する、請求項1に記載のパーキングロック機構の制御装置。
  12.  前記プロセッサは、前記電動アクチュエータの駆動の結果、パーキングロック機構間で異なるパーキングロックの状態になっていることが検出された場合は、すべての電動アクチュエータを動作前の状態に戻す、請求項1に記載のパーキングロック機構の制御装置。
  13.  車両の複数の駆動輪のうち、少なくとも左右一対の駆動輪それぞれについて設けられたパーキングロック機構の電動アクチュエータを制御する方法であって、
     プロセッサを有する制御装置を用い、
     前記左右一対の駆動輪に対してパーキングロックを実施又は解除する場合に、該左右一対の駆動輪それぞれについて設けられるパーキングロック機構の電動アクチュエータをタイミングをずらして駆動することを特徴とする、パーキングロック機構の制御方法。
  14.  前記電動アクチュエータをタイミングをずらして駆動する場合に、前記各電動アクチュエータのうち負荷が高いものから駆動する、請求項13に記載のパーキングロック機構の制御方法。
  15.  前記各電動アクチュエータの負荷は、前記各電動アクチュエータを駆動させて判断する、請求項14に記載のパーキングロック機構の制御方法。
     
PCT/JP2014/076030 2014-03-20 2014-09-30 パーキングロック機構の制御装置及び制御方法 WO2015141043A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014058933 2014-03-20
JP2014-058933 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141043A1 true WO2015141043A1 (ja) 2015-09-24

Family

ID=54144041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076030 WO2015141043A1 (ja) 2014-03-20 2014-09-30 パーキングロック機構の制御装置及び制御方法

Country Status (1)

Country Link
WO (1) WO2015141043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083115A (ja) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 パーキングロック装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214976A (ja) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd 車両用パーキング機構
JP2014046824A (ja) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd ブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214976A (ja) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd 車両用パーキング機構
JP2014046824A (ja) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd ブレーキ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083115A (ja) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 パーキングロック装置
JP7020383B2 (ja) 2018-11-27 2022-02-16 トヨタ自動車株式会社 パーキングロック装置

Similar Documents

Publication Publication Date Title
JP4333755B2 (ja) 車両パーキングシステム
JP4305556B2 (ja) 車両の制御装置
US9188224B2 (en) Gear shift arrangement with parking block and method for its activation
US11092236B2 (en) Vehicle control device
US11112008B2 (en) Vehicle control device
US9156475B2 (en) Actuator control apparatus
JP5981972B2 (ja) シフトバイワイヤ制御装置
JP6939461B2 (ja) シフトレンジ切替システム
JP2009162346A (ja) ディテント機構および自動変速機
WO2015141043A1 (ja) パーキングロック機構の制御装置及び制御方法
JP2017062020A (ja) 車両用パーキングロック装置の制御装置
KR102610009B1 (ko) 모터 제어 장치
JP5835629B2 (ja) アクチュエータ制御装置
JP5846394B2 (ja) アクチュエータ制御装置
JP6626585B2 (ja) 車両の制御装置及び車両の制御方法
JP2017133631A (ja) シフト切替装置
JP6824391B2 (ja) 安全なパークロックを実現する電子制御装置および制御の方法
US11837987B2 (en) Motor control device
US9759316B2 (en) Transmission hydraulics controller
JP7275814B2 (ja) シフトレンジ制御装置
US20220393624A1 (en) Abnormality monitoring apparatus
US11746895B2 (en) Shift range device
US20240059155A1 (en) Vehicle control device
JP6070281B2 (ja) 車両のパークロック制御装置
JP2020070785A (ja) シフトバイワイヤシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP