JP6626431B2 - Power converter with discharge function - Google Patents

Power converter with discharge function Download PDF

Info

Publication number
JP6626431B2
JP6626431B2 JP2016246063A JP2016246063A JP6626431B2 JP 6626431 B2 JP6626431 B2 JP 6626431B2 JP 2016246063 A JP2016246063 A JP 2016246063A JP 2016246063 A JP2016246063 A JP 2016246063A JP 6626431 B2 JP6626431 B2 JP 6626431B2
Authority
JP
Japan
Prior art keywords
change rate
abnormality
discharge
voltage change
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016246063A
Other languages
Japanese (ja)
Other versions
JP2018102042A (en
Inventor
公徳 清水
公徳 清水
英人 高田
英人 高田
淳之介 井村
淳之介 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2016246063A priority Critical patent/JP6626431B2/en
Priority to PCT/JP2017/045400 priority patent/WO2018117058A1/en
Priority to CN201780040054.2A priority patent/CN109463034B/en
Priority to KR1020197000324A priority patent/KR102089915B1/en
Publication of JP2018102042A publication Critical patent/JP2018102042A/en
Application granted granted Critical
Publication of JP6626431B2 publication Critical patent/JP6626431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/12Measuring rate of change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Description

本発明は、放電機能を有する電力変換装置、特に、その放電異常検出技術に関する。   The present invention relates to a power conversion device having a discharge function, and particularly to a discharge abnormality detection technique for the power conversion device.

大容量のインバータ、サーボドライバ等の電力変換装置においては、運転停止後、安全のために即座に充電した電力を放電する必要がある。そのため、放電回路が設けられているが、放電回路等に異常があった場合などに保護動作を行う必要がある。   In a power conversion device such as a large-capacity inverter or servo driver, it is necessary to immediately discharge the charged power for safety after the operation is stopped. Therefore, although a discharge circuit is provided, it is necessary to perform a protection operation when the discharge circuit or the like has an abnormality.

この問題を解決する背景技術として、特許文献1には、「蓄電器が出力する直流電圧を異なるレベルの直流電圧に変換するコンバータと、コンバータから出力された直流電圧を交流電圧に変換して負荷に印加するインバータと、コンバータ及びインバータと並列に設けられた平滑コンデンサと、平滑コンデンサからの放電電流が流れる抵抗と、放電電流が流れる電流経路を開閉するスイッチング素子と、を有する放電回路と、平滑コンデンサの両端電圧を検出する電圧センサーとを備えたシステムにおける、放電回路の故障を検知する放電回路故障検知装置は、スイッチング素子による電流経路の開閉動作を、2つの異なるデューティ比でのPWM制御で段階的に行い、低デューティ比でのPWM制御の段階で得られる両端電圧の変化率及び高デューティ比でのPWM制御の段階で得られる両端電圧の変化率に基づいて、放電回路の故障の有無を検知する。」と記載されている(要約参照)。   As a background art for solving this problem, Patent Document 1 discloses “a converter that converts a DC voltage output from a battery to a DC voltage of a different level, and a DC voltage that is output from the converter to an AC voltage and is applied to a load. A discharge circuit including: an inverter to be applied; a smoothing capacitor provided in parallel with the converter and the inverter; a resistor through which a discharge current flows from the smoothing capacitor; and a switching element that opens and closes a current path through which the discharge current flows. Circuit failure detection device for detecting a failure of a discharge circuit in a system including a voltage sensor for detecting a voltage across the terminals of the circuit, performs switching operation of a current path by a switching element by PWM control at two different duty ratios. And the rate of change of the voltage between both ends obtained at the stage of PWM control at a low duty ratio and Based on the rate of change of voltage across obtained in step a PWM control at a duty ratio, it detects the presence or absence of a failure of the discharge circuit. "Is described as (see Abstract).

特開2015−116097号公報JP 2015-116097 A

近年、大容量のインバータやサーボドライバにおいては、運転サイクル中のピークカットのためにDCバスに大容量のコンデンサを追加したり、省エネのために共通コンバータ方式を採用し、1つのコンバータ部に対しインバータ部を複数備えたりするなど、DCバス上のコンデンサ容量が設備によって様々な値になる。またコンデンサ容量に合わせて放電抵抗も選定されるため、放電の様子は設備によって異なり、放電動作や放電回路の異常検出は困難になる。   In recent years, large-capacity inverters and servo drivers have added a large-capacity capacitor to the DC bus for peak cutting during the operation cycle, and have adopted a common converter system for energy saving. The capacity of the capacitor on the DC bus takes various values depending on the equipment, such as having a plurality of inverter units. Further, since the discharge resistance is selected according to the capacitance of the capacitor, the state of the discharge differs depending on the equipment, and it becomes difficult to detect the discharge operation and the abnormality of the discharge circuit.

特許文献1に記載された方法では、あらかじめ決まった放電回路でかつ、あらかじめ決まった2つの異なる放電動作時の平滑コンデンサ両端電圧の電圧変化率を正常値と比較して放電回路異常を判定するため、上記のように設備によりコンデンサ容量、放電抵抗値が多様で一律に決まらない場合、それぞれのシステム毎に正常値を決めておくことができない。さらにコンデンサの容量が変化することにより保護動作の基準となる電圧は予め決められた値では装置に対し適当でない場合もあると考えられる。   In the method described in Patent Literature 1, a discharge circuit is determined in advance by comparing a voltage change rate of a voltage between both ends of a smoothing capacitor during a predetermined two different discharge operations with a normal value in a predetermined discharge circuit. As described above, when the capacitor capacity and the discharge resistance value are various and cannot be determined uniformly depending on the equipment, a normal value cannot be determined for each system. Further, it is considered that the voltage serving as a reference for the protection operation due to a change in the capacitance of the capacitor may not be appropriate for the device at a predetermined value.

