WO2018117058A1 - Power conversion device with discharge function - Google Patents
Power conversion device with discharge function Download PDFInfo
- Publication number
- WO2018117058A1 WO2018117058A1 PCT/JP2017/045400 JP2017045400W WO2018117058A1 WO 2018117058 A1 WO2018117058 A1 WO 2018117058A1 JP 2017045400 W JP2017045400 W JP 2017045400W WO 2018117058 A1 WO2018117058 A1 WO 2018117058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discharge
- abnormality
- voltage change
- change rate
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/12—Measuring rate of change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16566—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
- G01R19/16576—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/322—Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Definitions
- the present invention relates to a power conversion device having a discharge function, and more particularly to a discharge abnormality detection technique thereof.
- Patent Document 1 describes that “a converter that converts a DC voltage output from a capacitor into a DC voltage of a different level, and a DC voltage that is output from the converter is converted into an AC voltage and applied to a load.
- a discharge circuit failure detection device for detecting a failure in a discharge circuit in a system including a voltage sensor for detecting a voltage across both ends of the current circuit opens and closes a current path by a switching element by PWM control with two different duty ratios The rate of change of the voltage across the terminals obtained at the PWM control stage with a low duty ratio Based on the rate of change of voltage across obtained at the stage of the PWM control in a high duty ratio, it detects the presence or absence of a failure of the discharge circuit. "Is described as (see Abstract).
- the discharge circuit abnormality is determined by comparing the voltage change rate of the voltage across the smoothing capacitor in a predetermined discharge circuit and two predetermined different discharge operations with a normal value.
- the capacitor capacity and the discharge resistance value are various and are not determined uniformly depending on the equipment, normal values cannot be determined for each system. Further, it is considered that the voltage used as a reference for the protective operation due to the change in the capacitance of the capacitor may not be appropriate for the apparatus with a predetermined value.
- An object of the present invention is to detect a discharge abnormality in the same procedure without setting an abnormality determination value for each apparatus in a power conversion apparatus having various discharge functions with different capacitor capacities and discharge resistance values. To do.
- the voltage change rate of the DC bus for a certain period of time during the discharge operation is obtained to create a value corresponding to a circuit time constant, and an abnormality of the circuit is detected by the fluctuation of the value.
- a converter unit that converts input alternating current into direct current, a smoothing capacitor that smoothes the direct current, an inverter unit that converts the direct current into alternating current and outputs the motor,
- a power conversion device having a discharge function having a discharge circuit that discharges the electric charge charged in the smoothing capacitor when the device is stopped, the voltage detector detecting the voltage of the smoothing capacitor, and the voltage detector
- a discharge abnormality detecting unit that detects a discharge abnormality based on the detected voltage, and the discharge abnormality detecting unit obtains a voltage change rate detecting unit that obtains a voltage change rate that is a ratio of a detected voltage around a predetermined time.
- An abnormality determination unit that compares the voltage change rate with a reference value to determine abnormality.
- discharge abnormality in a power conversion device having various discharge functions with different capacitor capacities and discharge resistance values, discharge abnormality can be detected in the same procedure without setting an abnormality determination value for each device. it can. Further, the calculation cost can be reduced by not obtaining the circuit time constant itself.
- FIG. 3 is a diagram illustrating an equivalent circuit of the discharge circuit according to the first embodiment. It is a figure which shows the voltage change at the time of discharge of the discharge circuit of FIG. It is a figure which shows the voltage change at the time of the discharge circuit abnormality of Example 1.
- FIG. 3 is a diagram illustrating a voltage change rate detection unit according to the first embodiment. It is a figure which shows the abnormality determination part of Example 1.
- FIG. It is a figure which shows the voltage change at the time of the discharge circuit abnormality of Example 2 of this invention.
- FIG. 1 is a schematic diagram of the power conversion apparatus according to the first embodiment of the present invention.
- the power conversion device 1 includes a smoothing capacitor 4, a discharge circuit 5, a voltage detection circuit 6, a converter unit 7, an inverter unit 8, and a circuit control unit 10, and an external capacitor 2 and an external discharge resistor 3 are connected thereto.
- an external capacitor 2 and an external discharge resistor 3 are connected for peak cutting.
- the basic configuration is the same except that a plurality of inverter units 8 to motors 9 are connected in parallel.
- the symbol of a diode or a transistor is used for the discharge circuit 5, the inverter part 8, and the converter part 7 in FIG. 1, it is an example and a kind will not be ask
- the circuit control unit 10 controls the switch element of the inverter unit 8, the switch element 13 of the discharge circuit 5, and the like.
- ⁇ Circuit time constant
- ⁇ CR in the equivalent circuit of FIG. C: capacitance of capacitor 21
- R resistance value of discharge resistor 22
- V (t1) V0 ⁇ exp ( ⁇ t1 / ⁇ )
- FIG. 4 shows a graph of a change in DC voltage when an abnormality occurs in the circuit during the discharge period.
- the voltage change rate B1 is obtained.
- this is the case as shown by a broken line (when an abnormality occurs (time constant is large)).
- the DC voltage becomes a constant value.
- the voltage change rate A at normal time and the voltage change rates B1 and B2 at abnormal time are different from each other, it is possible to detect the abnormality of the discharge circuit by comparing each of them.
- the magnitude of dt, the timing at which the voltage is acquired, the frequency, and the like depend on the design of the power conversion device and the system including the power conversion device, and are not particularly limited here.
- the voltage change rate A is the reference value for abnormality determination in the above, there is no problem even if it has a certain width due to a voltage detection error in circuit design and a design margin.
- the power conversion apparatus includes a discharge abnormality detection unit 15.
- the discharge abnormality detection unit 15 includes a voltage change rate detection unit 16, an abnormality determination unit 17, an output unit 18, and a storage unit 19 that stores a reference value. I have.
- the voltage change rate detection unit 16 includes a sampling unit 51 and a division unit 52 as shown in FIG.
- the DC voltage of the DC bus detected by the voltage detection circuit 6 is sampled by the sampling unit 51 every predetermined time dt.
- the division unit 52 determines the voltage change rate B by dividing the ratio of the DC voltage before and after the dt time, that is, the DC voltage value after the dt time.
- the abnormality determination unit 17 includes an upper limit comparison unit 61 and a lower limit comparison unit 62 as shown in FIG.
- the voltage change rate signal B obtained by the voltage change rate detection unit 16 is added to the upper limit comparison unit 61 and the lower limit comparison unit 62.
- the upper limit comparison unit 61 compares the voltage change rate signal B with the reference value, and outputs an abnormality determination signal when the voltage change rate signal B exceeds the reference value.
- ⁇ A that is ⁇ times the normal value A of the voltage change rate (where ⁇ > 1) as the reference value
- the lower limit comparison unit 62 compares the voltage change rate signal B with the reference value, and outputs an abnormality determination signal when the voltage change rate signal B falls below the reference value.
- ⁇ A that is ⁇ times the normal value A of the voltage change rate (where ⁇ ⁇ 1) as the reference value, an abnormality with a small time constant in FIG. 4 can be detected.
- the storage unit 19 stores the reference value and supplies it to the abnormality determination unit 17. Further, the voltage change rate B obtained by the voltage change rate detection unit may be stored as needed.
- the output unit 18 displays or alerts an abnormal state based on the abnormality determination signal obtained by the abnormality determination unit 17. Further, a communication means may be provided and transmitted to an external tablet terminal or the like.
- the voltage change rate changes during the discharge.
- the voltage change rate A at the start of discharge is obtained, and the reference values ⁇ A and ⁇ A of the abnormality determination unit 17 are set based on this value.
