WO2015136699A1 - Power conversion apparatus monitoring apparatus - Google Patents
Power conversion apparatus monitoring apparatus Download PDFInfo
- Publication number
- WO2015136699A1 WO2015136699A1 PCT/JP2014/056967 JP2014056967W WO2015136699A1 WO 2015136699 A1 WO2015136699 A1 WO 2015136699A1 JP 2014056967 W JP2014056967 W JP 2014056967W WO 2015136699 A1 WO2015136699 A1 WO 2015136699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monitoring
- output
- power converter
- frequency
- abnormality
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53875—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Definitions
- the present invention relates to a monitoring device for a power conversion device that monitors the power conversion device.
- a power conversion device such as an inverter has a failure detection function for detecting a failure.
- a monitoring device receives a failure signal and a history data recording signal input in time series from a control circuit of an electric motor control device, and creates display trend data (see Patent Document 1).
- each power converter stores its own trend data with its own fault signal, and when the process controller receives the fault signal, it receives the trend data of the power converter that sent the fault signal, and The trend data of the peripheral power converters is received and the collected trend data is edited (see Patent Document 2).
- An object of the present invention is to provide a monitoring device for a power conversion device with an increased detection rate of a failure occurring in the power conversion device.
- a monitoring device for a power conversion device is a monitoring device for a power conversion device configured by hardware independent of a control system of the power conversion device and monitoring the power conversion device, wherein the power conversion For output monitoring means for detecting the output of the apparatus, output monitoring means for monitoring the output of the power conversion apparatus based on the output of the power conversion apparatus detected by the output detection means, and monitoring by the output monitoring means Based on output abnormality detection means for detecting an output abnormality of the power converter, monitoring signal receiving means for receiving a monitoring signal indicating whether or not the power converter is in a state of being monitored, and the output monitoring means And monitoring abnormality detecting means for detecting a monitoring abnormality based on the monitoring signal received from the monitoring signal and the monitoring signal received from the monitoring signal receiving means.
- FIG. 1 is a configuration diagram showing the configuration of the drive system according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating functions of the filter circuit according to the first embodiment.
- FIG. 3 is a configuration diagram showing the configuration of the drive system according to the second embodiment of the present invention.
- FIG. 4 is a configuration diagram showing the configuration of the drive system according to the third embodiment of the present invention.
- FIG. 5 is a configuration diagram showing the configuration of the drive system according to the fourth embodiment of the present invention.
- FIG. 6 is a configuration diagram showing the configuration of the drive system according to the fifth embodiment of the present invention.
- FIG. 7 is a configuration diagram showing the configuration of the drive system according to the sixth embodiment of the present invention.
- FIG. 8 is a configuration diagram showing the configuration of the drive system according to the seventh embodiment of the present invention.
- FIG. 1 is a configuration diagram showing the configuration of a drive system 10 according to the first embodiment of the present invention.
- symbol is attached
- the drive system 10 includes a monitoring device 1, an inverter device 2, an electric motor 3, and a DC power supply 4.
- the drive system 10 is a speed sensorless drive system to which a speed sensor cannot be attached.
- the DC power supply 4 is connected to the inverter device 2.
- the DC power supply 4 supplies DC power to the inverter device 2.
- the DC power supply 4 may be anything as long as it outputs DC power, such as a generator, a battery, or a power converter.
- the inverter device 2 is a power conversion device that converts DC power supplied from the DC power supply 4 into three-phase AC power.
- An electric motor 3 is connected to the AC side of the inverter device 2.
- the inverter device 2 controls the drive of the electric motor 3 by outputting the converted AC power to the electric motor 3.
- the inverter device 2 performs VVVF (variable voltage variable frequency) control that keeps the V / F (voltage / frequency) ratio of the electric motor 3 constant.
- the V / F ratio is a ratio of voltage and frequency for making the magnetic flux of the electric motor 3 constant.
- the monitoring device 1 is a device composed of hardware independent from the inverter device 2 and the electric motor 3.
- the monitoring device 1 is a wiring that takes in the interphase voltage of the three-phase AC voltage output from the inverter device 2, and is connected to an electrical path through which AC power is supplied from the inverter device 2 to the motor 3.
- the monitoring device 1 is a transmission path for transmitting information and is connected to the control device 8 of the inverter device 2.
- the monitoring device 1 monitors the state of the inverter device 2 by detecting the interphase voltage output from the inverter device 2 and transmitting / receiving information to / from the control device 8.
- the inverter device 2 includes an inverter circuit 7 and a control device 8.
- the inverter circuit 7 is an electric circuit that converts DC power supplied from the DC power supply 4 into three-phase AC power.
- the inverter circuit 7 includes a switching element that is a semiconductor element.
- the inverter circuit 7 performs power conversion by PWM (pulse width modulation) control.
- the control device 8 is a device built in the inverter device 2.
- the control device 8 receives various information and controls the drive system 10.
- the control device 8 mainly drives the electric motor 3 by controlling the AC power output from the inverter circuit 7.
- the control device 8 controls the AC power output from the inverter circuit 7 by outputting a gate signal and driving a switching element of the inverter circuit 7. Thereby, the electric motor 3 is driven.
- the control device 8 includes an operation sequence execution unit 31, an electric motor control unit 32, a monitoring command unit 33, and a gate block command unit 34.
- the operation sequence execution unit 31 receives information for grasping the states of the electric motor 3 and the inverter circuit 7 from the electric motor control unit 32 and the failure signal NG detected by the monitoring device 1.
- the operation sequence execution unit 31 determines control to be performed on the inverter circuit 7 and the electric motor 3 in accordance with a predetermined operation sequence based on the received information.
- the operation sequence execution unit 31 outputs various types of information to the electric motor control unit 32 or the monitoring command unit 33 in order to execute the control determined by the operation sequence.
- the operation sequence execution unit 31 When receiving the failure signal NG from the monitoring device 1, the operation sequence execution unit 31 performs control to limit or stop the operations of the inverter circuit 7 and the electric motor 3 according to the operation sequence.
- the electric motor control unit 32 receives information such as voltage or current from various sensors provided in the inverter circuit 7 or the electric motor 3 and determines the state of the inverter circuit 7 or the electric motor 3.
- the motor control unit 32 controls the output power of the inverter circuit 7 based on the determined state to drive the motor 3 in order to execute the control determined by the operation sequence execution unit 31.
- the electric motor control unit 32 outputs information necessary for the operation sequence of the operation sequence execution unit 31 to the operation sequence execution unit 31.
- the monitoring command unit 33 determines whether the monitoring condition is satisfied based on the information input from the operation sequence execution unit 31. Whether or not the monitoring condition is satisfied is determined by whether or not the inverter device 2 is in a state of being monitored. If there is no factor on the inverter device 2 side that prevents monitoring by the monitoring device 1 from being performed normally, the monitoring condition is satisfied. For example, when the inverter circuit 7 is not operating normally (when the output of the inverter circuit 7 is not normal), the monitoring condition is not satisfied. If the monitoring condition is satisfied, the monitoring command unit 33 outputs a monitoring command to the monitoring device 1. When the monitoring condition is not satisfied, the monitoring command unit 33 does not output a monitoring command to the monitoring device 1.
- the monitoring command may be output when the inverter device 2 operates normally by self-diagnosis.
- the monitoring command unit 33 transmits the monitoring command signal C1 to ‘1’ when outputting the monitoring command, and transmits the monitoring command signal C1 to ‘0’ when not outputting the monitoring command.
- the gate block command unit 34 gate-blocks the switching element of the inverter circuit 7 when receiving the failure signal NG detected by the monitoring device 1. Thereby, the conversion operation of the inverter circuit 7 is stopped.
- the monitoring device 1 includes a voltage detector 5 and a monitoring circuit 6.
- the voltage detector 5 detects a voltage (phase voltage) between two phases among the three phases of the AC voltage output from the inverter device 2 and outputs the voltage to the monitoring circuit 6.
- the voltage detector 5 includes a filter circuit 11 and an insulation circuit 12.
- FIG. 2 is a schematic diagram showing the function of the filter circuit 11.
- the filter circuit 11 shapes the rectangular wave voltage into a sine wave voltage.
- the voltage waveform output from the PWM-controlled inverter circuit 7 is a one-pulse or multi-pulse rectangular wave.
- the waveform input to the filter circuit 11 is shaped from a rectangular wave to a sine wave.
- the sine wave voltage output from the filter circuit 11 is output to the monitoring circuit 6 via the insulation circuit 12.
- the monitoring circuit 6 is insulated from the main circuit of the drive system 10.
- the monitoring circuit 6 monitors the drive system 10 based on the output voltage detected by the voltage detector 5 and the signal received from the inverter device 2.
- the monitoring circuit 6 includes a frequency detection unit 13, a voltage detection unit 14, a voltage drop detection setting unit 15, a frequency drop detection setting unit 16, an overfrequency detection setting unit 17, a voltage comparison unit 18, a frequency comparison unit 19, and a frequency comparison unit 20. , NOT operation circuit 21, NOT operation circuit 22, AND operation circuit 23, XOR operation circuit 24, and failure detection unit 25.
- the frequency detector 13 calculates the frequency f based on the voltage waveform detected by the voltage detector 5. Specifically, as shown in FIG. 2, the time T between the zero cross points of the sine wave is measured. The frequency detection unit 13 obtains the frequency f from the measured time T using the following equation. The frequency detection unit 13 outputs the calculated frequency f to the frequency comparison unit 19 and the frequency comparison unit 20.
- the voltage detector 14 calculates the voltage V according to the following equation.
- the voltage detection unit 14 outputs the calculated voltage V to the voltage comparison unit 18.
- m is the number of samplings
- i is the number of samplings
- Vi is the instantaneous value of the sampled voltage.
- the voltage drop detection setting unit 15 is set with a voltage drop set value Vs that serves as a threshold for detecting that the output voltage V of the inverter device 2 is greatly reduced.
- the voltage drop detection setting unit 15 outputs the voltage drop setting value Vs to the voltage comparison unit 18.
- a frequency decrease set value fs1 is set as a threshold for detecting that the output frequency f of the inverter device 2 is largely decreased.
- the frequency decrease detection setting unit 16 outputs the frequency decrease setting value fs1 to the frequency comparison unit 19.
- an over-frequency setting value fs2 that is a threshold value for detecting an excessive increase in the output frequency f of the inverter device 2 is set.
- the overfrequency detection setting unit 17 outputs the overfrequency setting value fs2 to the frequency comparison unit 20.
- the voltage comparison unit 18 compares the voltage V detected by the voltage detection unit 14 with the voltage decrease setting value Vs set in the voltage decrease detection setting unit 15, and determines whether or not the voltage V is lower than the voltage decrease setting value Vs. Determine whether.
- the voltage comparison unit 18 outputs a signal to the NOT operation circuit 21 and the AND operation circuit 23 based on the determination result. When the voltage V is lower than the voltage drop setting value Vs, the voltage comparison unit 18 outputs a signal indicating “0” as a voltage drop abnormality. When the voltage V is equal to or higher than the voltage drop set value Vs, the voltage comparison unit 18 outputs a signal indicating “1” as normal.
- the NOT operation circuit 21 inverts the input signal (logical negation) and outputs it to the failure detection unit 25. Therefore, “1” is input to the failure detection unit 25 when the voltage drop is abnormal, and “0” is input when the voltage is normal.
- the frequency comparison unit 19 compares the frequency f detected by the frequency detection unit 13 with the frequency reduction setting value fs1 set in the frequency reduction detection setting unit 16, and determines whether the frequency f is lower than the frequency reduction setting value fs1. Determine whether.
- the frequency comparison unit 19 outputs a signal to the NOT operation circuit 22 and the AND operation circuit 23 based on the determination result. When the frequency f is lower than the frequency reduction setting value fs1, the frequency comparison unit 19 outputs a signal indicating “0” as the frequency reduction abnormality. When the frequency f is equal to or higher than the frequency reduction setting value fs1, the frequency comparison unit 19 outputs a signal indicating “1” as normal.
- NOT operation circuit 22 inverts the input signal (logical negation) and outputs it to failure detection unit 25. Therefore, ‘1’ is input to the failure detection unit 25 when the frequency drop is abnormal, and ‘0’ is input when the frequency is normal.
- the frequency comparison unit 20 compares the frequency f detected by the frequency detection unit 13 with the overfrequency setting value fs2 set in the overfrequency detection setting unit 17, and determines whether the frequency f is higher than the overfrequency setting value fs2. Determine whether.
- the frequency comparison unit 20 outputs a signal to the failure detection unit 25 based on the determination result.
- the frequency comparison unit 20 When the frequency f is higher than the overfrequency setting value fs2, the frequency comparison unit 20 outputs a signal indicating “1” as an overfrequency abnormality.
- the frequency comparison unit 20 outputs a signal indicating “0” as normal.
- Signals are input to the AND operation circuit 23 from the voltage comparison unit 18 and the frequency comparison unit 19, respectively.
- the AND operation circuit 23 outputs the logical product of the two input signals to the XOR operation circuit 24. Accordingly, when both of the two input signals are “1” (when both of the two input signals indicate “normal”), the AND operation circuit 23 outputs a signal indicating “1”. Otherwise (when at least one of the two input signals indicates “abnormal”), a signal indicating “0” is output.
- the XOR operation circuit 24 receives the signal output from the AND operation circuit 23 and the signal transmitted from the monitoring command unit 33 of the inverter device 2.
- the XOR operation circuit 24 outputs an exclusive OR of the two signals to the failure detection unit 25.
- the XOR operation circuit 24 outputs a signal indicating “1” as a monitoring abnormality when the two input signals do not match, and outputs a signal indicating “0” as normal when they match.
- the XOR operation circuit 24 determines that a monitoring abnormality has occurred and '1 A signal indicating 'is output.
- This abnormality means that although the monitoring device 1 is normally monitoring, the monitoring condition is not satisfied on the inverter device 2 side.
- the XOR operation circuit 24 determines that there is an abnormality and indicates a signal indicating “1”. Is output. This abnormality means that the monitoring condition is established on the inverter device 2 side, and the monitoring device 1 is in a state of detecting the abnormality.
- the failure detection unit 25 detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, and the XOR operation circuit 24.
- the failure detection unit 25 determines that a failure occurs if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality).
- the failure detection unit 25 outputs a failure signal NG to the inverter device 2.
- the inverter device 2 by configuring the monitoring device 1 with hardware independent of the control system of the inverter device 2, even if an abnormality occurs in the inverter device 2, the inverter device 2
- the monitoring device 1 can monitor the inverter device 2 without being affected by the abnormality. For example, when a failure is detected inside the inverter device 2, it is difficult to detect a failure such as a failure in the failure detection circuit itself or a rise in the system clock. However, if the monitoring device 1 is independent from the inverter device 2. It can be easily detected. Therefore, the drive system 10 can be a highly reliable system.
- the monitoring apparatus 1 is provided with the monitoring command unit 33, and when the monitoring condition is satisfied, the monitoring apparatus 1 can perform monitoring with higher reliability by transmitting the monitoring command to the monitoring apparatus 1. .
- the monitoring command transmitted from the inverter device 2 with the monitoring status detected by the monitoring device 1, it is possible to detect an abnormality that cannot be detected from outside the inverter device 2.
- the monitoring device 1 can detect an abnormality that does not cause a change in the output voltage V of the inverter device 2.
- FIG. 3 is a configuration diagram showing the configuration of the drive system 10A according to the second embodiment of the present invention.
- the drive system 10A is obtained by replacing the monitoring device 1 with the monitoring device 1A in the drive system 10 according to the first embodiment shown in FIG.
- the monitoring device 1A replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment from the failure detection unit 25 to the failure detection unit 25A, and replaces the frequency change setting unit 26, the frequency change comparison unit 27, and the previous value memory. 28 and a monitoring circuit 6A to which a subtractor 29 is added. Other points are the same as in the first embodiment.
- a frequency change set value fs3 is set as a threshold value for detecting a significant change in the output frequency of the inverter device 2.
- the frequency change setting unit 26 outputs the frequency change set value fs3 to the frequency change comparison unit 27.
- the frequency f detected by the frequency detector 13 is input to the previous value memory 28.
- the previous value memory 28 outputs the previously stored previous frequency fp to the subtractor 29, and newly stores the input frequency f as the previous frequency fp.
- the subtracter 29 receives the frequency f detected by the frequency detector 13 and the previous frequency fp stored in the previous value memory 28.
- the subtractor 29 outputs a frequency change fd obtained by subtracting the frequency f from the previous frequency fp to the frequency change comparison unit 27.
- the frequency change comparison unit 27 calculates the absolute value of the frequency change fd calculated by the subtractor 29.
- the frequency change comparison unit 27 compares the calculated absolute value of the frequency change fd with the frequency change set value fs3 set in the frequency change setting unit 26, and the absolute value of the frequency change fd is the frequency change. It is determined whether or not it is larger than the set value fs3.
- the frequency change comparison unit 27 outputs a signal to the failure detection unit 25A based on the determination result.
- the absolute value of the frequency change fd is larger than the frequency change set value fs3
- the frequency change comparison unit 27 outputs a signal indicating ‘1’ as the frequency change abnormality.
- the absolute value of the frequency change fd is equal to or less than the frequency change set value fs3, the frequency change comparison unit 27 outputs a signal indicating “0” as normal.
- the failure detection unit 25A detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, and the frequency change comparison unit 27.
- the failure detection unit 25A determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality).
- the failure detection unit 25A outputs a failure signal NG to the inverter device 2 when detecting a failure.
- the present embodiment in addition to the operational effects of the first embodiment, by monitoring the change in the output frequency of the inverter device 2, it is possible to detect an abnormality such as a significant change in the output frequency.
- FIG. 4 is a configuration diagram showing the configuration of a drive system 10B according to the third embodiment of the present invention.
- the drive system 10B is obtained by replacing the monitoring device 1 with the monitoring device 1B and replacing the inverter device 2 with the inverter device 2B in the drive system 10 according to the first embodiment shown in FIG.
- the monitoring device 1B replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment with the failure detection unit 25B from the failure detection unit 25, and includes a voltage reference difference setting unit 41, a frequency reference difference setting unit 42, and a voltage reference comparison.
- This is a monitoring circuit 6B in which a unit 43, a voltage reference calculation unit 44, a frequency reference comparison unit 45, and two subtractors 46 and 47 are added.
- the inverter device 2B is obtained by replacing the control device 8 of the inverter device 2 according to the first embodiment with a control device 8B to which a frequency reference output unit 35 is added. Other points are the same as in the first embodiment.
- the current frequency reference fr controlling the inverter circuit 7 is input from the operation sequence execution unit 31 to the frequency reference output unit 35.
- the frequency reference fr is used for control by the control device 8B and is a reference for controlling the output frequency of the inverter circuit 7.
- the frequency reference output unit 35 outputs the frequency reference fr to the monitoring device 1B.
- the frequency reference fr is input to the voltage reference calculation unit 44 from the frequency reference output unit 35 of the inverter device 2B.
- the voltage reference calculation unit 44 calculates the voltage reference Vr by multiplying the input frequency reference fr by a preset V / F ratio.
- the voltage reference calculation unit 44 outputs the calculated voltage reference Vr to the subtractor 46.
- the voltage reference difference setting unit 41 is set with a voltage reference difference setting value Vsr that serves as a threshold for detecting that the difference between the output voltage V of the inverter 2B and the voltage reference Vr calculated by the voltage reference calculation unit 44 is large. ing.
- the voltage reference difference setting unit 41 outputs the voltage reference difference setting value Vsr to the voltage reference comparison unit 43.
- the frequency reference difference setting unit 42 is set with a frequency reference difference setting value fsr that is a threshold value for detecting that the difference between the output frequency f of the inverter device 2B and the frequency reference fr input from the inverter device 2B is large. .
- the frequency reference difference setting unit 42 outputs the frequency reference difference setting value fsr to the frequency reference comparison unit 45.
- the subtracter 46 receives the voltage V detected by the voltage detector 14 and the voltage reference Vr calculated by the voltage reference calculator 44.
- the subtractor 46 calculates a voltage error Ve obtained by subtracting the voltage V from the voltage reference Vr.
- the subtractor 46 outputs the calculated voltage error Ve to the voltage reference comparison unit 43.
- the frequency reference fr output from the inverter device 2B and the frequency f detected by the frequency detector 13 are input to the subtractor 47.
- the subtractor 47 calculates a frequency error fe obtained by subtracting the frequency f from the frequency reference fr.
- the subtractor 47 outputs the calculated frequency error fe to the frequency reference comparison unit 45.
- the voltage reference comparison unit 43 calculates the absolute value of the voltage error Ve calculated by the subtractor 46.
- the voltage reference comparison unit 43 compares the calculated absolute value of the voltage error Ve with the voltage reference difference setting value Vsr set in the voltage reference difference setting unit 41, and the absolute value of the voltage error Ve is the voltage reference difference setting value Vsr. It is judged whether it is larger than.
- the voltage reference comparison unit 43 outputs a signal to the failure detection unit 25B based on the determination result.
- the voltage reference comparison unit 43 When the absolute value of the voltage error Ve is larger than the voltage reference difference setting value Vsr, the voltage reference comparison unit 43 outputs a signal indicating “1” as a voltage reference abnormality.
- the voltage reference comparison unit 43 When the absolute value of the voltage error Ve is equal to or smaller than the voltage reference difference setting value Vsr, the voltage reference comparison unit 43 outputs a signal indicating “0” as normal.
- the frequency reference comparison unit 45 calculates the absolute value of the frequency error fe calculated by the subtractor 47.
- the frequency reference comparison unit 45 compares the calculated absolute value of the frequency error fe with the frequency reference difference setting value fsr set in the frequency reference difference setting unit 42, and the absolute value of the frequency error fe is the frequency reference difference setting value fsr. It is judged whether it is larger than.
- the frequency reference comparison unit 45 outputs a signal to the failure detection unit 25B based on the determination result.
- the frequency reference comparison unit 45 When the absolute value of the frequency error fe is larger than the frequency reference difference set value fsr, the frequency reference comparison unit 45 outputs a signal indicating “1” as a frequency reference abnormality.
- the absolute value of the frequency error fe is equal to or less than the frequency reference difference set value fsr, the frequency reference comparison unit 45 outputs a signal indicating “0” as normal.
- the failure detection unit 25B detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the voltage reference comparison unit 43, and the frequency reference comparison unit 45. To detect.
- the failure detection unit 25B determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality).
- the failure detection unit 25B outputs a failure signal NG to the inverter device 2B.
- the frequency reference fr is multiplied by the V / F ratio to obtain the voltage reference Vr, and the output voltage V of the inverter device 2B is compared with the voltage reference Vr, thereby detecting the output abnormality of the inverter device 2B by the VVVF control. it can.
- FIG. 5 is a configuration diagram showing the configuration of a drive system 10C according to the fourth embodiment of the present invention.
- the drive system 10C is obtained by replacing the monitoring device 1 with the monitoring device 1C in the drive system 10 according to the first embodiment shown in FIG.
- the monitoring device 1C includes a voltage detector 5C and a monitoring circuit 6C.
- the monitoring circuit 6C includes a voltage comparison unit 18, a frequency comparison unit 19, a frequency comparison unit 20, and a failure detection unit 25.
- the voltage comparison unit 18C, the frequency comparison unit 19C, instead of the comparison unit 20C and the failure detection unit 25C, a phase sequence setting unit 51, a phase sequence comparison unit 52, and three majority decision circuits 53, 54, and 55 are added. Other points are the same as in the first embodiment.
- the voltage detector 5C is the same as the voltage detector 5 according to the first embodiment, except that the three interphase voltages output from the inverter device 2 are detected. In addition, although the voltage detector 5C demonstrates the structure which detects an interphase voltage here, the structure which detects a phase voltage may be sufficient.
- the voltage detector 5C includes a filter circuit 11C and an insulation circuit 12C.
- the filter circuit 11C shapes the three interphase voltages from a rectangular wave to a sine wave. Other points are the same as those of the filter circuit 11 according to the first embodiment.
- the insulation circuit 12 insulates the monitoring circuit 6C from the main circuit of the drive system 10C for the three interphase voltages. Other points are the same as those of the insulating circuit 12 according to the first embodiment.
- the frequency detector 13C detects the frequencies fuv, fvw, and fwu based on the waveform of the voltage between the phases detected by the voltage detector 5C.
- the frequency fuv is the frequency of the voltage between the U phase and the V phase
- the frequency fvw is the frequency of the voltage between the V phase and the W phase
- the frequency fwu is the voltage between the W phase and the U phase. It is assumed that each frequency is represented.
- the frequency detection unit 13C outputs the calculated frequencies fuv, fvw, fwu of the respective interphase voltages to the frequency comparison unit 19C and the frequency comparison unit 20C, and zero-crosses the detected interphase voltages to calculate the frequencies fuv, fvw, fwu. Information about the points is output to the phase sequence comparison unit 52.
- the voltage detection unit 14C calculates the interphase voltages Vuv, Vvw, Vwu based on the instantaneous value of the voltage detected by the voltage detector 5C.
- the interphase voltage Vuv is the voltage between the U phase and the V phase
- the interphase voltage Vvw is the voltage between the V phase and the W phase
- the interphase voltage Vwu is the voltage between the W phase and the U phase.
- the voltage detection unit 14C outputs the calculated interphase voltages Vuv, Vvw, Vwu to the voltage comparison unit 18C.
- phase order setting unit 51 a phase order set value Sqs is set.
- the phase order is a phase order in which a zero cross point occurs at the output voltage V of the inverter device 2.
- the phase sequence setting unit 51 outputs the phase sequence to the phase sequence comparison unit 52.
- the phase order is the order of the U phase, the V phase, and the W phase, and the phase order set value Sqs is also set in the same order.
- the phase order comparison unit 52 receives the information about the zero-cross point of each interphase voltage output from the frequency detection unit 13 ⁇ / b> C and the phase sequence setting value Sqs set in the phase sequence setting unit 51.
- the phase sequence comparison unit 52 determines whether or not the phase sequence Sq determined based on the zero cross point of each interphase voltage matches the phase sequence setting value Sqs. If they match, the phase sequence comparison unit 52 outputs a signal indicating “0” as normal to the failure detection unit 25C. If they do not match, the phase sequence comparison unit 52 outputs a signal indicating '1' as a phase sequence abnormality to the failure detection unit 25C.
- the calculation for determining the phase sequence Sq from the zero cross point of each interphase voltage may be performed by the frequency detector 13C.
- the voltage comparison unit 18C uses the interphase voltages Vuv, Vvw, Vwu detected by the voltage detection unit 14C and the voltage drop setting value Vs set in the voltage drop detection setting unit 15 in the same manner as in the first embodiment. Compare. The voltage comparison unit 18C outputs the comparison results for the interphase voltages Vuv, Vvw, and Vwu to the majority decision circuit 53.
- Majority determination circuits 53 to 55 are circuits that output more than a majority of information among a plurality of input information. For example, when three signals indicating a binary variable that takes “0” or “1” are input, the majority decision circuits 53 to 55 are “1” if two or more signals indicate “1”. 'Is output, otherwise' 0 'is output.
- the majority decision determination circuit 53 determines whether or not the voltage drop is abnormal based on the comparison result input from the voltage comparison unit 18C.
- the majority decision circuit 53 determines that the voltage drop is abnormal if at least two of the three interphase voltages Vuv, Vvw, and Vwu are lower than the voltage drop set value Vs. That is, if two or more of the following three inequalities hold, it is determined that the voltage drop is abnormal, and otherwise, it is determined normal.
- the majority decision circuit 53 outputs a signal indicating “0” to the NOT operation circuit 21 and the AND operation circuit 23 when determining that the voltage drop abnormality is normal, and when determining that it is normal, the majority determination circuit 53 outputs a signal indicating “1”. .
- the frequency comparison unit 19C sets the frequency fuv, fvw, fwu of each inter-phase voltage detected by the frequency detection unit 13C and the frequency decrease setting value fs1 set in the frequency decrease detection setting unit 16 as in the first embodiment. Compare in the same way.
- the frequency comparison unit 19 ⁇ / b> C outputs the comparison results for the frequencies fuv, fvw, and fwu to the majority decision circuit 54.
- the majority decision determination circuit 54 determines whether or not it is a frequency drop abnormality based on the comparison result input from the frequency comparison unit 19C.
- the majority decision circuit 54 determines that the frequency decrease is abnormal if at least two of the three frequencies fuv, fvw, and fwu are lower than the frequency decrease setting value fs1, and otherwise determines that the frequency is normal. That is, if two or more of the following three inequalities hold, it is determined that the frequency drop is abnormal, otherwise it is determined normal.
- the majority decision circuit 54 outputs a signal indicating “0” to the NOT operation circuit 22 and the AND operation circuit 23 when it is determined that the frequency decrease is abnormal, and when it is determined that the majority determination circuit 54 is normal. .
- the frequency comparison unit 20C uses the frequencies fuv, fvw, fwu of the voltages between the phases detected by the frequency detection unit 13C and the overfrequency setting value fs2 set in the overfrequency detection setting unit 17 as in the first embodiment. Compare in the same way.
- the frequency comparison unit 20 ⁇ / b> C outputs the comparison results for the frequencies fuv, fvw, and fwu to the majority decision circuit 55.
- the majority decision determination circuit 55 determines whether or not there is an overfrequency abnormality based on the comparison result input from the frequency comparison unit 20C.
- the majority decision circuit 55 determines that the frequency is abnormal when at least two of the three frequencies fuv, fvw, and fwu are higher than the overfrequency setting value fs2, and determines that the frequency is normal otherwise. That is, if two or more of the following three inequalities hold, it is determined that there is an overfrequency abnormality, and otherwise, it is determined that it is normal.
- the majority decision circuit 55 outputs a signal indicating ‘1’ to the failure detection unit 25 if it is determined to be abnormal, and a signal indicating ‘0’ to the failure detection unit 25 if it is determined to be normal.
- the failure detection unit 25C detects a failure based on signals received from the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the phase sequence comparison unit 52, and the majority decision determination circuit 55.
- the failure detection unit 25C determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality).
- the failure detection unit 25C outputs a failure signal NG to the inverter device 2 when detecting a failure.
- FIG. 6 is a configuration diagram showing the configuration of a drive system 10D according to the fifth embodiment of the present invention.
- the drive system 10D is obtained by replacing the monitoring device 1 with the monitoring device 1D in the drive system 10 according to the first embodiment shown in FIG.
- the monitoring device 1D includes three monitoring devices 1, 101, and 102, and a majority circuit 56 is added. Other points are the same as in the first embodiment.
- the monitoring devices 101 and 102 are the same devices as the monitoring device 1.
- the majority circuit 56 is the same as the majority circuits 53 to 55 according to the fourth embodiment.
- the three monitoring devices 1, 101, 102 input different line voltages to the voltage detector 5 and perform monitoring separately.
- the failure output signals NG 1 to NG 3 of the failure detection unit 25 of each of the monitoring devices 1, 101, 102 are input to the majority decision circuit 56.
- the majority decision circuit 56 determines that a failure has occurred if at least two or more of the outputs of the three failure detectors 25 are signals indicating ‘1’ (that is, signals indicating abnormality).
- the majority decision circuit 26 outputs a failure signal NG to the inverter device 2.
- the monitoring devices 1, 101, 102 By arranging the monitoring devices 1, 101, 102 separately for each detected interphase voltage and using the majority decision circuit 56 to determine an abnormality, erroneous detection of the abnormality can be suppressed. Thus, the reliability of abnormality detection by the monitoring device 1D can be improved.
- FIG. 7 is a configuration diagram showing the configuration of a drive system 10E according to the sixth embodiment of the present invention.
- the drive system 10E is obtained by replacing the monitoring device 1 with the monitoring device 1E in the drive system 10 according to the first embodiment shown in FIG.
- the monitoring device 1E includes a voltage detector 5C and a monitoring circuit 6E according to the fourth embodiment.
- the monitoring circuit 6E replaces the failure detection unit 25 with the failure detection unit 25E, and replaces the frequency detection unit 13 and the voltage detection unit 14 with the frequency detection unit 13C according to the fourth embodiment.
- the voltage comparison unit 18, the frequency comparison unit 19, and the frequency comparison unit 20 are replaced with the voltage comparison unit 18E, the frequency comparison unit 19E, and the frequency comparison unit 20E, respectively.
- a phase sequence setting unit 51 and a phase sequence comparison unit 52, a voltage variation detection setting unit 61, a frequency variation detection setting unit 62, a voltage difference comparison unit 63, and a frequency difference comparison unit 64 are added. Other points are the same as in the first embodiment.
- the voltage comparison unit 18E compares the interphase voltages Vuv, Vvw, Vwu detected by the voltage detection unit 14C with the voltage decrease setting value Vs set in the voltage decrease detection setting unit 15, respectively, and at least one interphase voltage If Vuv, Vvw, Vwu are lower than the voltage drop set value Vs, it is determined that the voltage drop is abnormal.
- the other points are the same as those of the voltage comparison unit 18 according to the first embodiment.
- the frequency comparison unit 19E compares each frequency fuv, fvw, fwu detected by the frequency detection unit 13C with the frequency decrease setting value fs1 set in the frequency decrease detection setting unit 16, and thereby compares at least one frequency fuv, If fvw and fwu are lower than the frequency drop set value fs1, it is determined that the frequency drop is abnormal. Other points are the same as those of the frequency comparison unit 19 according to the first embodiment.
- the frequency comparison unit 20E compares at least one frequency fuv, fvw, fwu detected by the frequency detection unit 13C with the overfrequency setting value fs2 set in the overfrequency detection setting unit 17, respectively. If fvw and fwu are higher than the overfrequency set value fs2, it is determined that the overfrequency is abnormal. Other points are the same as those of the frequency comparison unit 20 according to the first embodiment.
- phase sequence setting unit 51 and the phase sequence comparison unit 52 The method of detecting the phase sequence abnormality by the phase sequence setting unit 51 and the phase sequence comparison unit 52 is the same as in the fourth embodiment.
- a voltage fluctuation setting value Vsv serving as a threshold for detecting large fluctuations among the output phase voltages Vuv, Vvw, Vwu of the inverter device 2 is set.
- the voltage fluctuation detection setting unit 61 outputs the voltage fluctuation setting value Vsv to the voltage difference comparison unit 63.
- a frequency fluctuation setting value fsv serving as a threshold for detecting large fluctuations among the frequencies fuv, fvw, and fwu of the output phase voltage of the inverter device 2 is set.
- the frequency fluctuation detection setting unit 62 outputs the frequency fluctuation setting value fsv to the frequency difference comparison unit 64.
- the voltage difference comparison unit 63 calculates the absolute value of the voltage difference between the interphase voltages Vuv, Vvw, and Vwu detected by the voltage detection unit 14C.
- the voltage difference comparison unit 63 compares the calculated three voltage difference absolute values with the voltage variation setting value Vsv set in the voltage variation detection setting unit 61 to determine whether or not the voltage variation is abnormal. If at least one of the absolute values of these voltage differences is larger than the voltage fluctuation set value Vsv, it is determined that the voltage fluctuation is abnormal. That is, if at least one of the following three inequalities holds, it is determined that the voltage fluctuation is abnormal, and otherwise, it is determined normal.
- the voltage difference comparison unit 63 When it is determined that the voltage fluctuation is abnormal, the voltage difference comparison unit 63 outputs a signal indicating “1” to the failure detection unit 25E. When it is determined that the voltage is normal, the voltage difference comparison unit 63 outputs a signal indicating “0” to the failure detection unit 25E.
- the frequency difference comparison unit 64 calculates the absolute value of the frequency difference between the frequencies fuv, fvw, and fwu of the interphase voltage detected by the frequency detection unit 13C.
- the frequency difference comparison unit 64 compares the calculated absolute values of the three frequency differences with the frequency variation setting value fsv set in the frequency variation detection setting unit 62 to determine whether or not the frequency variation is abnormal. If at least one of the absolute values of these frequency differences is larger than the frequency fluctuation set value fsv, it is determined that the frequency fluctuation is abnormal.
- the frequency difference comparison unit 64 outputs a signal indicating “1” to the failure detection unit 25E. If it is determined that the frequency is normal, the frequency difference comparison unit 64 outputs a signal indicating “0” to the failure detection unit 25E.
- the failure detection unit 25E receives signals from the frequency comparison unit 20E, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the phase sequence comparison unit 52, the voltage difference comparison unit 63, and the frequency difference comparison unit 64. Based on the above, a failure is detected.
- the failure detection unit 25E determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality).
- the failure detection unit 25E outputs a failure signal NG to the inverter device 2 when detecting a failure.
- FIG. 8 is a configuration diagram showing a configuration of a drive system 10F according to the seventh embodiment of the present invention.
- the drive system 10F is obtained by replacing the monitoring device 1 with the monitoring device 1F and adding a host system 9.
- the monitoring device 1F replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment with a monitoring circuit 6F in which an OR operation circuit 71 and an XOR operation circuit 72 are added instead of the failure detection unit 25 to the failure detection unit 25F. It is a thing. Other points are the same as in the first embodiment.
- the host system 9 is a host control system of the control device 8 of the inverter device 2.
- the host system 9 includes an operation command unit 91 and a monitoring command unit 92.
- the operation command unit 91 transmits an operation command including the control content of the drive system 10F to the control device 8 of the inverter device 2.
- the operation command unit 91 grasps the current operation state of the drive system 10 ⁇ / b> F by transmitting and receiving information to and from the operation sequence execution unit 31 of the control device 8.
- the operation command unit 91 determines the content of the operation command based on the operation state of the drive system 10F.
- the control device 8 controls the drive system 10F in accordance with the operation command received from the operation command unit 91.
- the monitoring command unit 92 outputs a monitoring command to the monitoring device 1F when the monitoring condition is satisfied. Whether or not the monitoring condition is satisfied is determined by whether or not the inverter device 2 is in a state of being monitored, similarly to the monitoring command unit 33 of the inverter device 2. The monitoring condition is satisfied if there is no factor that prevents the monitoring by the monitoring device 1F from being performed normally. For example, the monitoring command unit 92 determines whether or not the monitoring condition is satisfied based on the operation state of the inverter device 2 and the electric motor 3 received from the operation command unit 91. If the monitoring condition is satisfied, the monitoring command unit 92 outputs a monitoring command to the monitoring device 1F.
- the monitoring command unit 92 When the monitoring condition is not satisfied, the monitoring command unit 92 does not output a monitoring command to the monitoring device 1F.
- the monitoring command unit 92 transmits the monitoring command signal C2 to “1” when outputting the monitoring command, and transmits the monitoring command signal C2 to “0” when not outputting the monitoring command. .
- the OR operation circuit 71 receives the monitoring command signal C1 received from the inverter device 2 and the monitoring command signal C2 received from the host system 9.
- the OR operation circuit 71 outputs the logical sum of the two input monitoring command signals C1 and C2 to the XOR operation circuit 24. Therefore, when at least one of the two input monitoring command signals C1 and C2 is '1' (when at least one of the host system 9 or the inverter device 2 outputs a monitoring command), the XOR operation circuit “1” is input to 24, otherwise “0” is input to the XOR operation circuit 24.
- the monitor command signal C1 received from the inverter device 2 and the monitor command signal C2 received from the host system 9 are input to the XOR operation circuit 72.
- the XOR operation circuit 72 outputs the exclusive OR of the two input monitoring command signals C1 and C2 to the failure detection unit 25F.
- the XOR operation circuit 72 outputs a signal indicating “1” as a mismatch error, and is not so. In this case, a signal indicating “0” is output as normal. In this abnormality detection, this abnormality can be detected when either the inverter device 2 or the host system 9 has an abnormality.
- the failure detection unit 25F detects a failure based on signals received from each of the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, and the XOR operation circuit 72.
- the failure detection unit 25F determines that there is a failure if any of the received signals is a signal indicating '1' (that is, a signal indicating abnormality).
- the failure detection unit 25F outputs a failure signal NG to the inverter device 2 when detecting a failure.
- the monitoring device 1 which is an external device, matches the consistency between the control by the control device 8 built in the inverter device 2 and the control of the host system 9. Can be monitored. Thereby, the reliability of control of the drive system 10F can be improved.
- the abnormality detection method may be arbitrarily combined. An appropriate abnormality detection method can be selected according to the operating environment of the monitoring device.
- a majority decision circuit is used. However, in other embodiments, a majority decision circuit may be used for arbitrary abnormality detection.
- the host system 9 according to the seventh embodiment may be applied to other embodiments.
- the configuration using the voltage detectors 5 and 5C that detect (measure) the voltage has been described.
- the output current or the output power Any output amount may be detected, such as the amount of electricity (such as magnitude or frequency), or the amount of operation such as the rotational speed or torque of an electric motor that operates with the output of the power converter.
- the inverter circuit 7 when the inverter devices 2 and 2B receive the failure signal NG detected by the monitoring devices 1 to 1F, the inverter circuit 7 is gate-blocked, but the protection operation other than the gate block is performed. Also good. For example, when a failure is detected by the monitoring devices 1 to 1F, the circuit breaker provided on the DC side or the AC side may be tripped so as to stop the output of the inverter devices 2 and 2B.
- the majority decision determination circuits 53 to 56 are circuits that output more than a majority of the input information, but may output an abnormality only when the total number is abnormal.
- a system for controlling an electric motor using an inverter has been described.
- any monitoring target system and monitoring device may be used as long as the system controls the output of a power conversion device (including an inverter).
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Disclosed is a monitoring apparatus (1), which is configured from a hardware independent from a control system of an inverter apparatus (2), and which monitors the inverter apparatus (2). The monitoring apparatus detects an output voltage (V) of the inverter apparatus (2), monitors the output voltage (V) on the basis of the detected output voltage (V), detects an output abnormality of the inverter apparatus (2) on the basis of the monitoring of the output voltage (V), receives monitor command signals (C1) that indicate whether the inverter apparatus (2) is in a state of being to be monitored or not, and detects a monitor abnormality on the basis of the monitoring of the output voltage (V) and the monitor command signals (C1).
Description
本発明は、電力変換装置を監視する電力変換装置の監視装置に関する。
The present invention relates to a monitoring device for a power conversion device that monitors the power conversion device.
一般に、インバータなどの電力変換装置には、故障を検出する故障検出機能を備えている。
Generally, a power conversion device such as an inverter has a failure detection function for detecting a failure.
例えば、電動機制御装置の制御回路から時系列に入力される故障信号及び履歴データ記録用信号を受信して、表示用トレンドデータを作成する監視装置が開示されている(特許文献1参照)。
For example, a monitoring device is disclosed that receives a failure signal and a history data recording signal input in time series from a control circuit of an electric motor control device, and creates display trend data (see Patent Document 1).
また、複数の電力変換装置を関連付けて故障解析を行うプラントドライブの監視システムが開示されている。この監視システムでは、電力変換装置は、それぞれ自らの故障信号で自らのトレンドデータを保存し、プロセスコントローラは、故障信号を受信すると、故障信号を送信した電力変換装置のトレンドデータを受信し、さらに周辺の電力変換装置のトレンドデータを受信して、収集したトレンドデータを編集する(特許文献2参照)。
Also, a plant drive monitoring system that performs failure analysis by associating a plurality of power conversion devices is disclosed. In this monitoring system, each power converter stores its own trend data with its own fault signal, and when the process controller receives the fault signal, it receives the trend data of the power converter that sent the fault signal, and The trend data of the peripheral power converters is received and the collected trend data is edited (see Patent Document 2).
しかしながら、自身の故障を検出する電力変換装置では、故障検出回路自体の異常又はシステムクロックの上昇などのように電力変換装置自体に異常の原因がある場合、故障を検出できない可能性がある。
However, in the power conversion device that detects its own failure, there is a possibility that the failure cannot be detected when there is a cause of the abnormality in the power conversion device itself, such as an abnormality in the failure detection circuit itself or an increase in the system clock.
本発明の目的は、電力変換装置に生じる故障の検出率を高めた電力変換装置の監視装置を提供することにある。
An object of the present invention is to provide a monitoring device for a power conversion device with an increased detection rate of a failure occurring in the power conversion device.
本発明の観点に従った電力変換装置の監視装置は、電力変換装置の制御系から独立したハードウェアで構成され、前記電力変換装置を監視する電力変換装置の監視装置であって、前記電力変換装置の出力を検出する出力検出手段と、前記出力検出手段により検出された前記電力変換装置の出力に基づいて、前記電力変換装置の出力を監視する出力監視手段と、前記出力監視手段による監視に基づいて、前記電力変換装置の出力異常を検出する出力異常検出手段と、前記電力変換装置が監視される状態にあるか否かを示す監視信号を受信する監視信号受信手段と、前記出力監視手段による監視及び前記監視信号受信手段から受信した前記監視信号に基づいて、監視異常を検出する監視異常検出手段とを備える。
A monitoring device for a power conversion device according to an aspect of the present invention is a monitoring device for a power conversion device configured by hardware independent of a control system of the power conversion device and monitoring the power conversion device, wherein the power conversion For output monitoring means for detecting the output of the apparatus, output monitoring means for monitoring the output of the power conversion apparatus based on the output of the power conversion apparatus detected by the output detection means, and monitoring by the output monitoring means Based on output abnormality detection means for detecting an output abnormality of the power converter, monitoring signal receiving means for receiving a monitoring signal indicating whether or not the power converter is in a state of being monitored, and the output monitoring means And monitoring abnormality detecting means for detecting a monitoring abnormality based on the monitoring signal received from the monitoring signal and the monitoring signal received from the monitoring signal receiving means.
(第1の実施形態)
図1は、本発明の第1の実施形態に係るドライブシステム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付して重複する説明を適宜省略し、異なる部分について主に述べる。 (First embodiment)
FIG. 1 is a configuration diagram showing the configuration of adrive system 10 according to the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part in drawing, the overlapping description is abbreviate | omitted suitably, and a different part is mainly described.
図1は、本発明の第1の実施形態に係るドライブシステム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付して重複する説明を適宜省略し、異なる部分について主に述べる。 (First embodiment)
FIG. 1 is a configuration diagram showing the configuration of a
ドライブシステム10は、監視装置1、インバータ装置2、電動機3、及び直流電源4を備える。例えば、ドライブシステム10は、速度センサを取り付けることができない速度センサレスドライブシステムである。
The drive system 10 includes a monitoring device 1, an inverter device 2, an electric motor 3, and a DC power supply 4. For example, the drive system 10 is a speed sensorless drive system to which a speed sensor cannot be attached.
直流電源4は、インバータ装置2に接続されている。直流電源4は、インバータ装置2に直流電力を供給する。直流電源4は、発電機、電池、又は電力変換装置など直流電力を出力するものであれば何でもよい。
The DC power supply 4 is connected to the inverter device 2. The DC power supply 4 supplies DC power to the inverter device 2. The DC power supply 4 may be anything as long as it outputs DC power, such as a generator, a battery, or a power converter.
インバータ装置2は、直流電源4から供給された直流電力を三相交流電力に変換する電力変換装置である。インバータ装置2の交流側には、電動機3が接続されている。インバータ装置2は、変換した交流電力を電動機3に出力することで、電動機3の駆動を制御する。インバータ装置2は、電動機3のV/F(電圧/周波数)比を一定に維持するVVVF(variable voltage variable frequency)制御をする。V/F比は、電動機3の磁束を一定にするための電圧と周波数の比率である。
The inverter device 2 is a power conversion device that converts DC power supplied from the DC power supply 4 into three-phase AC power. An electric motor 3 is connected to the AC side of the inverter device 2. The inverter device 2 controls the drive of the electric motor 3 by outputting the converted AC power to the electric motor 3. The inverter device 2 performs VVVF (variable voltage variable frequency) control that keeps the V / F (voltage / frequency) ratio of the electric motor 3 constant. The V / F ratio is a ratio of voltage and frequency for making the magnetic flux of the electric motor 3 constant.
監視装置1は、インバータ装置2及び電動機3から独立したハードウェアで構成される装置である。監視装置1は、インバータ装置2から出力される三相交流電圧の相間電圧を取り込む配線で、インバータ装置2から電動機3に交流電力が供給される電気経路に接続されている。監視装置1は、情報を伝送する伝送路で、インバータ装置2の制御装置8と接続されている。監視装置1は、インバータ装置2から出力される相間電圧を検出し、制御装置8と情報の送受信をすることで、インバータ装置2の状態を監視する。
The monitoring device 1 is a device composed of hardware independent from the inverter device 2 and the electric motor 3. The monitoring device 1 is a wiring that takes in the interphase voltage of the three-phase AC voltage output from the inverter device 2, and is connected to an electrical path through which AC power is supplied from the inverter device 2 to the motor 3. The monitoring device 1 is a transmission path for transmitting information and is connected to the control device 8 of the inverter device 2. The monitoring device 1 monitors the state of the inverter device 2 by detecting the interphase voltage output from the inverter device 2 and transmitting / receiving information to / from the control device 8.
インバータ装置2は、インバータ回路7及び制御装置8を備える。
The inverter device 2 includes an inverter circuit 7 and a control device 8.
インバータ回路7は、直流電源4から供給された直流電力を三相交流電力に変換する電気回路である。インバータ回路7は、半導体素子であるスイッチング素子などにより構成されている。インバータ回路7は、PWM(pulse width modulation)制御されることにより、電力変換を行う。
The inverter circuit 7 is an electric circuit that converts DC power supplied from the DC power supply 4 into three-phase AC power. The inverter circuit 7 includes a switching element that is a semiconductor element. The inverter circuit 7 performs power conversion by PWM (pulse width modulation) control.
制御装置8は、インバータ装置2に内蔵された装置である。制御装置8は、各種情報を受信して、ドライブシステム10を制御する。主に、制御装置8は、インバータ回路7から出力される交流電力を制御することで、電動機3を駆動する。具体的には、制御装置8は、ゲート信号を出力して、インバータ回路7のスイッチング素子を駆動することで、インバータ回路7から出力される交流電力を制御する。これにより、電動機3を駆動する。
The control device 8 is a device built in the inverter device 2. The control device 8 receives various information and controls the drive system 10. The control device 8 mainly drives the electric motor 3 by controlling the AC power output from the inverter circuit 7. Specifically, the control device 8 controls the AC power output from the inverter circuit 7 by outputting a gate signal and driving a switching element of the inverter circuit 7. Thereby, the electric motor 3 is driven.
制御装置8は、運転シーケンス実行部31、電動機制御部32、監視指令部33、及びゲートブロック指令部34を備える。
The control device 8 includes an operation sequence execution unit 31, an electric motor control unit 32, a monitoring command unit 33, and a gate block command unit 34.
運転シーケンス実行部31は、電動機制御部32から電動機3及びインバータ回路7の状態などを把握する情報、及び監視装置1により検出された故障信号NGを受信する。運転シーケンス実行部31は、これらの受信した情報に基づいて、予め決められた運転シーケンスに従って、インバータ回路7及び電動機3に対して行う制御を決定する。運転シーケンス実行部31は、運転シーケンスにより決定された制御を実行するために、電動機制御部32又は監視指令部33に各種の情報を出力する。運転シーケンス実行部31は、監視装置1から故障信号NGを受信すると、運転シーケンスに従って、インバータ回路7及び電動機3の動作を制限又は停止するような制御を行う。
The operation sequence execution unit 31 receives information for grasping the states of the electric motor 3 and the inverter circuit 7 from the electric motor control unit 32 and the failure signal NG detected by the monitoring device 1. The operation sequence execution unit 31 determines control to be performed on the inverter circuit 7 and the electric motor 3 in accordance with a predetermined operation sequence based on the received information. The operation sequence execution unit 31 outputs various types of information to the electric motor control unit 32 or the monitoring command unit 33 in order to execute the control determined by the operation sequence. When receiving the failure signal NG from the monitoring device 1, the operation sequence execution unit 31 performs control to limit or stop the operations of the inverter circuit 7 and the electric motor 3 according to the operation sequence.
電動機制御部32は、インバータ回路7又は電動機3などに設けられた各種センサから電圧又は電流などの情報を受信し、インバータ回路7又は電動機3の状態を判断する。電動機制御部32は、運転シーケンス実行部31により決定された制御を実行するために、判断した状態に基づいて、インバータ回路7の出力電力を制御して、電動機3を駆動する。電動機制御部32は、運転シーケンス実行部31の運転シーケンスで必要な情報を運転シーケンス実行部31に出力する。
The electric motor control unit 32 receives information such as voltage or current from various sensors provided in the inverter circuit 7 or the electric motor 3 and determines the state of the inverter circuit 7 or the electric motor 3. The motor control unit 32 controls the output power of the inverter circuit 7 based on the determined state to drive the motor 3 in order to execute the control determined by the operation sequence execution unit 31. The electric motor control unit 32 outputs information necessary for the operation sequence of the operation sequence execution unit 31 to the operation sequence execution unit 31.
監視指令部33は、運転シーケンス実行部31から入力された情報に基づいて、監視条件が成立しているか否かを判断する。監視条件が成立するか否かは、インバータ装置2が監視される状態にあるか否かで決定される。監視装置1による監視が正常に行えないような要因がインバータ装置2側に無ければ、監視条件は成立する。例えば、インバータ回路7が正常に動作していない場合(インバータ回路7の出力が正常でない場合)は、監視条件は不成立となる。監視条件が成立している場合は、監視指令部33は、監視装置1に監視指令を出力する。監視条件が成立していない場合は、監視指令部33は、監視装置1に監視指令を出力しない。例えば、監視指令は、インバータ装置2が自己診断により動作が正常の場合に出力するようにしてもよい。監視指令部33は、監視指令を出力する場合は、監視指令信号C1を‘1’にして送信し、監視指令を出力しない場合は、監視指令信号C1を‘0’にして送信する。
The monitoring command unit 33 determines whether the monitoring condition is satisfied based on the information input from the operation sequence execution unit 31. Whether or not the monitoring condition is satisfied is determined by whether or not the inverter device 2 is in a state of being monitored. If there is no factor on the inverter device 2 side that prevents monitoring by the monitoring device 1 from being performed normally, the monitoring condition is satisfied. For example, when the inverter circuit 7 is not operating normally (when the output of the inverter circuit 7 is not normal), the monitoring condition is not satisfied. If the monitoring condition is satisfied, the monitoring command unit 33 outputs a monitoring command to the monitoring device 1. When the monitoring condition is not satisfied, the monitoring command unit 33 does not output a monitoring command to the monitoring device 1. For example, the monitoring command may be output when the inverter device 2 operates normally by self-diagnosis. The monitoring command unit 33 transmits the monitoring command signal C1 to ‘1’ when outputting the monitoring command, and transmits the monitoring command signal C1 to ‘0’ when not outputting the monitoring command.
ゲートブロック指令部34は、監視装置1により検出された故障信号NGを受信すると、インバータ回路7のスイッチング素子をゲートブロックする。これにより、インバータ回路7の変換動作は停止する。
The gate block command unit 34 gate-blocks the switching element of the inverter circuit 7 when receiving the failure signal NG detected by the monitoring device 1. Thereby, the conversion operation of the inverter circuit 7 is stopped.
監視装置1は、電圧検出器5及び監視回路6を備える。
The monitoring device 1 includes a voltage detector 5 and a monitoring circuit 6.
電圧検出器5は、インバータ装置2から出力される交流電圧の3相のうち2つの相の間の電圧(相間電圧)を検出して、監視回路6に出力する。電圧検出器5は、フィルタ回路11及び絶縁回路12を備える。
The voltage detector 5 detects a voltage (phase voltage) between two phases among the three phases of the AC voltage output from the inverter device 2 and outputs the voltage to the monitoring circuit 6. The voltage detector 5 includes a filter circuit 11 and an insulation circuit 12.
図2は、フィルタ回路11の機能を示す概略図である。フィルタ回路11は、矩形波の電圧を正弦波の電圧に成形する。PWM制御されるインバータ回路7から出力される電圧波形は、1パルス又はマルチパルスの矩形波である。フィルタ回路11にインバータ回路7の出力電圧を通すことで、フィルタ回路11に入力された波形は、矩形波から正弦波に成形される。フィルタ回路11から出力される正弦波の電圧は、絶縁回路12を介して監視回路6に出力される。絶縁回路12を用いることにより、監視回路6は、ドライブシステム10の主回路と絶縁される。
FIG. 2 is a schematic diagram showing the function of the filter circuit 11. The filter circuit 11 shapes the rectangular wave voltage into a sine wave voltage. The voltage waveform output from the PWM-controlled inverter circuit 7 is a one-pulse or multi-pulse rectangular wave. By passing the output voltage of the inverter circuit 7 through the filter circuit 11, the waveform input to the filter circuit 11 is shaped from a rectangular wave to a sine wave. The sine wave voltage output from the filter circuit 11 is output to the monitoring circuit 6 via the insulation circuit 12. By using the insulating circuit 12, the monitoring circuit 6 is insulated from the main circuit of the drive system 10.
監視回路6は、電圧検出器5により検出された出力電圧及びインバータ装置2から受信する信号に基づいて、ドライブシステム10を監視する。
The monitoring circuit 6 monitors the drive system 10 based on the output voltage detected by the voltage detector 5 and the signal received from the inverter device 2.
監視回路6は、周波数検出部13、電圧検出部14、電圧低下検出設定部15、周波数低下検出設定部16、過周波数検出設定部17、電圧比較部18、周波数比較部19、周波数比較部20、NOT演算回路21、NOT演算回路22、AND演算回路23、XOR演算回路24、及び故障検出部25を備える。
The monitoring circuit 6 includes a frequency detection unit 13, a voltage detection unit 14, a voltage drop detection setting unit 15, a frequency drop detection setting unit 16, an overfrequency detection setting unit 17, a voltage comparison unit 18, a frequency comparison unit 19, and a frequency comparison unit 20. , NOT operation circuit 21, NOT operation circuit 22, AND operation circuit 23, XOR operation circuit 24, and failure detection unit 25.
周波数検出部13は、電圧検出器5により検出された電圧波形に基づいて、周波数fを演算する。具体的には、図2に示すように、正弦波のゼロクロス点間の時間Tを計測する。周波数検出部13は、次式を用いて、計測した時間Tから周波数fを求める。周波数検出部13は、演算した周波数fを周波数比較部19及び周波数比較部20に出力する。
The frequency detector 13 calculates the frequency f based on the voltage waveform detected by the voltage detector 5. Specifically, as shown in FIG. 2, the time T between the zero cross points of the sine wave is measured. The frequency detection unit 13 obtains the frequency f from the measured time T using the following equation. The frequency detection unit 13 outputs the calculated frequency f to the frequency comparison unit 19 and the frequency comparison unit 20.
f=1/2T [Hz]
電圧検出部14は、電圧検出器5により検出された電圧の瞬時値(サンプリング値)に基づいて、次式により、電圧Vを演算する。電圧検出部14は、演算した電圧Vを電圧比較部18に出力する。
f = 1 / 2T [Hz]
Based on the instantaneous voltage value (sampling value) detected by thevoltage detector 5, the voltage detector 14 calculates the voltage V according to the following equation. The voltage detection unit 14 outputs the calculated voltage V to the voltage comparison unit 18.
電圧検出部14は、電圧検出器5により検出された電圧の瞬時値(サンプリング値)に基づいて、次式により、電圧Vを演算する。電圧検出部14は、演算した電圧Vを電圧比較部18に出力する。
Based on the instantaneous voltage value (sampling value) detected by the
ここで、mはサンプリング数、iはサンプリング回数、Viはサンプリングした電圧の瞬時値を示している。
Here, m is the number of samplings, i is the number of samplings, and Vi is the instantaneous value of the sampled voltage.
電圧低下検出設定部15には、インバータ装置2の出力電圧Vの低下が大きいことを検出する閾値となる電圧低下設定値Vsが設定されている。電圧低下検出設定部15は、電圧低下設定値Vsを電圧比較部18に出力する。
The voltage drop detection setting unit 15 is set with a voltage drop set value Vs that serves as a threshold for detecting that the output voltage V of the inverter device 2 is greatly reduced. The voltage drop detection setting unit 15 outputs the voltage drop setting value Vs to the voltage comparison unit 18.
周波数低下検出設定部16には、インバータ装置2の出力周波数fの低下が大きいことを検出する閾値となる周波数低下設定値fs1が設定されている。周波数低下検出設定部16は、周波数低下設定値fs1を周波数比較部19に出力する。
In the frequency decrease detection setting unit 16, a frequency decrease set value fs1 is set as a threshold for detecting that the output frequency f of the inverter device 2 is largely decreased. The frequency decrease detection setting unit 16 outputs the frequency decrease setting value fs1 to the frequency comparison unit 19.
過周波数検出設定部17には、インバータ装置2の出力周波数fの過度な上昇を検出する閾値となる過周波数設定値fs2が設定されている。過周波数検出設定部17は、過周波数設定値fs2を周波数比較部20に出力する。
In the over-frequency detection setting unit 17, an over-frequency setting value fs2 that is a threshold value for detecting an excessive increase in the output frequency f of the inverter device 2 is set. The overfrequency detection setting unit 17 outputs the overfrequency setting value fs2 to the frequency comparison unit 20.
電圧比較部18は、電圧検出部14により検出された電圧Vと電圧低下検出設定部15に設定されている電圧低下設定値Vsを比較し、電圧Vが電圧低下設定値Vsよりも低いか否かを判断する。電圧比較部18は、判断結果に基づいて、NOT演算回路21及びAND演算回路23に信号を出力する。電圧Vが電圧低下設定値Vsよりも低い場合、電圧比較部18は、電圧低下異常として‘0’を示す信号を出力する。電圧Vが電圧低下設定値Vs以上の場合、電圧比較部18は、正常として‘1’を示す信号を出力する。
The voltage comparison unit 18 compares the voltage V detected by the voltage detection unit 14 with the voltage decrease setting value Vs set in the voltage decrease detection setting unit 15, and determines whether or not the voltage V is lower than the voltage decrease setting value Vs. Determine whether. The voltage comparison unit 18 outputs a signal to the NOT operation circuit 21 and the AND operation circuit 23 based on the determination result. When the voltage V is lower than the voltage drop setting value Vs, the voltage comparison unit 18 outputs a signal indicating “0” as a voltage drop abnormality. When the voltage V is equal to or higher than the voltage drop set value Vs, the voltage comparison unit 18 outputs a signal indicating “1” as normal.
NOT演算回路21は、入力された信号を反転(論理否定)して、故障検出部25に出力する。従って、故障検出部25には、電圧低下異常の場合は‘1’が入力され、正常の場合は‘0’が入力される。
The NOT operation circuit 21 inverts the input signal (logical negation) and outputs it to the failure detection unit 25. Therefore, “1” is input to the failure detection unit 25 when the voltage drop is abnormal, and “0” is input when the voltage is normal.
周波数比較部19は、周波数検出部13により検出された周波数fと周波数低下検出設定部16に設定されている周波数低下設定値fs1を比較し、周波数fが周波数低下設定値fs1よりも低いか否かを判断する。周波数比較部19は、判断結果に基づいて、NOT演算回路22及びAND演算回路23に信号を出力する。周波数fが周波数低下設定値fs1よりも低い場合、周波数比較部19は、周波数低下異常として‘0’を示す信号を出力する。周波数fが周波数低下設定値fs1以上の場合、周波数比較部19は、正常として‘1’を示す信号を出力する。
The frequency comparison unit 19 compares the frequency f detected by the frequency detection unit 13 with the frequency reduction setting value fs1 set in the frequency reduction detection setting unit 16, and determines whether the frequency f is lower than the frequency reduction setting value fs1. Determine whether. The frequency comparison unit 19 outputs a signal to the NOT operation circuit 22 and the AND operation circuit 23 based on the determination result. When the frequency f is lower than the frequency reduction setting value fs1, the frequency comparison unit 19 outputs a signal indicating “0” as the frequency reduction abnormality. When the frequency f is equal to or higher than the frequency reduction setting value fs1, the frequency comparison unit 19 outputs a signal indicating “1” as normal.
NOT演算回路22は、入力された信号を反転(論理否定)して、故障検出部25に出力する。従って、故障検出部25には、周波数低下異常の場合は‘1’が入力され、正常の場合は‘0’が入力される。
NOT operation circuit 22 inverts the input signal (logical negation) and outputs it to failure detection unit 25. Therefore, ‘1’ is input to the failure detection unit 25 when the frequency drop is abnormal, and ‘0’ is input when the frequency is normal.
周波数比較部20は、周波数検出部13により検出された周波数fと過周波数検出設定部17に設定されている過周波数設定値fs2を比較し、周波数fが過周波数設定値fs2よりも高いか否かを判断する。周波数比較部20は、判断結果に基づいて、故障検出部25に信号を出力する。周波数fが過周波数設定値fs2よりも高い場合、周波数比較部20は、過周波数異常として‘1’を示す信号を出力する。周波数fが過周波数設定値fs2以下の場合、周波数比較部20は、正常として‘0’を示す信号を出力する。
The frequency comparison unit 20 compares the frequency f detected by the frequency detection unit 13 with the overfrequency setting value fs2 set in the overfrequency detection setting unit 17, and determines whether the frequency f is higher than the overfrequency setting value fs2. Determine whether. The frequency comparison unit 20 outputs a signal to the failure detection unit 25 based on the determination result. When the frequency f is higher than the overfrequency setting value fs2, the frequency comparison unit 20 outputs a signal indicating “1” as an overfrequency abnormality. When the frequency f is equal to or lower than the overfrequency setting value fs2, the frequency comparison unit 20 outputs a signal indicating “0” as normal.
AND演算回路23には、電圧比較部18及び周波数比較部19からそれぞれ信号が入力される。AND演算回路23は、入力された2つの信号の論理積をXOR演算回路24に出力する。従って、入力された2つの信号がいずれも‘1’の場合(入力された2つの信号がいずれも‘正常’を示す場合)、AND演算回路23は、‘1’を示す信号を出力する。そうでない場合(入力された2つの信号のうち少なくとも1つが‘異常’を示す場合)、‘0’を示す信号を出力する。
Signals are input to the AND operation circuit 23 from the voltage comparison unit 18 and the frequency comparison unit 19, respectively. The AND operation circuit 23 outputs the logical product of the two input signals to the XOR operation circuit 24. Accordingly, when both of the two input signals are “1” (when both of the two input signals indicate “normal”), the AND operation circuit 23 outputs a signal indicating “1”. Otherwise (when at least one of the two input signals indicates “abnormal”), a signal indicating “0” is output.
XOR演算回路24には、AND演算回路23から出力された信号及びインバータ装置2の監視指令部33から送信された信号が入力される。XOR演算回路24は、2つの信号の排他的論理和を故障検出部25に出力する。XOR演算回路24は、入力された2つの信号が一致しない場合、監視異常として‘1’を示す信号を出力し、一致する場合、正常として‘0’を示す信号を出力する。
The XOR operation circuit 24 receives the signal output from the AND operation circuit 23 and the signal transmitted from the monitoring command unit 33 of the inverter device 2. The XOR operation circuit 24 outputs an exclusive OR of the two signals to the failure detection unit 25. The XOR operation circuit 24 outputs a signal indicating “1” as a monitoring abnormality when the two input signals do not match, and outputs a signal indicating “0” as normal when they match.
具体的には、電圧低下異常及び周波数低下異常のいずれも発生しておらず、かつインバータ装置2から監視指令を受信していない場合、XOR演算回路24は、監視異常と判断して、‘1’を示す信号を出力する。この異常は、監視装置1では正常に監視できている状態なのに、インバータ装置2側では監視条件が成立していないことを意味する。また、電圧低下異常又は周波数低下異常のいずれかが発生しており、かつインバータ装置2から監視指令を受信している場合、XOR演算回路24は、異常と判断して、‘1’を示す信号を出力する。この異常は、インバータ装置2側では監視条件が成立しており、監視装置1では異常を検出している状態であることを意味する。
Specifically, when neither a voltage drop abnormality nor a frequency drop abnormality has occurred and a monitoring command has not been received from the inverter device 2, the XOR operation circuit 24 determines that a monitoring abnormality has occurred and '1 A signal indicating 'is output. This abnormality means that although the monitoring device 1 is normally monitoring, the monitoring condition is not satisfied on the inverter device 2 side. When either a voltage drop abnormality or a frequency drop abnormality has occurred and a monitoring command has been received from the inverter device 2, the XOR operation circuit 24 determines that there is an abnormality and indicates a signal indicating “1”. Is output. This abnormality means that the monitoring condition is established on the inverter device 2 side, and the monitoring device 1 is in a state of detecting the abnormality.
故障検出部25は、周波数比較部20、NOT演算回路21、NOT演算回路22、及びXOR演算回路24のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25は、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25は、故障を検出すると、故障信号NGをインバータ装置2に出力する。
The failure detection unit 25 detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, and the XOR operation circuit 24. The failure detection unit 25 determines that a failure occurs if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality). When the failure detection unit 25 detects a failure, the failure detection unit 25 outputs a failure signal NG to the inverter device 2.
本実施形態によれば、ドライブシステム10において、インバータ装置2の制御系から独立したハードウェアで監視装置1を構成することで、インバータ装置2の内部で異常が生じた場合でも、インバータ装置2の異常による影響を受けずに、監視装置1は、インバータ装置2を監視することができる。例えば、インバータ装置2の内部で故障検出をする場合、故障検出回路自体の故障又はシステムクロックの上昇などの故障を検出するのは困難であるが、インバータ装置2から独立した監視装置1であれば容易に検出することができる。従って、ドライブシステム10を信頼性の高いシステムにすることができる。
According to the present embodiment, in the drive system 10, by configuring the monitoring device 1 with hardware independent of the control system of the inverter device 2, even if an abnormality occurs in the inverter device 2, the inverter device 2 The monitoring device 1 can monitor the inverter device 2 without being affected by the abnormality. For example, when a failure is detected inside the inverter device 2, it is difficult to detect a failure such as a failure in the failure detection circuit itself or a rise in the system clock. However, if the monitoring device 1 is independent from the inverter device 2. It can be easily detected. Therefore, the drive system 10 can be a highly reliable system.
また、インバータ装置2に監視指令部33を設け、監視条件が成立すると、監視指令を監視装置1に送信するようにすることで、監視装置1は、より信頼性の高い監視をすることができる。例えば、インバータ装置2から送信された監視指令と監視装置1で検出している監視状況を比較することで、インバータ装置2の外部からでは検出することができない異常でも検出することができる。例えば、監視装置1は、インバータ装置2の出力電圧Vに変化が現れないような異常でも検出することができる。
Moreover, the monitoring apparatus 1 is provided with the monitoring command unit 33, and when the monitoring condition is satisfied, the monitoring apparatus 1 can perform monitoring with higher reliability by transmitting the monitoring command to the monitoring apparatus 1. . For example, by comparing the monitoring command transmitted from the inverter device 2 with the monitoring status detected by the monitoring device 1, it is possible to detect an abnormality that cannot be detected from outside the inverter device 2. For example, the monitoring device 1 can detect an abnormality that does not cause a change in the output voltage V of the inverter device 2.
さらに、インバータ装置2の出力電圧及び出力周波数を監視することで、ドライブシステム10の運転に直接的に影響を及ぼすインバータ装置2の出力異常を検出することができる。
Furthermore, by monitoring the output voltage and output frequency of the inverter device 2, it is possible to detect an output abnormality of the inverter device 2 that directly affects the operation of the drive system 10.
(第2の実施形態)
図3は、本発明の第2の実施形態に係るドライブシステム10Aの構成を示す構成図である。 (Second Embodiment)
FIG. 3 is a configuration diagram showing the configuration of thedrive system 10A according to the second embodiment of the present invention.