本発明は、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことを目的とする。   An object of the present invention is to detect a discharge abnormality in the same procedure without setting an abnormality determination value for each device in a power conversion device having various discharge functions having different capacitor capacities and discharge resistance values. I do.

上記課題を解決するため、本発明では、放電動作中のある一定時間のDCバスの電圧変化率を求めて回路時定数相当の値を作り出し、その値の変動によって回路の異常を検出する。   In order to solve the above-mentioned problem, in the present invention, a voltage change rate of a DC bus during a certain period of time during a discharging operation is obtained to generate a value corresponding to a circuit time constant, and a change in the value is used to detect a circuit abnormality.

本発明の電力変換装置の一例を挙げるならば、入力された交流を直流に変換するコンバータ部と、該直流を平滑する平滑コンデンサと、該直流を交流に変換しモータに出力するインバータ部と、前記平滑コンデンサに充電した電荷を装置の停止時に放電する放電回路とを有する放電機能を備える電力変換装置であって、前記平滑コンデンサの電圧を検出する電圧検出器と、前記電圧検出器で検出した検出電圧に基づいて放電異常を検出する放電異常検出部と、を備え、前記放電異常検出部は、所定時間前後の検出電圧の比率である電圧変化率を求める電圧変化率検出部と、求めた電圧変化率と基準値とを比較して異常判定を行う異常判定部と、を備えるものである。   To give an example of the power conversion device of the present invention, a converter for converting an input alternating current into a direct current, a smoothing capacitor for smoothing the direct current, and an inverter for converting the direct current into an alternating current and outputting it to a motor, A power conversion device having a discharge function having a discharge circuit that discharges the charge of the smoothing capacitor when the device is stopped, a voltage detector that detects a voltage of the smoothing capacitor, and a voltage detector that detects the voltage of the smoothing capacitor. A discharge abnormality detection unit that detects a discharge abnormality based on the detection voltage, wherein the discharge abnormality detection unit calculates a voltage change rate that is a ratio of the detection voltages before and after a predetermined time, and a voltage change rate detection unit that calculates the voltage change rate. An abnormality determination unit that performs an abnormality determination by comparing the voltage change rate with a reference value.

本発明によれば、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことができる。また、回路時定数そのものを求めないことで、計算のコストを削減することができる。   According to the present invention, in a power conversion device having various discharge functions having different capacitor capacities and discharge resistance values, it is possible to detect a discharge abnormality in the same procedure without setting an abnormality determination value for each device. it can. In addition, the calculation cost can be reduced by not calculating the circuit time constant itself.

本発明の実施例1の電力変換装置の概略図である。1 is a schematic diagram of a power conversion device according to a first embodiment of the present invention. 実施例1の放電回路の等価回路を示す図である。FIG. 3 is a diagram illustrating an equivalent circuit of the discharge circuit according to the first embodiment. 図2の放電回路の放電時の電圧変化を示す図である。FIG. 3 is a diagram illustrating a voltage change at the time of discharging of the discharging circuit of FIG. 2. 実施例1の放電回路異常時の電圧変化を示す図である。FIG. 4 is a diagram illustrating a voltage change when a discharge circuit is abnormal in the first embodiment. 実施例1の電圧変化率検出部を示す図である。FIG. 4 is a diagram illustrating a voltage change rate detection unit according to the first embodiment. 実施例1の異常判定部を示す図である。FIG. 4 is a diagram illustrating an abnormality determination unit according to the first embodiment. 本発明の実施例2の放電回路異常時の電圧変化を示す図である。FIG. 7 is a diagram illustrating a voltage change when a discharge circuit is abnormal in Embodiment 2 of the present invention. 本発明の実施例3の異常判定部を示す図である。FIG. 11 is a diagram illustrating an abnormality determination unit according to a third embodiment of the present invention. 本発明の実施例4の電力変換装置の概略図である。It is a schematic diagram of a power converter of a fourth embodiment of the present invention. 実施例4の異常判定部を示す図である。FIG. 14 is a diagram illustrating an abnormality determination unit according to a fourth embodiment.

以下、本発明の実施例を図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素にはなるべく同一の名称、符号を付して、その繰り返しの説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings for describing the embodiments, the same constituent elements are given the same names and symbols as much as possible, and the repeated description thereof will be omitted.

図1は、本発明の実施例1の電力変換装置の概略図である。電力変換装置1は、平滑コンデンサ4、放電回路5、電圧検出回路6、コンバータ部7、インバータ部8、回路制御部10を内蔵し、外部コンデンサ2、外部放電抵抗3が接続されている。図1の構成は、ピークカットのために外部コンデンサ2と外部放電抵抗3が接続されたものである。前述した共通コンバータ方式であっても、インバータ部8からモータ9までが並列に複数接続されるのみで、基本構成は同一である。また、図1内で放電回路5、インバータ部8およびコンバータ部7にダイオードやトランジスタの記号を用いているが一例であり、同様の機能を提供するものであれば種類は問わない。なお、回路制御部10は、インバータ部8のスイッチ素子や放電回路5のスイッチ素子13等を制御する。   FIG. 1 is a schematic diagram of a power conversion device according to a first embodiment of the present invention. The power conversion device 1 includes a smoothing capacitor 4, a discharge circuit 5, a voltage detection circuit 6, a converter unit 7, an inverter unit 8, and a circuit control unit 10, and an external capacitor 2 and an external discharge resistor 3 are connected. In the configuration of FIG. 1, an external capacitor 2 and an external discharge resistor 3 are connected for peak cutting. Even with the above-described common converter system, the basic configuration is the same, except that only a plurality of inverter units 8 to motors 9 are connected in parallel. Further, in FIG. 1, the symbols of diodes and transistors are used for the discharge circuit 5, the inverter unit 8 and the converter unit 7, but this is an example, and any type may be used as long as it provides the same function. The circuit control unit 10 controls the switch element of the inverter unit 8, the switch element 13 of the discharge circuit 5, and the like.