- the abnormality determination part 17 can detect the abnormality of the circuit during a discharge period by sequentially comparing with the voltage change rate signal B obtained after that.
- the reference value may be created from the voltage change rate during normal discharge previously obtained.
- an abnormality determination value is set for each device in a power converter having various discharge functions with different capacitor capacities and discharge resistance values. Therefore, the discharge abnormality can be detected by the same procedure. Further, the calculation cost can be reduced by not obtaining the circuit time constant itself. Furthermore, by setting a reference value based on the voltage change rate obtained at the start of discharge, an abnormality during one discharge period can be reliably detected.
- FIG. 7 shows a graph of the DC voltage change when an abnormality has occurred in the circuit before the start of discharge.
- the voltage change rates B1 and B2 are abnormal since the start of the discharge operation. It becomes a judgment level.
- the second embodiment detects an abnormality of this circuit.
- the abnormality determination unit 17 shown in FIGS. 1 and 6 uses the normal voltage change rate at the previous discharge as the voltage change rate A used for the reference values ⁇ A and ⁇ A.
- the normal voltage change rate A at the previous discharge is stored in the storage unit 19 and sent to the abnormality determination unit 17. By determining the abnormality using the normal voltage change rate A at the previous discharge, the abnormality can be determined from the start of the discharge.
- the capacitance of the capacitor gradually increases due to secular change when used in a severe operation pattern in which acceleration and deceleration frequently occur. May decrease.
- the third embodiment detects such a sign of failure.
- FIG. 8A shows a reference value used for the abnormality determination unit of the present embodiment
- FIG. 8B shows a reference value used for the abnormality determination unit.
- the upper limit comparison unit 61 uses ⁇ 1A and ⁇ 2A (where ⁇ 1, ⁇ 2> 1, ⁇ 1> ⁇ 2) as reference values for comparison.
- ⁇ 1A and ⁇ 2A where ⁇ 1, ⁇ 2> 1, ⁇ 1> ⁇ 2
- a failure sign signal is output.
- the lower limit comparison unit 62 uses ⁇ 1A and ⁇ 2A (where ⁇ 1, ⁇ 2 ⁇ 1, ⁇ 1 ⁇ 2) as reference values for comparison.
- the time constant of discharge is reduced, so that a sign of failure can be detected by detecting that the voltage change rate has become smaller than a predetermined reference value.
- the reference value ⁇ 2A in the upper limit comparison unit it is possible to detect a sign of a failure that increases the time constant.
- the present embodiment it is possible to make a failure sign determination by providing a determination value smaller than the abnormality determination determination value, and to notify the maintenance time based on the failure sign signal.
- FIG. 9 shows a schematic diagram of the power conversion apparatus of the fourth embodiment
- FIG. 10 shows the abnormality determination unit 17 of the fourth embodiment.
- the position detector 20 is connected to the motor shaft, the motor shaft angle signal D is obtained and sent to the abnormality determination unit 17.
- the abnormality determination unit 17 is provided with a rotation speed calculation unit 63 and a rotation speed abnormality determination unit 64.
- the motor speed is calculated from the motor shaft angle signal D by the rotation speed calculation unit 63 and sent to the rotation speed abnormality determination unit 64.
- the rotation speed abnormality determination unit 64 detects motor rotation, that is, motor rotation abnormality during discharge operation by comparing the motor rotation speed with reference values ⁇ C and ⁇ C (where ⁇ > 1, ⁇ ⁇ 1). To do.
- FIG. 10B shows a reference value used in the rotation speed abnormality determination unit 64.
- the abnormality determination signal obtained by the upper limit comparison unit 61 and the lower limit comparison unit 62 is combined with the rotation abnormality signal of the motor obtained by the rotation abnormality determination unit 64, thereby determining the external discharge resistance 3.
- the motor rotation speed is calculated by the rotation speed calculation unit 63 from the motor shaft angle signal of the position detector 20, but may be measured by connecting a speed detector (tacho generator) to the motor shaft. .
- the abnormality determination is performed by combining the rotation abnormality of the motor during the discharging operation, thereby determining whether the abnormality is caused by the motor becoming a generator by an external force, or the external discharge resistor 3 and the smoothing capacitor 4. It is possible to distinguish whether the abnormality determination is due to a change in the time constant due to the above.
- the present invention is not limited to the embodiments described above, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
- the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inverter Devices (AREA)
Abstract
Provided is a power conversion device with various discharge functions with different capacitances and discharge resistor values, wherein discharge abnormality is detected using the same procedure without setting an abnormality determination value on a per-device basis. The power conversion device with the discharge functions has: a converter unit for converting an input alternating current to a direct current; a smoothing capacitor for smoothing the direct current; an inverter unit for converting the direct current to an alternating current and outputting the alternating current to a motor; and a discharge circuit which, when the device is stopped, discharges the smoothing capacitor that has been charged. The power conversion device is provided with a voltage detector for detecting the voltage across the smoothing capacitor, and a discharge abnormality detection unit for detecting discharge abnormality on the basis of the detection voltage detected by the voltage detector. The discharge abnormality detection unit is provided with a voltage change ratio detection unit for obtaining a voltage change ratio that is the ratio of the detection voltages detected before and after a predetermined time, and an abnormality determination unit for performing abnormality determination by comparing the obtained voltage change ratio with a reference value.
Description
本発明は、放電機能を有する電力変換装置、特に、その放電異常検出技術に関する。
The present invention relates to a power conversion device having a discharge function, and more particularly to a discharge abnormality detection technique thereof.
大容量のインバータ、サーボドライバ等の電力変換装置においては、運転停止後、安全のために即座に充電した電力を放電する必要がある。そのため、放電回路が設けられているが、放電回路等に異常があった場合などに保護動作を行う必要がある。
In power converters such as large-capacity inverters and servo drivers, it is necessary to discharge the charged power immediately for safety after operation is stopped. Therefore, although a discharge circuit is provided, it is necessary to perform a protective operation when there is an abnormality in the discharge circuit or the like.
この問題を解決する背景技術として、特許文献1には、「蓄電器が出力する直流電圧を異なるレベルの直流電圧に変換するコンバータと、コンバータから出力された直流電圧を交流電圧に変換して負荷に印加するインバータと、コンバータ及びインバータと並列に設けられた平滑コンデンサと、平滑コンデンサからの放電電流が流れる抵抗と、放電電流が流れる電流経路を開閉するスイッチング素子と、を有する放電回路と、平滑コンデンサの両端電圧を検出する電圧センサーとを備えたシステムにおける、放電回路の故障を検知する放電回路故障検知装置は、スイッチング素子による電流経路の開閉動作を、2つの異なるデューティ比でのPWM制御で段階的に行い、低デューティ比でのPWM制御の段階で得られる両端電圧の変化率及び高デューティ比でのPWM制御の段階で得られる両端電圧の変化率に基づいて、放電回路の故障の有無を検知する。」と記載されている(要約参照)。
As a background art for solving this problem, Patent Document 1 describes that “a converter that converts a DC voltage output from a capacitor into a DC voltage of a different level, and a DC voltage that is output from the converter is converted into an AC voltage and applied to a load. A discharge circuit having an inverter to be applied, a smoothing capacitor provided in parallel with the converter and the inverter, a resistance through which a discharge current from the smoothing capacitor flows, and a switching element for opening and closing a current path through which the discharge current flows, and a smoothing capacitor A discharge circuit failure detection device for detecting a failure in a discharge circuit in a system including a voltage sensor for detecting a voltage across both ends of the current circuit opens and closes a current path by a switching element by PWM control with two different duty ratios The rate of change of the voltage across the terminals obtained at the PWM control stage with a low duty ratio Based on the rate of change of voltage across obtained at the stage of the PWM control in a high duty ratio, it detects the presence or absence of a failure of the discharge circuit. "Is described as (see Abstract).
近年、大容量のインバータやサーボドライバにおいては、運転サイクル中のピークカットのためにDCバスに大容量のコンデンサを追加したり、省エネのために共通コンバータ方式を採用し、1つのコンバータ部に対しインバータ部を複数備えたりするなど、DCバス上のコンデンサ容量が設備によって様々な値になる。またコンデンサ容量に合わせて放電抵抗も選定されるため、放電の様子は設備によって異なり、放電動作や放電回路の異常検出は困難になる。
In recent years, in large-capacity inverters and servo drivers, a large-capacity capacitor has been added to the DC bus for peak cuts during the operation cycle, and a common converter system has been adopted to save energy. The capacitor capacity on the DC bus varies depending on the equipment, such as providing a plurality of inverters. In addition, since the discharge resistance is selected in accordance with the capacitor capacity, the state of discharge varies depending on the equipment, and it becomes difficult to detect the discharge operation and the abnormality of the discharge circuit.
特許文献1に記載された方法では、あらかじめ決まった放電回路でかつ、あらかじめ決まった2つの異なる放電動作時の平滑コンデンサ両端電圧の電圧変化率を正常値と比較して放電回路異常を判定するため、上記のように設備によりコンデンサ容量、放電抵抗値が多様で一律に決まらない場合、それぞれのシステム毎に正常値を決めておくことができない。さらにコンデンサの容量が変化することにより保護動作の基準となる電圧は予め決められた値では装置に対し適当でない場合もあると考えられる。
In the method described in Patent Document 1, the discharge circuit abnormality is determined by comparing the voltage change rate of the voltage across the smoothing capacitor in a predetermined discharge circuit and two predetermined different discharge operations with a normal value. As described above, when the capacitor capacity and the discharge resistance value are various and are not determined uniformly depending on the equipment, normal values cannot be determined for each system. Further, it is considered that the voltage used as a reference for the protective operation due to the change in the capacitance of the capacitor may not be appropriate for the apparatus with a predetermined value.
本発明は、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことを目的とする。
An object of the present invention is to detect a discharge abnormality in the same procedure without setting an abnormality determination value for each apparatus in a power conversion apparatus having various discharge functions with different capacitor capacities and discharge resistance values. To do.
上記課題を解決するため、本発明では、放電動作中のある一定時間のDCバスの電圧変化率を求めて回路時定数相当の値を作り出し、その値の変動によって回路の異常を検出する。
In order to solve the above problems, in the present invention, the voltage change rate of the DC bus for a certain period of time during the discharge operation is obtained to create a value corresponding to a circuit time constant, and an abnormality of the circuit is detected by the fluctuation of the value.
本発明の電力変換装置の一例を挙げるならば、入力された交流を直流に変換するコンバータ部と、該直流を平滑する平滑コンデンサと、該直流を交流に変換しモータに出力するインバータ部と、前記平滑コンデンサに充電した電荷を装置の停止時に放電する放電回路とを有する放電機能を備える電力変換装置であって、前記平滑コンデンサの電圧を検出する電圧検出器と、前記電圧検出器で検出した検出電圧に基づいて放電異常を検出する放電異常検出部と、を備え、前記放電異常検出部は、所定時間前後の検出電圧の比率である電圧変化率を求める電圧変化率検出部と、求めた電圧変化率と基準値とを比較して異常判定を行う異常判定部と、を備えるものである。
If an example of the power converter of the present invention is given, a converter unit that converts input alternating current into direct current, a smoothing capacitor that smoothes the direct current, an inverter unit that converts the direct current into alternating current and outputs the motor, A power conversion device having a discharge function having a discharge circuit that discharges the electric charge charged in the smoothing capacitor when the device is stopped, the voltage detector detecting the voltage of the smoothing capacitor, and the voltage detector A discharge abnormality detecting unit that detects a discharge abnormality based on the detected voltage, and the discharge abnormality detecting unit obtains a voltage change rate detecting unit that obtains a voltage change rate that is a ratio of a detected voltage around a predetermined time. An abnormality determination unit that compares the voltage change rate with a reference value to determine abnormality.
本発明によれば、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことができる。また、回路時定数そのものを求めないことで、計算のコストを削減することができる。
According to the present invention, in a power conversion device having various discharge functions with different capacitor capacities and discharge resistance values, discharge abnormality can be detected in the same procedure without setting an abnormality determination value for each device. it can. Further, the calculation cost can be reduced by not obtaining the circuit time constant itself.
以下、本発明の実施例を図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素にはなるべく同一の名称、符号を付して、その繰り返しの説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the drawings for explaining the embodiments, the same constituent elements are given the same names and symbols as much as possible, and the repeated explanation thereof is omitted.
図1は、本発明の実施例1の電力変換装置の概略図である。電力変換装置1は、平滑コンデンサ4、放電回路5、電圧検出回路6、コンバータ部7、インバータ部8、回路制御部10を内蔵し、外部コンデンサ2、外部放電抵抗3が接続されている。図1の構成は、ピークカットのために外部コンデンサ2と外部放電抵抗3が接続されたものである。前述した共通コンバータ方式であっても、インバータ部8からモータ9までが並列に複数接続されるのみで、基本構成は同一である。また、図1内で放電回路5、インバータ部8およびコンバータ部7にダイオードやトランジスタの記号を用いているが一例であり、同様の機能を提供するものであれば種類は問わない。なお、回路制御部10は、インバータ部8のスイッチ素子や放電回路5のスイッチ素子13等を制御する。
FIG. 1 is a schematic diagram of the power conversion apparatus according to the first embodiment of the present invention. The power conversion device 1 includes a smoothing capacitor 4, a discharge circuit 5, a voltage detection circuit 6, a converter unit 7, an inverter unit 8, and a circuit control unit 10, and an external capacitor 2 and an external discharge resistor 3 are connected thereto. In the configuration of FIG. 1, an external capacitor 2 and an external discharge resistor 3 are connected for peak cutting. Even in the common converter system described above, the basic configuration is the same except that a plurality of inverter units 8 to motors 9 are connected in parallel. Moreover, although the symbol of a diode or a transistor is used for the discharge circuit 5, the inverter part 8, and the converter part 7 in FIG. 1, it is an example and a kind will not be ask | required if it provides the same function. The circuit control unit 10 controls the switch element of the inverter unit 8, the switch element 13 of the discharge circuit 5, and the like.
先ず、図2および図3を用いて、本発明の原理を説明する。
一般に放電時の回路は電源遮断後に動作させるため、図2のようなコンデンサ21、放電抵抗22、スイッチ23が直列に接続された等価回路で表される。この回路は、スイッチ23がオンしてコンデンサ21に充電された電荷が放電抵抗22を介して放電される。図2のコンデンサ21は図1の内部コンデンサ14と外部コンデンサ2を合わせたもの、放電抵抗22は外部放電抵抗3、スイッチ23は放電回路5のスイッチ素子13に相当する。
この時、回路が正常に放電可能である場合、tを時間とすると、コンデンサ21の両端電圧V(t)は
V(t)=V0・exp(-t/τ) [V]
で表される。 First, the principle of the present invention will be described with reference to FIGS.
In general, since a circuit during discharge is operated after power is shut off, the circuit is represented by an equivalent circuit in which a capacitor 21, a discharge resistor 22, and a switch 23 are connected in series as shown in FIG. In this circuit, the electric charge charged in the capacitor 21 when the switch 23 is turned on is discharged through the discharge resistor 22. 2 corresponds to the combination of the internal capacitor 14 and the external capacitor 2 of FIG. 1, the discharge resistor 22 corresponds to the external discharge resistor 3, and the switch 23 corresponds to the switch element 13 of the discharge circuit 5.
