WO2015136808A1 - 装置及び方法 - Google Patents

装置及び方法 Download PDF

Info

Publication number
WO2015136808A1
WO2015136808A1 PCT/JP2014/083387 JP2014083387W WO2015136808A1 WO 2015136808 A1 WO2015136808 A1 WO 2015136808A1 JP 2014083387 W JP2014083387 W JP 2014083387W WO 2015136808 A1 WO2015136808 A1 WO 2015136808A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
period
communication
frequency band
signal
Prior art date
Application number
PCT/JP2014/083387
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP14885091.0A priority Critical patent/EP3119120A4/en
Priority to US15/124,320 priority patent/US9854448B2/en
Priority to CA2941434A priority patent/CA2941434A1/en
Priority to JP2016507276A priority patent/JP6269811B2/ja
Priority to KR1020167021987A priority patent/KR101908828B1/ko
Priority to CN201480076912.5A priority patent/CN106063311B/zh
Publication of WO2015136808A1 publication Critical patent/WO2015136808A1/ja
Priority to PH12016501758A priority patent/PH12016501758A1/en
Priority to US15/804,523 priority patent/US10028152B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present disclosure relates to an apparatus and a method.
  • CA Carrier Aggregation
  • Patent Document 1 discloses a registered frequency band that can be used by a registered operator, and an unlicensed license that can be used when a predetermined condition is satisfied, in addition to a dedicated frequency band that is dedicated to each operator. A technique that enables the use of bands is disclosed.
  • a frequency band used for other wireless communication for example, wireless communication of a local area network (LAN)
  • LAN local area network
  • the frequency band is excessively used for the wireless communication of the cellular system, the chance that the frequency band can be used for the other wireless communication is significantly reduced. Therefore, sharing of the frequency band can be disadvantageous for the other wireless communication.
  • the device of the cellular system cannot always secure the frequency band for the wireless communication of the cellular system. Therefore, it may take time to start using the frequency band for wireless communication of the cellular system.
  • the frequency band when the frequency band is used in the cellular system, interference between the wireless communication of the cellular system and the other wireless communication may occur in the frequency band. Therefore, the communication quality of the wireless communication of the cellular system and / or the other wireless communication may be deteriorated.
  • a frequency band shared between wireless communication of the cellular system and other wireless communication is occupied for the wireless communication of the cellular system over a first period, and the frequency band is occupied.
  • an apparatus comprising a control unit that releases from the wireless communication of the cellular system for at least a second period corresponding to the first period.
  • the processor occupies a frequency band shared between the wireless communication of the cellular system and another wireless communication for the wireless communication of the cellular system over a first period. Releasing the frequency band from the wireless communication of the cellular system for at least a second period corresponding to the first period.
  • the frequency band shared between the wireless communication of the cellular system and other wireless communication can be used more appropriately in the cellular system.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • the 5 GHz band is used for wireless communication conforming to the wireless LAN standard (hereinafter referred to as “wireless LAN communication”). Therefore, when the cellular system uses the 5 GHz band, for example, the 5 GHz band is shared between the cellular communication and the wireless LAN communication. Specifically, for example, a frequency band of 5 GHz band (for example, a wireless LAN channel) is used for wireless LAN communication at a certain time and used for cellular communication at another time. Thereby, the frequency utilization efficiency of 5 GHz band improves.
  • the wireless LAN standards include IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad. These standards are characterized by adopting IEEE802.11 as a MAC layer.
  • LTE Long Term Evolution
  • the terminal device based on the said new standard uses a shared frequency band, it is thought that the terminal device which is not based on the said new standard does not use a shared frequency band.
  • the shared frequency band will be used as, for example, a component carrier (CC). Further, it is assumed that the frequency band for the cellular system is used as PCC and the shared frequency band is used as SCC. Further, the control signal and the data signal can be transmitted / received using the frequency band for the cellular system, and the data signal can be transmitted / received using the shared frequency band.
  • CC component carrier
  • FIG. 1 is an explanatory diagram for explaining a frame format of IEEE 802.11.
  • DATA frames and ACK frames are basic frames.
  • the ACK frame is a frame for notifying the transmission side of the successful reception of the DATA frame when the DATA frame is correctly received.
  • Wireless LAN communication can be performed using only the DATA frame and the ACK frame.
  • two frames that is, an RTS (Request To Send) frame and a CTS (Clear To Send) frame are used.
  • Each terminal device that performs wireless LAN communication confirms that no signal is transmitted for a period of DIFS (DCF (Distributed Coordination Function) InterFrame Space) before transmitting the RTS frame. This is called carrier sense. If the terminal devices start transmitting signals at the same time when DIFS has elapsed, the signals will collide. Therefore, each terminal apparatus waits for a back-off time that is randomly set for each terminal apparatus, and transmits a signal if no signal is transmitted during the back-off time.
  • DIFS Distributed Coordination Function
  • the terminal device cannot transmit a signal while detecting any signal.
  • an RTS frame and a CTS frame including a duration field for setting a value of NAV have been added.
  • a NAV is set based on the value included in the duration field.
  • the terminal apparatus that has set the NAV refrains from transmitting signals over the period of the NAV.
  • the first terminal device that transmits the DATA frame transmits the RTS frame.
  • the other terminal devices located around the first terminal device receive the RTS frame and acquire the value included in the duration field in the RTS frame.
  • the other terminal apparatus sets its own NAV to the acquired value, and refrains from transmitting a signal over the period of the NAV.
  • the NAV period is a period from the end of the RTS frame to the end of the ACK frame.
  • the second terminal apparatus that receives the DATA frame transmits a CTS frame only SIFS (Short InterFrame Space) after the end of the RTS frame in response to the reception of the RTS frame. Then, the other terminal devices located around the second terminal device receive the CTS frame and acquire the value included in the duration field in the CTS frame. Then, for example, the other terminal apparatus sets its own NAV to the acquired value, and refrains from transmitting a signal over the period of the NAV.
  • the NAV period is a period from the end of the CTS frame to the end of the ACK frame.
  • another terminal device that is not near the first terminal device but is near the second terminal device (that is, a hidden terminal for the first terminal device) is connected to the first terminal device. It is possible to prevent a signal from being transmitted during communication between one terminal device and the second terminal device.
  • the RTS frame includes a frame control field, a reception address field, a transmission address field, and an FCS (Frame Check Sequence) in addition to the duration field.
  • the CTS frame includes a frame control field, a reception address field, and an FCS.
  • DIFS and SIFS in the IEEE 802.11 series standard have the following lengths, for example.
  • FIG. 2 is an explanatory diagram for explaining an LTE frame format.
  • radio frame a unit of time called a radio frame is used.
  • One radio frame is 10 ms.
  • Each radio frame is identified by an SFN (System Frame Number) which is any one of 0 to 1023.
  • the radio frame includes 10 subframes identified by # 0 to # 9. Each subframe is 1 ms. Further, each subframe includes two slots, and each slot includes, for example, seven OFDM (Orthogonal Frequency Division Multiplexing) symbols. That is, each subframe includes 14 OFDM symbols.
  • the frame format shown in FIG. 2 is a downlink frame format, and the uplink frame format includes SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols instead of OFDM symbols.
  • CC component carriers
  • UE user equipment
  • Each CC is a band having a maximum width of 20 MHz.
  • carrier aggregation there are cases where CCs that are continuous in the frequency direction are used and CCs that are separated in the frequency direction are used.
  • carrier aggregation it is possible to set the CC to be used for each UE.
  • one of a plurality of CCs used by the UE is a special CC.
  • the one special CC is called a PCC (Primary Component Carrier).
  • the remainder of the plurality of CCs is called SCC (Secondary Component Carrier).
  • the PCC may vary from UE to UE.
  • the PCC is the most important CC among a plurality of CCs, it is desirable that the communication quality is the most stable CC. Note that which CC is used as a PCC actually depends on how it is mounted.
  • SCC is added to PCC. Further, the added existing SCC can be deleted.
  • the SCC is changed by deleting an existing SCC and adding a new SCC.
  • the CC used by the UE when establishing the connection Becomes the PCC for the UE. More specifically, the connection is established through a connection establishment procedure. In that case, the state of UE changes from RRC Idle to RRC Connected. Moreover, CC used for the said procedure turns into PCC for the said UE.
  • the above procedure is a procedure started from the UE side.
  • the PCC is changed by inter-frequency handover. More specifically, when a handover is instructed in the connection reconfiguration procedure, the PCC is handed over and the PCC is changed.
  • the above procedure is a procedure started from the network side.
  • the SCC is added to the PCC.
  • the SCC is attached to the PCC.
  • the SCC is subordinate to the PCC.
  • the addition of the SCC can be performed through a connection reconfiguration procedure. This procedure is a procedure started from the network side.
  • the SCC can be deleted.
  • the deletion of the SCC can be performed through a connection reconfiguration procedure. Specifically, a specific SCC specified in the message is deleted.
  • the above procedure is a procedure started from the network side.
  • deletion of all SCCs can be performed through a connection re-establishment procedure.
  • PCC Connection establishment procedure transmission / reception of non-access stratum (NAS) signaling, and transmission / reception of uplink control signal on physical uplink control channel (PUCCH) are not performed in SCC. This is done only by PCC.
  • NAS non-access stratum
  • PUCCH physical uplink control channel
  • radio link failure RLF
  • the subsequent connection re-establishment procedure are not performed by the SCC, but only by the PCC.
  • an ACK (Acknowledgement) for an SCC downlink signal is transmitted on the PUCCH of the PCC. Since the ACK is used for retransmission of data by an eNB (evolved Node B), the delay of the ACK is not allowed. Therefore, when the first eNB that uses the CC that is the PCC for the UE is different from the second eNB that uses the CC that is the SCC for the UE, the first eNB and the second eNB It is desirable that the delay in the backhaul between and is about 10 ms at most.
  • FIG. 3 is an explanatory diagram illustrating an example of a schematic configuration of the cellular system 1 according to the embodiment of the present disclosure.
  • the system 1 includes a base station 100 and a terminal device 200.
  • the cellular system 1 is a system that complies with, for example, LTE, LTE-Advanced, or a communication standard equivalent thereto.
  • the base station 100 performs wireless communication (cellular communication) of the cellular system 1. That is, the base station 100 performs wireless communication with the terminal device 200. For example, the base station 100 performs wireless communication with the terminal device 200 located in the cell 10 that is a communication area of the base station 100. Specifically, for example, the base station 100 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
  • wireless communication cellular communication
  • the base station 100 performs wireless communication with the terminal device 200.
  • the base station 100 performs wireless communication with the terminal device 200 located in the cell 10 that is a communication area of the base station 100.
  • the base station 100 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
  • the base station 100 is a small base station, and the cell 10 is a small cell.
  • the base station 100 may be a macro base station, and the cell 10 may be a macro cell.
  • Terminal device 200 The terminal device 200 performs wireless communication (cellular communication) of the cellular system.
  • the terminal device 200 performs wireless communication with the base station 100.
  • the terminal device 200 performs wireless communication with the base station 100 when located in the cell 10 of the base station 100.
  • the terminal device 200 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
  • the terminal device 200 can perform wireless communication with another terminal device (for example, another terminal device 200).
  • the terminal device 200 can perform device-to-device (D2D) communication.
  • the terminal device 200 can perform wireless communication within an LN (Localized Network) formed by the terminal device.
  • LN Localized Network
  • the terminal device 200 may perform other wireless communication.
  • the terminal device 200 may perform wireless communication (wireless LAN communication) based on the wireless LAN standard.
  • a frequency band for the cellular system 1 is used for the wireless communication (that is, cellular communication) of the cellular system 1.
  • the frequency band is, for example, a band allocated to a provider of the cellular system 1 and can be called a license band.
  • the frequency band used for other wireless communication is also used for the cellular communication. That is, for the cellular communication, a frequency band shared between the cellular communication and the other wireless communication (hereinafter referred to as “shared band”) is also used.
  • the other wireless communication is, for example, wireless communication based on the wireless LAN standard (that is, wireless LAN communication).
  • the shared band is, for example, a wireless LAN channel. As an example, the shared band is a 20 MHz channel.
  • the cell 10 there may be a communication area for the other wireless communication. That is, the cell 10 and the communication area for the other wireless communication can overlap.
  • the other wireless communication is wireless LAN communication
  • a wireless LAN communication area may exist in the cell 10. That is, the cell 10 and the wireless LAN communication area can overlap.
  • FIGS. 1-10 a specific example of this point will be described with reference to FIGS.
  • FIG. 4 is an explanatory diagram for explaining an example of a wireless LAN communication area overlapping with a small cell.
  • a base station 100 that is a small base station and a terminal device 200 are illustrated.
  • a wireless LAN access point 30 and a terminal device 50 that performs wireless LAN communication in the vicinity.
  • the communication area 40 of the access point 30 overlaps with the cell 10 which is a small cell.
  • FIG. 5 is an explanatory diagram for explaining an example of a communication area of a wireless LAN overlapping with a macro cell.
  • a base station 100 and a terminal device 200 that are macro base stations are shown.
  • the communication area 40 of the access point 30 overlaps with the cell 10 that is a macro cell.
  • wireless LAN communication includes wireless communication based on a wireless LAN standard between terminal devices performing wireless LAN communication. May be included.
  • the wireless LAN communication may include wireless communication according to Wi-Fi Direct.
  • the cellular system 1 has been described above.
  • the cellular system 1 can include not only one base station 100 but also a plurality of base stations 100.
  • the cellular system 1 can include other devices.
  • the cellular system 1 may include core network nodes (for example, MME (Mobility Management Entity), S-GW (Serving Gateway), P-GW (Packet data network Gateway), etc.).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet data network Gateway
  • a frequency band is shared between wireless communication (that is, cellular communication) of a cellular system and other wireless communication (for example, wireless LAN communication)
  • the frequency band is used for cellular communication. If the frequency band is excessively used, the chance that the frequency band can be used for the other wireless communication is significantly reduced. This is detrimental to the other devices that perform wireless communication. Therefore, when the frequency band is shared, it is desirable to secure an opportunity for the frequency band to be used for the other wireless communication. For example, it is desirable that the opportunity to use the above frequency band be imparted fairly to the cellular system and other wireless communication devices.
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • wireless communication is performed in units of a relatively long 10 ms wireless frame. Further, in the cellular system, the terminal device acquires synchronization by a synchronization signal transmitted in a radio frame in the frequency band, acquires system information, and performs a series of connection establishment procedures. You can use it to send and receive data. In consideration of such points, it is desirable that the frequency band shared between the cellular communication and other wireless communication can be continuously used for a certain period of time for the cellular communication.
  • the frequency band shared between the cellular communication and the other wireless communication secures an opportunity that can be used for the other wireless communication, and the frequency band is used to some extent for the cellular communication. It is desirable to provide a mechanism that allows continued use over time.
  • the frequency band shared between the cellular communication and the other wireless communication is occupied for the cellular communication over the first period, Freed from the cellular communication for at least a second period corresponding to the first period.
  • the frequency band shared between the cellular communication and the other wireless communication can be used for the other wireless communication, and the frequency band can be used for a certain amount of time for the cellular communication. It is possible to continue to use it.
  • FIG. 6 is a block diagram showing an example of the configuration of the base station 100-1 according to the first embodiment.
  • the base station 100-1 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device 200-1 located in the cell 10 and receives an uplink signal from the terminal device 200-1 located in the cell 10.
  • the wireless communication unit 120 transmits and receives signals using the frequency band for the cellular system 1.
  • the wireless communication unit 120 uses a frequency band (that is, a shared band) shared between the cellular communication and other wireless communication (for example, wireless LAN communication). Send and receive.
  • Network communication unit 130 The network communication unit 130 communicates with other nodes. For example, the network communication unit 130 communicates with core network nodes (for example, MME, S-GW, P-GW, etc.). Further, for example, the network communication unit 130 communicates with another base station 100-1.
  • core network nodes for example, MME, S-GW, P-GW, etc.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program and data for the operation of the base station 100-1.
  • the processing unit 150 provides various functions of the base station 100-1.
  • the processing unit 150 includes a communication control unit 151. Note that the processing unit 150 may further include other components other than the communication control unit 151.
  • the communication control unit 151 occupies a shared band (that is, a frequency band shared between the cellular communication and other wireless communication) for the cellular communication over a first period, and the shared band is Release from the cellular communication for at least a second period corresponding to the first period.
  • a shared band that is, a frequency band shared between the cellular communication and other wireless communication
  • the other wireless communication is wireless communication based on the wireless LAN standard (that is, wireless LAN communication).
  • the shared band is shared between cellular communication and wireless LAN communication.
  • the shared band is, for example, a wireless LAN channel.
  • the shared band is a 20 MHz channel.
  • the communication control unit 151 is configured so that a wireless communication device that performs wireless communication (cellular communication) of the cellular system 1 is shared over the first period. By controlling the wireless communication device to transmit a signal using a band, the shared band is occupied for the cellular communication over the one period.
  • the wireless communication device is the base station 100-1
  • the communication control unit 151 causes the base station 100-1 to transmit a signal using the shared band over the first period.
  • 100-1 is controlled. More specifically, for example, the communication control unit 151 allocates the radio resource in the shared band over the first period to any signal. Further, for example, the communication control unit 151 maps a signal to the radio resource in the shared band over the first period.
  • the wireless communication device may be the terminal device 200-1, and the communication control unit 151 causes the terminal device 200-1 to transmit a signal using the shared band over the first period.
  • the terminal device 200-1 may be controlled. More specifically, for example, the communication control unit 151 may instruct the terminal device 200-1 to transmit a signal using the shared band over the first period.
  • this instruction may be performed by RRC (Radio Resource Control) signaling or system information (SI).
  • the wireless communication device (that is, at least one of the base station 100-1 and the terminal device 200-1) is controlled.
  • the wireless communication device that is, at least one of the base station 100-1 and the terminal device 200-1 is controlled.
  • the method described in the third embodiment is applied.
  • the method described in the second embodiment can be applied as a signal transmission method.
  • a device that performs the other wireless communication uses the shared band. Detecting the signal transmitted in response, refrain from using the shared band. Therefore, the shared band can be occupied for cellular communication.
  • the other wireless communication is wireless LAN communication, and the communication control unit 151 allows the wireless communication device that performs cellular communication to use the shared band to set the NAV.
  • the shared band may be occupied for the cellular communication over the first period by controlling the wireless communication device to transmit a frame including duration information for setting.
  • the wireless communication device may be at least one of the base station 100-1 and the terminal device 200-1.
  • the frame may be an RTS frame or a CTS frame, or a frame similar to these.
  • the duration information may be a value included in a duration field.
  • the wireless communication apparatus may transmit one frame including duration information for setting a NAV that covers the entire first period.
  • the wireless communication device may transmit two or more frames at different timings. Each time each of the two or more frames is transmitted, the NAV of the device that receives the frame may be updated, and the updated NAV may cover the entire first period.
  • a device that performs the other wireless communication sets the NAV and refrains from using the shared band. Therefore, the shared band can be occupied for cellular communication.
  • the communication control unit 151 prevents the wireless communication apparatus that performs wireless communication (cellular communication) of the cellular system 1 from transmitting a signal using the shared band for at least the second period.
  • the shared band is released from the cellular communication for at least the second period.
  • the wireless communication device is the base station 100-1, and the communication control unit 151 sets the base station 100-1 so that the base station 100-1 does not transmit a signal using the shared band for at least the second period. Control station 100-1.
  • the wireless communication device may be the terminal device 200-1, and the communication control unit 151 transmits the signal using the shared band at least for the second period.
  • the terminal device 200-1 is controlled so as not to occur. More specifically, for example, the communication control unit 151 stops using the shared band for at least the second period.
  • an apparatus that performs the other wireless communication is affected by cellular communication. Without receiving it, the other wireless communication can be performed using the shared band. That is, the shared band can be released from cellular communication.
  • the first period is a period of one or more radio frames of the cellular system 1. That is, the shared band is occupied for cellular communication over a period of one radio frame or more. Thereby, for example, cellular communication may be possible using the shared band.
  • the first period may be longer than one radio frame (for example, about 30 seconds).
  • the second period has the same length as the first period. That is, the shared band is occupied for cellular communication over a first period, and is released from cellular communication for at least a period having the same length as the first period.
  • the second period has a length of 90% to 110% of the length of the first period.
  • the second period may have a length of a predetermined ratio of the length of the first period.
  • the second period may have a length of 150% of the length of the first period.
  • the second period may have a length of 60% of the length of the first period.
  • the lengths of the first period and the second period may be fixed. Alternatively, the lengths of the first period and the second period may be variable, and the length of the second period may change according to the length of the first period. Alternatively, the length of the first period may change according to the length of the second period.
  • the first period is a continuous period
  • the first period is a continuous period. That is, the shared band is occupied for cellular communication over a continuous first period.
  • the shared band can be used more efficiently for cellular communication. More specifically, for example, in order to start using the shared band, the terminal device needs operations such as acquisition of synchronization, acquisition of system information, and a series of connection establishment procedures. Therefore, if the shared band is used over a continuous time, the frequency of the operation is reduced, and the shared band can be used more efficiently by the terminal device 200-1.
  • the second period is a period immediately before or immediately after the first period.
  • the second period is a continuous period immediately after the first period.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 7 is an explanatory diagram for explaining a first example of the period of occupation and release of the shared band.
  • the first period 61 is a continuous period
  • the second period 63 is a continuous period immediately after the first period 61. That is, the shared band is occupied for cellular communication over a continuous first period 61 and then released from cellular communication for at least a continuous second period.
  • the cellular system 1 can start the use of the shared band more quickly if necessary.
  • the second period may be a period immediately before the first period and a period immediately after the first period.
  • the second period may be a period immediately before the first period and a period immediately after the first period.
  • FIG. 8 is an explanatory diagram for explaining a second example of the period of occupation and release of the shared band.
  • the first period 61 is a continuous period
  • the second period 63 is a period immediately before the first period 61 and a period immediately after the first period 61. That is, the shared band is occupied for the cellular communication over the continuous first period 61 after being released from the cellular communication for a part of the second period 63, and then the rest of the second period 63 Free from cellular communication for a period of time.
  • the cellular system 1 can quickly start using the shared band as necessary.
  • the time for which the frequency band is used for cellular communication can be increased.
  • the second period may be a continuous period immediately before the first period.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 9 is an explanatory diagram for explaining a third example of the period of occupation and release of the shared band.
  • the first period 61 is a continuous period
  • the second period 63 is a continuous period immediately before the first period 61. That is, the shared band is released from the cellular communication for at least a continuous second period, and then occupied for the cellular communication for a continuous first period 61.
  • the shared band can be used for cellular communication on the condition that the opportunity for using the shared band for the other wireless communication is secured. Therefore, it is possible to more reliably secure an opportunity that the shared band can be used for other wireless communication.
  • the first period may be a discontinuous period.
  • the communication control unit 151 occupies the shared band for cellular communication for the first period, and releases the shared band from the cellular communication for at least the second period. May be.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 10 is an explanatory diagram for explaining a fourth example of the period of occupation and release of the shared band.
  • the first period 61 is a discontinuous period
  • the second period 63 is also a discontinuous period.
  • the third period 65 the shared band is occupied for cellular communication over the discontinuous first period 61, and the shared band is released from cellular communication over the second period 63.
  • the third period 65 is a period having a fixed length, and an upper limit time during which the shared band can be used for cellular communication is determined within the third period 65.
  • the occupation period of the shared band that is, the first period 61
  • the shared band is released from the cellular communication until the third period 65 elapses.
  • the communication control unit 151 occupies the shared band for cellular communication for the first period, and releases the shared band from cellular communication for at least the second period.
  • a frequency band shared between the cellular communication and other wireless communication that is, the shared band
  • the frequency band is used for the cellular communication. It is possible to continue to use for some time.
  • FIG. 11 is a block diagram illustrating an example of the configuration of the terminal device 200-1 according to the first embodiment.
  • the terminal device 200-1 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals. For example, when the terminal device 200-1 is located in the cell 10, the radio communication unit 220 receives a downlink signal from the base station 100-1 and transmits an uplink signal to the base station 100-1. .
  • the wireless communication unit 220 transmits and receives signals using the frequency band for the cellular system 1.
  • the wireless communication unit 220 uses a frequency band (that is, a shared band) shared between the cellular communication and other wireless communication (for example, wireless LAN communication). Send and receive.
  • the storage unit 230 temporarily or permanently stores a program and data for the operation of the terminal device 200-1.
  • the processing unit 240 provides various functions of the terminal device 200-1.
  • the processing unit 240 includes a communication control unit 241. Note that the processing unit 240 may further include other components other than the communication control unit 241.
  • the communication control unit 241 controls the terminal device 200-1.
  • the communication control unit 241 may control the terminal device 200 so that the terminal device 200-1 transmits a signal using the shared band over the first period.
  • the communication control unit 241 controls the terminal device 200 so that the terminal device 200-1 transmits a signal using the shared band over the first period in response to an instruction from the base station 100-1. May be.
  • the technique described in the third embodiment may be applied as a specific technique of signal transmission. Further, the method described in the second embodiment may be applied as a signal transmission method.
  • FIG. 12 is a flowchart illustrating a first example of a schematic flow of a process according to the first embodiment. This process is an example when the shared band is occupied and released as shown in FIG.
  • the communication control unit 151 determines whether to use a shared band (that is, a frequency band shared between cellular communication and other wireless communication) (S301). If it is determined not to use the shared band (S301: NO), the process returns to step S301.
  • a shared band that is, a frequency band shared between cellular communication and other wireless communication
  • the communication control unit 151 occupies the shared band for cellular communication over the first period (S303). In the first period, cellular communication is performed.
  • the communication control unit 151 releases the shared band from the cellular communication over the second period (S305). Then, the process returns to step S301.
  • FIG. 13 is a flowchart illustrating a second example of a schematic flow of a process according to the first embodiment. This process is an example when the shared band is occupied and released as shown in FIG.
  • the communication control unit 151 determines whether to use a shared band (that is, a frequency band shared between cellular communication and other wireless communication) (S311).
  • a shared band that is, a frequency band shared between cellular communication and other wireless communication
  • the communication control unit 151 calculates an additional release time for the shared band (S313). Then, the process returns to step S311.
  • the additional release period is a period in which the shared band is further released after the release of the second period.
  • the communication control unit 151 occupies the shared band for cellular communication over the first period (S315). In the first period, cellular communication is performed.
  • the communication control unit 151 releases the shared band from the cellular communication over the remaining period of the second period (that is, the difference period between the second period and the additional release period) (S317). Then, the process returns to step S311.
  • FIG. 14 is a flowchart illustrating a third example of a schematic flow of a process according to the first embodiment. This process is an example when the shared band is occupied and released as shown in FIG.
  • the communication control unit 151 determines whether to use a shared band (that is, a frequency band shared between cellular communication and other wireless communication) (S321).
  • a shared band that is, a frequency band shared between cellular communication and other wireless communication
  • the communication control unit 151 determines whether the shared band has already been released over the second period (S323).
  • the communication control unit 151 occupies the shared band for cellular communication over the first period ( S325). In the first period, cellular communication is performed. Thereafter, the process returns to step S321.
  • FIG. 15 is a flowchart illustrating a fourth example of a schematic flow of a process according to the first embodiment. This process is an example when the shared band is occupied and released as shown in FIG. The above process is performed over a third period.
  • the communication control unit 151 determines whether to use a shared band (that is, a frequency band shared between cellular communication and other wireless communication) (S331).
  • a shared band that is, a frequency band shared between cellular communication and other wireless communication
  • the communication control unit 151 occupies the shared band for cellular communication (S333). In the first period, cellular communication is performed. Thereafter, the communication control unit 151 determines whether the occupation period (first period) of the shared band has reached the upper limit (S335).
  • the communication control unit 151 sets the shared band over the remaining period of the third period. Release from cellular communication (S339). Then, the process ends.
  • the base station 100-1 occupies a shared band for cellular communication over the first period, and at least the first period.
  • the shared band is released from the cellular communication over a second period corresponding to.
  • the terminal device 200-1 occupies a shared band for cellular communication over the first period, and at least during the first period.
  • the shared band is released from the cellular communication over a corresponding second period.
  • a frequency band shared between the cellular communication and the other wireless communication (that is, the shared band) has an opportunity to be used for the other wireless communication, and the terminal device in the cellular system 1 It becomes possible to continue to use the frequency band for a certain period of time for wireless communication (for example, D2D communication or wireless communication in LN).
  • the base station 100-1 occupies the shared band for cellular communication over the first period, and at least the first period.
  • the shared band may be released from the cellular communication over a second period corresponding to.
  • the communication control unit 271 uses a shared band (that is, a frequency band shared between cellular communication and other wireless communication) for the cellular communication over the first period. And the shared band is released from the cellular communication for at least a second period corresponding to the first period.
  • a shared band that is, a frequency band shared between cellular communication and other wireless communication
  • the description of the communication control unit 241 in this regard is the same as the corresponding description of the communication control unit 151 according to the first embodiment described above, except for the differences regarding the subject (base station 100-1 and terminal device 200-1). The same. Therefore, the overlapping description is omitted here.
  • CSMA / CA is adopted in the wireless LAN standard.
  • the device (base station 100 or terminal device 200) of the cellular system 1 also operates based on CSMA / CA.
  • a device that performs wireless LAN communication uses the frequency band first, and the device of the cellular system 1 cannot use the frequency band. That is, the device of the cellular system 1 cannot always secure the frequency band for cellular communication. Therefore, it may take time to start using the frequency band for wireless communication of the cellular system.
  • a period in which a signal is not transmitted using a frequency band shared between cellular communication and wireless LAN communication (that is, a shared band) is Before becoming a DIFS, the wireless communication device is controlled such that a wireless communication device that performs cellular communication starts transmitting a signal using the frequency band.
  • the frequency band can be more reliably secured for cellular communication.
  • a wireless communication device that performs cellular communication over a period until a radio frame for another frequency band used for cellular communication starts is configured so that cellular communication and wireless LAN communication are performed.
  • the wireless communication device is controlled so as to transmit a dummy signal using a frequency band shared with each other (that is, a shared band).
  • a shared band a frequency band shared with each other
  • FIG. 16 is a block diagram showing an example of the configuration of the base station 100-2 according to the second embodiment.
  • the base station 100-2 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 160.
  • the description of the antenna unit 110, the wireless communication unit 120, the network communication unit 130, and the storage unit 140 is not different between the first embodiment and the second embodiment except for the difference in reference numerals. Therefore, only the processing unit 160 will be described here, and redundant description will be omitted.
  • the processing unit 160 provides various functions of the base station 100-2.
  • the processing unit 160 includes a communication control unit 161. Note that the processing unit 160 may further include other components other than the communication control unit 161.
  • the communication control unit 161 determines that the radio communication device that performs the cellular communication before the period during which no signal is transmitted using the shared band becomes DIFS.
  • the wireless communication device is controlled to start transmitting a signal using the shared band.
  • the shared band is a frequency band shared between the wireless communication (that is, cellular communication) of the cellular system 1 and the wireless communication that conforms to the wireless LAN standard (that is, wireless LAN communication).
  • the communication control unit 161 causes the wireless communication apparatus to start transmitting a signal using the shared band after the period in which no signal is transmitted using the shared band becomes longer than SIFS.
  • the wireless communication device is controlled.
  • the wireless communication device is the base station 100-2, and the communication control unit 161 uses the shared band after the period during which no signal is transmitted becomes longer than SIFS and before the DIFS.
  • the base station 100-2 is controlled so that the base station 100-2 starts transmitting a signal using the shared band.
  • the processing unit 160 (communication control unit 161 or another component) transmitting a signal using the shared band based on the reception result of the signal by the wireless communication unit 120? Determine.
  • the processing unit 160 (the communication control unit 161 or another component) measures a period during which no signal is transmitted using the shared band.
  • the communication control unit 161 uses the shared band for the wireless communication unit 120 after the period during which no signal is transmitted using the shared band becomes longer than SIFS and before DIFS. To send a signal.
  • the period is a predetermined period longer than SIFS and shorter than DIFS, a signal is transmitted using the shared band.
  • FIG. 17 is an explanatory diagram for explaining signal transmission timing.
  • a signal starts to be transmitted after a period in which no signal is transmitted using the shared band becomes longer than SIFS and before DIFS.
  • the signal begins to be transmitted after a predetermined period of time that is longer than SIFS and shorter than DIFS.
  • a device that performs wireless LAN communication can transmit a signal when a period during which no signal is transmitted reaches the sum of DIFS and backoff time. Therefore, by starting to transmit a signal before the DIFS elapses as described above, for example, it becomes possible to transmit a signal before a device that performs wireless LAN communication. As a result, transmission of signals using the shared band by a device that performs wireless LAN communication can be suppressed. In this way, the shared band can be more reliably secured for cellular communication.
  • an RTS frame, a CTS frame, a DATA frame, and an ACK frame are connected at SIFS time intervals. Therefore, if a signal is transmitted before the SIFS has elapsed, the signal may collide with any one of a CTS frame, a DATA frame, or an ACK frame. Therefore, as described above, if a signal starts to be transmitted after a period in which the signal is not transmitted using the shared band becomes longer than SIFS, the signal and the CTS frame, DATA frame, or ACK frame signal Collisions can be avoided.
  • the communication control unit 161 uses a radio frame for another frequency band used for cellular communication.
  • the wireless communication device is controlled so that the wireless communication device that performs the cellular communication transmits a dummy signal using the shared band over a period until the start of.
  • the shared band is a frequency band shared between the wireless communication (that is, cellular communication) of the cellular system 1 and the wireless communication that conforms to the wireless LAN standard (that is, wireless LAN communication).
  • the wireless communication device is the base station 100-2.
  • the shared band is a component carrier (CC) for the cellular system 1
  • the other frequency band is another CC for the cellular system 1.
  • the communication control unit 161 sets the base station 100-2 so that the base station 100-2 transmits a dummy signal using the shared band (CC) over a period until a radio frame for another CC starts. Control. More specifically, for example, the communication control unit 161 transmits a dummy signal to the wireless communication unit 120 over a period from the timing before SIFS has elapsed and before the DIFS has elapsed until the start of a wireless frame for another CC.
  • FIG. 18 is an explanatory diagram for explaining an example of transmission of a dummy signal.
  • CC shared band
  • a period in which no signal is transmitted using the shared band is longer than SIFS.
  • DIFS DIFS
  • a dummy signal starts to be transmitted using the shared band.
  • the dummy signal is transmitted until another CC radio frame (and the radio band in the shared band) starts.
  • a cellular system signal is transmitted and received in a radio frame using the other CC and the shared band.
  • the shared band by the device that performs wireless LAN communication is used until the start of the radio frame. Transmission of the received signal can be suppressed. That is, the shared band is secured until the start of the radio frame. Therefore, for example, the radio frame for the shared band can be started at the timing when the radio frame for the other frequency band for cellular communication starts. In this manner, the shared band can be more reliably secured for cellular communication while synchronizing the radio frame for the shared band and the radio frame for the other frequency band.
  • the dummy signal is, for example, any signal other than cellular system signals (control signal and data signal).
  • the dummy signal becomes a busy tone for a device that performs wireless LAN communication.
  • the period until the radio frame for the other frequency band starts is, in other words, the period until the sub-frame of # 0 for the other frequency band starts.
  • the communication control unit 161 determines that the radio communication device is connected before the radio frame for the other frequency band starts.
  • the wireless communication apparatus may be controlled to transmit a frame including duration information for setting the NAV using the shared band.
  • the wireless communication device is the base station 100-2.
  • the shared band may be a CC for the cellular system 1, and the other frequency band may be another CC for the cellular system 1.
  • the frame may be an RTS frame, a CTS frame, or a similar frame.
  • the communication control unit 161 may control the base station 100-2 so that the base station 100-2 transmits the frame using the shared band before a radio frame for another CC starts. . More specifically, for example, the communication control unit 161 generates the frame and causes the wireless communication unit 120 to transmit the frame using the shared band before the wireless frame for another CC starts. May be.
  • the wireless communication device may transmit one frame including duration information for setting a NAV that covers a period until a wireless frame for the other frequency band starts.
  • the wireless communication device may transmit two or more frames at different timings. Then, each time each of the two or more frames is transmitted, the NAV of the device that receives the frame is updated, and the updated NAV is the entire period until the radio frame for the other frequency band starts. May be covered.
  • a device that performs wireless LAN communication sets NAV and refrains from using the shared band. Therefore, transmission of a signal using the shared band by a device that performs wireless LAN communication can be suppressed until the start of the wireless frame.
  • FIG. 19 is a block diagram illustrating an example of the configuration of the terminal device 200-2 according to the second embodiment.
  • the terminal device 200-2 includes an antenna unit 210, a radio communication unit 220, a storage unit 230, and a processing unit 250.
  • the description of the antenna unit 210, the wireless communication unit 220, and the storage unit 230 is not different between the first embodiment and the second embodiment except for the difference in reference numerals. Therefore, only the processing unit 250 will be described here, and redundant description will be omitted.
  • the processing unit 250 provides various functions of the terminal device 200-2.
  • the processing unit 250 includes a communication control unit 251. Note that the processing unit 250 may further include other components other than the communication control unit 251.
  • the communication control unit 251 controls the terminal device 200-1.
  • FIG. 20 is a flowchart illustrating a first example of a schematic flow of a process according to the second embodiment. This processing is an example in the case where a signal is transmitted as shown in FIG.
  • the processing unit 160 determines whether a signal is transmitted using the shared band based on the reception result of the signal by the wireless communication unit 120 (S401). If it is determined that the signal is transmitted using the shared band (S401: YES), the process returns to step S401.
  • the communication control unit 161 has a period during which no signal is transmitted using the shared band. Then, it is determined whether a predetermined period longer than SIFS and shorter than DIFS has been reached (S403). When it is determined that the period is not the predetermined period (that is, the signal is transmitted using the shared band before the predetermined period elapses) (S403: NO), the process is as follows. The process returns to step S401.
  • the base station 100-2 transmits a signal using the shared band, And / or receive (S405). Then, the process ends.
  • FIG. 21 is a flowchart illustrating a second example of a schematic flow of a process according to the second embodiment. This process is an example in which a signal is transmitted as shown in FIG. 18 (and FIG. 17).
  • the processing unit 160 determines whether a signal is transmitted using the shared band based on the reception result of the signal by the wireless communication unit 120 (S411). If it is determined that the signal is transmitted using the shared band (S411: YES), the process returns to step S411.
  • the communication control unit 161 has a period during which no signal is transmitted using the shared band. Then, it is determined whether a predetermined period longer than SIFS and shorter than DIFS has been reached (S413). When it is determined that the period has not reached the predetermined period (that is, a signal has been transmitted using the shared band before the predetermined period has elapsed) (S413: NO), The process returns to step S411.
  • the base station 100-2 controls the radio for the other frequency bands for the cellular system 1 according to control by the processing unit 160. Over the period until the frame starts, the dummy signal is transmitted using the shared band (S415).
  • the base station 100-2 transmits and / or receives a cellular system signal in a radio frame using the shared band (S417). Then, the process ends.
  • the base station 100-2 uses the shared band so that the terminal device 200-2 uses the shared band before the period during which no signal is transmitted becomes DIFS.
  • the terminal apparatus 200-2 is controlled so as to start transmitting a signal using. Then, before the period during which no signal is transmitted using the shared band becomes DIFS, the terminal device 200-2 starts to transmit a signal using the shared band.
  • a signal transmitted by the terminal device 200-2 can reach a device to which a signal transmitted by the base station 100-2 does not reach. Therefore, for example, the hidden terminal problem can be solved.
  • the base station 100-2 uses the shared band before the period during which no signal is transmitted becomes DIFS. May be used to begin transmitting signals.
  • the base station 100-2 operates for other frequency bands used for wireless communication of the cellular system 1.
  • the dummy signal is transmitted using the shared band over a period until the start of the radio frame.
  • the base station 100-2 has the terminal device 200-2 over a period until a radio frame for another frequency band used for cellular communication starts. Controls the terminal device 200-2 to transmit the dummy signal using the shared band. Then, the terminal device 200-2 transmits a dummy signal using the shared band over a period until a radio frame for another frequency band used for the wireless communication of the cellular system 1 starts.
  • a signal transmitted by the terminal device 200-2 can reach a device to which a signal transmitted by the base station 100-2 does not reach. Therefore, for example, the hidden terminal problem can be solved.
  • the base station 100-2 (communication control unit 161) starts radio frames for other frequency bands used for the radio communication of the cellular system 1.
  • the dummy signal may be transmitted using the shared band over the period up to.
  • (Base station 100-2: communication control unit 161) (A) First Control for Securing Shared Band
  • the communication control unit 161 performs the cellular communication before the period during which no signal is transmitted using the shared band becomes DIFS.
  • the wireless communication apparatus is controlled so that the wireless communication apparatus starts transmitting a signal using the shared band.
  • the communication control unit 161 causes the wireless communication apparatus to start transmitting a signal using the shared band after the period in which no signal is transmitted using the shared band becomes longer than SIFS.
  • the wireless communication device is controlled.
  • the wireless communication device is the terminal device 200-2
  • the communication control unit 161 uses the shared band after the period during which no signal is transmitted becomes longer than SIFS.
  • the terminal device 200-2 is controlled so that the terminal device 200-2 starts transmitting a signal using the shared band.
  • the communication control unit 161 uses the shared band after the period during which no signal is transmitted using the shared band becomes longer than SIFS and before the DIFS is performed. Is instructed to start transmitting the terminal device 200-2. For example, this indication can be made by RRC signaling or system information.
  • the communication control unit 161 may use other frequencies used for cellular communication.
  • the wireless communication apparatus is controlled so that the wireless communication apparatus that performs the cellular communication transmits a dummy signal using the shared band over a period until a wireless frame for the band starts.
  • the wireless communication device is the terminal device 200-2.
  • the shared band is a CC for the cellular system 1
  • the other frequency band is another CC for the cellular system 1.
  • the communication control unit 161 sets the terminal device 200-2 so that the terminal device 200-2 transmits a dummy signal using the shared band (CC) over a period until a radio frame for another CC starts.
  • Control More specifically, for example, the communication control unit 161 transmits the dummy signal using the shared band (CC) over a period until a radio frame for another CC starts.
  • this indication can be made by RRC signaling or system information.
  • the communication control unit 161 performs the wireless communication before starting the radio frame for the other frequency band.
  • the wireless communication device may be controlled so that the device transmits a frame including duration information for setting the NAV using the shared band.
  • the wireless communication device may be the terminal device 200-2.
  • the shared band may be a CC for the cellular system 1, and the other frequency band may be another CC for the cellular system 1.
  • the frame may be an RTS frame, a CTS frame, or a similar frame.
  • the communication control unit 161 may control the terminal device 200-2 so that the terminal device 200-2 transmits the frame using the shared band before a radio frame for another CC starts. . More specifically, for example, the communication control unit 161 may instruct the terminal device 200-2 to transmit the frame before a radio frame for another CC starts. For example, this indication can be made by RRC signaling or system information.
  • the base station 100-2 according to the first modification of the second embodiment has been described above.
  • the wireless communication device may be the base station 100-2 and the terminal device 200-2, and is similar to the above-described example of the second embodiment.
  • the base station 100-2 may also transmit a signal.
  • Terminal device 200-2 communication control unit 251
  • A First Control for Securing Shared Band
  • the communication control unit 251 uses DIFS during a period in which no signal is transmitted using the shared band. Before, the terminal apparatus 200-2 is controlled so that the terminal apparatus 200-2 starts transmitting a signal using the shared band.
  • the communication control unit 251 starts to transmit a signal using the shared band.
  • the terminal device 200-2 is controlled.
  • the communication control unit 251 controls the terminal device 200-2 according to an instruction from the base station 100-2. Specifically, for example, the processing unit 250 (communication control unit 251 or other component) determines whether a signal is transmitted using the shared band based on the reception result of the signal by the wireless communication unit 220. judge. In addition, the processing unit 250 (the communication control unit 251 or another component) measures a period during which no signal is transmitted using the shared band. Then, the communication control unit 251 uses the shared band for the wireless communication unit 220 after the period during which no signal is transmitted using the shared band becomes longer than SIFS and before DIFS. To send a signal. As an example, when the period is a predetermined period longer than SIFS and shorter than DIFS, a signal is transmitted using the shared band. Also in the first modification of the second embodiment, for example, as shown in FIG. 17, the terminal device 200-2 transmits a signal.
  • the communication control unit 251 The terminal device 200-2 is controlled so that the terminal device 200-2 transmits a dummy signal using the shared band over a period until a radio frame for another frequency band used for communication starts.
  • the communication control unit 251 controls the terminal device 200-2 according to an instruction from the base station 100-2. Specifically, for example, the communication control unit 251 causes the wireless communication unit 220 to transmit a dummy signal over a period after the SIFS has elapsed and before the DIFS has elapsed until the start of the wireless frame for another CC. . Also in the first modification of the second embodiment, for example, as illustrated in FIG. 18, the terminal device 200-2 transmits a signal.
  • the communication control unit 251 performs radio transmission for the other frequency bands.
  • the terminal device 200-2 may control the terminal device 200-2 to transmit a frame including duration information for setting the NAV using the shared band. Good.
  • the communication control unit 251 may control the terminal device 200-2 according to an instruction from the base station 100-2. Specifically, for example, the communication control unit 251 may generate the frame and cause the wireless communication unit 220 to transmit the frame before starting a radio frame for another CC.
  • the period during which the terminal device 200-2 does not transmit a signal using the shared band is DIFS. Before it becomes, it starts transmitting a signal using the shared band. Further, for example, the terminal device 200-2 transmits a dummy signal using the shared band over a period until a radio frame for another frequency band used for cellular communication starts.
  • the terminal device 200-2 does not respond to control by the base station 100-2 (instruction by the base station 100-2), but voluntarily described above.
  • a signal is transmitted using the shared band.
  • the shared band can be more reliably secured for wireless communication between terminal devices in the cellular system 1 (for example, D2D communication in the cellular system or wireless communication in the LN).
  • Terminal device 200-2 communication control unit 251
  • the description of the communication control unit 251 according to the second modification is the same as the description of the communication control unit 251 according to the first modification, except for the difference regarding the involvement of the base station 100-2. Therefore, the overlapping description is omitted here.
  • the communication control unit 251 according to the second modification does not respond to an instruction from the base station 100-2, but voluntarily (for example, wireless communication between terminal devices in the cellular system 1 using a shared band).
  • the terminal device 200-2 is controlled according to whether or not communication is performed.
  • Second Embodiment may be combined with the first embodiment described above.
  • the operation according to the second embodiment may be applied to the first embodiment described above.
  • the communication control unit 151 of the base station 100-1 may further perform the operation of the communication control unit 161 of the base station 100-2, and the communication control unit 241 of the terminal device 200-1 The operation of the communication control unit 251 may be further performed.
  • the method according to the second embodiment may be used.
  • a wireless communication device that performs cellular communication for example, the base station 100 or the terminal device 200
  • transmits a signal using the shared band over the first period the shared band is used.
  • the signal may be transmitted using the shared band before the period during which no signal is transmitted becomes DIFS.
  • a wireless communication device for example, the base station 100 or the terminal device 200
  • wireless frames of other frequency bands are transmitted.
  • a dummy signal may be transmitted using a shared band over a period until disclosure. Thereby, for example, the shared band can be ensured more reliably.
  • a device that performs wireless LAN communication uses a frequency band when a period in which no signal is transmitted using the frequency band (channel) reaches the sum of DIFS and back-off time. Then, a signal (for example, a signal of an RTS frame) may be transmitted.
  • the DIFS is shorter than, for example, LTE symbols (OFDM symbols or SC-FDMA symbols).
  • a frequency band (for example, a wireless LAN channel) is shared between cellular communication and wireless LAN communication.
  • a frequency band for example, a wireless LAN channel
  • any signal of the cellular system may not be transmitted using the frequency band in any symbol. Therefore, a device that performs wireless LAN communication may transmit a signal (for example, an RTS frame signal) using the frequency band even while the frequency band is used for cellular communication. . For this reason, interference between cellular communication and wireless LAN communication occurs in the frequency band, and communication quality of the cellular communication and / or the other wireless communication may be deteriorated.
  • the frequency band is used for the other wireless communication while the frequency band shared between the cellular communication and the other wireless communication (for example, wireless LAN communication) is used for the cellular communication. It is desirable to provide a mechanism that allows to be prevented.
  • a wireless communication device that performs cellular communication can share a frequency band that is shared between cellular communication and other wireless communication (ie, The wireless communication device is controlled to transmit a signal using a shared band.
  • the frequency band is used for the other wireless communication while the frequency band shared between the cellular communication and another wireless communication (for example, wireless LAN communication) is used for the cellular communication. It becomes possible to prevent that.
  • FIG. 22 is a block diagram showing an example of the configuration of the base station 100-3 according to the third embodiment.
  • the base station 100-3 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 170.
  • the description of the antenna unit 110, the wireless communication unit 120, the network communication unit 130, and the storage unit 140 is not different between the first embodiment and the third embodiment except for the difference in reference numerals. Therefore, only the processing unit 170 will be described here, and redundant description will be omitted.
  • the processing unit 170 provides various functions of the base station 100-3.
  • the processing unit 170 includes a communication control unit 171.
  • the processing unit 170 may further include other components other than the communication control unit 171.
  • the communication control unit 171 controls the wireless communication device so that the wireless communication device performing cellular communication transmits a signal using the shared band at any time.
  • the shared band is a frequency band that is shared between the wireless communication (that is, cellular communication) of the cellular system 1 and other wireless communication.
  • the other wireless communication is wireless communication based on the wireless LAN standard (that is, wireless LAN communication).
  • the shared band is shared between cellular communication and wireless LAN communication.
  • the shared band is, for example, a wireless LAN channel.
  • the communication control unit 171 controls the wireless communication device so that the wireless communication device transmits a signal using the shared band at each symbol.
  • the symbol is, for example, an OFDM symbol or an SC-FDMA symbol. Thereby, for example, it becomes possible to eliminate the time of no signal.
  • the radio communication device is at least one of the base station 100-3 and the terminal device 200-3.
  • FDD is adopted in the cellular system 1
  • the shared band is used as a downlink band in the cellular system 1.
  • the wireless communication device is the base station 100-3. That is, the communication control unit 171 controls the base station 100-3 so that the base station 100-3 transmits a signal using the shared band (downlink band) at any time.
  • the communication control unit 171 maps a signal to one or more resource elements in the shared band in each symbol.
  • the base station 100-3 transmits a signal using the shared band in each symbol.
  • the wireless communication device is the terminal device 200-3. That is, the communication control unit 171 controls the terminal device 200-3 so that the base station 100-3 transmits a signal using the shared band (uplink band) at any time.
  • the communication control unit 171 instructs the terminal device 200-3 to transmit a signal using the shared band at any time for the uplink.
  • the terminal device 200-3 can transmit a signal using the shared band (at each symbol) at any time.
  • this instruction can be performed by RRC signaling or system information.
  • TDD is adopted in the cellular system 1, and the shared band is used as a downlink and uplink band in the cellular system 1.
  • the wireless communication devices are the base station 100-3 and the terminal device 200-3.
  • the communication control unit 171 controls the base station 100-3 so that the base station 100-3 transmits a signal using the shared band at any downlink time. Specifically, for example, the communication control unit 171 maps a signal to one or more resource elements in the shared band in each symbol for the downlink subframe. As a result, the base station 100-3 transmits a signal using the shared band in each symbol in the downlink subframe.
  • the communication control unit 171 controls the terminal device 200-3 so that the terminal device 200-3 transmits a signal using the shared band at any uplink time. Specifically, for example, the communication control unit 171 instructs the terminal device 200-3 to transmit a signal using the shared band at any time for the uplink. Thereby, for example, the terminal device 200-3 can transmit a signal using the shared band at any uplink time (in each symbol in the uplink subframe). Note that, for example, this instruction can be performed by RRC signaling or system information.
  • (D) Transmission power For example, the communication control unit 171 controls the wireless communication device so that the transmission power of a signal transmitted using the shared band is equal to or higher than a predetermined transmission power at any time. To do.
  • the wireless communication apparatus is the base station 100-3, and the communication control unit 171 transmits a predetermined transmission power of a signal transmitted using the shared band at any time for the downlink.
  • the base station 100-3 is controlled so as to be more than the power.
  • the communication control unit 171 allocates power equal to or higher than the predetermined transmission power to a signal transmitted using the shared band in each symbol.
  • the wireless communication device is the terminal device 200-3
  • the communication control unit 171 has a predetermined transmission power of the signal transmitted using the shared band at any time for the uplink.
  • the terminal device 200-3 is controlled so as to be equal to or higher than the transmission power.
  • the communication control unit 171 instructs the terminal device 200-3 to transmit power of a signal transmitted using the shared band.
  • the reception power of the signal can reach a desired power.
  • the apparatus can more reliably refrain from transmitting signals using the shared band.
  • the communication control unit 171 uses at least the symbol that the data signal and control signal of the cellular system 1 are not transmitted using the shared band, and the base station 100-3. Controls the base station 100-3 so that the dummy signal is transmitted using the shared band. Thereby, for example, it is possible to reliably transmit a signal using each symbol of the downlink.
  • the dummy signal is, for example, any signal other than cellular system signals (control signal and data signal).
  • the dummy signal becomes a busy tone for a device that performs wireless LAN communication.
  • the communication control unit 171 uses at least the above-described symbols, among the radio resources arranged in the frequency direction over the shared band, among the radio resources arranged in the base station 100-
  • the base station 100-3 is controlled so that 3 transmits the dummy signal.
  • the communication control unit 171 maps a dummy signal to one or more resource elements (RE) in the shared band for at least a symbol to which a data signal and a control signal are not transmitted.
  • RE resource elements
  • the part of radio resources is a part of resource blocks (Resource Block: RB) arranged in the frequency direction across the shared band. That is, the base station 100-3 transmits a dummy signal among some RBs arranged in the frequency direction over the shared band.
  • Resource Block RB
  • FIG. 23 is an explanatory diagram for explaining an example of a part of resource blocks (RB) to which a dummy signal is transmitted.
  • RB resource blocks
  • FIG. 23 a shared band 71 and RBs arranged over a plurality of slots are shown.
  • a dummy signal is transmitted in one specific RB among RBs arranged in the frequency direction over the shared band 71 in each slot. In the other RBs, no dummy signal is transmitted.
  • FIG. 24 is an explanatory diagram for describing a first example of a resource element (RE) to which a dummy signal is transmitted.
  • RE resource element
  • FIG. 24 one of some RBs to which a dummy signal (eg, shown in FIG. 23) is transmitted is shown.
  • a dummy signal is transmitted in all REs included in the RB except REs for CRS (Cell-specific Reference Signal).
  • CRS Cell-specific Reference Signal
  • the dummy signal is transmitted only in one RB, but it is needless to say that the dummy signal may be transmitted in two or more RBs.
  • the RB band in which the dummy signal is transmitted is common between the slots. However, the RB band in which the dummy signal is transmitted may be different between the slots.
  • a dummy signal is transmitted in all REs except for the CRS REs in the RB.
  • dummy signals are transmitted in the part of the REs in the RB.
  • a signal may be transmitted.
  • the dummy signal may not be transmitted on one or more of the 12 subcarriers of the RB.
  • the dummy signal may not be transmitted in one or more symbols in which other signals are transmitted among the seven symbols of the RB.
  • a dummy signal is transmitted in one or more symbols (that is, the first to third OFDM symbols in the first slot of the subframe) in which control channel signals such as PDCCH and PCFICH are transmitted. It does not have to be.
  • the dummy signal may not be transmitted in one or more symbols to which the data signal is transmitted.
  • the part of the radio resources may be part of resource elements included in the resource blocks arranged in the frequency direction over the shared band. That is, the base station 100-3 may transmit a dummy signal using some resource elements included in each RB arranged in the frequency direction over the shared band.
  • the base station 100-3 may transmit a dummy signal using some resource elements included in each RB arranged in the frequency direction over the shared band.
  • FIG. 25 is an explanatory diagram for describing a second example of a resource element (RE) to which a dummy signal is transmitted.
  • RE resource element
  • FIG. 25 there is shown an RB when a dummy signal is transmitted in each RB.
  • a dummy signal is transmitted in one or two specific REs out of 12 REs arranged in the frequency direction over RBs in each symbol. Note that no dummy signal is transmitted in other REs.
  • the dummy signal is transmitted only in the REs of two subcarriers.