先ず、図2および図3を用いて、本発明の原理を説明する。
一般に放電時の回路は電源遮断後に動作させるため、図2のようなコンデンサ21、放電抵抗22、スイッチ23が直列に接続された等価回路で表される。この回路は、スイッチ23がオンしてコンデンサ21に充電された電荷が放電抵抗22を介して放電される。図2のコンデンサ21は図1の内部コンデンサ14と外部コンデンサ2を合わせたもの、放電抵抗22は外部放電抵抗3、スイッチ23は放電回路5のスイッチ素子13に相当する。
この時、回路が正常に放電可能である場合、tを時間とすると、コンデンサ21の両端電圧V(t)は
V(t)=V0・exp(−t/τ) [V]
で表される。
First, the principle of the present invention will be described with reference to FIGS.
In general, a circuit at the time of discharging is operated after the power is cut off, and is represented by an equivalent circuit in which a capacitor 21, a discharging resistor 22, and a switch 23 are connected in series as shown in FIG. In this circuit, the switch 23 is turned on, and the electric charge charged in the capacitor 21 is discharged through the discharge resistor 22. 2 is a combination of the internal capacitor 14 and the external capacitor 2 of FIG. 1, the discharge resistor 22 corresponds to the external discharge resistor 3, and the switch 23 corresponds to the switch element 13 of the discharge circuit 5.
At this time, if the circuit can discharge normally, if t is time, the voltage V (t) across the capacitor 21 is
V (t) = V0 · exp (−t / τ) [V]
Is represented by

ここで、
V0:t=0のときの電圧
exp:自然指数関数
τ:回路時定数で、図2の等価回路ではτ=CR
C :コンデンサ21の静電容量
R :放電抵抗22の抵抗値
である。
here,
V0: Voltage when t = 0
exp: natural exponential function τ: circuit time constant, τ = CR in the equivalent circuit of FIG.
C: capacitance of the capacitor 21
R: resistance value of the discharge resistor 22

次にある時刻t1と、dt時間後のt2=t1+dtにおけるコンデンサの両端電圧は
V(t1)=V0・exp(−t1/τ)
V(t2)=V0・exp(−t2/τ) =V0・exp(−(t1+dt)/τ)
となり、
dtの間の電圧変化率Aは
A=V(t2)/ V(t1)=exp(−dt/τ)
となる。τは回路時定数なので一定であり、dtを一定としたとき、変化率Aは時刻tによらず一定となる。
したがって、図3に示したとおり、放電時間中においてはdtをどの時点で取っても変化率Aの割合で電圧が減少する。
The voltage at both ends of the capacitor at the next time t1 and t2 = t1 + dt after dt time is
V (t1) = V0exp (-t1 / τ)
V (t2) = V0 ・ exp (−t2 / τ) = V0 ・ exp (− (t1 + dt) / τ)
Becomes
The voltage change rate A during dt is A = V (t2) / V (t1) = exp (−dt / τ)
It becomes. Since τ is a circuit time constant, it is constant. When dt is constant, the rate of change A is constant regardless of time t.
Therefore, as shown in FIG. 3, the voltage decreases at the rate of the rate of change A regardless of dt at any time during the discharge time.

次に、回路上に異常が起きた場合について考える。図4に、放電期間中に回路に異常が発生した場合のDC電圧変化のグラフを示す。例えば並列に接続された放電抵抗3のうちいくつかが焼損などして抵抗値が大きくなる場合、つまり、上記の計算でRが大きくなり時定数τが大きくなる場合に、電圧変化率B1を求めると、正常時の電圧変化率Aに対して、
B1>A
となる。図4中では破線(異常時(時定数 大))のような場合である。特に、抵抗器がすべて開放状態で故障した場合や回路上で断線が発生した場合には、DC電圧は一定の値となる。
Next, a case where an abnormality occurs in the circuit will be considered. FIG. 4 shows a graph of a DC voltage change when an abnormality occurs in the circuit during the discharge period. For example, when some of the discharge resistors 3 connected in parallel are burned or the like and the resistance value increases, that is, when R increases and the time constant τ increases in the above calculation, the voltage change rate B1 is obtained. And the normal voltage change rate A,
B1> A
It becomes. FIG. 4 shows a case shown by a broken line (abnormality (large time constant)). In particular, when all the resistors fail in an open state or when a break occurs in the circuit, the DC voltage has a constant value.

逆に、放電抵抗が内部で短絡したりして抵抗値が小さくなる場合、つまり上記の計算でRが小さくなり時定数τが小さくなる場合に、電圧変化率B2を求めると
B2<A
となる。図4中では一点鎖線(異常時(時定数 小))のような場合である。
Conversely, when the discharge resistance is short-circuited internally and the resistance value is reduced, that is, when R is reduced and the time constant τ is reduced in the above calculation, the voltage change rate B2 is calculated as B2 <A
It becomes. FIG. 4 shows a case like the one-dot chain line (abnormality (small time constant)).

また、図2の等価回路上に表れない要素、例えば図1中の電源12とコンバータ部7の間に設けた遮断器11の動作が不十分であった場合や、電力変換装置1の動作停止後であるにもかかわらずモータ9が外力で駆動され発電状態になった場合なども、追加で平滑コンデンサ4が充電されることになるので、電圧の変化は図4上では正常放電時の曲線から破線(異常時(時定数 大))よりの曲線になる。上記の計算方法で求めた電圧変化率は正常時の電圧変化率Aと比較して異なる値となる。   Further, elements that do not appear on the equivalent circuit of FIG. 2, for example, when the operation of the circuit breaker 11 provided between the power supply 12 and the converter unit 7 in FIG. 1 is insufficient, or the operation of the power converter 1 is stopped Even when the motor 9 is driven by an external force to enter a power generation state despite the later time, the smoothing capacitor 4 is additionally charged, so that the voltage change is shown in FIG. From the broken line (abnormal (large time constant)). The voltage change rate obtained by the above calculation method is different from the voltage change rate A in the normal state.

以上のように、正常時の電圧変化率Aと異常時の電圧変化率B1,B2は異なる値となるため、それぞれを比較することで放電回路の異常検出が可能となる。
ここで、dtの大きさや電圧を取得するタイミング、頻度などは電力変換装置や電力変換装置を含むシステムの設計によるため、ここでは特に問わない。
また、上記で電圧変化率Aは異常判定の基準値になっているが、回路設計上の電圧検出誤差や設計上のマージンを以って、いくらかの幅を持っていても問題ない。
As described above, since the voltage change rate A in the normal state and the voltage change rates B1 and B2 in the abnormal state have different values, it is possible to detect the abnormality of the discharge circuit by comparing the values.
Here, the magnitude of the dt, the timing of acquiring the voltage, the frequency, and the like depend on the design of the power conversion device and the system including the power conversion device, and thus are not particularly limited.
Further, although the voltage change rate A is a reference value for abnormality determination in the above description, there is no problem even if it has a certain width due to a voltage detection error in circuit design and a design margin.

図2〜4で説明した原理に基づいて、回路の放電異常を検出する構成を説明する。図1において、電力変換装置は放電異常検出部15を備えており、放電異常検出部15は、電圧変化率検出部16、異常判定部17、出力部18、基準値を記憶する記憶部19を備えている。   A configuration for detecting a discharge abnormality of a circuit based on the principle described with reference to FIGS. In FIG. 1, the power converter includes a discharge abnormality detection unit 15. The discharge abnormality detection unit 15 includes a voltage change rate detection unit 16, an abnormality determination unit 17, an output unit 18, and a storage unit 19 that stores a reference value. Have.

電圧変化率検出部16は、例えば図5に示すように、サンプリング部51と除算部52で構成される。電圧検出回路6で検出したDCバスの直流電圧は、サンプリング部51で所定時間dt毎にサンプリングされる。そして、除算部52で、dt時間前後の直流電圧の比、すなわちdt時間後の直流電圧値を除算することにより電圧変化率Bを求める。   The voltage change rate detection unit 16 includes a sampling unit 51 and a division unit 52, for example, as shown in FIG. The DC voltage of the DC bus detected by the voltage detection circuit 6 is sampled by the sampling unit 51 every predetermined time dt. Then, the division unit 52 obtains the voltage change rate B by dividing the ratio of the DC voltage before and after the dt time, that is, the DC voltage value after the dt time.

異常判定部17は、例えば図6に示すように、上限比較部61と下限比較部62から構成される。電圧変化率検出部16で求めた電圧変化率信号Bは、上限比較部61と下限比較部62に加えられる。上限比較部61では、電圧変化率信号Bと基準値とを比較し、電圧変化率信号Bが基準値を越えた場合に、異常判定信号を出力する。基準値として、電圧変化率の正常値Aのα倍(ここで、α>1)であるαAを用いることにより、図4における時定数が大となる異常を検出することができる。逆に、下限比較部62では、電圧変化率信号Bと基準値とを比較し、電圧変化率信号Bが基準値を下まわった場合に、異常判定信号を出力する。基準値として、電圧変化率の正常値Aのβ倍(ここで、β<1)であるβAを用いることにより、図4における時定数が小となる異常を検出することができる。   The abnormality determining unit 17 includes an upper limit comparing unit 61 and a lower limit comparing unit 62, for example, as shown in FIG. The voltage change rate signal B obtained by the voltage change rate detection unit 16 is applied to the upper limit comparison unit 61 and the lower limit comparison unit 62. The upper limit comparing section 61 compares the voltage change rate signal B with a reference value, and outputs an abnormality determination signal when the voltage change rate signal B exceeds the reference value. By using αA that is α times the normal value A of the voltage change rate (here, α> 1) as the reference value, it is possible to detect an abnormality in which the time constant in FIG. 4 is large. Conversely, the lower limit comparing section 62 compares the voltage change rate signal B with the reference value, and outputs an abnormality determination signal when the voltage change rate signal B falls below the reference value. By using βA that is β times the normal value A of the voltage change rate (here, β <1) as the reference value, an abnormality in which the time constant in FIG. 4 becomes small can be detected.

記憶部19は、基準値を記憶し、異常判定部17に供給する。また、電圧変化率検出部で求めた電圧変化率Bを随時記憶するようにしても良い。   The storage unit 19 stores the reference value and supplies the reference value to the abnormality determination unit 17. Further, the voltage change rate B obtained by the voltage change rate detection unit may be stored as needed.

