WO2015137142A1 - Method for manufacturing glass layered body, and glass layered body - Google Patents

Method for manufacturing glass layered body, and glass layered body Download PDF

Info

Publication number
WO2015137142A1
WO2015137142A1 PCT/JP2015/055689 JP2015055689W WO2015137142A1 WO 2015137142 A1 WO2015137142 A1 WO 2015137142A1 JP 2015055689 W JP2015055689 W JP 2015055689W WO 2015137142 A1 WO2015137142 A1 WO 2015137142A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
film
reflective film
less
adhesive
Prior art date
Application number
PCT/JP2015/055689
Other languages
French (fr)
Japanese (ja)
Inventor
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015137142A1 publication Critical patent/WO2015137142A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/252Al
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers

Definitions

  • the present invention relates to a method for producing a glass laminate and a glass laminate, for example, a method for producing a glass laminate for imaging light generated from a flat panel display such as a liquid crystal display and an organic EL display in space, and glass. It relates to a laminate.
  • Patent Document 1 proposes an optical imaging member in which a plurality of double-sided reflection bands are arranged at regular intervals so that adjacent reflecting surfaces face each other.
  • the optical imaging member described in Patent Document 1 has a problem that it does not necessarily converge to one point after scattered light has passed.
  • a transparent plate whose one surface is a reflection surface is laminated and integrated (multiple sheets are stacked and integrated), and then a cut surface perpendicular to each reflection surface is formed.
  • the pair of laminated bodies are cut so that the reflective surface formed in one laminated body is perpendicular to the reflective surface formed in the other laminated body.
  • Optical imaging members brought into close contact with each other are being studied. In this optical imaging member, the thickness of the transparent plate corresponds to the interval between the reflecting surfaces.
  • the transparent plate in order to obtain high resolution imaging, a thin transparent plate is adopted, and the transparent plate is in a parallel state so that the surface intervals of all the reflecting surfaces are uniform. It becomes important to laminate with.
  • the transparent plate in addition to the high reflectance of the reflective surface of the transparent plate constituting the laminate, the transparent plate itself has high transmittance and haze. Low is important, and it is also important that the transmittance of the adhesive layer that laminates and integrates the transparent plates is high and that the haze is low.
  • the transparent plates are laminated and integrated, bubbles are likely to be mixed into the adhesive layer (adhesive), and the adhesive is not uniformly applied, so that a difference in thickness of the adhesive layer is likely to occur.
  • the bubbles in the adhesive layer and the thickness difference may impair the uniformity of the spacing between the reflecting surfaces, and also cause a decrease in the transmittance of the adhesive layer and an increase in haze. There is a fear.
  • the area of the transparent plate is large or the number of laminated sheets is large, the above problem is easily realized.
  • the object of the present invention has been made in view of the above circumstances, and it is possible to make the spacing between the reflecting surfaces uniform and narrow without causing an increase in cost, and to reduce bubbles and wall thickness differences in the adhesive layer. Furthermore, it is to devise a method for manufacturing a laminate in which the adhesive is sufficiently spread without excess or deficiency.
  • the present inventor laminated after bringing the edge of one side of the glass film with a reflective film into contact with the surface to be laminated of the other glass film with a reflective film, and laminated and integrated the above.
  • the present inventors have found that technical problems can be solved and propose the present invention. That is, in the method for producing a glass laminate of the present invention, a glass laminate is obtained by integrating a plurality of rectangular glass films with a reflective film by sequentially stacking them with an adhesive interposed therebetween.
  • the glass film 1 with a reflecting film includes, as shown in FIG. 1, a first side 2 constituting an outline of the glass film and two second sides intersecting with the first side 2.
  • the glass film with a reflective film is brought into contact with one glass film with a reflective film.
  • One glass film with a reflective film when the first stacking operation is performed is included.
  • the contact between the glass film with a reflective film and the glass laminate in production includes the contact between the adhesive and the glass film with a reflective film. It shall be described as “contact with the laminated surface of the glass laminate in the middle of manufacture”.
  • side 2 side of the glass film 1 with a reflecting film is made to contact the laminated surface of the glass laminated body in the middle of manufacture, and the glass film with a reflecting film is stacked.
  • start operation By doing in this way, it becomes possible to advance a contact range from the site
  • FIG. 2 is an example of the method for producing a glass laminate of the present invention, and the glass film 1 with a reflective film is laminated from the site on the first side 2 side to the laminated surface 7 ( It is a conceptual diagram of the method of stacking to 6).
  • the manufacturing method of the glass laminated body of this invention performs stacking operation
  • the manufacturing method of the glass laminated body of this invention makes the site
  • the adhesive 7 since the first contact point (contact start point) 8 of the glass film 1 with a reflective film is separated from the first side 2, the adhesive 7 is difficult to protrude, and the reflective film The situation where the adhesive 7 wraps around and adheres to the exposed surface side of the attached glass film 1 can be prevented.
  • the manufacturing method of the glass laminated body of this invention is applied to the adhesive 7 apply
  • the glass film 1 with a reflective film 1 is laminated so that the glass film 1 with a reflective film and the laminated surface 6 of the glass laminate 9 in the process of production are substantially parallel to each other. It is preferable to stack. By doing so, the interval between the reflective films becomes a constant interval, so that it becomes easy to obtain high-resolution imaging when used as an optical imaging member. Furthermore, when processing a glass laminated body, since the situation which an undue stress is added to a specific part does not occur easily, damage to each component of a glass laminated body can be suppressed, and it can process more correctly. As a result, it is advantageous for yield improvement and production efficiency improvement.
  • the offset amount P n ⁇ 1 is the first of the glass films with a reflecting film 10 in the first stage constituting the glass laminate 9 from the first side in the glass film with a reflecting film laminated on the nth sheet. The longest distance to the position corresponding to one side.
  • the glass film with a reflective film is stacked on the laminated surface of the glass laminate during production using a positioning member. This makes it easier to reduce the offset amount P n ⁇ 1 .
  • the method for producing a glass laminate of the present invention preferably uses an adhesive having a viscosity at 25 ° C. of 2 Pa ⁇ s or more. If it does in this way, since it will become difficult for an adhesive to flow at the time of apply
  • the method for producing a glass laminate of the present invention it is preferable to apply an adhesive to the laminated surface of the glass film with a reflective film and / or the laminated surface of the glass laminate in the course of production by screen printing or a slit coater. If it does in this way, the uniformity of the application
  • operativity can be improved.
  • a glass film with a reflective film having a thickness of 100 ⁇ m to 1500 ⁇ m it is preferable to use a glass film with a reflective film having a thickness of 100 ⁇ m to 1500 ⁇ m. If it does in this way, this invention can be implemented appropriately, without the glass film with a reflecting film bending
  • the method for producing a glass laminate of the present invention preferably uses a glass film with a reflective film having a size (longitudinal dimension ⁇ transverse dimension) of 200 mm ⁇ 200 mm or more. If a glass film with a reflective film of such a size is used, a plurality of glass films with a reflective film can be stacked and integrated, and then cut with a wire saw, etc., so that it can be used for large-size optical imaging members. is there.
  • a dummy glass plate disposed on a laminated frame or the like it is preferable to prepare a dummy glass plate disposed on a laminated frame or the like and sequentially stack a glass film with a reflective film on the dummy glass plate. If it does in this way, even if an adhesive agent will protrude from a glass laminated body, it will become easy to isolate
  • the glass laminate of the present invention is produced by the method for producing a glass laminate described above. In this way, the spacing between the reflecting surfaces can be made uniform and narrow without causing an increase in cost, and the bubbles and thickness difference in the adhesive layer can be reduced, and the adhesive is excessive or insufficient. It is possible to obtain a glass laminate that is sufficiently spread over the glass film.
  • the glass laminate of the present invention is preferably used for an optical imaging member. In this way, it is possible to obtain an optical imaging member capable of forming a high-resolution image with uniform spacing between the reflecting surfaces, good transmittance and haze of the adhesive layer.
  • Pn ⁇ 1 (n number of laminated sheets).
  • the manufacturing method of the glass laminate of the present invention will be described in detail for each process.
  • the glass film with a reflecting film which comprises a glass laminated body is mentioned later.
  • a plurality of glass films with a reflective film are laminated and integrated with an adhesive to obtain a glass laminate.
  • the first of at least one glass film with a reflective film is used. The process of making it contact the glass laminated body in the middle of manufacture from the edge side of this.
  • an adhesive for adhering the glass film with a reflective film to the glass laminate during production is applied.
  • the adhesive is preferably applied to the laminated surface side of the glass laminate in the course of production, but may be applied to the laminated surface side of the glass film with a reflective film.
  • the adhesive When the adhesive is applied to the laminated surface side of the glass laminate during production, it is easy to adjust the contact location and the position of the glass film with a reflective film. In addition, since the adhesive spreads from the first side of the glass film with a reflective film, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and increase the adhesive application efficiency and accuracy. Can do. In addition, when the surface to be laminated is kept in the horizontal direction, the application of the adhesive is simple and the dripping of the adhesive can be suppressed, so that the adhesive application efficiency and application accuracy can be improved. Furthermore, the quality and production efficiency of the glass laminate are improved.
  • the adhesive application method includes slit coater, screen printing, dispenser, doctor blade, roll coater, spatula, roller, brush, brush, spray, spreader, etc. Among them, slit coater or screen printing is preferable. If it does in this way, the uniformity of the application
  • the adhesive is not particularly limited as long as it does not impair the gist of the manufacturing method of the glass laminate of the present invention, and is optimal in view of characteristics required for the glass laminate, manufacturing conditions, particularly temperature and atmosphere. Can be selected as appropriate. For example, when using an adhesive having a characteristic that the viscosity changes by heating or stirring, a hot melt adhesive, or the like, it is necessary to consider the viscosity at the time of bonding the glass film with a reflective film. .
  • the viscosity of the adhesive at 25 ° C. is preferably 2 to 200 Pa ⁇ s, 3 to 100 Pa ⁇ s, 5 to 80 Pa ⁇ s, 6 to 50 Pa ⁇ s, or 10 to 30 Pa ⁇ s.
  • a transparent adhesive is preferable from the viewpoint of optical properties
  • an epoxy adhesive is preferable from the viewpoint of manufacturing efficiency.
  • UV curable resin acrylic, silicon, urethane, polyamide, vinyl acetate, ester, styrene, silicon, cyanoacrylate, PVA, PP, PC, One or more of PET, PMMA, PES, PEN, and cellulose are preferred.
  • a silane coupling agent can also be used.
  • the heating temperature is preferably 50 ° C. or higher, 70 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, particularly preferably 110 to 250 ° C. is there.
  • the pressure during heating is preferably 700 torr or less, 70 torr or less, 10 torr or less, 1 torr or less, or 0.1 torr or less, particularly preferably 0.01 torr or less.
  • the application range of the adhesive will be described with reference to an example in which the adhesive is applied onto the glass laminate in the middle of manufacture.
  • the surface to be laminated with “the surface of the glass film with a reflecting film” when applying an adhesive agent to the glass film side with a reflecting film.
  • FIG. 4 is a schematic plan view showing a surface to be laminated of a glass laminate in the process of being applied with an adhesive.
  • the range in which the adhesive is applied is such that the ratio of A / B is 0.30 or more, 0.35 or more, 0.00 when the area where the adhesive is applied is A and the area of the entire surface to be laminated is B. It is 4 or more, 0.5 or more, 0.7 or more, or 0.8 or more, and preferably 1 or less, 0.99 or less, or 0.95 or less.
  • the adhesive since the adhesive is applied to a wide portion, the adhesion can be strengthened and the adhesive can be easily stretched uniformly to the end of the laminate.
  • the A / B ratio is less than 1, the adhesive will hardly protrude from the surface to be laminated. As a result, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and it is possible to increase the application efficiency and application accuracy of the adhesive and improve the application uniformity of the adhesive layer.
  • the range of applying the adhesive, the shortest distance between one side of the outermost and the stacked surface of the application region and L 2, the length of the second side of the reflective film-coated glass film is taken as L 0 , L 2 / L 0 ratio is preferably 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, 0.1 or less or 0.05 or less, and preferably 0 or more Or it exceeds 0, or is 0.001 or more or 0.005 or more.
  • the ratio of L 2 / L 0 is smaller than 1, it is difficult for the adhesive to stick out. As a result, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and it is possible to increase the application efficiency and application accuracy of the adhesive and improve the application uniformity of the adhesive layer.
  • the glass film with a reflective film is brought into contact with the laminated surface of the glass laminate in the manufacturing process in an inclined state.
  • the contact angle is preferably 0.1 ° to 50 °, more preferably 0.5 ° to 45 °, 1 ° to 40 °, 2 ° to 35 °, 3 ° to 30 °, 5 ° to 30 °. Less than or between 8 ° and 25 °.
  • the site on the first side of the glass film with a reflective film can be more reliably brought into contact with each other.
  • other than the first side portion of the glass film with a reflective film is unfairly contacted, blocking the passage of bubbles in the adhesive layer and suppressing the situation where bubbles remain in the adhesive layer. be able to.
  • the manufacturing method of the glass laminated body of this invention is the glass with a reflecting film by making the site
  • the manufacturing method of the glass laminated body of this invention makes the site
  • the contact start point of the glass film with a reflective film is separated from the first side, it is difficult for the adhesive to stick out, and the adhesive is routed to a surface other than the contact surface of the glass film with a reflective film. It is possible to prevent a situation where it adheres and adheres.
  • L 1 / L 0 is 1 / 10,000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1/300 or more, or 1/200 or more is preferable, and 1/3 or less, 1/5 or less, 1/10 or less, 1/20 or less, 1/30 or less, 1/50 or less, or 1 / 100 or less is preferable, and if L 1 / L 0 is too large, the glass film with a reflective film may be displaced and fixed from the planned stacking position. If it does in this way, it will be easy to enjoy effects, such as prevention of breakage of the above-mentioned glass film with a reflecting film, and prevention of the sticking out of an adhesive agent, and wraparound.
  • the glass film with a reflective film is all in contact with the laminated surface or fixed with an adhesive. It becomes easy to adjust a glass film with a reflecting film to an appropriate position before doing. Also, in general, by the pressing of the contact or exogenous force reflective film-coated glass film, but spreads crushed adhesive between the reflective film-coated glass film, by leaving spaced by a distance L 1 minute as the In particular, even when the adhesive is sufficiently expanded at the site on the first side of the glass film with a reflective film, it is easy to prevent the adhesive from sticking out from the portion to be coated.
  • the surface interval between the plurality of glass films with a reflecting film and the distance between the reflecting films become uniform, and when used as an optical imaging member, it becomes easy to obtain high-resolution imaging. Furthermore, since it is possible to save the trouble of removing the protruding adhesive, the production efficiency can be improved and the production cost can be reduced.
  • the glass film with a reflective film when the glass film with a reflective film is brought into contact with the surface to be laminated, from the viewpoint of uniforming the wetting and spreading of the adhesive, it is possible to hold the glass laminate in the middle of manufacture so that the surface to be laminated is in the horizontal direction. preferable.
  • interval of a reflecting film can be made substantially uniform, you may hold
  • the glass laminate in the course of manufacture is positioned below the glass film with a reflective film from the viewpoint of making the adhesive spread evenly.
  • the glass film with a reflective film may be lowered and brought into contact, or the glass laminate is raised and brought into contact. May be.
  • the glass laminate side may be moved and brought into contact, or the glass film side with a reflective film may be moved and brought into contact.
  • the method for producing a glass laminate of the present invention it is preferable to control the contact of the glass film with a reflective film on the surface to be laminated by controlling the adsorption and release of the adsorption arm. If it does in this way, while it becomes possible to make the contact to the laminated surface of the glass film with a reflecting film constant, it becomes easy to prevent the damage and contamination of a glass film with a reflecting film.
  • the glass film with a reflective film is stacked on the surface to be laminated of the glass laminate in the middle of production via an adhesive.
  • the situation that the edge on the first side and the edge on the third side of the glass film with a reflective film first come into contact with each other to block the passage of bubbles in the adhesive layer. It becomes easy to prevent.
  • the holding for separating the third side part from the surface to be laminated is released at once, and the reflective film You may utilize the bending of a glass film with attachment, and you may hold
  • the glass film with a reflective film may be released at one time by releasing the adsorption or clamping, Alternatively, the suction arm or the clamping device itself may be moved while maintaining the clamping, and the glass film with the reflective film may be gradually brought into contact with the surface to be laminated.
  • the glass films with a reflective film are stacked so as to be substantially parallel to the surface to be laminated.
  • the glass film with a reflective film may be brought into contact with the glass laminate in production and stacked, and then a pressing force may be applied to the surface of the glass film with a reflective film as necessary.
  • a means for applying a pressing force it is preferable to use a roller, a weight, or the like. If it does in this way, while it becomes easy to reduce the bubble and thickness difference in a contact bonding layer, the adhesive force of the glass films with a reflecting film can be improved.
  • the pressing force is It is better to give it. Therefore, it is preferable to appropriately adjust the presence / absence of the pressing force and the strength thereof in consideration of the situation.
  • the size of the reflective film formed glass film (e.g., the second side L 0) with respect to, the offset amount P n-1 does not become too excessive, the alignment of each reflective film-coated glass film Can keep good.
  • the quality of the glass laminate can be improved, and the glass laminate can be effectively utilized up to the end, which is advantageous for yield improvement and production efficiency improvement.
  • the offset amount P n-1 has been described with the first side as the center in this specification, but the offset amount P n-1 and the relational expression P n-1 / L 0 are also expressed for the other sides. It goes without saying that it is preferable to make it smaller, and the same applies to the range.
  • FIG. 6a to 6h are schematic plan views showing the shape of the positioning member 18 and the location of the positioning member 18 with respect to the glass laminate 9 being manufactured.
  • Examples of the positioning member 18 include a positioning bar, a formwork, and the like, and these can be used in combination with any shape and number as appropriate.
  • the offset amount P n-1 can be further reduced.
  • the positioning member 18 is movable up and down and left and right and can be detached from the stacking apparatus. By doing in this way, it becomes possible to respond to the size change of the glass film with a reflective film, and cleaning and maintenance are also facilitated.
  • the positioning bar for example, it is possible to arrange a total of eight, two on each side of the glass laminate, four on two sides, two on two sides, etc. One, three, five, six, seven, or more may be arranged in order to keep the alignment of the glass film with a reflective film satisfactorily.
  • the positioning may be performed by machine control such as image diagnosis, and in this way, the above effect can be enjoyed and the glass film with a reflective film can be laminated more accurately.
  • the laminating a glass film with a reflective film it is preferable to sequentially laminate the glass film with a reflective film on a laminated frame. If it does in this way, the lamination accuracy and lamination efficiency of a glass film with a reflecting film will improve. It is preferable to provide a dummy glass substrate on the laminated frame and sequentially laminate the glass film with a reflective film on the dummy glass substrate. If it does in this way, even if an adhesive agent protrudes from a glass laminated body, it will become easy to isolate
  • the number of laminated glass films with a reflective film is 3 or more, 5 or more, 10 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more or 600 sheets.
  • a plurality of glass films with a reflective film are stacked and integrated with an adhesive interposed therebetween, and then the resulting glass laminate is formed into a reflective film. It is preferable to have the process of cut
  • Various methods can be used as a method of cutting the glass laminate into strips. Among these, it is preferable to cut
  • the cutting of the glass laminate is different from the cutting of ordinary glass alone, and is the cutting of a composite material having a glass film, a reflective film, an adhesive layer and the like. For this reason, when the glass laminate is cut, if the adhesive strength of each constituent member is insufficient, a part of the constituent member may be peeled off. However, in this invention, since the adhesive strength of the glass film with a reflecting film can be raised, the said malfunction can be prevented appropriately.
  • the glass laminate of the present invention is preferably produced by the above-described method for producing a glass laminate of the present invention.
  • the glass laminate of the present invention thus obtained has a uniform and narrow spacing between the reflecting surfaces, and further, there are few bubbles and wall thickness differences in the adhesive layer, so when used as an optical imaging member It is possible to obtain an image with high resolution and high brightness.
  • the thickness of the adhesive layer of the glass laminate is preferably 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 70 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less in order to minimize the optical influence. It is 20 ⁇ m or less or 10 ⁇ m or less, particularly preferably 5 ⁇ m or less. The thinner the adhesive layer, the narrower the interval between the reflective films, and the more the adhesive layer transmittance is improved, and the haze of the adhesive layer is likely to decrease.
  • Refractive index n d of the adhesive layer of the glass laminate preferably 1.60 or less, 1.55 or less, 1.54 or less, 1.52 or less or 1.51 or less, particularly preferably 1.50 or less, Further, it is preferably 1.45 or more or 1.48 or more, particularly preferably 1.49 or more. Accordingly, the refractive index n d of the adhesive layer of the glass laminate, easily matched to the refractive index of the glass film, it is possible to suppress the diffusion reflection at the interface of the adhesive layer.
  • the refractive index n d can be measured by a precision refractometer.
  • the transmittance of the adhesive layer of the glass laminate is preferably as high as possible.
  • the transmittance of the adhesive layer at a thickness of 100 ⁇ m and a wavelength of 300 nm is preferably 30% or more, 50% or more, 70% or more, 80% or more, or 85% or more, and particularly preferably 89% or more.
  • the transmittance of the adhesive at a thickness of 100 ⁇ m and a wavelength of 350 nm is preferably 50% or more, 70% or more, 80% or more, 85% or more, 89% or more, or 90% or more, and particularly preferably 91% or more.
  • the transmittance of the adhesive layer at a thickness of 500 ⁇ m and a wavelength of 550 nm is preferably 85% or more, 89% or more, or 90% or more, and particularly preferably 91% or more. In this way, when applied to an optical coupling member or the like, when light is transmitted while being repeatedly reflected, the loss of light is reduced, and high-resolution imaging is easily obtained.
  • the haze of the adhesive layer of the glass laminate is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, particularly preferably 0.3% or less. In this way, it becomes possible to reduce diffuse reflection at the interface between the glass film and the adhesive layer, and when applied to an optical coupling member or the like, when light is transmitted while repeating reflection, there is no loss of light. This makes it easier to obtain high resolution imaging.
  • the number of bubbles in the adhesive layer of the glass laminate is preferably an average number of 100 ⁇ m or more per 1 cm 2 , preferably 3 or less, 2 or less, 1 or less, 0.5 or less, or 0.1, especially 0. 05 or less is preferable.
  • the maximum radius of the bubbles in the adhesive layer of the glass laminate is preferably 10 mm or less, 7 mm or less, 5 mm or less, 3 mm or less, 2 mm or less, 1 mm or less, 700 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, They are 50 micrometers or less, 40 micrometers or less, 30 micrometers or less, 20 micrometers or less, or 10 micrometers or less.
  • the smaller the number of bubbles and the smaller the radius of the bubbles the more uniform the spacing between the reflecting surfaces, and it becomes easier to suppress a decrease in the transmittance of the adhesive layer and an increase in haze.
  • the bubble of the contact bonding layer of a glass laminated body can be confirmed by observing the glass laminated body which consists of a glass film which is laminated
  • a step of preparing a pair of strip-like glass laminates and a pair of glass laminates on which the reflective films are formed are orthogonal to each other. And fixing the arrangement to obtain an optical imaging member.
  • a glass substrate on the outer surface of the pair of glass laminates (the upper surface of the upper glass laminate 24 and the lower surface of the lower glass laminate 24 shown in FIG. 9 are usually cut surfaces). It is preferable to have a step of arranging and fixing (preferably a tempered glass substrate). In this case, it is not necessary to polish the laminated outer surfaces of the pair of glass laminates with high accuracy, and the manufacturing cost of the optical imaging member can be greatly reduced. Furthermore, in this case, it is preferable that the laminated outer surfaces of the pair of glass laminates are not substantially polished.
  • a plurality of glass films with a reflective film are used.
  • a glass film with a reflecting film may form a reflecting film on both surfaces of a glass film, it is preferable to form a reflecting film only on one surface of a glass film from a viewpoint of manufacturing efficiency.
  • the reflective film of the glass film is formed when the glass film with the reflective film is stacked on the laminated surface of the glass laminate in the course of manufacture. It is preferable to contact the surface not to be laminated with the surface to be laminated (adhesive), but the opposite may be possible.
  • the glass film according to the present invention preferably has the following characteristics and glass composition.
  • the thickness of the glass film is preferably 1500 ⁇ m or less, 1400 ⁇ m or less, 1300 ⁇ m or less, 1200 ⁇ m or less, 1100 ⁇ m or less, 1000 ⁇ m or less, 900 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less from the viewpoint of ensuring an appropriate amount of bending. 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less. The thinner the glass film is, the narrower the interval between the reflecting films, so that it becomes easier to obtain a high-resolution image.
  • the surface roughness Ra of the surface of the glass film is preferably 100 mm or less, 50 mm or less, 10 mm or less, 8 mm or less, 4 mm or less or 3 mm or less, particularly preferably 0.01 to 2 mm. If the surface roughness Ra of the surface of the glass film is too large, the distance between the reflective films tends to vary. Especially when the glass films are laminated and integrated, the variation in the distance between the reflective films is amplified, and high-resolution imaging is performed. It becomes difficult to obtain. Furthermore, when laminating a glass film, it becomes easy to entrain air, or it becomes difficult to perform optical carboxylation.
  • the surface roughness Ra of the end face of the glass film is preferably 50 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, about 3 ⁇ m, 2 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less, particularly preferably 0.05 ⁇ m or less. If the surface roughness Ra of the end face of the glass film is too large, the glass laminate is easily damaged.
  • the waviness of the glass film is preferably 1 ⁇ m or less, 0.08 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, or 0.02 ⁇ m or less, particularly preferably 0.01 ⁇ m or less.
  • the interval between the reflection films tends to vary.
  • the variation in the interval between the reflection films is amplified, making it difficult to obtain a high-resolution image.
  • the undulation of the glass film is too large, it becomes easy to entrain air when the glass film is laminated, or it becomes difficult to perform optical carboxylation. That is, in the case where a plurality of glass films with a reflective film are directly bonded by optical carboxylating without interposing an adhesive between them, if the glass film is excessively swelled, optical carboxylation becomes difficult.
  • the difference between the maximum thickness and the minimum thickness of the glass film is preferably 10 ⁇ m or less, 5 ⁇ m or less, or 2 ⁇ m or less, and particularly preferably 0.01 to 1 ⁇ m. If this difference is too large, the distance between the reflective films tends to vary. In particular, when the glass films are laminated and integrated, the variation in the distance between the reflective films is amplified, making it difficult to obtain a high-resolution image. Furthermore, when laminating a glass film, it becomes easy to entrain air, or it becomes difficult to perform optical carboxylation.
  • the glass film preferably has an unpolished surface.
  • the theoretical strength of glass is inherently very high, but breakage is often caused even by a stress much lower than the theoretical strength. This is because a small defect called Griffith Flow is generated on the surface of the glass film in a process after glass molding, such as a polishing process. Therefore, if the surface of the glass film is unpolished, the original mechanical strength is hardly impaired, and the glass film is difficult to break. Moreover, since a grinding
  • the width dimension of the glass film is preferably 200 mm or more, 250 mm or more, 300 mm or more, 500 mm or more, 600 mm or more, 800 mm or more, 1000 mm or more, 1200 mm or more, or 1500 mm or more, particularly preferably 2000 mm or more. If it does in this way, it will become easy to enlarge an optical image formation member. On the other hand, if the width dimension of the glass film is too large, it is difficult to cut the glass laminate in a direction perpendicular to the surface on which the reflective film is formed. Therefore, the width dimension of the glass film is preferably 3500 mm or less or 3200 mm or less, and particularly preferably 3000 mm or less.
  • the size of the glass film (longitudinal dimension ⁇ horizontal dimension) is preferably in the range of 200 mm ⁇ 200 mm to 3500 mm ⁇ 3500 mm, any combination of width dimensions can be used. Smaller glass film sizes are easier to manufacture and provide a high-quality glass laminate, which is advantageous when high definition is required. Moreover, in order to obtain a large optical imaging member, it is preferable to use a glass film having a large size. However, as the glass film size increases, the difficulty of the laminating process and the cutting process increases. Even in such a case, according to the method for producing a glass laminate of the present invention, it is possible to obtain a glass laminate of good quality, but it is also possible to cope with an increase in size appropriately by combining small optical imaging members. Good.
  • the crack occurrence rate of the glass film is preferably 70% or less, 50% or less, 40% or less or 30% or less, particularly preferably 20% or less. If it does in this way, it will become difficult to break a glass layered product.
  • the “crack occurrence rate” is a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., and a Vickers indenter set at a load of 1000 g is driven into the glass surface (optical polishing equivalent surface) for 15 seconds.
  • the liquidus temperature of the glass film is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, or 1090 ° C. or lower, particularly preferably 700 to 1070 ° C.
  • the liquidus viscosity of the glass film is preferably 10 5.0 dPa ⁇ s or more, 10 5.6 dPa ⁇ s or more, or 10 5.8 dPa ⁇ s or more, and particularly preferably 10 6.0 to 10 10.0 dPa.
  • -It is more than s. If it does in this way, it will become difficult to devitrify glass at the time of fabrication.
  • the “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours to precipitate crystals. Refers to the value measured temperature.
  • “Liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the Young's modulus of the glass film is preferably 65 GPa or more, 67 GPa or more, 68 GPa or more, 69 GPa or more, 70 GPa or more, 71 GPa or more, or 72 GPa or more, and particularly preferably 75 to 100 GPa. If it does in this way, after forming a reflecting film in the surface of a glass film, a glass film becomes difficult to warp, As a result, the space
  • the density of the glass film is preferably 2.7 g / cm 3 or less, 2.6 g / cm 3 or less, or 2.5 g / cm 3 or less, particularly preferably 2.0 to 2.4 g / cm 3 . In this way, it becomes easy to reduce the weight of the optical imaging member.
  • the thermal expansion coefficient of the glass film is preferably 25 to 100 ⁇ 10 ⁇ 7 / ° C., 30 to 90 ⁇ 10 ⁇ 7 / ° C., 30 to 60 ⁇ 10 ⁇ 7 / ° C. or 30 to 45 ⁇ 10 ⁇ 7 / ° C. Particularly preferred is 30 to 40 ⁇ 10 ⁇ 7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of various functional films.
  • “Thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer. As a sample for measuring the thermal expansion coefficient, ⁇ 5 mm ⁇ with end-face processed R A 20 mm cylindrical sample is used.
  • strain point of the glass film is preferably 600 ° C. or higher, particularly preferably 630 to 750 ° C. If it does in this way, it will become easy to improve heat resistance. “Strain point” refers to a value measured based on the method of ASTM C336-71.
  • the transmittance at a wavelength of 300 nm in terms of a thickness of 500 ⁇ m of the glass film is preferably 30% or more, 50% or more, 70% or more, 80% or more, or 85% or more, particularly preferably 89 to 99%.
  • the transmittance at a thickness of 500 ⁇ m and a wavelength of 350 nm is preferably 50% or more, 70% or more, 80% or more, 85% or more, 89% or more, or 90% or more, particularly preferably 91% or more.
  • the transmittance at a thickness of 500 ⁇ m and a wavelength of 550 nm is preferably 85% or more, 89% or more, or 90% or more, and particularly preferably 91 to 99%. In this way, when applied to an optical coupling member or the like, when light is transmitted while being repeatedly reflected, the loss of light is reduced, and high-resolution imaging is easily obtained.
  • the haze of the glass film is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, particularly preferably 0.3% or less. In this way, it becomes possible to reduce diffuse reflection on the surface and inside, and when applied to an optical coupling member or the like, when light is transmitted while repeating reflection, loss of light is reduced, It becomes easy to obtain high resolution imaging.
  • the haze can be measured with a commercially available haze meter.
  • the refractive index of the glass film is preferably matched as much as possible with the refractive index of the adhesive.
  • the refractive index nd difference between the glass film and the adhesive layer is preferably 0.2 or less, 0.15 or less, 0.12 or less, 0.1 or less, 0.08 or less, 0.05 or less, 0.02 or less, It is 0.01 or less or 0.008 or less, particularly preferably 0.005 or less.
  • the glass film has a glass composition in terms of mass% of SiO 2 35 to 80%, Al 2 O 3 0 to 20%, B 2 O 3 0 to 17%, MgO 0 to 10%, CaO 0 to 15%, SrO. It is preferable to contain 0 to 15% and BaO 0 to 30%.
  • mass% SiO 2 35 to 80%, Al 2 O 3 0 to 20%, B 2 O 3 0 to 17%, MgO 0 to 10%, CaO 0 to 15%, SrO. It is preferable to contain 0 to 15% and BaO 0 to 30%.
  • % display points out the mass%.
  • the content of SiO 2 is preferably 35 to 80%.
  • the content of SiO 2 is preferably 75% or less, 64% or less or 62% or less, and particularly preferably 61% or less.
  • the content of SiO 2 is preferably 40% or more, 50% or more, or 55% or more, and particularly preferably 57% or more.
  • the content of Al 2 O 3 is preferably 0 to 20%. When the content of Al 2 O 3 is too large, devitrification crystal glass is precipitated, the liquid phase viscosity tends to decrease.
  • the content of Al 2 O 3 is preferably 18% or less or 17.5% or less, particularly preferably 17% or less. On the other hand, when the content of Al 2 O 3 is too small, the strain point, the Young's modulus tends to decrease. Therefore, the content of Al 2 O 3 is preferably 3% or more, 5% or more, 8.5% or more, 10% or more, 12% or more, 13% or more, 13.5% or more, or 14% or more, particularly Preferably it is 14.5% or more.
  • the content of B 2 O 3 is preferably 0 to 17%.
  • the content of B 2 O 3 is preferably 15% or less, 13% or less, 12% or less, or 11% or less, and particularly preferably 10.4% or less.
  • the content of B 2 O 3 is preferably 2% or more, 3% or more, 4% or more, 5% or more, 7% or more, 8.5% or more, or 8.8% or more, particularly preferably 9%. That's it.
  • MgO is a component that increases the Young's modulus and strain point, and lowers the high temperature viscosity and crack generation rate. However, if the content of MgO is too large, the liquidus temperature rises and the devitrification resistance tends to decrease, and in addition, the BHF resistance tends to decrease. Therefore, the content of MgO is preferably 10% or less, 5% or less, 3% or less, 2% or less, 1.5% or less, or 1% or less, particularly preferably 0.5% or less.
  • the CaO content is preferably 0 to 15%.
  • the content of CaO is preferably 12% or less, 10% or less, or 9% or less, and particularly preferably 8.5% or less.
  • the CaO content is preferably 2% or more, 3% or more, 5% or more, 6% or more, or 7% or more, and particularly preferably 7.5% or more.
  • the SrO content is preferably 0 to 15%.
  • the content of SrO is preferably 12% or less, 10% or less, 6% or less, or 5% or less, and particularly preferably 6.5% or less.
  • the SrO content is preferably 0.5% or more, 1% or more, 2% or more, or 3% or more, and particularly preferably 3.5% or more.
  • the content of BaO is preferably 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less, particularly preferably 0.5% or less. It is.
  • the liquidus temperature is lowered, and it is difficult to generate crystalline foreign matter in the glass.
  • the total amount of these components is preferably 5% or more, 8% or more, 9% or more, or 11% or more, and particularly preferably 13% or more.
  • the total amount of these components is too large, the density increases and it becomes difficult to reduce the weight of the glass, and the crack generation rate tends to increase.
  • the total amount of these components is preferably 30% or less, 20% or less or 18% or less, and particularly preferably 15% or less.
  • the total amount of these components is preferably 5% or more, particularly preferably 8% or more, and preferably 13% or less or 11% or less, particularly preferably. Is 10% or less.
  • ZnO is a component that increases meltability and Young's modulus. However, when the content of ZnO is too large, the glass is devitrified, the strain point is lowered, and the density is easily increased. Therefore, the content of ZnO is preferably 15% or less, 10% or less, 5% or less, 3% or less, or 1% or less, particularly preferably 0.5% or less.
  • ZrO 2 is a component that increases the Young's modulus. However, when the content of ZrO 2 is too large, the liquidus temperature rises and zircon devitrification foreign matter is likely to be generated. Therefore, the content of ZrO 2 is preferably 3% or less, 1% or less, or 0.5% or less, and particularly preferably 0.1% or less.
  • the upper limit content of Fe 2 O 3 is preferably 1000 ppm (0.1%) or less, 800 ppm or less, 300 ppm or less, 200 ppm or less, 130 ppm or less, 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 30 ppm or less or 20 ppm or less
  • the lower limit content is preferably 1 ppm or more, and particularly preferably 3 ppm or more.
  • the lower the Fe 2 O 3 content the higher the transmittance. Therefore, when it is applied to an optical coupling member or the like, the light loss is reduced when light is transmitted while repeating reflection, and high resolution results are obtained. It becomes easy to obtain an image.
  • Y 2 O 3 , Nb 2 O 3 , and La 2 O 3 are components that increase the strain point, Young's modulus, and the like. However, if the content of these components is too large, the density tends to increase. Therefore, the content of Y 2 O 3 , Nb 2 O 3 and La 2 O 3 is preferably 3% or less.
  • one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 may be added in an amount of 0 to 3%.
  • As 2 O 3 , Sb 2 O 3 and F, especially As 2 O 3 and Sb 2 O 3 are preferably refrained from use as much as possible from an environmental point of view, and each content is less than 0.1%. It is preferable to limit to.
  • Preferred fining agents are SnO 2, SO 3 and Cl.
  • the content of SnO 2 is preferably 0 to 1% or 0.01 to 0.5%, particularly preferably 0.05 to 0.4%.
  • the content of SnO 2 + SO 3 + Cl (the total amount of SnO 2 , SO 3 and Cl) is preferably 0.001 to 1% or 0.01 to 0.5%, particularly preferably 0.01 to 0 .3%.
  • the content of other components is preferably 10% or less, particularly preferably 5% or less.
  • Various materials can be used for the reflective film, and among these, Al or Ag is preferable from the viewpoint of obtaining a high-resolution image.
  • a reflective film on the surface of a glass film there are various methods for forming a reflective film on the surface of a glass film, and examples thereof include vapor deposition, sputtering, plating, silver mirror reaction, and the like. In particular, from the viewpoint of film formation efficiency, it is preferable to form a reflective film by sputtering, but it is preferable to use a silver mirror reaction when producing a large amount at low cost.
  • the reflective film When a reflective film (particularly an Al reflective film) is formed by sputtering or vapor deposition, the reflective film is preferably electropolished. In this way, the regular reflectance of the reflective film is improved, and the image quality of the image formed can be improved.
  • a metal paste such as an Al paste or an Ag paste on the surface of the glass film, and then laminate and fire the obtained glass film.
  • the metal paste preferably contains glass frit. . If it does in this way, fixation of glass films and formation of a reflective film can be performed simultaneously.
  • a protective film such as SiO 2 may be formed on the reflective film as necessary. If it does in this way, a reflective film can be protected appropriately.
  • Table 1 shows the glass composition and characteristics of glass films (sample Nos. 1 to 7) used in the method for producing a glass laminate of the present invention.
  • glass raw materials were prepared so as to have the glass composition shown in Table 1, and the obtained glass raw materials were supplied to a glass melting furnace and melted at 1500 to 1600 ° C.
  • the obtained molten glass was molded by an overflow down draw method so as to have a thickness and a length dimension of 1500 mm in the table.
  • the glass film immediately after molding was moved to the slow cooling area. At that time, the temperature of the slow cooling area and the film drawing speed were adjusted so that the cooling rate at a temperature of 10 12 to 10 14 dPa ⁇ s was 20 ° C./min.
  • the density is a value measured by the well-known Archimedes method.
  • the strain point is a value measured based on the method of ASTM C336-71.
  • the glass transition temperature is a value measured from the thermal expansion curve based on the method of JIS R3103-3.
  • Softening point is a value measured based on the method of ASTM C338-93.
  • the temperature at 10 4.0 , 10 3.0 , 10 2.5 dPa ⁇ s is a value measured by a platinum ball pulling method. The lower the temperature, the better the meltability.
  • the Young's modulus is a value measured by the resonance method.
  • the thermal expansion coefficient is obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
  • a cylindrical sample of ⁇ 5 mm ⁇ 20 mm whose end face was subjected to R processing was used.
  • the liquid phase temperature passed through a standard sieve 30 mesh (500 ⁇ m), the glass powder remaining in 50 mesh (300 ⁇ m) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and the temperature at which crystals were precipitated was measured. Is.
  • the liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the HCl resistance and BHF resistance were evaluated by the following methods. First, after optically polishing both surfaces of each sample, a part of the surface was masked. Next, it was immersed in a chemical solution prepared to a predetermined concentration at a predetermined temperature for a predetermined time. Then, the mask was removed, the level difference between the mask portion and the erosion portion was measured with a surface roughness meter, and the value was taken as the erosion amount. Further, both surfaces of each sample were optically polished, and then immersed in a chemical solution prepared to a predetermined concentration at a predetermined temperature for a predetermined time. Thereafter, the surface of the sample was visually observed and evaluated as “X” when the surface became cloudy, rough, or cracked, and “ ⁇ ” when there was no change.
  • the amount of erosion of BHF resistance was measured using a 130 BHF solution (NH 4 HF: 4.6 mass%, NH 4 F: 36 mass%) at 20 ° C. for 30 minutes. Appearance evaluation was performed using a 63BHF solution (HF: 6% by mass, NH 4 F: 30% by mass) under treatment conditions at 20 ° C. for 30 minutes. Further, the erosion resistance of HCl resistance was measured using a 10% by mass hydrochloric acid aqueous solution at 80 ° C. for 24 hours. Appearance evaluation was performed under a treatment condition of 80 ° C. for 3 hours using a 10 mass% hydrochloric acid aqueous solution.
  • the crack occurrence rate was determined by placing a Vickers indenter set at a load of 1000 g on the sample surface (optical polishing surface) for 15 seconds in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C. The number of cracks generated from the corner is counted (maximum 4 per indentation). The indenter was driven 20 times, and the total number of cracks generated / 80 ⁇ 100 was evaluated.
  • the surface roughness Ra of the surface is a value measured by a method based on JIS B0601: 2001.
  • the surface roughness Ra of the end face is a value measured by a method based on JIS B0601: 2001.
  • the waviness is a value obtained by measuring the WCA (filtered center line waviness) described in JIS B0601: 2001 using a stylus type surface shape measuring device. This measurement is based on SEMI STD D15-1296 “FPD glass substrate.
  • the cut-off at the time of measurement is 0.8 to 8 mm, and is a value measured at a length of 300 mm in a direction perpendicular to the drawing direction of the glass film.
  • the difference between the maximum thickness and the minimum thickness of the glass film is determined by measuring the maximum thickness and the minimum thickness of the glass film by scanning a laser from one side of the glass film in the thickness direction using a laser thickness measuring device. The value obtained by subtracting the value of the minimum thickness from the value of the maximum thickness.
  • the refractive index nd is a value measured using a precision refractometer (KPR-2000, manufactured by Shimadzu Corporation).
  • sample No. Nos. 1 to 7 have a small thickness and good surface accuracy. Therefore, sample no. If a reflective film is formed on the glass surfaces 1 to 7 and then laminated and integrated, a glass laminate can be produced without increasing the cost. If a pair of glass laminates are arranged so that the surfaces on which the reflection films are formed are orthogonal to each other, an optical imaging member capable of forming an image with high resolution can be obtained.
  • the sample No. 1 to 7 had high transmittance at any thickness and wavelength.
  • the portion 17 on the first side 15 side of the glass film 14 with a reflective film is brought into contact with the surface to be laminated (the surface of the adhesive 13) of the glass film 11 with a reflective film to perform a stacking operation.
  • an adhesive 13 (GA-R1 / GA-H1 manufactured by Canon Kasei Co., Ltd.) has already been applied to the laminated surface 12 of the glass film 11 with a reflective film on the lower side by a slit coater (note that FIG. The thickness of the adhesive inside is exaggerated).
  • another glass film 14 with a reflective film is laminated on the adhesive 13.
  • the side 13 is brought into contact with the adhesive 13 on the laminated surface 12 with the side 15 inclined downward.
  • the upper glass film 14 with a reflective film was brought into contact with the adhesive 13 at the first contact point 17 separated from the first side 15 by about 1 mm.
  • the glass film 14 with a reflective film is bonded to the glass film 14 with a reflective film from the side of the first side 15 of the glass film 14 with a reflective film toward the third side 16 facing the side 15. 13 is contacted sequentially.
  • the adhesive 13 is spread over the entire surface 12 of the laminated film 12 of the glass film 14 with a reflective film and the glass film 11 with a reflective film.
  • FIG. 5c the operation of stacking and integrating the upper glass film 14 with a reflective film on the lower glass film 11 with a reflective film is completed.
  • the offset amount P n-1 can be reduced by using a positioning member.
  • a specific example is shown in Example 3.
  • FIG. 6g An example of the manufacturing method of the glass laminated body using a positioning member is demonstrated. Specifically, in the step of laminating the glass laminate, positioning bars 18a and 18b and a positioning mold 18c as shown in FIG. 6g were arranged around the glass film with a reflective film on the laminated side. Here, the positioning bars 18a and 18b and the positioning mold 18c are detachable and can move up and down. Using such an apparatus, a glass laminate in which 11 glass films were laminated in the same manner as in Example 2 was prepared.
  • a method for producing an optical imaging member using a glass laminate in which a predetermined number of sheets is laminated will be described.
  • 300 glass films 22 having a thickness of 1000 ⁇ m are laminated, and the glass laminate 21 has a reflective film 23 between the glass films 22.
  • the reflective film 23 is formed on one surface of the glass film 22, and the reflective film 23 is not formed on the other surface.
  • the glass films 22 are laminated and integrated with an adhesive layer (not shown) so that the reflective films do not overlap (in the figure, the thickness of the reflective film 23 is exaggerated).
  • the glass laminate is cut with a wire saw to obtain a strip-like glass laminate 24 as shown in FIG.
  • the strip-shaped glass laminate 24 is obtained by cutting the glass laminate 21 described in the previous step in a direction orthogonal to the surface on which the reflective film 23 is formed.
  • the cutting width can be appropriately determined from the viewpoint of the thickness of the glass film, the size and performance of the optical imaging member, and the production efficiency.
  • the cutting width should be about 1.0 to 2.0 times the thickness of the glass film.
  • the cutting width is set to 0.8 mm.
  • the optical imaging member 25 is produced using the strip-shaped glass laminated body 24 produced through the said process.
  • FIG. 9 is a main part schematic perspective view showing an example of the optical imaging member 25 of the present invention. A pair of strip-shaped glass laminates 24 shown in FIG. 9 is used for the optical imaging member 25.
  • the pair of strip-shaped glass laminates 24 are bonded and fixed to the side surfaces (cut surfaces) of the strip-shaped glass laminate 24 by an adhesive layer (not shown) so that the surfaces on which the reflection films 26 are formed are orthogonal to each other. ing. In the optical imaging member 25, the interval between the reflection films 26 is narrowed and made uniform by the glass film 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 A method for manufacturing a glass layered body, comprising placing an adhesive between each of a plurality of rectangular glass films provided with a reflective film and integrating the glass films by sequentially superposing the glass films, and obtaining a glass layered body, the glass films (1) provided with a reflective film each having a first edge (2) constituting an outline of the glass film, two second edges (3, 4) intersecting the first edge (2), and a third edge (5) facing the second edge (2) and intersecting the two second edges (3, 4), and the superposition of a glass film (1) provided with a reflective film being initiated by bringing a portion (8) on the first edge (2) side of the glass film (1) provided with a reflective film into contact with the top of a glass layered body (9) which is being manufactured.

Description

ガラス積層体の製造方法及びガラス積層体GLASS LAMINATE MANUFACTURING METHOD AND GLASS LAMINATE
 本発明は、ガラス積層体の製造方法及びガラス積層体に関し、例えば、液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイから発生される光を空間に結像するためのガラス積層体の製造方法及びガラス積層体に関する。 TECHNICAL FIELD The present invention relates to a method for producing a glass laminate and a glass laminate, for example, a method for producing a glass laminate for imaging light generated from a flat panel display such as a liquid crystal display and an organic EL display in space, and glass. It relates to a laminate.
 周知の通り、省スペース化の観点から、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイが普及している。 As is well known, from the viewpoint of space saving, flat panel displays such as liquid crystal displays, plasma displays, and organic EL displays are widely used.
 また、フラットパネルディスプレイから発生される光を空間に結像する技術開発が進んでいる。特許文献1には、隣接する反射面が互いに向かい合うように、複数本の両面反射帯を一定間隔で配置してなる光学結像部材が提案されている。しかし、特許文献1に記載の光学結像部材には、散乱光が通過した後は、必ずしも一点に収束しないという問題がある。 Also, technology development is progressing to image light generated from flat panel displays in space. Patent Document 1 proposes an optical imaging member in which a plurality of double-sided reflection bands are arranged at regular intervals so that adjacent reflecting surfaces face each other. However, the optical imaging member described in Patent Document 1 has a problem that it does not necessarily converge to one point after scattered light has passed.
特開昭58-21702号公報JP 58-21702 A
 上記問題を解決するために、一方の表面が反射面である透明板を、多数枚積層一体化(多数枚を積み重ねて一体化)した後、各反射面に対して垂直な切断面が形成されるように切断して、一対の積層体を作製した上で、一方の積層体に形成されている反射面に対して、他方の積層体に形成されている反射面が直交するように、向かい合わせに密着させた光学結像部材が検討されている。この光学結像部材では、透明板の厚みが反射面の間隔に相当する。 In order to solve the above problem, a transparent plate whose one surface is a reflection surface is laminated and integrated (multiple sheets are stacked and integrated), and then a cut surface perpendicular to each reflection surface is formed. The pair of laminated bodies are cut so that the reflective surface formed in one laminated body is perpendicular to the reflective surface formed in the other laminated body. Optical imaging members brought into close contact with each other are being studied. In this optical imaging member, the thickness of the transparent plate corresponds to the interval between the reflecting surfaces.
 上記の光学結像部材の場合、高解像度の結像を得るためには、厚みの薄い透明板を採用すると共に、この透明板を全ての反射面の面間隔が均一となるように平行な状態で積層することが重要になる。また、高解像度、高輝度の結像を得るためには、積層体を構成している透明板の反射面の反射率が高いことに加えて、透明板自体の透過率が高く、且つヘイズが低いことが重要になり、透明板同士を積層一体化させる接着層の透過率が高く、且つヘイズが低いことも重要になる。 In the case of the above-mentioned optical imaging member, in order to obtain high resolution imaging, a thin transparent plate is adopted, and the transparent plate is in a parallel state so that the surface intervals of all the reflecting surfaces are uniform. It becomes important to laminate with. In addition, in order to obtain an image with high resolution and high brightness, in addition to the high reflectance of the reflective surface of the transparent plate constituting the laminate, the transparent plate itself has high transmittance and haze. Low is important, and it is also important that the transmittance of the adhesive layer that laminates and integrates the transparent plates is high and that the haze is low.
 ところが、透明板を積層一体化する際に、接着層(接着剤)中に気泡が混入し易く、更に接着剤が均一に塗布されず、接着層の肉厚差が発生し易くなる。接着層中の気泡や肉厚差は、光学結像部材として使用される場合に、反射面の面間隔の均一性を損なう虞がある上、接着層の透過率の低下やヘイズの上昇を引き起こす虞がある。特に、透明板の面積が大きかったり、積層枚数が多数であったりする場合に、上記不具合が顕在化し易くなる。 However, when the transparent plates are laminated and integrated, bubbles are likely to be mixed into the adhesive layer (adhesive), and the adhesive is not uniformly applied, so that a difference in thickness of the adhesive layer is likely to occur. When used as an optical imaging member, the bubbles in the adhesive layer and the thickness difference may impair the uniformity of the spacing between the reflecting surfaces, and also cause a decrease in the transmittance of the adhesive layer and an increase in haze. There is a fear. In particular, when the area of the transparent plate is large or the number of laminated sheets is large, the above problem is easily realized.
 本発明の目的は、上記事情に鑑みなされたものであり、コストアップを招来させることなく、反射面の面間隔を均一化、かつ狭小化できる上、接着層中の気泡や肉厚差を低減でき、更には、接着剤が過不足なく十分行き渡っているような積層体の製造方法を創案することである。 The object of the present invention has been made in view of the above circumstances, and it is possible to make the spacing between the reflecting surfaces uniform and narrow without causing an increase in cost, and to reduce bubbles and wall thickness differences in the adhesive layer. Furthermore, it is to devise a method for manufacturing a laminate in which the adhesive is sufficiently spread without excess or deficiency.
 本発明者は、鋭意努力の結果、反射膜付きガラスフィルムの一辺側の端縁を他の反射膜付きガラスフィルムの被積層面に接触させた後に積層し、これを積層一体化することにより上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラス積層体の製造方法は、複数の矩形の反射膜付きガラスフィルムを、それぞれの相互間に接着剤を介在させて順次積み重ねることで一体化して、ガラス積層体を得るガラス積層体の製造方法であって、前記反射膜付きガラスフィルム1は、図1に示すように、ガラスフィルムの輪郭を構成する第一の辺2と、該第一の辺2と交わる二つの第二の辺3、4と、前記第一の辺2と対向し且つ前記二つの第二の辺3、4と交わる第三の辺5とを有しており、反射膜付きガラスフィルムの第一の辺2側の部位を、製造途中のガラス積層体上に接触させて、反射膜付きガラスフィルムの積み重ね動作を開始することを特徴とする。 As a result of diligent efforts, the present inventor laminated after bringing the edge of one side of the glass film with a reflective film into contact with the surface to be laminated of the other glass film with a reflective film, and laminated and integrated the above. The present inventors have found that technical problems can be solved and propose the present invention. That is, in the method for producing a glass laminate of the present invention, a glass laminate is obtained by integrating a plurality of rectangular glass films with a reflective film by sequentially stacking them with an adhesive interposed therebetween. In the manufacturing method of a body, the glass film 1 with a reflecting film includes, as shown in FIG. 1, a first side 2 constituting an outline of the glass film and two second sides intersecting with the first side 2. Side 3 and 4 and a third side 5 opposite to the first side 2 and intersecting the two second sides 3 and 4, the first side of the glass film with a reflective film The side 2 side portion is brought into contact with the glass laminate in the middle of manufacture, and the stacking operation of the glass films with a reflective film is started.
 ここで、最初の積み重ね動作を行う場合には、反射膜付きガラスフィルムを、一枚の反射膜付きガラスフィルム上に接触させるということが起こり得るため、「製造途中のガラス積層体」には、最初の積み重ね動作を行う場合の一枚の反射膜付きガラスフィルムが含まれる。 Here, when performing the first stacking operation, it may happen that the glass film with a reflective film is brought into contact with one glass film with a reflective film. One glass film with a reflective film when the first stacking operation is performed is included.
 なお、反射膜付きガラスフィルムを、製造途中のガラス積層体上に接触させる際に、接触すべき部分に既に接着剤が塗布されている状態であれば、最初の接触は自ずと接着剤と反射膜付きガラスフィルムとの接触になる。本発明において、特に明示のない場合、反射膜付きガラスフィルムと製造途中のガラス積層体との接触は、接着剤と反射膜付きガラスフィルムとの接触を含めて、便宜上「反射膜付きガラスフィルムを製造途中のガラス積層体の被積層面に接触させる」と記載することとする。 In addition, when the glass film with a reflective film is brought into contact with the glass laminate in the course of production, if the adhesive is already applied to the portion to be contacted, the first contact is naturally the adhesive and the reflective film. Contact with attached glass film. In the present invention, unless otherwise specified, the contact between the glass film with a reflective film and the glass laminate in production includes the contact between the adhesive and the glass film with a reflective film. It shall be described as “contact with the laminated surface of the glass laminate in the middle of manufacture”.
 本発明のガラス積層体の製造方法では、反射膜付きガラスフィルム1の第一の辺2側の部位を、製造途中のガラス積層体の被積層面に接触させて、反射膜付きガラスフィルムの積み重ね動作を開始する。このようにすることで、接触範囲を反射膜付きガラスフィルム1の第一の辺2側の部位から、第三の辺5側の部位へと進展させることが可能になる。つまり、反射膜付きガラスフィルムを、第一の辺2側から第三の辺5側に向かって、順次、製造途中のガラス積層体9の被積層面7(6)に接触させていくことが可能になる。このようにすると、接触範囲が第三の辺5側に順次広がるため、接着層中の気泡は、ガラス積層体の内部に閉じ込められることなく、ガラス積層体の外側に抜け易くなる。更に、接着剤が第三の辺5側に順次広がるため、接着層の肉厚の均一性を高めることもできる。結果として、接着層中の気泡や肉厚差を低減することができる。更に、反射膜付きガラスフィルムから接着剤が食み出すことなく、所定の部分に十分行き渡らせることが可能になる。 In the manufacturing method of the glass laminated body of this invention, the site | part of the 1st edge | side 2 side of the glass film 1 with a reflecting film is made to contact the laminated surface of the glass laminated body in the middle of manufacture, and the glass film with a reflecting film is stacked. Start operation. By doing in this way, it becomes possible to advance a contact range from the site | part on the 1st edge | side 2 side of the glass film 1 with a reflecting film to the site | part on the 3rd edge | side 5 side. That is, the glass film with a reflecting film can be sequentially brought into contact with the layered surface 7 (6) of the glass laminate 9 being manufactured from the first side 2 side toward the third side 5 side. It becomes possible. If it does in this way, since a contact range will spread sequentially to the 3rd edge | side 5 side, it will become easy to escape to the outer side of a glass laminated body, without the bubble in an adhesive layer being confined in the inside of a glass laminated body. Furthermore, since the adhesive spreads sequentially toward the third side 5, the thickness uniformity of the adhesive layer can be improved. As a result, bubbles and wall thickness differences in the adhesive layer can be reduced. Further, it is possible to sufficiently spread the predetermined portion without the adhesive sticking out from the glass film with a reflective film.
 図2は、本発明のガラス積層体の製造方法の一例であり、反射膜付きガラスフィルム1を、その第一の辺2側の部位から、製造途中のガラス積層体9の被積層面7(6)に積み重ねる方法の概念図である。 FIG. 2 is an example of the method for producing a glass laminate of the present invention, and the glass film 1 with a reflective film is laminated from the site on the first side 2 side to the laminated surface 7 ( It is a conceptual diagram of the method of stacking to 6).
 本発明のガラス積層体の製造方法は、反射膜付きガラスフィルム1と、製造途中のガラス積層体9の被積層面(製造途中のガラス積層体9の最後の段の反射膜付きガラスフィルムの表面)6とのなす角度θが、θ=0.1°~50°となるように接触させることが好ましい。このようにすれば、図2に示すように、反射膜付きガラスフィルム1の第一の辺2側の部位を、製造途中のガラス積層体9上に接触させた後、接触範囲を反射膜付きガラスフィルム1の第一の辺2側から、第三の辺5側へと進展させやすくなる。そのため、接着剤7中の気泡をガラス積層体の外側に抜け易くできる。なお、反射膜付きガラスフィルムが撓んでいる場合は、反射膜付きガラスフィルムが撓んでいないと仮定したときの仮想平面と被積層面6とのなす角度θを、θ=0.1°~50°の角度で傾けた状態で接触させるとよい。 The manufacturing method of the glass laminated body of this invention is the glass film 1 with a reflecting film, and the to-be-laminated surface of the glass laminated body 9 in the middle of manufacture (The surface of the glass film with a reflecting film of the last step of the glass laminated body 9 in the middle of manufacture) ) It is preferable that contact is made so that the angle θ formed with 6 is θ = 0.1 ° to 50 °. If it does in this way, as shown in FIG. 2, after making the site | part of the 1st edge | side 2 side of the glass film 1 with a reflecting film contact on the glass laminated body 9 in the middle of manufacture, a contact range is with a reflecting film. It becomes easy to advance from the 1st edge | side 2 side of the glass film 1 to the 3rd edge | side 5 side. Therefore, it is possible to easily remove the bubbles in the adhesive 7 to the outside of the glass laminate. When the glass film with a reflective film is bent, the angle θ formed between the virtual plane and the laminated surface 6 on the assumption that the glass film with a reflective film is not bent is θ = 0.1 ° to 50 °. It is good to make it contact in the state inclined at an angle of °.
 本発明のガラス積層体の製造方法は、製造途中のガラス積層体9上に塗布された接着剤7に、反射膜付きガラスフィルム1を接触させることによって、反射膜付きガラスフィルム1の積み重ね動作を開始することが好ましい。このようにすれば、反射膜付きガラスフィルム1同士が最初に接触しないため、反射膜が剥がれたり、ガラスに傷が入ったりするのを抑制できる。 The manufacturing method of the glass laminated body of this invention performs stacking operation | movement of the glass film 1 with a reflecting film by making the glass film 1 with a reflecting film contact the adhesive agent 7 apply | coated on the glass laminated body 9 in the middle of manufacture. It is preferable to start. If it does in this way, since glass films 1 with a reflecting film do not contact each other initially, it can control that a reflecting film peels off or a glass enters a crack.
 本発明のガラス積層体の製造方法は、反射膜付きガラスフィルム1の第一の辺2から離間した部位を、製造途中のガラス積層体9上に塗布された接着剤7に接触させて、反射膜付きガラスフィルム1の積み重ね動作を開始することが好ましい。このようにすれば、反射膜付きガラスフィルム1の最初の接触点(接触開始点)8が、第一の辺2から離間しているため、接着剤7が食み出しにくくなる上、反射膜付きガラスフィルム1の露出面側に接着剤7が回り込んで付着してしまう事態を防止できる。 The manufacturing method of the glass laminated body of this invention makes the site | part spaced apart from the 1st edge | side 2 of the glass film 1 with a reflecting film contact the adhesive agent 7 apply | coated on the glass laminated body 9 in the middle of manufacture, and reflects It is preferable to start the stacking operation of the glass film with film 1. In this case, since the first contact point (contact start point) 8 of the glass film 1 with a reflective film is separated from the first side 2, the adhesive 7 is difficult to protrude, and the reflective film The situation where the adhesive 7 wraps around and adheres to the exposed surface side of the attached glass film 1 can be prevented.
 本発明のガラス積層体の製造方法は、製造途中のガラス積層体9上に塗布された接着剤7に、反射膜付きガラスフィルム1の第一の辺2側から第三の辺5側に向かって該反射膜付きガラスフィルム1を順次接触させることが好ましい。このようにすれば、接着層中の気泡や肉厚差を低減することができる。更に、適正な負荷や加速度で、反射膜付きガラスフィルム1を第一の辺2側から第三の辺5側に向かって順次接触させ易くなり、接着剤がムラにならずに所定の部分に十分行き渡らせることができる。 The manufacturing method of the glass laminated body of this invention is applied to the adhesive 7 apply | coated on the glass laminated body 9 in the middle of manufacture from the 1st edge | side 2 side of the glass film 1 with a reflecting film toward the 3rd edge | side 5 side. It is preferable that the glass film 1 with a reflective film is sequentially brought into contact. If it does in this way, the bubble in a contact bonding layer and thickness difference can be reduced. Furthermore, it becomes easy to contact the glass film 1 with a reflective film sequentially from the first side 2 side to the third side 5 side with an appropriate load and acceleration, and the adhesive is not unevenly applied to a predetermined portion. It can be fully distributed.
  本発明のガラス積層体の製造方法は、反射膜付きガラスフィルム1と製造途中のガラス積層体9の被積層面6とが略平行になるように、反射膜付きガラスフィルム1を被積層面6に積み重ねることが好ましい。このようにすれば、反射膜の間隔が一定間隔になるため、光学結像部材として用いた場合に高解像度の結像を得易くなる。更に、ガラス積層体を加工する際には、特定の部分に不当な応力が加わる事態が起こり難いため、ガラス積層体の各構成要素の破損を抑制でき、より正確に加工できる。その結果、歩留まり向上や生産効率向上に有利である。 In the method for producing a glass laminate of the present invention, the glass film 1 with a reflective film 1 is laminated so that the glass film 1 with a reflective film and the laminated surface 6 of the glass laminate 9 in the process of production are substantially parallel to each other. It is preferable to stack. By doing so, the interval between the reflective films becomes a constant interval, so that it becomes easy to obtain high-resolution imaging when used as an optical imaging member. Furthermore, when processing a glass laminated body, since the situation which an undue stress is added to a specific part does not occur easily, damage to each component of a glass laminated body can be suppressed, and it can process more correctly. As a result, it is advantageous for yield improvement and production efficiency improvement.
 図3は、本発明の製造方法で作製されるガラス積層体の一例であり、反射膜付きガラスフィルム10がガラス積層体9に対してPn-1(n=積層枚数)分オフセットしている状態を示した概念図である(なお便宜上、図中に接着剤は記載せず、オフセット量Pn-1は誇張して表示されている)。 FIG. 3 is an example of a glass laminate produced by the production method of the present invention, and the glass film 10 with a reflective film is offset from the glass laminate 9 by P n−1 (n = number of laminated sheets). It is a conceptual diagram showing a state (for convenience, the adhesive is not shown in the figure, and the offset amount P n-1 is exaggerated).
 本発明のガラス積層体の製造方法は、反射膜付きガラスフィルム10の第二の辺の長さをLとし、該反射膜付きガラスフィルムの第一の辺から、ガラス積層体9を構成する最初の段の反射膜付きガラスフィルム10の第一の辺に相当する位置までの距離をPn-1(n=積層枚数)としたときに、Pn-1/L=0~1/10となるように、反射膜付きガラスフィルム10を被積層面に積み重ねることが好ましい。このようにすれば、Pn-1が過大になりすぎないため、各反射膜付きガラスフィルム10のアライメントを良好に保つことができる。その結果、ガラス積層体の品質を向上させることができる上、ガラス積層体を端部まで有効に利用できるため、歩留まり向上や生産効率向上に有利である。ここで、オフセット量Pn-1は、n枚目に積層した反射膜付きガラスフィルムにおいて、その第一の辺から、ガラス積層体9を構成する最初の段の反射膜付きガラスフィルム10の第一の辺に相当する位置までの最長距離を指す。 Method of manufacturing a glass laminate of the present invention, the length of the second side of the reflective film-coated glass film 10 and L 0, from a first side of said reflective film coated glass film, constituting the glass laminate 9 When the distance to the position corresponding to the first side of the first-stage glass film 10 with a reflective film is P n-1 (n = number of stacked layers), P n-1 / L 0 = 0 to 1 / It is preferable that the glass film 10 with a reflecting film is stacked on the surface to be laminated. If it does in this way, since Pn-1 does not become excessive too much, the alignment of each glass film 10 with a reflecting film can be kept favorable. As a result, the quality of the glass laminate can be improved, and the glass laminate can be effectively utilized up to the end, which is advantageous for yield improvement and production efficiency improvement. Here, the offset amount P n−1 is the first of the glass films with a reflecting film 10 in the first stage constituting the glass laminate 9 from the first side in the glass film with a reflecting film laminated on the nth sheet. The longest distance to the position corresponding to one side.
 本発明のガラス積層体の製造方法は、位置決め部材を用いて反射膜付きガラスフィルムを製造途中のガラス積層体の被積層面に積み重ねることが好ましい。このようにすれば、前記オフセット量Pn-1をより低減し易くなる。 In the method for producing a glass laminate of the present invention, it is preferable that the glass film with a reflective film is stacked on the laminated surface of the glass laminate during production using a positioning member. This makes it easier to reduce the offset amount P n−1 .
 本発明のガラス積層体の製造方法は、25℃における粘度が2Pa・s以上の接着剤を用いることが好ましい。このようにすれば、接着剤を反射膜付きガラスフィルムに塗布する際や塗布した後に、接着剤が流れ難くなるため、接着剤を塗布予定部分に的確に塗布することができる。更に、粘度を2Pa・s以上に規制することで、接着剤の界面張力が大きくなり、被積層面から接着剤が盛り上がるため、反射膜付きガラスフィルムの被積層面側を容易に接着剤へと接触させることができるようになる。 The method for producing a glass laminate of the present invention preferably uses an adhesive having a viscosity at 25 ° C. of 2 Pa · s or more. If it does in this way, since it will become difficult for an adhesive to flow at the time of apply | coating an adhesive agent to a glass film with a reflecting film, or after apply | coating, an adhesive agent can be apply | coated to an application | coating plan part exactly. Furthermore, by regulating the viscosity to 2 Pa · s or higher, the interfacial tension of the adhesive increases, and the adhesive rises from the surface to be laminated. Therefore, the surface to be laminated of the glass film with a reflective film can be easily turned into an adhesive. It can come into contact.
 本発明のガラス積層体の製造方法は、スクリーン印刷又はスリットコーターにより、接着剤を反射膜付きガラスフィルムの積層面及び/又は製造途中のガラス積層体の被積層面に塗布することが好ましい。このようにすれば、接着剤の塗布厚の均一性、塗布作業性を高めることができる。 In the method for producing a glass laminate of the present invention, it is preferable to apply an adhesive to the laminated surface of the glass film with a reflective film and / or the laminated surface of the glass laminate in the course of production by screen printing or a slit coater. If it does in this way, the uniformity of the application | coating thickness of an adhesive agent and application | coating workability | operativity can be improved.
 本発明のガラス積層体の製造方法は、厚みが100μm~1500μmの反射膜付きガラスフィルムを用いることが好ましい。このようにすれば、反射膜付きガラスフィルムが不当に撓むことなく、本発明を適正に実施できる。その結果、積層精度、積層効率が向上する上、反射膜の間隔が狭小化されるため、高解像度の結像を得易くなる。 In the method for producing a glass laminate of the present invention, it is preferable to use a glass film with a reflective film having a thickness of 100 μm to 1500 μm. If it does in this way, this invention can be implemented appropriately, without the glass film with a reflecting film bending | deviating unreasonably. As a result, the stacking accuracy and stacking efficiency are improved, and the interval between the reflecting films is narrowed, so that high-resolution imaging can be easily obtained.
 本発明のガラス積層体の製造方法は、サイズ(縦方向寸法×横方向寸法)が、200mm×200mm以上の反射膜付きガラスフィルムを用いることが好ましい。このようなサイズの反射膜付きガラスフィルムを使用すれば、複数の反射膜付きガラスフィルムを積み重ねて一体化した後にワイヤーソー等で切断することで、大きなサイズの光学結像部材にも対応可能である。 The method for producing a glass laminate of the present invention preferably uses a glass film with a reflective film having a size (longitudinal dimension × transverse dimension) of 200 mm × 200 mm or more. If a glass film with a reflective film of such a size is used, a plurality of glass films with a reflective film can be stacked and integrated, and then cut with a wire saw, etc., so that it can be used for large-size optical imaging members. is there.
 本発明のガラス積層体の製造方法は、積層架台などの上に配置されるダミーガラス板を用意し、該ダミーガラス板上に反射膜付きガラスフィルムを順次積み重ねることが好ましい。このようにすれば、接着剤がガラス積層体から食み出しても、ガラス積層体を、積層架台などから分離し易くなる。 In the method for producing a glass laminate of the present invention, it is preferable to prepare a dummy glass plate disposed on a laminated frame or the like and sequentially stack a glass film with a reflective film on the dummy glass plate. If it does in this way, even if an adhesive agent will protrude from a glass laminated body, it will become easy to isolate | separate a glass laminated body from a laminated frame etc.
 本発明のガラス積層体は、上記のガラス積層体の製造方法により作製されることを特徴とする。このようにすれば、コストアップを招来させることなく、反射面の面間隔を均一化、かつ狭小化できる上、接着層中の気泡や肉厚差を低減でき、更には、接着剤が過不足なくガラスフィルムに十分行き渡っているようなガラス積層体を得ることが出来る。 The glass laminate of the present invention is produced by the method for producing a glass laminate described above. In this way, the spacing between the reflecting surfaces can be made uniform and narrow without causing an increase in cost, and the bubbles and thickness difference in the adhesive layer can be reduced, and the adhesive is excessive or insufficient. It is possible to obtain a glass laminate that is sufficiently spread over the glass film.