At this time, when the circuit can be discharged normally, when t is time, the voltage V (t) across the capacitor 21 is V (t) = V0 · exp (−t / τ) [V]
It is represented by
一般に放電時の回路は電源遮断後に動作させるため、図2のようなコンデンサ21、放電抵抗22、スイッチ23が直列に接続された等価回路で表される。この回路は、スイッチ23がオンしてコンデンサ21に充電された電荷が放電抵抗22を介して放電される。図2のコンデンサ21は図1の内部コンデンサ14と外部コンデンサ2を合わせたもの、放電抵抗22は外部放電抵抗3、スイッチ23は放電回路5のスイッチ素子13に相当する。
この時、回路が正常に放電可能である場合、tを時間とすると、コンデンサ21の両端電圧V(t)は
V(t)=V0・exp(-t/τ) [V]
で表される。 First, the principle of the present invention will be described with reference to FIGS.
In general, since a circuit during discharge is operated after power is shut off, the circuit is represented by an equivalent circuit in which a capacitor 21, a discharge resistor 22, and a switch 23 are connected in series as shown in FIG. In this circuit, the electric charge charged in the capacitor 21 when the switch 23 is turned on is discharged through the discharge resistor 22. 2 corresponds to the combination of the internal capacitor 14 and the external capacitor 2 of FIG. 1, the discharge resistor 22 corresponds to the external discharge resistor 3, and the switch 23 corresponds to the switch element 13 of the discharge circuit 5.
At this time, when the circuit can be discharged normally, when t is time, the voltage V (t) across the capacitor 21 is V (t) = V0 · exp (−t / τ) [V]
It is represented by
ここで、
V0:t=0のときの電圧
exp:自然指数関数
τ:回路時定数で、図2の等価回路ではτ=CR
C :コンデンサ21の静電容量
R :放電抵抗22の抵抗値
である。 here,
V0: Voltage at t = 0 exp: Natural exponential function τ: Circuit time constant, τ = CR in the equivalent circuit of FIG.
C: capacitance of capacitor 21 R: resistance value of discharge resistor 22
V0:t=0のときの電圧
exp:自然指数関数
τ:回路時定数で、図2の等価回路ではτ=CR
C :コンデンサ21の静電容量
R :放電抵抗22の抵抗値
である。 here,
V0: Voltage at t = 0 exp: Natural exponential function τ: Circuit time constant, τ = CR in the equivalent circuit of FIG.
C: capacitance of capacitor 21 R: resistance value of discharge resistor 22
次にある時刻t1と、dt時間後のt2=t1+dtにおけるコンデンサの両端電圧は
V(t1)=V0・exp(-t1/τ)
V(t2)=V0・exp(-t2/τ) =V0・exp(-(t1+dt)/τ)
となり、
dtの間の電圧変化率Aは
A=V(t2)/ V(t1)=exp(-dt/τ)
となる。τは回路時定数なので一定であり、dtを一定としたとき、変化率Aは時刻tによらず一定となる。
したがって、図3に示したとおり、放電時間中においてはdtをどの時点で取っても変化率Aの割合で電圧が減少する。 Next, the voltage across the capacitor at time t1 and t2 = t1 + dt after dt time is V (t1) = V0 · exp (−t1 / τ)
V (t2) = V0 ・ exp (−t2 / τ) = V0 ・ exp (− (t1 + dt) / τ)
And
Voltage change rate A during dt is A = V (t2) / V (t1) = exp (-dt / τ)
It becomes. Since τ is a circuit time constant, it is constant. When dt is constant, the rate of change A is constant regardless of the time t.
Therefore, as shown in FIG. 3, during the discharge time, the voltage decreases at the rate of change rate A regardless of the dt taken at any time.
V(t1)=V0・exp(-t1/τ)
V(t2)=V0・exp(-t2/τ) =V0・exp(-(t1+dt)/τ)
となり、
dtの間の電圧変化率Aは
A=V(t2)/ V(t1)=exp(-dt/τ)
となる。τは回路時定数なので一定であり、dtを一定としたとき、変化率Aは時刻tによらず一定となる。
したがって、図3に示したとおり、放電時間中においてはdtをどの時点で取っても変化率Aの割合で電圧が減少する。 Next, the voltage across the capacitor at time t1 and t2 = t1 + dt after dt time is V (t1) = V0 · exp (−t1 / τ)
V (t2) = V0 ・ exp (−t2 / τ) = V0 ・ exp (− (t1 + dt) / τ)
And
Voltage change rate A during dt is A = V (t2) / V (t1) = exp (-dt / τ)
It becomes. Since τ is a circuit time constant, it is constant. When dt is constant, the rate of change A is constant regardless of the time t.
Therefore, as shown in FIG. 3, during the discharge time, the voltage decreases at the rate of change rate A regardless of the dt taken at any time.
次に、回路上に異常が起きた場合について考える。図4に、放電期間中に回路に異常が発生した場合のDC電圧変化のグラフを示す。例えば並列に接続された放電抵抗3のうちいくつかが焼損などして抵抗値が大きくなる場合、つまり、上記の計算でRが大きくなり時定数τが大きくなる場合に、電圧変化率B1を求めると、正常時の電圧変化率Aに対して、
B1>A
となる。図4中では破線(異常時(時定数 大))のような場合である。特に、抵抗器がすべて開放状態で故障した場合や回路上で断線が発生した場合には、DC電圧は一定の値となる。 Next, consider a case where an abnormality occurs on the circuit. FIG. 4 shows a graph of a change in DC voltage when an abnormality occurs in the circuit during the discharge period. For example, when several of the discharge resistors 3 connected in parallel are burned out and the resistance value is increased, that is, when R is increased and the time constant τ is increased in the above calculation, the voltage change rate B1 is obtained. With respect to the normal voltage change rate A,
B1> A
It becomes. In FIG. 4, this is the case as shown by a broken line (when an abnormality occurs (time constant is large)). In particular, when all the resistors fail in an open state or when a disconnection occurs on the circuit, the DC voltage becomes a constant value.
B1>A
となる。図4中では破線(異常時(時定数 大))のような場合である。特に、抵抗器がすべて開放状態で故障した場合や回路上で断線が発生した場合には、DC電圧は一定の値となる。 Next, consider a case where an abnormality occurs on the circuit. FIG. 4 shows a graph of a change in DC voltage when an abnormality occurs in the circuit during the discharge period. For example, when several of the discharge resistors 3 connected in parallel are burned out and the resistance value is increased, that is, when R is increased and the time constant τ is increased in the above calculation, the voltage change rate B1 is obtained. With respect to the normal voltage change rate A,
B1> A
It becomes. In FIG. 4, this is the case as shown by a broken line (when an abnormality occurs (time constant is large)). In particular, when all the resistors fail in an open state or when a disconnection occurs on the circuit, the DC voltage becomes a constant value.
逆に、放電抵抗が内部で短絡したりして抵抗値が小さくなる場合、つまり上記の計算でRが小さくなり時定数τが小さくなる場合に、電圧変化率B2を求めると
B2<A
となる。図4中では一点鎖線(異常時(時定数 小))のような場合である。 Conversely, when the discharge resistance is short-circuited internally and the resistance value is small, that is, when R is small and the time constant τ is small in the above calculation, the voltage change rate B2 is obtained as follows: B2 <A
It becomes. In FIG. 4, this is the case of the alternate long and short dash line (abnormal time (small time constant)).