出力部18は、異常判定部17で得られた異常判定信号に基づいて、異常状態を表示或いは警報する。また、通信手段を備え、外部のタブレット端末などに送信するようにしても良い。   The output unit 18 displays or warns an abnormal state based on the abnormality determination signal obtained by the abnormality determination unit 17. Further, a communication unit may be provided to transmit the data to an external tablet terminal or the like.

図4に示すように、放電期間中に回路に異常が発生すると、放電途中で電圧変化率が変化する。放電開始時の電圧変化率Aを求め、この値に基づいて異常判定部17の基準値αA,βAを設定する。そして、異常判定部17で、その後求めた電圧変化率信号Bと順次比較することにより、放電期間中の回路の異常を検出することができる。
なお、基準値は、予め求めておいた先の正常な放電時の電圧変化率から作成しても良い。
As shown in FIG. 4, when an abnormality occurs in the circuit during the discharge period, the voltage change rate changes during the discharge. The voltage change rate A at the start of discharge is obtained, and the reference values αA and βA of the abnormality determination unit 17 are set based on this value. Then, the abnormality determination unit 17 can detect an abnormality of the circuit during the discharge period by sequentially comparing the voltage change rate signal B obtained thereafter.
Note that the reference value may be created from a previously determined voltage change rate during normal discharge.

本実施例によれば、正常な放電時の電圧変化率を基準値とすることにより、コンデンサ容量や放電抵抗値の異なる様々な放電機能を有する電力変換装置において、装置ごとに異常判定値を設定することなく、同一の手順にて放電異常の検出を行うことができる。また、回路時定数そのものを求めないことで、計算のコストを削減することができる。さらに、放電開始時に求めた電圧変化率に基づいて基準値を設定することにより、一放電期間中の異常を確実に検出することもできる。   According to the present embodiment, by using the voltage change rate during normal discharge as a reference value, an abnormality determination value is set for each device in a power conversion device having various discharge functions with different capacitor capacitances and discharge resistance values. It is possible to detect a discharge abnormality in the same procedure without performing the same. In addition, the calculation cost can be reduced by not calculating the circuit time constant itself. Further, by setting the reference value based on the voltage change rate obtained at the start of the discharge, it is possible to reliably detect an abnormality during one discharge period.

図7に、放電開始前から回路に異常が発生していた場合のDC電圧変化のグラフを示す。図1に示す電力変換装置において、例えば放電動作開始前に放電抵抗3の抵抗値が大きくなっていたり、或いは、小さくなったりしていた場合、放電動作開始時より電圧変化率B1、B2が異常判定レベルとなる。実施例2は、この回路の異常を検出するものである。   FIG. 7 shows a graph of a DC voltage change when an abnormality has occurred in the circuit before the start of discharge. In the power converter shown in FIG. 1, for example, when the resistance value of the discharge resistor 3 is increased or decreased before the start of the discharge operation, the voltage change rates B1 and B2 are abnormal from the start of the discharge operation. The judgment level is reached. The second embodiment is to detect an abnormality of this circuit.

本実施例では、図1および図6に示す異常判定部17において、基準値αA、βAに用いる電圧変化率Aとして前回の放電時の正常な電圧変化率を用いる。前回の放電時の正常な電圧変化率Aは、記憶部19に記憶しておき異常判定部17に送る。前回の放電時の正常な電圧変化率Aを用いて異常判定することにより、放電開始時から異常判定が可能になる。   In the present embodiment, the abnormality determination unit 17 shown in FIGS. 1 and 6 uses the normal voltage change rate at the time of the previous discharge as the voltage change rate A used for the reference values αA and βA. The normal voltage change rate A at the time of the previous discharge is stored in the storage unit 19 and sent to the abnormality determination unit 17. By performing the abnormality determination using the normal voltage change rate A at the time of the previous discharge, the abnormality can be determined from the start of the discharge.

図1の電力変換装置において、例えば内部コンデンサ14や外部コンデンサ2の周囲温度が想定より高い場合、加速、減速が頻繁に起こるような厳しい運転パターンで使用されると経年変化によりコンデンサの容量が次第に低下することがある。実施例3は、このような故障の予兆を検出するものである。   In the power converter of FIG. 1, for example, when the ambient temperature of the internal capacitor 14 and the external capacitor 2 is higher than expected, if the capacitor is used in a severe operation pattern in which acceleration and deceleration frequently occur, the capacity of the capacitor gradually increases due to aging. May drop. The third embodiment detects such a sign of a failure.

図8(a)に本実施例の異常判定部を、また、図8(b)に異常判定部に用いる基準値を示す。上限比較部61では、比較の基準値としてα1Aおよびα2A(ここで、α1,α2>1、α1>α2)を用いる。そして、電圧変化率信号Bが基準値α2Aを越えて基準値α1A以下の場合に、故障予兆信号を出力する。また、電圧変化率信号Bが基準値α1Aを越えた場合には、異常判定信号を出力する。同様に、下限比較部62では、比較の基準値としてβ1Aおよびβ2A(ここで、β1,β2<1、β1<β2)を用いる。そして、電圧変化率信号Bが基準値β2Aを下まわり基準値β1A以上の場合に、故障予兆信号を出力する。また、電圧変化率信号Bが基準値β1Aを下まわった場合には、異常判定信号を出力する。   FIG. 8A shows an abnormality determination unit of the present embodiment, and FIG. 8B shows a reference value used for the abnormality determination unit. The upper limit comparing unit 61 uses α1A and α2A (here, α1, α2> 1, α1> α2) as reference values for comparison. When the voltage change rate signal B exceeds the reference value α2A and is equal to or less than the reference value α1A, a failure sign signal is output. When the voltage change rate signal B exceeds the reference value α1A, an abnormality determination signal is output. Similarly, the lower limit comparing unit 62 uses β1A and β2A (here, β1, β2 <1, β1 <β2) as reference values for comparison. When the voltage change rate signal B falls below the reference value β2A and is equal to or higher than the reference value β1A, a failure sign signal is output. When the voltage change rate signal B falls below the reference value β1A, an abnormality determination signal is output.

