WO2015136646A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015136646A1
WO2015136646A1 PCT/JP2014/056536 JP2014056536W WO2015136646A1 WO 2015136646 A1 WO2015136646 A1 WO 2015136646A1 JP 2014056536 W JP2014056536 W JP 2014056536W WO 2015136646 A1 WO2015136646 A1 WO 2015136646A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
side heat
circulation circuit
air
refrigerant
Prior art date
Application number
PCT/JP2014/056536
Other languages
English (en)
French (fr)
Inventor
勇希 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/056536 priority Critical patent/WO2015136646A1/ja
Priority to JP2016507185A priority patent/JPWO2015136646A1/ja
Publication of WO2015136646A1 publication Critical patent/WO2015136646A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner including a forced circulation circuit by compressor operation and a natural circulation circuit by natural refrigerant circulation.
  • the natural circulation circuit naturally circulates the refrigerant by utilizing the temperature difference between the room temperature and the outside air temperature and the height difference between the indoor unit and the outdoor unit.
  • the outdoor unit is installed above the indoor unit, and the liquid refrigerant condensed and liquefied by the outside air by the heat exchanger of the outdoor unit is introduced into the heat exchanger of the indoor unit through the refrigerant pipe using gravity. .
  • the gas refrigerant evaporated there is raised through the refrigerant pipe and introduced again into the heat exchanger of the outdoor unit installed above the indoor unit, so that the refrigerant is naturally circulated. Yes. Since this natural circulation circuit does not require power for driving the compressor, it is possible to perform a cooling operation excellent in energy saving.
  • JP 2001-99446 A (see, for example, FIG. 1)
  • the natural circulation circuit cannot provide cooling capability because the refrigerant does not circulate unless the outside air temperature is lower than the room temperature. Therefore, when the outside air temperature is lower than the room temperature, the room can be cooled, so energy saving is improved. However, when the outside temperature is higher than the room temperature or when there is no difference between the room temperature and the outside temperature. Because the room cannot be cooled, energy saving performance is not improved.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner including a forced circulation circuit and a natural circulation circuit with improved energy saving performance.
  • An air conditioner includes a compressor, a forced circulation circuit by operating a compressor in which a first heat source side heat exchanger, a throttling device, and a first usage side heat exchanger are sequentially connected by piping,
  • the contact length between the air and the fins of the second load side heat exchanger of the natural circulation circuit is set.
  • the heat exchange area of the second load side heat exchanger can be increased.
  • the passing wind speed can be lowered by increasing the ventilation resistance.
  • the power of the indoor unit in the forced circulation circuit can be suppressed, so that energy saving can be improved.
  • the air-conditioning target space in the following description corresponds to, for example, a room, a data center, a computer room, a server room, a room in a building, a warehouse, and the like.
  • FIG. 1 is a schematic diagram showing a configuration of an air-conditioning apparatus 100 according to an embodiment of the present invention.
  • the air conditioner 100 includes a forced circulation circuit indoor unit 1, a forced circulation circuit outdoor unit 2, a natural circulation circuit indoor unit 3, and a natural circulation circuit outdoor unit 4.
  • the forced circulation circuit indoor unit 1 and the forced circulation circuit outdoor unit 2 are connected by refrigerant piping to form a forced circulation circuit 200 through which the refrigerant circulates.
  • the natural circulation circuit indoor unit 3 and the natural circulation circuit outdoor unit 4 are refrigerant piping.
  • a natural circulation circuit 300 that is connected by the (liquid pipe 51 and gas pipe 52) and circulates the refrigerant is configured. Note that the forced circulation circuit 200 and the natural circulation circuit 300 are configured independently of each other.
  • the forced circulation circuit indoor unit 1 is equipped with an indoor expansion valve 11, a first use side heat exchanger 12, an indoor air blowing means 13, and an indoor control device 14. Moreover, the indoor expansion valve 11 and the 1st utilization side heat exchanger 12 are connected in series by refrigerant
  • the indoor expansion valve 11 expands the refrigerant under reduced pressure, and may be constituted by an electronic expansion valve whose opening degree can be varied, for example.
  • the first use side heat exchanger 12 functions as an evaporator during cooling operation.
  • the air conditioning apparatus 100 implements cooling operation.
  • the first use side heat exchanger 12 functions as a condenser.
  • the first use side heat exchanger 12 is provided with indoor air blowing means 13 composed of a centrifugal fan, a multi-blade fan or the like for supplying air.