B2<A
となる。図4中では一点鎖線(異常時(時定数 小))のような場合である。 Conversely, when the discharge resistance is short-circuited internally and the resistance value is small, that is, when R is small and the time constant τ is small in the above calculation, the voltage change rate B2 is obtained as follows: B2 <A
It becomes. In FIG. 4, this is the case of the alternate long and short dash line (abnormal time (small time constant)).
また、図2の等価回路上に表れない要素、例えば図1中の電源12とコンバータ部7の間に設けた遮断器11の動作が不十分であった場合や、電力変換装置1の動作停止後であるにもかかわらずモータ9が外力で駆動され発電状態になった場合なども、追加で平滑コンデンサ4が充電されることになるので、電圧の変化は図4上では正常放電時の曲線から破線(異常時(時定数 大))よりの曲線になる。上記の計算方法で求めた電圧変化率は正常時の電圧変化率Aと比較して異なる値となる。
Also, elements that do not appear on the equivalent circuit of FIG. 2, for example, when the operation of the circuit breaker 11 provided between the power supply 12 and the converter unit 7 in FIG. Even when the motor 9 is driven by an external force and is in a power generation state even though it is later, the smoothing capacitor 4 is additionally charged. Therefore, the voltage change is a curve during normal discharge in FIG. To the curve from the broken line (abnormal time (large time constant)). The voltage change rate obtained by the above calculation method is different from the normal voltage change rate A.
以上のように、正常時の電圧変化率Aと異常時の電圧変化率B1,B2は異なる値となるため、それぞれを比較することで放電回路の異常検出が可能となる。
ここで、dtの大きさや電圧を取得するタイミング、頻度などは電力変換装置や電力変換装置を含むシステムの設計によるため、ここでは特に問わない。
また、上記で電圧変化率Aは異常判定の基準値になっているが、回路設計上の電圧検出誤差や設計上のマージンを以って、いくらかの幅を持っていても問題ない。 As described above, since the voltage change rate A at normal time and the voltage change rates B1 and B2 at abnormal time are different from each other, it is possible to detect the abnormality of the discharge circuit by comparing each of them.
Here, the magnitude of dt, the timing at which the voltage is acquired, the frequency, and the like depend on the design of the power conversion device and the system including the power conversion device, and are not particularly limited here.
Although the voltage change rate A is the reference value for abnormality determination in the above, there is no problem even if it has a certain width due to a voltage detection error in circuit design and a design margin.
ここで、dtの大きさや電圧を取得するタイミング、頻度などは電力変換装置や電力変換装置を含むシステムの設計によるため、ここでは特に問わない。
また、上記で電圧変化率Aは異常判定の基準値になっているが、回路設計上の電圧検出誤差や設計上のマージンを以って、いくらかの幅を持っていても問題ない。 As described above, since the voltage change rate A at normal time and the voltage change rates B1 and B2 at abnormal time are different from each other, it is possible to detect the abnormality of the discharge circuit by comparing each of them.
Here, the magnitude of dt, the timing at which the voltage is acquired, the frequency, and the like depend on the design of the power conversion device and the system including the power conversion device, and are not particularly limited here.
Although the voltage change rate A is the reference value for abnormality determination in the above, there is no problem even if it has a certain width due to a voltage detection error in circuit design and a design margin.
図2~4で説明した原理に基づいて、回路の放電異常を検出する構成を説明する。図1において、電力変換装置は放電異常検出部15を備えており、放電異常検出部15は、電圧変化率検出部16、異常判定部17、出力部18、基準値を記憶する記憶部19を備えている。
Based on the principle described with reference to FIGS. 2 to 4, a configuration for detecting a discharge abnormality of the circuit will be described. In FIG. 1, the power conversion apparatus includes a discharge abnormality detection unit 15. The discharge abnormality detection unit 15 includes a voltage change rate detection unit 16, an abnormality determination unit 17, an output unit 18, and a storage unit 19 that stores a reference value. I have.
電圧変化率検出部16は、例えば図5に示すように、サンプリング部51と除算部52で構成される。電圧検出回路6で検出したDCバスの直流電圧は、サンプリング部51で所定時間dt毎にサンプリングされる。そして、除算部52で、dt時間前後の直流電圧の比、すなわちdt時間後の直流電圧値を除算することにより電圧変化率Bを求める。
The voltage change rate detection unit 16 includes a sampling unit 51 and a division unit 52 as shown in FIG. The DC voltage of the DC bus detected by the voltage detection circuit 6 is sampled by the sampling unit 51 every predetermined time dt. Then, the division unit 52 determines the voltage change rate B by dividing the ratio of the DC voltage before and after the dt time, that is, the DC voltage value after the dt time.
異常判定部17は、例えば図6に示すように、上限比較部61と下限比較部62から構成される。電圧変化率検出部16で求めた電圧変化率信号Bは、上限比較部61と下限比較部62に加えられる。上限比較部61では、電圧変化率信号Bと基準値とを比較し、電圧変化率信号Bが基準値を越えた場合に、異常判定信号を出力する。基準値として、電圧変化率の正常値Aのα倍(ここで、α>1)であるαAを用いることにより、図4における時定数が大となる異常を検出することができる。逆に、下限比較部62では、電圧変化率信号Bと基準値とを比較し、電圧変化率信号Bが基準値を下まわった場合に、異常判定信号を出力する。基準値として、電圧変化率の正常値Aのβ倍(ここで、β<1)であるβAを用いることにより、図4における時定数が小となる異常を検出することができる。
The abnormality determination unit 17 includes an upper limit comparison unit 61 and a lower limit comparison unit 62 as shown in FIG. The voltage change rate signal B obtained by the voltage change rate detection unit 16 is added to the upper limit comparison unit 61 and the lower limit comparison unit 62. The upper limit comparison unit 61 compares the voltage change rate signal B with the reference value, and outputs an abnormality determination signal when the voltage change rate signal B exceeds the reference value. By using αA that is α times the normal value A of the voltage change rate (where α> 1) as the reference value, an abnormality with a large time constant in FIG. 4 can be detected. Conversely, the lower limit comparison unit 62 compares the voltage change rate signal B with the reference value, and outputs an abnormality determination signal when the voltage change rate signal B falls below the reference value. By using βA that is β times the normal value A of the voltage change rate (where β <1) as the reference value, an abnormality with a small time constant in FIG. 4 can be detected.
記憶部19は、基準値を記憶し、異常判定部17に供給する。また、電圧変化率検出部で求めた電圧変化率Bを随時記憶するようにしても良い。
The storage unit 19 stores the reference value and supplies it to the abnormality determination unit 17. Further, the voltage change rate B obtained by the voltage change rate detection unit may be stored as needed.
出力部18は、異常判定部17で得られた異常判定信号に基づいて、異常状態を表示或いは警報する。また、通信手段を備え、外部のタブレット端末などに送信するようにしても良い。
The output unit 18 displays or alerts an abnormal state based on the abnormality determination signal obtained by the abnormality determination unit 17. Further, a communication means may be provided and transmitted to an external tablet terminal or the like.
図4に示すように、放電期間中に回路に異常が発生すると、放電途中で電圧変化率が変化する。放電開始時の電圧変化率Aを求め、この値に基づいて異常判定部17の基準値αA,βAを設定する。そして、異常判定部17で、その後求めた電圧変化率信号Bと順次比較することにより、放電期間中の回路の異常を検出することができる。
なお、基準値は、予め求めておいた先の正常な放電時の電圧変化率から作成しても良い。 As shown in FIG. 4, when an abnormality occurs in the circuit during the discharge period, the voltage change rate changes during the discharge. The voltage change rate A at the start of discharge is obtained, and the reference values αA and βA of theabnormality determination unit 17 are set based on this value. And the abnormality determination part 17 can detect the abnormality of the circuit during a discharge period by sequentially comparing with the voltage change rate signal B obtained after that.
Note that the reference value may be created from the voltage change rate during normal discharge previously obtained.
なお、基準値は、予め求めておいた先の正常な放電時の電圧変化率から作成しても良い。 As shown in FIG. 4, when an abnormality occurs in the circuit during the discharge period, the voltage change rate changes during the discharge. The voltage change rate A at the start of discharge is obtained, and the reference values αA and βA of the
Note that the reference value may be created from the voltage change rate during normal discharge previously obtained.
本実施例によれば、正常な放電時の電圧変化率を基準値とすることにより、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことができる。また、回路時定数そのものを求めないことで、計算のコストを削減することができる。さらに、放電開始時に求めた電圧変化率に基づいて基準値を設定することにより、一放電期間中の異常を確実に検出することもできる。
According to the present embodiment, by setting the rate of voltage change during normal discharge as a reference value, an abnormality determination value is set for each device in a power converter having various discharge functions with different capacitor capacities and discharge resistance values. Therefore, the discharge abnormality can be detected by the same procedure. Further, the calculation cost can be reduced by not obtaining the circuit time constant itself. Furthermore, by setting a reference value based on the voltage change rate obtained at the start of discharge, an abnormality during one discharge period can be reliably detected.
図7に、放電開始前から回路に異常が発生していた場合のDC電圧変化のグラフを示す。図1に示す電力変換装置において、例えば放電動作開始前に放電抵抗3の抵抗値が大きくなっていたり、或いは、小さくなったりしていた場合、放電動作開始時より電圧変化率B1、B2が異常判定レベルとなる。実施例2は、この回路の異常を検出するものである。
FIG. 7 shows a graph of the DC voltage change when an abnormality has occurred in the circuit before the start of discharge. In the power conversion device shown in FIG. 1, for example, when the resistance value of the discharge resistor 3 has increased or decreased before the start of the discharge operation, the voltage change rates B1 and B2 are abnormal since the start of the discharge operation. It becomes a judgment level. The second embodiment detects an abnormality of this circuit.
本実施例では、図1および図6に示す異常判定部17において、基準値αA、βAに用いる電圧変化率Aとして前回の放電時の正常な電圧変化率を用いる。前回の放電時の正常な電圧変化率Aは、記憶部19に記憶しておき異常判定部17に送る。前回の放電時の正常な電圧変化率Aを用いて異常判定することにより、放電開始時から異常判定が可能になる。
In this embodiment, the abnormality determination unit 17 shown in FIGS. 1 and 6 uses the normal voltage change rate at the previous discharge as the voltage change rate A used for the reference values αA and βA. The normal voltage change rate A at the previous discharge is stored in the storage unit 19 and sent to the abnormality determination unit 17. By determining the abnormality using the normal voltage change rate A at the previous discharge, the abnormality can be determined from the start of the discharge.
図1の電力変換装置において、例えば内部コンデンサ14や外部コンデンサ2の周囲温度が想定より高い場合、加速、減速が頻繁に起こるような厳しい運転パターンで使用されると経年変化によりコンデンサの容量が次第に低下することがある。実施例3は、このような故障の予兆を検出するものである。
In the power conversion device of FIG. 1, for example, when the ambient temperature of the internal capacitor 14 or the external capacitor 2 is higher than expected, the capacitance of the capacitor gradually increases due to secular change when used in a severe operation pattern in which acceleration and deceleration frequently occur. May decrease. The third embodiment detects such a sign of failure.
図8(a)に本実施例の異常判定部を、また、図8(b)に異常判定部に用いる基準値を示す。上限比較部61では、比較の基準値としてα1Aおよびα2A(ここで、α1,α2>1、α1>α2)を用いる。そして、電圧変化率信号Bが基準値α2Aを越えて基準値α1A以下の場合に、故障予兆信号を出力する。また、電圧変化率信号Bが基準値α1Aを越えた場合には、異常判定信号を出力する。同様に、下限比較部62では、比較の基準値としてβ1Aおよびβ2A(ここで、β1,β2<1、β1<β2)を用いる。そして、電圧変化率信号Bが基準値β2Aを下まわり基準値β1A以上の場合に、故障予兆信号を出力する。また、電圧変化率信号Bが基準値β1Aを下まわった場合には、異常判定信号を出力する。
FIG. 8A shows a reference value used for the abnormality determination unit of the present embodiment, and FIG. 8B shows a reference value used for the abnormality determination unit. The upper limit comparison unit 61 uses α1A and α2A (where α1, α2> 1, α1> α2) as reference values for comparison. When the voltage change rate signal B exceeds the reference value α2A and is equal to or less than the reference value α1A, a failure sign signal is output. When the voltage change rate signal B exceeds the reference value α1A, an abnormality determination signal is output. Similarly, the lower limit comparison unit 62 uses β1A and β2A (where β1, β2 <1, β1 <β2) as reference values for comparison. When the voltage change rate signal B falls below the reference value β2A and is equal to or greater than the reference value β1A, a failure sign signal is output. When the voltage change rate signal B falls below the reference value β1A, an abnormality determination signal is output.
コンデンサの容量が低下すると放電の時定数が小さくなるので、電圧変化率が所定の基準値よりも小さくなったことを検出することにより、故障の予兆を検出することができる。また、上限比較部に基準値α2Aを設けることにより、時定数が大きくなる故障の予兆を検出することができる。
When the capacitance of the capacitor is reduced, the time constant of discharge is reduced, so that a sign of failure can be detected by detecting that the voltage change rate has become smaller than a predetermined reference value. In addition, by providing the reference value α2A in the upper limit comparison unit, it is possible to detect a sign of a failure that increases the time constant.
本実施例によれば、異常判定の判定値よりも小さい判定値を設けることで故障の予兆判定を行い、故障予兆信号に基づいてメンテナンス時期を通知することができる。
According to the present embodiment, it is possible to make a failure sign determination by providing a determination value smaller than the abnormality determination determination value, and to notify the maintenance time based on the failure sign signal.
図1の電力変換装置において、放電動作時にモータ9が外部力で強制的に回転させられた場合、モータ9が発電機になり、平滑コンデンサ4や外部コンデンサ2に回生エネルギーが充電される。そのため、図4や図7の放電電圧を示す図において、DC電圧の変化は異常時(時定数 大)の電圧変化率B1の曲線のようになる。実施例4は、外部力によりモータが発電機になることによる異常判定か、それ以外の異常判定かを検出できるようにするものである。
1, when the motor 9 is forcibly rotated by an external force during a discharging operation, the motor 9 becomes a generator, and the smoothing capacitor 4 and the external capacitor 2 are charged with regenerative energy. Therefore, in the diagrams showing the discharge voltage in FIGS. 4 and 7, the change in the DC voltage becomes a curve of the voltage change rate B1 at the time of abnormality (large time constant). In the fourth embodiment, it is possible to detect whether an abnormality is determined when the motor becomes a generator by an external force or an abnormality determination other than that.
図9に、実施例4の電力変換装置の概略図を、図10に、実施例4の異常判定部17を示す。
FIG. 9 shows a schematic diagram of the power conversion apparatus of the fourth embodiment, and FIG. 10 shows the abnormality determination unit 17 of the fourth embodiment.