コンデンサの容量が低下すると放電の時定数が小さくなるので、電圧変化率が所定の基準値よりも小さくなったことを検出することにより、故障の予兆を検出することができる。また、上限比較部に基準値α2Aを設けることにより、時定数が大きくなる故障の予兆を検出することができる。   When the capacity of the capacitor decreases, the time constant of the discharge decreases. Therefore, by detecting that the voltage change rate has become smaller than a predetermined reference value, it is possible to detect a sign of failure. Further, by providing the reference value α2A in the upper limit comparing section, it is possible to detect a sign of a failure in which the time constant becomes large.

本実施例によれば、異常判定の判定値よりも小さい判定値を設けることで故障の予兆判定を行い、故障予兆信号に基づいてメンテナンス時期を通知することができる。   According to the present embodiment, by providing a judgment value smaller than the judgment value of the abnormality judgment, a sign of failure can be determined, and the maintenance time can be notified based on the failure sign signal.

図1の電力変換装置において、放電動作時にモータ9が外部力で強制的に回転させられた場合、モータ9が発電機になり、平滑コンデンサ4や外部コンデンサ2に回生エネルギーが充電される。そのため、図4や図7の放電電圧を示す図において、DC電圧の変化は異常時(時定数大)の電圧変化率B1の曲線のようになる。実施例4は、外部力によりモータが発電機になることによる異常判定か、それ以外の異常判定かを検出できるようにするものである。   In the power converter of FIG. 1, when the motor 9 is forcibly rotated by an external force during the discharging operation, the motor 9 becomes a generator, and the smoothing capacitor 4 and the external capacitor 2 are charged with regenerative energy. Therefore, in the diagrams showing the discharge voltage in FIG. 4 and FIG. 7, the change of the DC voltage is like a curve of the voltage change rate B1 at the time of abnormality (large time constant). In the fourth embodiment, it is possible to detect whether an abnormality is determined due to the motor becoming a generator due to an external force or other abnormality is determined.

図9に、実施例4の電力変換装置の概略図を、図10に、実施例4の異常判定部17を示す。   FIG. 9 is a schematic diagram of a power conversion device according to the fourth embodiment, and FIG. 10 illustrates an abnormality determination unit 17 according to the fourth embodiment.

本実施例では、図9に示すように、モータ軸に位置検出器20を接続しモータ軸角度信号Dを求め、異常判定部17へ送る。図10(a)に示すように、異常判定部17には回転数演算部63および回転数異常判定部64を設ける。モータ軸角度信号Dから回転数演算部63によりモータ回転数を算出し、回転数異常判定部64へ送る。回転数異常判定部64では、モータ回転数と基準値γCおよびδC(ここで、γ>1、δ<−1)と比較することで、モータの回転、すなわち放電動作時のモータ回転異常を検出する。図10(b)に、回転数異常判定部64で用いる基準値を示す。   In the present embodiment, as shown in FIG. 9, the position detector 20 is connected to the motor shaft to obtain a motor shaft angle signal D, which is sent to the abnormality determination unit 17. As shown in FIG. 10A, the abnormality determination unit 17 is provided with a rotation speed calculation unit 63 and a rotation speed abnormality determination unit 64. The rotation speed calculator 63 calculates the motor rotation speed from the motor shaft angle signal D and sends it to the rotation speed abnormality determination unit 64. The rotation speed abnormality determination unit 64 detects the rotation of the motor, that is, the motor rotation abnormality during the discharging operation, by comparing the motor rotation speed with the reference values γC and δC (here, γ> 1, δ <−1). I do. FIG. 10B shows a reference value used in the rotation speed abnormality determination unit 64.

判定部65で、上限比較部61および下限比較部62で得られた異常判定信号と、回転異常判定部64で得られたモータの回転異常信号とを合わせて判定することにより、外部放電抵抗3、平滑コンデンサ4、外部コンデンサ2などによる時定数の変化による異常判定であるか、外部力によりモータが発電機になることによる異常判定であるかを区別することが可能になる。
なお、上記ではモータ回転数を、位置検出器20のモータ軸角度信号から回転数演算部63により演算しているが、モータ軸に速度検出器(タコジェネレータ)を接続して測定しても良い。
The determination unit 65 determines the abnormality of the external discharge resistor 3 by combining the abnormality determination signal obtained by the upper limit comparison unit 61 and the lower limit comparison unit 62 with the rotation abnormality signal of the motor obtained by the rotation abnormality determination unit 64. It is possible to distinguish between an abnormality determination based on a change in the time constant of the smoothing capacitor 4 and the external capacitor 2 or an abnormality determination based on the fact that the motor becomes a generator due to an external force.
In the above description, the motor rotation speed is calculated by the rotation speed calculation unit 63 from the motor shaft angle signal of the position detector 20, but may be measured by connecting a speed detector (tachogenerator) to the motor shaft. .