  • the indoor air blowing means 13 is constituted by a type in which the rotational speed is controlled by an inverter and the air volume is adjusted, for example. That is, the 1st utilization side heat exchanger 12 performs heat exchange between the air supplied from the indoor ventilation means 13, and a refrigerant
  • the indoor air blowing means 13 is installed in the forced circulation circuit indoor unit 1
  • the present invention is not limited thereto, and the air flow formed by the indoor air blowing means 13 is not limited thereto.
  • the forced circulation circuit indoor unit 1 and the natural circulation circuit indoor unit 3 need only be installed in the road.
  • the indoor air blowing means 13 may be installed in the natural circulation circuit indoor unit 3, or may be installed in both the forced circulation circuit indoor unit 1 and the natural circulation circuit indoor unit 3.
  • the indoor expansion valve 11 corresponds to the “throttle means” of the present invention
  • the indoor air blowing means 13 corresponds to the “air blowing means” of the present invention.
  • the indoor control device 14 is composed of an arithmetic device equipped with a general-purpose CPU, data bus, input / output port, nonvolatile memory, timer, and the like.
  • the indoor control device 14 controls the opening degree of the indoor expansion valve 11 and the rotational speed of the indoor air blowing means 13 based on operation information (air temperature, set temperature, refrigerant pipe temperature, etc.).
  • the indoor control device 14 is connected to an outdoor control device 24 (described later) via a transmission line (not shown) so that information can be transmitted and received.
  • the forced circulation circuit outdoor unit 2 is equipped with a compressor 21, a first heat source side heat exchanger 22, a first outdoor blower 23, and an outdoor control device 24.
  • the compressor 21 and the first heat source side heat exchanger 22 are connected in series by a refrigerant pipe.
  • the compressor 21 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the compressor 21 is of a type in which the rotation speed is controlled by an inverter and the capacity is controlled.
  • the first heat source side heat exchanger 22 functions as a condenser during cooling operation and as an evaporator during heating operation.
  • the first heat source side heat exchanger 22 is provided with a first outdoor blower 23 composed of a propeller fan for supplying air and the like.
  • the first heat source side heat exchanger 22 exchanges heat between the air supplied from the first outdoor air blowing means 23 and the refrigerant, and evaporates or condenses the refrigerant.
  • the outdoor control device 24 is composed of an arithmetic device equipped with a general-purpose CPU, data bus, input / output port, nonvolatile memory, timer, and the like.
  • the outdoor control device 24 determines the rotation speed (frequency) of the compressor 21 and the first outdoor side based on the operation information from the forced circulation circuit indoor unit 1 (air temperature, set temperature, refrigerant pipe temperature, etc. in the air-conditioning target space). Pre-set control is performed on the rotational speed of the blower 23 and the like.
  • the forced circulation circuit 200 is based on a refrigeration cycle in which the compressor 21, the first heat source side heat exchanger 22, the indoor expansion valve 11, and the first usage side heat exchanger 12 are sequentially connected in an annular manner through the refrigerant pipe. It is configured.
  • the natural circulation circuit indoor unit 3 is equipped with a second usage-side heat exchanger 31 that functions as an evaporator.
  • the natural circulation circuit indoor unit 3 is installed on the primary side (air inflow side) of the air suction port (not shown) of the forced circulation circuit indoor unit 1 and is circulated by the indoor air blowing means 13 of the forced circulation circuit indoor unit 1.
  • the air to be used is also supplied to the second usage side heat exchanger 31.
  • the natural circulation circuit indoor unit 3 has been described as being separate from the forced circulation circuit indoor unit 1, but is not limited thereto.
  • the second usage side heat exchanger 31 may also be installed in the forced circulation circuit indoor unit 1 together with the first usage side heat exchanger 12, or the air suction of the forced circulation circuit indoor unit 1
  • mouth may be sufficient. That is, it should just be installed in the air flow path formed by the indoor air blowing means 13.
  • the air flowing into the natural circulation circuit indoor unit 3 passes through the second usage-side heat exchanger 31 and then is supplied to the first usage-side heat exchanger 12 so that the natural circulation circuit room
  • the machine 3 and the forced circulation circuit indoor unit 1 were comprised was demonstrated to the example, it is not limited to it.
  • the natural circulation circuit outdoor unit 4 includes a second heat source side heat exchanger 41 that functions as a condenser, and a second heat source side heat exchanger 41 that supplies air to the second heat source side heat exchanger 41.
  • Two outdoor ventilation means 42 are mounted.
  • the 2nd outdoor ventilation means 42 is made to drive
  • it is a driving
  • the natural circulation circuit 300 is configured by a refrigeration cycle in which the second usage-side heat exchanger 31 and the second heat source-side heat exchanger 41 are sequentially connected in an annular manner by the liquid pipe 51 and the gas pipe 52.
  • the natural circulation circuit outdoor unit 4 is installed above the natural circulation circuit indoor unit 3, and the liquid refrigerant condensed and liquefied by the outside air in the second heat source side heat exchanger 41 of the natural circulation circuit outdoor unit 4 uses gravity. Then, it is introduced into the second usage side heat exchanger 31 of the natural circulation circuit indoor unit 3 through the liquid pipe 51.
  • the vaporized gas refrigerant is raised through the gas pipe 52, and the second heat source side heat exchanger 41 of the natural circulation circuit outdoor unit 4 installed above the natural circulation circuit indoor unit 3.
  • the refrigerant is circulated naturally by being introduced again.
  • the room can be cooled by the natural circulation circuit 300 when the outside air temperature is lower than the room temperature, the energy saving performance is improved.
  • the refrigerant is enclosed in the forced circulation circuit 200 and the refrigerant is also circulated in the natural circulation circuit 300.
  • the present invention is not limited to this.
  • a heat medium such as water may be enclosed.
  • the room is cooled by the natural circulation circuit 300, but the room may be warmed.
  • the natural circulation circuit outdoor unit 4 needs to be installed below the natural circulation circuit indoor unit 3. is there.
  • FIG. 2 is a schematic view of the second usage side heat exchanger 31 of the air-conditioning apparatus 100 according to the embodiment of the present invention as viewed from the side.
  • the second usage-side heat exchanger 31 is stacked in parallel at a predetermined interval, and a plurality of plate-like fins 31a through which fluid passes, and inserted so as to be orthogonal to the fins 31a.
  • It is the fin tube type comprised by the heat-transfer tube 31b.
  • the heat transfer tubes 31b are arranged in a zigzag shape (zigzag shape) when the second use side heat exchanger 31 is viewed from the side, but this arrangement is for promoting heat transfer and natural circulation. This is to reduce the size of the circuit indoor unit 3.
  • a liquid pipe 51 and a gas pipe 52 are connected to the second usage side heat exchanger 31, and the lowermost part 51a of the liquid pipe 51 has a trap shape to prevent the back flow of the refrigerant.
  • the liquid refrigerant is accumulated in the lowermost part 51a having the trap shape of the liquid pipe 51, thereby blocking the gas refrigerant and preventing the gas refrigerant from flowing backward and flowing from the lowermost part 51a of the liquid pipe 51 first.
  • the trap shape of the lowest part 51a of the liquid piping 51 concerning this Embodiment is a concave shape as shown in FIG. 2, it is not limited to it, For example, a U shape etc. may be sufficient.
  • the second usage side heat exchanger 31 is installed in the natural circulation circuit indoor unit 3 so as to be inclined with respect to the air flow path formed by the indoor air blowing means 13.
  • the refrigerant flows from the liquid pipe 51 into the second usage side heat exchanger 31, is sent out from the gas pipe 52, and travels toward the second heat source side heat exchanger 41.
  • the liquid pipe 51 needs to be disposed below the gas pipe 52.
  • the path from the liquid pipe 51 to the gas pipe 52 is Must be horizontal or uphill.
  • the path from the liquid pipe 51 to the gas pipe 52 can be maintained horizontal or ascending.
  • the contact length of the air of the 2nd load side heat exchanger of the natural circulation circuit 300 and the fin 31a is increased without disturbing the circulation of the natural circulation circuit 300, and the heat exchange area of the second load side heat exchanger is increased.
  • the passing wind speed can be lowered by increasing the ventilation resistance.
  • the heat exchanger area can be (1 / cosN) times that of the horizontal case. Therefore, the wind speed passing through the second usage side heat exchanger 31 can be (cosN) times, the pressure loss is (cosN squared) times, and the power of the indoor air blowing means 13 is (cosN cubed) times. It becomes.
  • N is 0 (degrees) ⁇ N ⁇ 90 (degrees)
  • cosN is a value smaller than 1, and the power of the indoor air blowing means 13 can be reduced.
  • 1 forced circulation circuit indoor unit 2 forced circulation circuit outdoor unit, 3 natural circulation circuit indoor unit, 4 natural circulation circuit outdoor unit, 11 indoor expansion valve, 12 first use side heat exchanger, 13 indoor air blowing means, 14 indoor control Equipment, 21 compressor, 22 first heat source side heat exchanger, 23 first outdoor fan means, 24 outdoor control device, 31 second use side heat exchanger, 31a fin, 31b heat transfer tube, 41 second heat source side heat exchange 42, second outdoor ventilation means, 51 liquid piping, 51a (bottom of liquid piping), 52 gas piping, 100 air conditioner, 200 forced circulation circuit, 300 natural circulation circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