本実施例では、図9に示すように、モータ軸に位置検出器20を接続しモータ軸角度信号Dを求め、異常判定部17へ送る。図10(a)に示すように、異常判定部17には回転数演算部63および回転数異常判定部64を設ける。モータ軸角度信号Dから回転数演算部63によりモータ回転数を算出し、回転数異常判定部64へ送る。回転数異常判定部64では、モータ回転数と基準値γCおよびδC(ここで、γ>1、δ<-1)と比較することで、モータの回転、すなわち放電動作時のモータ回転異常を検出する。図10(b)に、回転数異常判定部64で用いる基準値を示す。
In this embodiment, as shown in FIG. 9, the position detector 20 is connected to the motor shaft, the motor shaft angle signal D is obtained and sent to the abnormality determination unit 17. As shown in FIG. 10A, the abnormality determination unit 17 is provided with a rotation speed calculation unit 63 and a rotation speed abnormality determination unit 64. The motor speed is calculated from the motor shaft angle signal D by the rotation speed calculation unit 63 and sent to the rotation speed abnormality determination unit 64. The rotation speed abnormality determination unit 64 detects motor rotation, that is, motor rotation abnormality during discharge operation by comparing the motor rotation speed with reference values γC and δC (where γ> 1, δ <−1). To do. FIG. 10B shows a reference value used in the rotation speed abnormality determination unit 64.
判定部65で、上限比較部61および下限比較部62で得られた異常判定信号と、回転異常判定部64で得られたモータの回転異常信号とを合わせて判定することにより、外部放電抵抗3、平滑コンデンサ4、外部コンデンサ2などによる時定数の変化による異常判定であるか、外部力によりモータが発電機になることによる異常判定であるかを区別することが可能になる。
なお、上記ではモータ回転数を、位置検出器20のモータ軸角度信号から回転数演算部63により演算しているが、モータ軸に速度検出器(タコジェネレータ)を接続して測定しても良い。 In thedetermination unit 65, the abnormality determination signal obtained by the upper limit comparison unit 61 and the lower limit comparison unit 62 is combined with the rotation abnormality signal of the motor obtained by the rotation abnormality determination unit 64, thereby determining the external discharge resistance 3. Thus, it is possible to distinguish between abnormality determination due to a change in time constant by the smoothing capacitor 4 and the external capacitor 2, and abnormality determination due to the motor becoming a generator by external force.
In the above description, the motor rotation speed is calculated by the rotationspeed calculation unit 63 from the motor shaft angle signal of the position detector 20, but may be measured by connecting a speed detector (tacho generator) to the motor shaft. .
なお、上記ではモータ回転数を、位置検出器20のモータ軸角度信号から回転数演算部63により演算しているが、モータ軸に速度検出器(タコジェネレータ)を接続して測定しても良い。 In the
In the above description, the motor rotation speed is calculated by the rotation
本実施例によれば、放電動作時のモータの回転異常を合わせて異常判定を行うことにより、外部力によりモータが発電機になることによる異常判定であるか、外部放電抵抗3、平滑コンデンサ4などによる時定数の変化による異常判定であるかを区別することができる。
According to the present embodiment, the abnormality determination is performed by combining the rotation abnormality of the motor during the discharging operation, thereby determining whether the abnormality is caused by the motor becoming a generator by an external force, or the external discharge resistor 3 and the smoothing capacitor 4. It is possible to distinguish whether the abnormality determination is due to a change in the time constant due to the above.
本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1 電力変換装置
2 外部コンデンサ
3 外部放電抵抗
4 平滑コンデンサ
5 放電回路
6 電圧検出回路
7 コンバータ部
8 インバータ部
9 モータ
10 回路制御部
11 遮断器
12 交流電源
13 スイッチ素子
14 内部コンデンサ
15 放電異常検出部
16 電圧変化率検出部
17 異常判定部
18 出力部
19 記憶部(基準値)
20 位置検出器
21 コンデンサ
22 放電抵抗
23 スイッチ
51 サンプリング部
52 除算部
61 上限比較部
62 下限比較部
63 回転数演算部
64 回転数異常判定部
65 判定部 DESCRIPTION OFSYMBOLS 1 Power converter 2 External capacitor 3 External discharge resistor 4 Smoothing capacitor 5 Discharge circuit 6 Voltage detection circuit 7 Converter part 8 Inverter part 9 Motor 10 Circuit control part 11 Circuit breaker 12 AC power supply 13 Switch element 14 Internal capacitor 15 Discharge abnormality detection part 16 Voltage change rate detection unit 17 Abnormality determination unit 18 Output unit 19 Storage unit (reference value)
20 position detector 21 capacitor 22 discharge resistance 23 switch 51sampling unit 52 division unit 61 upper limit comparison unit 62 lower limit comparison unit 63 rotation speed calculation unit 64 rotation speed abnormality determination unit 65 determination unit
2 外部コンデンサ
3 外部放電抵抗
4 平滑コンデンサ
5 放電回路
6 電圧検出回路
7 コンバータ部
8 インバータ部
9 モータ
10 回路制御部
11 遮断器
12 交流電源
13 スイッチ素子
14 内部コンデンサ
15 放電異常検出部
16 電圧変化率検出部
17 異常判定部
18 出力部
19 記憶部(基準値)
20 位置検出器
21 コンデンサ
22 放電抵抗
23 スイッチ
51 サンプリング部
52 除算部
61 上限比較部
62 下限比較部
63 回転数演算部
64 回転数異常判定部
65 判定部 DESCRIPTION OF
20 position detector 21 capacitor 22 discharge resistance 23 switch 51
Claims (5)
- 入力された交流を直流に変換するコンバータ部と、該直流を平滑する平滑コンデンサと、該直流を交流に変換しモータに出力するインバータ部と、前記平滑コンデンサに充電した電荷を装置の停止時に放電する放電回路とを有する放電機能を備える電力変換装置であって、
前記平滑コンデンサの電圧を検出する電圧検出器と、
前記電圧検出器で検出した検出電圧に基づいて放電異常を検出する放電異常検出部と、
を備え、
前記放電異常検出部は、
所定時間前後の検出電圧の比率である電圧変化率を求める電圧変化率検出部と、
求めた電圧変化率と基準値とを比較して異常判定を行う異常判定部と、
を備えることを特徴とする電力変換装置。 A converter unit that converts input AC to DC, a smoothing capacitor that smoothes the DC, an inverter that converts the DC to AC and outputs it to the motor, and discharges the electric charge charged in the smoothing capacitor when the device is stopped A power conversion device having a discharge function having a discharge circuit to perform,
A voltage detector for detecting the voltage of the smoothing capacitor;
A discharge abnormality detector for detecting a discharge abnormality based on a detection voltage detected by the voltage detector;
With
The discharge abnormality detection unit
A voltage change rate detection unit that obtains a voltage change rate that is a ratio of detected voltages around a predetermined time;
An abnormality determination unit that performs abnormality determination by comparing the obtained voltage change rate with a reference value;
A power conversion device comprising: - 請求項1に記載の電力変換装置において、
前記異常判定部は、放電期間中の一定期間に求めた電圧変化率を比較の基準値とし、同一放電期間中に再度求めた電圧変化率と比較して、異常判定を行うことを特徴とする電力変換装置。 The power conversion device according to claim 1,
The abnormality determination unit performs abnormality determination by using a voltage change rate obtained during a certain period during a discharge period as a reference value for comparison and comparing with a voltage change rate obtained again during the same discharge period. Power conversion device. - 請求項1に記載の電力変換装置において、
前記異常判定部は、予め求めた正常時の電圧変化率を比較の基準値とし、放電期間中に求めた電圧変化率と比較して、異常判定を行うことを特徴とする電力変換装置。 The power conversion device according to claim 1,
The abnormality determination unit makes an abnormality determination by using a normal voltage change rate obtained in advance as a reference value for comparison and comparing the voltage change rate obtained during a discharge period. - 請求項2または3に記載の電力変換装置において、
前記異常判定部は、更に、異常判定を行う比較の基準値よりも正常値に近い電圧変化率を予兆判定の比較の基準値とし、放電期間中に求めた電圧変化率と比較して、異常の予兆判定を行うことを特徴とする電力変換装置。 In the power converter device according to claim 2 or 3,
The abnormality determination unit further sets a voltage change rate closer to a normal value than a reference value for comparison for performing abnormality determination as a reference value for comparison for predictive determination, and compares the voltage change rate obtained during the discharge period with an abnormality. The power converter characterized by performing the sign determination of. - 請求項2または3に記載の電力変換装置において、
更に、モータの回転検出手段を備え、
前記異常判定部は、モータの回転異常を検出し、電圧変化率の変化から求めた異常が、回路の異常によるものか、モータの回転による異常かを区別することを特徴とする電力変換装置。 In the power converter device according to claim 2 or 3,
Furthermore, a motor rotation detection means is provided,
The abnormality determination unit detects an abnormal rotation of the motor and distinguishes whether the abnormality obtained from the change in the voltage change rate is due to an abnormality in the circuit or an abnormality due to the rotation of the motor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780040054.2A CN109463034B (en) | 2016-12-20 | 2017-12-18 | Power conversion device with discharge function |
KR1020197000324A KR102089915B1 (en) | 2016-12-20 | 2017-12-18 | Power conversion device with discharge function |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-246063 | 2016-12-20 | ||
JP2016246063A JP6626431B2 (en) | 2016-12-20 | 2016-12-20 | Power converter with discharge function |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117058A1 true WO2018117058A1 (en) | 2018-06-28 |
Family
ID=62626368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045400 WO2018117058A1 (en) | 2016-12-20 | 2017-12-18 | Power conversion device with discharge function |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6626431B2 (en) |
KR (1) | KR102089915B1 (en) |
CN (1) | CN109463034B (en) |
WO (1) | WO2018117058A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6678845B1 (en) * | 2019-09-19 | 2020-04-08 | 三菱電機株式会社 | Power supply and life diagnosis method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018008148T5 (en) * | 2018-11-19 | 2021-08-05 | Mitsubishi Electric Corporation | POWER CONVERSION DEVICE AND SEPARATION METHOD |
JP7018095B2 (en) * | 2020-07-07 | 2022-02-09 | 華邦電子股▲ふん▼有限公司 | Power control circuit |
JP7395029B2 (en) * | 2021-01-29 | 2023-12-08 | 三菱電機株式会社 | Power conversion equipment and air conditioning equipment |
JP7447921B2 (en) | 2022-02-01 | 2024-03-12 | 株式会社デンソーエレクトロニクス | wiper drive device |
KR20240059172A (en) | 2022-10-27 | 2024-05-07 | 한국전기연구원 | Three-way connection system of AC power system, DC power system and hydrogen energy storage system based on modular multi-level converter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0880055A (en) * | 1994-08-31 | 1996-03-22 | Toshiba Corp | Inverter device |
JP2003204681A (en) * | 2002-01-09 | 2003-07-18 | Nissan Motor Co Ltd | Charging and discharging control circuit for inverter |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4331994A (en) * | 1979-09-28 | 1982-05-25 | Borg-Warner Corporation | Shootthrough fault protection system for a voltage source transistor inverter |
JPS6078359A (en) * | 1983-10-05 | 1985-05-04 | Hitachi Ltd | Static leonard device |
JP2000278802A (en) * | 1999-03-23 | 2000-10-06 | Toyota Motor Corp | Failure decision system |
JP4385664B2 (en) * | 2003-07-08 | 2009-12-16 | パナソニック株式会社 | Vehicle power supply |
CN102762406B (en) * | 2010-02-25 | 2015-03-11 | 三菱电机株式会社 | Power conversion device |
JP5397324B2 (en) * | 2010-06-18 | 2014-01-22 | トヨタ自動車株式会社 | Power equipment |
DE112013007537T5 (en) * | 2013-10-29 | 2016-07-21 | Mitsubishi Electric Corporation | Discharge circuit malfunction diagnostic device and discharge circuit malfunction diagnostic method |
JP6086605B2 (en) | 2013-12-13 | 2017-03-01 | 本田技研工業株式会社 | Discharge circuit failure detection device and discharge circuit failure detection method |
-
2016
- 2016-12-20 JP JP2016246063A patent/JP6626431B2/en active Active
-
2017
- 2017-12-18 KR KR1020197000324A patent/KR102089915B1/en active IP Right Grant
- 2017-12-18 WO PCT/JP2017/045400 patent/WO2018117058A1/en active Application Filing
- 2017-12-18 CN CN201780040054.2A patent/CN109463034B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0880055A (en) * | 1994-08-31 | 1996-03-22 | Toshiba Corp | Inverter device |
JP2003204681A (en) * | 2002-01-09 | 2003-07-18 | Nissan Motor Co Ltd | Charging and discharging control circuit for inverter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6678845B1 (en) * | 2019-09-19 | 2020-04-08 | 三菱電機株式会社 | Power supply and life diagnosis method |
WO2021053798A1 (en) * | 2019-09-19 | 2021-03-25 | 三菱電機株式会社 | Power supply device and lifespan diagnosis method |
TWI748383B (en) * | 2019-09-19 | 2021-12-01 | 日商三菱電機股份有限公司 | Power supply device and life diagnosing method |
Also Published As
Publication number | Publication date |
---|---|
JP2018102042A (en) | 2018-06-28 |
CN109463034B (en) | 2021-06-15 |
KR20190009829A (en) | 2019-01-29 |
KR102089915B1 (en) | 2020-03-16 |
JP6626431B2 (en) | 2019-12-25 |
CN109463034A (en) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018117058A1 (en) | Power conversion device with discharge function | |
US6836100B2 (en) | Method and phase redundant regulator apparatus for implementing redundancy at a phase level | |
JP5441481B2 (en) | Inverter device failure diagnosis method | |
US9608534B2 (en) | Power conversion system, and voltage detection device thereof | |
US9000707B2 (en) | Use of cooling fan in adjustable speed drives | |
JP2012005229A (en) | Electric power converter | |
JP6516878B2 (en) | Motor controller | |
EP2587654B1 (en) | Power conversion apparatus | |
JP2006320176A (en) | Method and device for diagnosing inverter | |
JP2009521901A (en) | Apparatus, system and method for detecting an AC bus loss and for isolating an AC bus for an electric vehicle having a housekeeping power supply | |
JP5911014B2 (en) | Inverter device and abnormality detection method for inverter device | |
JP4737093B2 (en) | Control device for multiphase rotating electrical machine | |
JP5223367B2 (en) | Drive device | |
JP4720334B2 (en) | Offset converter for PWM converter | |
JP2013240238A (en) | Power conversion device | |
JP6869343B2 (en) | DC / DC converter controller | |
JP5242980B2 (en) | Capacitor failure detection circuit and power supply device | |
JP6673533B2 (en) | Motor drive device and motor drive system | |
JP6270987B2 (en) | Monitoring device for power converter | |
JP2018121408A (en) | Motor drive device | |
EP3627686B1 (en) | Motor drive device | |
JP2020114147A (en) | Discharge control device | |
CN108604854B (en) | Power conversion device | |
JP6287218B2 (en) | Anomaly detection device | |
EP3379712B1 (en) | Power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882786 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197000324 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882786 Country of ref document: EP Kind code of ref document: A1 |