  • the dummy signal may be transmitted in the RE of one subcarrier.
  • a dummy signal may be transmitted in the REs of the subcarriers.
  • the subcarrier of the RE to which the dummy signal is transmitted is common among the symbols, but it is needless to say that the subcarrier of the RE to which the dummy signal is transmitted may be different between the symbols.
  • the dummy signal may not be transmitted in one or more symbols in which other signals are transmitted among the seven symbols of RB.
  • a dummy signal is transmitted in one or more symbols (that is, the first to third OFDM symbols in the first slot of the subframe) in which control channel signals such as PDCCH and PCFICH are transmitted. It does not have to be.
  • the dummy signal may not be transmitted in one or more symbols in which the data signal is transmitted.
  • the communication control unit 171 transmits the signal using the shared band at any time for the uplink.
  • An instruction is given to each of the plurality of terminal devices 200-3.
  • this indication can be made by RRC signaling or system information.
  • the signals reach a wider area. Therefore, transmission of signals using the shared band by a device that performs other wireless communication (for example, wireless LAN communication) can be more reliably suppressed.
  • a device that performs other wireless communication for example, wireless LAN communication
  • the communication control unit 171 uses, for the uplink, at least a symbol in which the data signal and the control signal of the cellular system 1 are not transmitted using the shared band over the shared band. A plurality of terminal devices are instructed to transmit the dummy signal among some of the radio resources arranged in the frequency direction.
  • the communication control unit 171 instructs a plurality of terminal devices to transmit dummy signals. Moreover, the communication control part 171 designates the radio
  • the above-mentioned part of the radio resources are common among the plurality of terminal apparatuses 200-3. That is, the communication control unit 171 transmits the dummy signal in the radio resource common to the plurality of terminal devices 200-3 for at least the symbol with respect to the uplink. 3 is instructed.
  • the radio resource will be described with reference to FIG.
  • FIG. 26 is an explanatory diagram for describing a first example of a radio resource in which a dummy signal is transmitted by a plurality of terminal devices 200-3.
  • a shared band 71 and RBs arranged over a plurality of slots are shown.
  • the plurality of terminal devices 200-3 transmit a dummy signal in the same RB among the RBs arranged in the frequency direction over the shared band 71 in each slot.
  • the some radio resources may be different between at least two of the plurality of terminal devices 200-3. That is, the communication control unit 171 instructs at least two of the plurality of terminal devices 200-3 to transmit the dummy signal in different radio resources for at least the symbol. Also good.
  • the radio resource will be described with reference to FIG.
  • FIG. 27 is an explanatory diagram for describing a second example of radio resources in which dummy signals are transmitted by a plurality of terminal devices 200-3.
  • a shared band 71 and RBs arranged over a plurality of slots are shown.
  • the first to third terminal apparatuses 200-3 transmit dummy signals in different RBs among RBs arranged in the frequency direction over the shared band 71 in each slot.
  • the communication control unit 171 controls the wireless communication device so that the wireless communication device performing cellular communication transmits a signal using the shared band at any time.
  • the frequency band shared between the cellular communication and other wireless communication for example, wireless LAN communication
  • the shared band is used for the cellular communication while the frequency band is used for the other communication. It can be prevented from being used for wireless communication.
  • this method for example, it is possible to prevent a wireless LAN communication apparatus that cannot set NAV from using the frequency band (that is, the shared band).
  • FIG. 28 is a block diagram illustrating an example of a configuration of the terminal device 200-3 according to the third embodiment.
  • the terminal device 200-3 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 260.
  • the description of the antenna unit 210, the wireless communication unit 220, and the storage unit 230 is not different between the first embodiment and the third embodiment except for the difference in reference numerals. Therefore, only the processing unit 260 will be described here, and redundant description will be omitted.
  • the processing unit 260 provides various functions of the terminal device 200-3.
  • the processing unit 260 includes a communication control unit 261. Note that the processing unit 260 may further include other components other than the communication control unit 261.
  • the communication control unit 261 controls the terminal device 200-3 so that the terminal device 200-3 transmits a signal using the shared band at any time for the uplink.
  • the shared band is a frequency band shared between cellular communication and other wireless communication.
  • the frequency band is, for example, an uplink band when FDD is adopted, or a downlink and uplink band when TDD is adopted.
  • the other wireless communication is wireless communication based on the wireless LAN standard (that is, wireless LAN communication).
  • the communication control unit 261 controls the terminal device 200-3 so that the terminal device 200-3 transmits a signal using the shared band with each symbol.
  • the symbol is, for example, an SC-FDMA symbol.
  • (B) Trigger of control For example, the communication control unit 261 causes the terminal device 200-3 to transmit a signal using the shared band at any time according to an instruction from the base station 100-3. 200-3 is controlled.
  • (C) Transmission power For example, the communication control unit 261 switches the terminal device 200-3 so that the transmission power of a signal transmitted using the shared band becomes equal to or higher than a predetermined transmission power at any time. Control. Specifically, for example, the communication control unit 261 allocates power equal to or higher than the predetermined transmission power to a signal transmitted using the shared band in each symbol. For example, the predetermined transmission power is instructed by the base station 100-3.
  • the reception power of the signal can reach a desired power.
  • the apparatus can more reliably refrain from transmitting signals using the shared band.
  • the communication control unit 261 uses at least the symbol that does not transmit the data signal and control signal of the cellular system 1 using the shared band, and the terminal device 200-3 Controls the terminal device 200-3 to transmit a dummy signal using the shared band.
  • the terminal device 200-3 Controls the terminal device 200-3 to transmit a dummy signal using the shared band.
  • the communication control unit 261 controls the terminal device 200-3 so that the terminal device 200-3 transmits a signal using the shared band at any time.
  • the frequency band is used while the frequency band shared between the cellular communication and other wireless communication (for example, wireless LAN communication) (that is, the shared band) is used for uplink communication. It can be prevented from being used for other wireless communication.
  • FIG. 29 is a flowchart illustrating an example of a schematic flow of processing by the base station 100-3 according to the third embodiment.
  • the communication control unit 171 selects a target symbol (S501).
  • the communication control unit 171 maps the dummy signal to a part of the radio resources arranged in the frequency direction over the shared band for the target symbol (S503).
  • FIG. 30 is a flowchart illustrating an example of a schematic flow of processing by the terminal device 200-3 according to the third embodiment. This process is executed by the terminal device 200-3 in response to an instruction from the base station 100-3.
  • the communication control unit 261 selects a target symbol (S511).
  • the communication control unit 261 maps the dummy signal to a part of the radio resources arranged in the frequency direction over the shared band for the target symbol (S513).
  • the base station 100-3 transmits the signal using the shared band at any time (for example, in each symbol) for the uplink. Instruct the device 200-3. Also, for example, the terminal device 200-3 transmits a signal using the shared band at any time (for example, in each symbol) in accordance with an instruction from the base station 100-3.
  • the terminal device 200-3 does not respond to an instruction from the base station 100-3, but voluntarily at any time (for example, in each symbol) Use to send the signal.
  • the frequency band shared between the cellular communication and other wireless communication (that is, the shared band) is used for wireless communication (for example, D2D communication or wireless communication in LN) between terminal devices in the cellular system. It is possible to prevent the frequency band from being used for the other wireless communication while being used.
  • Terminal device 200-3 communication control unit 261
  • the communication control unit 261 controls the terminal device 200-3 so that the terminal device 200-3 transmits a signal using the shared band at any time.
  • the description of the communication control unit 261 in this respect is the same as the description of the communication control unit 261 according to the third embodiment described above, except for the involvement of the base station and the difference regarding the link direction. Therefore, the overlapping description is omitted here.
  • the communication control unit 261 causes the terminal device 200-3 to use the shared band at any time in response to an instruction from the base station 100-3.
  • the terminal device 200-3 is controlled so as to transmit.
  • the communication control unit 261 voluntarily causes the terminal device 200-3 to use the shared band at any time (for example, in a period during which the shared band is used for cellular communication). Is used to control the terminal device 200-3 to transmit a signal.
  • the communication control unit 261 causes the terminal device 200-3 to transmit a signal using the shared band at any time for the uplink. Control device 200-3.
  • the communication control unit 261 uses the shared band by the terminal device 200-3 at any time during wireless communication between the terminal devices in the cellular system 1. The terminal device 200-3 is controlled so as to transmit the signal.
  • the communication control unit 151 of the base station 100-1 may further perform the operation of the communication control unit 171 of the base station 100-3, and the communication control unit 241 of the terminal device 200-1 The operation of the communication control unit 261 may be further performed.
  • the method according to the third embodiment may be used.
  • a wireless communication device that performs cellular communication for example, the base station 100 or the terminal device 200
  • use of the shared band for other wireless communication for example, wireless LAN communication
  • the shared band can be more reliably occupied for cellular communication.
  • the third embodiment may be combined with the second embodiment described above.
  • the operation according to the third embodiment may be applied to the above-described second embodiment.
  • the communication control unit 161 of the base station 100-2 may further perform the operation of the communication control unit 171 of the base station 100-3, and the communication control unit 251 of the terminal device 200-2 The operation of the communication control unit 261 may be further performed.
  • the technique according to the third embodiment may be used.
  • a wireless communication device that performs cellular communication for example, the base station 100 or the terminal device 200
  • the signal may be transmitted using the shared band at any time (e.g., at each symbol) thereafter (eg, over any period of time).
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function.
  • a main body also referred to as a base station apparatus
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • the components of the terminal device 200 may be realized as a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 31 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 31, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 31 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 31, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 31, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 31 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827.
  • the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the wireless communication interface 825 may support a wireless LAN communication method in addition to the cellular communication method, and in that case, may include a BB processor 826 and an RF circuit 827 of the wireless LAN communication method.
  • the communication control unit 151 described with reference to FIG. 6 may be implemented in the wireless communication interface 825 (for example, the BB processor 826). Alternatively, at least a part of the communication control unit 151 may be implemented in the controller 821.
  • the eNB 800 may include a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the communication control unit 151 may be mounted in the module.
  • the module stores a program for causing the processor to function as the communication control unit 151 (in other words, a program for causing the processor to execute the operation of the communication control unit 151). Good.
  • a program for causing a processor to function as the communication control unit 151 may be installed in the eNB 800, and the radio communication interface 825 (for example, the BB processor 826) and / or the controller 821 may execute the program.
  • the eNB 800, the base station apparatus 820, or the module described above may be provided as an apparatus including the communication control unit 151, or a program for causing the processor to function as the communication control unit 151 may be provided.
  • a readable storage medium storing the program may be provided.
  • the communication control unit 161 described with reference to FIG. 16 and the communication control unit 171 described with reference to FIG. 22 are the same as the communication control unit 151.
  • the wireless communication unit 120 described with reference to FIG. 6 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 32 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 32, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 32 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 31 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the wireless communication interface 855 includes a plurality of BB processors 856
  • the wireless communication interface 855 may include a single BB processor 856.
  • the wireless communication interface 855 may support a wireless LAN communication method in addition to the cellular communication method, and in that case, may include a BB processor 856 of the wireless LAN communication method.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 32, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • 32 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the communication control unit 151 described with reference to FIG. 6 may be implemented in the wireless communication interface 855 (for example, the BB processor 856). Alternatively, at least a part of the communication control unit 151 may be mounted in the controller 851. As an example, the eNB 830 may include a module including a part (for example, the BB processor 856) or all of the wireless communication interface 855 and / or the controller 851, and the communication control unit 151 may be mounted in the module. In this case, the module stores a program for causing the processor to function as the communication control unit 151 (in other words, a program for causing the processor to execute the operation of the communication control unit 151). Good.
  • a program for causing a processor to function as the communication control unit 151 may be installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 may execute the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the communication control unit 151, or a program for causing the processor to function as the communication control unit 151 may be provided.
  • a readable storage medium storing the program may be provided.
  • the wireless communication unit 120 described with reference to FIG. 6 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 33 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 33 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support a wireless LAN communication method in addition to the cellular communication method, and in that case, may include a BB processor 913 and an RF circuit 914 of the wireless LAN communication method. Further, the wireless communication interface 912 may support still another type of wireless communication method such as a short-range wireless communication method or a proximity wireless communication method. In this case, a BB processor 913 and an RF circuit for each wireless communication method are supported. 914 may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 33 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 33 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the communication control unit 241 described with reference to FIG. 11 may be implemented in the wireless communication interface 912 (for example, the BB processor 913). Alternatively, at least a part of the communication control unit 241 may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the communication control unit 241 is mounted on the module. May be.
  • the module stores a program for causing the processor to function as the communication control unit 241 (in other words, a program for causing the processor to execute the operation of the communication control unit 241) and executes the program. Good.
  • a program for causing a processor to function as the communication control unit 241 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 executes the program.
  • the smartphone 900 or the module may be provided as a device including the communication control unit 241, and a program for causing the processor to function as the communication control unit 241 may be provided.
  • a readable storage medium storing the program may be provided.
  • the wireless communication unit 220 described with reference to FIG. 11 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • FIG. 34 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 34 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support a wireless LAN communication method in addition to the cellular communication method, and in that case, may include a BB processor 934 and an RF circuit 935 of the wireless LAN communication method. Further, the wireless communication interface 933 may support still another type of wireless communication method such as a short-range wireless communication method or a proximity wireless communication method, and in that case, a BB processor 934 and an RF circuit for each wireless communication method. 935 may be included.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 34 shows an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 34 via a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the communication control unit 241 described with reference to FIG. 11 may be implemented in the wireless communication interface 933 (for example, the BB processor 934). Alternatively, at least a part of the communication control unit 241 may be implemented in the processor 921.
  • the car navigation apparatus 920 may include a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921, and the communication control unit 241 may be mounted in the module. .
  • the module stores a program for causing the processor to function as the communication control unit 241 (in other words, a program for causing the processor to execute the operation of the communication control unit 241) and executes the program. Good.
  • a program for causing a processor to function as the communication control unit 241 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation device 920 or the module may be provided as a device including the communication control unit 241, and a program for causing the processor to function as the communication control unit 241 may be provided.
  • a readable storage medium storing the program may be provided.
  • the wireless communication unit 220 described with reference to FIG. 11 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the communication control unit 241 (or the communication control unit 251 or the communication control unit 261). The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the frequency band shared between the cellular communication and the other wireless communication (ie, the shared band) is occupied for the cellular communication over the first period, and at least, It is released from the cellular communication over a second period corresponding to the one period.
  • the cellular communication for example, before the period in which no signal is transmitted using the frequency band shared between the cellular communication and the wireless LAN communication (that is, the shared band) becomes DIFS, the cellular communication is performed.
  • the wireless communication device is controlled such that the wireless communication device that performs the transmission starts using the frequency band.
  • the above frequency band can be more reliably secured for cellular communication.
  • a wireless communication device that performs cellular communication over a period until a radio frame for another frequency band used for cellular communication starts is configured so that cellular communication and wireless LAN communication are performed.
  • the wireless communication device is controlled so as to transmit a dummy signal using a frequency band shared with each other (that is, a shared band).
  • the above frequency band can be more reliably secured for cellular communication.
  • a wireless communication device that performs cellular communication uses a frequency band (that is, a shared band) shared between cellular communication and other wireless communication.
  • the wireless communication apparatus is controlled to transmit a signal.
  • the frequency band is used for the other wireless communication while the frequency band shared between the cellular communication and another wireless communication (for example, wireless LAN communication) is used for the cellular communication. It becomes possible to prevent that.
  • a frequency band shared between wireless communication of a cellular system and other wireless communication can be more appropriately used in the cellular system. .
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example.
  • the communication system may be a system that complies with other communication standards.
  • wireless LAN communication that is, wireless communication based on the wireless LAN standard
  • the present disclosure is not limited to such an example.
  • the other wireless communication may be wireless communication other than wireless LAN communication (for example, wireless communication based on another communication standard employing CSMA).
  • processing steps in each process of the present specification do not necessarily have to be executed in time series in the order described in the flowchart or the sequence diagram.
  • the processing steps in each process may be executed in a different order from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a computer program in other words, a computer program for causing a processor (eg, CPU, DSP, etc.) provided in a device (eg, base station or terminal device) of this specification to function as a component (eg, communication control unit) of the above device.
  • a computer program for causing the processor to execute the operation of the constituent elements of the device can also be created.
  • a storage medium storing the computer program may also be provided.
  • An apparatus for example, a finished product or a module for a finished product (a component, a processing circuit, a chip, or the like)
  • a method including the operation of the component (for example, communication control unit) of the above apparatus is also included in the technology according to the present disclosure.
  • a frequency band shared between wireless communication of the cellular system and other wireless communication is occupied for the wireless communication of the cellular system over a first period, and the frequency band is at least the first A controller that releases from the wireless communication of the cellular system over a second period corresponding to a period of A device comprising: (2) The apparatus according to (1), wherein the first period is a period of one radio frame or more of the cellular system. (3) The apparatus according to (1), wherein the first period is a continuous period. (4) The apparatus according to (3), wherein the second period is a period immediately before or immediately after the first period. (5) The apparatus according to (4), wherein the second period is a continuous period immediately after the first period.
  • the apparatus according to (4), wherein the second period is a period immediately before the first period and a period immediately after the first period.
  • the apparatus according to (4), wherein the second period is a continuous period immediately before the first period.
  • the first period is a discontinuous period;
  • the control unit occupies the frequency band for the wireless communication of the cellular system over the first period within the third period, and the frequency band of the cellular system over at least the second period. Release from the wireless communication;
  • the apparatus according to (3) above. (9) The apparatus according to any one of (1) to (8), wherein the second period has a length of 90% to 110% of a length of the first period.
  • the control unit controls a wireless communication apparatus that performs wireless communication of the cellular system such that a wireless communication apparatus that performs wireless communication of the cellular system transmits a signal using the frequency band over the first period.
  • the apparatus according to any one of (1) to (9), wherein the apparatus occupies the frequency band for the wireless communication of the cellular system over the first period.
  • the device according to (10), wherein the control unit controls the wireless communication device so that the wireless communication device transmits a signal using the frequency band at any time.
  • the said control part controls the said radio
  • the said control part is an apparatus as described in said (11) or (12) which controls the said radio
  • the control unit is at least a symbol in which a data signal and a control signal of the cellular system are not transmitted using the frequency band, and the wireless communication device transmits a dummy signal using the frequency band.
  • the control unit controls the radio communication device so that the radio communication device transmits the dummy signal among a part of radio resources arranged in the frequency direction over the frequency band with at least the symbol.
  • the device is a base station that performs wireless communication of the cellular system, a base station device for the base station, or a module for the base station device, The control unit instructs the terminal device that performs wireless communication of the cellular system to transmit signals using the frequency band at any time for the uplink, The apparatus according to any one of (11) to (17).
  • the control unit instructs each of a plurality of terminal apparatuses that perform wireless communication of the cellular system to transmit signals using the frequency band at any time for the uplink, (18)
  • the control unit is, for the uplink, at least a part of radio resources arranged in the frequency direction over the frequency band with symbols in which the data signal and control signal of the cellular system are not transmitted using the frequency band. Instruct multiple terminal devices to send a dummy signal in the resource, The some radio resources are common among a plurality of terminal devices.
  • the device is a terminal device that performs wireless communication of the cellular system, or a module for the terminal device,
  • the control unit controls the terminal apparatus so that the terminal apparatus transmits a signal using the frequency band at any time for the uplink.
  • the apparatus according to any one of (11) to (17).
  • the other wireless communication is wireless communication conforming to a wireless LAN (Local Area Network) standard,
  • the control unit is configured so that a wireless communication device that performs wireless communication of the cellular system transmits a frame including duration information for setting a NAV (Network Allocation Vector) using the frequency band. Occupying the frequency band for the wireless communication of the cellular system over the first period by controlling a wireless communication device;
  • the apparatus according to any one of (1) to (9).
  • the control unit controls the wireless communication device so that a wireless communication device that performs wireless communication of the cellular system does not transmit a signal using the frequency band over at least the second period, thereby controlling the frequency.
  • the apparatus according to any one of (1) to (22), wherein a band is released from the wireless communication of the cellular system for at least the second period.
  • the device according to any one of (10) to (23), wherein the wireless communication device is at least one of a base station and a terminal device that perform wireless communication of the cellular system.
  • LAN wireless local area network
  • the control unit allows the wireless communication device that performs wireless communication of the cellular system to set the frequency band before a period in which no signal is transmitted using the frequency band becomes a DIFS (Distributed Coordination Function) InterFrame Space (DCF).
  • DIFS Distributed Coordination Function
  • DCF InterFrame Space
  • the control unit causes the wireless communication apparatus to start transmitting a signal using the frequency band after the period during which no signal is transmitted using the frequency band becomes longer than a short interframe space (SIFS).
  • SIFS Short Interframe space
  • the control unit is configured so that a wireless communication device that performs wireless communication of the cellular system uses the frequency band over a period until a radio frame for another frequency band used for wireless communication of the cellular system starts.
  • the apparatus according to any one of (25) to (27), wherein the wireless communication apparatus is controlled to transmit a dummy signal.
  • the control unit is configured so that a radio communication device that performs radio communication of the cellular system uses the frequency band before a radio frame for another frequency band used for radio communication of the cellular system starts.
  • the apparatus according to any one of (24) to (26), wherein the radio communication apparatus is controlled to transmit a frame including duration information for setting NAV.
  • the wireless communication device is at least one of a base station and a terminal device that perform wireless communication of the cellular system.
  • the device is a base station that performs wireless communication of the cellular system, a base station device for the base station, or a module for the base station device, (1) to (17) and (22) to (30)
  • a processor occupies a frequency band shared between wireless communication of the cellular system and other wireless communication for the wireless communication of the cellular system over a first period, and the frequency band is at least Releasing from the wireless communication of the cellular system over a second period corresponding to the first period; Including methods.
  • a frequency band shared between wireless communication of the cellular system and other wireless communication is occupied for the wireless communication of the cellular system over a first period, and the frequency band is at least the first Releasing from the wireless communication of the cellular system for a second period corresponding to the period of A program that causes a processor to execute.
  • a frequency band shared between wireless communication of the cellular system and other wireless communication is occupied for the wireless communication of the cellular system over a first period, and the frequency band is at least the first Releasing from the wireless communication of the cellular system for a second period corresponding to the period of A readable recording medium on which a program for causing a processor to execute is recorded.
  • the wireless communication device that performs wireless communication of the cellular system transmits a signal by using a frequency band shared between the wireless communication of the cellular system and other wireless communication.
  • a control unit for controlling the wireless communication device A device comprising: (37) By the processor, at any time, a wireless communication device that performs wireless communication of the cellular system transmits a signal using a frequency band shared between the wireless communication of the cellular system and another wireless communication. Controlling the wireless communication device; Including methods. (38) At any time, the wireless communication device that performs wireless communication of the cellular system transmits a signal by using a frequency band shared between the wireless communication of the cellular system and other wireless communication. Controlling a wireless communication device; A program that causes a processor to execute. (39) At any time, the wireless communication device that performs wireless communication of the cellular system transmits a signal by using a frequency band shared between the wireless communication of the cellular system and other wireless communication.
  • a radio communication apparatus that performs radio communication of the cellular system uses the frequency band shared between the radio communication of the cellular system and another radio communication before the period during which no signal is transmitted becomes DIFS.
  • a controller that controls the wireless communication device to start transmitting a signal using A device comprising: (41) A wireless communication device that performs wireless communication of the cellular system before the period during which no signal is transmitted using a frequency band shared between the wireless communication of the cellular system and other wireless communication by the processor becomes DIFS. Controlling the wireless communication device to begin transmitting signals using the frequency band; Including methods.
  • a radio communication apparatus that performs radio communication of the cellular system uses the frequency band shared between the radio communication of the cellular system and another radio communication before the period during which no signal is transmitted becomes DIFS. Controlling the wireless communication device to begin transmitting signals using A program that causes a processor to execute. (43) A radio communication apparatus that performs radio communication of the cellular system uses the frequency band shared between the radio communication of the cellular system and another radio communication before the period during which no signal is transmitted becomes DIFS. Controlling the wireless communication device to begin transmitting signals using A readable recording medium on which a program for causing a processor to execute is recorded.
  • a wireless communication device that performs wireless communication of the cellular system over a period until a radio frame for another frequency band used for wireless communication of the cellular system starts, and wireless communication of the cellular system and other wireless communication
  • a device comprising: (45) A wireless communication device that performs wireless communication of the cellular system over a period until a radio frame for another frequency band used for wireless communication of the cellular system is started by the processor Controlling the wireless communication device to transmit a dummy signal using a frequency band shared with the wireless communication; Including methods.
  • a wireless communication device that performs wireless communication of the cellular system over a period until a radio frame for another frequency band used for wireless communication of the cellular system starts, and wireless communication of the cellular system and other wireless communication Controlling the wireless communication device to transmit a dummy signal using a frequency band shared between the wireless communication device, A program that causes a processor to execute.
  • a wireless communication device that performs wireless communication of the cellular system over a period until a radio frame for another frequency band used for wireless communication of the cellular system starts, and wireless communication of the cellular system and other wireless communication Controlling the wireless communication device to transmit a dummy signal using a frequency band shared between the wireless communication device, A readable recording medium on which a program for causing a processor to execute is recorded.
  • the device is a base station that performs wireless communication of the cellular system, a base station device for the base station, or a module for the base station device.
  • the apparatus of any one of Claims. (49) The device according to any one of (36), (40), and (44), wherein the device is a terminal device that performs wireless communication of the cellular system or a module for the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

【課題】セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を当該セルラーシステムにおいてより適切に使用することを可能にする。 【解決手段】セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、上記セルラーシステムの上記無線通信のために占有し、上記周波数帯域を、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラーシステムの上記無線通信から解放する制御部、を備える装置が提供される。

Description

装置及び方法
 本開示は、装置及び方法に関する。
 3GPP(3rd Generation Partnership Project)において、システムスループットを向上させる様々な技術が議論されている。システムスループットを向上するためには、使用する周波数を増やすことが一番の近道と言える。3GPPでは、リリース10及びリリース11において、キャリアアグリゲーション(Carrier Aggregation:CA)という技術が検討された。CAは、20MHzの帯域幅を有するコンポーネントキャリアを束ねて使用することにより、システムスループット及び最大のデータレートを向上させる技術である。このCAの技術を採用するためには、CCとして使用可能な周波数帯域が必要である。そのため、セルラーシステムの無線通信に使用可能なさらなる周波数帯域が求められている。
 例えば、特許文献1には、事業者ごとに専用に割り当てられる専用周波数帯域に加えて、登録した事業者が使用可能な登録制周波数帯域と、所定の条件が満たされる場合に使用可能なアンライセンスバンドとを使用することを可能にする技術が開示されている。
特開2006-094001号公報
 しかし、例えば、他の無線通信(例えば、無線LAN(Local Area Network)の無線通信)に使用される周波数帯域を、セルラーシステムの無線通信にも使用することは、様々な望ましくない結果をもたらし得る。即ち、セルラーシステムの無線通信と他の無線通信との間で周波数帯域を共用(share)することは、様々な望ましくない結果をもたらし得る。
 一例として、上記セルラーシステムの無線通信に上記周波数帯域が使用され過ぎると、上記周波数帯域が上記他の無線通信に使用可能な機会が著しく減少する。そのため、上記周波数帯域の共用は、上記他の無線通信にとって不利益になり得る。
 別の例として、上記セルラーシステムの装置は、上記セルラーシステムの無線通信のために上記周波数帯域を確保できるとは限らない。そのため、上記セルラーシステムの無線通信に上記周波数帯域を使用し始めるのに時間がかかり得る。
 さらに別の例として、上記セルラーシステムにおいて上記周波数帯域が使用されると、上記周波数帯域において上記セルラーシステムの無線通信と上記他の無線通信との間での干渉が発生する可能性がある。そのため、上記セルラーシステムの無線通信及び/又は上記他の無線通信の通信品質が低下し得る。
 そこで、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を当該セルラーシステムにおいてより適切に使用することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、上記セルラーシステムの上記無線通信のために占有し、上記周波数帯域を、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラーシステムの上記無線通信から解放する制御部、を備える装置が提供される。
 また、本開示によれば、プロセッサにより、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、上記セルラーシステムの上記無線通信のために占有し、上記周波数帯域を、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラーシステムの上記無線通信から解放すること、を含む方法が提供される。
 以上説明したように本開示によれば、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を当該セルラーシステムにおいてより適切に使用することが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
IEEE 802.11のフレームフォーマットを説明するための説明図である。 LTEのフレームフォーマットを説明するための説明図である。 本開示の実施形態に係るセルラーシステムの概略的な構成の一例を示す説明図である。 スモールセルと重なる無線LANの通信エリアの例を説明するための説明図である。 マクロセルと重なる無線LANの通信エリアの例を説明するための説明図である。 第1の実施形態に係る基地局の構成の一例を示すブロック図である。 共用帯域の占有及び解放の期間の第1の例を説明するための説明図である。 共用帯域の占有及び解放の期間の第2の例を説明するための説明図である。 共用帯域の占有及び解放の期間の第3の例を説明するための説明図である。 共用帯域の占有及び解放の期間の第4の例を説明するための説明図である。 第1の実施形態に係る端末装置の構成の一例を示すブロック図である。 第1の実施形態に係る処理の概略的な流れの第1の例を示すフローチャートである。 第1の実施形態に係る処理の概略的な流れの第2の例を示すフローチャートである。 第1の実施形態に係る処理の概略的な流れの第3の例を示すフローチャートである。 第1の実施形態に係る処理の概略的な流れの第4の例を示すフローチャートである。 第2の実施形態に係る基地局の構成の一例を示すブロック図である。 信号の送信のタイミングを説明するための説明図である。 ダミー信号の送信の例を説明するための説明図である。 第2の実施形態に係る端末装置の構成の一例を示すブロック図である。 第2の実施形態に係る処理の概略的な流れの第1の例を示すフローチャートである。 第2の実施形態に係る処理の概略的な流れの第2の例を示すフローチャートである。 第3の実施形態に係る基地局の構成の一例を示すブロック図である。 ダミー信号が送信される一部のリソースブロック(RB)の例を説明するための説明図である。 一部のリソースブロック(RB)の中でダミー信号が送信されるリソースエレメント(RE)の例を説明するための説明図である。 各リソースブロック(RB)の中でダミー信号が送信される一部のリソースエレメント(RE)の例を説明するための説明図である。 複数の端末装置によりダミー信号が送信される無線リソースの第1の例を説明するための説明図である。 複数の端末装置によりダミー信号が送信される無線リソースの第2の例を説明するための説明図である。 第3の実施形態に係る端末装置の構成の一例を示すブロック図である。 第3の実施形態に係る基地局による処理の概略的な流れの一例を示すフローチャートである。 第3の実施形態に係る端末装置による処理の概略的な流れの一例を示すフローチャートである。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.システムの概略的な構成
 3.第1の実施形態
  3.1.概略
  3.2.基地局の構成
  3.3.端末装置の構成
  3.4.処理の流れ
  3.5.変形例
 4.第2の実施形態
  4.1.概略
  4.2.基地局の構成
  4.3.端末装置の構成
  4.4.処理の流れ
  4.5.第1の変形例
  4.6.第2の変形例
  4.7.第2の実施形態と第1の実施形態との組合せ
 5.第3の実施形態
  5.1.概略
  5.2.基地局の構成
  5.3.端末装置の構成
  5.4.処理の流れ
  5.5.変形例
  5.6.第3の実施形態と第1の実施形態/第2の実施形態との組合せ
 6.応用例
  6.1.基地局に関する応用例
  6.2.端末装置に関する応用例
 7.まとめ
 <<1.はじめに>>
 まず、図1及び図2を参照して、周波数帯域の共用、無線LAN規格に準拠した無線通信の技術、及びセルラーシステムの無線通信の技術を説明する。
 (周波数帯域の共用)
 セルラーシステムの無線通信に使用可能なさらなる周波数帯域が求められている。例えば、セルラーシステムの無線通信(以下、「セルラー通信」と呼ぶ)に使用する周波数帯域として、5GHz帯が考えられる。
 しかし、5GHz帯は、無線LAN規格に準拠した無線通信(以下、「無線LAN通信」と呼ぶ)に使用されている。そのため、セルラーシステムが5GHz帯を使用する場合には、例えば、5GHz帯は、セルラー通信と無線LAN通信との間で共用(share)される。具体的には、例えば、5GHz帯の周波数帯域(例えば、無線LANのチャネル)が、ある時間には無線LAN通信に使用され、別の時間にはセルラー通信に使用される。これにより、5GHz帯の周波数利用効率が向上する。なお、無線LAN規格には、IEEE802.11a、11b、11g、11n、11ac及び11adなどがあり、これらの規格は、MAC層としてIEEE802.11を採用することを特徴とする。
 無線LAN通信を行う装置は、世の中に既に広く普及している。そのため、後方互換性(Backward Compatibility)の観点から、無線LAN通信を行う装置の動作が変更されるのではなく、セルラー通信と無線LAN通信との間で周波数帯域を共用するための仕組みが、LTE(Long Term Evolution)の技術として検討され、LTEの新たな規格として定められることが望ましい。なお、上記新たな規格に準拠した端末装置は、共用される周波数帯域を使用するが、上記新たな規格に準拠しない端末装置は、共用される周波数帯域を使用しないと考えられる。
 LTE、LTE-Advanced又はこれらに準ずる通信規格に準拠したセルラーシステムでは、共用される周波数帯域は、例えば、コンポーネントキャリア(CC:Component Carrier)として使用されるであろう。さらに、セルラーシステム用の周波数帯域がPCCとして使用され、共用される周波数帯域はSCCとして使用されることが、想定される。また、セルラーシステム用の周波数帯域を使用して制御信号及びデータ信号が送受信され、共用される周波数帯域を使用してデータ信号が送受信され得る。
 (無線LAN規格に準拠した無線通信の技術)
 図1を参照して、無線LAN規格に準拠した無線通信の技術として、IEEE 802.11のフレームフォーマットを説明する。図1は、IEEE 802.11のフレームフォーマットを説明するための説明図である。
 IEEE 802.11では、DATAフレーム及びACKフレームが基本のフレームである。ACKフレームは、DATAフレームが正しく受信された時に、DATAフレームの受信の成功を送信側に知らせるためのフレームである。DATAフレーム及びACKフレームのみにより無線LAN通信が行われ得るが、一般的に、さらにRTS(Request To Send)フレーム及びCTS(Clear To Send)フレームという2つのフレームが使用される。
 無線LAN通信を行う各端末装置は、RTSフレームを送信する前に、DIFS(DCF (Distributed Coordination Function) InterFrame Space)という期間の間、信号が送信されていないことを確認する。これは、キャリアセンスと呼ばれる。DIFSが経過した時点で各端末装置が同時に信号を送信し始めると、信号が衝突してしまう。そのため、各端末装置は、端末装置ごとにランダムに設定されるバックオフ時間だけ待機し、バックオフ時間の間にも信号が送信されていなければ信号を送信する。
 基本的には、端末装置は、いずれかの信号を検出している間は、信号を送信できない。しかし、隠れ端末問題というものが存在するので、NAV(Network Allocation Vector)という値の設定のための持続時間(Duration)フィールドを含むRTSフレーム及びCTSフレームが追加された。当該持続時間フィールドに含まれる値に基づいて、NAVが設定される。NAVを設定した端末装置は、当該NAVの期間にわたって信号の送信を控える。
 まず、DATAフレームを送信する第1の端末装置がRTSフレームを送信する。すると、当該第1の端末装置の周囲に位置する他の端末装置は、RTSフレームを受信し、RTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他の端末装置は、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。例えば、当該NAVの期間は、RTSフレームの終了からACKフレームの終了までの期間である。
 また、DATAフレームを受信する第2の端末装置が、RTSフレームの受信に応じて、RTSフレームの終了からSIFS(Short InterFrame Space)だけ後に、CTSフレームを送信する。すると、上記第2の端末装置の周囲に位置する他の端末装置は、CTSフレームを受信し、CTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他の端末装置は、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。当該NAVの期間は、CTSフレームの終了からACKフレームの終了までの期間である。これにより、例えば、上記第1の端末装置の近くにはいないが、上記第2の端末装置の近くにいる他の端末装置(即ち、上記第1の端末装置にとっての隠れ端末)が、上記第1の端末装置と上記第2の端末装置との通信の間に信号を送信することを、防ぐことができる。
 なお、RTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド、送信アドレスフィールド及びFCS(Frame Check Sequence)を含む。また、CTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド及びFCSを含む。
 また、IEEE802.11シリーズの規格におけるDIFS及びSIFSは、例えば以下のような長さを有する。
Figure JPOXMLDOC01-appb-T000001
 (セルラーシステムの無線通信の技術)
 (a)フレームフォーマット
 図2を参照して、LTEのフレームフォーマットを説明する。図2は、LTEのフレームフォーマットを説明するための説明図である。
 まず、LTEでは、無線フレーム(Radio Frame)という時間の単位が用いられる。1無線フレームは、10msである。個々の無線フレームは、0~1023のいずれかであるSFN(System Frame Number)により識別される。
 無線フレームは、#0~#9により各々識別される10個のサブフレームを含む。各サブフレームは、1msである。さらに、各サブフレームは、2個のスロットを含み、各スロットは、例えば7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボルを含む。即ち、各サブフレームは、14個のOFDMシンボルを含む。なお、図2に示されるフレームフォーマットは、ダウンリンクのフレームフォーマットであり、アップリンクのフレームフォーマットは、OFDMシンボルの代わりに、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルを含む。
 (b)キャリアアグリゲーション
 -コンポーネントキャリア
 リリース10のキャリアアグリゲーションでは、最大で5つのコンポーネントキャリア(CC)が束ねられて、UE(User Equipment)により使用される。各CCは、最大20MHz幅の帯域である。キャリアアグリゲーションでは、周波数方向で連続するCCが使用される場合と、周波数方向で離れたCCが使用される場合とがある。キャリアアグリゲーションでは、使用されるCCをUE毎に設定することが可能である。
 -PCCとSCC
 キャリアアグリゲーションでは、UEにより使用される複数のCCのうちの1つが特別なCCである。当該1つの特別なCCは、PCC(Primary Component Carrier)と呼ばれる。また、上記複数のCCのうちの残りは、SCC(Secondary Component Carrier)と呼ばれる。PCCは、UEによって異なり得る。
 PCCは、複数のCCの中で最も重要なCCであるので、通信品質が最も安定しているCCであることが望ましい。なお、どのCCをPCCとするかは、実際には、どのように実装するかに依存する。
 SCCは、PCCに追加される。また、追加された既存のSCCは、削除されることが可能である。なお、SCCの変更は、既存のSCCの削除と新たなSCCの追加により行われる。
 -PCCの決定手法及び変更手法
 UEの接続が最初に確立され、UEの状態が、RRC(Radio Resource Control) IdleからRRC Connectedに遷移する場合には、UEが接続の確立の際に使用するCCが、当該UEにとってのPCCとなる。より具体的には、接続確立(Connection Establishment)の手続きを通じて接続が確立される。その際に、UEの状態は、RRC IdleからRRC Connectedに遷移する。また、上記手続きに使用されるCCが、上記UEにとってのPCCとなる。なお、上記手続きは、UE側から開始される手続きである。
 また、PCCの変更は、周波数間ハンドオーバにより行われる。より具体的には、接続再構成(Connection Reconfiguration)の手続きにおいてハンドオーバが指示されると、PCCのハンドオーバが行われ、PCCが変更される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 -SCCの追加
 上述したように、SCCは、PCCに追加される。その結果、SCCは、PCCに付随する。換言すると、SCCは、PCCに従属する。SCCの追加は、接続再構成の手続きを通じて行われることが可能である。なお、当該手続きは、ネットワーク側から開始される手続きである。
 -SCCの削除
 上述したように、SCCは、削除されることができる。SCCの削除は、接続再構成の手続きを通じて行われることが可能である。具体的には、メッセージの中で指定される特定のSCCが削除される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 また、全てのSCCの削除は、接続再確立(Connection Re-establishment)の手続きを通じて行われることが可能である。
 -PCCの特別な役割
 接続確立の手続き、NAS(Non-Access Stratum)シグナリングの送受信、及び物理アップリンク制御チャネル(PUCCH:Physical Uplink Control Channel)でのアップリンク制御信号の送受信は、SCCでは行われず、PCCのみで行われる。
 また、無線リンク障害(RLF:Radio Link Failure)の検出及びその後の接続再確立の手続きも、SCCでは行われず、PCCのみで行われる。
 -キャリアアグリゲーションのためのバックホールの条件
 例えば、SCCのダウンリンク信号に対するACK(Acknowledgement)は、PCCのPUCCHで送信される。上記ACKは、eNB(evolved Node B)によるデータの再送に使用されるので、上記ACKの遅延は許容されない。したがって、UEにとってのPCCであるCCを使用する第1のeNBと、UEにとってのSCCであるCCを使用する第2のeNBとが異なる場合には、当該第1のeNBと当該第2のeNBとの間のバックホールでの遅延はせいぜい10ms程度であることが望まれる。
 <<2.セルラーシステムの概略的な構成>>
 続いて、図3~図5を参照して、本開示の実施形態に係るセルラーシステム1の概略的な構成を説明する。図3は、本開示の実施形態に係るセルラーシステム1の概略的な構成の一例を示す説明図である。図3を参照すると、システム1は、基地局100及び端末装置200を含む。セルラーシステム1は、例えば、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 (基地局100)
 基地局100は、セルラーシステム1の無線通信(セルラー通信)を行う。即ち、基地局100は、端末装置200との無線通信を行う。例えば、基地局100は、基地局100の通信エリアであるセル10内に位置する端末装置200との無線通信を行う。具体的には、例えば、基地局100は、端末装置200へのダウンリンク信号を送信し、端末装置200からのアップリンク信号を受信する。
 一例として、基地局100は、スモール基地局であり、セル10はスモールセルである。別の例として、基地局100は、マクロ基地局であってもよく、セル10はマクロセルであってもよい。
 (端末装置200)
 端末装置200は、セルラーシステムの無線通信(セルラー通信)を行う。
 例えば、端末装置200は、基地局100との無線通信を行う。例えば、端末装置200は、基地局100のセル10内に位置する場合に、基地局100との無線通信を行う。具体的には、例えば、端末装置200は、基地局100からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。
 また、端末装置200は、他の端末装置(例えば、他の端末装置200など)との無線通信を行い得る。例えば、端末装置200は、装置間(Device-to-Device:D2D)通信を行い得る。また、端末装置200は、端末装置により形成されるLN(Localized Network)内で無線通信を行い得る。
 なお、端末装置200は、他の無線通信を行ってもよい。例えば、端末装置200は、無線LAN規格に準拠した無線通信(無線LAN通信)を行なってもよい。
 (使用される周波数帯域)
 セルラーシステム1の無線通信(即ち、セルラー通信)には、セルラーシステム1用の周波数帯域が使用される。当該周波数帯域は、例えば、セルラーシステム1の事業者に割当てられた帯域であり、ライセンスバンドと呼ばれ得る。
 とりわけ本開示の実施形態では、セルラー通信には、他の無線通信に使用される周波数帯域も使用される。即ち、セルラー通信には、セルラー通信と上記他の無線通信との間で共用される周波数帯域(以下、「共用帯域」と呼ぶ)も使用される。上記他の無線通信は、例えば、無線LAN規格に準拠した無線通信(即ち、無線LAN通信)である。また、上記共用帯域は、例えば、無線LANのチャネルである。一例として、上記共用帯域は、20MHzのチャネルである。
 (他の無線通信)
 セル10内には、上記他の無線通信の通信エリアが存在し得る。即ち、セル10と上記他の無線通信の通信エリアとが重なり得る。
 例えば、当該他の無線通信は、無線LAN通信であり、セル10内には、無線LANの通信エリアが存在し得る。即ち、セル10と無線LANの通信エリアとが重なり得る。以下、この点について図4及び図5を参照して具体例を説明する。
 図4は、スモールセルと重なる無線LANの通信エリアの例を説明するための説明図である。図4を参照すると、スモール基地局である基地局100及び端末装置200が示されている。さらに、その周辺には、無線LANのアクセスポイント30、及び無線LAN通信を行う端末装置50が存在する。そして、アクセスポイント30の通信エリア40は、スモールセルであるセル10と重なる。
 図5は、マクロセルと重なる無線LANの通信エリアの例を説明するための説明図である。図5を参照すると、マクロ基地局である基地局100及び端末装置200が示されている。さらに、その周辺には、無線LANのアクセスポイント30、及び無線LAN通信を行う端末装置50が存在する。そして、アクセスポイント30の通信エリア40は、マクロセルであるセル10と重なる。
 なお、無線LAN通信は、無線LANアクセスポイントと(無線LAN通信を行う)端末装置との間の無線通信に加えて、無線LAN通信を行う端末装置間の、無線LAN規格に準拠した無線通信も含み得る。一例として、無線LAN通信は、Wi-Fi Directに従った無線通信も含み得る。
 以上、本開示の実施形態に係るセルラーシステム1を説明した。なお、セルラーシステム1は、1つの基地局100のみではなく、複数の基地局100を含み得る。また、セルラーシステム1は、基地局100及び端末装置200に加えて、他の装置を含み得る。例えば、セルラーシステム1は、コアネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving Gateway)及びP-GW(Packet data network Gateway)など)を含み得る。
 <<3.第1の実施形態>>
 続いて、図6~図15を参照して、本開示の第1の実施形態を説明する。
 <3.1.概略>
 まず、第1の実施形態の概略を説明する。
 -第1の実施形態に係る課題
 セルラーシステムの無線通信(即ち、セルラー通信)と他の無線通信(例えば、無線LAN通信)との間で周波数帯域が共用される場合に、セルラー通信に周波数帯域が使用され過ぎると、上記周波数帯域が上記他の無線通信に使用可能な機会が著しく減少する。これは、上記他の無線通信を行う装置にとって不利益となる。そのため、上記周波数帯域が共用される場合には、上記周波数帯域が上記他の無線通信に使用可能な機会が確保されることが望ましい。例えば、上記周波数帯域の使用の機会が、セルラーシステムと他の無線通信を行う装置とに公平に与えられることが望ましい。例えば、無線LAN通信ではCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)に基づいて無線リソースが装置間で公平に使用されているので、上記他の無線通信が無線LAN通信である場合には、公平性が確保されることが重要である。
 また、セルラーシステムでは、比較的長い10msの無線フレームを単位として無線通信が行われる。また、セルラーシステムでは、端末装置は、周波数帯域において、無線フレームの中で送信される同期信号により同期を獲得し、システム情報を取得し、一連の接続確立手続きを行うことにより、上記周波数帯域を使用してデータを送受信することができるようになる。このような点を考慮すると、セルラー通信と他の無線通信との間で共用される周波数帯域をセルラー通信のためにある程度の時間使用し続けられることが望ましい。
 そこで、セルラー通信と他の無線通信との間で共用される周波数帯域をセルラーシステムにおいてより適切に使用することを可能にする仕組みが提供されることが望ましい。より具体的には、セルラー通信と他の無線通信との間で共用される周波数帯域が上記他の無線通信に使用可能な機会を確保し、且つ、当該周波数帯域をセルラー通信のためにある程度の時間使用し続けることを可能にする仕組みが提供されることが望ましい。
 -第1の実施形態の特徴
 第1の実施形態によれば、セルラー通信と他の無線通信との間で共用される周波数帯域は、第1の期間にわたって、上記セルラー通信のために占有され、少なくとも、上記1の期間に対応する第2の期間にわたって、上記セルラー通信から解放される。
 これにより、例えば、セルラー通信と他の無線通信との間で共用される周波数帯域が上記他の無線通信に使用可能な機会を確保し、且つ、当該周波数帯域をセルラー通信のためにある程度の時間使用し続けることが、可能になる。
 <3.2.基地局の構成>
 次に、図6~図10を参照して、第1の実施形態に係る基地局100-1の構成の一例を説明する。図6は、第1の実施形態に係る基地局100-1の構成の一例を示すブロック図である。図6を参照すると、基地局100-1は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、セル10内に位置する端末装置200-1へのダウンリンク信号を送信し、セル10内に位置する端末装置200-1からのアップリンク信号を受信する。
 例えば、無線通信部120は、セルラーシステム1用の周波数帯域を使用して信号を送受信する。また、とりわけ本開示の実施形態では、無線通信部120は、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域(即ち、共用帯域)を使用して信号を送受信する。
 (ネットワーク通信部130)
 ネットワーク通信部130は、他のノードと通信する。例えば、ネットワーク通信部130は、コアネットワークノード(例えば、MME、S-GW及びP-GWなど)と通信する。また、例えば、ネットワーク通信部130は、他の基地局100-1と通信する。
 (記憶部140)
 記憶部140は、基地局100-1の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 (処理部150)
 処理部150は、基地局100-1の様々な機能を提供する。処理部150は、通信制御部151を含む。なお、処理部150は、通信制御部151以外の他の構成要素をさらに含み得る。
 (通信制御部151)
 通信制御部151は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を、第1の期間にわたって、上記セルラー通信のために占有し、上記共用帯域を、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラー通信から解放する。
 (a)他の無線通信
 例えば、上記他の無線通信は、無線LAN規格に準拠した無線通信(即ち、無線LAN通信)である。この場合に、上記共用帯域は、セルラー通信と無線LAN通信との間で共用される。上記共用帯域は、例えば、無線LANのチャネルである。一例として、上記共用帯域は、20MHzのチャネルである。
 (b)共用帯域の占有
  -第1の期間にわたる信号の送信による占有
 例えば、通信制御部151は、セルラーシステム1の無線通信(セルラー通信)を行う無線通信装置が上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、上記無線通信装置を制御することにより、上記共用帯域を上記1の期間にわたって上記セルラー通信のために占有する。
 例えば、上記無線通信装置は、基地局100-1であり、通信制御部151は、基地局100-1が上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、基地局100-1を制御する。より具体的には、例えば、通信制御部151は、上記第1の期間にわたる上記共用帯域の無線リソースをいずれかの信号に割り当てる。また、例えば、通信制御部151は、上記第1の期間にわたる上記共用帯域の無線リソースに、信号をマッピングする。
 また、上記無線通信装置は、端末装置200-1であってもよく、通信制御部151は、端末装置200-1が上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、端末装置200-1を制御してもよい。より具体的には、例えば、通信制御部151は、上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、端末装置200-1に指示してもよい。例えば、この指示は、RRC(Radio Resource Control)シグナリング又はシステム情報(System Information:SI)により行われ得る。
 例えば以上のように、無線通信装置(即ち、基地局100-1及び端末装置200-1のうちの少なくとも一方)が制御される。なお、無線通信装置による信号の送信の具体的な手法として、例えば、第3の実施形態に説明する手法が適用される。また、信号の送信の手法として、第2の実施形態に説明する手法も適用され得る。
 上述したように、上記第1の期間にわたって上記共用帯域を使用して信号を送信することにより、例えば、上記他の無線通信(例えば、無線LAN通信)を行う装置は、上記共用帯域を使用して送信される信号を検出し、当該共用帯域の使用を控える。そのため、セルラー通信のために上記共用帯域が占有され得る。
  -NAVの設定のためのフレームの送信による占有
 上記他の無線通信は、無線LAN通信であり、通信制御部151は、セルラー通信を行う無線通信装置が、上記共用帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、上記無線通信装置を制御することにより、上記共用帯域を上記第1の期間にわたって上記セルラー通信のために占有してもよい。
 上記無線通信装置は、基地局100-1及び端末装置200-1のうちの少なくとも一方であってもよい。
 また、上記フレームは、RTSフレーム又はCTSフレームであってもよく、あるいはこれらに類するフレームであってもよい。上記持続時間情報は、持続期間フィールドに含まれる値であってもよい。また、上記無線通信装置は、上記第1の期間全体をカバーするNAVを設定するための持続時間情報を含む1つのフレームを送信してもよい。あるいは、上記無線通信装置は、2つ以上のフレームを異なるタイミングで送信してもよい。そして、上記2つ以上のフレームの各々が送信されるごとに、フレームを受信する装置のNAVが更新され、更新されるNAVが上記第1の期間全体をカバーしてもよい。
 上記フレームの送信により、例えば、上記他の無線通信(例えば、無線LAN通信)を行う装置は、NAVを設定し、上記共用帯域の使用を控える。そのため、セルラー通信のために上記共用帯域が占有され得る。
 (c)共用帯域の解放
 例えば、通信制御部151は、セルラーシステム1の無線通信(セルラー通信)を行う無線通信装置が少なくとも上記第2の期間にわたって上記共用帯域を使用して信号を送信しないように、上記無線通信装置を制御することにより、上記共用帯域を少なくとも上記第2の期間にわたって上記セルラー通信から解放する。
 例えば、上記無線通信装置は、基地局100-1であり、通信制御部151は、基地局100-1が少なくとも上記第2の期間にわたって上記共用帯域を使用して信号を送信しないように、基地局100-1を制御する。また、例えば、上記無線通信装置は、端末装置200-1であってもよく、通信制御部151は、端末装置200-1が少なくとも上記第2の期間にわたって上記共用帯域を使用して信号を送信しないように、端末装置200-1を制御する。より具体的には、例えば、通信制御部151は、少なくとも上記第2の期間にわたって上記共用帯域の使用を停止する。
 上述したように、少なくとも上記第2の期間にわたって上記共用帯域を使用して信号が送信されないことにより、例えば、上記他の無線通信(例えば、無線LAN通信)を行う装置は、セルラー通信による影響を受けることなく、上記共用帯域を使用して上記他の無線通信を行うことが可能になる。即ち、セルラー通信から上記共用帯域が解放され得る。
 (d)第1の期間及び第2の期間
  -第1の期間及び第2の期間の長さ
 上記第1の期間は、セルラーシステム1の1無線フレーム以上の期間である。即ち、上記共用帯域は、1無線フレーム以上の期間にわたってセルラー通信のために占有される。これにより、例えば、上記共用帯域を使用してセルラー通信が可能になり得る。なお、上記第1の期間は、1無線フレームと比べて長い時間(例えば、30秒程度)であり得る。
 また、例えば、上記第2の期間は、上記第1の期間と同様の長さを有する。即ち、上記共用帯域は、第1の期間にわたって、セルラー通信のために占有され、少なくとも、第1の期間と同様の長さを有する期間にわたって、セルラー通信から解放される。一例として、上記第2の期間は、上記第1の期間の長さの90%~110%の長さを有する。これにより、例えば、セルラー通信と他の無線通信(例えば、無線LAN通信)との間の公平性が確保される。
 また、上記第2の期間は、上記第1の期間の長さの所定の割合の長さを有してもよい。一例として、上記第2の期間は、上記第1の期間の長さの150%の長さを有しもよい。別の例として、上記第2の期間は、上記第1の期間の長さの60%の長さを有しもよい。
 なお、上記第1の期間及び上記第2の期間の長さは、固定的であってもよい。あるいは、上記第1の期間及び上記第2の期間の長さは、可変であってもよく、上記第1の期間の長さに応じて上記第2の期間の長さが変化してもよく、又は、上記第2の期間の長さに応じて上記第1の期間の長さが変化してもよい。
  -第1の期間が連続する期間である場合
 例えば、上記第1の期間は、連続する期間である。即ち、上記共用帯域は、連続する第1の期間にわたってセルラー通信のために占有される。
 これにより、例えば、上記共用帯域をセルラー通信のためにより効率的に使用することが可能になる。より具体的には、例えば、上記共用帯域の使用の開始のためには、端末装置には、同期の獲得、システム情報の取得、及び一連の接続確立手続きなどの動作が必要になる。そのため、連続した時間にわたって上記共用帯域が使用されれば、上記動作の頻度がより少なくなり、端末装置200-1により上記共用帯域がより効率的に使用され得る。
 また、例えば、上記第2の期間は、上記第1の期間の直前又は直後の期間である。これにより、例えば、セルラーシステム1での上記共用帯域の使用の前後に、上記共用帯域が他の無線通信に使用可能な機会を確実に確保することが可能になる。
  --第1の例
 第1の例として、上記第2の期間は、上記第1の期間の直後の連続する期間である。以下、この点について、図7を参照して具体例を説明する。
 図7は、共用帯域の占有及び解放の期間の第1の例を説明するための説明図である。例えば、第1の期間61は、連続する期間であり、第2の期間63は、第1の期間61の直後の連続する期間である。即ち、共用帯域は、連続する第1の期間61にわたって、セルラー通信のために占有され、その後、少なくとも、連続する第2の期間にわたって、セルラー通信から解放される。
 これにより、例えば、セルラーシステム1は、必要に応じて、上記共用帯域の使用をより迅速に開始することが可能になる。また、上記共用帯域が上記他の無線通信に使用可能な機会がより多くなり得る。
  --第2の例
 第2の例として、上記第2の期間は、上記第1の期間の直前の期間及び上記第1の期間の直後の期間であってもよい。以下、この点について、図8を参照して具体例を説明する。
 図8は、共用帯域の占有及び解放の期間の第2の例を説明するための説明図である。例えば、第1の期間61は、連続する期間であり、第2の期間63は、第1の期間61の直前の期間及び第1の期間61の直後の期間である。即ち、共用帯域は、第2の期間63の一部の期間にわたってセルラー通信から解放された後に、連続する第1の期間61にわたってセルラー通信のために占有され、その後、第2の期間63の残りの期間にわたってセルラー通信から解放される。
 これにより、例えば、セルラーシステム1は、必要に応じて、上記共用帯域の使用を迅速に開始することが可能になる。また、上記周波数帯域がセルラー通信に使用される時間がより多くなり得る。
  --第3の例
 第3の例として、上記第2の期間は、上記第1の期間の直前の連続する期間であってもよい。以下、この点について、図9を参照して具体例を説明する。
 図9は、共用帯域の占有及び解放の期間の第3の例を説明するための説明図である。例えば、第1の期間61は、連続する期間であり、第2の期間63は、第1の期間61の直前の連続する期間である。即ち、共用帯域は、少なくとも、連続する第2の期間にわたって、セルラー通信から解放され、その後、連続する第1の期間61にわたって、セルラー通信のために占有される。
 これにより、例えば、上記共用帯域が上記他の無線通信に使用可能な機会が確保されたことを条件として、上記共用帯域がセルラー通信に使用可能になる。そのため、上記共用帯域が他の無線通信に使用可能な機会をより確実に確保することが可能になる。
  -第1の期間が不連続な期間である場合
 上記第1の期間は、不連続な期間であってもよい。そして、通信制御部151は、第3の期間内において、上記共用帯域を上記第1の期間にわたってセルラー通信のために占有し、上記共用帯域を少なくとも上記第2の期間にわたって上記セルラー通信から解放してもよい。以下、この点について、図10を参照して具体例を説明する。
 図10は、共用帯域の占有及び解放の期間の第4の例を説明するための説明図である。例えば、第1の期間61は、不連続な期間であり、第2の期間63も、不連続な期間である。第3の期間65において、不連続な第1の期間61にわたって、共用帯域がセルラー通信のために占有され、第2の期間63にわたって、共用帯域がセルラー通信から解放される。一例として、第3の期間65は、固定的な長さを有する期間であり、第3の期間65内で、共用帯域をセルラー通信に使用可能な上限時間が定められる。そして、共用帯域の占有期間(即ち、第1の期間61)が上記上限時間に達すると、第3の期間65が経過するまで、共用帯域がセルラー通信から解放される。
 これにより、上記共用帯域が上記他の無線通信に使用可能な機会を確実に確保することが可能になる。
 以上のように、通信制御部151は、上記共用帯域を上記第1の期間にわたってセルラー通信のために占有し、上記共用帯域を少なくとも上記第2の期間にわたってセルラー通信から解放する。これにより、例えば、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)が上記他の無線通信に使用可能な機会を確保し、且つ、当該周波数帯域をセルラー通信のためにある程度の時間使用し続けることが、可能になる。
 <3.3.端末装置の構成>
 次に、図11を参照して、第1の実施形態に係る端末装置200-1の構成の一例を説明する。図11は、第1の実施形態に係る端末装置200-1の構成の一例を示すブロック図である。図11を参照すると、端末装置200-1は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (無線通信部220)
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、端末装置200-1がセル10内に位置する場合に、基地局100-1からのダウンリンク信号を受信し、基地局100-1へのアップリンク信号を送信する。
 例えば、無線通信部220は、セルラーシステム1用の周波数帯域を使用して信号を送受信する。また、とりわけ本開示の実施形態では、無線通信部220は、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域(即ち、共用帯域)を使用して信号を送受信する。
 (記憶部230)
 記憶部230は、端末装置200-1の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 (処理部240)
 処理部240は、端末装置200-1の様々な機能を提供する。処理部240は、通信制御部241を含む。なお、処理部240は、通信制御部241以外の他の構成要素をさらに含み得る。
 (通信制御部241)
 通信制御部241は、端末装置200-1を制御する。
 とりわけ第1の実施形態では、通信制御部241は、端末装置200-1が上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、端末装置200を制御してもよい。例えば、通信制御部241は、基地局100-1による指示に応じて、端末装置200-1が上記第1の期間にわたって上記共用帯域を使用して信号を送信するように、端末装置200を制御してもよい。
 なお、信号の送信の具体的な手法として、第3の実施形態に説明する手法が適用されてもよい。また、信号の送信の手法として、第2の実施形態に説明する手法も適用されてもよい。
 <3.4.処理の流れ>
 次に、図12~図15を参照して、第1の実施形態に係る処理の例を説明する。
 (第1の例)
 図12は、第1の実施形態に係る処理の概略的な流れの第1の例を示すフローチャートである。当該処理は、図7に示されるような共用帯域の占有及び解放が行われる場合の例である。
 通信制御部151は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を使用するかを判定する(S301)。上記共用帯域を使用しないと判定される場合には(S301:NO)、処理はステップS301へ戻る。
 一方、上記共用帯域を使用すると判定される場合には(S301:YES)、通信制御部151は、第1の期間にわたって上記共用帯域をセルラー通信のために占有する(S303)。当該第1の期間において、セルラー通信が行われる。
 その後、通信制御部151は、第2の期間にわたって上記共用帯域をセルラー通信から解放する(S305)。そして、処理はステップS301へ戻る。
 (第2の例)
 図13は、第1の実施形態に係る処理の概略的な流れの第2の例を示すフローチャートである。当該処理は、図8に示されるような共用帯域の占有及び解放が行われる場合の例である。
 通信制御部151は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を使用するかを判定する(S311)。
 上記共用帯域を使用しないと判定される場合には(S311:NO)、通信制御部151は、上記共用帯域についての追加解放時間を算出する(S313)。そして、処理はステップS311へ戻る。なお、上記追加解放期間は、第2の期間の解放の後に、上記共用帯域をさらに解放している期間である。
 一方、上記共用帯域を使用すると判定される場合には(S311:YES)、通信制御部151は、第1の期間にわたって上記共用帯域をセルラー通信のために占有する(S315)。当該第1の期間において、セルラー通信が行われる。
 その後、通信制御部151は、第2の期間のうちの残りの期間(即ち、第2の期間と上記追加解放期間との差分の期間)にわたって上記共用帯域をセルラー通信から解放する(S317)。そして、処理はステップS311へ戻る。
 (第3の例)
 図14は、第1の実施形態に係る処理の概略的な流れの第3の例を示すフローチャートである。当該処理は、図9に示されるような共用帯域の占有及び解放が行われる場合の例である。
 通信制御部151は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を使用するかを判定する(S321)。
 上記共用帯域を使用すると判定される場合に(S321:YES)、通信制御部151は、上記共用帯域が第2の期間にわたって既に解放済みかを判定する(S323)。
 上記共用帯域が第2の期間にわたって既に解放済みであると判定される場合には(S323:YES)、通信制御部151は、第1の期間にわたって上記共用帯域をセルラー通信のために占有する(S325)。当該第1の期間において、セルラー通信が行われる。その後、処理はステップS321へ戻る。
 一方、上記共用帯域を使用しないと判定される場合(S321:NO)、及び、上記共用帯域が第2の期間にわたってまだ解放済みではないと判定される場合(S323:NO)、通信制御部151は、上記共用帯域についての解放時間を算出する(S327)。そして、処理はステップS321へ戻る。
 (第4の例)
 図15は、第1の実施形態に係る処理の概略的な流れの第4の例を示すフローチャートである。当該処理は、図10に示されるような共用帯域の占有及び解放が行われる場合の例である。上記処理は、第3の期間にわたって行われる。
 通信制御部151は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を使用するかを判定する(S331)。
 上記共用帯域を使用すると判定される場合に(S331:YES)、通信制御部151は、上記共用帯域をセルラー通信のために占有する(S333)。当該第1の期間において、セルラー通信が行われる。その後、通信制御部151は、上記共用帯域の占有期間(第1の期間)が上限に達したかを判定する(S335)。
 上記共用帯域を使用しないと判定される場合(S331:YES)、及び、上記占有期間(第1の期間)が上限に達していないと判定される場合(S335:YES)、通信制御部151は、上記共用帯域をセルラー通信から解放する(S337)。そして、処理はステップS331へ戻る。
 一方、上記占有期間(第1の期間)が上限に達したと判定される場合には(S335:YES)、通信制御部151は、第3の期間のうちの残りの期間にわたって上記共用帯域をセルラー通信から解放する(S339)。そして、処理は終了する。
 <3.5.変形例>
 (概略)
 上述した第1の実施形態の例では、例えば、基地局100-1(通信制御部151)が、第1の期間にわたって、セルラー通信のために共用帯域を占有し、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラー通信から上記共用帯域を解放する。
 一方、第1の実施形態の変形例では、端末装置200-1(通信制御部241)が、第1の期間にわたって、セルラー通信のために共用帯域を占有し、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラー通信から上記共用帯域を解放する。
 これにより、例えば、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)が上記他の無線通信に使用可能な機会を確保し、且つ、セルラーシステム1における端末装置間の無線通信(例えば、D2D通信又はLN内の無線通信)のために上記周波数帯域をある程度の時間使用し続けることが、可能になる。
 なお、第1の実施形態の変形例においても、基地局100-1(通信制御部151)は、第1の期間にわたって、セルラー通信のために共用帯域を占有し、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラー通信から上記共用帯域を解放してもよい。
 (端末装置200-1:通信制御部241)
 第1の実施形態の変形例では、通信制御部271は、共用帯域(即ち、セルラー通信と他の無線通信との間で共用される周波数帯域)を、第1の期間にわたって、上記セルラー通信のために占有し、上記共用帯域を、少なくとも、上記第1の期間に対応する第2の期間にわたって、上記セルラー通信から解放する。
 この点についての通信制御部241の説明は、主体(基地局100-1及び端末装置200-1)に関する相違を除き、上述した第1の実施形態に係る通信制御部151についての対応する説明と同じである。よって、ここでは重複する記載を省略する。
 (処理の流れ)
 第1の実施形態の変形例に係る端末装置200-1の処理の例は、主体(基地局100-1及び端末装置200-1)に関する相違を除き、図12~図15を参照して説明した基地局100-1の処理の例と同じである。よって、ここでは重複する記載を省略する。
 <<4.第2の実施形態>>
 続いて、図16~図21を参照して、本開示の第2の実施形態を説明する。
 <4.1.概略>
 まず、第2の実施形態の概略を説明する。
 -第2の実施形態に係る課題
 無線LAN規格では、CSMA/CAが採用されている。例えば、無線LAN通信に使用される周波数帯域をセルラー通信に使用するために、セルラーシステム1の装置(基地局100又は端末装置200)もCSMA/CAに基づいて動作することが考えられる。しかし、この場合には、当然ながら、無線LAN通信を行う装置が上記周波数帯域を先に使用し、セルラーシステム1の上記装置が上記周波数帯域を使用できなくなる可能性もある。即ち、セルラーシステム1の上記装置は、セルラー通信のために上記周波数帯域を確保できるとは限らない。そのため、上記セルラーシステムの無線通信に上記周波数帯域を使用し始めるのに時間がかかり得る。
 そこで、セルラー通信と他の無線通信との間で共用される周波数帯域をセルラーシステムにおいてより適切に使用することを可能にする仕組みが提供されることが望ましい。より具体的には、上記周波数帯域をセルラー通信のためにより確実に確保することを可能にする仕組みが提供されることが望ましい。
 -第2の実施形態の特徴
 第2の実施形態によれば、例えば、セルラー通信と無線LAN通信との間で共用される周波数帯域(即ち、共用帯域)を使用して信号が送信されない期間がDIFSになる前に、セルラー通信を行う無線通信装置が上記周波数帯域を使用して信号を送信し始めるように、上記無線通信装置が制御される。これにより、例えば、上記周波数帯域をセルラー通信のためにより確実に確保することが可能になる。
 また、第2の実施形態によれば、例えば、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、セルラー通信を行う無線通信装置が、セルラー通信と無線LAN通信との間で共用される周波数帯域(即ち、共用帯域)を使用してダミー信号を送信するように、上記無線通信装置が制御される。これにより、例えば、上記周波数帯域をセルラー通信のためにより確実に確保することが可能になる。
 <4.2.基地局の構成>
 次に、図16~図18を参照して、第2の実施形態に係る基地局100-2の構成の一例を説明する。図16は、第2の実施形態に係る基地局100-2の構成の一例を示すブロック図である。図16を参照すると、基地局100-2は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部160を備える。
 ここで、アンテナ部110、無線通信部120、ネットワーク通信部130及び記憶部140についての説明は、符号の違いを除き、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは処理部160のみを説明し、重複する記載を省略する。
 (処理部160)
 処理部160は、基地局100-2の様々な機能を提供する。処理部160は、通信制御部161を含む。なお、処理部160は、通信制御部161以外の他の構成要素をさらに含み得る。
 (通信制御部161)
 (a)共用帯域の確保のための第1の制御
 例えば、通信制御部161は、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記セルラー通信を行う無線通信装置が上記共用帯域を使用して信号を送信し始めるように、上記無線通信装置を制御する。上記共用帯域は、セルラーシステム1の無線通信(即ち、セルラー通信)と無線LAN規格に準拠した無線通信(即ち、無線LAN通信)との間で共用される周波数帯域である。
 さらに、例えば、通信制御部161は、上記共用帯域を使用して信号が送信されない上記期間がSIFSよりも長くなった後に、上記無線通信装置が上記共用帯域を使用して信号を送信し始めるように、上記無線通信装置を制御する。
 例えば、上記無線通信装置は、基地局100-2であり、通信制御部161は、上記共用帯域を使用して信号が送信されない期間がSIFSよりも長くなった後であってDIFSになる前に、基地局100-2が上記共用帯域を使用して信号を送信し始めるように、基地局100-2を制御する。より具体的には、例えば、処理部160(通信制御部161又は他の構成要素)は、無線通信部120による信号の受信結果に基づいて、上記共用帯域を使用して信号が送信されているかを判定する。また、処理部160(通信制御部161又は他の構成要素)は、上記共用帯域を使用して信号が送信されていない期間を計測する。そして、通信制御部161は、上記共用帯域を使用して信号が送信されていない期間がSIFSよりも長くなった後であってDIFSになる前に、無線通信部120に、上記共用帯域を使用して信号を送信させる。一例として、上記期間が、SIFSよりも長くDIFSよりも短い所定の期間になると、上記共用帯域を使用して信号が送信される。以下、この点について図17を参照して具体例を説明する。
 図17は、信号の送信のタイミングを説明するための説明図である。図17を参照すると、信号は、上記共用帯域を使用して信号が送信されていない期間がSIFSよりも長くなった後であってDIFSになる前に送信され始める。一例として、信号は、SIFSよりも長くDIFSよりも短い所定の期間の経過後に送信され始める。
 無線LAN通信を行う装置は、信号が送信されない期間がDIFS及びバックオフ時間の和に達すると、信号を送信し得る。そのため、上述したようなDIFS経過前に信号を送信し始めることにより、例えば、無線LAN通信を行う装置よりも前に、信号を送信することが可能になる。その結果、無線LAN通信を行う装置による上記共用帯域を使用した信号の送信が抑制され得る。このように、上記共用帯域がセルラー通信のためにより確実に確保され得る。
 また、上述したようなSIFS経過後に信号を送信し始めることにより、送信する信号が無線LAN通信の信号に衝突することを回避することができる。より具体的には、例えば、RTSフレーム、CTSフレーム、DATAフレーム及びACKフレームは、SIFSの時間間隔で連結される。そのため、SIFS経過前に信号が送信されると、当該信号は、CTSフレーム、DATAフレーム又はACKフレームのいずれかの信号と衝突し得る。そこで、上述したように、上記共用帯域を使用して信号が送信されていない期間がSIFSよりも長くなった後に信号が送信され始めれば、当該信号とCTSフレーム、DATAフレーム又はACKフレームの信号との衝突が回避され得る。
 (b)共用帯域の確保のための第2の制御
  -他の周波数帯域についてのフレーム開始までの信号の送信
 例えば、通信制御部161は、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記セルラー通信を行う無線通信装置が共用帯域を使用してダミー信号を送信するように、上記無線通信装置を制御する。上記共用帯域は、セルラーシステム1の無線通信(即ち、セルラー通信)と無線LAN規格に準拠した無線通信(即ち、無線LAN通信)との間で共用される周波数帯域である。
 例えば、上記無線通信装置は、基地局100-2である。また、例えば、上記共用帯域は、セルラーシステム1にとってのコンポーネントキャリア(CC)であり、上記他の周波数帯域は、セルラーシステム1にとっての他のCCである。通信制御部161は、他のCCについての無線フレームが開始するまでの期間にわたって、基地局100-2が共用帯域(CC)を使用してダミー信号を送信するように、基地局100-2を制御する。より具体的には、例えば、通信制御部161は、SIFSの経過後DIFSの経過前のタイミングから、他のCCについての無線フレームが開始するまでの期間にわたって、無線通信部120にダミー信号を送信させる。以下、この点について図18を参照して具体例を説明する。
 図18は、ダミー信号の送信の例を説明するための説明図である。図18を参照すると、共用帯域(CC)を使用して信号が送信されなくなった後に(例えば、図17に示されるように、共用帯域を使用して信号が送信されていない期間がSIFSよりも長くなった後であってDIFSになる前に)、上記共用帯域を使用してダミー信号が送信され始める。そして、他のCCの無線フレーム(及び上記共用帯域の無線フレーム)が開始するまで、上記ダミー信号が送信される。その後、上記他のCC及び上記共用帯域を使用して、無線フレームにおいて、セルラーシステムの信号が送受信される。
 上記共用帯域を使用して上記他の周波数帯域についての無線フレームが開始するまでの期間にわたってダミー信号を送信することにより、上記無線フレームの開始まで、無線LAN通信を行う装置による上記共用帯域を使用した信号の送信が抑制され得る。即ち、上記無線フレームの開始まで、上記共用帯域が確保される。そのため、例えば、セルラー通信用の他の周波数帯域についての無線フレームが開始するタイミングで、上記共用帯域についての無線フレームを開始させることができる。このように、共用帯域についての無線フレームと上記他の周波数帯域についての無線フレームとを同期させつつ、上記共用帯域をセルラー通信のためにより確実に確保することが可能になる。
 なお、上記ダミー信号は、例えば、セルラーシステムの信号(制御信号及びデータ信号)以外のいずれかの信号である。上記ダミー信号が、無線LAN通信を行う装置にとってのビジートーンとなる。
 また、上記他の周波数帯域についての無線フレームが開始するまでの期間は、換言すると、上記他の周波数帯域についての#0のサブフレームが開始するまでの期間である。
  -NAVの設定のための無線フレームの送信
 なお、上述したダミー信号の送信の代わりに、通信制御部161は、上記他の周波数帯域についての無線フレームが開始する前に、上記無線通信装置が、上記共用帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、上記無線通信装置を制御してもよい。
 例えば、上記無線通信装置は、基地局100-2である。また、上記共用帯域は、セルラーシステム1にとってのCCであってもよく、上記他の周波数帯域は、セルラーシステム1にとっての他のCCであってもよい。また、上記フレームは、RTSフレーム又はCTSフレームであってもよく、あるいはこれらに類するフレームであってもよい。通信制御部161は、他のCCについての無線フレームが開始する前に基地局100-2が上記共用帯域を使用して上記フレームを送信するように、基地局100-2を制御してもよい。より具体的には、例えば、通信制御部161は、上記フレームを生成し、無線通信部120に、他のCCについての無線フレームが開始する前に上記共用帯域を使用して上記フレームを送信させてもよい。
 なお、上記無線通信装置は、上記他の周波数帯域についての無線フレームが開始するまでの期間をカバーするNAVを設定するための持続時間情報を含む1つのフレームを送信してもよい。あるいは、上記無線通信装置は、2つ以上のフレームを異なるタイミングで送信してもよい。そして、上記2つ以上のフレームの各々が送信されるごとに、フレームを受信する装置のNAVが更新され、更新されるNAVが、上記他の周波数帯域についての無線フレームが開始するまでの期間全体をカバーしてもよい。
 上記フレームを送信されることにより、例えば、無線LAN通信を行う装置は、NAVを設定し、上記共用帯域の使用を控える。そのため、上記無線フレームの開始まで、無線LAN通信を行う装置による上記共用帯域を使用した信号の送信が抑制され得る。
 <4.3.端末装置の構成>
 次に、図19を参照して、第2の実施形態に係る端末装置200-2の構成の一例を説明する。図19は、第2の実施形態に係る端末装置200-2の構成の一例を示すブロック図である。図19を参照すると、端末装置200-2は、アンテナ部210、無線通信部220、記憶部230及び処理部250を備える。
 ここで、アンテナ部210、無線通信部220及び記憶部230についての説明は、符号の違いを除き、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは処理部250のみを説明し、重複する記載を省略する。
 (処理部250)
 処理部250は、端末装置200-2の様々な機能を提供する。処理部250は、通信制御部251を含む。なお、処理部250は、通信制御部251以外の他の構成要素をさらに含み得る。
 (通信制御部251)
 通信制御部251は、端末装置200-1を制御する。
 <4.4.処理の流れ>
 次に、図20~図21を参照して、第2の実施形態に係る処理の例を説明する。
 (第1の例)
 図20は、第2の実施形態に係る処理の概略的な流れの第1の例を示すフローチャートである。当該処理は、図17に示されるように信号が送信される場合の例である。
 処理部160(通信制御部161又は他の構成要素)は、無線通信部120による信号の受信結果に基づいて、上記共用帯域を使用して信号が送信されているかを判定する(S401)。上記共用帯域を使用して信号が送信されていると判定される場合には(S401:YES)、処理はステップS401へ戻る。
 一方、上記共用帯域を使用して信号が送信されていないと判定される場合に(S401:NO)、例えば、通信制御部161は、上記共用帯域を使用して信号が送信されていない期間が、SIFSよりも長くDIFSよりも短い所定の期間になったかを判定する(S403)。上記期間が上記所定の期間にならなかった(即ち、上記所定の期間の経過前に上記共用帯域を使用して信号が送信された)と判定される場合には(S403:NO)、処理はステップS401へ戻る。
 上記期間が上記所定の期間になったと判定される場合には(S403:YES)、処理部160による制御に応じて、基地局100-2は、上記共用帯域を使用して信号を送信し、及び/又は受信する(S405)。そして、処理は終了する。
 (第2の例)
 図21は、第2の実施形態に係る処理の概略的な流れの第2の例を示すフローチャートである。当該処理は、図18(及び図17)に示されるように信号が送信される場合の例である。
 処理部160(通信制御部161又は他の構成要素)は、無線通信部120による信号の受信結果に基づいて、上記共用帯域を使用して信号が送信されているかを判定する(S411)。上記共用帯域を使用して信号が送信されていると判定される場合には(S411:YES)、処理はステップS411へ戻る。
 一方、上記共用帯域を使用して信号が送信されていないと判定される場合に(S411:NO)、例えば、通信制御部161は、上記共用帯域を使用して信号が送信されていない期間が、SIFSよりも長くDIFSよりも短い所定の期間になったかを判定する(S413)。上記期間が上記所定の期間にならなかった(即ち、上記所定の期間の経過前に上記共用帯域を使用して信号が送信された)と判定される場合には(S413:NO)、処理はステップS411へ戻る。
 上記期間が上記所定の期間になったと判定される場合には(S413:YES)、処理部160による制御に応じて、基地局100-2は、セルラーシステム1用の他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記共用帯域を使用してダミー信号を送信する(S415)。
 さらに、基地局100-2は、上記共用帯域を使用して無線フレームにおいてセルラーシステムの信号を送信し、及び/又は受信する(S417)。そして、処理は終了する。
 <4.5.第1の変形例>
 (概略)
 (a)共用帯域の確保のための第1の制御
 上述した第2の実施形態の例では、例えば、基地局100-2が、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記共用帯域を使用して信号を送信し始める。
 一方、第2の実施形態の第1の変形例では、例えば、基地局100-2は、共用帯域を使用して信号が送信されない期間がDIFSになる前に端末装置200-2が上記共用帯域を使用して信号を送信し始めるように、端末装置200-2を制御する。そして、端末装置200-2が、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記共用帯域を使用して信号を送信し始める。
 これにより、例えば、基地局100-2により送信される信号が届かない装置にも、端末装置200-2により送信される信号が届き得る。そのため、例えば、隠れ端末問題が解決され得る。
 なお、第2の実施形態の第1の変形例においても、基地局100-2(通信制御部161)は、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記共用帯域を使用して信号を送信し始めてもよい。
 (b)共用帯域の確保のための第2の制御
 上述した第2の実施形態の例では、例えば、基地局100-2が、セルラーシステム1の無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記共用帯域を使用してダミー信号を送信する。
 一方、第2の実施形態の第1の変形例では、例えば、基地局100-2は、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって端末装置200-2が共用帯域を使用してダミー信号を送信するように、端末装置200-2を制御する。そして、端末装置200-2が、セルラーシステム1の無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記共用帯域を使用してダミー信号を送信する。
 これにより、例えば、基地局100-2により送信される信号が届かない装置にも、端末装置200-2により送信される信号が届き得る。そのため、例えば、隠れ端末問題が解決され得る。