 圧縮機21、第一熱源側熱交換器22、絞り装置、および第一利用側熱交換器12を順次配管で接続して構成した圧縮機運転による強制循環回路200と、第二熱源側熱交換器41、および第二利用側熱交換器31を配管で接続して構成した冷媒自然循環による自然循環回路300と、を構成し、空気流路を形成する送風手段を備え、第二利用側熱交換器31を空気流路に対して傾斜設置したものである。

Description

空気調和装置
 本発明は、圧縮機運転による強制循環回路と、冷媒自然循環による自然循環回路と、を備えた空気調和装置に関するものである。
 従来から、圧縮機を備え、圧縮した冷媒を吐出して循環させる強制循環回路と、圧縮機のような冷媒を循環させる手段を備えず、冷媒を自然に循環させる自然循環回路と、を備えた空気調和装置が提案されている(たとえば、特許文献1参照)。
 自然循環回路は、室内温度と外気温度との温度差、および室内機と室外機との高低差を利用して、冷媒を自然に循環させている。
 すなわち、室外機を室内機よりも上方に設置し、室外機の熱交換器で外気により凝縮液化させた液冷媒を、重力を利用し、冷媒配管を介して室内機の熱交換器に導入する。そして、そこで蒸発気化させたガス冷媒を、冷媒配管を介して上昇させて、室内機よりも上方に設置されている室外機の熱交換器へ再び導入することにより、冷媒を自然に循環させている。
 この自然循環回路は、圧縮機を駆動させるための動力を必要としないので、省エネ性に優れた冷房運転を行うことができる。
特開2001-99446号公報(たとえば、図1参照)
 しかし、この種の空気調和装置において、自然循環回路は、外気温度が室内温度に比べて低くないと冷媒が循環しないため、冷房能力を出すことはできない。そのため、室内温度より外気温度が低い温度のときには、室内を冷却することができるため省エネ性は向上するが、室内温度より外気温度が高温のとき、または室内温度と外気温度との差がないときには、室内を冷却することができないため、省エネ性は向上しない。
 本発明は、以上のような課題を解決するためになされたもので、省エネ性を向上させた強制循環回路と自然循環回路とを備えた空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、圧縮機、第一熱源側熱交換器、絞り装置、および第一利用側熱交換器を順次配管で接続して構成した圧縮機運転による強制循環回路と、第二熱源側熱交換器、および第二利用側熱交換器を配管で接続して構成した冷媒自然循環による自然循環回路と、を構成し、空気流路を形成する送風手段を備え、前記第二利用側熱交換器を前記空気流路に対して傾斜設置したものである。
 本発明に係る空気調和装置によれば、第二負荷側熱交換器を空気流路に対して傾斜設置したため、自然循環回路の第二負荷側熱交換器の空気とフィンとの接触長さを増やし、第二負荷側熱交換器の熱交換面積を増大させることができる。また、通風抵抗を上げることで通過風速を下げることができる。その結果、強制循環回路における室内機の電力を抑えることができるため、省エネ性を向上させることが可能となる。
本発明の実施の形態に係る空気調和装置の構成を示す概略図である。 本発明の実施の形態に係る空気調和装置の自然循環用熱交換器を側面視した概略図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明における空調対象空間とは、たとえば、室内、データセンター、電算室、サーバールーム、ビルの一室、倉庫などに対応するものである。
 実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の構成を示す概略図である。
 空気調和装置100は、図1に示すように強制循環回路室内機1と、強制循環回路室外機2と、自然循環回路室内機3と、自然循環回路室外機4とで構成されている。