 本発明のガラス積層体は、光学結像部材に用いることが好ましい。このようにすれば、反射面の面間隔が均一かつ接着層の透過率やヘイズが良好で、高解像度の結像が可能な光学結像部材を得ることができる。 The glass laminate of the present invention is preferably used for an optical imaging member. In this way, it is possible to obtain an optical imaging member capable of forming a high-resolution image with uniform spacing between the reflecting surfaces, good transmittance and haze of the adhesive layer.
反射膜付きガラスフィルムの平面図である。It is a top view of a glass film with a reflecting film. 反射膜付きガラスフィルムの第一の辺側の部位を製造途中のガラス積層体に接触させた状態を示す概略正面図である。It is a schematic front view which shows the state which made the site | part of the 1st edge side of the glass film with a reflecting film contact the glass laminated body in the middle of manufacture. 本発明の製造方法で作製されるガラス積層体の一例であり、反射膜付きガラスフィルムがガラス積層体に対してPn-1(n=積層枚数)分オフセットしている状態を示した部品分解配列正面図である。FIG. 4 is an example of a glass laminate produced by the manufacturing method of the present invention, and shows a component disassembly arrangement in which a glass film with a reflective film is offset from the glass laminate by Pn−1 (n = number of laminated sheets). It is a front view. 接着剤が塗布された製造途中のガラス積層体の被積層面を示す概略の平面図である。It is a schematic top view which shows the to-be-laminated surface of the glass laminated body in the middle of manufacture with which the adhesive agent was apply | coated. 反射膜付きガラスフィルムをその第一の辺側の部位から製造途中のガラス積層体上に接触させて積み重ねていく過程を示す概略正面図である。It is a schematic front view which shows the process in which the glass film with a reflecting film is made to contact and laminate | stack on the glass laminated body in the middle of manufacture from the site | part of the 1st edge | side side. 反射膜付きガラスフィルムをその第一の辺側の部位から製造途中のガラス積層体上に接触させて積み重ねていく過程を示す概略正面図である。It is a schematic front view which shows the process in which the glass film with a reflecting film is made to contact and laminate | stack on the glass laminated body in the middle of manufacture from the site | part of the 1st edge | side side. 反射膜付きガラスフィルムをその第一の辺側の部位から製造途中のガラス積層体上に接触させて積み重ねていく過程を示す概略正面図である。It is a schematic front view which shows the process in which the glass film with a reflecting film is made to contact and laminate | stack on the glass laminated body in the middle of manufacture from the site | part of the 1st edge | side side. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 反射膜付きガラスフィルムを積層する際に使用する位置決め部材の形状及び配置箇所を示す概略平面図である。It is a schematic plan view which shows the shape and arrangement | positioning location of a positioning member used when laminating | stacking a glass film with a reflecting film. 本発明のガラス積層体の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the glass laminated body of this invention. 本発明のガラス積層体の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the glass laminated body of this invention. 本発明のガラス積層体を用いて作製した光学結像部材の一例を示す要部概略斜視図である。It is a principal part schematic perspective view which shows an example of the optical imaging member produced using the glass laminated body of this invention.
 以下に、本発明のガラス積層体の製造方法について工程毎に詳述する。なお、ガラス積層体を構成する反射膜付きガラスフィルムについては後述する。本発明のガラス積層体の製造方法では、複数の反射膜付きガラスフィルムを接着剤により積層一体化して、ガラス積層体を得るが、その際に、少なくとも一枚の反射膜付きガラスフィルムの第一の辺側から製造途中のガラス積層体に接触させる工程を有する。 Hereinafter, the manufacturing method of the glass laminate of the present invention will be described in detail for each process. In addition, the glass film with a reflecting film which comprises a glass laminated body is mentioned later. In the method for producing a glass laminate of the present invention, a plurality of glass films with a reflective film are laminated and integrated with an adhesive to obtain a glass laminate. At that time, the first of at least one glass film with a reflective film is used. The process of making it contact the glass laminated body in the middle of manufacture from the edge side of this.
 まず、反射膜付きガラスフィルムを製造途中のガラス積層体に接着するための接着剤を塗布する。接着剤の塗布は、製造途中のガラス積層体の被積層面側に塗布することが好ましいが、反射膜付きガラスフィルムの積層面側に塗布しておいてもよい。 First, an adhesive for adhering the glass film with a reflective film to the glass laminate during production is applied. The adhesive is preferably applied to the laminated surface side of the glass laminate in the course of production, but may be applied to the laminated surface side of the glass film with a reflective film.
 接着剤を製造途中のガラス積層体の被積層面側に塗布した場合は、接触箇所の調整や、反射膜付きガラスフィルムの位置調整がしやすくなる。また、反射膜付きガラスフィルムの第一の辺側の部位から接着剤が濡れ広がるため、接着層中の気泡や肉厚差を低減し易くなる上、接着剤の塗布効率、塗布精度を高めることができる。また、被積層面を水平方向に保っている場合は、接着剤の塗布が簡便である上、接着剤の垂れを抑制することができるため、接着剤の塗布効率や塗布精度を高めることができ、更には、ガラス積層体の品質や生産効率が向上する。 When the adhesive is applied to the laminated surface side of the glass laminate during production, it is easy to adjust the contact location and the position of the glass film with a reflective film. In addition, since the adhesive spreads from the first side of the glass film with a reflective film, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and increase the adhesive application efficiency and accuracy. Can do. In addition, when the surface to be laminated is kept in the horizontal direction, the application of the adhesive is simple and the dripping of the adhesive can be suppressed, so that the adhesive application efficiency and application accuracy can be improved. Furthermore, the quality and production efficiency of the glass laminate are improved.
 接着剤の塗布方法は、スリットコーター、スクリーン印刷、ディスペンサー、ドクターブレード、ロールコーター、ヘラ、ローラー、ブラシ、刷毛、スプレー、スプレッダ等があるが、その中でもスリットコーター又はスクリーン印刷が好ましい。このようにすれば、接着剤の塗布厚の均一性、塗布作業性を高めることができる。 The adhesive application method includes slit coater, screen printing, dispenser, doctor blade, roll coater, spatula, roller, brush, brush, spray, spreader, etc. Among them, slit coater or screen printing is preferable. If it does in this way, the uniformity of the application | coating thickness of an adhesive agent and application | coating workability | operativity can be improved.
 接着剤は、本発明のガラス積層体の製造方法の主旨を損なわない限り特に限定されず、ガラス積層体に要求される特性や、製造時の条件、特に温度や雰囲気等を鑑みて最適なものを適宜選択可能である。例えば、加熱や攪拌をすることで粘度が変化する特性を有する接着剤や、ホットメルト接着剤等を用いる場合は、反射膜付きガラスフィルムを接着する時点での粘度を考慮することが必要である。 The adhesive is not particularly limited as long as it does not impair the gist of the manufacturing method of the glass laminate of the present invention, and is optimal in view of characteristics required for the glass laminate, manufacturing conditions, particularly temperature and atmosphere. Can be selected as appropriate. For example, when using an adhesive having a characteristic that the viscosity changes by heating or stirring, a hot melt adhesive, or the like, it is necessary to consider the viscosity at the time of bonding the glass film with a reflective film. .
 接着剤の粘度は、低いほど濡れ性が高く、接着層の肉厚差を低減し易くなる上、脱泡もし易くなる。一方、接着剤の粘度は、高いほど塗布後の接着剤の形状を保持しやすいため、本発明の課題を達成しやすい上、塗布部分から流出したりガラス積層体から食み出したりする事態を抑制できる。具体的には、接着剤の界面張力が大きくなり、被積層面から接着剤が盛り上がるため、反射膜付きガラスフィルムの被積層面側を容易に接着剤へと接触させることができるようになる。そのため、接着剤の25℃における粘度は、好ましくは2~200Pa・s、3~100Pa・s、5~80Pa・s、6~50Pa・sまたは10~30Pa・sである。 ¡The lower the viscosity of the adhesive, the higher the wettability, and it becomes easier to reduce the difference in thickness of the adhesive layer and to defoam. On the other hand, the higher the viscosity of the adhesive, the easier it is to hold the shape of the adhesive after application, so it is easier to achieve the problems of the present invention, and the situation where the adhesive flows out from the coated part or protrudes from the glass laminate Can be suppressed. Specifically, the interfacial tension of the adhesive increases and the adhesive rises from the surface to be laminated, so that the surface to be laminated of the glass film with a reflective film can be easily brought into contact with the adhesive. Therefore, the viscosity of the adhesive at 25 ° C. is preferably 2 to 200 Pa · s, 3 to 100 Pa · s, 5 to 80 Pa · s, 6 to 50 Pa · s, or 10 to 30 Pa · s.
 接着剤としては、種々の接着剤が使用可能であるが、具体的には、光学特性の観点から透明接着剤が好ましく、また製造効率の観点からエポキシ系の接着剤が好ましい。また、接着剤の材質として、UV硬化樹脂、アクリル系、シリコン系、ウレタン系、ポリアミド系、酢酸ビニル系、エステル系、スチレン系、シリコン系、シアノアクリレート系、PVA系、PP系、PC系、PET系、PMMA系、PES系、PEN系、セルロース系の一種又は二種以上が好ましい。また、前記接着剤に加えて、シランカップリング剤も用いることができる。 As the adhesive, various adhesives can be used. Specifically, a transparent adhesive is preferable from the viewpoint of optical properties, and an epoxy adhesive is preferable from the viewpoint of manufacturing efficiency. Moreover, as a material of the adhesive, UV curable resin, acrylic, silicon, urethane, polyamide, vinyl acetate, ester, styrene, silicon, cyanoacrylate, PVA, PP, PC, One or more of PET, PMMA, PES, PEN, and cellulose are preferred. In addition to the adhesive, a silane coupling agent can also be used.
 特にEVA(エチレンビニルアセテート)樹脂接着剤を用いる場合、加熱することが好ましく、加熱温度は、好ましくは50℃以上、70℃以上、90℃以上または100℃以上、特に好ましくは110~250℃である。これにより、EVA樹脂層の形成時間を短縮することができる。また、加熱時の圧力は、好ましくは700torr以下、70torr以下、10torr以下、1torr以下または0.1torr以下、特に好ましくは0.01torr以下である。これにより、接着層、特にEVA樹脂層の界面での発泡を抑制することができる。 In particular, when an EVA (ethylene vinyl acetate) resin adhesive is used, heating is preferable, and the heating temperature is preferably 50 ° C. or higher, 70 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, particularly preferably 110 to 250 ° C. is there. Thereby, the formation time of the EVA resin layer can be shortened. The pressure during heating is preferably 700 torr or less, 70 torr or less, 10 torr or less, 1 torr or less, or 0.1 torr or less, particularly preferably 0.01 torr or less. Thereby, foaming at the interface of the adhesive layer, particularly the EVA resin layer, can be suppressed.
 次に、接着剤の塗布範囲について、製造途中のガラス積層体上に接着剤を塗布する場合の一例を用いて説明する。なお、反射膜付きガラスフィルム側に接着剤を塗布する場合は、「被積層面」を「反射膜付きガラスフィルムの表面」と読み替えればよい。 Next, the application range of the adhesive will be described with reference to an example in which the adhesive is applied onto the glass laminate in the middle of manufacture. In addition, what is necessary is just to read "the surface to be laminated" with "the surface of the glass film with a reflecting film" when applying an adhesive agent to the glass film side with a reflecting film.
 図4は、接着剤が塗布された製造途中のガラス積層体の被積層面を示す概略の平面図である。 FIG. 4 is a schematic plan view showing a surface to be laminated of a glass laminate in the process of being applied with an adhesive.
 接着剤を塗布する範囲は、接着剤が塗布された面積をA、被積層面全体の面積をBとしたときに、A/Bの比が、0.30以上、0.35以上、0.4以上、0.5以上、0.7以上または0.8以上であって、且つ、1以下、0.99以下または0.95以下が好ましい。このようにすれば、広い部分に接着剤が塗布されているため、接着を強固に出来る上、接着剤を積層体の端部まで一様に延伸させやすい。また、A/Bの比は、1よりも小さいと、接着剤が被積層面から食み出し難くなる。これらの結果、接着層中の気泡や肉厚差を低減し易くなる上、接着剤の塗布効率、塗布精度を高めることができ、接着層の塗布均一性が向上する。 The range in which the adhesive is applied is such that the ratio of A / B is 0.30 or more, 0.35 or more, 0.00 when the area where the adhesive is applied is A and the area of the entire surface to be laminated is B. It is 4 or more, 0.5 or more, 0.7 or more, or 0.8 or more, and preferably 1 or less, 0.99 or less, or 0.95 or less. In this way, since the adhesive is applied to a wide portion, the adhesion can be strengthened and the adhesive can be easily stretched uniformly to the end of the laminate. On the other hand, if the A / B ratio is less than 1, the adhesive will hardly protrude from the surface to be laminated. As a result, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and it is possible to increase the application efficiency and application accuracy of the adhesive and improve the application uniformity of the adhesive layer.
 更に、接着剤を塗布する範囲は、塗布領域の最外部と被積層面の一辺との最短距離をLとし、反射膜付きガラスフィルムの第二の辺の長さをLとしたときに、L/Lの比が、好ましくは0.3以下、0.25以下、0.2以下、0.15以下、0.1以下または0.05以下であり、また、好ましくは0以上もしくは0を超えるかまたは0.001以上もしくは0.005以上である。このようにすれば、端の方まで接着剤が塗布されているため、接着を強固に出来る上、接着剤を端部まで一様に延伸させやすい。またL/Lの比が1よりも小さいと、接着剤が食み出し難くなる。これらの結果、接着層中の気泡や肉厚差を低減し易くなる上、接着剤の塗布効率、塗布精度を高めることができ、接着層の塗布均一性が向上する。 Moreover, the range of applying the adhesive, the shortest distance between one side of the outermost and the stacked surface of the application region and L 2, the length of the second side of the reflective film-coated glass film is taken as L 0 , L 2 / L 0 ratio is preferably 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, 0.1 or less or 0.05 or less, and preferably 0 or more Or it exceeds 0, or is 0.001 or more or 0.005 or more. In this way, since the adhesive is applied to the end, the adhesion can be strengthened and the adhesive can be easily stretched uniformly to the end. On the other hand, when the ratio of L 2 / L 0 is smaller than 1, it is difficult for the adhesive to stick out. As a result, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and it is possible to increase the application efficiency and application accuracy of the adhesive and improve the application uniformity of the adhesive layer.
 次に、反射膜付きガラスフィルムを製造途中のガラス積層体の被積層面に対して傾けた状態で接触させる。接触角度は、好ましくは0.1°~50°であり、より好ましくは0.5°~45°、1°~40°、2°~35°、3°~30°、5°~30°未満または8°~25°である。このようにすれば、反射膜付きガラスフィルムを被積層面に接触させる際、より確実に反射膜付きガラスフィルムの第一の辺側の部位を接触させることができるため、接着層中の気泡を低減しやすくなる上、反射膜付きガラスフィルムの第一の辺側の部位以外が不当に接触してしまい接着層中の気泡の抜け道を遮断し、接着層内部に気泡が取り残される事態を抑制することができる。 Next, the glass film with a reflective film is brought into contact with the laminated surface of the glass laminate in the manufacturing process in an inclined state. The contact angle is preferably 0.1 ° to 50 °, more preferably 0.5 ° to 45 °, 1 ° to 40 °, 2 ° to 35 °, 3 ° to 30 °, 5 ° to 30 °. Less than or between 8 ° and 25 °. In this way, when the glass film with a reflective film is brought into contact with the surface to be laminated, the site on the first side of the glass film with a reflective film can be more reliably brought into contact with each other. In addition to being easy to reduce, other than the first side portion of the glass film with a reflective film is unfairly contacted, blocking the passage of bubbles in the adhesive layer and suppressing the situation where bubbles remain in the adhesive layer. be able to.
 本発明のガラス積層体の製造方法は、製造途中のガラス積層体上に塗布された接着剤に、反射膜付きガラスフィルムの第一の辺側の部位を接触させることによって、その反射膜付きガラスフィルムの積み重ね動作を開始することが好ましい。このようにすれば、積み重ね動作を行う反射膜付きガラスフィルムと、製造途中のガラス積層体の最後の段の反射膜付きガラスフィルムとが、最初に直接接触しないため、反射膜が剥がれたり、ガラスに傷が入ったりするのを抑制できる。更に、反射膜付きガラスフィルムを積み重ねた後でも、反射膜付きガラスフィルムの位置調整がしやすくなる。また、反射膜付きガラスフィルムの接触開始点から接着剤が濡れ広がるため、接着層中の気泡や肉厚差を低減し易くなる上、接着剤の塗布効率、塗布精度を高めることができる。 The manufacturing method of the glass laminated body of this invention is the glass with a reflecting film by making the site | part of the 1st edge | side side of the glass film with a reflecting film contact the adhesive agent apply | coated on the glass laminated body in the middle of manufacture. It is preferred to start the film stacking operation. In this way, the glass film with a reflective film that performs the stacking operation and the glass film with the reflective film at the last stage of the glass laminate in the process of manufacturing are not in direct contact with each other. Scratch can be suppressed. Furthermore, it becomes easy to adjust the position of the glass film with a reflective film even after the glass films with a reflective film are stacked. In addition, since the adhesive spreads wet from the contact start point of the glass film with a reflective film, it is easy to reduce bubbles and wall thickness differences in the adhesive layer, and the adhesive application efficiency and application accuracy can be increased.
 本発明のガラス積層体の製造方法は、反射膜付きガラスフィルムの第一の辺から離間した部位を、製造途中のガラス積層体上に塗布された接着剤に接触させて、反射膜付きガラスフィルムの積み重ね動作を開始することが好ましい。また、接触開始点を前記のようにすることで、反射膜付きガラスフィルムの全ての辺が被積層面に接触しないため、各辺の端縁が被積層面に接触することによる反射膜付きガラスフィルムの破損を防止することができ、ガラス積層体の品質や生産効率の向上が可能である。また、反射膜付きガラスフィルムの接触開始点が、第一の辺から離間しているため、接着剤が食み出しにくくなる上、反射膜付きガラスフィルムの接触面以外の面に接着剤が回り込んで付着してしまう事態を防止できる。 The manufacturing method of the glass laminated body of this invention makes the site | part spaced apart from the 1st edge | side of the glass film with a reflecting film contact the adhesive agent apply | coated on the glass laminated body in the middle of manufacture, and a glass film with a reflecting film It is preferable to start the stacking operation. Moreover, since all the sides of the glass film with a reflective film do not contact the layered surface by setting the contact start point as described above, the glass with the reflective film by the edge of each side contacting the layered surface The film can be prevented from being damaged, and the quality and production efficiency of the glass laminate can be improved. In addition, since the contact start point of the glass film with a reflective film is separated from the first side, it is difficult for the adhesive to stick out, and the adhesive is routed to a surface other than the contact surface of the glass film with a reflective film. It is possible to prevent a situation where it adheres and adheres.
 なお、図2に示す離間距離Lは、反射膜付きガラスフィルムの第一の辺側の部位を製造途中のガラス積層体の被積層面に接触させた時に、該反射膜付きガラスフィルム上の接触開始点8と、反射膜付きガラスフィルムの第一の辺2上の点とを結んだ最短距離を指し、L/Lは1/10000以上、1/5000以上、1/1000以上、1/500以上、1/300以上または1/200以上が好ましく、また、1/3以下、1/5以下、1/10以下、1/20以下、1/30以下、1/50以下または1/100以下が好ましく、L/Lが大きすぎると反射膜付きガラスフィルムが積層予定位置からずれて固定されてしまう虞がある。このようにすれば、上述の反射膜付きガラスフィルムの破損の防止及び接着剤の食み出しや回り込みの防止等の効果をより享受できやすい。 Incidentally, the distance L 1 shown in FIG. 2, when brought into contact with the stacked surface of the first side site during manufacture of the glass laminate of the reflective film coated glass film, the reflective film formed on the glass film The shortest distance connecting the contact start point 8 and the point on the first side 2 of the glass film with a reflecting film, L 1 / L 0 is 1 / 10,000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1/300 or more, or 1/200 or more is preferable, and 1/3 or less, 1/5 or less, 1/10 or less, 1/20 or less, 1/30 or less, 1/50 or less, or 1 / 100 or less is preferable, and if L 1 / L 0 is too large, the glass film with a reflective film may be displaced and fixed from the planned stacking position. If it does in this way, it will be easy to enjoy effects, such as prevention of breakage of the above-mentioned glass film with a reflecting film, and prevention of the sticking out of an adhesive agent, and wraparound.
 更に、反射膜付きガラスフィルムの接触開始点が、第一の辺から距離L分だけ離間しておくことで、反射膜付きガラスフィルムが被積層面に全て接触したり接着剤で固定されたりする前に、反射膜付きガラスフィルムを適切な位置に調整できやすくなる。また、一般的に、反射膜付きガラスフィルムの接触又は外因力の押圧により、反射膜付きガラスフィルム間の接着剤は押しつぶされ拡がるが、前記のように距離L分だけ離間しておくことで、特に反射膜付きガラスフィルムの第一の辺側の部位において、接着剤を十分に押し拡げても、塗布予定部分から食み出さないようにしやすい。そのため、複数の反射膜付きガラスフィルムの相互間における面間隔や反射膜の間隔が均一になり、光学結像部材として用いた場合に高解像度の結像を得易くなる。更に、食み出した接着剤を除く手間が省けるため、生産効率が向上し、生産コストも低減できる。 Furthermore, since the contact start point of the glass film with a reflective film is separated from the first side by a distance L 1, the glass film with a reflective film is all in contact with the laminated surface or fixed with an adhesive. It becomes easy to adjust a glass film with a reflecting film to an appropriate position before doing. Also, in general, by the pressing of the contact or exogenous force reflective film-coated glass film, but spreads crushed adhesive between the reflective film-coated glass film, by leaving spaced by a distance L 1 minute as the In particular, even when the adhesive is sufficiently expanded at the site on the first side of the glass film with a reflective film, it is easy to prevent the adhesive from sticking out from the portion to be coated. Therefore, the surface interval between the plurality of glass films with a reflecting film and the distance between the reflecting films become uniform, and when used as an optical imaging member, it becomes easy to obtain high-resolution imaging. Furthermore, since it is possible to save the trouble of removing the protruding adhesive, the production efficiency can be improved and the production cost can be reduced.
 なお、反射膜付きガラスフィルムを、被積層面に接触させる際、接着剤の濡れ広がりを均一にする観点から、被積層面が水平方向となるように製造途中のガラス積層体を保持することが好ましい。なお、反射膜の間隔を略均一にできるのであれば、被積層面が水平方向から傾いた方向となるように製造途中のガラス積層体を保持してもよい。 In addition, when the glass film with a reflective film is brought into contact with the surface to be laminated, from the viewpoint of uniforming the wetting and spreading of the adhesive, it is possible to hold the glass laminate in the middle of manufacture so that the surface to be laminated is in the horizontal direction. preferable. In addition, as long as the space | interval of a reflecting film can be made substantially uniform, you may hold | maintain the glass laminated body in the middle of manufacture so that a to-be-laminated surface may become the direction inclined from the horizontal direction.
 更に、製造途中のガラス積層体は、接着剤の濡れ広がりを均一にする観点から、反射膜付きガラスフィルムに対して下方に位置させることが好ましい。この場合、当該ガラス積層体の被積層面と反射膜付きガラスフィルムとを接触させる方法として、反射膜付きガラスフィルムを下降させて接触させてもよいし、当該ガラス積層体を上昇させて接触させてもよい。なお、当該ガラス積層体を反射膜付きガラスフィルムに対して下方以外の方向に位置させることも可能である。この場合も同様に、当該ガラス積層体側を動かして接触させてもよいし、反射膜付きガラスフィルム側を動かして接触させてもよい。 Furthermore, it is preferable that the glass laminate in the course of manufacture is positioned below the glass film with a reflective film from the viewpoint of making the adhesive spread evenly. In this case, as a method for bringing the laminated surface of the glass laminate and the glass film with a reflective film into contact, the glass film with a reflective film may be lowered and brought into contact, or the glass laminate is raised and brought into contact. May be. In addition, it is also possible to position the said glass laminated body in directions other than the downward direction with respect to the glass film with a reflecting film. Similarly, in this case, the glass laminate side may be moved and brought into contact, or the glass film side with a reflective film may be moved and brought into contact.
 また、本発明のガラス積層体の製造方法は、吸着アームの吸着と解除を制御することで、反射膜付きガラスフィルムの被積層面への接触を制御することが好ましい。このようにすれば、反射膜付きガラスフィルムの被積層面への接触を一定にすることが可能になると共に、反射膜付きガラスフィルムの破損、汚染を防止し易くなる。 Further, in the method for producing a glass laminate of the present invention, it is preferable to control the contact of the glass film with a reflective film on the surface to be laminated by controlling the adsorption and release of the adsorption arm. If it does in this way, while it becomes possible to make the contact to the laminated surface of the glass film with a reflecting film constant, it becomes easy to prevent the damage and contamination of a glass film with a reflecting film.
 次の工程で、反射膜付きガラスフィルムを、製造途中のガラス積層体の被積層面に、接着剤を介して積み重ねる。この積み重ね動作は、反射膜付きガラスフィルムの第一の辺側から第三の辺側に向かって、接着剤に順次接触させることが好ましい。このようにすれば、反射膜付きガラスフィルムの第一の辺側の端縁と第三の辺側の端縁とが先に接触して接着層中の気泡の抜け道を遮断する、という事態を防止し易くなる。また反射膜付きガラスフィルムが接着剤に順次接触する過程で不当な応力が加わり難くなり、反射膜付きガラスフィルムの破損を防止し易くなる。 In the next step, the glass film with a reflective film is stacked on the surface to be laminated of the glass laminate in the middle of production via an adhesive. In this stacking operation, it is preferable to sequentially contact the adhesive from the first side to the third side of the glass film with a reflective film. In this way, the situation that the edge on the first side and the edge on the third side of the glass film with a reflective film first come into contact with each other to block the passage of bubbles in the adhesive layer. It becomes easy to prevent. Moreover, it becomes difficult to apply an undue stress in the process in which the glass film with a reflective film sequentially contacts the adhesive, and the glass film with a reflective film is easily prevented from being damaged.
 また、反射膜付きガラスフィルムを第三の辺側に向かって接着剤に順次接触させる方法として、第三の辺側の部位を被積層面から離反させるための保持を一気に開放して、反射膜付きガラスフィルムの撓みを利用しても良いし、反射膜付きガラスフィルムが全て接触し終えるまで形状を制御できるよう、当該ガラスフィルムの端縁等を最後まで保持してもよい。例えば、吸着アームや挟持装置で反射膜付きガラスフィルムの端縁等を保持している場合であれば、吸着や挟持を解除して反射膜付きガラスフィルムを一時に開放してもよいし、吸着や挟持を維持したまま吸着アームや挟持装置自体を移動させて、反射膜付きガラスフィルムを徐々に被積層面に接触させていってもよい。 Further, as a method of sequentially bringing the glass film with a reflective film into contact with the adhesive toward the third side, the holding for separating the third side part from the surface to be laminated is released at once, and the reflective film You may utilize the bending of a glass film with attachment, and you may hold | maintain the edge of the said glass film to the last so that a shape can be controlled until all the glass films with a reflecting film have contacted. For example, if the edge of the glass film with a reflective film is held by an adsorption arm or a clamping device, the glass film with a reflective film may be released at one time by releasing the adsorption or clamping, Alternatively, the suction arm or the clamping device itself may be moved while maintaining the clamping, and the glass film with the reflective film may be gradually brought into contact with the surface to be laminated.
 反射膜付きガラスフィルムは被積層面に対して略平行になるように積み重ねることが好ましい。その一助として、反射膜付きガラスフィルムを製造途中のガラス積層体に接触させて積み重ねた後、必要に応じて反射膜付きガラスフィルムの表面に押圧力を付与してもよい。押圧力を付与する手段として、ローラーや重石等を用いることが好ましい。このようにすれば、接着層中の気泡や肉厚差を低減し易くなると共に、反射膜付きガラスフィルム同士の接着力を高めることができる。なお、反射膜付きガラスフィルムへの汚染、破損を防止する観点からは、反射膜付きガラスフィルムに押圧力を付与しない方が好ましいが、ガラス積層体を強固に接着する観点からは、押圧力を付与したほうが良い。そのため、押圧力の付与の有無や、その強さは、状況を鑑みて適宜調整することが好ましい。 It is preferable that the glass films with a reflective film are stacked so as to be substantially parallel to the surface to be laminated. As an aid to this, the glass film with a reflective film may be brought into contact with the glass laminate in production and stacked, and then a pressing force may be applied to the surface of the glass film with a reflective film as necessary. As a means for applying a pressing force, it is preferable to use a roller, a weight, or the like. If it does in this way, while it becomes easy to reduce the bubble and thickness difference in a contact bonding layer, the adhesive force of the glass films with a reflecting film can be improved. From the viewpoint of preventing contamination and breakage of the glass film with a reflective film, it is preferable not to apply a pressing force to the glass film with a reflective film, but from the viewpoint of firmly bonding the glass laminate, the pressing force is It is better to give it. Therefore, it is preferable to appropriately adjust the presence / absence of the pressing force and the strength thereof in consideration of the situation.
 所定数の反射膜付きガラスフィルムをそれぞれの相互間に接着剤を介在させて積み重ねることで一体化させた後のガラス積層体は、全ての反射膜付きガラスフィルムが整列し、且つ、個々の反射膜付きガラスフィルムについてのガラス積層体に対するオフセット量Pn-1(n=積層枚数)をできるだけ小さくすることが好ましい。具体的には、反射膜付きガラスフィルムの第一の辺からガラス積層体を構成する最初の段の反射膜付きガラスフィルムの第一の辺に相当する位置までの距離Pn-1と、反射膜付きガラスフィルムの第二の辺の長さLとの関係式が、Pn-1/L=0~1/10、0~1/12、0~1/15、0~1/20、0~1/25または0~1/30になるように制御することが好ましい。このようにすれば、反射膜付きガラスフィルムのサイズ(例えば、第二の辺L)に対して、オフセット量Pn-1が過大になりすぎないため、各反射膜付きガラスフィルムのアライメントを良好に保つことができる。その結果、ガラス積層体の品質を向上させることができる上、ガラス積層体を端部まで有効に利用できるため、歩留まり向上や生産効率向上に有利である。 After a predetermined number of glass films with a reflective film are integrated by stacking each other with an adhesive interposed between them, the glass laminate is integrated with all of the glass films with a reflective film and individual reflections. It is preferable to make the offset amount P n-1 (n = number of laminated sheets) of the glass laminate with respect to the glass film with a film as small as possible. Specifically, the distance P n-1 from the first side of the glass film with a reflective film to the position corresponding to the first side of the glass film with a reflective film in the first stage constituting the glass laminate, and the reflection The relational expression with the length L 0 of the second side of the glass film with film is P n−1 / L 0 = 0 to 1/10, 0 to 1/12, 0 to 1/15, 0 to 1 / It is preferably controlled to be 20, 0 to 1/25 or 0 to 1/30. In this way, the size of the reflective film formed glass film (e.g., the second side L 0) with respect to, the offset amount P n-1 does not become too excessive, the alignment of each reflective film-coated glass film Can keep good. As a result, the quality of the glass laminate can be improved, and the glass laminate can be effectively utilized up to the end, which is advantageous for yield improvement and production efficiency improvement.
 ここで、本明細書では便宜上、オフセット量Pn-1を第一の辺を中心に説明したが、その他の辺についてもオフセット量Pn-1や、関係式Pn-1/Lを小さくする方が好ましいことは言うまでもなく、その範囲についても同様である。 Here, for the sake of convenience, the offset amount P n-1 has been described with the first side as the center in this specification, but the offset amount P n-1 and the relational expression P n-1 / L 0 are also expressed for the other sides. It goes without saying that it is preferable to make it smaller, and the same applies to the range.
 前記オフセット量Pn-1を小さくするためには、反射膜付きガラスフィルムを積層する際に、位置決め部材を用いることが好ましい。図6a~図6hは、位置決め部材18の形状や製造途中のガラス積層体9に対する位置決め部材18の配置箇所を示す概略平面図である。位置決め部材18としては、位置決めバーや、型枠等が挙げられ、これらは適宜、任意の形状及び個数を組み合わせて使用できる。このようにすれば、前記オフセット量Pn-1をより少なくすることができる。また、位置決め部材18は、上下左右に移動可能で且つ積層装置から脱離できることが好ましい。このようにすることで、反射膜付きガラスフィルムのサイズ変更に対応可能になる上、清掃やメンテナンスも容易になる。また、位置決めバーを用いる場合は、例えばガラス積層体の各辺に2本ずつの合計8本配置することや、3辺に4本、2辺に2本配置すること等が挙げられるが、各反射膜付きガラスフィルムのアライメントを良好に保つためであれば、1本、3本、5本、6本、7本や、それ以上配置してもよい。 In order to reduce the offset amount P n−1 , it is preferable to use a positioning member when laminating the glass film with a reflective film. 6a to 6h are schematic plan views showing the shape of the positioning member 18 and the location of the positioning member 18 with respect to the glass laminate 9 being manufactured. Examples of the positioning member 18 include a positioning bar, a formwork, and the like, and these can be used in combination with any shape and number as appropriate. In this way, the offset amount P n-1 can be further reduced. Moreover, it is preferable that the positioning member 18 is movable up and down and left and right and can be detached from the stacking apparatus. By doing in this way, it becomes possible to respond to the size change of the glass film with a reflective film, and cleaning and maintenance are also facilitated. In addition, when using the positioning bar, for example, it is possible to arrange a total of eight, two on each side of the glass laminate, four on two sides, two on two sides, etc. One, three, five, six, seven, or more may be arranged in order to keep the alignment of the glass film with a reflective film satisfactorily.
 また、位置決めは、画像診断等の機械制御により行ってもよく、このようにすれば、前記効果を享受できる上、より的確に反射膜付きガラスフィルムを積層させることができる。 Further, the positioning may be performed by machine control such as image diagnosis, and in this way, the above effect can be enjoyed and the glass film with a reflective film can be laminated more accurately.
 更に、反射膜付きガラスフィルムを積層する際に、反射膜付きガラスフィルムを積層架台上に順次積層させることが好ましい。このようにすれば、反射膜付きガラスフィルムの積層精度、積層効率が向上する。積層架台上にダミーガラス基板を設けて、このダミーガラス基板上に反射膜付きガラスフィルムを順次積層させることが好ましい。このようにすれば、接着剤がガラス積層体から食み出した場合でも、積層架台が接着剤で汚染されることなく、ガラス積層体を積層架台から分離し易くなる。結果として、積層架台の耐用年数を高めることができる。 Furthermore, when laminating a glass film with a reflective film, it is preferable to sequentially laminate the glass film with a reflective film on a laminated frame. If it does in this way, the lamination accuracy and lamination efficiency of a glass film with a reflecting film will improve. It is preferable to provide a dummy glass substrate on the laminated frame and sequentially laminate the glass film with a reflective film on the dummy glass substrate. If it does in this way, even if an adhesive agent protrudes from a glass laminated body, it will become easy to isolate | separate a glass laminated body from a laminated base, without a laminated base being contaminated with an adhesive agent. As a result, the service life of the stacked gantry can be increased.
 また、上述した一連の積み重ね動作によるガラス積層体の製作工程を負圧下で行うことも好ましい。このようにすれば、接着層中の気泡を低減し易くなる。 It is also preferable to perform the glass laminate manufacturing process by the series of stacking operations described above under negative pressure. This makes it easier to reduce bubbles in the adhesive layer.
 また、反射膜付きガラスフィルムの積層枚数は、3枚以上、5枚以上、10枚以上、50枚以上、100枚以上、200枚以上、300枚以上、400枚以上、500枚以上または600枚以上、特に700枚以上、1000枚以上、3000枚以上、5000枚以上または10000枚以上積層させることが好ましい。このようにすれば、大型の光学結像部材を作製し易くなる。 The number of laminated glass films with a reflective film is 3 or more, 5 or more, 10 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more or 600 sheets. In particular, it is preferable to stack 700 or more, 1000 or more, 3000 or more, 5000 or more, or 10,000 or more. This makes it easy to produce a large optical imaging member.
 さらに本発明のガラス積層体の製造方法では、複数の反射膜付きガラスフィルムをそれぞれの相互間に接着剤を介在させて積み重ねて一体化させた後に、得られたガラス積層体を反射膜が形成された面に直交する方向に短冊状に切断する工程を有することが好ましい。短冊状のガラス積層体を用いると、光学結像部材の製造効率が向上する。 Furthermore, in the method for producing a glass laminate of the present invention, a plurality of glass films with a reflective film are stacked and integrated with an adhesive interposed therebetween, and then the resulting glass laminate is formed into a reflective film. It is preferable to have the process of cut | disconnecting in strip shape in the direction orthogonal to the made surface. When a strip-shaped glass laminate is used, the manufacturing efficiency of the optical imaging member is improved.
 ガラス積層体を短冊状に切断する方法として、種々の方法が使用可能である。その中でも、切断効率、切断精度の観点から、ワイヤーソーを用いて切断することが好ましく、ワイヤーソーに研磨砥粒を含むスラリーを供給しながら切断することが好ましい。ガラス積層体の切断は、通常のガラス単体の切断とは異なり、ガラスフィルム、反射膜、接着層等を有する複合材料の切断になる。このため、ガラス積層体の切断時に、各構成部材の接着強度が不十分であると、構成部材の一部が引き剥がされる虞がある。しかし、本発明では、反射膜付きガラスフィルムの接着強度を高めることができるため、上記不具合を適正に防止することができる。 Various methods can be used as a method of cutting the glass laminate into strips. Among these, it is preferable to cut | disconnect using a wire saw from a viewpoint of cutting efficiency and a cutting | disconnection precision, and it is preferable to cut | disconnect, supplying the slurry containing an abrasive grain to a wire saw. The cutting of the glass laminate is different from the cutting of ordinary glass alone, and is the cutting of a composite material having a glass film, a reflective film, an adhesive layer and the like. For this reason, when the glass laminate is cut, if the adhesive strength of each constituent member is insufficient, a part of the constituent member may be peeled off. However, in this invention, since the adhesive strength of the glass film with a reflecting film can be raised, the said malfunction can be prevented appropriately.
 本発明のガラス積層体は、上述した本発明のガラス積層体の製造方法により作製されてなることが好ましい。このようにして得られる本発明のガラス積層体は、反射面の面間隔が均一、かつ狭小であり、更に接着層中の気泡や肉厚差が少ないため、光学結像部材として用いた場合に、高解像度・高輝度の結像を得ることが可能である。 The glass laminate of the present invention is preferably produced by the above-described method for producing a glass laminate of the present invention. The glass laminate of the present invention thus obtained has a uniform and narrow spacing between the reflecting surfaces, and further, there are few bubbles and wall thickness differences in the adhesive layer, so when used as an optical imaging member It is possible to obtain an image with high resolution and high brightness.
 ガラス積層体の接着層の厚みは、光学的な影響を最小化するために、好ましくは500μm以下、400μm以下、300μm以下、200μm以下、100μm以下、70μm以下、50μm以下、40μm以下、30μm以下、20μm以下または10μm以下、特に好ましくは5μm以下である。接着層の厚みが薄い程、反射膜の間隔が狭小化される上、接着層の透過率が向上し、また接着層のヘイズが低下し易くなる。 The thickness of the adhesive layer of the glass laminate is preferably 500 μm or less, 400 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, 70 μm or less, 50 μm or less, 40 μm or less, 30 μm or less in order to minimize the optical influence. It is 20 μm or less or 10 μm or less, particularly preferably 5 μm or less. The thinner the adhesive layer, the narrower the interval between the reflective films, and the more the adhesive layer transmittance is improved, and the haze of the adhesive layer is likely to decrease.
 ガラス積層体の接着層の屈折率nは、好ましくは1.60以下、1.55以下、1.54以下、1.52以下または1.51以下、特に好ましくは1.50以下であり、また、好ましくは1.45以上または1.48以上、特に好ましくは1.49以上である。これにより、ガラス積層体の接着層の屈折率nを、ガラスフィルムの屈折率に整合させ易くなり、接着層の界面での拡散反射を抑制することができる。なお、屈折率nは、精密屈折率計により測定可能である。 Refractive index n d of the adhesive layer of the glass laminate, preferably 1.60 or less, 1.55 or less, 1.54 or less, 1.52 or less or 1.51 or less, particularly preferably 1.50 or less, Further, it is preferably 1.45 or more or 1.48 or more, particularly preferably 1.49 or more. Accordingly, the refractive index n d of the adhesive layer of the glass laminate, easily matched to the refractive index of the glass film, it is possible to suppress the diffusion reflection at the interface of the adhesive layer. The refractive index n d can be measured by a precision refractometer.
 更に、ガラス積層体の接着層の透過率はできるだけ高いことが好ましい。厚み100μm換算、波長300nmにおける接着層の透過率は、好ましくは30%以上、50%以上、70%以上、80%以上または85%以上、特に好ましくは89%以上である。また厚み100μm換算、波長350nmにおける接着剤の透過率は、好ましくは50%以上、70%以上、80%以上、85%以上、89%以上または90%以上、特に好ましくは91%以上である。また厚み500μm換算、波長550nmにおける接着層の透過率は、好ましくは85%以上、89%以上または90%以上、特に好ましくは91%以上である。このようにすれば、光学結合部材等に適用した場合、光が反射を繰り返しながら透過する際に、光の損失が低減されて、高解像度の結像を得易くなる。 Furthermore, the transmittance of the adhesive layer of the glass laminate is preferably as high as possible. The transmittance of the adhesive layer at a thickness of 100 μm and a wavelength of 300 nm is preferably 30% or more, 50% or more, 70% or more, 80% or more, or 85% or more, and particularly preferably 89% or more. The transmittance of the adhesive at a thickness of 100 μm and a wavelength of 350 nm is preferably 50% or more, 70% or more, 80% or more, 85% or more, 89% or more, or 90% or more, and particularly preferably 91% or more. The transmittance of the adhesive layer at a thickness of 500 μm and a wavelength of 550 nm is preferably 85% or more, 89% or more, or 90% or more, and particularly preferably 91% or more. In this way, when applied to an optical coupling member or the like, when light is transmitted while being repeatedly reflected, the loss of light is reduced, and high-resolution imaging is easily obtained.
 ガラス積層体の接着層のヘイズは、好ましくは10%以下、5%以下、3%以下、1%以下または0.5%以下、特に好ましくは0.3%以下である。このようにすれば、ガラスフィルムと接着層の界面での拡散反射を低減することが可能になり、光学結合部材等に適用した場合、光が反射を繰り返しながら透過する際に、光の損失が低減されて、高解像度の結像を得易くなる。 The haze of the adhesive layer of the glass laminate is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, particularly preferably 0.3% or less. In this way, it becomes possible to reduce diffuse reflection at the interface between the glass film and the adhesive layer, and when applied to an optical coupling member or the like, when light is transmitted while repeating reflection, there is no loss of light. This makes it easier to obtain high resolution imaging.
 ガラス積層体の接着層の気泡個数は、1cm当たりの100μm以上の平均個数が、好ましくは3個以下、2個以下、1個以下、0.5個以下または0.1個、特に0.05個以下が好ましい。更に、ガラス積層体の接着層の気泡の最大半径は、好ましくは10mm以下、7mm以下、5mm以下、3mm以下、2mm以下、1mm以下、700μm以下、500μm以下、300μm以下、200μm以下、100μm以下、50μm以下、40μm以下、30μm以下、20μm以下または10μm以下である。気泡の数が少ない程、また気泡の半径が小さい程、反射面の面間隔の均一性が向上すると共に、接着層の透過率の低下やヘイズの上昇を抑制し易くなる。なお、ガラス積層体の接着層の気泡は、反射膜付きガラスフィルムと同様の方法で積層させてなり且つ反射膜を有しないガラスフィルムからなるガラス積層体を観察することで確認することができる。 The number of bubbles in the adhesive layer of the glass laminate is preferably an average number of 100 μm or more per 1 cm 2 , preferably 3 or less, 2 or less, 1 or less, 0.5 or less, or 0.1, especially 0. 05 or less is preferable. Furthermore, the maximum radius of the bubbles in the adhesive layer of the glass laminate is preferably 10 mm or less, 7 mm or less, 5 mm or less, 3 mm or less, 2 mm or less, 1 mm or less, 700 μm or less, 500 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, They are 50 micrometers or less, 40 micrometers or less, 30 micrometers or less, 20 micrometers or less, or 10 micrometers or less. The smaller the number of bubbles and the smaller the radius of the bubbles, the more uniform the spacing between the reflecting surfaces, and it becomes easier to suppress a decrease in the transmittance of the adhesive layer and an increase in haze. In addition, the bubble of the contact bonding layer of a glass laminated body can be confirmed by observing the glass laminated body which consists of a glass film which is laminated | stacked by the method similar to a glass film with a reflecting film, and does not have a reflecting film.
 本発明のガラス積層体を用いて光学結像部材を作製する場合、短冊状のガラス積層体を一対用意する工程と、一対のガラス積層体を反射膜が形成された面同士が直交するように配置固定して、光学結像部材を得る工程とを含むことが好ましい。 When producing an optical imaging member using the glass laminate of the present invention, a step of preparing a pair of strip-like glass laminates and a pair of glass laminates on which the reflective films are formed are orthogonal to each other. And fixing the arrangement to obtain an optical imaging member.
 更に、一対のガラス積層体の積層外表面(図9に示す上側のガラス積層体24の上面と、下側のガラス積層体24の下面とであって、通常、切断面になる)にガラス基板(好ましくは強化ガラス基板)を配置固定する工程を有することが好ましい。このようにすれば、一対のガラス積層体の積層外表面を高精度に研磨する必要がなくなり、光学結像部材の製造コストを大幅に低減することができる。更に、この場合、一対のガラス積層体の積層外表面を実質的に研磨しないことが好ましい。 Furthermore, a glass substrate on the outer surface of the pair of glass laminates (the upper surface of the upper glass laminate 24 and the lower surface of the lower glass laminate 24 shown in FIG. 9 are usually cut surfaces). It is preferable to have a step of arranging and fixing (preferably a tempered glass substrate). In this case, it is not necessary to polish the laminated outer surfaces of the pair of glass laminates with high accuracy, and the manufacturing cost of the optical imaging member can be greatly reduced. Furthermore, in this case, it is preferable that the laminated outer surfaces of the pair of glass laminates are not substantially polished.
 本発明のガラス積層体の製造方法では、上記の通り、複数枚の反射膜付きガラスフィルムを用いる。反射膜付きガラスフィルムは、ガラスフィルムの両表面に反射膜を形成してもよいが、製造効率の観点から、ガラスフィルムの一方の表面のみに反射膜を形成することが好ましい。
 また、反射膜がガラスフィルムの一方の表面のみに形成されている場合には、反射膜付きガラスフィルムを製造途中のガラス積層体の被積層面に積み重ねる際に、ガラスフィルムの反射膜が形成されていない面を被積層面(接着剤)に接触させることが好ましいが、その逆であってもよい。
In the method for producing a glass laminate of the present invention, as described above, a plurality of glass films with a reflective film are used. Although a glass film with a reflecting film may form a reflecting film on both surfaces of a glass film, it is preferable to form a reflecting film only on one surface of a glass film from a viewpoint of manufacturing efficiency.
In addition, when the reflective film is formed only on one surface of the glass film, the reflective film of the glass film is formed when the glass film with the reflective film is stacked on the laminated surface of the glass laminate in the course of manufacture. It is preferable to contact the surface not to be laminated with the surface to be laminated (adhesive), but the opposite may be possible.
 本発明に係るガラスフィルムは、以下の特性及びガラス組成を有することが好ましい。 The glass film according to the present invention preferably has the following characteristics and glass composition.
 ガラスフィルムの厚みは、適正な撓み量を確保する観点から、好ましくは1500μm以下、1400μm以下、1300μm以下、1200μm以下、1100μm以下、1000μm以下、900μm以下、800μm以下、700μm以下、600μm以下、500μm以下、400μm以下、300μm以下、200μm以下または100μm以下である。ガラスフィルムの厚みが薄い程、反射膜の間隔が狭小化されるため、高解像度の結像を得易くなる。 The thickness of the glass film is preferably 1500 μm or less, 1400 μm or less, 1300 μm or less, 1200 μm or less, 1100 μm or less, 1000 μm or less, 900 μm or less, 800 μm or less, 700 μm or less, 600 μm or less, 500 μm or less from the viewpoint of ensuring an appropriate amount of bending. 400 μm or less, 300 μm or less, 200 μm or less, or 100 μm or less. The thinner the glass film is, the narrower the interval between the reflecting films, so that it becomes easier to obtain a high-resolution image.
 ガラスフィルムの表面の表面粗さRaは、好ましくは100Å以下、50Å以下、10Å以下、8Å以下、4Å以下または3Å以下、特に好ましくは0.01~2Åである。ガラスフィルムの表面の表面粗さRaが大き過ぎると、反射膜の間隔がばらつき易くなり、特にガラスフィルムを積層一体化した時に、反射膜の間隔のばらつきが増幅されて、高解像度の結像を得難くなる。更に、ガラスフィルムを積層する際に、空気を巻き込み易くなったり、オプティカルボンディングし難くなったりする。 The surface roughness Ra of the surface of the glass film is preferably 100 mm or less, 50 mm or less, 10 mm or less, 8 mm or less, 4 mm or less or 3 mm or less, particularly preferably 0.01 to 2 mm. If the surface roughness Ra of the surface of the glass film is too large, the distance between the reflective films tends to vary. Especially when the glass films are laminated and integrated, the variation in the distance between the reflective films is amplified, and high-resolution imaging is performed. It becomes difficult to obtain. Furthermore, when laminating a glass film, it becomes easy to entrain air, or it becomes difficult to perform optical carboxylation.
 ガラスフィルムの端面の表面粗さRaは、好ましくは50μm以下、10μm以下、5μm以下、3μm位下、2μm以下、1μm以下または0.5μm以下、特に好ましくは0.05μm以下である。ガラスフィルムの端面の表面粗さRaが大き過ぎると、ガラス積層体が破損し易くなる。 The surface roughness Ra of the end face of the glass film is preferably 50 μm or less, 10 μm or less, 5 μm or less, about 3 μm, 2 μm or less, 1 μm or less, or 0.5 μm or less, particularly preferably 0.05 μm or less. If the surface roughness Ra of the end face of the glass film is too large, the glass laminate is easily damaged.
 ガラスフィルムのうねりは、好ましくは1μm以下、0.08μm以下、0.05μm以下、0.03μm以下または0.02μm以下、特に好ましくは0.01μm以下である。ガラスフィルムのうねりが大き過ぎると、反射膜の間隔がばらつき易くなり、特にガラスフィルムを積層一体化した時に、反射膜の間隔のばらつきが増幅されて、高解像度の結像を得難くなる。更に、ガラスフィルムのうねりが大き過ぎると、ガラスフィルムを積層する際に、空気を巻き込み易くなったり、オプティカルボンディングし難くなったりする。すなわち、複数の反射膜付きガラスフィルムを相互間に接着剤を介在させずにオプティカルボンディングによって直接接着させる場合には、ガラスフィルムのうねりが大き過ぎると、オプティカルボンディングが困難になる。 The waviness of the glass film is preferably 1 μm or less, 0.08 μm or less, 0.05 μm or less, 0.03 μm or less, or 0.02 μm or less, particularly preferably 0.01 μm or less. When the undulation of the glass film is too large, the interval between the reflection films tends to vary. In particular, when the glass films are laminated and integrated, the variation in the interval between the reflection films is amplified, making it difficult to obtain a high-resolution image. Furthermore, when the undulation of the glass film is too large, it becomes easy to entrain air when the glass film is laminated, or it becomes difficult to perform optical carboxylation. That is, in the case where a plurality of glass films with a reflective film are directly bonded by optical carboxylating without interposing an adhesive between them, if the glass film is excessively swelled, optical carboxylation becomes difficult.
 ガラスフィルムの最大厚みと最小厚みの差は、好ましくは10μm以下、5μm以下または2μm以下、特に好ましくは0.01~1μmである。この差が大き過ぎると、反射膜の間隔がばらつき易くなり、特にガラスフィルムを積層一体化した時に、反射膜の間隔のばらつきが増幅されて、高解像度の結像を得難くなる。更に、ガラスフィルムを積層する際に、空気を巻き込み易くなったり、オプティカルボンディングし難くなったりする。 The difference between the maximum thickness and the minimum thickness of the glass film is preferably 10 μm or less, 5 μm or less, or 2 μm or less, and particularly preferably 0.01 to 1 μm. If this difference is too large, the distance between the reflective films tends to vary. In particular, when the glass films are laminated and integrated, the variation in the distance between the reflective films is amplified, making it difficult to obtain a high-resolution image. Furthermore, when laminating a glass film, it becomes easy to entrain air, or it becomes difficult to perform optical carboxylation.
 ガラスフィルムは、未研磨の表面を有することが好ましい。ガラスの理論強度は、本来、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラスフィルムの表面にグリフィスフローと呼ばれる小さな欠陥がガラスの成形後の工程、例えば研磨工程等で生じるからである。よって、ガラスフィルムの表面を未研磨とすれば、本来の機械的強度を損ない難くなり、ガラスフィルムが破壊し難くなる。また、研磨工程を省略し得るため、ガラスフィルムの製造コストを低廉化することができる。なお、両表面の有効面全体を未研磨の表面とすれば、ガラスフィルムが更に破壊し難くなる。 The glass film preferably has an unpolished surface. The theoretical strength of glass is inherently very high, but breakage is often caused even by a stress much lower than the theoretical strength. This is because a small defect called Griffith Flow is generated on the surface of the glass film in a process after glass molding, such as a polishing process. Therefore, if the surface of the glass film is unpolished, the original mechanical strength is hardly impaired, and the glass film is difficult to break. Moreover, since a grinding | polishing process can be skipped, the manufacturing cost of a glass film can be reduced. If the entire effective surface of both surfaces is an unpolished surface, the glass film is more difficult to break.
 ガラスフィルムの幅寸法は、好ましくは200mm以上、250mm以上、300mm以上、500mm以上、600mm以上、800mm以上、1000mm以上、1200mm以上または1500mm以上、特に好ましくは2000mm以上である。このようにすれば、光学結像部材を大型化し易くなる。一方、ガラスフィルムの幅寸法が大き過ぎると、反射膜が形成された面に直交する方向にガラス積層体を切断し難くなる。よって、ガラスフィルムの幅寸法は、好ましくは3500mm以下または3200mm以下、特に好ましくは3000mm以下である。 The width dimension of the glass film is preferably 200 mm or more, 250 mm or more, 300 mm or more, 500 mm or more, 600 mm or more, 800 mm or more, 1000 mm or more, 1200 mm or more, or 1500 mm or more, particularly preferably 2000 mm or more. If it does in this way, it will become easy to enlarge an optical image formation member. On the other hand, if the width dimension of the glass film is too large, it is difficult to cut the glass laminate in a direction perpendicular to the surface on which the reflective film is formed. Therefore, the width dimension of the glass film is preferably 3500 mm or less or 3200 mm or less, and particularly preferably 3000 mm or less.
 ガラスフィルムのサイズ(縦方向寸法×横方向寸法)は、好ましくは200mm×200mm~3500mm×3500mmの範囲であれば、縦横で任意の幅寸法の組み合わせが可能である。ガラスフィルムのサイズが小さいほうが製造しやすく、高品質のガラス積層体を得ることができるため、高精細が要求される場合に有利である。また、大型の光学結像部材を得るためには、ガラスフィルムのサイズが大きいものを用いるとよいが、ガラスフィルムのサイズが大きくなるほど、積層工程や切断工程の難易度が高くなる。その場合でも本発明のガラス積層体の製造方法によれば、良好な品質のガラス積層体を得ることが可能であるが、小型の光学結像部材を組み合わせる等で適宜大型化に対応するのもよい。 If the size of the glass film (longitudinal dimension × horizontal dimension) is preferably in the range of 200 mm × 200 mm to 3500 mm × 3500 mm, any combination of width dimensions can be used. Smaller glass film sizes are easier to manufacture and provide a high-quality glass laminate, which is advantageous when high definition is required. Moreover, in order to obtain a large optical imaging member, it is preferable to use a glass film having a large size. However, as the glass film size increases, the difficulty of the laminating process and the cutting process increases. Even in such a case, according to the method for producing a glass laminate of the present invention, it is possible to obtain a glass laminate of good quality, but it is also possible to cope with an increase in size appropriately by combining small optical imaging members. Good.
 ガラスフィルムのクラック発生率は、好ましくは70%以下、50%以下、40%以下または30%以下、特に好ましくは20%以下である。このようにすれば、ガラス積層体が破損し難くなる。ここで、「クラック発生率」は、湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重1000gに設定したビッカース圧子をガラス表面(光学研磨相当面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)し、この操作を20回繰り返し(即ち、圧子を20回打ち込み)、総クラック数を計数した後、総クラック発生数/80にて得られた値を指す。 The crack occurrence rate of the glass film is preferably 70% or less, 50% or less, 40% or less or 30% or less, particularly preferably 20% or less. If it does in this way, it will become difficult to break a glass layered product. Here, the “crack occurrence rate” is a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., and a Vickers indenter set at a load of 1000 g is driven into the glass surface (optical polishing equivalent surface) for 15 seconds. After counting the number of cracks generated from the four corners of the indentation after 15 seconds (maximum 4 per indentation), this operation was repeated 20 times (that is, the indenter was driven 20 times), and the total number of cracks was counted The value obtained by the total number of cracks / 80.
 ガラスフィルムの液相温度は、好ましくは1200℃以下、1150℃以下、1130℃以下、1110℃以下または1090℃以下、特に好ましくは700~1070℃である。ガラスフィルムの液相粘度は、好ましくは105.0dPa・s以上、105.6dPa・s以上または105.8dPa・s以上、特に好ましくは106.0~1010.0dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなる。なお、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。 The liquidus temperature of the glass film is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, or 1090 ° C. or lower, particularly preferably 700 to 1070 ° C. The liquidus viscosity of the glass film is preferably 10 5.0 dPa · s or more, 10 5.6 dPa · s or more, or 10 5.8 dPa · s or more, and particularly preferably 10 6.0 to 10 10.0 dPa. -It is more than s. If it does in this way, it will become difficult to devitrify glass at the time of fabrication. The “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours to precipitate crystals. Refers to the value measured temperature. “Liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
 ガラスフィルムのヤング率は、好ましくは65GPa以上、67GPa以上、68GPa以上、69GPa以上、70GPa以上、71GPa以上または72GPa以上、特に好ましくは75~100GPaである。このようにすれば、ガラスフィルムの表面に反射膜を形成した後に、ガラスフィルムが反り難くなり、結果として、反射膜の間隔がばらつき難くなり、高解像度の結像を得易くなる。なお、「ヤング率」は、共振法により測定した値を指す。 The Young's modulus of the glass film is preferably 65 GPa or more, 67 GPa or more, 68 GPa or more, 69 GPa or more, 70 GPa or more, 71 GPa or more, or 72 GPa or more, and particularly preferably 75 to 100 GPa. If it does in this way, after forming a reflecting film in the surface of a glass film, a glass film becomes difficult to warp, As a result, the space | interval of a reflecting film becomes difficult to fluctuate and it becomes easy to obtain high-resolution imaging. “Young's modulus” refers to a value measured by a resonance method.
 ガラスフィルムの密度は、好ましくは2.7g/cm以下、2.6g/cm以下または2.5g/cm以下、特に好ましくは2.0~2.4g/cmである。このようにすれば、光学結像部材の軽量化を図り易くなる。 The density of the glass film is preferably 2.7 g / cm 3 or less, 2.6 g / cm 3 or less, or 2.5 g / cm 3 or less, particularly preferably 2.0 to 2.4 g / cm 3 . In this way, it becomes easy to reduce the weight of the optical imaging member.
 ガラスフィルムの熱膨張係数は、好ましくは25~100×10-7/℃、30~90×10-7/℃、30~60×10-7/℃または30~45×10-7/℃、特に好ましくは30~40×10-7/℃である。このようにすれば、各種機能膜の熱膨張係数に整合させ易くなる。なお、「熱膨張係数」は、ディラトメーターを用いて、30~380℃における平均熱膨張係数を測定した値を指し、熱膨張係数の測定用試料として、端面にR加工を施したφ5mm×20mmの円柱状の試料を用いる。 The thermal expansion coefficient of the glass film is preferably 25 to 100 × 10 −7 / ° C., 30 to 90 × 10 −7 / ° C., 30 to 60 × 10 −7 / ° C. or 30 to 45 × 10 −7 / ° C. Particularly preferred is 30 to 40 × 10 −7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of various functional films. “Thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer. As a sample for measuring the thermal expansion coefficient, φ5 mm × with end-face processed R A 20 mm cylindrical sample is used.
 ガラスフィルムの歪点は、好ましくは600℃以上、特に好ましくは630~750℃である。このようにすれば、耐熱性を高め易くなる。なお、「歪点」は、ASTM C336-71の方法に基づいて測定した値を指す。 The strain point of the glass film is preferably 600 ° C. or higher, particularly preferably 630 to 750 ° C. If it does in this way, it will become easy to improve heat resistance. “Strain point” refers to a value measured based on the method of ASTM C336-71.
 ガラスフィルムの厚み500μm換算、波長300nmにおける透過率は、好ましくは30%以上、50%以上、70%以上、80%以上または85%以上、特に好ましくは89~99%である。また厚み500μm換算、波長350nmにおける透過率は、好ましくは50%以上、70%以上、80%以上、85%以上、89%以上または90%以上、特に好ましくは91%以上である。また厚み500μm換算、波長550nmにおける透過率は、好ましくは85%以上、89%以上または90%以上、特に好ましくは91~99%である。このようにすれば、光学結合部材等に適用した場合、光が反射を繰り返しながら透過する際に、光の損失が低減されて、高解像度の結像を得易くなる。 The transmittance at a wavelength of 300 nm in terms of a thickness of 500 μm of the glass film is preferably 30% or more, 50% or more, 70% or more, 80% or more, or 85% or more, particularly preferably 89 to 99%. The transmittance at a thickness of 500 μm and a wavelength of 350 nm is preferably 50% or more, 70% or more, 80% or more, 85% or more, 89% or more, or 90% or more, particularly preferably 91% or more. The transmittance at a thickness of 500 μm and a wavelength of 550 nm is preferably 85% or more, 89% or more, or 90% or more, and particularly preferably 91 to 99%. In this way, when applied to an optical coupling member or the like, when light is transmitted while being repeatedly reflected, the loss of light is reduced, and high-resolution imaging is easily obtained.
 ガラスフィルムのヘイズは、好ましくは10%以下、5%以下、3%以下、1%以下または0.5%以下、特に好ましくは0.3%以下である。このようにすれば、表面および内部での拡散反射を低減することが可能になり、光学結合部材等に適用した場合、光が反射を繰り返しながら透過する際に、光の損失が低減されて、高解像度の結像を得易くなる。なお、ヘイズは、市販のヘイズメーターで測定可能である。 The haze of the glass film is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, particularly preferably 0.3% or less. In this way, it becomes possible to reduce diffuse reflection on the surface and inside, and when applied to an optical coupling member or the like, when light is transmitted while repeating reflection, loss of light is reduced, It becomes easy to obtain high resolution imaging. The haze can be measured with a commercially available haze meter.
 ガラスフィルムの屈折率は、接着剤の屈折率とできるだけ整合していることが好ましい。ガラスフィルムと接着層の屈折率n差は、好ましくは0.2以下、0.15以下、0.12以下、0.1以下、0.08以下、0.05以下、0.02以下、0.01以下または0.008以下、特に好ましくは0.005以下である。これにより、ガラスフィルムと接着層の界面での拡散反射を低減することができる。 The refractive index of the glass film is preferably matched as much as possible with the refractive index of the adhesive. The refractive index nd difference between the glass film and the adhesive layer is preferably 0.2 or less, 0.15 or less, 0.12 or less, 0.1 or less, 0.08 or less, 0.05 or less, 0.02 or less, It is 0.01 or less or 0.008 or less, particularly preferably 0.005 or less. Thereby, the diffuse reflection at the interface between the glass film and the adhesive layer can be reduced.
 ガラスフィルムは、ガラス組成として、質量%で、SiO 35~80%、Al 0~20%、B 0~17%、MgO 0~10%、CaO 0~15%、SrO 0~15%、BaO 0~30%を含有することが好ましい。上記のように、各成分の含有範囲を限定した理由を下記に示す。なお、ガラス組成に関する説明において、%表示は、質量%を指す。 The glass film has a glass composition in terms of mass% of SiO 2 35 to 80%, Al 2 O 3 0 to 20%, B 2 O 3 0 to 17%, MgO 0 to 10%, CaO 0 to 15%, SrO. It is preferable to contain 0 to 15% and BaO 0 to 30%. The reason for limiting the content range of each component as described above is shown below. In addition, in description regarding a glass composition,% display points out the mass%.
 SiOの含有量は35~80%が好ましい。SiOの含有量が多過ぎると、溶融性、成形性が低下し易くなる。よって、SiOの含有量は、好ましくは75%以下、64%以下または62%以下、特に好ましくは61%以下である。一方、SiOの含有量が少な過ぎると、ガラス網目構造を形成し難くなって、ガラス化が困難になったり、クラックの発生率が高くなったり、耐酸性が低下し易くなる。よって、SiOの含有量は、好ましくは40%以上、50%以上または55%以上、特に好ましくは57%以上である。 The content of SiO 2 is preferably 35 to 80%. When the content of SiO 2 is too large, the melting property, the moldability tends to decrease. Therefore, the content of SiO 2 is preferably 75% or less, 64% or less or 62% or less, and particularly preferably 61% or less. On the other hand, if the content of SiO 2 is too small, it becomes difficult to form a glass network structure, and vitrification becomes difficult, the rate of occurrence of cracks increases, and acid resistance tends to decrease. Therefore, the content of SiO 2 is preferably 40% or more, 50% or more, or 55% or more, and particularly preferably 57% or more.
 Alの含有量は0~20%が好ましい。Alの含有量が多過ぎると、ガラスに失透結晶が析出して、液相粘度が低下し易くなる。Alの含有量は、好ましくは18%以下または17.5%以下、特に好ましくは17%以下である。一方、Alの含有量が少な過ぎると、歪点、ヤング率が低下し易くなる。よって、Alの含有量は、好ましくは3%以上、5%以上、8.5%以上、10%以上、12%以上、13%以上、13.5%以上または14%以上、特に好ましくは14.5%以上である。 The content of Al 2 O 3 is preferably 0 to 20%. When the content of Al 2 O 3 is too large, devitrification crystal glass is precipitated, the liquid phase viscosity tends to decrease. The content of Al 2 O 3 is preferably 18% or less or 17.5% or less, particularly preferably 17% or less. On the other hand, when the content of Al 2 O 3 is too small, the strain point, the Young's modulus tends to decrease. Therefore, the content of Al 2 O 3 is preferably 3% or more, 5% or more, 8.5% or more, 10% or more, 12% or more, 13% or more, 13.5% or more, or 14% or more, particularly Preferably it is 14.5% or more.
 Bの含有量は0~17%が好ましい。Bの含有量が多過ぎると、歪点、ヤング率、耐酸性が低下し易くなる。よって、Bの含有量は、好ましくは15%以下、13%以下、12%以下または11%以下、特に好ましくは10.4%以下である。一方、Bの含有量が少な過ぎると、高温粘度が高くなって、溶融性が低下したり、クラック発生率が上昇したり、液相温度が高くなったり、密度が高くなり易い。よって、Bの含有量は、好ましくは2%以上、3%以上、4%以上、5%以上、7%以上、8.5%以上または8.8%以上、特に好ましくは9%以上である。 The content of B 2 O 3 is preferably 0 to 17%. When the content of B 2 O 3 is too large, the strain point, the Young's modulus, acid resistance tends to decrease. Therefore, the content of B 2 O 3 is preferably 15% or less, 13% or less, 12% or less, or 11% or less, and particularly preferably 10.4% or less. On the other hand, when the content of B 2 O 3 is too small, the high-temperature viscosity becomes high, the meltability is lowered, the crack generation rate is increased, the liquidus temperature is increased, and the density is easily increased. Therefore, the content of B 2 O 3 is preferably 2% or more, 3% or more, 4% or more, 5% or more, 7% or more, 8.5% or more, or 8.8% or more, particularly preferably 9%. That's it.
 MgOは、ヤング率、歪点を高めると共に、高温粘度、クラック発生率を低下させる成分である。しかし、MgOの含有量が多過ぎると、液相温度が上昇して、耐失透性が低下し易くなることに加えて、耐BHF性が低下し易くなる。よって、MgOの含有量は、好ましくは10%以下、5%以下、3%以下、2%以下、1.5%以下または1%以下、特に好ましくは0.5%以下である。 MgO is a component that increases the Young's modulus and strain point, and lowers the high temperature viscosity and crack generation rate. However, if the content of MgO is too large, the liquidus temperature rises and the devitrification resistance tends to decrease, and in addition, the BHF resistance tends to decrease. Therefore, the content of MgO is preferably 10% or less, 5% or less, 3% or less, 2% or less, 1.5% or less, or 1% or less, particularly preferably 0.5% or less.
 CaOの含有量は0~15%が好ましい。CaOの含有量が多過ぎると、密度、熱膨張係数が高くなり易い。よって、CaOの含有量は、好ましくは12%以下、10%以下または9%以下、特に好ましくは8.5%以下である。一方、CaOの含有量が少な過ぎると、溶融性、ヤング率が低下し易くなる。よって、CaOの含有量は、好ましくは2%以上、3%以上、5%以上、6%以上または7%以上、特に好ましくは7.5%以上である。 The CaO content is preferably 0 to 15%. When there is too much content of CaO, a density and a thermal expansion coefficient will become high easily. Therefore, the content of CaO is preferably 12% or less, 10% or less, or 9% or less, and particularly preferably 8.5% or less. On the other hand, when there is too little content of CaO, a meltability and a Young's modulus will fall easily. Therefore, the CaO content is preferably 2% or more, 3% or more, 5% or more, 6% or more, or 7% or more, and particularly preferably 7.5% or more.
 SrOの含有量は0~15%が好ましい。SrOの含有量が多過ぎると、密度、熱膨張係数が高くなり易い。よって、SrOの含有量は、好ましくは12%以下、10%以下、6%以下または5%以下、特に好ましくは6.5%以下である。一方、SrOの含有量が少な過ぎると、溶融性、耐薬品性が低下し易くなる。よって、SrOの含有量は、好ましくは0.5%以上、1%以上、2%以上または3%以上、特に好ましくは3.5%以上である。 The SrO content is preferably 0 to 15%. When there is too much content of SrO, a density and a thermal expansion coefficient will become high easily. Therefore, the content of SrO is preferably 12% or less, 10% or less, 6% or less, or 5% or less, and particularly preferably 6.5% or less. On the other hand, when there is too little content of SrO, a meltability and chemical resistance will fall easily. Therefore, the SrO content is preferably 0.5% or more, 1% or more, 2% or more, or 3% or more, and particularly preferably 3.5% or more.
 BaOの含有量が多過ぎると、密度、熱膨張係数が高くなり易い。よって、BaOの含有量は、好ましくは30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、2%以下または1%以下、特に好ましくは0.5%以下である。 When there is too much content of BaO, a density and a thermal expansion coefficient will become high easily. Therefore, the content of BaO is preferably 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less, particularly preferably 0.5% or less. It is.
 MgO、CaO、SrO、BaOの各成分を複数導入すると、液相温度が低下して、ガラス中に結晶異物が発生し難くなる。一方、これらの成分の合量が少な過ぎると、融剤としての働きを十分に発揮できず、溶融性が低下し易くなる。よって、これらの成分の合量は、好ましくは5%以上、8%以上、9%以上または11%以上、特に好ましくは13%以上である。一方、これらの成分の合量が多過ぎると、密度が上昇し、ガラスの軽量化が図り難くなることに加えて、クラック発生率が高くなる傾向がある。よって、これらの成分の合量は、好ましくは30%以下、20%以下または18%以下、特に好ましくは15%以下である。特に、ガラスフィルムの低密度化を優先したい場合、これらの成分の合量は、好ましくは5%以上、特に好ましくは8%以上であり、また、好ましくは13%以下または11%以下、特に好ましくは10%以下である。 When a plurality of MgO, CaO, SrO, and BaO components are introduced, the liquidus temperature is lowered, and it is difficult to generate crystalline foreign matter in the glass. On the other hand, if the total amount of these components is too small, the function as a flux cannot be sufficiently exhibited, and the meltability tends to be lowered. Therefore, the total amount of these components is preferably 5% or more, 8% or more, 9% or more, or 11% or more, and particularly preferably 13% or more. On the other hand, if the total amount of these components is too large, the density increases and it becomes difficult to reduce the weight of the glass, and the crack generation rate tends to increase. Therefore, the total amount of these components is preferably 30% or less, 20% or less or 18% or less, and particularly preferably 15% or less. In particular, when priority is given to reducing the density of the glass film, the total amount of these components is preferably 5% or more, particularly preferably 8% or more, and preferably 13% or less or 11% or less, particularly preferably. Is 10% or less.
 ZnOは、溶融性、ヤング率を高める成分である。しかし、ZnOの含有量が多過ぎると、ガラスが失透したり、歪点が低下したり、密度が上昇し易くなる。よって、ZnOの含有量は、好ましくは15%以下、10%以下、5%以下、3%以下または1%以下、特に好ましくは0.5%以下である。 ZnO is a component that increases meltability and Young's modulus. However, when the content of ZnO is too large, the glass is devitrified, the strain point is lowered, and the density is easily increased. Therefore, the content of ZnO is preferably 15% or less, 10% or less, 5% or less, 3% or less, or 1% or less, particularly preferably 0.5% or less.
 ZrOは、ヤング率を高める成分である。しかし、ZrOの含有量が多過ぎると、液相温度が上昇し、ジルコンの失透異物が発生し易くなる。よって、ZrOの含有量は、好ましくは3%以下、1%以下または0.5%以下、特に好ましくは0.1%以下である。 ZrO 2 is a component that increases the Young's modulus. However, when the content of ZrO 2 is too large, the liquidus temperature rises and zircon devitrification foreign matter is likely to be generated. Therefore, the content of ZrO 2 is preferably 3% or less, 1% or less, or 0.5% or less, and particularly preferably 0.1% or less.
 Feの上限含有量は、好ましくは1000ppm(0.1%)以下、800ppm以下、300ppm以下、200ppm以下、130ppm以下、100ppm以下、80ppm以下、60ppm以下、40ppm以下、30ppm以下または20ppm以下、特に好ましくは10ppm以下であり、下限含有量は、好ましくは1ppm以上、特に好ましくは3ppm以上である。Feの含有量が少ない程、透過率が高くなるため、光学結合部材等に適用した場合、光が反射を繰り返しながら透過する際に、光の損失が低減されて、高解像度の結像を得易くなる。なお、Feの含有量を低減するためには、高純度の原料を使用することが好ましい。 The upper limit content of Fe 2 O 3 is preferably 1000 ppm (0.1%) or less, 800 ppm or less, 300 ppm or less, 200 ppm or less, 130 ppm or less, 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 30 ppm or less or 20 ppm or less The lower limit content is preferably 1 ppm or more, and particularly preferably 3 ppm or more. The lower the Fe 2 O 3 content, the higher the transmittance. Therefore, when it is applied to an optical coupling member or the like, the light loss is reduced when light is transmitted while repeating reflection, and high resolution results are obtained. It becomes easy to obtain an image. In order to reduce the content of Fe 2 O 3 , it is preferable to use a high-purity raw material.