図3は、本発明の第2の実施形態に係るドライブシステム10Aの構成を示す構成図である。 (Second Embodiment)
FIG. 3 is a configuration diagram showing the configuration of the
ドライブシステム10Aは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Aに代えたものである。監視装置1Aは、第1の実施形態に係る監視装置1の監視回路6を、故障検出部25から故障検出部25Aに代え、周波数変化分設定部26、周波数変化分比較部27、前回値メモリ28、及び減算器29を追加した監視回路6Aに代えたものである。その他の点は、第1の実施形態と同様である。
The drive system 10A is obtained by replacing the monitoring device 1 with the monitoring device 1A in the drive system 10 according to the first embodiment shown in FIG. The monitoring device 1A replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment from the failure detection unit 25 to the failure detection unit 25A, and replaces the frequency change setting unit 26, the frequency change comparison unit 27, and the previous value memory. 28 and a monitoring circuit 6A to which a subtractor 29 is added. Other points are the same as in the first embodiment.
周波数変化分設定部26には、インバータ装置2の出力周波数の大幅な変化を検出する閾値となる周波数変化分設定値fs3が設定されている。周波数変化分設定部26は、周波数変化分設定値fs3を周波数変化分比較部27に出力する。
In the frequency change setting unit 26, a frequency change set value fs3 is set as a threshold value for detecting a significant change in the output frequency of the inverter device 2. The frequency change setting unit 26 outputs the frequency change set value fs3 to the frequency change comparison unit 27.
前回値メモリ28には、周波数検出部13により検出された周波数fが入力される。前回値メモリ28は、周波数fが入力されると、前回記憶された前回周波数fpを減算器29に出力し、入力された周波数fを新たに前回周波数fpとして記憶する。
The frequency f detected by the frequency detector 13 is input to the previous value memory 28. When the frequency f is input, the previous value memory 28 outputs the previously stored previous frequency fp to the subtractor 29, and newly stores the input frequency f as the previous frequency fp.
減算器29には、周波数検出部13により検出された周波数f及び前回値メモリ28に記憶された前回周波数fpが入力される。減算器29は、前回周波数fpから周波数fを引いた周波数変化分fdを周波数変化分比較部27に出力する。
The subtracter 29 receives the frequency f detected by the frequency detector 13 and the previous frequency fp stored in the previous value memory 28. The subtractor 29 outputs a frequency change fd obtained by subtracting the frequency f from the previous frequency fp to the frequency change comparison unit 27.
周波数変化分比較部27は、減算器29により演算された周波数変化分fdの絶対値を演算する。周波数変化分比較部27は、演算した周波数変化分fdの絶対値と周波数変化分設定部26に設定されている周波数変化分設定値fs3を比較し、周波数変化分fdの絶対値が周波数変化分設定値fs3よりも大きいか否かを判断する。周波数変化分比較部27は、判断結果に基づいて、故障検出部25Aに信号を出力する。周波数変化分fdの絶対値が周波数変化分設定値fs3よりも大きい場合、周波数変化分比較部27は、周波数変化異常として、‘1’を示す信号を出力する。周波数変化分fdの絶対値が周波数変化分設定値fs3以下の場合、周波数変化分比較部27は、正常として‘0’を示す信号を出力する。
The frequency change comparison unit 27 calculates the absolute value of the frequency change fd calculated by the subtractor 29. The frequency change comparison unit 27 compares the calculated absolute value of the frequency change fd with the frequency change set value fs3 set in the frequency change setting unit 26, and the absolute value of the frequency change fd is the frequency change. It is determined whether or not it is larger than the set value fs3. The frequency change comparison unit 27 outputs a signal to the failure detection unit 25A based on the determination result. When the absolute value of the frequency change fd is larger than the frequency change set value fs3, the frequency change comparison unit 27 outputs a signal indicating ‘1’ as the frequency change abnormality. When the absolute value of the frequency change fd is equal to or less than the frequency change set value fs3, the frequency change comparison unit 27 outputs a signal indicating “0” as normal.
故障検出部25Aは、周波数比較部20、NOT演算回路21、NOT演算回路22、XOR演算回路24、及び周波数変化分比較部27のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Aは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Aは、故障を検出すると、故障信号NGをインバータ装置2に出力する。
The failure detection unit 25A detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, and the frequency change comparison unit 27. The failure detection unit 25A determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality). The failure detection unit 25A outputs a failure signal NG to the inverter device 2 when detecting a failure.
本実施形態によれば、第1の実施形態による作用効果に加え、インバータ装置2の出力周波数の変化を監視することで、出力周波数の大幅な変化などの異常を検出することができる。
According to the present embodiment, in addition to the operational effects of the first embodiment, by monitoring the change in the output frequency of the inverter device 2, it is possible to detect an abnormality such as a significant change in the output frequency.
(第3の実施形態)
図4は、本発明の第3の実施形態に係るドライブシステム10Bの構成を示す構成図である。 (Third embodiment)
FIG. 4 is a configuration diagram showing the configuration of adrive system 10B according to the third embodiment of the present invention.
図4は、本発明の第3の実施形態に係るドライブシステム10Bの構成を示す構成図である。 (Third embodiment)
FIG. 4 is a configuration diagram showing the configuration of a
ドライブシステム10Bは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Bに代え、インバータ装置2をインバータ装置2Bに代えたものである。監視装置1Bは、第1の実施形態に係る監視装置1の監視回路6を、故障検出部25から故障検出部25Bに代え、電圧基準差設定部41、周波数基準差設定部42、電圧基準比較部43、電圧基準演算部44、周波数基準比較部45、及び2つの減算器46,47を追加した監視回路6Bに代えたものである。インバータ装置2Bは、第1の実施形態に係るインバータ装置2の制御装置8を、周波数基準出力部35を加えた制御装置8Bに代えたものである。その他の点は、第1の実施形態と同様である。
The drive system 10B is obtained by replacing the monitoring device 1 with the monitoring device 1B and replacing the inverter device 2 with the inverter device 2B in the drive system 10 according to the first embodiment shown in FIG. The monitoring device 1B replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment with the failure detection unit 25B from the failure detection unit 25, and includes a voltage reference difference setting unit 41, a frequency reference difference setting unit 42, and a voltage reference comparison. This is a monitoring circuit 6B in which a unit 43, a voltage reference calculation unit 44, a frequency reference comparison unit 45, and two subtractors 46 and 47 are added. The inverter device 2B is obtained by replacing the control device 8 of the inverter device 2 according to the first embodiment with a control device 8B to which a frequency reference output unit 35 is added. Other points are the same as in the first embodiment.
周波数基準出力部35には、インバータ回路7を制御している現在の周波数基準frが運転シーケンス実行部31から入力される。周波数基準frは、制御装置8Bによる制御で用いられ、インバータ回路7の出力周波数を制御する基準である。周波数基準出力部35は、周波数基準frを監視装置1Bに出力する。
The current frequency reference fr controlling the inverter circuit 7 is input from the operation sequence execution unit 31 to the frequency reference output unit 35. The frequency reference fr is used for control by the control device 8B and is a reference for controlling the output frequency of the inverter circuit 7. The frequency reference output unit 35 outputs the frequency reference fr to the monitoring device 1B.
電圧基準演算部44には、インバータ装置2Bの周波数基準出力部35から周波数基準frが入力される。電圧基準演算部44は、入力された周波数基準frに、予め設定されているV/F比を掛けて、電圧基準Vrを演算する。電圧基準演算部44は、演算した電圧基準Vrを減算器46に出力する。
The frequency reference fr is input to the voltage reference calculation unit 44 from the frequency reference output unit 35 of the inverter device 2B. The voltage reference calculation unit 44 calculates the voltage reference Vr by multiplying the input frequency reference fr by a preset V / F ratio. The voltage reference calculation unit 44 outputs the calculated voltage reference Vr to the subtractor 46.
電圧基準差設定部41には、インバータ装置2Bの出力電圧Vと電圧基準演算部44により演算された電圧基準Vrとの差が大きいことを検出する閾値となる電圧基準差設定値Vsrが設定されている。電圧基準差設定部41は、電圧基準差設定値Vsrを電圧基準比較部43に出力する。
The voltage reference difference setting unit 41 is set with a voltage reference difference setting value Vsr that serves as a threshold for detecting that the difference between the output voltage V of the inverter 2B and the voltage reference Vr calculated by the voltage reference calculation unit 44 is large. ing. The voltage reference difference setting unit 41 outputs the voltage reference difference setting value Vsr to the voltage reference comparison unit 43.
周波数基準差設定部42には、インバータ装置2Bの出力周波数fとインバータ装置2Bから入力された周波数基準frとの差が大きいことを検出する閾値となる周波数基準差設定値fsrが設定されている。周波数基準差設定部42は、周波数基準差設定値fsrを周波数基準比較部45に出力する。
The frequency reference difference setting unit 42 is set with a frequency reference difference setting value fsr that is a threshold value for detecting that the difference between the output frequency f of the inverter device 2B and the frequency reference fr input from the inverter device 2B is large. . The frequency reference difference setting unit 42 outputs the frequency reference difference setting value fsr to the frequency reference comparison unit 45.
減算器46には、電圧検出部14により検出された電圧V及び電圧基準演算部44により演算された電圧基準Vrが入力される。減算器46は、電圧基準Vrから電圧Vを引いた電圧誤差Veを演算する。減算器46は、演算した電圧誤差Veを電圧基準比較部43に出力する。
The subtracter 46 receives the voltage V detected by the voltage detector 14 and the voltage reference Vr calculated by the voltage reference calculator 44. The subtractor 46 calculates a voltage error Ve obtained by subtracting the voltage V from the voltage reference Vr. The subtractor 46 outputs the calculated voltage error Ve to the voltage reference comparison unit 43.
減算器47には、インバータ装置2Bから出力された周波数基準fr及び周波数検出部13により検出された周波数fが入力される。減算器47は、周波数基準frから周波数fを引いた周波数誤差feを演算する。減算器47は、演算した周波数誤差feを周波数基準比較部45に出力する。
The frequency reference fr output from the inverter device 2B and the frequency f detected by the frequency detector 13 are input to the subtractor 47. The subtractor 47 calculates a frequency error fe obtained by subtracting the frequency f from the frequency reference fr. The subtractor 47 outputs the calculated frequency error fe to the frequency reference comparison unit 45.
電圧基準比較部43は、減算器46により演算された電圧誤差Veの絶対値を演算する。電圧基準比較部43は、演算した電圧誤差Veの絶対値と電圧基準差設定部41に設定されている電圧基準差設定値Vsrを比較し、電圧誤差Veの絶対値が電圧基準差設定値Vsrよりも大きいか否かを判断する。電圧基準比較部43は、判断結果に基づいて、故障検出部25Bに信号を出力する。電圧誤差Veの絶対値が電圧基準差設定値Vsrよりも大きい場合、電圧基準比較部43は、電圧基準異常として、‘1’を示す信号を出力する。電圧誤差Veの絶対値が電圧基準差設定値Vsr以下の場合、電圧基準比較部43は、正常として‘0’を示す信号を出力する。
The voltage reference comparison unit 43 calculates the absolute value of the voltage error Ve calculated by the subtractor 46. The voltage reference comparison unit 43 compares the calculated absolute value of the voltage error Ve with the voltage reference difference setting value Vsr set in the voltage reference difference setting unit 41, and the absolute value of the voltage error Ve is the voltage reference difference setting value Vsr. It is judged whether it is larger than. The voltage reference comparison unit 43 outputs a signal to the failure detection unit 25B based on the determination result. When the absolute value of the voltage error Ve is larger than the voltage reference difference setting value Vsr, the voltage reference comparison unit 43 outputs a signal indicating “1” as a voltage reference abnormality. When the absolute value of the voltage error Ve is equal to or smaller than the voltage reference difference setting value Vsr, the voltage reference comparison unit 43 outputs a signal indicating “0” as normal.
周波数基準比較部45は、減算器47により演算された周波数誤差feの絶対値を演算する。周波数基準比較部45は、演算した周波数誤差feの絶対値と周波数基準差設定部42に設定されている周波数基準差設定値fsrを比較し、周波数誤差feの絶対値が周波数基準差設定値fsrよりも大きいか否かを判断する。周波数基準比較部45は、判断結果に基づいて、故障検出部25Bに信号を出力する。周波数誤差feの絶対値が周波数基準差設定値fsrよりも大きい場合、周波数基準比較部45は、周波数基準異常として、‘1’を示す信号を出力する。周波数誤差feの絶対値が周波数基準差設定値fsr以下の場合、周波数基準比較部45は、正常として‘0’を示す信号を出力する。
The frequency reference comparison unit 45 calculates the absolute value of the frequency error fe calculated by the subtractor 47. The frequency reference comparison unit 45 compares the calculated absolute value of the frequency error fe with the frequency reference difference setting value fsr set in the frequency reference difference setting unit 42, and the absolute value of the frequency error fe is the frequency reference difference setting value fsr. It is judged whether it is larger than. The frequency reference comparison unit 45 outputs a signal to the failure detection unit 25B based on the determination result. When the absolute value of the frequency error fe is larger than the frequency reference difference set value fsr, the frequency reference comparison unit 45 outputs a signal indicating “1” as a frequency reference abnormality. When the absolute value of the frequency error fe is equal to or less than the frequency reference difference set value fsr, the frequency reference comparison unit 45 outputs a signal indicating “0” as normal.
故障検出部25Bは、周波数比較部20、NOT演算回路21、NOT演算回路22、XOR演算回路24、電圧基準比較部43、及び周波数基準比較部45のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Bは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Bは、故障を検出すると、故障信号NGをインバータ装置2Bに出力する。
The failure detection unit 25B detects a failure based on signals received from the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the voltage reference comparison unit 43, and the frequency reference comparison unit 45. To detect. The failure detection unit 25B determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality). When the failure detection unit 25B detects a failure, the failure detection unit 25B outputs a failure signal NG to the inverter device 2B.
本実施形態によれば、第1の実施形態に係る作用効果に加え、以下の作用効果を得ることができる。
According to the present embodiment, in addition to the functions and effects according to the first embodiment, the following functions and effects can be obtained.
インバータ装置2Bから受信する周波数基準frと、監視装置1Bで検出するインバータ装置2Bの出力周波数fを比較することで、インバータ装置2Bの出力周波数の制御の異常を検出することができる。
By comparing the frequency reference fr received from the inverter device 2B with the output frequency f of the inverter device 2B detected by the monitoring device 1B, an abnormality in the control of the output frequency of the inverter device 2B can be detected.
また、周波数基準frにV/F比を掛けて電圧基準Vrを求め、電圧基準Vrとインバータ装置2Bの出力電圧Vを比較することで、VVVF制御によるインバータ装置2Bの出力異常を検出することができる。
In addition, the frequency reference fr is multiplied by the V / F ratio to obtain the voltage reference Vr, and the output voltage V of the inverter device 2B is compared with the voltage reference Vr, thereby detecting the output abnormality of the inverter device 2B by the VVVF control. it can.
(第4の実施形態)
図5は、本発明の第4の実施形態に係るドライブシステム10Cの構成を示す構成図である。 (Fourth embodiment)
FIG. 5 is a configuration diagram showing the configuration of adrive system 10C according to the fourth embodiment of the present invention.
図5は、本発明の第4の実施形態に係るドライブシステム10Cの構成を示す構成図である。 (Fourth embodiment)
FIG. 5 is a configuration diagram showing the configuration of a
ドライブシステム10Cは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Cに代えたものである。監視装置1Cは、電圧検出器5C及び監視回路6Cを備える。監視回路6Cは、第1の実施形態に係る監視回路6において、電圧比較部18、周波数比較部19、周波数比較部20、及び故障検出部25を、電圧比較部18C、周波数比較部19C、周波数比較部20C、及び故障検出部25Cにそれぞれ代え、相順設定部51、相順比較部52、及び3つの多数決判定回路53,54,55を追加したものである。その他の点は、第1の実施形態と同様である。
The drive system 10C is obtained by replacing the monitoring device 1 with the monitoring device 1C in the drive system 10 according to the first embodiment shown in FIG. The monitoring device 1C includes a voltage detector 5C and a monitoring circuit 6C. In the monitoring circuit 6 according to the first embodiment, the monitoring circuit 6C includes a voltage comparison unit 18, a frequency comparison unit 19, a frequency comparison unit 20, and a failure detection unit 25. The voltage comparison unit 18C, the frequency comparison unit 19C, Instead of the comparison unit 20C and the failure detection unit 25C, a phase sequence setting unit 51, a phase sequence comparison unit 52, and three majority decision circuits 53, 54, and 55 are added. Other points are the same as in the first embodiment.
電圧検出器5Cは、インバータ装置2から出力される3つの相間電圧を検出する点以外は、第1の実施形態に係る電圧検出器5と同様である。なお、ここでは、電圧検出器5Cは、相間電圧を検出する構成について説明するが、相電圧を検出する構成でもよい。電圧検出器5Cは、フィルタ回路11C及び絶縁回路12Cを備える。フィルタ回路11Cは、3つの相間電圧について、矩形波から正弦波に成形する。その他の点は、第1の実施形態に係るフィルタ回路11と同様である。絶縁回路12は、3つの相間電圧について、監視回路6Cをドライブシステム10Cの主回路から絶縁する。その他の点は、第1の実施形態に係る絶縁回路12と同様である。
The voltage detector 5C is the same as the voltage detector 5 according to the first embodiment, except that the three interphase voltages output from the inverter device 2 are detected. In addition, although the voltage detector 5C demonstrates the structure which detects an interphase voltage here, the structure which detects a phase voltage may be sufficient. The voltage detector 5C includes a filter circuit 11C and an insulation circuit 12C. The filter circuit 11C shapes the three interphase voltages from a rectangular wave to a sine wave. Other points are the same as those of the filter circuit 11 according to the first embodiment. The insulation circuit 12 insulates the monitoring circuit 6C from the main circuit of the drive system 10C for the three interphase voltages. Other points are the same as those of the insulating circuit 12 according to the first embodiment.
周波数検出部13Cは、第1の実施形態に係る周波数検出部13と同様に、電圧検出器5Cにより検出された各相間電圧の波形に基づいて、各周波数fuv,fvw,fwuを検出する。ここで、周波数fuvは、U相とV相の間の電圧の周波数を、周波数fvwは、V相とW相の間の電圧の周波数を、周波数fwuは、W相とU相の間の電圧の周波数をそれぞれ表しているものとする。周波数検出部13Cは、演算した各相間電圧の周波数fuv,fvw,fwuを周波数比較部19C及び周波数比較部20Cに出力し、周波数fuv,fvw,fwuを演算するために検出した各相間電圧のゼロクロス点に関する情報を相順比較部52に出力する。
Similarly to the frequency detector 13 according to the first embodiment, the frequency detector 13C detects the frequencies fuv, fvw, and fwu based on the waveform of the voltage between the phases detected by the voltage detector 5C. Here, the frequency fuv is the frequency of the voltage between the U phase and the V phase, the frequency fvw is the frequency of the voltage between the V phase and the W phase, and the frequency fwu is the voltage between the W phase and the U phase. It is assumed that each frequency is represented. The frequency detection unit 13C outputs the calculated frequencies fuv, fvw, fwu of the respective interphase voltages to the frequency comparison unit 19C and the frequency comparison unit 20C, and zero-crosses the detected interphase voltages to calculate the frequencies fuv, fvw, fwu. Information about the points is output to the phase sequence comparison unit 52.
電圧検出部14Cは、第1の実施形態に係る電圧検出部14と同様に、電圧検出器5Cにより検出された電圧の瞬時値に基づいて、各相間電圧Vuv,Vvw,Vwuを演算する。ここで、相間電圧Vuvは、U相とV相の間の電圧を、相間電圧Vvwは、V相とW相の間の電圧を、相間電圧Vwuは、W相とU相の間の電圧をそれぞれ表しているものとする。電圧検出部14Cは、演算した相間電圧Vuv,Vvw,Vwuを電圧比較部18Cに出力する。
Similarly to the voltage detection unit 14 according to the first embodiment, the voltage detection unit 14C calculates the interphase voltages Vuv, Vvw, Vwu based on the instantaneous value of the voltage detected by the voltage detector 5C. Here, the interphase voltage Vuv is the voltage between the U phase and the V phase, the interphase voltage Vvw is the voltage between the V phase and the W phase, and the interphase voltage Vwu is the voltage between the W phase and the U phase. Each shall be represented. The voltage detection unit 14C outputs the calculated interphase voltages Vuv, Vvw, Vwu to the voltage comparison unit 18C.
相順設定部51には、相順設定値Sqsが設定されている。相順とは、インバータ装置2の出力電圧Vでゼロクロス点が発生する相の順番である。相順設定部51は、相順を相順比較部52に出力する。ここでは、相順は、U相、V相、W相の順番とし、相順設定値Sqsも同じ順番で設定されているものとする。
In the phase order setting unit 51, a phase order set value Sqs is set. The phase order is a phase order in which a zero cross point occurs at the output voltage V of the inverter device 2. The phase sequence setting unit 51 outputs the phase sequence to the phase sequence comparison unit 52. Here, the phase order is the order of the U phase, the V phase, and the W phase, and the phase order set value Sqs is also set in the same order.
相順比較部52には、周波数検出部13Cから出力された各相間電圧のゼロクロス点に関する情報及び相順設定部51に設定されている相順設定値Sqsが入力される。相順比較部52は、各相間電圧のゼロクロス点に基づいて決定された相順Sqが相順設定値Sqsと一致しているか否かを判断する。一致している場合は、相順比較部52は、故障検出部25Cに正常として‘0’を示す信号を出力する。一致していない場合は、相順比較部52は、故障検出部25Cに相順異常として‘1’を示す信号を出力する。なお、各相間電圧のゼロクロス点から相順Sqを決定する演算は、周波数検出部13Cで行ってもよい。
The phase order comparison unit 52 receives the information about the zero-cross point of each interphase voltage output from the frequency detection unit 13 </ b> C and the phase sequence setting value Sqs set in the phase sequence setting unit 51. The phase sequence comparison unit 52 determines whether or not the phase sequence Sq determined based on the zero cross point of each interphase voltage matches the phase sequence setting value Sqs. If they match, the phase sequence comparison unit 52 outputs a signal indicating “0” as normal to the failure detection unit 25C. If they do not match, the phase sequence comparison unit 52 outputs a signal indicating '1' as a phase sequence abnormality to the failure detection unit 25C. The calculation for determining the phase sequence Sq from the zero cross point of each interphase voltage may be performed by the frequency detector 13C.
電圧比較部18Cは、電圧検出部14Cにより検出された各相間電圧Vuv,Vvw,Vwuと電圧低下検出設定部15に設定されている電圧低下設定値Vsを、それぞれ第1の実施形態と同様に比較する。電圧比較部18Cは、各相間電圧Vuv,Vvw,Vwuについての比較結果を多数決判定回路53に出力する。
The voltage comparison unit 18C uses the interphase voltages Vuv, Vvw, Vwu detected by the voltage detection unit 14C and the voltage drop setting value Vs set in the voltage drop detection setting unit 15 in the same manner as in the first embodiment. Compare. The voltage comparison unit 18C outputs the comparison results for the interphase voltages Vuv, Vvw, and Vwu to the majority decision circuit 53.
多数決判定回路53~55は、入力された複数の情報のうち過半数以上の情報を出力する回路である。例えば、多数決判定回路53~55は、‘0’か‘1’をとる二値変数を示す3つの信号が入力される場合、2つ以上の信号が‘1’を示していれば、‘1’を出力し、そうでない場合、‘0’を出力する。
Majority determination circuits 53 to 55 are circuits that output more than a majority of information among a plurality of input information. For example, when three signals indicating a binary variable that takes “0” or “1” are input, the majority decision circuits 53 to 55 are “1” if two or more signals indicate “1”. 'Is output, otherwise' 0 'is output.
多数決判定回路53は、電圧比較部18Cから入力された比較結果に基づいて、電圧低下異常か否かについて判断する。多数決判定回路53は、3つの相間電圧Vuv,Vvw,Vwuのうち少なくとも2以上が電圧低下設定値Vsよりも低ければ、電圧低下異常と判断する。即ち、下記の3つの不等式のうち2つ以上が成り立てば、電圧低下異常と判断し、そうでなければ、正常と判断する。多数決判定回路53は、電圧低下異常と判断した場合は、‘0’を示す信号を、正常と判断した場合は、‘1’を示す信号を、NOT演算回路21及びAND演算回路23に出力する。
The majority decision determination circuit 53 determines whether or not the voltage drop is abnormal based on the comparison result input from the voltage comparison unit 18C. The majority decision circuit 53 determines that the voltage drop is abnormal if at least two of the three interphase voltages Vuv, Vvw, and Vwu are lower than the voltage drop set value Vs. That is, if two or more of the following three inequalities hold, it is determined that the voltage drop is abnormal, and otherwise, it is determined normal. The majority decision circuit 53 outputs a signal indicating “0” to the NOT operation circuit 21 and the AND operation circuit 23 when determining that the voltage drop abnormality is normal, and when determining that it is normal, the majority determination circuit 53 outputs a signal indicating “1”. .
Vuv < Vs、 Vvw < Vs、 Vwu < Vs
周波数比較部19Cは、周波数検出部13Cにより検出された各相間電圧の周波数fuv,fvw,fwuと周波数低下検出設定部16に設定されている周波数低下設定値fs1を、それぞれ第1の実施形態と同様に比較する。周波数比較部19Cは、各周波数fuv,fvw,fwuについての比較結果を多数決判定回路54に出力する。 Vuv <Vs, Vvw <Vs, Vwu <Vs
Thefrequency comparison unit 19C sets the frequency fuv, fvw, fwu of each inter-phase voltage detected by the frequency detection unit 13C and the frequency decrease setting value fs1 set in the frequency decrease detection setting unit 16 as in the first embodiment. Compare in the same way. The frequency comparison unit 19 </ b> C outputs the comparison results for the frequencies fuv, fvw, and fwu to the majority decision circuit 54.
周波数比較部19Cは、周波数検出部13Cにより検出された各相間電圧の周波数fuv,fvw,fwuと周波数低下検出設定部16に設定されている周波数低下設定値fs1を、それぞれ第1の実施形態と同様に比較する。周波数比較部19Cは、各周波数fuv,fvw,fwuについての比較結果を多数決判定回路54に出力する。 Vuv <Vs, Vvw <Vs, Vwu <Vs
The
多数決判定回路54は、周波数比較部19Cから入力された比較結果に基づいて、周波数低下異常であるか否かについて判断する。多数決判定回路54は、3つの周波数fuv,fvw,fwuのうち少なくとも2以上が周波数低下設定値fs1よりも低ければ、周波数低下異常と判断し、そうでなければ、正常と判断する。即ち、下記の3つの不等式のうち2つ以上が成り立てば、周波数低下異常と判断し、そうでなければ、正常と判断する。多数決判定回路54は、周波数低下異常と判断した場合は、‘0’を示す信号を、正常と判断した場合は、‘1’を示す信号を、NOT演算回路22及びAND演算回路23に出力する。
The majority decision determination circuit 54 determines whether or not it is a frequency drop abnormality based on the comparison result input from the frequency comparison unit 19C. The majority decision circuit 54 determines that the frequency decrease is abnormal if at least two of the three frequencies fuv, fvw, and fwu are lower than the frequency decrease setting value fs1, and otherwise determines that the frequency is normal. That is, if two or more of the following three inequalities hold, it is determined that the frequency drop is abnormal, otherwise it is determined normal. The majority decision circuit 54 outputs a signal indicating “0” to the NOT operation circuit 22 and the AND operation circuit 23 when it is determined that the frequency decrease is abnormal, and when it is determined that the majority determination circuit 54 is normal. .
fuv < fs1、 fvw < fs1、 fwu < fs1
周波数比較部20Cは、周波数検出部13Cにより検出された各相間電圧の周波数fuv,fvw,fwuと過周波数検出設定部17に設定されている過周波数設定値fs2を、それぞれ第1の実施形態と同様に比較する。周波数比較部20Cは、各周波数fuv,fvw,fwuについての比較結果を多数決判定回路55に出力する。 fuv <fs1, fvw <fs1, ffu <fs1
Thefrequency comparison unit 20C uses the frequencies fuv, fvw, fwu of the voltages between the phases detected by the frequency detection unit 13C and the overfrequency setting value fs2 set in the overfrequency detection setting unit 17 as in the first embodiment. Compare in the same way. The frequency comparison unit 20 </ b> C outputs the comparison results for the frequencies fuv, fvw, and fwu to the majority decision circuit 55.
周波数比較部20Cは、周波数検出部13Cにより検出された各相間電圧の周波数fuv,fvw,fwuと過周波数検出設定部17に設定されている過周波数設定値fs2を、それぞれ第1の実施形態と同様に比較する。周波数比較部20Cは、各周波数fuv,fvw,fwuについての比較結果を多数決判定回路55に出力する。 fuv <fs1, fvw <fs1, ffu <fs1
The
多数決判定回路55は、周波数比較部20Cから入力された比較結果に基づいて、過周波数異常であるか否かについて判断する。多数決判定回路55は、3つの周波数fuv,fvw,fwuのうち少なくとも2以上が過周波数設定値fs2よりも高ければ、過周波数異常と判断し、そうでなければ、正常と判断する。即ち、下記の3つの不等式のうち2つ以上が成り立てば、過周波数異常と判断し、そうでなければ、正常と判断する。多数決判定回路55は、過周波数異常と判断した場合は、‘1’を示す信号を、正常と判断した場合は、‘0’を示す信号を、故障検出部25に出力する。
The majority decision determination circuit 55 determines whether or not there is an overfrequency abnormality based on the comparison result input from the frequency comparison unit 20C. The majority decision circuit 55 determines that the frequency is abnormal when at least two of the three frequencies fuv, fvw, and fwu are higher than the overfrequency setting value fs2, and determines that the frequency is normal otherwise. That is, if two or more of the following three inequalities hold, it is determined that there is an overfrequency abnormality, and otherwise, it is determined that it is normal. The majority decision circuit 55 outputs a signal indicating ‘1’ to the failure detection unit 25 if it is determined to be abnormal, and a signal indicating ‘0’ to the failure detection unit 25 if it is determined to be normal.
fuv > fs2、 fvw > fs2、 fwu > fs2
故障検出部25Cは、NOT演算回路21、NOT演算回路22、XOR演算回路24、相順比較部52、及び多数決判定回路55のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Cは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Cは、故障を検出すると、故障信号NGをインバータ装置2に出力する。 fuv> fs2, fvw> fs2, fwu> fs2
The failure detection unit 25C detects a failure based on signals received from theNOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the phase sequence comparison unit 52, and the majority decision determination circuit 55. The failure detection unit 25C determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality). The failure detection unit 25C outputs a failure signal NG to the inverter device 2 when detecting a failure.
故障検出部25Cは、NOT演算回路21、NOT演算回路22、XOR演算回路24、相順比較部52、及び多数決判定回路55のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Cは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Cは、故障を検出すると、故障信号NGをインバータ装置2に出力する。 fuv> fs2, fvw> fs2, fwu> fs2
The failure detection unit 25C detects a failure based on signals received from the
本実施形態によれば、第1の実施形態に係る作用効果に加え、以下の作用効果を得ることができる。
According to the present embodiment, in addition to the functions and effects according to the first embodiment, the following functions and effects can be obtained.
検出した各相のゼロクロス点に基づいて決定される相順Sqが予め設定されている相順設定値Sqsと一致しているか否かを監視することで、インバータ装置2の異常を検出することができる。また、多数決判定回路53~55を用いて、異常を判断することで、異常の誤検出を抑えることができる。これらにより、監視装置1Cによる異常検出の信頼性を高めることができる。
It is possible to detect an abnormality in the inverter device 2 by monitoring whether or not the phase sequence Sq determined based on the detected zero-cross point of each phase matches a preset phase sequence setting value Sqs. it can. In addition, by using the majority decision determination circuits 53 to 55 to determine an abnormality, erroneous detection of the abnormality can be suppressed. Accordingly, the reliability of abnormality detection by the monitoring device 1C can be improved.
(第5の実施形態)
図6は、本発明の第5の実施形態に係るドライブシステム10Dの構成を示す構成図である。 (Fifth embodiment)
FIG. 6 is a configuration diagram showing the configuration of adrive system 10D according to the fifth embodiment of the present invention.
図6は、本発明の第5の実施形態に係るドライブシステム10Dの構成を示す構成図である。 (Fifth embodiment)
FIG. 6 is a configuration diagram showing the configuration of a
ドライブシステム10Dは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Dに代えたものである。監視装置1Dは、3台の監視装置1,101,102を配置し、多数決回路56を追加したものである。その他の点は、第1の実施形態と同様である。監視装置101,102は監視装置1と同じ装置である。多数決回路56は、第4の実施形態に係る多数決回路53~55と同じものである。
The drive system 10D is obtained by replacing the monitoring device 1 with the monitoring device 1D in the drive system 10 according to the first embodiment shown in FIG. The monitoring device 1D includes three monitoring devices 1, 101, and 102, and a majority circuit 56 is added. Other points are the same as in the first embodiment. The monitoring devices 101 and 102 are the same devices as the monitoring device 1. The majority circuit 56 is the same as the majority circuits 53 to 55 according to the fourth embodiment.
3台の監視装置1,101,102は、電圧検出器5に、異なる線間電圧を入力し、別々に監視を行う。各監視装置1,101,102の故障検出部25の故障出力信号NG1~NG3を多数決判定回路56に入力する。多数決判定回路56は、3つの故障検出部25の出力のうち少なくとも2以上が‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。多数決判定回路26は故障信号NGをインバータ装置2に出力する。
The three monitoring devices 1, 101, 102 input different line voltages to the voltage detector 5 and perform monitoring separately. The failure output signals NG 1 to NG 3 of the failure detection unit 25 of each of the monitoring devices 1, 101, 102 are input to the majority decision circuit 56. The majority decision circuit 56 determines that a failure has occurred if at least two or more of the outputs of the three failure detectors 25 are signals indicating ‘1’ (that is, signals indicating abnormality). The majority decision circuit 26 outputs a failure signal NG to the inverter device 2.
本実施形態によれば、第1の実施形態に係る作用効果に加え、以下の作用効果を得ることができる。
According to the present embodiment, in addition to the functions and effects according to the first embodiment, the following functions and effects can be obtained.
検出した相間電圧ごとに監視装置1,101,102を別々に配置し、多数決判定回路56を用いて、異常を判断することで、異常の誤検出を抑えることができる。これらにより、監視装置1Dによる異常検出の信頼性を高めることができる。
By arranging the monitoring devices 1, 101, 102 separately for each detected interphase voltage and using the majority decision circuit 56 to determine an abnormality, erroneous detection of the abnormality can be suppressed. Thus, the reliability of abnormality detection by the monitoring device 1D can be improved.
(第6の実施形態)
図7は、本発明の第6の実施形態に係るドライブシステム10Eの構成を示す構成図である。 (Sixth embodiment)
FIG. 7 is a configuration diagram showing the configuration of adrive system 10E according to the sixth embodiment of the present invention.
図7は、本発明の第6の実施形態に係るドライブシステム10Eの構成を示す構成図である。 (Sixth embodiment)
FIG. 7 is a configuration diagram showing the configuration of a
ドライブシステム10Eは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Eに代えたものである。監視装置1Eは、第4の実施形態に係る電圧検出器5C、及び監視回路6Eを備える。監視回路6Eは、第1の実施形態に係る監視回路6において、故障検出部25を故障検出部25Eに代え、周波数検出部13及び電圧検出部14を第4の実施形態に係る周波数検出部13C及び電圧検出部14Cにそれぞれ代え、電圧比較部18、周波数比較部19、及び周波数比較部20を、電圧比較部18E、周波数比較部19E、及び周波数比較部20Eにそれぞれ代え、第4の実施形態に係る相順設定部51及び相順比較部52、電圧変動検出設定部61、周波数変動検出設定部62、電圧差比較部63、及び周波数差比較部64を追加したものである。その他の点は、第1の実施形態と同様である。
The drive system 10E is obtained by replacing the monitoring device 1 with the monitoring device 1E in the drive system 10 according to the first embodiment shown in FIG. The monitoring device 1E includes a voltage detector 5C and a monitoring circuit 6E according to the fourth embodiment. In the monitoring circuit 6 according to the first embodiment, the monitoring circuit 6E replaces the failure detection unit 25 with the failure detection unit 25E, and replaces the frequency detection unit 13 and the voltage detection unit 14 with the frequency detection unit 13C according to the fourth embodiment. In the fourth embodiment, the voltage comparison unit 18, the frequency comparison unit 19, and the frequency comparison unit 20 are replaced with the voltage comparison unit 18E, the frequency comparison unit 19E, and the frequency comparison unit 20E, respectively. A phase sequence setting unit 51 and a phase sequence comparison unit 52, a voltage variation detection setting unit 61, a frequency variation detection setting unit 62, a voltage difference comparison unit 63, and a frequency difference comparison unit 64 are added. Other points are the same as in the first embodiment.
電圧比較部18Eは、電圧検出部14Cにより検出された各相間電圧Vuv,Vvw,Vwuと電圧低下検出設定部15に設定されている電圧低下設定値Vsをそれぞれ比較して、少なくとも1つの相間電圧Vuv,Vvw,Vwuが電圧低下設定値Vsよりも低ければ、電圧低下異常と判断する。その他の点は、第1の実施形態に係る電圧比較部18と同様である。
The voltage comparison unit 18E compares the interphase voltages Vuv, Vvw, Vwu detected by the voltage detection unit 14C with the voltage decrease setting value Vs set in the voltage decrease detection setting unit 15, respectively, and at least one interphase voltage If Vuv, Vvw, Vwu are lower than the voltage drop set value Vs, it is determined that the voltage drop is abnormal. The other points are the same as those of the voltage comparison unit 18 according to the first embodiment.
周波数比較部19Eは、周波数検出部13Cにより検出された各周波数fuv,fvw,fwuと周波数低下検出設定部16に設定されている周波数低下設定値fs1をそれぞれ比較して、少なくとも1つの周波数fuv,fvw,fwuが周波数低下設定値fs1よりも低ければ、周波数低下異常と判断する。その他の点は、第1の実施形態に係る周波数比較部19と同様である。
The frequency comparison unit 19E compares each frequency fuv, fvw, fwu detected by the frequency detection unit 13C with the frequency decrease setting value fs1 set in the frequency decrease detection setting unit 16, and thereby compares at least one frequency fuv, If fvw and fwu are lower than the frequency drop set value fs1, it is determined that the frequency drop is abnormal. Other points are the same as those of the frequency comparison unit 19 according to the first embodiment.
周波数比較部20Eは、周波数検出部13Cにより検出された各周波数fuv,fvw,fwuと過周波数検出設定部17に設定されている過周波数設定値fs2をそれぞれ比較して、少なくとも1つの周波数fuv,fvw,fwuが過周波数設定値fs2よりも高ければ、過周波数異常と判断する。その他の点は、第1の実施形態に係る周波数比較部20と同様である。
The frequency comparison unit 20E compares at least one frequency fuv, fvw, fwu detected by the frequency detection unit 13C with the overfrequency setting value fs2 set in the overfrequency detection setting unit 17, respectively. If fvw and fwu are higher than the overfrequency set value fs2, it is determined that the overfrequency is abnormal. Other points are the same as those of the frequency comparison unit 20 according to the first embodiment.
相順設定部51及び相順比較部52による相順異常の検出方法は、第4の実施形態と同様である。
The method of detecting the phase sequence abnormality by the phase sequence setting unit 51 and the phase sequence comparison unit 52 is the same as in the fourth embodiment.
電圧変動検出設定部61には、インバータ装置2の出力相間電圧Vuv,Vvw,Vwuの相互間の大きな変動を検出する閾値となる電圧変動設定値Vsvが設定されている。電圧変動検出設定部61は、電圧変動設定値Vsvを電圧差比較部63に出力する。
In the voltage fluctuation detection setting unit 61, a voltage fluctuation setting value Vsv serving as a threshold for detecting large fluctuations among the output phase voltages Vuv, Vvw, Vwu of the inverter device 2 is set. The voltage fluctuation detection setting unit 61 outputs the voltage fluctuation setting value Vsv to the voltage difference comparison unit 63.
周波数変動検出設定部62には、インバータ装置2の出力相間電圧の周波数fuv,fvw,fwuの相互間の大きな変動を検出する閾値となる周波数変動設定値fsvが設定されている。周波数変動検出設定部62は、周波数変動設定値fsvを周波数差比較部64に出力する。
In the frequency fluctuation detection setting unit 62, a frequency fluctuation setting value fsv serving as a threshold for detecting large fluctuations among the frequencies fuv, fvw, and fwu of the output phase voltage of the inverter device 2 is set. The frequency fluctuation detection setting unit 62 outputs the frequency fluctuation setting value fsv to the frequency difference comparison unit 64.
電圧差比較部63は、電圧検出部14Cにより検出された相間電圧Vuv,Vvw,Vwuの相互間の電圧差の絶対値を演算する。電圧差比較部63は、演算した3つの電圧差の絶対値と電圧変動検出設定部61に設定されている電圧変動設定値Vsvを比較して、電圧変動異常か否かについて判断する。これらの電圧差の絶対値のうち少なくとも1つが電圧変動設定値Vsvよりも大きければ、電圧変動異常と判断する。即ち、下記の3つの不等式のうち少なくとも1つが成り立てば、電圧変動異常と判断し、そうでなければ、正常と判断する。電圧変動異常と判断した場合、電圧差比較部63は、‘1’を示す信号を故障検出部25Eに出力する。正常と判断した場合、電圧差比較部63は、‘0’を示す信号を故障検出部25Eに出力する。
The voltage difference comparison unit 63 calculates the absolute value of the voltage difference between the interphase voltages Vuv, Vvw, and Vwu detected by the voltage detection unit 14C. The voltage difference comparison unit 63 compares the calculated three voltage difference absolute values with the voltage variation setting value Vsv set in the voltage variation detection setting unit 61 to determine whether or not the voltage variation is abnormal. If at least one of the absolute values of these voltage differences is larger than the voltage fluctuation set value Vsv, it is determined that the voltage fluctuation is abnormal. That is, if at least one of the following three inequalities holds, it is determined that the voltage fluctuation is abnormal, and otherwise, it is determined normal. When it is determined that the voltage fluctuation is abnormal, the voltage difference comparison unit 63 outputs a signal indicating “1” to the failure detection unit 25E. When it is determined that the voltage is normal, the voltage difference comparison unit 63 outputs a signal indicating “0” to the failure detection unit 25E.
|Vuv-Vvw| > Vsv、 |Vvw-Vwu| > Vsv、 |Vwu-Vuv| > Vsv
周波数差比較部64は、周波数検出部13Cにより検出された相間電圧の周波数fuv,fvw,fwuの相互間の周波数差の絶対値を演算する。周波数差比較部64は、演算した3つの周波数差の絶対値と周波数変動検出設定部62に設定されている周波数変動設定値fsvを比較して、周波数変動異常か否かについて判断する。これらの周波数差の絶対値のうち少なくとも1つが周波数変動設定値fsvよりも大きければ、周波数変動異常と判断する。即ち、下記の3つの不等式のうち少なくとも1つが成り立てば、周波数変動異常と判断し、そうでなければ、正常と判断する。周波数変動異常と判断した場合、周波数差比較部64は、‘1’を示す信号を故障検出部25Eに出力する。正常と判断した場合、周波数差比較部64は、‘0’を示す信号を故障検出部25Eに出力する。 | Vuv-Vvw |> Vsv, | Vvw-Vwu |> Vsv, | Vwu-Vuv |> Vsv
The frequencydifference comparison unit 64 calculates the absolute value of the frequency difference between the frequencies fuv, fvw, and fwu of the interphase voltage detected by the frequency detection unit 13C. The frequency difference comparison unit 64 compares the calculated absolute values of the three frequency differences with the frequency variation setting value fsv set in the frequency variation detection setting unit 62 to determine whether or not the frequency variation is abnormal. If at least one of the absolute values of these frequency differences is larger than the frequency fluctuation set value fsv, it is determined that the frequency fluctuation is abnormal. That is, if at least one of the following three inequalities holds, it is determined that the frequency fluctuation is abnormal, and otherwise, it is determined normal. When it is determined that the frequency fluctuation is abnormal, the frequency difference comparison unit 64 outputs a signal indicating “1” to the failure detection unit 25E. If it is determined that the frequency is normal, the frequency difference comparison unit 64 outputs a signal indicating “0” to the failure detection unit 25E.
周波数差比較部64は、周波数検出部13Cにより検出された相間電圧の周波数fuv,fvw,fwuの相互間の周波数差の絶対値を演算する。周波数差比較部64は、演算した3つの周波数差の絶対値と周波数変動検出設定部62に設定されている周波数変動設定値fsvを比較して、周波数変動異常か否かについて判断する。これらの周波数差の絶対値のうち少なくとも1つが周波数変動設定値fsvよりも大きければ、周波数変動異常と判断する。即ち、下記の3つの不等式のうち少なくとも1つが成り立てば、周波数変動異常と判断し、そうでなければ、正常と判断する。周波数変動異常と判断した場合、周波数差比較部64は、‘1’を示す信号を故障検出部25Eに出力する。正常と判断した場合、周波数差比較部64は、‘0’を示す信号を故障検出部25Eに出力する。 | Vuv-Vvw |> Vsv, | Vvw-Vwu |> Vsv, | Vwu-Vuv |> Vsv
The frequency
|fuv-fvw| > fsv、 |fvw-fwu| > fsv、 |fwu-fuv| >fVsv
故障検出部25Eは、周波数比較部20E、NOT演算回路21、NOT演算回路22、XOR演算回路24、相順比較部52、電圧差比較部63、及び周波数差比較部64のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Eは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Eは、故障を検出すると、故障信号NGをインバータ装置2に出力する。 | Fuv-fvw |> fsv, | fvw-fwu |> fsv, | fwu-fuv |> fVsv
Thefailure detection unit 25E receives signals from the frequency comparison unit 20E, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, the phase sequence comparison unit 52, the voltage difference comparison unit 63, and the frequency difference comparison unit 64. Based on the above, a failure is detected. The failure detection unit 25E determines that a failure has occurred if any of the received signals is a signal indicating “1” (that is, a signal indicating abnormality). The failure detection unit 25E outputs a failure signal NG to the inverter device 2 when detecting a failure.
故障検出部25Eは、周波数比較部20E、NOT演算回路21、NOT演算回路22、XOR演算回路24、相順比較部52、電圧差比較部63、及び周波数差比較部64のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Eは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Eは、故障を検出すると、故障信号NGをインバータ装置2に出力する。 | Fuv-fvw |> fsv, | fvw-fwu |> fsv, | fwu-fuv |> fVsv
The
本実施形態によれば、第1の実施形態による作用効果に加え、以下の作用効果を得ることができる。
According to the present embodiment, in addition to the functions and effects of the first embodiment, the following functions and effects can be obtained.
相間電圧Vuv,Vvw,Vwuの相互間の電圧差及び相間電圧の周波数fuv,fvw,fwuの相互間の周波数差を監視することで、相間電圧Vuv,Vvw,Vwuを別々に監視しても検出することのできない異常を検出することができる。
Even if the interphase voltages Vuv, Vvw, and Vwu are separately monitored by monitoring the voltage difference between the interphase voltages Vuv, Vvw, and Vwu and the frequency difference between the interphase voltages fuv, fvw, and fwu. Abnormalities that cannot be detected can be detected.
(第7の実施形態)
図8は、本発明の第7の実施形態に係るドライブシステム10Fの構成を示す構成図である。 (Seventh embodiment)
FIG. 8 is a configuration diagram showing a configuration of adrive system 10F according to the seventh embodiment of the present invention.
図8は、本発明の第7の実施形態に係るドライブシステム10Fの構成を示す構成図である。 (Seventh embodiment)
FIG. 8 is a configuration diagram showing a configuration of a
ドライブシステム10Fは、図1に示す第1の実施形態に係るドライブシステム10において、監視装置1を監視装置1Fに代え、上位システム9を追加したものである。監視装置1Fは、第1の実施形態に係る監視装置1の監視回路6を、故障検出部25から故障検出部25Fに代え、OR演算回路71及びXOR演算回路72を追加した監視回路6Fに代えたものである。その他の点は、第1の実施形態と同様である。
In the drive system 10 according to the first embodiment shown in FIG. 1, the drive system 10F is obtained by replacing the monitoring device 1 with the monitoring device 1F and adding a host system 9. The monitoring device 1F replaces the monitoring circuit 6 of the monitoring device 1 according to the first embodiment with a monitoring circuit 6F in which an OR operation circuit 71 and an XOR operation circuit 72 are added instead of the failure detection unit 25 to the failure detection unit 25F. It is a thing. Other points are the same as in the first embodiment.
上位システム9は、インバータ装置2の制御装置8の上位制御系のシステムである。上位システム9は、運転指令部91及び監視指令部92を備える。
The host system 9 is a host control system of the control device 8 of the inverter device 2. The host system 9 includes an operation command unit 91 and a monitoring command unit 92.
運転指令部91は、インバータ装置2の制御装置8にドライブシステム10Fの制御内容などを含む運転指令を送信する。運転指令部91は、制御装置8の運転シーケンス実行部31と情報の送受信することで、ドライブシステム10Fの現在の運転状態を把握する。運転指令部91は、ドライブシステム10Fの運転状態に基づいて、運転指令の内容を決定する。制御装置8は、運転指令部91から受信した運転指令に従って、ドライブシステム10Fを制御する。
The operation command unit 91 transmits an operation command including the control content of the drive system 10F to the control device 8 of the inverter device 2. The operation command unit 91 grasps the current operation state of the drive system 10 </ b> F by transmitting and receiving information to and from the operation sequence execution unit 31 of the control device 8. The operation command unit 91 determines the content of the operation command based on the operation state of the drive system 10F. The control device 8 controls the drive system 10F in accordance with the operation command received from the operation command unit 91.
監視指令部92は、監視条件が成立している場合に、監視装置1Fに監視指令を出力する。監視条件が成立しているかどうかは、インバータ装置2の監視指令部33と同様に、インバータ装置2が監視される状態にあるか否かで決定される。監視条件は、監視装置1Fによる監視が正常に行えないような要因が無ければ成立する。例えば、監視指令部92は、運転指令部91から受信するインバータ装置2及び電動機3の運転状態に基づいて、監視条件が成立しているか否かを判断する。監視条件が成立している場合は、監視指令部92は、監視装置1Fに監視指令を出力する。監視条件が成立していない場合は、監視指令部92は、監視装置1Fに監視指令を出力しない。ここで、監視指令部92は、監視指令を出力する場合は、監視指令信号C2を‘1’にして送信し、監視指令を出力しない場合は、監視指令信号C2を‘0’にして送信する。
The monitoring command unit 92 outputs a monitoring command to the monitoring device 1F when the monitoring condition is satisfied. Whether or not the monitoring condition is satisfied is determined by whether or not the inverter device 2 is in a state of being monitored, similarly to the monitoring command unit 33 of the inverter device 2. The monitoring condition is satisfied if there is no factor that prevents the monitoring by the monitoring device 1F from being performed normally. For example, the monitoring command unit 92 determines whether or not the monitoring condition is satisfied based on the operation state of the inverter device 2 and the electric motor 3 received from the operation command unit 91. If the monitoring condition is satisfied, the monitoring command unit 92 outputs a monitoring command to the monitoring device 1F. When the monitoring condition is not satisfied, the monitoring command unit 92 does not output a monitoring command to the monitoring device 1F. Here, the monitoring command unit 92 transmits the monitoring command signal C2 to “1” when outputting the monitoring command, and transmits the monitoring command signal C2 to “0” when not outputting the monitoring command. .
OR演算回路71には、インバータ装置2から受信した監視指令信号C1及び上位システム9から受信した監視指令信号C2が入力される。OR演算回路71は、入力された2つの監視指令信号C1,C2の論理和をXOR演算回路24に出力する。従って、入力された2つの監視指令信号C1,C2のうち少なくとも1つが‘1’の場合(上位システム9又はインバータ装置2のうち少なくとも一方が監視指令を出力している場合)は、XOR演算回路24に‘1’が入力され、そうでない場合は、XOR演算回路24に‘0’が入力される。
The OR operation circuit 71 receives the monitoring command signal C1 received from the inverter device 2 and the monitoring command signal C2 received from the host system 9. The OR operation circuit 71 outputs the logical sum of the two input monitoring command signals C1 and C2 to the XOR operation circuit 24. Therefore, when at least one of the two input monitoring command signals C1 and C2 is '1' (when at least one of the host system 9 or the inverter device 2 outputs a monitoring command), the XOR operation circuit “1” is input to 24, otherwise “0” is input to the XOR operation circuit 24.
XOR演算回路72には、インバータ装置2から受信した監視指令信号C1及び上位システム9から受信した監視指令信号C2が入力される。XOR演算回路72は、入力された2つの監視指令信号C1,C2の排他的論理和を故障検出部25Fに出力する。これにより、インバータ装置2から受信した監視指令信号C1と上位システム9から受信した監視指令信号C2が一致しない場合、XOR演算回路72は、不一致異常として‘1’を示す信号を出力し、そうでない場合、正常として‘0’を示す信号を出力する。この異常検出では、インバータ装置2又は上位システム9のいずれか一方に異常があるような場合に、この異常を検出できる。
The monitor command signal C1 received from the inverter device 2 and the monitor command signal C2 received from the host system 9 are input to the XOR operation circuit 72. The XOR operation circuit 72 outputs the exclusive OR of the two input monitoring command signals C1 and C2 to the failure detection unit 25F. As a result, when the monitoring command signal C1 received from the inverter device 2 and the monitoring command signal C2 received from the host system 9 do not match, the XOR operation circuit 72 outputs a signal indicating “1” as a mismatch error, and is not so. In this case, a signal indicating “0” is output as normal. In this abnormality detection, this abnormality can be detected when either the inverter device 2 or the host system 9 has an abnormality.
故障検出部25Fは、周波数比較部20、NOT演算回路21、NOT演算回路22、XOR演算回路24、及びXOR演算回路72のそれぞれから受信する信号に基づいて、故障を検出する。故障検出部25Fは、受信した信号のうちいずれかが‘1’を示す信号(即ち、異常を示す信号)であれば故障と判断する。故障検出部25Fは、故障を検出すると、故障信号NGをインバータ装置2に出力する。
The failure detection unit 25F detects a failure based on signals received from each of the frequency comparison unit 20, the NOT operation circuit 21, the NOT operation circuit 22, the XOR operation circuit 24, and the XOR operation circuit 72. The failure detection unit 25F determines that there is a failure if any of the received signals is a signal indicating '1' (that is, a signal indicating abnormality). The failure detection unit 25F outputs a failure signal NG to the inverter device 2 when detecting a failure.
本実施形態によれば、第1の実施形態による作用効果に加え、以下の作用効果を得ることができる。
According to the present embodiment, in addition to the functions and effects of the first embodiment, the following functions and effects can be obtained.
インバータ装置2に、上位システム9のような上位制御系の装置がある場合、インバータ装置2に内蔵する制御装置8による制御と上位システム9の制御との整合性を外部装置である監視装置1で監視することができる。これにより、ドライブシステム10Fの制御の信頼性を高めることができる。
When the inverter device 2 has a host control system device such as the host system 9, the monitoring device 1, which is an external device, matches the consistency between the control by the control device 8 built in the inverter device 2 and the control of the host system 9. Can be monitored. Thereby, the reliability of control of the drive system 10F can be improved.
なお、各実施形態において、異常の検出方法については、任意に組み合わせてもよい。監視装置の運用環境に応じて適切な異常検出方法を選択することができる。また、第4の実施形態では、多数決判定回路を用いたが、その他の実施形態でも、任意の異常検出で多数決判定回路を用いてもよい。さらに、第7の実施形態に係る上位システム9は、他の実施形態に適用してもよい。
In each embodiment, the abnormality detection method may be arbitrarily combined. An appropriate abnormality detection method can be selected according to the operating environment of the monitoring device. In the fourth embodiment, a majority decision circuit is used. However, in other embodiments, a majority decision circuit may be used for arbitrary abnormality detection. Furthermore, the host system 9 according to the seventh embodiment may be applied to other embodiments.
各実施形態では、電圧を検出(測定)する電圧検出器5,5Cを用いた構成で説明したが、監視対象から出力される電力変換装置の出力を検出するのであれば、出力電流若しくは出力電力などの電気量(大きさ又は周波数など)、又は電力変換装置の出力で動作する電動機の回転数若しくはトルクなどの動作量など、どのような出力量を検出してもよい。
In each embodiment, the configuration using the voltage detectors 5 and 5C that detect (measure) the voltage has been described. However, if the output of the power converter output from the monitoring target is detected, the output current or the output power Any output amount may be detected, such as the amount of electricity (such as magnitude or frequency), or the amount of operation such as the rotational speed or torque of an electric motor that operates with the output of the power converter.
各実施形態では、インバータ装置2,2Bは、監視装置1~1Fにより検出された故障信号NGを受信した場合、インバータ回路7をゲートブロックしたが、ゲートブロック以外の他の保護動作を実行してもよい。例えば、監視装置1~1Fにより故障が検出された場合、インバータ装置2,2Bの出力を止めるように、直流側又は交流側に設けられた遮断器をトリップするようにしてもよい。
In each embodiment, when the inverter devices 2 and 2B receive the failure signal NG detected by the monitoring devices 1 to 1F, the inverter circuit 7 is gate-blocked, but the protection operation other than the gate block is performed. Also good. For example, when a failure is detected by the monitoring devices 1 to 1F, the circuit breaker provided on the DC side or the AC side may be tripped so as to stop the output of the inverter devices 2 and 2B.
多数決判定回路53~56は、入力された複数の情報のうち過半数以上の情報を出力する回路としたが、全数が異常の場合のみ異常を出力するようにしてもよい。 各実施形態では、インバータを用いて電動機を制御するシステムについて説明したが、電力変換装置(インバータを含む)の出力を制御するシステムであれば、どのような監視対象のシステム及び監視装置でもよい。
The majority decision determination circuits 53 to 56 are circuits that output more than a majority of the input information, but may output an abnormality only when the total number is abnormal. In each embodiment, a system for controlling an electric motor using an inverter has been described. However, any monitoring target system and monitoring device may be used as long as the system controls the output of a power conversion device (including an inverter).
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
Claims (11)
- 電力変換装置の制御系から独立したハードウェアで構成され、前記電力変換装置を監視する電力変換装置の監視装置であって、
前記電力変換装置の出力を検出する出力検出手段と、
前記出力検出手段により検出された前記電力変換装置の出力に基づいて、前記電力変換装置の出力を監視する出力監視手段と、
前記出力監視手段による監視に基づいて、前記電力変換装置の出力異常を検出する出力異常検出手段と、
前記電力変換装置が監視される状態にあるか否かを示す監視信号を受信する監視信号受信手段と、
前記出力監視手段による監視及び前記監視信号受信手段から受信した前記監視信号に基づいて、監視異常を検出する監視異常検出手段と
を備えることを特徴とする電力変換装置の監視装置。 A power conversion device monitoring device configured by hardware independent from a control system of the power conversion device and monitoring the power conversion device,
Output detection means for detecting the output of the power converter;
Output monitoring means for monitoring the output of the power converter based on the output of the power converter detected by the output detector;
Based on monitoring by the output monitoring means, output abnormality detection means for detecting an output abnormality of the power converter,
Monitoring signal receiving means for receiving a monitoring signal indicating whether or not the power converter is in a state of being monitored;
A monitoring apparatus for a power converter, comprising: monitoring abnormality detecting means for detecting monitoring abnormality based on monitoring by the output monitoring means and the monitoring signal received from the monitoring signal receiving means. - 前記出力検出手段は、前記電力変換装置から出力される電気量を検出し、
前記出力異常検出手段は、前記出力検出手段により検出された電気量の大きさ及び周波数の異常を検出すること
を特徴とする請求項1に記載の電力変換装置の監視装置。 The output detection means detects the amount of electricity output from the power converter,
The monitoring apparatus for a power converter according to claim 1, wherein the output abnormality detection means detects an abnormality in magnitude and frequency of electricity detected by the output detection means. - 前記出力異常検出手段は、前記周波数の変化が所定値よりも大きい場合、周波数変化異常を検出すること
を特徴とする請求項2に記載の電力変換装置の監視装置。 The monitoring apparatus for a power converter according to claim 2, wherein the output abnormality detecting means detects a frequency change abnormality when the change in the frequency is greater than a predetermined value. - 前記出力異常検出手段は、前記電気量の前記大きさと前記周波数の比が異常であることを検出すること
を特徴とする請求項2に記載の電力変換装置の監視装置。 The monitoring apparatus for a power converter according to claim 2, wherein the output abnormality detecting means detects that the ratio of the magnitude of the quantity of electricity and the frequency is abnormal. - 前記出力検出手段は、前記電力変換装置から出力される少なくとも3つの電気量を検出し、
前記出力異常検出手段は、前記出力検出手段により検出された前記少なくとも3つの電気量のうち過半数、または全数の電気量が異常である場合、前記出力異常を検出すること
を特徴とする請求項2に記載の電力変換装置の監視装置。 The output detection means detects at least three electric quantities output from the power converter,
3. The output abnormality detection unit detects the output abnormality when a majority or all of the at least three electric quantities detected by the output detection unit are abnormal. The monitoring apparatus of the power converter device of description. - 前記出力検出手段は、前記電力変換装置から出力される少なくとも3つの電気量を検出し、
前記出力異常検出手段は、前記電気量ごとの前記出力異常の過半数、または全数が異常である場合、前記出力異常を検出すること
を特徴とする請求項2に記載の電力変換装置の監視装置。 The output detection means detects at least three electric quantities output from the power converter,
The power output monitoring device according to claim 2, wherein the output abnormality detection unit detects the output abnormality when a majority or all of the output abnormalities for each electric quantity are abnormal. - 前記出力検出手段は、前記電力変換装置から出力される3つの電気量を検出し、
前記出力異常検出手段は、前記出力検出手段により検出された前記3つの電気量の相互間の差に基づいて、前記出力異常を検出すること
を特徴とする請求項2に記載の電力変換装置の監視装置。 The output detection means detects three electric quantities output from the power converter,
3. The power converter according to claim 2, wherein the output abnormality detection unit detects the output abnormality based on a difference between the three electric quantities detected by the output detection unit. Monitoring device. - 前記電力変換装置の上位制御系から前記電力変換装置が監視される状態にあるか否かを示す上位制御系信号を受信する上位制御系信号受信手段と、
前記監視信号受信手段により受信した前記監視信号の内容と前記上位制御系信号受信手段により受信した前記上位制御系信号の内容が一致しない場合、不一致異常を検出する不一致異常検出手段と
を備えることを特徴とする請求項1に記載の電力変換装置の監視装置。 Upper control system signal receiving means for receiving an upper control system signal indicating whether or not the power converter is in a state of being monitored from the upper control system of the power converter;
A mismatch abnormality detecting means for detecting a mismatch abnormality when the contents of the monitoring signal received by the monitoring signal receiving means and the contents of the higher control system signal received by the higher control system signal receiving means do not match. The monitoring apparatus for a power conversion apparatus according to claim 1, wherein the monitoring apparatus is a power conversion apparatus. - 電力変換装置の制御系から独立したハードウェアで構成され、前記電力変換装置を監視する電力変換装置の監視方法であって、
前記電力変換装置の出力を検出し、
検出した前記電力変換装置の出力に基づいて、前記電力変換装置の出力を監視し、
前記監視に基づいて、前記電力変換装置の出力異常を検出し、
前記電力変換装置が監視される状態にあるか否かを示す監視信号を受信し、
前記監視及び受信した前記監視信号に基づいて、監視異常を検出すること
を含むことを特徴とする電力変換装置の監視方法。 A method for monitoring a power converter, which is configured by hardware independent of a control system of the power converter, and monitors the power converter,
Detecting the output of the power converter,
Based on the detected output of the power converter, the output of the power converter is monitored,
Based on the monitoring, detecting an output abnormality of the power converter,
Receiving a monitoring signal indicating whether the power converter is in a state of being monitored;
A monitoring method for a power converter, comprising: detecting a monitoring abnormality based on the monitoring and the received monitoring signal. - 監視対象の電力変換装置と、
前記電力変換装置の制御系から独立したハードウェアで構成され、前記電力変換装置を監視する監視装置とを備え、
前記監視装置は、
前記電力変換装置の出力を検出する出力検出手段と、
前記出力検出手段により検出された前記電力変換装置の出力に基づいて、前記電力変換装置の出力を監視する出力監視手段と、
前記出力監視手段による監視に基づいて、前記電力変換装置の出力異常を検出する出力異常検出手段と、
前記電力変換装置が監視される状態にあるか否かを示す監視信号を受信する監視信号受信手段と、
前記出力監視手段による監視及び前記監視信号受信手段から受信した前記監視信号に基づいて、監視異常を検出する監視異常検出手段とを備えること
を特徴とする監視システム。 A power conversion device to be monitored;
It is composed of hardware independent from the control system of the power converter, and includes a monitoring device that monitors the power converter,
The monitoring device
Output detection means for detecting the output of the power converter;
Output monitoring means for monitoring the output of the power converter based on the output of the power converter detected by the output detector;
Based on monitoring by the output monitoring means, output abnormality detection means for detecting an output abnormality of the power converter,
Monitoring signal receiving means for receiving a monitoring signal indicating whether or not the power converter is in a state of being monitored;
A monitoring abnormality detecting means for detecting a monitoring abnormality based on the monitoring by the output monitoring means and the monitoring signal received from the monitoring signal receiving means. - 前記電力変換装置から出力される交流電力により駆動する電動機
を備えることを特徴とする請求項10に記載の監視システム。 The monitoring system according to claim 10, further comprising an electric motor driven by AC power output from the power converter.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/056967 WO2015136699A1 (en) | 2014-03-14 | 2014-03-14 | Power conversion apparatus monitoring apparatus |
JP2016507235A JP6270987B2 (en) | 2014-03-14 | 2014-03-14 | Monitoring device for power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/056967 WO2015136699A1 (en) | 2014-03-14 | 2014-03-14 | Power conversion apparatus monitoring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015136699A1 true WO2015136699A1 (en) | 2015-09-17 |
Family
ID=54071176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056967 WO2015136699A1 (en) | 2014-03-14 | 2014-03-14 | Power conversion apparatus monitoring apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6270987B2 (en) |
WO (1) | WO2015136699A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198191A1 (en) * | 2017-04-25 | 2018-11-01 | 東芝三菱電機産業システム株式会社 | Power conversion device and power conversion system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3089597B1 (en) | 2018-12-06 | 2020-11-20 | Gaztransport Et Technigaz | Sealed and thermally insulating tank |
CN109945396B (en) * | 2019-03-25 | 2021-10-26 | 广东美的制冷设备有限公司 | Air conditioner, and detection method and detection device for driving circuit fault |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02254923A (en) * | 1989-03-24 | 1990-10-15 | Fuji Electric Co Ltd | External detection circuit for inverter abnormality |
JPH08223937A (en) * | 1995-02-16 | 1996-08-30 | Toyo Densan Kk | Inverter monitoring apparatus |
JP2001037242A (en) * | 1999-07-22 | 2001-02-09 | Toshiba Corp | Overcurrent protective device for inverter |
JP2005175741A (en) * | 2003-12-10 | 2005-06-30 | Mitsubishi Electric Corp | Controller of switching device, and control unit of drive circuit of motor |
JP2010115094A (en) * | 2008-11-10 | 2010-05-20 | Toshiba Corp | Individual operation detection device of inverter and method of detecting the individual operation |
JP2012005229A (en) * | 2010-06-16 | 2012-01-05 | Hitachi Automotive Systems Ltd | Electric power converter |
JP2013132135A (en) * | 2011-12-21 | 2013-07-04 | Aisin Aw Co Ltd | Rotary electric machine controller |
-
2014
- 2014-03-14 WO PCT/JP2014/056967 patent/WO2015136699A1/en active Application Filing
- 2014-03-14 JP JP2016507235A patent/JP6270987B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02254923A (en) * | 1989-03-24 | 1990-10-15 | Fuji Electric Co Ltd | External detection circuit for inverter abnormality |
JPH08223937A (en) * | 1995-02-16 | 1996-08-30 | Toyo Densan Kk | Inverter monitoring apparatus |
JP2001037242A (en) * | 1999-07-22 | 2001-02-09 | Toshiba Corp | Overcurrent protective device for inverter |
JP2005175741A (en) * | 2003-12-10 | 2005-06-30 | Mitsubishi Electric Corp | Controller of switching device, and control unit of drive circuit of motor |
JP2010115094A (en) * | 2008-11-10 | 2010-05-20 | Toshiba Corp | Individual operation detection device of inverter and method of detecting the individual operation |
JP2012005229A (en) * | 2010-06-16 | 2012-01-05 | Hitachi Automotive Systems Ltd | Electric power converter |
JP2013132135A (en) * | 2011-12-21 | 2013-07-04 | Aisin Aw Co Ltd | Rotary electric machine controller |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198191A1 (en) * | 2017-04-25 | 2018-11-01 | 東芝三菱電機産業システム株式会社 | Power conversion device and power conversion system |
JPWO2018198191A1 (en) * | 2017-04-25 | 2019-11-07 | 東芝三菱電機産業システム株式会社 | Power conversion device and power conversion system |
US10965226B2 (en) | 2017-04-25 | 2021-03-30 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion apparatus and power conversion system |
Also Published As
Publication number | Publication date |
---|---|
JP6270987B2 (en) | 2018-01-31 |
JPWO2015136699A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2403131B1 (en) | Electric power conversion system and electric power conversion device | |
EP2705599B1 (en) | An inverter and method for controlling an electric machine | |
JP5266687B2 (en) | Anomaly detection device | |
WO2017199643A1 (en) | Inverter control device and power conversion device | |
WO2018117058A1 (en) | Power conversion device with discharge function | |
US9991785B2 (en) | Electric power converting device | |
JP5491210B2 (en) | AC motor monitoring device | |
US10298168B2 (en) | Slip-dependent motor model | |
JP6270987B2 (en) | Monitoring device for power converter | |
JP4737093B2 (en) | Control device for multiphase rotating electrical machine | |
EP3012953B1 (en) | Method of controlling inverter | |
JP5972638B2 (en) | Protection control device | |
JP5707761B2 (en) | Phase loss diagnosis apparatus and phase loss diagnosis method | |
JP6093555B2 (en) | Control system and duplex control method | |
JP2006304456A (en) | Power converter | |
JP3800391B2 (en) | Phase loss detection method and circuit of voltage source inverter device. | |
KR20220080580A (en) | Method and apparatus for detecting inverter fault | |
JP5481055B2 (en) | Power converter | |
JP6281117B2 (en) | Power converter | |
JP7172509B2 (en) | Anomaly detection device and power conversion device | |
US10879832B2 (en) | Method for detection of e-motor open-phase problem in electrified powertrain | |
EP1668768B1 (en) | Operating a converter | |
CN110663168A (en) | Rotation angle detection device and AC rotating machine control device | |
JP2024025753A (en) | Bi-directional ac power conversion device | |
JP2001251866A (en) | Open-phase detecting method of voltage-type inverter apparatus and its circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14885795 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016507235 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14885795 Country of ref document: EP Kind code of ref document: A1 |