 なお、第2の実施形態の第1の変形例においても、基地局100-2(通信制御部161)は、セルラーシステム1の無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記共用帯域を使用してダミー信号を送信してもよい。
 (基地局100-2:通信制御部161)
 (a)共用帯域の確保のための第1の制御
 上述したように、例えば、通信制御部161は、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記セルラー通信を行う無線通信装置が上記共用帯域を使用して信号を送信し始めるように、上記無線通信装置を制御する。さらに、例えば、通信制御部161は、上記共用帯域を使用して信号が送信されない上記期間がSIFSよりも長くなった後に、上記無線通信装置が上記共用帯域を使用して信号を送信し始めるように、上記無線通信装置を制御する。
 第1の変形例では、例えば、上記無線通信装置は、端末装置200-2であり、通信制御部161は、上記共用帯域を使用して信号が送信されない期間がSIFSよりも長くなった後であってDIFSになる前に、端末装置200-2が上記共用帯域を使用して信号を送信し始めるように、端末装置200-2を制御する。より具体的には、例えば、通信制御部161は、上記共用帯域を使用して信号が送信されない期間がSIFSよりも長くなった後であってDIFSになる前に上記共用帯域を使用して信号を送信し始めるように、端末装置200-2に指示する。例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
 (b)共用帯域の確保のための第2の制御
  -他の周波数帯域についてのフレーム開始までの信号の送信
 上述したように、例えば、通信制御部161は、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記セルラー通信を行う無線通信装置が共用帯域を使用してダミー信号を送信するように、上記無線通信装置を制御する。
 第1の変形例では、例えば、上記無線通信装置は、端末装置200-2である。また、例えば、上記共用帯域は、セルラーシステム1にとってのCCであり、上記他の周波数帯域は、セルラーシステム1にとっての他のCCである。通信制御部161は、他のCCについての無線フレームが開始するまでの期間にわたって、端末装置200-2が共用帯域(CC)を使用してダミー信号を送信するように、端末装置200-2を制御する。より具体的には、例えば、通信制御部161は、他のCCについての無線フレームが開始するまでの期間にわたって共用帯域(CC)を使用してダミー信号を送信するように、端末装置200-2に指示する。例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
  -NAVの設定のための無線フレームの送信
 上述したように、上述したダミー信号の送信の代わりに、通信制御部161は、上記他の周波数帯域についての無線フレームが開始する前に、上記無線通信装置が、上記共用帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、上記無線通信装置を制御してもよい。
 第1の変形例では、上記無線通信装置は、端末装置200-2であってもよい。また、上記共用帯域は、セルラーシステム1にとってのCCであってもよく、上記他の周波数帯域は、セルラーシステム1にとっての他のCCであってもよい。また、上記フレームは、RTSフレーム又はCTSフレームであってもよく、あるいはこれらに類するフレームであってもよい。通信制御部161は、他のCCについての無線フレームが開始する前に端末装置200-2が上記共用帯域を使用して上記フレームを送信するように、端末装置200-2を制御してもよい。より具体的には、例えば、通信制御部161は、他のCCについての無線フレームが開始する前に上記フレームを送信するように、端末装置200-2に指示してもよい。例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
 以上、第2の実施形態の第1の変形例に係る基地局100-2を説明した。なお、第2の実施形態の第1の変形例では、上記無線通信装置は、基地局100-2及び端末装置200-2であってもよく、上述した第2の実施形態の例と同様に、基地局100-2も信号を送信してもよい。
 (端末装置200-2:通信制御部251)
 (a)共用帯域の確保のための第1の制御
 第2の実施形態の第1の変形例では、例えば、通信制御部251は、共用帯域を使用して信号が送信されない期間がDIFSになる前に、端末装置200-2が上記共用帯域を使用して信号を送信し始めるように、端末装置200-2を制御する。
 さらに、例えば、通信制御部251は、上記共用帯域を使用して信号が送信されない上記期間がSIFSよりも長くなった後に、端末装置200-2が上記共用帯域を使用して信号を送信し始めるように、端末装置200-2を制御する。
 例えば、通信制御部251は、基地局100-2による指示に応じて、端末装置200-2を制御する。具体的には、例えば、処理部250(通信制御部251又は他の構成要素)は、無線通信部220による信号の受信結果に基づいて、上記共用帯域を使用して信号が送信されているかを判定する。また、処理部250(通信制御部251又は他の構成要素)は、上記共用帯域を使用して信号が送信されていない期間を計測する。そして、通信制御部251は、上記共用帯域を使用して信号が送信されていない期間がSIFSよりも長くなった後であってDIFSになる前に、無線通信部220に、上記共用帯域を使用して信号を送信させる。一例として、上記期間が、SIFSよりも長くDIFSよりも短い所定の期間になると、上記共用帯域を使用して信号が送信される。第2の実施形態の第1の変形例でも、例えば、図17に示されるように、端末装置200-2が信号を送信する。
 (b)共用帯域の確保のための第2の制御
  -他の周波数帯域についてのフレーム開始までの信号の送信
 第2の実施形態の第1の変形例では、例えば、通信制御部251は、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、端末装置200-2が共用帯域を使用してダミー信号を送信するように、端末装置200-2を制御する。
 例えば、通信制御部251は、基地局100-2による指示に応じて、端末装置200-2を制御する。具体的には、例えば、通信制御部251は、SIFSの経過後DIFSの経過前のタイミングから、他のCCについての無線フレームが開始するまでの期間にわたって、無線通信部220にダミー信号を送信させる。第2の実施形態の第1の変形例でも、例えば、図18に示されるように、端末装置200-2が信号を送信する。
  -NAVの設定のための無線フレームの送信
 なお、第2の実施形態の第1の変形例では、上述したダミー信号の送信の代わりに、通信制御部251は、上記他の周波数帯域についての無線フレームが開始する前に、端末装置200-2が、上記共用帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、端末装置200-2を制御してもよい。
 例えば、通信制御部251は、基地局100-2による指示に応じて、端末装置200-2を制御してもよい。具体的には、例えば、通信制御部251は、上記フレームを生成し、他のCCについての無線フレームが開始する前に上記フレームを無線通信部220に送信させてもよい。
 (処理の流れ)
 第2の実施形態の第1の変形例に係る端末装置200-2の処理の例は、主体(基地局100-2及び端末装置200-2)に関する相違を除き、図20~図21を参照して説明した基地局100-2の処理の例と同じである。よって、ここでは重複する記載を省略する。
 <4.6.第2の変形例>
 (概略)
 第2の実施形態の第1の変形例と同様に、第2の実施形態の第2の変形例でも、例えば、端末装置200-2が、共用帯域を使用して信号が送信されない期間がDIFSになる前に、上記共用帯域を使用して信号を送信し始める。また、例えば、端末装置200-2が、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、上記共用帯域を使用してダミー信号を送信する。
 とりわけ、第2の実施形態の第2の変形例では、端末装置200-2は、基地局100-2による制御(基地局100-2による指示)に応じてではなく、自主的に、上述したように上記共用帯域を使用して信号を送信する。
 これにより、例えば、セルラーシステム1における端末装置間の無線通信(例えば、セルラーシステムにおけるD2D通信又はLN内の無線通信)のために上記共用帯域をより確実に確保することが可能になる。
 (端末装置200-2:通信制御部251)
 第2の変形例に係る通信制御部251の説明は、基地局100-2の関与に関する相違を除き、第1の変形例に係る通信制御部251の説明と同じである。よって、ここでは重複する記載を省略する。
 なお、第2の変形例に係る通信制御部251は、基地局100-2による指示に応じてではなく、自主的に(例えば、共用帯域を使用してセルラーシステム1における端末装置間での無線通信を行うか否かの判断に応じて)、端末装置200-2を制御する。
 (処理の流れ)
 第2の実施形態の第2の変形例に係る端末装置200-2の処理の例は、主体(基地局100-2及び端末装置200-2)に関する相違を除き、図20~図21を参照して説明した基地局100-2の処理の例と同じである。よって、ここでは重複する記載を省略する。
 <4.7.第2の実施形態と第1の実施形態との組合せ>
 第2の実施形態は、上述した第1の実施形態と組合せられてもよい。例えば、第2の実施形態に係る動作が、上述した第1の実施形態に適用されてもよい。
 例えば、基地局100-1の通信制御部151は、基地局100-2の通信制御部161の動作をさらに行ってもよく、端末装置200-1の通信制御部241は、端末装置200-2の通信制御部251の動作をさらに行ってもよい。
 具体的には、例えば、第1の実施形態において第1の期間にわたって共用帯域をセルラー通信のために占有する際に、第2の実施形態に係る手法が用いられてもよい。具体的には、例えば、セルラー通信を行う無線通信装置(例えば、基地局100又は端末装置200)が、第1の期間にわたって共用帯域を使用して信号を送信する際に、当該共用帯域を使用して信号が送信されない期間がDIFSになる前に上記共用帯域を使用して信号を送信し始めてもよい。また、例えば、セルラー通信を行う無線通信装置(例えば、基地局100又は端末装置200)が、第1の期間にわたって共用帯域を使用して信号を送信する際に、他の周波数帯域の無線フレームが開示するまでの期間にわたって、共用帯域を使用してダミー信号を送信してもよい。これにより、例えばより確実に共用帯域が確保され得る。
 <<5.第3の実施形態>>
 続いて、図22~図30を参照して、本開示の第3の実施形態を説明する。
 <5.1.概略>
 まず、第3の実施形態の概略を説明する。
 -第3の実施形態に係る課題
 例えば、無線LAN通信を行う装置は、周波数帯域(チャネル)を使用して信号が送信されない期間がDIFS及びバックオフ時間の和に達すると、当該周波数帯域を使用して信号(例えば、RTSフレームの信号)を送信し得る。当該DIFSは、例えば、LTEのシンボル(OFDMシンボル又はSC-FDMAシンボル)よりも短い。
 例えば、セルラー通信と無線LAN通信との間で周波数帯域(例えば、無線LANのチャネル)が共用される。この場合に、例えば、上記周波数帯域がセルラー通信に使用されている間であっても、いずれかのシンボルでは、上記周波数帯域を使用してセルラーシステムのいずれの信号も送信されない可能性がある。そのため、無線LAN通信を行う装置は、上記周波数帯域がセルラー通信に使用されている間であっても、上記周波数帯域を使用して信号(例えば、RTSフレームの信号)を送信する可能性がある。そのため、上記周波数帯域においてセルラー通信と無線LAN通信との間での干渉が発生し、上記セルラー通信及び/又は上記他の無線通信の通信品質が低下する可能性がある。
 そこで、セルラー通信と他の無線通信との間で共用される周波数帯域をセルラーシステムにおいてより適切に使用することを可能にする仕組みが提供されることが望ましい。より具体的には、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域がセルラー通信に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことを可能にする仕組みが提供されることが望ましい。
 -第3の実施形態の特徴
 第3の実施形態によれば、いずれの時間にも、セルラー通信を行う無線通信装置が、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)を使用して信号を送信するように、上記無線通信装置が制御される。これにより、例えば、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域がセルラー通信に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことが可能になる。
 <5.2.基地局の構成>
 次に、図22~図27を参照して、第3の実施形態に係る基地局100-3の構成の一例を説明する。図22は、第3の実施形態に係る基地局100-3の構成の一例を示すブロック図である。図22を参照すると、基地局100-3は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部170を備える。
 ここで、アンテナ部110、無線通信部120、ネットワーク通信部130及び記憶部140についての説明は、符号の違いを除き、第1の実施形態と第3の実施形態との間に差異はない。よって、ここでは処理部170のみを説明し、重複する記載を省略する。
 (処理部170)
 処理部170は、基地局100-3の様々な機能を提供する。処理部170は、通信制御部171を含む。なお、処理部170は、通信制御部171以外の他の構成要素をさらに含み得る。
 (通信制御部171)
 通信制御部171は、いずれの時間にも、セルラー通信を行う無線通信装置が共用帯域を使用して信号を送信するように、上記無線通信装置を制御する。上記共用帯域は、セルラーシステム1の無線通信(即ち、セルラー通信)と他の無線通信との間で共用される周波数帯域である。
 (a)他の無線通信
 例えば、上記他の無線通信は、無線LAN規格に準拠した無線通信(即ち、無線LAN通信)である。この場合に、上記共用帯域は、セルラー通信と無線LAN通信との間で共用される。上記共用帯域は、例えば、無線LANのチャネルである。
 (b)時間の単位
 通信制御部171は、各シンボルで、上記無線通信装置が上記共用帯域を使用して信号を送信するように、上記無線通信装置を制御する。上記シンボルは、例えば、OFDMシンボル又はSC-FDMAシンボルである。これにより、例えば、無信号の時間をなくすことが可能になる。
 (c)無線通信装置
 上記無線通信装置は、基地局100-3及び端末装置200-3のうちの少なくとも一方である。
  -FDDのケース
   --ダウンリンク帯域
 第1の例として、セルラーシステム1においてFDDが採用され、上記共用帯域は、セルラーシステム1においてダウンリンク帯域として使用される。この場合に、上記無線通信装置は、基地局100-3である。即ち、通信制御部171は、基地局100-3がいずれの時間にも共用帯域(ダウンリンク帯域)を使用して信号を送信するように、基地局100-3を制御する。
 具体的には、例えば、通信制御部171は、各シンボルにおける上記共用帯域内の1つ以上のリソースエレメントに、信号をマッピングする。これにより、基地局100-3は、各シンボルで、上記共用帯域を使用して信号を送信する。
   --アップリンク帯域
 第2の例として、セルラーシステム1においてFDDが採用され、上記共用帯域は、セルラーシステム1においてアップリンク帯域として使用される。この場合に、上記無線通信装置は、端末装置200-3である。即ち、通信制御部171は、基地局100-3がいずれの時間にも上記共用帯域(アップリンク帯域)を使用して信号を送信するように、端末装置200-3を制御する。
 具体的には、例えば、通信制御部171は、アップリンクについて、いずれの時間にも上記共用帯域を使用して信号を送信するように、端末装置200-3に指示する。
これにより、例えば、端末装置200-3が、いずれの時間にも(各シンボルで)上記共用帯域を使用して信号を送信し得る。なお、例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
  -TDDのケース
 第3の例として、セルラーシステム1においてTDDが採用され、上記共用帯域は、セルラーシステム1においてダウンリンク及びアップリンクの帯域として使用される。この場合に、例えば、上記無線通信装置は、基地局100-3及び端末装置200-3である。
 例えば、通信制御部171は、基地局100-3がいずれのダウンリンク時間にも上記共用帯域を使用して信号を送信するように、基地局100-3を制御する。具体的には、例えば、通信制御部171は、ダウンリンクサブフレームについて、各シンボルにおける上記共用帯域内の1つ以上のリソースエレメントに、信号をマッピングする。これにより、基地局100-3は、ダウンリンクサブフレーム内の各シンボルで、上記共用帯域を使用して信号を送信する。
 また、例えば、通信制御部171は、端末装置200-3がいずれのアップリンク時間にも上記共用帯域を使用して信号を送信するように、端末装置200-3を制御する。具体的には、例えば、通信制御部171は、アップリンクについて、いずれの時間にも上記共用帯域を使用して信号を送信するように、端末装置200-3に指示する。これにより、例えば、端末装置200-3が、いずれのアップリンク時間にも(アップリンクサブフレーム内の各シンボルで)上記共用帯域を使用して信号を送信し得る。なお、例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
 (d)送信電力
 例えば、通信制御部171は、いずれの時間にも、上記共用帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、上記無線通信装置を制御する。
 例えば、上記無線通信装置は、基地局100-3であり、通信制御部171は、ダウンリンクについて、いずれの時間にも、上記共用帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、基地局100-3を制御する。具体的には、例えば、通信制御部171は、各シンボルで上記共用帯域を使用して送信される信号に上記所定の送信電力以上の電力を割り当てる。
 また、例えば、上記無線通信装置は、端末装置200-3であり、通信制御部171は、アップリンクについて、いずれの時間にも、上記共用帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、端末装置200-3を制御する。具体的には、例えば、通信制御部171は、上記共用帯域を使用して送信される信号の送信電力を、端末装置200-3に指示する。
 これにより、例えば、他の無線通信(例えば、無線LAN通信)を行う装置において、上記信号の受信電力が所望の電力に達し得る。その結果、当該装置が上記共用帯域を使用した信号の送信をより確実に控え得る。
 (e)信号の送信の手法
  -ダミー信号の送信
 例えば、通信制御部171は、少なくとも、上記共用帯域を使用してセルラーシステム1のデータ信号及び制御信号が送信されないシンボルで、基地局100-3が上記共用帯域を使用してダミー信号を送信するように、基地局100-3を制御する。これにより、例えば、ダウンリンクの各シンボルで確実に信号を送信することが可能になる。
 なお、上記ダミー信号は、例えば、セルラーシステムの信号(制御信号及びデータ信号)以外のいずれかの信号である。上記ダミー信号が、無線LAN通信を行う装置にとってのビジートーンとなる。
  -一部の無線リソースでのダミー信号の送信
 例えば、通信制御部171は、少なくとも上記シンボルで、上記共用帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中で基地局100-3が上記ダミー信号を送信するように、基地局100-3を制御する。
 具体的には、例えば、通信制御部171は、少なくとも、データ信号及び制御信号が送信されないシンボルについて、上記共用帯域内の1つ以上のリソースエレメント(RE)にダミー信号をマッピングする。
   --一部のリソースブロックの中での送信
 例えば、上記一部の無線リソースは、上記共用帯域にわたって周波数方向に並ぶリソースブロック(Resource Block:RB)のうちの一部のリソースブロックである。即ち、基地局100-3は、上記共用帯域にわたって周波数方向に並ぶRBのうちの一部のRBの中でダミー信号を送信する。以下、この点について、図23及び図24を参照して具体例を説明する。
 図23は、ダミー信号が送信される一部のリソースブロック(RB)の例を説明するための説明図である。図23を参照すると、共用帯域71及び複数のスロットにわたって並ぶRBが示されている。この例では、各スロット内で共用帯域71にわたって周波数方向に並ぶRBのうちの1つの特定のRBの中で、ダミー信号が送信される。なお、その他のRBでは、ダミー信号が送信されない。
 図24は、ダミー信号が送信されるリソースエレメント(RE)の第1の例を説明するための説明図である。図24を参照すると、(例えば、図23において示された)ダミー信号が送信される一部のRBのうちの1つが示されている。この例では、RBに含まれるREのうちの、CRS(Cell-specific Reference Signal)用のREを除く全てのREの中で、ダミー信号が送信される。
 これにより、例えば、ダミー信号が送信されないRBを割り当てることが可能になる。よって、例えば、後方互換性がより容易に担保され得る。
 なお、図23の例では、1つのRBの中でのみダミー信号が送信されるが、当然ながら、2つ以上のRBの中でダミー信号が送信されてもよい。また、図23の例では、ダミー信号が送信されるRBの帯域はスロット間で共通であるが、当然ながら、ダミー信号が送信されるRBの帯域はスロット間で異なってもよい。
 また、図24の例では、RBの中の、CRS用のREを除く全てのREの中で、ダミー信号が送信されるが、当然ながら、RBの中の一部のREの中で、ダミー信号が送信されてもよい。一例として、RBの12個のサブキャリアのうちの1つ以上のサブキャリアにおいて、ダミー信号が送信されなくてもよい。別の例として、RBの7個のシンボルのうちの、他の信号が送信される1つ以上のシンボルで、ダミー信号が送信されなくてもよい。具体例として、PDCCH及びPCFICHなどの制御チャネルの信号が送信される1つ以上のシンボル(即ち、サブフレームの第1スロットの中の1番目から3番目のOFDMシンボル)では、ダミー信号が送信されなくてもよい。また、別の具体例として、データ信号が送信される1つ以上のシンボルでは、ダミー信号が送信されなくてもよい。
   --各リソースブロックの中での送信
 なお、上記一部の無線リソースは、上記共用帯域にわたって周波数方向に並ぶ各リソースブロックに含まれる一部のリソースエレメントであってもよい。即ち、基地局100-3は、上記共用帯域にわたって周波数方向に並ぶ各RBに含まれる一部のリソースエレメントでダミー信号を送信してもよい。以下、この点について、図25を参照して具体例を説明する。
 図25は、ダミー信号が送信されるリソースエレメント(RE)の第2の例を説明するための説明図である。図25を参照すると、各RBの中でダミー信号が送信される場合のRBが示されている。この例では、各シンボル内でRBにわたって周波数方向に並ぶ12個のREのうちの特定の1つ又は2つのREの中で、ダミー信号が送信される。なお、その他のREでは、ダミー信号が送信されない。
 なお、図25の例では、2つのサブキャリアのREの中でのみダミー信号が送信されるが、当然ながら、1つのサブキャリアのREの中でダミー信号が送信されてもよく、3つ以上のサブキャリアのREの中でダミー信号が送信されてもよい。また、図25の例では、ダミー信号が送信されるREのサブキャリアはシンボル間で共通であるが、当然ながら、ダミー信号が送信されるREのサブキャリアはシンボル間で異なってもよい。また、RBの7個のシンボルのうちの、他の信号が送信される1つ以上のシンボルで、ダミー信号が送信されなくてもよい。具体例として、PDCCH及びPCFICHなどの制御チャネルの信号が送信される1つ以上のシンボル(即ち、サブフレームの第1スロットの中の1番目から3番目のOFDMシンボル)では、ダミー信号が送信されなくてもよい。別の具体例として、データ信号が送信される1つ以上のシンボルでは、ダミー信号が送信されなくてもよい。
 (f)複数の端末装置による信号の送信
  -複数の端末装置への指示
 例えば、通信制御部171は、アップリンクについて、いずれの時間にも上記共用帯域を使用して信号を送信するように、複数の端末装置200-3の各々に指示する。例えば、この指示は、RRCシグナリング又はシステム情報により行われ得る。
 これにより、例えば、複数の端末装置200-3が信号を送信するので、より広い領域に信号が到達する。そのため、他の無線通信(例えば、無線LAN通信)を行う装置による上記共用帯域を使用した信号の送信が、より確実に抑制され得る。
  -ダミー信号を送信する無線リソース
 また、例えば、通信制御部171は、アップリンクについて、少なくとも、上記共用帯域を使用してセルラーシステム1のデータ信号及び制御信号が送信されないシンボルで、上記共用帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中で上記ダミー信号を送信するように、複数の端末装置に指示する。
 具体的には、例えば、通信制御部171は、ダミー信号の送信を複数の端末装置に指示する。また、通信制御部171は、この指示の際に、ダミー信号を送信する無線リソースを指定する。
   --共通の無線リソース
 上記一部の無線リソースは、複数の端末装置200-3の間で共通である。即ち、通信制御部171は、アップリンクについて、少なくとも上記シンボルで、上記複数の端末装置200-3間で共通の無線リソースの中で上記ダミー信号を送信するように、上記複数の端末装置200-3に指示する。以下、図26を参照して、当該無線リソースの具体例を説明する。
 図26は、複数の端末装置200-3によりダミー信号が送信される無線リソースの第1の例を説明するための説明図である。図26を参照すると、共用帯域71及び複数のスロットにわたって並ぶRBが示されている。この例では、複数の端末装置200-3は、各スロット内で共用帯域71にわたって周波数方向に並ぶRBのうちの同一のRBの中で、ダミー信号を送信する。
 これにより、例えば、セルラーシステム1において、ダミー信号が送信されないより多くのRBを割り当てることが可能になる。
   --別々の無線リソース
 なお、上記一部の無線リソースは、複数の端末装置200-3の少なくとも2つの間で異なってもよい。即ち、通信制御部171は、アップリンクについて、少なくとも上記シンボルで、異なる無線リソースの中で上記ダミー信号を送信するように、上記複数の端末装置200-3のうちの少なくとも2つに指示してもよい。以下、図27を参照して、当該無線リソースの具体例を説明する。
 図27は、複数の端末装置200-3によりダミー信号が送信される無線リソースの第2の例を説明するための説明図である。図27を参照すると、共用帯域71及び複数のスロットにわたって並ぶRBが示されている。この例では、第1~第3の端末装置200-3は、各スロット内で共用帯域71にわたって周波数方向に並ぶRBのうちの異なるRBの中で、ダミー信号を送信する。
 以上のように、通信制御部171は、いずれの時間にも、セルラー通信を行う無線通信装置が共用帯域を使用して信号を送信するように、上記無線通信装置を制御する。これにより、例えば、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域(即ち、共用帯域)がセルラー通信に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことが可能になる。なお、この手法によれば、例えば、NAVを設定できない無線LAN通信装置が上記周波数帯域(即ち、共用帯域)を使用することも防ぐことが可能になる。
 <5.3.端末装置の構成>
 次に、図28を参照して、第3の実施形態に係る端末装置200-3の構成の一例を説明する。図28は、第3の実施形態に係る端末装置200-3の構成の一例を示すブロック図である。図28を参照すると、端末装置200-3は、アンテナ部210、無線通信部220、記憶部230及び処理部260を備える。
 ここで、アンテナ部210、無線通信部220及び記憶部230についての説明は、符号の違いを除き、第1の実施形態と第3の実施形態との間に差異はない。よって、ここでは処理部260のみを説明し、重複する記載を省略する。
 (処理部260)
 処理部260は、端末装置200-3の様々な機能を提供する。処理部260は、通信制御部261を含む。なお、処理部260は、通信制御部261以外の他の構成要素をさらに含み得る。
 (通信制御部261)
 通信制御部261は、アップリンクについて、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように、端末装置200-3を制御する。上記共用帯域は、セルラー通信と他の無線通信との間で共用される周波数帯域である。
 なお、上記周波数帯域は、例えば、FDDが採用される場合のアップリンク帯域であり、又は、TDDが採用される場合のダウンリンク及びアップリンクの帯域である。
 (a)他の無線通信、時間の単位
 例えば、上記他の無線通信は、無線LAN規格に準拠した無線通信(即ち、無線LAN通信)である。
 また、例えば、通信制御部261は、各シンボルで、端末装置200-3が上記共用帯域を使用して信号を送信するように、端末装置200-3を制御する。上記シンボルは、例えば、SC-FDMAシンボルである。
 (b)制御のトリガ
 例えば、通信制御部261は、基地局100-3による指示に応じて、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように端末装置200-3を制御する。
 (c)送信電力
 例えば、通信制御部261は、いずれの時間にも、上記共用帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、端末装置200-3を制御する。具体的には、例えば、通信制御部261は、各シンボルで上記共用帯域を使用して送信される信号に上記所定の送信電力以上の電力を割り当てる。なお、例えば、当該所定の送信電力は、基地局100-3により指示される。
 これにより、例えば、他の無線通信(例えば、無線LAN通信)を行う装置において、上記信号の受信電力が所望の電力に達し得る。その結果、当該装置が上記共用帯域を使用した信号の送信をより確実に控え得る。
 (d)信号の送信の手法
  -ダミー信号の送信
 例えば、通信制御部261は、少なくとも、上記共用帯域を使用してセルラーシステム1のデータ信号及び制御信号が送信されないシンボルで、端末装置200-3が上記共用帯域を使用してダミー信号を送信するように、端末装置200-3を制御する。これにより、例えば、アップリンクの各シンボルで確実に信号を送信することが可能になる。
 なお、端末装置200-3によるダミー信号の送信の具体的な手法の説明は、リンク方向(ダウンリンク及びアップリンク)に関する相違を除き、上述した、基地局100-3によるダミー信号の送信の具体的な手法の説明と同じである。よって、ここでは重複する記載を省略する。
 以上のように、通信制御部261は、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように、端末装置200-3を制御する。これにより、例えば、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域(即ち、共用帯域)がアップリンク通信に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことが可能になる。
 <5.4.処理の流れ>
 次に、図29及び図30を参照して、第3の実施形態に係る処理の例を説明する。
 (基地局による処理)
 図29は、第3の実施形態に係る基地局100-3による処理の概略的な流れの一例を示すフローチャートである。
 通信制御部171は、対象のシンボルを選択する(S501)。
 そして、通信制御部171は、対象のシンボルについて、共用帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースに、ダミー信号をマッピングする(S503)。
 共用帯域を使用したセルラー通信が終了する場合には(S505:YES)、処理は終了する。そうでなければ(S505:NO)、通信制御部171は、次のシンボルを対象シンボルとして選択する(S501)。
 (端末装置による処理)
 図30は、第3の実施形態に係る端末装置200-3による処理の概略的な流れの一例を示すフローチャートである。当該処理は、基地局100-3による指示に応じて端末装置200-3により実行される。
 通信制御部261は、対象のシンボルを選択する(S511)。
 そして、通信制御部261は、対象のシンボルについて、共用帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースに、ダミー信号をマッピングする(S513)。