本実施例によれば、放電動作時のモータの回転異常を合わせて異常判定を行うことにより、外部力によりモータが発電機になることによる異常判定であるか、外部放電抵抗3、平滑コンデンサ4などによる時定数の変化による異常判定であるかを区別することができる。   According to the present embodiment, the abnormality determination is performed in accordance with the rotation abnormality of the motor during the discharging operation, so that the abnormality determination is performed by the motor becoming a generator due to an external force, or the external discharge resistor 3 and the smoothing capacitor 4 are used. For example, it is possible to determine whether the abnormality is determined by a change in the time constant due to the above-described operation.

本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
The present invention is not limited to the above embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add / delete / replace another configuration.
Further, each of the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit. In addition, the above-described configurations, functions, and the like may be implemented by software by a processor interpreting and executing a program that implements each function. Information such as a program, a table, and a file that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
In addition, control lines and information lines indicate those which are considered necessary for explanation, and do not necessarily indicate all control lines and information lines on a product. In fact, it may be considered that almost all components are interconnected.

1 電力変換装置
2 外部コンデンサ
3 外部放電抵抗
4 平滑コンデンサ
5 放電回路
6 電圧検出回路
7 コンバータ部
8 インバータ部
9 モータ
10 回路制御部
11 遮断器
12 交流電源
13 スイッチ素子
14 内部コンデンサ
15 放電異常検出部
16 電圧変化率検出部
17 異常判定部
18 出力部
19 記憶部(基準値)
20 位置検出器
21 コンデンサ
22 放電抵抗
23 スイッチ
51 サンプリング部
52 除算部
61 上限比較部
62 下限比較部
63 回転数演算部
64 回転数異常判定部
65 判定部
REFERENCE SIGNS LIST 1 Power conversion device 2 External capacitor 3 External discharge resistor 4 Smoothing capacitor 5 Discharge circuit 6 Voltage detection circuit 7 Converter unit 8 Inverter unit 9 Motor 10 Circuit control unit 11 Circuit breaker 12 AC power supply 13 Switch element 14 Internal capacitor 15 Discharge abnormality detection unit 16 Voltage change rate detection unit 17 Abnormality judgment unit 18 Output unit 19 Storage unit (reference value)
Reference Signs List 20 position detector 21 capacitor 22 discharge resistor 23 switch 51 sampling unit 52 division unit 61 upper limit comparison unit 62 lower limit comparison unit 63 rotation speed calculation unit 64 rotation speed abnormality determination unit 65 determination unit

Claims (5)

入力された交流を直流に変換するコンバータ部と、該直流を平滑する平滑コンデンサと、該直流を交流に変換しモータに出力するインバータ部と、前記平滑コンデンサに充電した電荷を装置の停止時に放電する放電回路とを有する放電機能を備える電力変換装置であって、
前記平滑コンデンサの電圧を検出する電圧検出器と、
前記電圧検出器で検出した検出電圧に基づいて放電異常を検出する放電異常検出部と、
を備え、
前記放電異常検出部は、
所定時間前後の検出電圧の比率である電圧変化率を求める電圧変化率検出部と、
求めた電圧変化率と基準値とを比較して異常判定を行う異常判定部と、
を備えることを特徴とする電力変換装置。
A converter for converting the input alternating current into direct current, a smoothing capacitor for smoothing the direct current, an inverter for converting the direct current to alternating current and outputting to the motor, and discharging the electric charge charged in the smoothing capacitor when the apparatus is stopped. A power conversion device having a discharge function having a discharge circuit,
A voltage detector for detecting the voltage of the smoothing capacitor;
A discharge abnormality detection unit that detects a discharge abnormality based on a detection voltage detected by the voltage detector,
With
The discharge abnormality detection unit,
A voltage change rate detection unit that obtains a voltage change rate that is a ratio of detection voltages before and after a predetermined time,
An abnormality determination unit that performs an abnormality determination by comparing the obtained voltage change rate with a reference value;
A power conversion device comprising:
請求項1に記載の電力変換装置において、
前記異常判定部は、放電期間中の一定期間に求めた電圧変化率を比較の基準値とし、同一放電期間中に再度求めた電圧変化率と比較して、異常判定を行うことを特徴とする電力変換装置。
The power converter according to claim 1,
The abnormality determination unit performs an abnormality determination by comparing a voltage change rate obtained during a certain period during a discharge period with a reference value for comparison and comparing the voltage change rate again obtained during the same discharge period. Power converter.
請求項1に記載の電力変換装置において、
前記異常判定部は、予め求めた正常時の電圧変化率を比較の基準値とし、放電期間中に求めた電圧変化率と比較して、異常判定を行うことを特徴とする電力変換装置。
The power converter according to claim 1,
The power converter according to claim 1, wherein the abnormality determination unit performs abnormality determination by using a previously obtained normal voltage change rate as a reference value for comparison and comparing the voltage change rate obtained during a discharge period.
請求項2または3に記載の電力変換装置において、
前記異常判定部は、更に、異常判定を行う比較の基準値よりも正常値に近い電圧変化率を予兆判定の比較の基準値とし、放電期間中に求めた電圧変化率と比較して、異常の予兆判定を行うことを特徴とする電力変換装置。
The power converter according to claim 2 or 3,
The abnormality determination unit further sets a voltage change rate that is closer to a normal value than a reference value for comparison for performing abnormality determination as a reference value for comparison of the sign determination, compares the voltage change rate with a voltage change rate obtained during the discharge period, and A power conversion apparatus characterized by performing a sign determination of the power conversion.
請求項2または3に記載の電力変換装置において、
更に、モータの回転検出手段を備え、
前記異常判定部は、モータの回転異常を検出し、電圧変化率の変化から求めた異常が、回路の異常によるものか、モータの回転による異常かを区別することを特徴とする電力変換装置。
The power converter according to claim 2 or 3,
Furthermore, a motor rotation detecting means is provided,
The power converter according to claim 1, wherein the abnormality determination unit detects a rotation abnormality of the motor and distinguishes whether the abnormality obtained from the change in the voltage change rate is due to a circuit abnormality or an abnormality due to motor rotation.
JP2016246063A 2016-12-20 2016-12-20 Power converter with discharge function Active JP6626431B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016246063A JP6626431B2 (en) 2016-12-20 2016-12-20 Power converter with discharge function
PCT/JP2017/045400 WO2018117058A1 (en) 2016-12-20 2017-12-18 Power conversion device with discharge function
CN201780040054.2A CN109463034B (en) 2016-12-20 2017-12-18 Power conversion device with discharge function
KR1020197000324A KR102089915B1 (en) 2016-12-20 2017-12-18 Power conversion device with discharge function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246063A JP6626431B2 (en) 2016-12-20 2016-12-20 Power converter with discharge function

Publications (2)

Publication Number Publication Date
JP2018102042A JP2018102042A (en) 2018-06-28
JP6626431B2 true JP6626431B2 (en) 2019-12-25

Family

ID=62626368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246063A Active JP6626431B2 (en) 2016-12-20 2016-12-20 Power converter with discharge function

Country Status (4)

Country Link
JP (1) JP6626431B2 (en)
KR (1) KR102089915B1 (en)
CN (1) CN109463034B (en)
WO (1) WO2018117058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754596B (en) * 2020-07-07 2022-02-01 華邦電子股份有限公司 Power supply control circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034331B2 (en) * 2018-11-19 2022-03-11 三菱電機株式会社 Power converter and disconnection detection method
WO2021053798A1 (en) * 2019-09-19 2021-03-25 三菱電機株式会社 Power supply device and lifespan diagnosis method
WO2022162879A1 (en) * 2021-01-29 2022-08-04 三菱電機株式会社 Power converter and air-conditioning device
JP7447921B2 (en) 2022-02-01 2024-03-12 株式会社デンソーエレクトロニクス wiper drive device
KR20240059172A (en) 2022-10-27 2024-05-07 한국전기연구원 Three-way connection system of AC power system, DC power system and hydrogen energy storage system based on modular multi-level converter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331994A (en) * 1979-09-28 1982-05-25 Borg-Warner Corporation Shootthrough fault protection system for a voltage source transistor inverter
JPS6078359A (en) * 1983-10-05 1985-05-04 Hitachi Ltd Static leonard device
JPH0880055A (en) * 1994-08-31 1996-03-22 Toshiba Corp Inverter device
JP2000278802A (en) * 1999-03-23 2000-10-06 Toyota Motor Corp Failure decision system
JP2003204681A (en) * 2002-01-09 2003-07-18 Nissan Motor Co Ltd Charging and discharging control circuit for inverter
JP4385664B2 (en) * 2003-07-08 2009-12-16 パナソニック株式会社 Vehicle power supply
WO2011104848A1 (en) * 2010-02-25 2011-09-01 三菱電機株式会社 Power conversion device
JP5397324B2 (en) * 2010-06-18 2014-01-22 トヨタ自動車株式会社 Power equipment
DE112013007537T5 (en) * 2013-10-29 2016-07-21 Mitsubishi Electric Corporation Discharge circuit malfunction diagnostic device and discharge circuit malfunction diagnostic method
JP6086605B2 (en) 2013-12-13 2017-03-01 本田技研工業株式会社 Discharge circuit failure detection device and discharge circuit failure detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754596B (en) * 2020-07-07 2022-02-01 華邦電子股份有限公司 Power supply control circuit

Also Published As

Publication number Publication date
JP2018102042A (en) 2018-06-28
WO2018117058A1 (en) 2018-06-28
CN109463034A (en) 2019-03-12
KR20190009829A (en) 2019-01-29
KR102089915B1 (en) 2020-03-16
CN109463034B (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP6626431B2 (en) Power converter with discharge function
US6836100B2 (en) Method and phase redundant regulator apparatus for implementing redundancy at a phase level
JP5698004B2 (en) Semiconductor circuit, battery monitoring system, diagnostic program, and diagnostic method
JP5441481B2 (en) Inverter device failure diagnosis method
US9608534B2 (en) Power conversion system, and voltage detection device thereof
US10333311B2 (en) Electric motor control device
JP2006320176A (en) Method and device for diagnosing inverter
JP2017022836A (en) Drive unit
JP5911014B2 (en) Inverter device and abnormality detection method for inverter device
JP5223367B2 (en) Drive device
CN107148735A (en) Power inverter
JP4737093B2 (en) Control device for multiphase rotating electrical machine
JP6869343B2 (en) DC / DC converter controller
JP6714830B2 (en) Condition monitoring device
JP2013240238A (en) Power conversion device
JP5718067B2 (en) Boosting system, diagnostic method, and diagnostic program
CN104040855A (en) Alarm signal generating circuit and alarm signal generating method
JP5242980B2 (en) Capacitor failure detection circuit and power supply device
EP3627686B1 (en) Motor drive device
CN108604854B (en) Power conversion device
JP6287218B2 (en) Anomaly detection device
JP2016086492A (en) Capacitor discharge device and control method therefor
JP6536812B2 (en) Power converter
JPWO2019163729A1 (en) Motor drive device and motor drive system
CN104854783A (en) Method for monitoring a half bridge branch in a half bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191129

R150 Certificate of patent or registration of utility model

Ref document number: 6626431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150