 Y、Nb、Laは、歪点、ヤング率等を高める成分である。しかし、これらの成分の含有量が多過ぎると、密度が高くなり易い。よって、Y、Nb、Laの含有量は、それぞれ3%以下が好ましい。 Y 2 O 3 , Nb 2 O 3 , and La 2 O 3 are components that increase the strain point, Young's modulus, and the like. However, if the content of these components is too large, the density tends to increase. Therefore, the content of Y 2 O 3 , Nb 2 O 3 and La 2 O 3 is preferably 3% or less.
 清澄剤として、As、Sb、CeO、SnO、F、Cl、SOの群から選択された一種又は二種以上を0~3%添加してもよい。但し、As、Sb及びF、特にAs及びSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量を0.1%未満に制限することが好ましい。好ましい清澄剤は、SnO、SO及びClである。SnOの含有量は、好ましくは0~1%または0.01~0.5%、特に好ましくは0.05~0.4%である。また、SnO+SO+Cl(SnO、SO及びClの合量)の含有量は、好ましくは0.001~1%または0.01~0.5%、特に好ましくは0.01~0.3%である。 As a fining agent, one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 may be added in an amount of 0 to 3%. However, As 2 O 3 , Sb 2 O 3 and F, especially As 2 O 3 and Sb 2 O 3 are preferably refrained from use as much as possible from an environmental point of view, and each content is less than 0.1%. It is preferable to limit to. Preferred fining agents are SnO 2, SO 3 and Cl. The content of SnO 2 is preferably 0 to 1% or 0.01 to 0.5%, particularly preferably 0.05 to 0.4%. The content of SnO 2 + SO 3 + Cl (the total amount of SnO 2 , SO 3 and Cl) is preferably 0.001 to 1% or 0.01 to 0.5%, particularly preferably 0.01 to 0 .3%.
 上記成分以外にも、他の成分を添加してもよく、他の成分の含有量は10%以下、特に5%以下が好ましい。 In addition to the above components, other components may be added, and the content of other components is preferably 10% or less, particularly preferably 5% or less.
 次に、反射膜の好適な構成、形成方法等について説明する。 Next, a preferred configuration and formation method of the reflective film will be described.
 反射膜は、種々の材料が使用可能であるが、その中でも、高解像度の結像を得る観点からAl又はAgが好ましい。 Various materials can be used for the reflective film, and among these, Al or Ag is preferable from the viewpoint of obtaining a high-resolution image.
 ガラスフィルムの表面に反射膜を形成する方法として、種々の方法があり、例えば、蒸着、スパッタ、めっき、銀鏡反応等が挙げられる。特に、成膜効率の観点から、スパッタで反射膜を形成することが好ましいが、大量かつ安価に生産する場合は銀鏡反応を用いることが好ましい。 There are various methods for forming a reflective film on the surface of a glass film, and examples thereof include vapor deposition, sputtering, plating, silver mirror reaction, and the like. In particular, from the viewpoint of film formation efficiency, it is preferable to form a reflective film by sputtering, but it is preferable to use a silver mirror reaction when producing a large amount at low cost.
 スパッタ、蒸着により反射膜(特にAlの反射膜)を形成する場合、その反射膜を電解研磨することが好ましい。このようにすれば、反射膜の正反射率が向上して、結像される像の画質を高めることができる。 When a reflective film (particularly an Al reflective film) is formed by sputtering or vapor deposition, the reflective film is preferably electropolished. In this way, the regular reflectance of the reflective film is improved, and the image quality of the image formed can be improved.
 ガラスフィルムの表面に対して、反射膜付き樹脂フィルムを貼り付けることも好ましい。このようにすれば、反射膜の形成コストを低減することができる。 It is also preferable to attach a resin film with a reflective film to the surface of the glass film. In this way, the formation cost of the reflective film can be reduced.
 ガラスフィルムの表面に対して、Alペースト、Agペースト等の金属ペーストを塗布、乾燥した後、得られたガラスフィルムを積層、焼成することも好ましく、金属ペーストにはガラスフリットが含まれることが好ましい。このようにすれば、ガラスフィルム同士の固着と反射膜の形成を同時に行うことができる。 It is also preferable to apply and dry a metal paste such as an Al paste or an Ag paste on the surface of the glass film, and then laminate and fire the obtained glass film. The metal paste preferably contains glass frit. . If it does in this way, fixation of glass films and formation of a reflective film can be performed simultaneously.
 反射膜上には、必要に応じて、SiO等の保護膜を形成してもよい。このようにすれば、反射膜を適正に保護することができる。 A protective film such as SiO 2 may be formed on the reflective film as necessary. If it does in this way, a reflective film can be protected appropriately.
 本発明のガラス積層体の製造方法に用いる反射膜付きガラスフィルムについて、ガラス組成と特性を詳細に説明する。但し、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 The glass composition and characteristics of the glass film with a reflective film used in the method for producing a glass laminate of the present invention will be described in detail. However, the following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、本発明のガラス積層体の製造方法で用いるガラスフィルム(試料No.1~7)のガラス組成と特性を示している。 Table 1 shows the glass composition and characteristics of glass films (sample Nos. 1 to 7) used in the method for producing a glass laminate of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず表1に記載のガラス組成になるように、ガラス原料を調合し、得られたガラス原料をガラス溶融炉に供給して1500~1600℃で溶融した。次いで、得られた溶融ガラスをオーバーフローダウンドロー法により、表中の厚み、長さ寸法1500mmになるように成形した。続いて、成形直後のガラスフィルムを徐冷エリアに移動させた。その際に、1012~1014dPa・sにおける温度での冷却速度が20℃/分になるように、徐冷エリアの温度とフィルム引き出し速度を調整した。 First, glass raw materials were prepared so as to have the glass composition shown in Table 1, and the obtained glass raw materials were supplied to a glass melting furnace and melted at 1500 to 1600 ° C. Next, the obtained molten glass was molded by an overflow down draw method so as to have a thickness and a length dimension of 1500 mm in the table. Subsequently, the glass film immediately after molding was moved to the slow cooling area. At that time, the temperature of the slow cooling area and the film drawing speed were adjusted so that the cooling rate at a temperature of 10 12 to 10 14 dPa · s was 20 ° C./min.
 密度は、周知のアルキメデス法により測定した値である。 The density is a value measured by the well-known Archimedes method.
 歪点は、ASTM C336-71の方法に基づいて測定した値である。 The strain point is a value measured based on the method of ASTM C336-71.
 ガラス転移温度は、熱膨張曲線からJIS R3103-3の方法に基づいて測定した値である。 The glass transition temperature is a value measured from the thermal expansion curve based on the method of JIS R3103-3.
 軟化点は ASTM C338-93の方法に基づいて測定した値である。 Softening point is a value measured based on the method of ASTM C338-93.
 104.0、103.0、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。この温度が低い程、溶融性に優れていることになる。 The temperature at 10 4.0 , 10 3.0 , 10 2.5 dPa · s is a value measured by a platinum ball pulling method. The lower the temperature, the better the meltability.
 ヤング率は、共振法により測定した値である。 The Young's modulus is a value measured by the resonance method.
 熱膨張係数は、ディラトメーターを用いて、30~380℃における平均熱膨張係数を測定したものである。熱膨張係数の測定用試料として、端面にR加工を施したφ5mm×20mmの円柱状の試料を用いた。 The thermal expansion coefficient is obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer. As a sample for measuring the coefficient of thermal expansion, a cylindrical sample of φ5 mm × 20 mm whose end face was subjected to R processing was used.
 液相温度は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquid phase temperature passed through a standard sieve 30 mesh (500 μm), the glass powder remaining in 50 mesh (300 μm) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and the temperature at which crystals were precipitated was measured. Is. The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
 下記の方法により、耐HCl性と耐BHF性を評価した。まず各試料の両表面を光学研磨した後、表面の一部をマスキングした。次に、所定の濃度に調合した薬液中で、所定の温度で所定の時間浸漬した。その後、マスクを外し、マスク部分と浸食部分の段差を表面粗さ計で測定し、その値を浸食量とした。また、各試料の両表面を光学研磨した後、所定の濃度に調合した薬液中で、所定の温度で所定の時間浸漬した。その後、試料の表面を目視で観察し、表面が白濁したり、荒れたり、クラックが入っているものを「×」、変化が全く無いものを「○」として評価した。 The HCl resistance and BHF resistance were evaluated by the following methods. First, after optically polishing both surfaces of each sample, a part of the surface was masked. Next, it was immersed in a chemical solution prepared to a predetermined concentration at a predetermined temperature for a predetermined time. Then, the mask was removed, the level difference between the mask portion and the erosion portion was measured with a surface roughness meter, and the value was taken as the erosion amount. Further, both surfaces of each sample were optically polished, and then immersed in a chemical solution prepared to a predetermined concentration at a predetermined temperature for a predetermined time. Thereafter, the surface of the sample was visually observed and evaluated as “X” when the surface became cloudy, rough, or cracked, and “◯” when there was no change.
 ここで、耐BHF性の浸食量は、130BHF溶液(NHHF:4.6質量%,NHF:36質量%)を用いて20℃、30分間の処理条件で測定した。外観評価は、63BHF溶液(HF:6質量%,NHF:30質量%)を用いて、20℃、30分間の処理条件で行った。また耐HCl性の浸食量は、10質量%塩酸水溶液を用いて80℃、24時間の処理条件で測定した。外観評価は、10質量%塩酸水溶液を用いて80℃、3時間の処理条件で行った。 Here, the amount of erosion of BHF resistance was measured using a 130 BHF solution (NH 4 HF: 4.6 mass%, NH 4 F: 36 mass%) at 20 ° C. for 30 minutes. Appearance evaluation was performed using a 63BHF solution (HF: 6% by mass, NH 4 F: 30% by mass) under treatment conditions at 20 ° C. for 30 minutes. Further, the erosion resistance of HCl resistance was measured using a 10% by mass hydrochloric acid aqueous solution at 80 ° C. for 24 hours. Appearance evaluation was performed under a treatment condition of 80 ° C. for 3 hours using a 10 mass% hydrochloric acid aqueous solution.
 クラック発生率は、湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重1000gに設定したビッカース圧子を試料表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。20回圧子を打ち込み、総クラック発生数/80×100として評価した。 The crack occurrence rate was determined by placing a Vickers indenter set at a load of 1000 g on the sample surface (optical polishing surface) for 15 seconds in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C. The number of cracks generated from the corner is counted (maximum 4 per indentation). The indenter was driven 20 times, and the total number of cracks generated / 80 × 100 was evaluated.
 表面の表面粗さRaは、JIS B0601:2001に準拠した方法で測定した値である。 The surface roughness Ra of the surface is a value measured by a method based on JIS B0601: 2001.
 端面の表面粗さRaは、JIS B0601:2001に準拠した方法で測定した値である。 The surface roughness Ra of the end face is a value measured by a method based on JIS B0601: 2001.
 うねりは、触針式の表面形状測定装置を用いて、JIS B0601:2001に記載のWCA(ろ波中心線うねり)を測定した値であり、この測定は、SEMI STD D15-1296「FPDガラス基板の表面うねりの測定方法」に準拠した方法で測定し、測定時のカットオフは0.8~8mm、ガラスフィルムの引き出し方向に対して垂直な方向に300mmの長さで測定した値である。 The waviness is a value obtained by measuring the WCA (filtered center line waviness) described in JIS B0601: 2001 using a stylus type surface shape measuring device. This measurement is based on SEMI STD D15-1296 “FPD glass substrate. The cut-off at the time of measurement is 0.8 to 8 mm, and is a value measured at a length of 300 mm in a direction perpendicular to the drawing direction of the glass film.
 ガラスフィルムの最大厚みと最小厚みの差は、レーザー式厚み測定装置を用いて、ガラスフィルムの任意の一辺に厚み方向からレーザーを走査することにより、ガラスフィルムの最大厚みと最小厚みを測定した上で、最大厚みの値から最小厚みの値を減じた値である。 The difference between the maximum thickness and the minimum thickness of the glass film is determined by measuring the maximum thickness and the minimum thickness of the glass film by scanning a laser from one side of the glass film in the thickness direction using a laser thickness measuring device. The value obtained by subtracting the value of the minimum thickness from the value of the maximum thickness.
 屈折率ndは、精密屈折率計(島津製作所社製KPR-2000)を用いて測定した値である。 The refractive index nd is a value measured using a precision refractometer (KPR-2000, manufactured by Shimadzu Corporation).
 表1から明らかなように、試料No.1~7は、厚みが小さく、表面精度が良好である。よって、試料No.1~7のガラス表面に反射膜を形成した上で、これを積層一体化すれば、コストアップを招来させることなく、ガラス積層体を作製することができる。そして、一対のガラス積層体を反射膜が形成された面同士が直交するように配置すれば、高解像に結像し得る光学結像部材を得ることができる。 As is clear from Table 1, sample No. Nos. 1 to 7 have a small thickness and good surface accuracy. Therefore, sample no. If a reflective film is formed on the glass surfaces 1 to 7 and then laminated and integrated, a glass laminate can be produced without increasing the cost. If a pair of glass laminates are arranged so that the surfaces on which the reflection films are formed are orthogonal to each other, an optical imaging member capable of forming an image with high resolution can be obtained.
 試料No.1~7につき、表中の厚み、波長にて透過率を測定した。測定装置として、UV-3100PCを使用し、スリット幅:2.0nm、スキャン速度:中速、サンプリングピッチ:0.5nmの条件で測定した。その結果を表2に示す。 Sample No. For 1 to 7, the transmittance was measured at the thickness and wavelength in the table. As a measuring apparatus, UV-3100PC was used, and measurement was performed under the conditions of slit width: 2.0 nm, scan speed: medium speed, and sampling pitch: 0.5 nm. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、試料No.1~7は、何れの厚み、波長でも透過率が高かった。 As is clear from Table 2, the sample No. 1 to 7 had high transmittance at any thickness and wavelength.
 更に、各試料について、ヘイズメーター(日本電飾工業社製 NDH-5000)によりヘイズを測定した。その結果を表2に示す。表2から明らかなように、試料No.1~7は、何れもヘイズが小さいため、表面での拡散反射を抑制することができる。 Furthermore, the haze of each sample was measured with a haze meter (NDH-5000 manufactured by Nippon Denshoku Kogyo Co., Ltd.). The results are shown in Table 2. As apparent from Table 2, the sample No. Since all of Nos. 1 to 7 have a small haze, diffuse reflection on the surface can be suppressed.
 本発明のガラス積層体の製造方法について、実施例1に例示したガラスフィルムを用い詳細に説明する。但し、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 The method for producing the glass laminate of the present invention will be described in detail using the glass film exemplified in Example 1. However, the following examples are merely illustrative. The present invention is not limited to the following examples.
 図5a~図5cは、反射膜付きガラスフィルム14の第一の辺15側の部位17を、反射膜付きガラスフィルム11の被積層面(接着剤13の表面)に接触させて、積み重ね動作を開始する方法の実施状況を示す概略正面図である。
 まず、試料No.3のガラス組成を有するガラスフィルム上にスパッタでAl反射膜を形成することにより得られるAl反射膜付きガラスフィルムを作製する。反射膜付きガラスフィルムの寸法は400mm×400mm角であり、板厚は400μmである。
 ここで、下側の反射膜付きガラスフィルム11の被積層面12には、既にスリットコーターにより接着剤13(キヤノン化成株式会社製GA-R1/GA-H1)が塗布されている(なお、図中の接着剤の厚みは、誇張して表示されている)。図5aに示すように、接着剤13の上に、もう一枚の反射膜付きガラスフィルム14を積層させていく。上側の反射膜付きガラスフィルム14と、下側の反射膜付きガラスフィルムの被積層面11とのなす角度θが、θ=10°になるように、上側の反射膜付きガラスフィルム14を、第一の辺15側を下方に傾けた状態で前記被積層面12上の接着剤13に接触させる。このとき、上側の反射膜付きガラスフィルム14は、第一の辺15から約1mm離間した最初の接触点17で接着剤13と接触させた。
 次に、図5bに示すように、反射膜付きガラスフィルム14の第一の辺15側から、その辺15と対向する第三の辺16側に向かって、反射膜付きガラスフィルム14を接着剤13に順次接触させていく。これにより、接着剤13は、反射膜付きガラスフィルム14と、反射膜付きガラスフィルム11の被積層面12の全面に渡って押し拡げられていく。このようにして、図5cに示すように、上側の反射膜付きガラスフィルム14を下側の反射膜付きガラスフィルム11上に積み重ねて一体化させる作業が完了する。
 前記の作業を繰り返すことにより、図3に示すような11枚の反射膜付きガラスフィルムが積層されたガラス積層体を得た(なお便宜上、図中に接着剤は記載せず、オフセット量Pn-1は、誇張して表示されている)。このようにして得たガラス積層体を構成する各反射膜付きガラスフィルム間のオフセット量を計測したところ、オフセット量Pn-1は表3に示すように、最大値P(n-1)max=20mm、平均値P(n-1)average=7.0mmであり、何れのオフセット量Pn-1も、Pn-1/L=0~1/10の範囲に含まれていた。
5a to 5c, the portion 17 on the first side 15 side of the glass film 14 with a reflective film is brought into contact with the surface to be laminated (the surface of the adhesive 13) of the glass film 11 with a reflective film to perform a stacking operation. It is a schematic front view which shows the implementation condition of the method to start.
First, sample no. A glass film with an Al reflective film obtained by forming an Al reflective film on a glass film having a glass composition of 3 by sputtering is prepared. The dimensions of the glass film with a reflective film are 400 mm × 400 mm square, and the plate thickness is 400 μm.
Here, an adhesive 13 (GA-R1 / GA-H1 manufactured by Canon Kasei Co., Ltd.) has already been applied to the laminated surface 12 of the glass film 11 with a reflective film on the lower side by a slit coater (note that FIG. The thickness of the adhesive inside is exaggerated). As shown in FIG. 5 a, another glass film 14 with a reflective film is laminated on the adhesive 13. The upper reflective film-coated glass film 14 is adjusted so that an angle θ formed by the upper reflective film-coated glass film 14 and the laminated surface 11 of the lower reflective film-coated glass film is θ = 10 °. The side 13 is brought into contact with the adhesive 13 on the laminated surface 12 with the side 15 inclined downward. At this time, the upper glass film 14 with a reflective film was brought into contact with the adhesive 13 at the first contact point 17 separated from the first side 15 by about 1 mm.
Next, as shown in FIG. 5 b, the glass film 14 with a reflective film is bonded to the glass film 14 with a reflective film from the side of the first side 15 of the glass film 14 with a reflective film toward the third side 16 facing the side 15. 13 is contacted sequentially. Thereby, the adhesive 13 is spread over the entire surface 12 of the laminated film 12 of the glass film 14 with a reflective film and the glass film 11 with a reflective film. In this way, as shown in FIG. 5c, the operation of stacking and integrating the upper glass film 14 with a reflective film on the lower glass film 11 with a reflective film is completed.
By repeating the above operation, a glass laminate in which 11 reflecting film-coated glass films as shown in FIG. 3 were laminated was obtained (for the sake of convenience, no adhesive is shown in the figure and the offset amount P n -1 is exaggerated). When the offset amount between the glass films with the reflecting films constituting the glass laminate thus obtained was measured, the offset amount P n-1 was the maximum value P (n-1) max as shown in Table 3. = 20 mm, average value P (n-1) average = 7.0 mm, and any offset amount P n-1 was included in the range of P n-1 / L 0 = 0 to 1/10.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のガラス積層体の製造方法では、位置決め部材を使用することにより、前記オフセット量Pn-1を低減できる。具体例を実施例3に示す。 In the method for producing a glass laminate of the present invention, the offset amount P n-1 can be reduced by using a positioning member. A specific example is shown in Example 3.
 位置決め部材を利用したガラス積層体の製造方法の一例を説明する。具体的には、ガラス積層体を積層する工程で、被積層側の反射膜付きガラスフィルムの周囲に図6gに示すような位置決めバー18a、18bおよび位置決め型枠18cを配置した。ここで、位置決めバー18a、18b及び位置決め型枠18cは、脱着可能かつ上下に移動できる仕組みになっている。このような装置を用いて、実施例2と同様にして11枚のガラスフィルムが積層されたガラス積層体を作製したところ、オフセット量Pn-1は表4に示すように、最大値P(n-1)max=15mm、平均値P(n-1)average=4.2mmであり、位置決めバーや位置決め型枠を使用しない場合と比べて、オフセット量Pn-1及びPn-1/Lが小さくなった。 An example of the manufacturing method of the glass laminated body using a positioning member is demonstrated. Specifically, in the step of laminating the glass laminate, positioning bars 18a and 18b and a positioning mold 18c as shown in FIG. 6g were arranged around the glass film with a reflective film on the laminated side. Here, the positioning bars 18a and 18b and the positioning mold 18c are detachable and can move up and down. Using such an apparatus, a glass laminate in which 11 glass films were laminated in the same manner as in Example 2 was prepared. As shown in Table 4, the offset amount P n-1 was the maximum value P ( n-1) max = 15 mm, average value P (n-1) average = 4.2 mm, and compared with the case where no positioning bar or positioning mold is used, the offset amounts Pn-1 and Pn-1 / L 0 became smaller.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 所定枚数が積層されたガラス積層体を用いて光学結像部材を作製する方法を説明する。図7に示すように、ガラス積層体21は、例えば厚み1000μmのガラスフィルム22が300枚積層されており、ガラスフィルム22間にそれぞれ反射膜23を有している。ここではガラスフィルム22の一方の表面には、反射膜23が形成されており、他方の表面には反射膜23は形成されていない。ガラスフィルム22同士は、反射膜同士が重ならないように、図示しない接着層により積層一体化されている(なお、図中において、反射膜23の厚みは、誇張して表示されている)。
 次に、ガラス積層体をワイヤーソーにて切断して、図8に示すような短冊状のガラス積層体24を得る。短冊状のガラス積層体24は、前工程に記載のガラス積層体21を反射膜23が形成された面に直交する方向に切断したものである。切断幅は、ガラスフィルムの板厚や、光学結像部材の寸法や性能、生産効率の観点から適宜決定できるが、例えばガラスフィルムの板厚の1.0倍~2.0倍程度にすることが好ましく、ここでは切断幅を0.8mmにする。
 前記の工程を経て作製された短冊状のガラス積層体24を用いて、光学結像部材25を作製する。図9は、本発明の光学結像部材25の一例を示す要部概略斜視図である。光学結像部材25には、図9に記載の短冊状のガラス積層体24を一対使用する。一対の短冊状のガラス積層体24は、反射膜26が形成された面同士が直交するように、短冊状のガラス積層体24の側面(切断面)同士を、図示しない接着層により接着固定している。光学結像部材25は、ガラスフィルム27により、反射膜26の間隔が狭小化、且つ均一化されている。
A method for producing an optical imaging member using a glass laminate in which a predetermined number of sheets is laminated will be described. As shown in FIG. 7, for example, 300 glass films 22 having a thickness of 1000 μm are laminated, and the glass laminate 21 has a reflective film 23 between the glass films 22. Here, the reflective film 23 is formed on one surface of the glass film 22, and the reflective film 23 is not formed on the other surface. The glass films 22 are laminated and integrated with an adhesive layer (not shown) so that the reflective films do not overlap (in the figure, the thickness of the reflective film 23 is exaggerated).
Next, the glass laminate is cut with a wire saw to obtain a strip-like glass laminate 24 as shown in FIG. The strip-shaped glass laminate 24 is obtained by cutting the glass laminate 21 described in the previous step in a direction orthogonal to the surface on which the reflective film 23 is formed. The cutting width can be appropriately determined from the viewpoint of the thickness of the glass film, the size and performance of the optical imaging member, and the production efficiency. For example, the cutting width should be about 1.0 to 2.0 times the thickness of the glass film. Here, the cutting width is set to 0.8 mm.
The optical imaging member 25 is produced using the strip-shaped glass laminated body 24 produced through the said process. FIG. 9 is a main part schematic perspective view showing an example of the optical imaging member 25 of the present invention. A pair of strip-shaped glass laminates 24 shown in FIG. 9 is used for the optical imaging member 25. The pair of strip-shaped glass laminates 24 are bonded and fixed to the side surfaces (cut surfaces) of the strip-shaped glass laminate 24 by an adhesive layer (not shown) so that the surfaces on which the reflection films 26 are formed are orthogonal to each other. ing. In the optical imaging member 25, the interval between the reflection films 26 is narrowed and made uniform by the glass film 27.
1 反射膜付きガラスフィルム
2 反射膜付きガラスフィルムの第一の辺
3 反射膜付きガラスフィルムの第二の辺
4 反射膜付きガラスフィルムの第二の辺
5 反射膜付きガラスフィルムの第三の辺
6 ガラス積層体の被積層面
7 接着剤
8 最初の接触点(接触開始点)
9 製造途中のガラス積層体
10 ガラス積層体を構成する最初の段の反射膜付きガラスフィルム
11 反射膜付きガラスフィルム
12 反射膜付きガラスフィルムの被積層面
13 接着剤
14 反射膜付きガラスフィルム
15 反射膜付きガラスフィルムの第一の辺
16 反射膜付きガラスフィルムの第三の辺
17 最初の接触点(接触開始点)
18 位置決めバー
19 位置決めバー
20 位置決め型枠
21 ガラス積層体
22 ガラスフィルム
23 反射膜
24 短冊状のガラス積層体
25 光学結像部材
26 反射膜
27 ガラスフィルム
 
DESCRIPTION OF SYMBOLS 1 Glass film with a reflecting film 2 First side of a glass film with a reflecting film 3 Second side of a glass film with a reflecting film 4 Second side of a glass film with a reflecting film Third side of a glass film with a reflecting film 6 Laminated surface of glass laminate 7 Adhesive 8 First contact point (contact start point)
DESCRIPTION OF SYMBOLS 9 Glass laminated body 10 in process of manufacture The glass film with a reflecting film 11 of the first step which comprises a glass laminated body 11 Glass film with a reflecting film 12 Laminated surface 13 of a glass film with a reflecting film Adhesive 14 Glass film with a reflecting film 15 First side 16 of glass film with film Third side 17 of glass film with reflection film First contact point (contact start point)
DESCRIPTION OF SYMBOLS 18 Positioning bar 19 Positioning bar 20 Positioning form 21 Glass laminated body 22 Glass film 23 Reflective film 24 Strip-shaped glass laminated body 25 Optical imaging member 26 Reflective film 27 Glass film

Claims (15)

  1.  複数の矩形の反射膜付きガラスフィルムを、それぞれの相互間に接着剤を介在させて順次積み重ねることで一体化して、ガラス積層体を得るガラス積層体の製造方法であって、
     反射膜付きガラスフィルムは、ガラスフィルムの輪郭を構成する第一の辺と、該第一の辺と交わる二つの第二の辺と、前記第一の辺と対向し且つ前記二つの第二の辺と交わる第三の辺とを有しており、
     反射膜付きガラスフィルムの第一の辺側の部位を、製造途中のガラス積層体上に接触させて、反射膜付きガラスフィルムの積み重ね動作を開始することを特徴とするガラス積層体の製造方法。
    A plurality of rectangular glass films with a reflective film are integrated by sequentially stacking each other with an adhesive interposed therebetween, and a glass laminate manufacturing method for obtaining a glass laminate,
    The glass film with a reflective film includes a first side constituting the outline of the glass film, two second sides intersecting the first side, the first side and the two second sides. A third side that intersects the side,
    A method for producing a glass laminate, comprising bringing a part on the first side of the glass film with a reflective film into contact with the glass laminate in the course of production and starting the stacking operation of the glass films with a reflective film.
  2.  反射膜付きガラスフィルムと、製造途中のガラス積層体の被積層面とのなす角度θが、θ=0.1°~50°となるように接触させることを特徴とする請求項1に記載のガラス積層体の製造方法。 2. The contact according to claim 1, wherein an angle θ formed by the glass film with a reflective film and a surface to be laminated of the glass laminate in the process of manufacture is in a range of θ = 0.1 ° to 50 °. A method for producing a glass laminate.
  3.  製造途中のガラス積層体上に塗布された接着剤に、反射膜付きガラスフィルムを接触させて、反射膜付きガラスフィルムの積み重ね動作を開始することを特徴とする請求項1又は2に記載のガラス積層体の製造方法。 The glass according to claim 1 or 2, wherein a glass film with a reflective film is brought into contact with an adhesive applied on a glass laminate in the course of production, and the stacking operation of the glass films with a reflective film is started. A manufacturing method of a layered product.
  4.  反射膜付きガラスフィルムの第一の辺から離間した部位を、製造途中のガラス積層体上に塗布された接着剤に接触させて、反射膜付きガラスフィルムの積み重ね動作を開始することを特徴とする請求項1~3の何れかに記載のガラス積層体の製造方法。 The part separated from the first side of the glass film with a reflective film is brought into contact with the adhesive applied on the glass laminate in the course of production, and the stacking operation of the glass films with the reflective film is started. The method for producing a glass laminate according to any one of claims 1 to 3.
  5.  製造途中のガラス積層体上に塗布された接着剤に、反射膜付きガラスフィルムの第一の辺側から第三の辺側に向かって該反射膜付きガラスフィルムを順次接触させることを特徴とする請求項1~4の何れかに記載のガラス積層体の製造方法。 It is characterized in that the glass film with a reflecting film is sequentially brought into contact with the adhesive applied on the glass laminate in the process from the first side to the third side of the glass film with a reflecting film. The method for producing a glass laminate according to any one of claims 1 to 4.
  6.  反射膜付きガラスフィルムと製造途中のガラス積層体の被積層面とが略平行になるように、反射膜付きガラスフィルムを被積層面に積み重ねることを特徴とする請求項1~5の何れかに記載のガラス積層体の製造方法。 6. The glass film with a reflective film is stacked on the surface to be laminated so that the glass film with the reflective film and the surface to be laminated of the glass laminate in the course of manufacture are substantially parallel to each other. The manufacturing method of the glass laminated body of description.
  7.  反射膜付きガラスフィルムの第二の辺の長さをLとし、該反射膜付きガラスフィルムの第一の辺から、製造途中のガラス積層体を構成する最初の段の反射膜付きガラスフィルムの第一の辺に相当する位置までの距離をPn-1(n=積層枚数)としたときに、Pn-1/L=0~1/10となるように、反射膜付きガラスフィルムを被積層面に積み重ねることを特徴とする請求項1~6の何れかに記載のガラス積層体の製造方法。 The length of the second side of the glass film with a reflective film is L 0, and the first stage of the glass film with a reflective film of the first stage constituting the glass laminate in the course of manufacture from the first side of the glass film with a reflective film Reflective film-attached glass film so that P n-1 / L 0 = 0 to 1/10 when the distance to the position corresponding to the first side is P n-1 (n = number of stacked layers) The method for producing a glass laminate according to any one of claims 1 to 6, wherein the layers are stacked on a surface to be laminated.
  8.  位置決め部材を用いて、反射膜付きガラスフィルムを製造途中のガラス積層体の被積層面に積み重ねることを特徴とする請求項1~7の何れかに記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 1 to 7, wherein the glass film with a reflective film is stacked on the laminated surface of the glass laminate in the course of production using a positioning member.
  9. 25℃における粘度が2Pa・s以上の接着剤を用いることを特徴とする請求項1~8の何れかに記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 1 to 8, wherein an adhesive having a viscosity at 25 ° C of 2 Pa · s or more is used.
  10.  スクリーン印刷又はスリットコーターにより、反射膜付きガラスフィルムの積層面及び/又は製造途中のガラス積層体の被積層面に接着剤を塗布することを特徴とする請求項1~9の何れかに記載のガラス積層体の製造方法。 The adhesive according to any one of claims 1 to 9, wherein an adhesive is applied to the laminated surface of the glass film with a reflective film and / or the laminated surface of the glass laminate in the course of production by screen printing or a slit coater. A method for producing a glass laminate.
  11.  厚みが100μm~1500μmの反射膜付きガラスフィルムを用いることを特徴とする請求項1~10の何れかに記載のガラス積層体の製造方法。 11. The method for producing a glass laminate according to claim 1, wherein a glass film with a reflective film having a thickness of 100 μm to 1500 μm is used.
  12.  サイズが200mm×200mm以上の反射膜付きガラスフィルムを用いることを特徴とする請求項1~11の何れかに記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 1 to 11, wherein a glass film with a reflective film having a size of 200 mm x 200 mm or more is used.
  13.  ダミーガラス板を用意し、該ダミーガラス板上に反射膜付きガラスフィルムを順次積み重ねることを特徴とする請求項1~12の何れかに記載のガラス積層体の製造方法。 A method for producing a glass laminate according to any one of claims 1 to 12, wherein a dummy glass plate is prepared, and a glass film with a reflective film is sequentially stacked on the dummy glass plate.
  14.  請求項1~13の何れかに記載のガラス積層体の製造方法により作製されたことを特徴とするガラス積層体。 A glass laminate produced by the method for producing a glass laminate according to any one of claims 1 to 13.
  15.  光学結像部材に用いることを特徴とする請求項14に記載のガラス積層体。
     
    It uses for an optical image formation member, The glass laminated body of Claim 14 characterized by the above-mentioned.
PCT/JP2015/055689 2014-03-13 2015-02-26 Method for manufacturing glass layered body, and glass layered body WO2015137142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-049924 2014-03-13
JP2014049924 2014-03-13

Publications (1)

Publication Number Publication Date
WO2015137142A1 true WO2015137142A1 (en) 2015-09-17

Family

ID=54071590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055689 WO2015137142A1 (en) 2014-03-13 2015-02-26 Method for manufacturing glass layered body, and glass layered body

Country Status (2)

Country Link
JP (1) JP2015187065A (en)
WO (1) WO2015137142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850522B1 (en) * 2020-03-10 2021-03-31 株式会社アスカネット Manufacturing method of optical control panel used for optical imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197335A (en) * 1986-02-25 1987-09-01 Natl House Ind Co Ltd Production of sandwich glass
JPH03126646A (en) * 1989-10-09 1991-05-29 Nippon Zeon Co Ltd Method and device for producing laminated glass
JP2000143264A (en) * 1998-10-30 2000-05-23 Toyo Commun Equip Co Ltd Production of optical device
JP2005164982A (en) * 2003-12-03 2005-06-23 Konica Minolta Opto Inc Manufacturing method for compound prism
JP2011053503A (en) * 2009-09-03 2011-03-17 Fuk:Kk Plate member sticking apparatus
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197335A (en) * 1986-02-25 1987-09-01 Natl House Ind Co Ltd Production of sandwich glass
JPH03126646A (en) * 1989-10-09 1991-05-29 Nippon Zeon Co Ltd Method and device for producing laminated glass
JP2000143264A (en) * 1998-10-30 2000-05-23 Toyo Commun Equip Co Ltd Production of optical device
JP2005164982A (en) * 2003-12-03 2005-06-23 Konica Minolta Opto Inc Manufacturing method for compound prism
JP2011053503A (en) * 2009-09-03 2011-03-17 Fuk:Kk Plate member sticking apparatus
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element

Also Published As

Publication number Publication date
JP2015187065A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6315305B2 (en) Glass laminate and optical imaging member using the same
US8697241B2 (en) Glass film laminate
JP5510901B2 (en) GLASS FILM MANUFACTURING METHOD, GLASS FILM PROCESSING METHOD, AND GLASS FILM LAMINATE
KR101899412B1 (en) Glass film laminate and process for production thereof, and process for production of glass film
KR102267241B1 (en) Glass film laminate and liquid crystal panel manufacturing method
US20120202030A1 (en) Glass laminate, display device panel with supporting body, display device panel, display device, method for producing glass laminate, method for producing display device panel with supporting body, and method for producing display device panel
JP2015090387A (en) Optical image forming member, glass laminate for the same, and manufacturing methods for both
KR102579100B1 (en) Ultra-thin glass ceramic article and method for manufacturing ultra-thin glass ceramic article
TW201602019A (en) Glass article and method for forming the same
JP2014019597A (en) Method for producing glass film, and glass film laminate
WO2013137329A1 (en) Glass substrate for cover glass for electronic device, and production method therefor
JPH09236792A (en) Display device and its production
JP6673354B2 (en) Method for manufacturing carrier substrate, laminate, and electronic device
TW202039234A (en) Damage resistant glass laminate and methods of making the same
WO2015137142A1 (en) Method for manufacturing glass layered body, and glass layered body
WO2015087844A1 (en) Glass layered body fabrication method and glass layered body
JP2015094794A (en) Glass laminate with protective glass substrate and manufacturing method therefor
JP2020007184A (en) Support substrate for semiconductor
JP2007001789A (en) Method for polishing glass surface
KR20140107053A (en) Method for manufacturing liquid crystal display protection film and liquid crystal display protection film manufactured thereby
WO2021192700A1 (en) Joined structure
TW202042935A (en) Optical layered body
CN117021705A (en) Ultrathin glass laminated glass plate and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761464

Country of ref document: EP

Kind code of ref document: A1