 強制循環回路室内機1と強制循環回路室外機2とは冷媒配管で接続され、冷媒が循環する強制循環回路200を構成し、自然循環回路室内機3と自然循環回路室外機4とは冷媒配管(液配管51およびガス配管52)で接続され、冷媒が循環する自然循環回路300を構成している。なお、強制循環回路200と自然循環回路300とは、互いに独立して構成されている。
(強制循環回路室内機1)
 強制循環回路室内機1には、室内膨張弁11と、第一利用側熱交換器12と、室内送風手段13と、室内制御装置14とが搭載されている。また、室内膨張弁11と第一利用側熱交換器12とは直列に冷媒配管で接続されている。
 室内膨張弁11は、冷媒を減圧膨張させるものであり、たとえば開度を可変とすることができる電子膨張弁で構成するとよい。
 第一利用側熱交換器12は、冷房運転時には蒸発器として機能するものである。なお、本実施の形態では、図1に示すように空気調和装置100が冷房運転を実施する場合のみを例として説明している。仮に、強制循環回路200に四方弁などの流路切換手段を設けて暖房運転を実施する場合には、第一利用側熱交換器12は凝縮器として機能する。
 第一利用側熱交換器12には、空気を供給するための遠心ファンや多翼ファンなどで構成される室内送風手段13が付設されている。また、室内送風手段13は、たとえばインバータにより回転数が制御され風量調整されるタイプのもので構成されている。つまり、第一利用側熱交換器12は、室内送風手段13から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化するものである。
 なお、本実施の形態では、室内送風手段13が強制循環回路室内機1に設置されている場合を例に説明するが、それに限定されるものではなく、室内送風手段13により形成される空気流路内に、強制循環回路室内機1および自然循環回路室内機3が設置されていればよい。たとえば、室内送風手段13が自然循環回路室内機3に設置されていてもよいし、強制循環回路室内機1および自然循環回路室内機3の両方に設置されていてもよい。
 また、室内膨張弁11は本発明の「絞り手段」に相当し、室内送風手段13は、本発明の「送風手段」に相当する。
 室内制御装置14は、汎用のCPU、データバス、入出力ポート、不揮発メモリ、タイマーなどを備えた演算装置で構成されている。この室内制御装置14は、運転情報(空調対象空間の空気の温度、設定温度、および冷媒配管の温度など)によって、室内膨張弁11の開度、室内送風手段13の回転数などの制御を行う。また、室内制御装置14は、後述する室外制御装置24と伝送線(図示せず)にて接続され、情報の送受信を行うことができるようになっている。
(強制循環回路室外機2)
 強制循環回路室外機2には、圧縮機21と、第一熱源側熱交換器22と、第一室外送風手段23と、室外制御装置24と、が搭載されている。また、圧縮機21と第一熱源側熱交換器22とは直列に冷媒配管で接続されている。
 圧縮機21は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえばインバータにより回転数が制御され容量制御されるタイプのもので構成されている。
 第一熱源側熱交換器22は、冷房運転時には凝縮器、暖房運転時には蒸発器として機能するものである。この第一熱源側熱交換器22には、空気を供給するためのプロペラファンなどで構成される第一室外送風手段23が付設されている。つまり、第一熱源側熱交換器22は、第一室外送風手段23から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化するものである。
 室外制御装置24は、汎用のCPU、データバス、入出力ポート、不揮発メモリ、タイマーなどを備えた演算装置で構成されている。この室外制御装置24は、強制循環回路室内機1からの運転情報(空調対象空間の空気の温度、設定温度、および冷媒配管温度など)によって、圧縮機21の回転数(周波数)、第一室外送風手段23の回転数などに対し予め設定された制御を行う。
 つまり、強制循環回路200は、圧縮機21と、第一熱源側熱交換器22と、室内膨張弁11と、第一利用側熱交換器12とを冷媒配管により順次環状に接続した冷凍サイクルによって構成されている。
(自然循環回路室内機3)
 自然循環回路室内機3には、蒸発器として機能する第二利用側熱交換器31が搭載されている。また、自然循環回路室内機3は、強制循環回路室内機1の空気吸込口(図示せず)の一次側(空気流入側)に設置され、強制循環回路室内機1の室内送風手段13により流通される空気が、第二利用側熱交換器31にも供給されるように構成されている。
 なお、本実施の形態において、自然循環回路室内機3は、強制循環回路室内機1と別体であるものとして説明したが、それに限定されるものではない。たとえば、第二利用側熱交換器31も、第一利用側熱交換器12とともに強制循環回路室内機1内に設置されている態様であってもよいし、強制循環回路室内機1の空気吸込口の一次側に接続されたダクト内部に設置されている態様であってもよい。つまり、室内送風手段13により形成される空気流路内に設置されていればよい。
 また、本実施の形態では、自然循環回路室内機3に流入した空気が第二利用側熱交換器31を通過した後に、第一利用側熱交換器12に供給されるように自然循環回路室内機3と強制循環回路室内機1とが構成されている場合を例に説明したが、それに限定されるものではない。
(自然循環回路室外機4)
 自然循環回路室外機4には、凝縮器として機能する第二熱源側熱交換器41と、第二熱源側熱交換器41に付設され、第二熱源側熱交換器41に空気を供給する第二室外送風手段42とが搭載されている。また、第二室外送風手段42は、通電時に運転するようになされている。
 なお、第二室外送風手段42の運転方法であるが、自然循環運転時のみ運転したり、強制循環回路室内機1から出力される運転信号により運転したりするといったように、予め設定された制御で運転を行うようにしてもよい。
 このように、自然循環回路300は、第二利用側熱交換器31と第二熱源側熱交換器41とを、液配管51およびガス配管52により順次環状に接続した冷凍サイクルによって構成されている。
 また、自然循環回路室外機4を自然循環回路室内機3の上方に設置し、自然循環回路室外機4の第二熱源側熱交換器41で外気により凝縮液化させた液冷媒を、重力を利用し、液配管51を介して自然循環回路室内機3の第二利用側熱交換器31に導入する。そして、そこで蒸発気化させたガス冷媒を、ガス配管52を介して上昇させて、自然循環回路室内機3よりも上方に設置されている自然循環回路室外機4の第二熱源側熱交換器41へ再び導入することにより、冷媒を自然に循環させている。
 以上のようにして、室内温度より外気温度が低い温度のときには自然循環回路300により室内を冷却することができるため、省エネ性は向上する。
 なお、本実施の形態では、強制循環回路200には冷媒が封入され、自然循環回路300にも冷媒が循環しているものとして説明するが、それに限定されるものでなく、自然循環回路300にはたとえば水などの熱媒体が封入されていてもよい。
 また、本実施の形態では、自然循環回路300により室内を冷却するが、室内を暖めてもよく、その場合は自然循環回路室外機4を自然循環回路室内機3の下側に設置する必要がある。
 (第二利用側熱交換器31の構成)
 図2は、本発明の実施の形態に係る空気調和装置100の第二利用側熱交換器31を側面視した概略図である。
 第二利用側熱交換器31は、図2に示すように所定の間隔で平行に積層され、その間を流体が通過する複数の板状のフィン31aと、このフィン31aに直交するように挿入された伝熱管31bとで構成されたフィンチューブ型である。また、第二利用側熱交換器31を側面視して、伝熱管31bは千鳥状(ジグザグ状)に配置されているが、このように配置するのは伝熱の促進のため、および自然循環回路室内機3の小型化のためである。
 また、第二利用側熱交換器31には液配管51およびガス配管52が接続されており、冷媒の逆流防止のために液配管51の最下部51aはトラップ形状を有している。つまり、液配管51のトラップ形状を有する最下部51aに液冷媒を溜めることによりそこでガス冷媒を遮断し、ガス冷媒が逆流して液配管51の最下部51aから先に流れるのを防止している。なお、本実施の形態にかかる液配管51の最下部51aのトラップ形状は、図2に示すように凹字形状であるが、それに限定されるものでなく、たとえばU字形状などでもよい。
第二利用側熱交換器31は、自然循環回路室内機3内に、室内送風手段13により形成される空気流路に対して傾斜設置されている。冷媒は、液配管51から第二利用側熱交換器31に流入し、ガス配管52から送りだされ、第二熱源側熱交換器41へと向かう。なお、自然循環を行うためには、液配管51は、ガス配管52よりも下方に配置される必要があり、第二利用側熱交換器31では、液配管51からガス配管52へ向かう経路は水平または上り勾配とする必要がある。
(第二利用側熱交換器31の傾斜角度)
次に、第二利用側熱交換器31の具体的な傾斜角度Nについて説明する。
例えば2列の第二利用側熱交換器31において、段方向における伝熱管31bの中心同士の間隔をDP、列方向における前記伝熱管の中心同士の間隔をLPとしたとき、空気流路に対して垂直な方向からの傾斜角度Nは、以下の式で計算される値Nmax以下でなければならない。
Nmax=Tan-1{(LP/2)/DP}
したがって、Nの取りうる範囲としては、0(度)≦N≦Nmax(度)となる。
以上のように、傾斜角度Nを決めているため、第二利用側熱交換器31において、液配管51からガス配管52へ向かう経路は水平または上り勾配を維持することが可能となる。また、自然循環回路300の循環を妨げることなく、自然循環回路300の第二負荷側熱交換器の空気とフィン31aとの接触長さを増やし、第二負荷側熱交換器の熱交換面積を増大させることができる。また、通風抵抗を上げることで通過風速を下げることができる。その結果、強制循環回路200における強制循環回路室内機1の電力を抑えることができるため、省エネ性を向上させることが可能となる。
 具体的には、第二利用側熱交換器31の傾斜角度をNとした場合、水平の場合と比べて、熱交換器面積を(1/cosN)倍にすることができる。そのため、第二利用側熱交換器31を通過する風速を、(cosN)倍とすることができ、圧損は(cosNの二乗)倍となり、室内送風手段13の動力は(cosNの三乗)倍となる。ここで、Nは0(度)≦N<90(度)であるため、cosNは1よりも小さい値となり室内送風手段13の動力を小さくすることができる。
 1 強制循環回路室内機、2 強制循環回路室外機、3 自然循環回路室内機、4 自然循環回路室外機、11 室内膨張弁、12 第一利用側熱交換器、13 室内送風手段、14 室内制御装置、21 圧縮機、22 第一熱源側熱交換器、23 第一室外送風手段、24 室外制御装置、31 第二利用側熱交換器、31a フィン、31b 伝熱管、41 第二熱源側熱交換器、42 第二室外送風手段、51 液配管、51a (液配管の)最下部、52 ガス配管、100 空気調和装置、200 強制循環回路、300 自然循環回路。

Claims (4)

  1.  圧縮機、第一熱源側熱交換器、絞り装置、および第一利用側熱交換器を順次配管で接続して構成した圧縮機運転による強制循環回路と、
     第二熱源側熱交換器、および第二利用側熱交換器を配管で接続して構成した冷媒自然循環による自然循環回路と、を構成し、
     空気流路を形成する送風手段を備え、
     前記第二利用側熱交換器を前記空気流路に対して傾斜設置した
     空気調和装置。
  2.  前記第二利用側熱交換器は、
     フィンと該フィンに直交するように挿入された伝熱管とで構成されたフィンチューブ型であり、
     前記伝熱管は千鳥状に配置されており、
     段方向における前記伝熱管の中心同士の間隔をDP、列方向における前記伝熱管の中心同士の間隔をLPとしたとき、
     Tan-1{(LP/2)/DP}で求められる値Nmaxに対して、
     前記第二利用側熱交換器の前記空気流路に対して垂直な方向からの傾斜角度Nは、
     0≦N≦Nmaxである
     請求項1に記載の空気調和装置。
  3.  前記第二利用側熱交換器には、
     ガス冷媒が流れるガス配管と、液冷媒が流れる液配管とが接続され、
     前記液配管は、前記ガス配管よりも下方に配置されている
     請求項1または2に記載の空気調和装置。
  4.  前記液配管の最下部はトラップ形状を有している
     請求項3に記載の空気調和装置。
PCT/JP2014/056536 2014-03-12 2014-03-12 空気調和装置 WO2015136646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/056536 WO2015136646A1 (ja) 2014-03-12 2014-03-12 空気調和装置
JP2016507185A JPWO2015136646A1 (ja) 2014-03-12 2014-03-12 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056536 WO2015136646A1 (ja) 2014-03-12 2014-03-12 空気調和装置

Publications (1)

Publication Number Publication Date
WO2015136646A1 true WO2015136646A1 (ja) 2015-09-17

Family

ID=54071124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056536 WO2015136646A1 (ja) 2014-03-12 2014-03-12 空気調和装置

Country Status (2)

Country Link
JP (1) JPWO2015136646A1 (ja)
WO (1) WO2015136646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395422A (zh) * 2022-01-25 2022-04-26 哈尔滨工业大学 分开采用自然循环和强制循环的水冷壁气化炉及冷却方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643447A (en) * 1987-03-12 1989-01-09 Takenaka Komuten Co Cooling system
JP2001099446A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp 空気調和機、非加湿型発熱体収納冷却施設
JP2005257197A (ja) * 2004-03-12 2005-09-22 Mitsubishi Electric Corp 自然循環併用式空気調和機及び自然循環併用式空気調和機の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643447A (en) * 1987-03-12 1989-01-09 Takenaka Komuten Co Cooling system
JP2001099446A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp 空気調和機、非加湿型発熱体収納冷却施設
JP2005257197A (ja) * 2004-03-12 2005-09-22 Mitsubishi Electric Corp 自然循環併用式空気調和機及び自然循環併用式空気調和機の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395422A (zh) * 2022-01-25 2022-04-26 哈尔滨工业大学 分开采用自然循环和强制循环的水冷壁气化炉及冷却方法

Also Published As

Publication number Publication date
JPWO2015136646A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5538503B2 (ja) 室外機及び冷凍サイクル装置
WO2015140886A1 (ja) 冷凍サイクル装置
JP4428341B2 (ja) 冷凍サイクル装置
EP3607252B1 (en) Chiller system with an economizer module and method of operating such a system
JP6553981B2 (ja) ヒートポンプ応用機器の熱交換装置
CN108139088B (zh) 空调
JP2015049008A (ja) 空気調和機及び空気調和機用熱交換器
JP5951475B2 (ja) 空気調和装置及びそれに用いられる室外熱交換器
JP4130636B2 (ja) 冷凍機内蔵型ショーケース
JP4423321B2 (ja) 冷凍機内蔵型ショーケース
WO2015136646A1 (ja) 空気調和装置
KR20210027573A (ko) 냉매의 증발잠열을 이용한 데이터센터 실내의 국부 냉각시스템
JP2012149845A (ja) 空気調和装置のユニット及び空気調和装置
JPWO2019211893A1 (ja) 熱交換器及び冷凍サイクル装置
WO2021065914A1 (ja) 冷凍装置
JP2013076485A (ja) 空気調和機
JP6991343B2 (ja) フリークーリングユニット
WO2021014520A1 (ja) 空気調和装置
KR102076679B1 (ko) 열교환기 및 자연 냉매 순환식 공기 조화기
JP6415019B2 (ja) 空気調和装置
JP7357137B1 (ja) 空気調和機
US20170176057A1 (en) Air conditioner outdoor unit including heat exchange apparatus
JPH10196984A (ja) 空気調和機
KR102058051B1 (ko) 공조시스템의 판형열교환기
TW201738524A (zh) 熱交換器及空氣調節機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885486

Country of ref document: EP

Kind code of ref document: A1