 共用帯域を使用したセルラー通信が終了する場合には(S515:YES)、処理は終了する。そうでなければ(S515:NO)、通信制御部261は、次のシンボルを対象シンボルとして選択する(S511)。
 <5.5.変形例>
 (概略)
 上述した第3の実施形態の例では、例えば、基地局100-3は、アップリンクについて、いずれの時間にも(例えば、各シンボルで)共用帯域を使用して信号を送信するように、端末装置200-3に指示する。また、例えば、端末装置200-3は、基地局100-3による指示に応じて、いずれの時間にも(例えば、各シンボルで)共用帯域を使用して信号を送信する。
 一方、第3の実施形態の変形例では、端末装置200-3は、基地局100-3による指示に応じてではなく、自主的に、いずれの時間にも(例えば、各シンボルで)共用帯域を使用して信号を送信する。
 これにより、例えば、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおける端末装置間の無線通信(例えば、D2D通信又はLN内の無線通信)に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことが可能になる。
 (端末装置200-3:通信制御部261)
 第3の実施形態の変形例では、通信制御部261は、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように、端末装置200-3を制御する。
 この点についての通信制御部261の説明は、基地局の関与及びリンク方向に関する相違を除き、上述した第3の実施形態に係る通信制御部261の説明と同じである。よって、ここでは重複する記載を省略する。
 なお、上述した第3の実施形態の例では、例えば、通信制御部261は、基地局100-3による指示に応じて、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように端末装置200-3を制御する。一方、第3の実施形態の変形例では、通信制御部261は、自主的に、(例えば、共用帯域がセルラー通信に使用される期間において)いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように端末装置200-3を制御する。
 また、上述した第3の実施形態の例では、例えば、通信制御部261は、アップリンクについて、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように、端末装置200-3を制御する。一方、第3の実施形態の変形例では、例えば、通信制御部261は、セルラーシステム1における端末装置間の無線通信の際に、いずれの時間にも端末装置200-3が共用帯域を使用して信号を送信するように、端末装置200-3を制御する。
 (処理の流れ)
 第3の実施形態の変形例に係る端末装置200-3の処理の例は、図30を参照して説明した端末装置200-3の処理の例と同じである。よって、ここでは重複する記載を省略する。
 <5.6.第3の実施形態と第1の実施形態/第2の実施形態との組合せ>
 (第3の実施形態と第1の実施形態との組合せ)
 第3の実施形態は、上述した第1の実施形態と組合せられてもよい。例えば、第3の実施形態に係る動作が、上述した第1の実施形態に適用されてもよい。
 例えば、基地局100-1の通信制御部151は、基地局100-3の通信制御部171の動作をさらに行ってもよく、端末装置200-1の通信制御部241は、端末装置200-3の通信制御部261の動作をさらに行ってもよい。
 具体的には、例えば、第1の実施形態において第1の期間にわたって共用帯域をセルラー通信のために占有する際に、第3の実施形態に係る手法が用いられてもよい。具体的には、例えば、セルラー通信を行う無線通信装置(例えば、基地局100又は端末装置200)が、第1の期間にわたって、いずれの時間にも(例えば、各シンボルで)共用帯域を使用して信号を送信してもよい。これにより、例えば、第1の期間にわたって他の無線通信(例えば、無線LAN通信)のための共用帯域の使用が防がれる。よって、共用帯域がセルラー通信のためにより確実に占有され得る。
 (第3の実施形態と第2の実施形態との組合せ)
 第3の実施形態は、上述した第2の実施形態と組合せられてもよい。例えば、第3の実施形態に係る動作が、上述した第2の実施形態に適用されてもよい。
 例えば、基地局100-2の通信制御部161は、基地局100-3の通信制御部171の動作をさらに行ってもよく、端末装置200-2の通信制御部251は、端末装置200-3の通信制御部261の動作をさらに行ってもよい。
 具体的には、例えば、第2の実施形態において共用帯域を使用して信号を送信する際に、第3の実施形態に係る手法が用いられてもよい。具体的には、例えば、セルラー通信を行う無線通信装置(例えば、基地局100又は端末装置200)が、共用帯域を使用して信号が送信されない期間がDIFSになる前に共用帯域を使用して信号を送信し始め、その後、(いずれかの期間にわたり)いずれの時間にも(例えば、各シンボルで)共用帯域を使用して信号を送信してもよい。これにより、例えば、共用帯域をセルラー通信のためにより確実に確保し、その後、当該共用帯域セルラー通信に継続的に使用することが可能になる。
 なお、当然ながら、第1~第3の実施形態が全て組み合せられてもよい。
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)として実現されてもよい。
 <6.1.基地局に関する応用例>
 (第1の応用例)
 図31は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図31に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図31にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図31に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図31に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図31には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 さらに、無線通信インタフェース825は、セルラー通信方式に加えて、無線LAN通信方式をサポートしてもよく、その場合に、無線LAN通信方式のBBプロセッサ826及びRF回路827を含んでもよい。
 図31に示したeNB800において、図6を参照して説明した通信制御部151は、無線通信インタフェース825(例えば、BBプロセッサ826)において実装されてもよい。あるいは、通信制御部151の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又コントローラ821を含むモジュールを搭載し、当該モジュールにおいて通信制御部151が実装されてもよい。この場合に、上記モジュールは、プロセッサを通信制御部151として機能させるためのプログラム(換言すると、プロセッサに通信制御部151の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを通信制御部151として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又コントローラ821が当該プログラムを実行してもよい。以上のように、通信制御部151を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを通信制御部151として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。これらの点については、図16を参照して説明した通信制御部161、及び図22を参照して説明した通信制御部171も、通信制御部151と同様である。
 また、図31に示したeNB800において、図6を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。
 (第2の応用例)
 図32は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図32に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図32にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図31を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図31を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図32に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図32には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 さらに、無線通信インタフェース855は、セルラー通信方式に加えて、無線LAN通信方式をサポートしてもよく、その場合に、無線LAN通信方式のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図32に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図32には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図32に示したeNB830において、図6を参照して説明した通信制御部151は、無線通信インタフェース855(例えば、BBプロセッサ856)において実装されてもよい。あるいは、通信制御部151の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又コントローラ851を含むモジュールを搭載し、当該モジュールにおいて通信制御部151が実装されてもよい。この場合に、上記モジュールは、プロセッサを通信制御部151として機能させるためのプログラム(換言すると、プロセッサに通信制御部151の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを通信制御部151として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又コントローラ851が当該プログラムを実行してもよい。以上のように、通信制御部151を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを通信制御部151として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。これらの点については、図16を参照して説明した通信制御部161、及び図22を参照して説明した通信制御部171も、通信制御部151と同様である。
 また、図32に示したeNB830において、例えば、図6を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。
 <6.2.端末装置に関する応用例>
 (第1の応用例)
 図33は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図33に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図33には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、無線LAN通信方式をサポートしてもよく、その場合に、無線LAN通信方式のBBプロセッサ913及びRF回路914を含んでもよい。また、無線通信インタフェース912は、近距離無線通信方式又は近接無線通信方式などのさらに他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図33に示したように複数のアンテナ916を有してもよい。なお、図33にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図33に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図33に示したスマートフォン900において、図11を参照して説明した通信制御部241は、無線通信インタフェース912(例えば、BBプロセッサ913)において実装されてもよい。あるいは、通信制御部241の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて通信制御部241が実装されてもよい。この場合に、上記モジュールは、プロセッサを通信制御部241として機能させるためのプログラム(換言すると、プロセッサに通信制御部241の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを通信制御部241として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、通信制御部241を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを通信制御部241として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。これらの点については、図19を参照して説明した通信制御部251、及び図28を参照して説明した通信制御部261も、通信制御部241と同様である。
 また、図33に示したスマートフォン900において、例えば、図11を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。
 (第2の応用例)
 図34は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図34に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図34には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、無線LAN通信方式をサポートしてもよく、その場合に、無線LAN通信方式のBBプロセッサ934及びRF回路935を含んでもよい。また、無線通信インタフェース933は、近距離無線通信方式又は近接無線通信方式などのさらに他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図34に示したように複数のアンテナ937を有してもよい。なお、図34にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図34に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図34に示したカーナビゲーション装置920において、図11を参照して説明した通信制御部241は、無線通信インタフェース933(例えば、BBプロセッサ934)において実装されてもよい。あるいは、通信制御部241の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて通信制御部241が実装されてもよい。この場合に、上記モジュールは、プロセッサを通信制御部241として機能させるためのプログラム(換言すると、プロセッサに通信制御部241の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを通信制御部241として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、通信制御部241を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを通信制御部241として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。これらの点については、図19を参照して説明した通信制御部251、及び図28を参照して説明した通信制御部261も、通信制御部241と同様である。
 また、図34に示したカーナビゲーション装置920において、例えば、図11を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、通信制御部241(又は、通信制御部251若しくは通信制御部261)を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<7.まとめ>>
 ここまで、図1~図34を参照して、本開示の実施形態に係る装置及び各処理を説明した。
 (第1の実施形態)
 第1の実施形態によれば、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)は、第1の期間にわたって、上記セルラー通信のために占有され、少なくとも、上記1の期間に対応する第2の期間にわたって、上記セルラー通信から解放される。
 これにより、例えば、上記周波数帯域(即ち、共用帯域)が上記他の無線通信に使用可能な機会を確保し、且つ、当該周波数帯域をセルラー通信のためにある程度の時間使用し続けることが、可能になる。
 (第2の実施形態)
 第2の実施形態によれば、例えば、セルラー通信と無線LAN通信との間で共用される周波数帯域(即ち、共用帯域)を使用して信号が送信されない期間がDIFSになる前に、セルラー通信を行う無線通信装置が上記周波数帯域を使用して信号を送信し始めるように、上記無線通信装置が制御される。
 これにより、例えば、上記周波数帯域をセルラー通信のためにより確実に確保することが可能になる。
 また、第2の実施形態によれば、例えば、セルラー通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、セルラー通信を行う無線通信装置が、セルラー通信と無線LAN通信との間で共用される周波数帯域(即ち、共用帯域)を使用してダミー信号を送信するように、上記無線通信装置が制御される。
 これにより、例えば、上記周波数帯域をセルラー通信のためにより確実に確保することが可能になる。
 (第3の実施形態)
 第3の実施形態によれば、いずれの時間にも、セルラー通信を行う無線通信装置が、セルラー通信と他の無線通信との間で共用される周波数帯域(即ち、共用帯域)を使用して信号を送信するように、上記無線通信装置が制御される。
 これにより、例えば、セルラー通信と他の無線通信(例えば、無線LAN通信)との間で共用される周波数帯域がセルラー通信に使用されている間に上記周波数帯域が上記他の無線通信に使用されることを防ぐことが可能になる。
 以上のように、本開示の実施形態によれば、例えば、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を当該セルラーシステムにおいてより適切に使用することが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、セルラーシステムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、他の通信規格に準拠したシステムであってもよい。
 また、例えば、セルラーシステムの無線通信とは異なる他の無線通信が無線LAN通信(即ち、無線LAN規格に準拠した無線通信)である例を説明したが、本開示は係る例に限定されない。例えば、上記他の無線通信は、無線LAN通信以外の無線通信(例えば、CSMAを採用する他の通信規格に準拠した無線通信)であってもよい。
 また、本明細書の各処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、各処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、基地局又は端末装置)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、通信制御部)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記憶した記憶媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、完成品、又は完成品のためのモジュール(部品、処理回路若しくはチップなど))も提供されてもよい。また、上記装置の構成要素(例えば、通信制御部)の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放する制御部、
を備える装置。
(2)
 前記第1の期間は、前記セルラーシステムの1無線フレーム以上の期間である、前記(1)に記載の装置。
(3)
 前記第1の期間は、連続する期間である、前記(1)に記載の装置。
(4)
 前記第2の期間は、前記第1の期間の直前又は直後の期間である、前記(3)に記載の装置。
(5)
 前記第2の期間は、前記第1の期間の直後の連続する期間である、前記(4)に記載の装置。
(6)
 前記第2の期間は、前記第1の期間の直前の期間及び前記第1の期間の直後の期間である、前記(4)に記載の装置。
(7)
 前記第2の期間は、前記第1の期間の直前の連続する期間である、前記(4)に記載の装置。
(8)
 前記第1の期間は、不連続な期間であり、
 前記制御部は、第3の期間内において、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を少なくとも前記第2の期間にわたって前記セルラーシステムの前記無線通信から解放する、
前記(3)に記載の装置。
(9)
 前記第2の期間は、前記第1の期間の長さの90%~110%の長さを有する、前記(1)~(8)のいずれか1項に記載の装置。
(10)
 前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が前記第1の期間にわたって前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う無線通信装置を制御することにより、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有する、前記(1)~(9)のいずれか1項に記載の装置。
(11)
 前記制御部は、いずれの時間にも、前記無線通信装置が前記周波数帯域を使用して信号を送信するように、前記無線通信装置を制御する、前記(10)に記載の装置。
(12)
 前記制御部は、いずれの時間にも、前記周波数帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、前記無線通信装置を制御する、前記(11)に記載の装置。
(13)
 前記制御部は、各シンボルで、前記無線通信装置が前記周波数帯域を使用して信号を送信するように、前記無線通信装置を制御する、前記(11)又は(12)に記載の装置。
(14)
 前記制御部は、少なくとも、前記周波数帯域を使用して前記セルラーシステムのデータ信号及び制御信号が送信されないシンボルで、前記無線通信装置が前記周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御する、前記(13)に記載の装置。
(15)
 前記制御部は、少なくとも前記シンボルで、前記周波数帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中で前記無線通信装置が前記ダミー信号を送信するように、前記無線通信装置を制御する、前記(14)に記載の装置。
(16)
 前記一部の無線リソースは、前記周波数帯域にわたって周波数方向に並ぶリソースブロックのうちの一部のリソースブロックである、前記(15)に記載の装置。
(17)
 前記一部の無線リソースは、前記周波数帯域にわたって周波数方向に並ぶ各リソースブロックに含まれる一部のリソースエレメントである、前記(15)に記載の装置。
(18)
 前記装置は、前記セルラーシステムの無線通信を行う基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールであり、
 前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う端末装置に指示する、
前記(11)~(17)のいずれか1項に記載の装置。
(19)
 前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う複数の端末装置の各々に指示する、前記(18)に記載の装置。
(20)
 前記制御部は、アップリンクについて、少なくとも、前記周波数帯域を使用して前記セルラーシステムのデータ信号及び制御信号が送信されないシンボルで、前記周波数帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中でダミー信号を送信するように、複数の端末装置に指示し、
 前記一部の無線リソースは、複数の端末装置の間で共通である、
前記(18)又は(19)に記載の装置。
(21)
 前記装置は、前記セルラーシステムの無線通信を行う端末装置、又は当該端末装置のためのモジュールであり、
 前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して前記端末装置が信号を送信するように、前記端末装置を制御する、
前記(11)~(17)のいずれか1項に記載の装置。
(22)
 前記他の無線通信は、無線LAN(Local Area Network)規格に準拠した無線通信であり、
 前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が、前記周波数帯域を使用して、NAV(Network Allocation Vector)を設定するための持続時間情報を含むフレームを送信するように、前記無線通信装置を制御することにより、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有する、
前記(1)~(9)のいずれか1項に記載の装置。
(23)
 前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が少なくとも前記第2の期間にわたって前記周波数帯域を使用して信号を送信しないように、前記無線通信装置を制御することにより、前記周波数帯域を少なくとも前記第2の期間にわたって前記セルラーシステムの前記無線通信から解放する、前記(1)~(22)のいずれか1項に記載の装置。
(24)
 前記無線通信装置は、前記セルラーシステムの無線通信を行う基地局及び端末装置のうちの少なくとも一方である、前記(10)~(23)のいずれか1項に記載の装置。
(25)
 前記他の無線通信は、無線LAN(Local Area Network)規格に準拠した無線通信である、前記(1)~(24)のいずれか1項に記載の装置。
(26)
 前記制御部は、前記周波数帯域を使用して信号が送信されない期間がDIFS(DCF (Distributed Coordination Function) InterFrame Space)になる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御する、前記(25)に記載の装置。
(27)
 前記制御部は、前記周波数帯域を使用して信号が送信されない前記期間がSIFS(Short InterFrame Space)よりも長くなった後に、前記無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御する、前記(26)に記載の装置。
(28)
 前記制御部は、前記セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御する、前記(25)~(27)のいずれか1項に記載の装置。
(29)
 前記制御部は、前記セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始する前に、前記セルラーシステムの無線通信を行う無線通信装置が、前記周波数帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、前記無線通信装置を制御する、前記(24)~(26)のいずれか1項に記載の装置。
(30)
 前記無線通信装置は、前記セルラーシステムの無線通信を行う基地局及び端末装置のうちの少なくとも一方である、前記(26)~(29)のいずれか1項に記載の装置。
(31)
 前記装置は、前記セルラーシステムの無線通信を行う基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(1)~(17)及び(22)~(30)のいずれか1項に記載の装置。
(32)
 前記装置は、前記セルラーシステムの無線通信を行う端末装置、又は当該端末装置のためのモジュールである、前記(1)~(17)及び(22)~(30)のいずれか1項に記載の装置。
(33)
 プロセッサにより、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放すること、
を含む方法。
(34)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放すること、
をプロセッサに実行させるためのプログラム。
(35)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放すること、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(36)
 いずれの時間にも、セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号を送信するように、前記無線通信装置を制御する制御部、
を備える装置。
(37)
 プロセッサにより、いずれの時間にも、セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号を送信するように、前記無線通信装置を制御すること、
を含む方法。
(38)
 いずれの時間にも、セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号を送信するように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラム。
(39)
 いずれの時間にも、セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号を送信するように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(40)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号が送信されない期間がDIFSになる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御する制御部、
を備える装置。
(41)
 プロセッサにより、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号が送信されない期間がDIFSになる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御すること、
を含む方法。
(42)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号が送信されない期間がDIFSになる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラム。
(43)
 セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用して信号が送信されない期間がDIFSになる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(44)
 セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御する制御部、
を備える装置。
(45)
 プロセッサにより、セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御すること、
を含む方法。
(46)
 セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラム。
(47)
 セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が、前記セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御すること、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(48)
 前記装置は、前記セルラーシステムの無線通信を行う基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(36)、(40)及び(44)のいずれか1項に記載の装置。
(49)
 前記装置は、前記セルラーシステムの無線通信を行う端末装置、又は当該端末装置のためのモジュールである、前記(36)、(40)及び(44)のいずれか1項に記載の装置。
 1               セルラーシステム
 10              セル
 30              アクセスポイント
 40              通信エリア
 50              端末装置
 61              第1の期間
 63              第2の期間
 65              第3の期間
 71              共用帯域
 100             基地局
 151、161、171     通信制御部
 200             端末装置
 241、251、261、271 通信制御部
 

Claims (33)

  1.  セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放する制御部、
    を備える装置。
  2.  前記第1の期間は、前記セルラーシステムの1無線フレーム以上の期間である、請求項1に記載の装置。
  3.  前記第1の期間は、連続する期間である、請求項1に記載の装置。
  4.  前記第2の期間は、前記第1の期間の直前又は直後の期間である、請求項3に記載の装置。
  5.  前記第2の期間は、前記第1の期間の直後の連続する期間である、請求項4に記載の装置。
  6.  前記第2の期間は、前記第1の期間の直前の期間及び前記第1の期間の直後の期間である、請求項4に記載の装置。
  7.  前記第2の期間は、前記第1の期間の直前の連続する期間である、請求項4に記載の装置。
  8.  前記第1の期間は、不連続な期間であり、
     前記制御部は、第3の期間内において、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を少なくとも前記第2の期間にわたって前記セルラーシステムの前記無線通信から解放する、
    請求項3に記載の装置。
  9.  前記第2の期間は、前記第1の期間の長さの90%~110%の長さを有する、請求項1に記載の装置。
  10.  前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が前記第1の期間にわたって前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う無線通信装置を制御することにより、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有する、請求項1に記載の装置。
  11.  前記制御部は、いずれの時間にも、前記無線通信装置が前記周波数帯域を使用して信号を送信するように、前記無線通信装置を制御する、請求項10に記載の装置。
  12.  前記制御部は、いずれの時間にも、前記周波数帯域を使用して送信される信号の送信電力が所定の送信電力以上になるように、前記無線通信装置を制御する、請求項11に記載の装置。
  13.  前記制御部は、各シンボルで、前記無線通信装置が前記周波数帯域を使用して信号を送信するように、前記無線通信装置を制御する、請求項11に記載の装置。
  14.  前記制御部は、少なくとも、前記周波数帯域を使用して前記セルラーシステムのデータ信号及び制御信号が送信されないシンボルで、前記無線通信装置が前記周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御する、請求項13に記載の装置。
  15.  前記制御部は、少なくとも前記シンボルで、前記周波数帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中で前記無線通信装置が前記ダミー信号を送信するように、前記無線通信装置を制御する、請求項14に記載の装置。
  16.  前記一部の無線リソースは、前記周波数帯域にわたって周波数方向に並ぶリソースブロックのうちの一部のリソースブロックである、請求項15に記載の装置。
  17.  前記一部の無線リソースは、前記周波数帯域にわたって周波数方向に並ぶ各リソースブロックに含まれる一部のリソースエレメントである、請求項15に記載の装置。
  18.  前記装置は、前記セルラーシステムの無線通信を行う基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールであり、
     前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う端末装置に指示する、
    請求項11に記載の装置。
  19.  前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して信号を送信するように、前記セルラーシステムの無線通信を行う複数の端末装置の各々に指示する、請求項18に記載の装置。
  20.  前記制御部は、アップリンクについて、少なくとも、前記周波数帯域を使用して前記セルラーシステムのデータ信号及び制御信号が送信されないシンボルで、前記周波数帯域にわたって周波数方向に並ぶ無線リソースのうちの一部の無線リソースの中でダミー信号を送信するように、複数の端末装置に指示し、
     前記一部の無線リソースは、複数の端末装置の間で共通である、
    請求項18に記載の装置。
  21.  前記装置は、前記セルラーシステムの無線通信を行う端末装置、又は当該端末装置のためのモジュールであり、
     前記制御部は、アップリンクについて、いずれの時間にも前記周波数帯域を使用して前記端末装置が信号を送信するように、前記端末装置を制御する、
    請求項11に記載の装置。
  22.  前記他の無線通信は、無線LAN(Local Area Network)規格に準拠した無線通信であり、
     前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が、前記周波数帯域を使用して、NAV(Network Allocation Vector)を設定するための持続時間情報を含むフレームを送信するように、前記無線通信装置を制御することにより、前記周波数帯域を前記第1の期間にわたって前記セルラーシステムの前記無線通信のために占有する、
    請求項1に記載の装置。
  23.  前記制御部は、前記セルラーシステムの無線通信を行う無線通信装置が少なくとも前記第2の期間にわたって前記周波数帯域を使用して信号を送信しないように、前記無線通信装置を制御することにより、前記周波数帯域を少なくとも前記第2の期間にわたって前記セルラーシステムの前記無線通信から解放する、請求項1に記載の装置。
  24.  前記無線通信装置は、前記セルラーシステムの無線通信を行う基地局及び端末装置のうちの少なくとも一方である、請求項10に記載の装置。
  25.  前記他の無線通信は、無線LAN(Local Area Network)規格に準拠した無線通信である、請求項1に記載の装置。
  26.  前記制御部は、前記周波数帯域を使用して信号が送信されない期間がDIFS(DCF (Distributed Coordination Function) InterFrame Space)になる前に、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御する、請求項25に記載の装置。
  27.  前記制御部は、前記周波数帯域を使用して信号が送信されない前記期間がSIFS(Short InterFrame Space)よりも長くなった後に、前記無線通信装置が前記周波数帯域を使用して信号を送信し始めるように、前記無線通信装置を制御する、請求項26に記載の装置。
  28.  前記制御部は、前記セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始するまでの期間にわたって、前記セルラーシステムの無線通信を行う無線通信装置が前記周波数帯域を使用してダミー信号を送信するように、前記無線通信装置を制御する、請求項25に記載の装置。
  29.  前記制御部は、前記セルラーシステムの無線通信に使用される他の周波数帯域についての無線フレームが開始する前に、前記セルラーシステムの無線通信を行う無線通信装置が、前記周波数帯域を使用して、NAVを設定するための持続時間情報を含むフレームを送信するように、前記無線通信装置を制御する、請求項24に記載の装置。
  30.  前記無線通信装置は、前記セルラーシステムの無線通信を行う基地局及び端末装置のうちの少なくとも一方である、請求項26に記載の装置。
  31.  前記装置は、前記セルラーシステムの無線通信を行う基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項1に記載の装置。
  32.  前記装置は、前記セルラーシステムの無線通信を行う端末装置、又は当該端末装置のためのモジュールである、請求項1に記載の装置。
  33.  プロセッサにより、セルラーシステムの無線通信と他の無線通信との間で共用される周波数帯域を、第1の期間にわたって、前記セルラーシステムの前記無線通信のために占有し、前記周波数帯域を、少なくとも、前記第1の期間に対応する第2の期間にわたって、前記セルラーシステムの前記無線通信から解放すること、
    を含む方法。
     
PCT/JP2014/083387 2014-03-14 2014-12-17 装置及び方法 WO2015136808A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14885091.0A EP3119120A4 (en) 2014-03-14 2014-12-17 Apparatus and method
US15/124,320 US9854448B2 (en) 2014-03-14 2014-12-17 Device and method for performing communication via a plurality of component carriers
CA2941434A CA2941434A1 (en) 2014-03-14 2014-12-17 Device and method
JP2016507276A JP6269811B2 (ja) 2014-03-14 2014-12-17 装置及び方法
KR1020167021987A KR101908828B1 (ko) 2014-03-14 2014-12-17 장치 및 방법
CN201480076912.5A CN106063311B (zh) 2014-03-14 2014-12-17 设备和方法
PH12016501758A PH12016501758A1 (en) 2014-03-14 2016-09-07 Apparatus and method
US15/804,523 US10028152B2 (en) 2014-03-14 2017-11-06 Device and method for performing communication via a plurality of component carriers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-052066 2014-03-14
JP2014052066 2014-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/124,320 A-371-Of-International US9854448B2 (en) 2014-03-14 2014-12-17 Device and method for performing communication via a plurality of component carriers
US15/804,523 Continuation US10028152B2 (en) 2014-03-14 2017-11-06 Device and method for performing communication via a plurality of component carriers

Publications (1)

Publication Number Publication Date
WO2015136808A1 true WO2015136808A1 (ja) 2015-09-17

Family

ID=54071273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083387 WO2015136808A1 (ja) 2014-03-14 2014-12-17 装置及び方法

Country Status (9)

Country Link
US (2) US9854448B2 (ja)
EP (1) EP3119120A4 (ja)
JP (2) JP6269811B2 (ja)
KR (1) KR101908828B1 (ja)
CN (1) CN106063311B (ja)
CA (1) CA2941434A1 (ja)
MY (1) MY178985A (ja)
PH (1) PH12016501758A1 (ja)
WO (1) WO2015136808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147046A1 (en) * 2019-01-16 2020-07-23 Lenovo (Beijing) Limited Methods and apparatuses of handling radio link failure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681726B2 (en) 2014-03-18 2020-06-09 Sony Corporation Method and apparatus for network allocation vector frequency band sharing between wireless communication of the cellular system and other wireless communication
CN108243486B (zh) * 2016-12-23 2021-04-23 上海诺基亚贝尔股份有限公司 用于资源管理的方法和设备
WO2019218272A1 (en) * 2018-05-16 2019-11-21 Metis Ip (Suzhou) Llc Systems and methods for data transmission over wi-fi and lte-u coexistence framework

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524642A (ja) * 2010-03-31 2013-06-17 クゥアルコム・インコーポレイテッド 複数無線機共存のサポートを可能にするための方法および装置
US20130208587A1 (en) * 2012-01-26 2013-08-15 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
US20130343288A1 (en) * 2012-06-21 2013-12-26 Nokia Corporation Power Control For LTE Deployment In Unlicensed Band

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021367B2 (ja) * 2003-05-07 2007-12-12 シャープ株式会社 基地局と移動局及び無線通信システム
JP2006094001A (ja) 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
US20060203841A1 (en) * 2005-03-09 2006-09-14 Fischer Matthew J Coordination of multiple protocols using a shared communication medium
KR101173826B1 (ko) * 2006-02-09 2012-08-16 알테어 세미콘덕터 엘티디. 복합기능형 무선 데이터 단말기
CN101431721B (zh) * 2007-11-06 2013-06-12 中兴通讯股份有限公司 多基站mbs的无线资源调度方法
US8774209B2 (en) 2009-12-02 2014-07-08 Qualcomm Incorporated Apparatus and method for spectrum sharing using listen-before-talk with quiet periods
CN102196565B (zh) * 2010-03-18 2013-07-24 杭州华三通信技术有限公司 一种分配信道资源的方法和接入点
US8848607B2 (en) * 2010-03-30 2014-09-30 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
EP2620026B1 (en) * 2010-09-21 2020-08-19 Telefonaktiebolaget LM Ericsson (publ) Relaying in mixed licensed and unlicensed carrier aggregation
TWI423710B (zh) * 2010-10-15 2014-01-11 Acer Inc 行動通訊裝置、系統、以及連線建立方法
KR102032101B1 (ko) * 2010-12-06 2019-10-14 인터디지탈 패튼 홀딩스, 인크 허가 면제 스펙트럼에서의 무선 동작을 가능케 하는 방법
US8416799B2 (en) * 2011-05-05 2013-04-09 Hitachi, Ltd. Systems, methods and apparatuses for wireless communication
US20150195849A1 (en) * 2014-01-06 2015-07-09 Intel IP Corporation Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum
US9537642B2 (en) * 2014-02-03 2017-01-03 Apple Inc. Method and apparatus for frequency hopping coexistence in unlicensed radio frequency bands for mobile devices
JP6513906B2 (ja) 2014-04-28 2019-05-15 ハジメ産業株式会社 レーザ溶着装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524642A (ja) * 2010-03-31 2013-06-17 クゥアルコム・インコーポレイテッド 複数無線機共存のサポートを可能にするための方法および装置
US20130208587A1 (en) * 2012-01-26 2013-08-15 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
US20130343288A1 (en) * 2012-06-21 2013-12-26 Nokia Corporation Power Control For LTE Deployment In Unlicensed Band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147046A1 (en) * 2019-01-16 2020-07-23 Lenovo (Beijing) Limited Methods and apparatuses of handling radio link failure

Also Published As

Publication number Publication date
CN106063311B (zh) 2020-06-12
JP6515994B2 (ja) 2019-05-22
EP3119120A1 (en) 2017-01-18
US20170019794A1 (en) 2017-01-19
JP2018046586A (ja) 2018-03-22
KR20160132377A (ko) 2016-11-18
US10028152B2 (en) 2018-07-17
US20180077582A1 (en) 2018-03-15
CA2941434A1 (en) 2015-09-17
MY178985A (en) 2020-10-26
US9854448B2 (en) 2017-12-26
JP6269811B2 (ja) 2018-01-31
CN106063311A (zh) 2016-10-26
JPWO2015136808A1 (ja) 2017-04-06
EP3119120A4 (en) 2017-11-01
KR101908828B1 (ko) 2018-10-16
PH12016501758A1 (en) 2016-11-07

Similar Documents

Publication Publication Date Title
JP6677331B2 (ja) 端末装置
JP6515994B2 (ja) 装置及び方法
JP6496938B2 (ja) 装置
TWI678126B (zh) 無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021987

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2941434

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014885091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15124320

Country of ref document: US

Ref document number: 12016501758

Country of ref document: PH

Ref document number: 2014885091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE