WO2015135397A1 - 基站及形成波束的方法 - Google Patents

基站及形成波束的方法 Download PDF

Info

Publication number
WO2015135397A1
WO2015135397A1 PCT/CN2015/070849 CN2015070849W WO2015135397A1 WO 2015135397 A1 WO2015135397 A1 WO 2015135397A1 CN 2015070849 W CN2015070849 W CN 2015070849W WO 2015135397 A1 WO2015135397 A1 WO 2015135397A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
uplink
base station
received power
weighting
Prior art date
Application number
PCT/CN2015/070849
Other languages
English (en)
French (fr)
Inventor
杨晶
张劲林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15760785.4A priority Critical patent/EP3096464B1/en
Publication of WO2015135397A1 publication Critical patent/WO2015135397A1/zh
Priority to US15/260,657 priority patent/US10243629B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of communications and, in particular, to a base station and a method of forming a beam.
  • MIMO Multiple-Input Multiple-Output
  • Beam Forming (BF) technology can use the reciprocity of an uplink channel and a downlink channel to weight a transmit beam to generate a directional beam.
  • the beam is directed to a target user equipment (User Equipment, UE).
  • UE User Equipment
  • BF technology can be used to enhance the performance of MIMO systems, such as cell capacity and coverage. Therefore, how to implement BF technology in MIMO systems has become an urgent problem to be solved.
  • Embodiments of the present invention provide a base station and a method of forming a beam, thereby enabling the BF technology to be effectively implemented in a MIMO system.
  • a base station including: a determining unit, configured to determine, according to an uplink sounding signal respectively received through the m beams, an uplink receiving power of each of the m beams, where m is greater than 2
  • An integer unit configured to select n beams from the m beams according to an uplink received power of each of the m beams determined by the determining unit, where 2 ⁇ n ⁇ m and n is positive
  • the determining unit is further configured to determine a beamforming type BF weighting value according to the uplink sounding signals respectively received by the n beams selected by the selecting unit, and a weighting unit, configured by using the determining unit
  • the BF weighting values weight the n beams, To form an optimized beam for data transmission.
  • the selecting unit is specifically configured to: sort the m beams according to an order of receiving uplink power of the m beams from large to small; The first n beams are selected from the sorted m beams as the n beams.
  • an uplink receiving power of each of the n beams selected by the selecting unit except the first beam is The ratio of the uplink received power of the first beam is smaller than a preset threshold, where the first beam is a beam with the highest uplink received power among the n beams.
  • the determining unit is specifically configured to: determine, according to an uplink detection signal received by using the n beams respectively a channel covariance matrix corresponding to the n beams; performing eigenvalue decomposition on the channel covariance matrix to determine the BF weighting value.
  • the forming the m beams is formed by using antenna weighting.
  • a method for forming a beam including: determining, according to an uplink sounding signal received by each of the m beams, an uplink received power of each of the m beams, where m is a positive integer greater than two; Selecting n beams from the m beams according to uplink receiving power of each of the m beams, where 2 ⁇ n ⁇ m and n is a positive integer; according to uplinks respectively received through the n beams And detecting a signal, determining a beamforming BF weighting value; weighting the n beams with the BF weighting value to form an optimized beam for data transmission.
  • the selecting, according to the uplink received power of each of the m beams, the n beams from the m beams including: according to the m Sorting the m beams in order of increasing uplink transmit power of the beams; selecting the first n beams from the sorted m beams as the n beams.
  • an uplink received power of each of the n beams except the first beam is the same as the first beam
  • the ratio of the uplink received power is less than a preset threshold, wherein the first beam is a beam with the highest uplink received power among the n beams.
  • the determining, according to the uplink detection signals respectively received by the n beams, determining a BF weight value including : determining according to the uplink detection signals respectively received by the n beams a channel covariance matrix corresponding to the n beams; performing eigenvalue decomposition on the channel covariance matrix to determine the BF weighting value.
  • the m beams are formed by using antenna weighting.
  • a partial beam that is, the above-mentioned n beams
  • the BF weight value is determined according to the uplink sounding signals received through the n beams, and is determined by using The BF weighting value weights n beams to obtain an optimized beam for data transmission, thereby effectively implementing BF technology in a MIMO system and improving system performance.
  • FIG. 1 is a schematic flow chart of a method of forming a beam according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a base station in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • UE User Equipment
  • MT Mobile Terminal
  • RAN Radio Access Network
  • the telephone and the computer having the mobile terminal may be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange voice and/or data with the wireless access network.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved Node B (eNB or e-NodeB) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved Node B
  • e-NodeB evolved Node B
  • FIG. 1 is a schematic flow chart of a method of forming a beam according to an embodiment of the present invention. The method of Figure 1 is performed by a base station.
  • n beams from the m beams where 2 ⁇ n ⁇ m and n is a positive integer.
  • N beams are weighted using BF weighting values to form an optimized beam for data transmission.
  • a partial beam that is, the above-mentioned n beams
  • the BF weight value is determined according to the uplink sounding signals received through the n beams, and is determined by using The BF weighting weights n beams to obtain an optimized beam for data transmission, thereby effectively implementing the BF technique in the MIMO system and improving the performance of the MIMO system.
  • the base station can also determine the BF weight value corresponding to the m beams based on the uplink signals of the m beams, and use the BF weight value to weight the m beams to obtain a beam for data transmission.
  • the complexity is not necessary to determine the BF weighting value based on the m beams to weight the m beams to obtain the beam for data transmission, and select a partial beam from the m beams for the BF weighting, thereby reducing the BF technology.
  • embodiments of the present invention are particularly applicable to large-scale antenna systems.
  • Large-scale antenna systems usually referred to as antenna systems with a port number greater than 8, may have as many as a few hundred antennas.
  • Each beam can correspond to one or more ports.
  • each beam can correspond to one port, then m beams can correspond to m ports.
  • each beam can correspond to two ports.
  • the large-scale antenna system may be an antenna system with a port number greater than 8. In this case, the number of ports corresponding to the m beams may be greater than 8.
  • the number of beams is related to the cell coverage and the number of antenna elements. Generally, the more antenna elements used in forming a beam, the narrower the beam will be, and the more beams needed to ensure a certain cell coverage. In a large-scale antenna system, the number of antennas may be as many as several hundred, and the number of beams may be very large.
  • the base station determines the BF weight value corresponding to the m beams based on the uplink signals of the m beams, and weights the m beams by using the BF weight value to obtain a beam for data transmission.
  • BF technology will be difficult to achieve.
  • a partial beam that is, the above-mentioned n beams
  • the BF weight value is determined according to the uplink sounding signals received through the n beams, and is determined by using
  • the BF weighting weights n beams to obtain an optimized beam for data transmission without determining the BF weights based on m beams to weight the m beams to obtain beams for data transmission, which can be used in large-scale antenna systems. Effective implementation of BF technology can improve the performance of large-scale antenna systems.
  • the embodiment of the present invention is more applicable.
  • the foregoing m beams may be formed by using antenna weighting.
  • the base station may form the m beams by means of antenna weighting.
  • the base station can form m beams by using an Active Antenna System (AAS) antenna weighting.
  • AAS Active Antenna System
  • the orientation of the m beams is different.
  • a base station weights multiple array elements with different weights to form different directed beams. Therefore, in step 110, the base station weights the plurality of array elements of the antenna with different weights to obtain m beams having different directions. For example, for 16 array elements, the base station can use antenna weighting to form 16 differently directed beams.
  • the foregoing m beams may be obtained by setting a direction of the antenna.
  • each antenna is directed to m directions, so that m beams can be formed.
  • the base station may receive, by using m beams, an uplink sounding signal sent by the UE.
  • the base station can receive the uplink sounding signal of the UE through the ports corresponding to the m beams.
  • the base station may obtain the uplink received power of each of the m beams after a period of time statistics. For example, the base station can set a time domain counter to count the uplink received power of each beam within the window length of the time domain filtering. Specifically, the uplink received power of each beam can be replaced by the average uplink received power of each beam.
  • the base station may determine the average uplink received power of each beam according to the following steps:
  • the base station can receive the uplink sounding signal of the UE through all the ports corresponding to the m beams.
  • the base station may perform channel estimation based on the uplink sounding signal at each port to determine a corresponding channel coefficient of each port on the subcarrier. For example, for the jth port corresponding to the i th beam of the m beams, the estimated channel coefficients on the subcarrier k can be expressed as h i,j,k .
  • the base station can calculate the average power of the channel coefficients of each beam on all ports and all subcarriers.
  • the average uplink received power of the ith beam For example, the average uplink received power of the ith beam
  • N port can represent the total number of ports corresponding to m beams
  • N subcarr can represent the total number of subcarriers
  • the base station can filter the average uplink received power of each beam in the time domain. Accordingly, the time domain counter is incremented by one.
  • the base station can determine whether the time domain counter reaches the window length of the time domain filtering. If the time domain counter does not reach the window length of the time domain filtering, the base station returns to perform the above step A).
  • the average uplink received power of each of the m beams in the period of time may be used as the uplink received power of each of the m beams, and then used for the processing of step 130.
  • the base station may sort the m beams according to the order of the received power of the m beams from large to small.
  • the base station can then select the first n beams from the ordered m beams as the n beams.
  • the base station selects the first n beams with high uplink receiving power from the m beams, and can fully utilize the spatial characteristics of the UE, so that the optimized beam formed by weighting the n beams is more in line with the spatial characteristics of the UE.
  • the performance of the antenna system such as data transmission performance.
  • n is greater than or equal to 2, that is, the base station may select at least two beams with stronger uplink received power from the m beams for subsequent BF processing. If one beam with the strongest uplink received power is selected from the m beams, since the direction of the one beam is fixed, it is impossible to use the BF technique to weight the one beam to form beams of different directions. It can be seen that this situation cannot flexibly form an optimized beam for data transmission according to the spatial characteristics of the UE, thereby affecting the performance of the MIMO system, especially the performance of the large-scale antenna system.
  • the uplink receiving power of the n beams is strong, it means The orientation of the n beams conforms to the spatial characteristics of the UE, so that BF weighting of the n beams can form a beam more in line with the spatial characteristics of the UE for data transmission.
  • a ratio of an uplink received power of each of the n beams except the first beam to an uplink received power of the first beam may be smaller than a preset threshold, where the first beam The beam that receives the highest power in the uplink among the n beams.
  • the beam with the highest uplink received power may be referred to as a first beam.
  • the ratio of the uplink received power of each beam except the first beam to the uplink received power of the first beam may be less than a preset threshold.
  • the threshold can be preset to 10 dB.
  • the ratio of the uplink received power to the maximum uplink received power of each of the m beams other than the n beams is greater than or equal to the threshold. It can be seen that, in this embodiment, the base station can select a beam whose uplink received power is close to the maximum uplink received power for subsequent BF weighting processing, so that a beam more conforming to the spatial characteristics of the UE can be formed.
  • the base station may determine a channel covariance matrix corresponding to the n beams according to the uplink sounding signals respectively received through the n beams.
  • the base station can then perform eigenvalue decomposition on the channel covariance matrix to determine the BF weighting value.
  • the base station may receive the uplink sounding signal of the UE through the n beams, and then the base station may estimate the uplink sounding channel according to the uplink sounding signal received through the n beams, thereby obtaining a channel covariance matrix of the uplink sounding channel. Then, the base station can perform eigenvalue decomposition on the channel covariance matrix to obtain a BF weighting value.
  • the base station needs to determine the channel covariance matrix corresponding to the m beams according to the uplink sounding signals received by the m beams, and then the channel covariance matrix corresponding to the m beams.
  • Perform eigenvalue decomposition due to channel constrains corresponding to m beams The dimension of the variance matrix is relatively large, so the complexity of eigenvalue decomposition is very high, and the delay is very large.
  • the base station performs eigenvalue decomposition on the channel covariance matrix corresponding to the n beams, and the channel covariance matrix corresponding to the n beams has a smaller number of dimensions than the channel covariance matrix corresponding to the m beams.
  • Performing eigenvalue decomposition on the channel covariance matrix corresponding to n beams can reduce the complexity of eigenvalue decomposition, thereby reducing the complexity of obtaining BF weighting values, and thus can effectively implement BF technology in MIMO systems, especially in large The BF technology is effectively implemented in the scale antenna system.
  • each beam corresponds to 2 ports, that is, the base station uses antenna weighting to form 16 beams, and sorts 16 beams according to the respective uplink received power of 16 beams, and sorts them. The first two beams are selected from the last 16 beams.
  • the base station When determining the BF weighting value corresponding to 16 beams, the base station needs to perform eigenvalue decomposition on the 32 ⁇ 32 matrix. In the present embodiment, since the BF weighting value is determined for the selected two beams, the base station only needs to perform eigenvalue decomposition on the 4 ⁇ 4 matrix. It can be seen that in the present embodiment, the complexity of the eigenvalue decomposition can be reduced, and the complexity of acquiring the BF weight value can be reduced, so that the BF technique can be effectively implemented in the large-scale antenna system.
  • the base station 200 of FIG. 2 includes a determining unit 210, a selecting unit 220, and a weighting unit 230.
  • the determining unit 210 determines the uplink received power of each of the m beams based on the uplink sounding signals respectively received through the m beams, where m is a positive integer greater than 2.
  • the selecting unit 220 selects n beams from the m beams according to the uplink received power of each of the m beams determined by the determining unit 210, where 2 ⁇ n ⁇ m and n is a positive integer.
  • the determining unit 210 also determines the BF weighting value based on the uplink sounding signals respectively received by the n beams selected by the selecting unit 220.
  • the weighting unit 230 weights the n beams using the BF weighting values determined by the determining unit 210 to form an optimized beam for data transmission.
  • a partial beam that is, the above-mentioned n beams
  • the BF weight value is determined according to the uplink sounding signals received through the n beams, and is determined by using The BF weighting weights the n beams to obtain an optimized beam for data transmission, which can reduce the complexity of the BF technique, thereby effectively implementing the BF technique in the MIMO system and improving system performance.
  • the foregoing m beams may be weighted by using an antenna. Into.
  • the selecting unit 220 may sort the m beams according to the order of the received power of the m beams from the largest to the smallest, and then select the first n from the sorted m beams.
  • the beam acts as the above n beams.
  • the ratio of the uplink received power of each of the n beams selected by the selecting unit 220 to the uplink received power of the first beam may be less than a preset threshold.
  • the first beam is a beam with the highest uplink received power among the n beams.
  • the determining unit 210 may determine a channel covariance matrix corresponding to the n beams according to the uplink sounding signals respectively received through the n beams, and then perform eigenvalue decomposition on the channel covariance matrix to Determine the BF weighting value.
  • FIG. 3 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the base station 300 of FIG. 3 includes a memory 310 and a processor 320.
  • Memory 310 can include random access memory, flash memory, read only memory, programmable read only memory, nonvolatile memory or registers, and the like.
  • the processor 320 can be a Central Processing Unit (CPU).
  • the memory 310 is used to store executable instructions.
  • the processor 320 may execute executable instructions stored in the memory 310, and determine, according to the uplink sounding signals respectively received through the m beams, an uplink received power of each of the m beams, where m is a positive integer greater than two; Selecting n beams from m beams according to uplink receiving power of each of the m beams, where 2 ⁇ n ⁇ m and n is a positive integer; determining BF weighting according to uplink detection signals respectively received through n beams Value; n beams are weighted using BF weights to form an optimized beam for data transmission.
  • a partial beam that is, the above-mentioned n beams
  • the BF weight value is determined according to the uplink sounding signals received through the n beams, and is determined by using The BF weighting weights the n beams to obtain an optimized beam for data transmission, which can reduce the complexity of the BF technique, thereby effectively implementing the BF technique in the MIMO system and improving system performance.
  • the foregoing m beams may be formed by using antenna weighting.
  • the processor 320 may receive the uplink according to the m beams.
  • the m beams are sorted in descending order, and then the first n beams can be selected from the ordered m beams as the n beams.
  • a ratio of an uplink received power of each of the n beams except the first beam to an uplink received power of the first beam may be smaller than a preset threshold, where the first beam The beam that receives the highest power in the uplink among the n beams.
  • the processor 320 may determine a channel covariance matrix corresponding to the n beams according to the uplink sounding signals respectively received by the n beams, and then perform eigenvalue decomposition on the channel covariance matrix to Determine the BF weighting value.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in one unit. In the unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供基站和形成波束的方法。该方法包括:根据通过m个波束分别接收的上行探测信号,确定m个波束中每个波束的上行接收功率,m为大于2的正整数;根据m个波束中每个波束的上行接收功率,从m个波束中选择n个波束,其中2≤n<m且n为正整数;根据通过n个波束分别接收的上行探测信号,确定波束赋型BF加权值;利用BF加权值对n个波束进行加权,以形成用于数据传输的优化波束。本发明实施例能够在MIMO系统中有效实现BF技术。

Description

基站及形成波束的方法
本申请要求于2014年03月10日提交中国专利局、申请号为201410085576.2、发明名称为“基站及形成波束的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且具体地,涉及基站及形成波束的方法。
背景技术
在多输入多输出(Multiple-Input Multiple-Output,MIMO)技术中,不仅可以利用MIMO信道提供的空间复用增益提高信道的容量,同时也可以利用MIMO信道提供的空间分集增益提高信道的可靠性并降低误码率。因此,MIMO系统逐渐成为通信领域研究的重点。
在时分双工(Time Division Duplexing,TDD)系统中,波束赋型(Beam Forming,BF)技术可以利用上行信道与下行信道的互易性,对发射波束进行加权,以产生具有方向性的波束,使波束对准目标用户设备(User Equipment,UE)。在MIMO系统中,利用BF技术能够增强MIMO系统的性能,例如小区容量和覆盖能力。因此,如何在MIMO系统中实现BF技术成为亟待解决的问题。
发明内容
本发明实施例提供基站及形成波束的方法,从而能够在MIMO系统中有效地实现BF技术。
第一方面,提供了一种基站,包括:确定单元,用于根据通过m个波束分别接收的上行探测信号,确定所述m个波束中每个波束的上行接收功率,m为大于2的正整数;选择单元,用于根据所述确定单元确定的所述m个波束中每个波束的上行接收功率,从所述m个波束中选择n个波束,其中2≤n<m且n为正整数;所述确定单元,还用于根据通过所述选择单元选择的所述n个波束分别接收的上行探测信号,确定波束赋型BF加权值;加权单元,用于利用所述确定单元确定的所述BF加权值对所述n个波束进行加权, 以形成用于数据传输的优化波束。
结合第一方面,在第一种可能的实现方式中,所述选择单元,具体用于:按照所述m个波束的上行接收功率从大到小的顺序,对所述m个波束进行排序;从排序后的所述m个波束中选择前n个波束作为所述n个波束。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述选择单元选择的所述n个波束中除第一波束之外的每个波束的上行接收功率与所述第一波束的上行接收功率的比值小于预设的阈值,其中所述第一波束为所述n个波束中上行接收功率最大的波束。
结合第一方面或上述任一种可能的实现方式,在第三种可能的实现方式中,所述确定单元,具体用于:根据通过所述n个波束分别接收的上行探测信号,确定所述n个波束对应的信道协方差矩阵;对所述信道协方差矩阵进行特征值分解,以确定所述BF加权值。
结合第一方面或上述任一种可能的实现方式,在第四种可能的实现方式中,形成所述m个波束是利用天线加权的方式形成的。
第二方面,提供了一种形成波束的方法,包括:根据通过m个波束分别接收的上行探测信号,确定所述m个波束中每个波束的上行接收功率,m为大于2的正整数;根据所述m个波束中每个波束的上行接收功率,从所述m个波束中选择n个波束,其中2≤n<m且n为正整数;根据通过所述n个波束分别接收的上行探测信号,确定波束赋型BF加权值;利用所述BF加权值对所述n个波束进行加权,以形成用于数据传输的优化波束。
结合第二方面,在第一种可能的实现方式中,所述根据所述m个波束中每个波束的上行接收功率,从所述m个波束中选择n个波束,包括:按照所述m个波束的上行接收功率从大到小的顺序,对所述m个波束进行排序;从排序后的所述m个波束中选择前n个波束作为所述n个波束。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述n个波束中除第一波束之外的每个波束的上行接收功率与所述第一波束的上行接收功率的比值小于预设的阈值,其中所述第一波束为所述n个波束中上行接收功率最大的波束。
结合第二方面或上述第二方面的任一种可能的实现方式,在第三种可能的实现方式中,所述根据通过所述n个波束分别接收的上行探测信号,确定BF加权值,包括:根据通过所述n个波束分别接收的上行探测信号,确定 所述n个波束对应的信道协方差矩阵;对所述信道协方差矩阵进行特征值分解,以确定所述BF加权值。
结合第二方面或上述第二方面的任一种可能的实现方式,在第四种可能的实现方式中,所述m个波束是利用天线加权的方式形成的。
本发明实施例中,根据m个波束各自的上行接收功率,从m个波束中选择部分波束,即上述n个波束,然后根据通过n个波束接收的上行探测信号确定BF加权值,并利用确定的BF加权值对n个波束加权来得到用于数据传输的优化波束,从而能够在MIMO系统中有效地实现BF技术,提升系统性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的形成波束的方法的示意性流程图。
图2是根据本发明一个实施例的基站的示意框图。
图3是根据本发明另一实施例的基站的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通信系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE),通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
用户设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal, MT)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB或e-NodeB),本发明并不限定。
图1是根据本发明实施例的形成波束的方法的示意性流程图。图1的方法由基站执行。
110,根据通过m个波束分别接收的上行探测信号,确定m个波束中每个波束的上行接收功率,m为大于2的正整数。
120,根据m个波束中每个波束的上行接收功率,从m个波束中选择n个波束,其中2≤n<m且n为正整数。
130,根据通过n个波束分别接收的上行探测信号,确定BF加权值。
140,利用BF加权值对n个波束进行加权,以形成用于数据传输的优化波束。
本发明实施例中,根据m个波束各自的上行接收功率,从m个波束中选择部分波束,即上述n个波束,然后根据通过n个波束接收的上行探测信号确定BF加权值,并利用确定的BF加权值对n个波束加权来得到用于数据传输的优化波束,从而能够在MIMO系统中有效地实现BF技术,提升MIMO系统性能。
可以理解的是,基站也可以基于m个波束的上行信号确定m个波束对应的BF加权值,并利用该BF加权值对m个波束进行加权得到用于数据传输的波束。但是,波束越多,基于m个波束的上行信号确定BF加权值的复杂度将越高。而本发明实施例中,无需基于m个波束确定BF加权值来对m个波束加权得到用于数据传输的波束,而是从m个波束中选择部分波束用于BF加权,从而能够降低BF技术的复杂度。
因此,本发明实施例,尤其适用于大规模天线系统。大规模天线系统,通常是指端口数目大于8的天线系统,其天线可能多达几百根。
每个波束可以对应一个或多个端口。比如,在天线为单极化天线的情况 下,每个波束可以对应1个端口,那么m个波束可以对应于m个端口。在天线为交叉极化天线的情况下,每个波束可以对应2个端口。本发明实施例中,大规模天线系统可以是端口数目大于8的天线系统,这种情况下,上述m个波束对应的端口数目可以大于8。
波束的数目与小区覆盖范围和天线阵元数目相关。通常,形成波束时使用的天线阵元越多,波束会越窄,为了保证一定的小区覆盖范围,所需要的波束数目就越多。而大规模天线系统中,天线数目可能多达几百根,波束数目也会非常多。
那么,如果基站基于m个波束的上行信号确定m个波束对应的BF加权值,并利用该BF加权值对m个波束进行加权得到用于数据传输的波束。对于大规模天线系统,BF技术将难以实现。
本发明实施例中,根据m个波束各自的上行接收功率,从m个波束中选择部分波束,即上述n个波束,然后根据通过n个波束接收的上行探测信号确定BF加权值,并利用确定的BF加权值对n个波束加权来得到用于数据传输的优化波束,而无需基于m个波束确定BF加权值来对m个波束加权得到用于数据传输的波束,能够在大规模天线系统中有效实现BF技术,从而能够提升大规模天线系统的性能。
对于大规模天线系统的时分双工(Time Division Duplexing,TDD)模式,本发明实施例更为适用。
可选地,作为一个实施例,上述m个波束可以是利用天线加权的方式形成的。具体而言,在步骤110之前,基站可以利用天线加权的方式,形成上述m个波束。
例如,基站可以利用有源天线系统(Active Antenna System,AAS)天线加权的方式形成m个波束。应理解,m个波束的指向是各不相同的。例如,在AAS中,基站利用不同的权值对多个阵元加权,可以形成不同指向的波束。因此,在步骤110中,基站利用不同的权值对天线的多个阵元加权可以得到具有不同指向的m个波束。比如,对于16个阵元而言,基站可以利用天线加权的方式,形成16个不同指向的波束。
可选地,作为另一实施例,上述m个波束可以是通过设置天线的方向得到的。例如,可以在基站上安装天线时使得各个天线分别指向m个方向,从而可以形成m个波束。
可选地,作为另一实施例,基站可以分别通过m个波束来接收UE发送的上行探测(Sounding)信号。具体而言,基站可以分别通过m个波束对应的端口来接收UE的上行探测信号。
在步骤110中,基站可以经过一段时间的统计得到m个波束中每个波束的上行接收功率。例如,基站可以设置一个时域计数器,在时域滤波的窗长内统计每个波束的上行接收功率。具体地,每个波束的上行接收功率可以用每个波束的平均上行接收功率来代替。
具体地,基站可以按照下述步骤确定每个波束的平均上行接收功率:
A)基站可以通过m个波束对应的所有端口接收UE的上行探测信号。基站可以在每个端口基于上行探测信号进行信道估计,确定每个端口在子载波上对应的信道系数。例如,对于m个波束中的第i个波束所对应的第j个端口,在子载波k上所估计得到的信道系数可以表示为hi,j,k
B)基站可以计算每个波束的信道系数在所有端口、所有子载波上的平均功率。
例如,第i个波束的平均上行接收功率
Figure PCTCN2015070849-appb-000001
其中,Nport可以表示m个波束对应的端口的总数目;Nsubcarr可以表示子载波的总数目。
C)基站可以在时域上将每个波束的平均上行接收功率进行滤波。相应地,时域计数器加1。
D)基站可以判断时域计数器是否达到时域滤波的窗长。如果时域计数器未达到时域滤波的窗长,则基站返回执行上述步骤A)。
如果时域计数器达到时域滤波的窗长,则可以将该段时间内m个波束各自的平均上行接收功率作为m个波束各自的上行接收功率,然后用于步骤130的处理。
可选地,作为另一实施例,在步骤120中,基站可以按照m个波束的上行接收功率从大到小的顺序,对m个波束进行排序。然后基站可以从排序后的m个波束中选择前n个波束作为上述n个波束。
本实施例中,通过基站从m个波束中选择上行接收功率较大的前n个波束,能够充分利用UE的空间特性,这样使得对n个波束加权形成的优化波束更符合UE的空间特性,从而能够提升MIMO系统的性能,尤其是大规模 天线系统的性能,例如数据传输性能等。
本实施例中,n大于或等于2,也就是说,基站可以从m个波束中选择至少两个上行接收功率较强的波束用于后续的BF处理。如果从m个波束中选择上行接收功率最强的1个波束,由于这1个波束的指向是固定的,这样就无法利用BF技术对这1个波束进行加权形成不同指向的波束。可见,这种情况无法根据UE的空间特性,灵活地形成用于数据传输的优化波束,从而会影响MIMO系统的性能,尤其是大规模天线系统的性能。因此,本实施例中,通过从m个波束中选择至少两个(即n个)上行接收功率较强的波束用于后续的BF处理,由于这n个波束的上行接收功率较强,那么意味着,这n个波束的指向符合UE的空间特性,从而对n个波束进行BF加权后,能够形成更符合UE的空间特性的波束来进行数据传输。
可选地,作为另一实施例,上述n个波束中除第一波束之外的每个波束的上行接收功率与第一波束的上行接收功率的比值可以小于预设的阈值,其中第一波束为n个波束中上行接收功率最大的波束。
具体地,上行接收功率最大的波束可以称为第一波束。所选择的n个波束,除第一波束之外的每个波束的上行接收功率与第一波束的上行接收功率的比值可以小于预设的阈值。例如,该阈值可以预设为10dB。而m个波束中除n个波束之外的每个波束的上行接收功率与最大的上行接收功率的比值大于或等于该阈值。可见,本实施例中,基站可以选择上行接收功率与最大的上行接收功率接近的波束用于后续的BF加权处理,从而能够形成更符合UE的空间特性的波束。
可选地,作为另一实施例,在步骤130中,基站可以根据通过n个波束分别接收的上行探测信号,确定n个波束对应的信道协方差矩阵。然后基站可以对信道协方差矩阵进行特征值分解,以确定BF加权值。
具体地,基站可以通过n个波束接收UE的上行探测信号,那么基站可以根据通过n个波束所接收的上行探测信号,估计上行探测信道,从而得到上行探测信道的信道协方差矩阵。然后,基站可以对信道协方差矩阵执行特征值分解,得到BF加权值。
在传统的BF实现方案中,在m个波束的情况下,基站需要根据m个波束所接收的上行探测信号确定m个波束对应的信道协方差矩阵,然后对m个波束对应的信道协方差矩阵进行特征值分解,由于m个波束对应的信道协 方差矩阵的维数比较大,这样,特征值分解的复杂度就会非常高,而且时延非常大。
本实施例中,基站对n个波束对应的信道协方差矩阵进行特征值分解,而相对于m个波束对应的信道协方差矩阵,n个波束对应的信道协方差矩阵的维数较少,这样对n个波束对应的信道协方差矩阵进行特征值分解,能够降低特征值分解的复杂度,从而能够降低获取BF加权值的复杂度,因此能够在MIMO系统中有效实现BF技术,尤其是在大规模天线系统中有效实现BF技术。
例如,假设m为16,n为2,每个波束对应2个端口,即基站利用天线加权的方式形成16个波束,并根据16个波束各自的上行接收功率对16个波束排序后,从排序后的16个波束中选择前2个波束。
在确定16个波束对应的BF加权值时,基站需要对32×32矩阵进行特征值分解。而本实施例中,由于针对所选择的2个波束确定BF加权值,那么基站只需要对4×4的矩阵进行特征值分解。可见,本实施例中,能够降低特征值分解的复杂度,从而能够降低获取BF加权值的复杂度,因此能够在大规模天线系统中有效地实现BF技术。
图2是根据本发明一个实施例的基站的示意框图。图2的基站200包括确定单元210、选择单元220和加权单元230。
确定单元210根据通过m个波束分别接收的上行探测信号,确定m个波束中每个波束的上行接收功率,m为大于2的正整数。选择单元220根据确定单元210确定的m个波束中每个波束的上行接收功率,从m个波束中选择n个波束,其中2≤n<m且n为正整数。确定单元210还根据通过选择单元220选择的n个波束分别接收的上行探测信号,确定BF加权值。加权单元230利用确定单元210确定的BF加权值对n个波束进行加权,以形成用于数据传输的优化波束。
本发明实施例中,根据m个波束各自的上行接收功率,从m个波束中选择部分波束,即上述n个波束,然后根据通过n个波束接收的上行探测信号确定BF加权值,并利用确定的BF加权值对n个波束加权来得到用于数据传输的优化波束,能够降低BF技术的复杂度,从而能够在MIMO系统中有效地实现BF技术,提升系统性能。
可选地,作为一个实施例,上述m个波束可以是利用天线加权的方式形 成的。
可选地,作为另一实施例,选择单元220可以按照m个波束的上行接收功率从大到小的顺序,对m个波束进行排序,然后可以从排序后的m个波束中选择前n个波束作为上述n个波束。
可选地,作为另一实施例,选择单元220选择的n个波束中除第一波束之外的每个波束的上行接收功率与第一波束的上行接收功率的比值可以小于预设的阈值,其中第一波束为n个波束中上行接收功率最大的波束。
可选地,作为另一实施例,确定单元210可以根据通过n个波束分别接收的上行探测信号,确定n个波束对应的信道协方差矩阵,然后可以对信道协方差矩阵进行特征值分解,以确定BF加权值。
图2的基站200的其它功能和操作可以参照上面图1的方法实施例的过程,为了避免重复,此处不再赘述。
图3是根据本发明另一实施例的基站的示意框图。图3的基站300包括存储器310和处理器320。
存储器310可以包括随机存储器、闪存、只读存储器、可编程只读存储器、非易失性存储器或寄存器等。处理器320可以是中央处理器(Central Processing Unit,CPU)。
存储器310用于存储可执行指令。处理器320可以执行存储器310中存储的可执行指令,用于:根据通过m个波束分别接收的上行探测信号,确定m个波束中每个波束的上行接收功率,m为大于2的正整数;根据m个波束中每个波束的上行接收功率,从m个波束中选择n个波束,其中2≤n<m且n为正整数;根据通过n个波束分别接收的上行探测信号,确定BF加权值;利用BF加权值对n个波束进行加权,以形成用于数据传输的优化波束。
本发明实施例中,根据m个波束各自的上行接收功率,从m个波束中选择部分波束,即上述n个波束,然后根据通过n个波束接收的上行探测信号确定BF加权值,并利用确定的BF加权值对n个波束加权来得到用于数据传输的优化波束,能够降低BF技术的复杂度,从而能够在MIMO系统中有效地实现BF技术,提升系统性能。
可选地,作为一个实施例,上述m个波束可以是利用天线加权的方式形成的。
可选地,作为另一实施例,处理器320可以按照m个波束的上行接收功 率从大到小的顺序,对m个波束进行排序,然后可以从排序后的m个波束中选择前n个波束作为上述n个波束。
可选地,作为另一实施例,上述n个波束中除第一波束之外的每个波束的上行接收功率与第一波束的上行接收功率的比值可以小于预设的阈值,其中第一波束为n个波束中上行接收功率最大的波束。
可选地,作为另一实施例,处理器320可以根据通过n个波束分别接收的上行探测信号,确定n个波束对应的信道协方差矩阵,然后可以对信道协方差矩阵进行特征值分解,以确定BF加权值。
图3的基站300的其它功能和操作可以参照上面图1的方法实施例的过程,为了避免重复,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种基站,其特征在于,包括:
    确定单元,用于根据通过m个波束分别接收的上行探测信号,确定所述m个波束中每个波束的上行接收功率,m为大于2的正整数;
    选择单元,用于根据所述确定单元确定的所述m个波束中每个波束的上行接收功率,从所述m个波束中选择n个波束,其中2≤n<m且n为正整数;
    所述确定单元,还用于根据通过所述选择单元选择的所述n个波束分别接收的上行探测信号,确定波束赋型BF加权值;
    加权单元,用于利用所述确定单元确定的所述BF加权值对所述n个波束进行加权,以形成用于数据传输的优化波束。
  2. 根据权利要求1所述的基站,其特征在于,所述选择单元,具体用于:
    按照所述m个波束的上行接收功率从大到小的顺序,对所述m个波束进行排序;
    从排序后的所述m个波束中选择前n个波束作为所述n个波束。
  3. 根据权利要求2所述的基站,其特征在于,所述选择单元选择的所述n个波束中除第一波束之外的每个波束的上行接收功率与所述第一波束的上行接收功率的比值小于预设的阈值,其中所述第一波束为所述n个波束中上行接收功率最大的波束。
  4. 根据权利要求1至3中任一项所述的基站,其特征在于,所述确定单元,具体用于:
    根据通过所述n个波束分别接收的上行探测信号,确定所述n个波束对应的信道协方差矩阵;
    对所述信道协方差矩阵进行特征值分解,以确定所述BF加权值。
  5. 根据权利要求1至4中任一项所述的基站,其特征在于,所述m个波束是利用天线加权的方式形成的。
  6. 一种形成波束的方法,其特征在于,包括:
    根据通过m个波束分别接收的上行探测信号,确定所述m个波束中每个波束的上行接收功率,m为大于2的正整数;
    根据所述m个波束中每个波束的上行接收功率,从所述m个波束中选 择n个波束,其中2≤n<m且n为正整数;
    根据通过所述n个波束分别接收的上行探测信号,确定波束赋型BF加权值;
    利用所述BF加权值对所述n个波束进行加权,以形成用于数据传输的优化波束。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述m个波束中每个波束的上行接收功率,从所述m个波束中选择n个波束,包括:
    按照所述m个波束的上行接收功率从大到小的顺序,对所述m个波束进行排序;
    从排序后的所述m个波束中选择前n个波束作为所述n个波束。
  8. 根据权利要求7所述的方法,其特征在于,所述n个波束中除第一波束之外的每个波束的上行接收功率与所述第一波束的上行接收功率的比值小于预设的阈值,其中所述第一波束为所述n个波束中上行接收功率最大的波束。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述根据通过所述n个波束分别接收的上行探测信号,确定BF加权值,包括:
    根据通过所述n个波束分别接收的上行探测信号,确定所述n个波束对应的信道协方差矩阵;
    对所述信道协方差矩阵进行特征值分解,以确定所述BF加权值。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述m个波束是利用天线加权的方式形成的。
PCT/CN2015/070849 2014-03-10 2015-01-16 基站及形成波束的方法 WO2015135397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15760785.4A EP3096464B1 (en) 2014-03-10 2015-01-16 Base station and beam forming method
US15/260,657 US10243629B2 (en) 2014-03-10 2016-09-09 Base station and beam forming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410085576.2 2014-03-10
CN201410085576.2A CN104917554B (zh) 2014-03-10 2014-03-10 基站及形成波束的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/260,657 Continuation US10243629B2 (en) 2014-03-10 2016-09-09 Base station and beam forming

Publications (1)

Publication Number Publication Date
WO2015135397A1 true WO2015135397A1 (zh) 2015-09-17

Family

ID=54070908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070849 WO2015135397A1 (zh) 2014-03-10 2015-01-16 基站及形成波束的方法

Country Status (4)

Country Link
US (1) US10243629B2 (zh)
EP (1) EP3096464B1 (zh)
CN (1) CN104917554B (zh)
WO (1) WO2015135397A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192889A1 (en) * 2014-06-17 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Determination of beam configuration
US10205491B2 (en) * 2015-09-28 2019-02-12 Futurewei Technologies, Inc. System and method for large scale multiple input multiple output communications
CN106060973B (zh) * 2016-07-08 2019-07-09 上海华为技术有限公司 一种信号处理的方法、装置及基站
US10498425B2 (en) * 2017-04-13 2019-12-03 Qualcomm Incorporated Wireless communication system transmit and receive beam refinement based on spatial power profile
CN108736929B (zh) * 2017-04-18 2020-03-17 大唐移动通信设备有限公司 一种波束检测方法及装置
CN107947842B (zh) * 2017-10-19 2020-08-25 成都华为技术有限公司 波束赋形方法及装置
US10681674B2 (en) 2017-12-18 2020-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a radio transceiver device
CN110768703B (zh) * 2018-07-26 2023-04-11 上海华为技术有限公司 波束赋形传输方法和通信装置
CN111182561A (zh) * 2018-11-12 2020-05-19 中兴通讯股份有限公司 一种天线阵列的控制方法及系统
US11742889B2 (en) * 2019-04-09 2023-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Eigenvalue-based passive intermodulation detection
CN112653493B (zh) * 2019-10-11 2022-04-08 中国移动通信集团陕西有限公司 天线权值优化方法、装置、计算设备及存储介质
US11750267B1 (en) * 2022-03-22 2023-09-05 Qualcomm Incorporated Channel statistics based adaptive beam weight estimation
CN114584895B (zh) * 2022-05-07 2022-08-05 之江实验室 一种用于波束成形的声学收发阵列排布方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064942A (zh) * 2006-04-30 2007-10-31 北京信威通信技术股份有限公司 一种动态信道分配及空间特征提取和波束赋形方法
CN101192868A (zh) * 2006-11-24 2008-06-04 中兴通讯股份有限公司 无线通信系统的多业务波束赋形装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664533B2 (en) * 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
US7965619B2 (en) * 2006-07-07 2011-06-21 Mitsubishi Electric Corporation Wireless communication system and communication control method
US8165595B2 (en) * 2008-01-25 2012-04-24 Samsung Electronics Co., Ltd. System and method for multi-stage antenna training of beamforming vectors
KR101513889B1 (ko) * 2008-02-14 2015-05-20 삼성전자주식회사 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
US8085721B2 (en) * 2008-03-10 2011-12-27 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US8665806B2 (en) * 2008-12-09 2014-03-04 Motorola Mobility Llc Passive coordination in a closed loop multiple input multiple out put wireless communication system
KR101607988B1 (ko) * 2009-04-23 2016-04-12 삼성전자주식회사 무선통신시스템에서 간섭 완화를 위한 장치 및 방법
US8977309B2 (en) * 2009-09-21 2015-03-10 Kathrein-Werke Kg Antenna array, network planning system, communication network and method for relaying radio signals with independently configurable beam pattern shapes using a local knowledge
CN102045856B (zh) * 2009-10-14 2013-09-11 上海贝尔股份有限公司 一种信号接收方法及其设备
US8787343B2 (en) * 2009-11-17 2014-07-22 Qualcomm Incorporated Efficient method for determining a preferred antenna pattern
US8792933B2 (en) * 2010-03-10 2014-07-29 Fujitsu Limited Method and apparatus for deploying a wireless network
JP4730677B1 (ja) * 2011-01-27 2011-07-20 日本電気株式会社 情報処理装置及び情報処理方法並びに情報処理プログラム
CN102325328A (zh) * 2011-10-26 2012-01-18 大唐移动通信设备有限公司 业务赋形方法和设备
KR101921669B1 (ko) * 2011-12-27 2018-11-27 삼성전자주식회사 FDD 모드로 동작하는 Massive MIMO를 사용하는 무선통신 시스템에서 제한된 정보량을 이용하여 채널 상태 정보를 피드백 하기 위한 장치 및 방법
WO2013133645A1 (ko) * 2012-03-07 2013-09-12 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
CN102832982B (zh) * 2012-08-08 2015-01-07 华为技术有限公司 带有mimo加速器的基站及其控制方法
US20140073337A1 (en) * 2012-09-11 2014-03-13 Electronics And Telecommunications Research Institute Communication device and communication method using millimeter-wave frequency band
US8942302B2 (en) * 2012-12-20 2015-01-27 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
US9392639B2 (en) * 2013-02-27 2016-07-12 Samsung Electronics Co., Ltd. Methods and apparatus for channel sounding in beamformed massive MIMO systems
WO2014158206A1 (en) * 2013-03-29 2014-10-02 Intel Corp Hybrid beamforming for data transmission
US20140334564A1 (en) * 2013-05-09 2014-11-13 Samsung Electronics Co., Ltd Method and system for providing low-complexity hybrid precoding in wireless communication systems
CN103688474B (zh) * 2013-09-27 2018-06-05 华为技术有限公司 通信方法、基站和用户设备
EP3068060A4 (en) * 2013-11-04 2017-11-01 LG Electronics Inc. Method and apparatus for transmitting signal in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064942A (zh) * 2006-04-30 2007-10-31 北京信威通信技术股份有限公司 一种动态信道分配及空间特征提取和波束赋形方法
CN101192868A (zh) * 2006-11-24 2008-06-04 中兴通讯股份有限公司 无线通信系统的多业务波束赋形装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3096464A4 *

Also Published As

Publication number Publication date
CN104917554B (zh) 2019-05-10
EP3096464A1 (en) 2016-11-23
EP3096464A4 (en) 2017-01-25
US20160380680A1 (en) 2016-12-29
US10243629B2 (en) 2019-03-26
CN104917554A (zh) 2015-09-16
EP3096464B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2015135397A1 (zh) 基站及形成波束的方法
RU2707735C1 (ru) Система и способ передачи информации о выборе подпространства
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
US20230318661A1 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
EP2643988B1 (en) Multi-layer beamforming with partial channel state information
JP6665101B2 (ja) デュアルストリームビームフォーミング方法及び装置
EP4087151A1 (en) Channel reciprocity-based precoding matrix configuration method and apparatus
WO2017059892A1 (en) Techniques to reduce radiated power for mimo wireless systems
CN110915283B (zh) 用于支持波束成形的探测参考信号的系统和方法
WO2016041402A1 (zh) 用户设备配对方法及装置
US10554269B2 (en) Access method and device
CN111512571A (zh) 用于mimo通信系统中的信号检测的方法和装置
WO2020001527A1 (zh) 波束的选择方法、装置和存储介质
WO2016183835A1 (zh) 传输信号的方法和设备
US20140314011A1 (en) Method and base station for transmitting signal
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
EP2991296B1 (en) Channel estimation method and receiver
EP3526908B1 (en) Relative uplink channel estimation
JP6491339B2 (ja) 指向性ビームベースの開ループマルチストリーム送信方法および基地局
WO2017154555A1 (ja) 基地局
WO2018064801A1 (en) Explicit channel state information feedback
US20160277086A1 (en) Method for dual mode beamforming and apparatus for the same
Wadhwani et al. A Review of Smart Antenna System (SAS) with Array Processing Algorithms
KR101901162B1 (ko) 다중 캐리어 환경에서 희소 인덱스 다중 접속을 제공하기 위한 방법 및 장치
CN114584430A (zh) 一种上行接收机降维优化的方法、基站及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760785

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015760785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE