WO2015133732A1 - 입체영상장치용 변조기 및 이를 이용한 입체영상장치 - Google Patents

입체영상장치용 변조기 및 이를 이용한 입체영상장치 Download PDF

Info

Publication number
WO2015133732A1
WO2015133732A1 PCT/KR2015/000963 KR2015000963W WO2015133732A1 WO 2015133732 A1 WO2015133732 A1 WO 2015133732A1 KR 2015000963 W KR2015000963 W KR 2015000963W WO 2015133732 A1 WO2015133732 A1 WO 2015133732A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode
modulator
imaging device
center
Prior art date
Application number
PCT/KR2015/000963
Other languages
English (en)
French (fr)
Inventor
이철우
조성호
Original Assignee
유한회사 마스터이미지쓰리디아시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140025711A external-priority patent/KR20150103969A/ko
Priority claimed from KR1020140029108A external-priority patent/KR101472893B1/ko
Priority claimed from KR1020140068169A external-priority patent/KR20150140024A/ko
Application filed by 유한회사 마스터이미지쓰리디아시아 filed Critical 유한회사 마스터이미지쓰리디아시아
Priority to EP15758266.9A priority Critical patent/EP3115828A4/en
Priority to JP2016554841A priority patent/JP2017513045A/ja
Priority to CN201580016858.XA priority patent/CN106164751A/zh
Priority to US15/122,932 priority patent/US9948925B2/en
Publication of WO2015133732A1 publication Critical patent/WO2015133732A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing

Definitions

  • the following description is a modulator for a stereoscopic image device configured to minimize crosslock of a stereoscopic image and a high brightness stereoscopic image device using the same, wherein the stereoscopic image device solves the optical path difference problem and the efficiency of the reflective member due to the optical splitter. It is about.
  • Figure 1 is a schematic diagram of a stereoscopic image implementation, using a typical projector, the modulator and the three-dimensional glasses.
  • the image generated by the projector 1 is converted into linearly polarized light and transmitted through the modulator 2.
  • the image light transmitted through the modulator 2 is modulated into circularly polarized clockwise or counterclockwise to be irradiated onto the screen.
  • the image light reflected from the screen can be implemented as a stereoscopic image to the viewer through the stereoscopic glasses (4).
  • FIG. 2 is a diagram showing the basic configuration of a conventional modulator.
  • the linearly polarized incident light passes through the transparent substrate 9 and the transparent electrode 8 and passes through the IX layer (Liquid Crystal Layer) 7, and then exits through the transparent electrode 6 and the transparent substrate (5). do.
  • the transparent electrodes 6 and 8 spaced apart from each other are driven at different voltages by the voltage driving device 10 to change the emitted light into a circularly polarized light in a clockwise or counterclockwise direction.
  • 3 is a view showing the path of the light in the LC layer according to the incident angle of the incident light.
  • I -d d (l / Cos [ASin ⁇ (ni / n 2 ) Sin6i ⁇ ]-l)
  • n 2 is the refractive index of about 1.5 of the LC layer.
  • FIG. 4 is a diagram illustrating an optical path difference (£ ⁇ d) / d with respect to the change in the incident angle ⁇ according to Equation 1.
  • the optical path difference 0% is a case where light is incident perpendicularly to the LC layer, and when the incident angle is larger, £ becomes larger than d so that the optical path difference increases.
  • the maximum incident angle is determined by the TR (Throw ratio; distance from the projector to the screen / screen width) of the stereoscopic imaging system, for example, when the TR is 1.5 and 1.3, the maximum incident angle is about 18 degrees and 21 degrees, respectively.
  • the optical path difference corresponds to 2.1% (18 degrees) and 3.0% (21 degrees), respectively, and polarization conversion efficiency is proportional to the optical path difference, so that phase delay occurs between them.
  • the circular polarization conversion efficiency of light passing through the center part and outermost part of the modulator is 2.1% and 3.0%, respectively.
  • TR is 1.3, and the average value of each optical path difference value at an incident angle of 1 to 24 degrees is 1.4%. Due to this difference, cross-talk received from the left and right eyes of the three-dimensional glasses 4 is generated, and thus it is impossible to obtain a clear three-dimensional image quality.
  • the stereoscopic imaging apparatus using the optical splitter for implementing the high brightness stereoscopic image together with the problem of the modulator for the stereoscopic imaging apparatus has the following problems.
  • FIG. 5 is a side view of a light splitter used in a stereoscopic image device for high brightness stereoscopic image.
  • the light passing through the light splitter as described above may be projected onto the screen after being modulated by a modulator as shown in FIG. 2.
  • the image of the light emitted from the projector has a predetermined size, the size and reflection path of the image on the screen by the light traveling along the transmission path. Therefore, the size of the image on the screen by the moving light is the same or similar to overlap each other to achieve a three-dimensional image with good efficiency and quality on the screen. That is, in the optical splitter type stereoscopic apparatus for realizing a high brightness stereoscopic image, the quality of the stereoscopic image may be improved as the light passing through two paths has a high degree of overlap on the screen. However, due to the difference between the path of the transmitted light and the reflected light, a means for compensating for this path difference is required.
  • the present invention is to solve the above problems, it is an object of the present invention to provide a modulator for a three-dimensional image device that can reduce the cross-talk phenomenon occurring in the center and the outer portion of the three-dimensional image.
  • the present invention is to use a three-dimensional image device that can be applied to the above-described modulator to use a light splitter to implement a high-brightness stereoscopic image, but the stereoscopic effect that can effectively reduce the effect due to the optical path difference of the image light by the transmitted light and reflected light
  • Another purpose is to provide an imaging device.
  • Another object of the present invention is to provide a high-brightness stereoscopic imaging apparatus which increases the light utilization efficiency by additionally or independently using total reflection.
  • the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above are clearly understood by those skilled in the art from the following description.
  • the present invention provides a modulator for stereoscopic images, comprising: a first substrate and a second substrate spaced apart from the first substrate; A first electrode and a second electrode provided between the first substrate and the second substrate; And a liquid crystal part provided between the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode is divided into a plurality of electrodes so that a plurality of different voltages may be applied thereto.
  • a modulator for a stereoscopic image device which is formed to be insulated.
  • the three-dimensional image device using the projector for irradiating a three-dimensional image; And a modulator for modulating the stereoscopic image irradiated from the projector into circularly polarized light in a clockwise or counterclockwise direction based on a signal interlocked with the projector.
  • the light emitted from the projector may further include a light splitter for transmitting the light having a first polarization direction, and reflects the light having a second polarization direction.
  • a plurality of unit prisms are disposed to be bonded to each other around the light splitter so that light incident to the light splitter and light transmitted or reflected through the light splitter pass; And around the optical splitter
  • the substrate may further include a substrate for guiding incident light to the plurality of unit prisms.
  • it may further include a prism for refracting and reflecting the light reflected by the light splitter to irradiate toward the screen direction, wherein the light reflected by the light splitter is incident angle to the reflective surface of the prism Is preferably greater than or equal to a critical angle for the light reflected by the light splitter to totally reflect in the screen direction by the prism.
  • the substrate in front of the prism, it is possible to suppress the light loss that may occur due to the spaced space formed on the incident surface of the prism.
  • the refractive member in front of the substrate, it is also possible to prevent the light disappearing phenomenon in the portion by blocking the light itself is incident to the space space formed in the incident surface of the prism.
  • Figure 1 is a schematic diagram of a three-dimensional image implementation method using a conventional projector, modulator and three-dimensional glasses.
  • FIG. 2 is a diagram showing the basic configuration of a conventional modulator.
  • 3 is a view showing the path of the light in the LCD according to the incident angle of the incident light.
  • FIG. 4 is a diagram illustrating an optical path difference with respect to a change in an incident angle.
  • FIG. 5 is a side view of a light splitter used in a stereoscopic image device for high brightness stereoscopic image realization.
  • FIG. 6 is a cross-sectional view of a modulator according to an embodiment of the present invention.
  • FIG. 7 is a view showing a state in which the center electrode and the outer electrode is disposed in a plan view.
  • FIG. 8 illustrates a liquid crystal pattern that varies depending on an applied voltage in a modulator according to an embodiment of the present invention.
  • FIG. 9 shows a graph of the optical path difference and the phase delay as a result of optimizing the voltage applied to the electrode shown in FIG.
  • FIG. 10 is a partial cross-sectional view of a modulator according to an embodiment of the present invention.
  • FIG. 11 shows a movement path of light according to the operation of the present invention.
  • FIG. 12 is a side view illustrating the movement of light in the stereoscopic imaging apparatus.
  • 13 and 14 are diagrams for explaining a method of matching the optical path difference between the light transmitted through the light splitter and the reflected light.
  • 15 is a diagram for explaining an example of a technique of separating polarized light and then combining the same in the same direction.
  • 16 is a side view illustrating the movement of light in the stereoscopic imaging apparatus that is the basis in one aspect of the present invention.
  • 17 and 18 show a state in which the prism is coupled to the separated state in one embodiment of the present invention.
  • 19 is a view showing a state in which the substrate is attached to the prism in one embodiment of the present invention.
  • FIG. 20 is a side view illustrating the movement of light in the stereoscopic imaging apparatus to which the lens of the prism, the substrate, and the transmission path of FIG. 19 is applied.
  • 21 is a view showing another method for eliminating the difference between the size of the image by the transmitted light and the size of the image by the reflected light in the system as shown in FIG.
  • FIG. 22 is a view for explaining a method that can increase the light efficiency than FIG. 16, 18, 19, 20.
  • FIG. 23 shows the reflectance in the visible light region of aluminum and silver.
  • FIG. 24 is a diagram illustrating a stereoscopic imaging device according to an embodiment of the present invention.
  • FIG. 25 is a diagram illustrating a reflectance according to an incident angle.
  • 26 illustrates a multi-division mip body image display device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a modulator according to an embodiment of the present invention.
  • the modulator according to the embodiment of the present invention, the first substrate 39, the second substrate 35 constitutes the outer periphery, the first, second substrate 35, 39 is preferably made of a transparent material.
  • a first electrode 38 and a second electrode 36 are provided between the first substrate 39 and the second substrate 35, and the first electrode 38 and the second electrode 36 are provided.
  • the liquid crystal part 37 may be provided in between.
  • One of the first electrode 38 and the second electrode 36 functions as a common electrode, and the other functions as a divided electrode, and each divided electrode has a voltage having a different potential. It is preferable that each of the electrodes, which can be applied, divided for each other, is insulated for this purpose.
  • the first electrode 38 and the second electrode 36 may be formed of a transparent conductive inorganic material such as, for example, indium tin oxide (ITO) or ZnO as a transparent electrode.
  • a transparent conductive inorganic material such as, for example, indium tin oxide (ITO) or ZnO as a transparent electrode.
  • the electrode disposed in the center of the second electrode 36 is the center electrode 20.
  • the electrodes disposed at the outside may be defined as the outer electrodes (16, 17, 18, 19, 21, 22, 23, 24).
  • the second electrode 36 may be a common electrode
  • the first electrode 38 may be a divided electrode
  • all of the first and second electrodes 36 and 38 may be divided electrodes. .
  • FIG. 7 illustrates a state in which the center electrode 20 and the outer electrodes 16, 17, 18, 19, 21, 22, 23, and 24 are arranged in plan view.
  • the center electrode and the outer electrode is separated from each other and insulated, it is preferable that the outer electrode is also separated into a plurality and insulated from each other. In this case, it is preferable that the center electrode 20 and the outer electrodes 16, 17, 18, 19, 21, 22, 23, 24 are driven with different voltages. With the center electrode 20 as the center, outer electrodes 16, 17, 18, 19, 21, 22, 23, 24 may be arranged around the center electrode 20.
  • each electrode of the modulator is preferably a shape that is cut up and down in the concentric form of the outer shape is a rectangular shape with a long horizontal length, which is conspicuous to the image form and the form of the screen from the projector In order to facilitate the connection of a connector for supplying power, there is such a thing.
  • the center electrode 20 is the portion where the incident angle of light is the smallest, and the outer electrodes 16, 17, 18, 19, 21, 22, 23, 24 are the portions where the incident angle of light is relatively large.
  • the same voltage is preferably applied to the outer electrode that is separated from the center electrode 20 by the same distance, which is the outer electrode that is separated by the first distance to the right from the center electrode 20 (for example, the outer electrode of display 21).
  • the outer electrode spaced a first distance to the left e.g. This is because the inclination angle of light incident on the edge electrode may be the same.
  • Each outer electrode symmetrical with respect to the center electrode 20, spaced apart by the same distance from the center electrode 20, that is, 16 and 24, 17 and 23, 18 and 22 It is preferable that the outer electrodes of Nos. 19 and 21 are arranged in pairs, and the same voltage is applied to each of them. For this purpose they may be electrically connected.
  • the voltage applied to the center electrode 20 is the outer electrode (16, 17, 18, 19, 21,
  • FIG. 8 illustrates a liquid crystal pattern that varies depending on an applied voltage in a modulator according to an embodiment of the present invention.
  • FIG. 8 (a) the first and second electrodes 36 due to the high applied voltage are shown.
  • the arrangement state of the liquid crystal due to the high potential difference between and 38 is shown, and the arrangement state of the liquid crystal due to the low potential difference between the first and second electrodes 36 and 38 due to the relatively low applied voltage is shown in FIG. It is showing what appears.
  • a liquid crystal array state as shown in FIG. 8 (b) is formed in the liquid crystal part 37 which is applied to the center electrode 20.
  • the liquid crystal array 37 corresponding to the outer electrodes 16, 17, 18, 19, 21, 22, 23, and 24 may have a liquid crystal arrangement state as shown in FIG. 8A.
  • 5V is applied to the center electrode 20, and others.
  • the outer edge of the modulator 30 is controlled by applying the reference numerals 19 and 21 to 5.2V, 18 and 22 to 5.4V, 17 and 23 to 5.6V, and 16 and 24 to 5.8V.
  • the phase delay at the center portion of the modulator 30 can be increased rather than the portion, thereby reducing the phase delay due to the optical path difference at the outer portion and the sensation portion.
  • FIG. 9 shows a graph of optical path difference and phase delay as a result of optimizing the voltage applied to the electrode shown in FIG.
  • (A) is the optical path difference change graph according to the prior art
  • (B) is a phase change graph according to the present invention.
  • (B) shows a phase delay when the voltage applied to the modulator is adjusted according to a section to generate an optimal circularly polarized light.
  • the phase delay curve is largely formed in the shape of the lobe largely in the separated section of the electrode, the rising of the sawtooth is a group of the optical path difference in each section in (A) It may correspond to the group.
  • the optical path difference continuously increases as the incident angle increases in the state where the same voltage is applied to the electrode.
  • the portion where the phase delay is sharply lowered is separated from each other and insulated the center electrode and the outer electrode. It means between the outer electrode or the outer electrode and the outer electrode. As described above, the phase delay does not exceed a predetermined level because the applied voltage is different from each other depending on the position of the electrode (a core or an outer).
  • the influence of crosstalk due to the optical path difference / phase delay can be expressed as the ratio of the area in each curve, calculating the ratio of the area of the space below the curve to the area of the space below the curve (B). In other words, it can be seen that the area of the space below the curve (B) is significantly reduced compared to the area of the space below the curve (A).
  • FIG. 10 is a partial cross-sectional view of a modulator according to an embodiment of the present invention.
  • the interval t is set so that the insulation can be isolated between the electrodes, the size of the gap is transmitted through the modulator It can be set so that the influence of luminous flux can be minimized to several tens of ti m.
  • 11 illustrates a movement path of light according to the operation of the present invention.
  • the phase retardation amount of the liquid crystal unit 37 may be large, and when the potential difference is large, the phase retardation amount of the liquid crystal unit 37 may be small.
  • the path of the light incident to the center portion and the light incident to the outer portion does not change depending on the potential difference, but the potential difference applied to them is used to compensate for the phase delay caused by the optical path difference.
  • the light passing through the liquid crystal part is not different from the phase of the light passing through the central part of the liquid crystal part.
  • the three-dimensional image device described below relates to a three-dimensional image device that provides improved brightness compared to the prior art.
  • FIG. 12 is a side view illustrating movement of light in a stereoscopic imaging apparatus.
  • the light from the image plane 5 for generating an image in the projector is divided into light having two polarization components in the light splitter 7 via the projection lens 6. That is, light having S-polarized light and P-polarized light component is reflected and transmitted by the light splitter 7.
  • the light having the reflected S-polarized component passes through the half-wave retarder (8) after being reflected by the reflecting member (9) to become light having P-polarized light through the screen (11) through the modulator (13). Focused on.
  • the modulator 13 used may use the modulator described above with reference to FIGS. 6 and 7.
  • the modulator 13 may change the polarization state by an electrical signal.
  • crosstalk can be reduced by generating a different potential difference between the center electrode and the outer electrode as shown.
  • the light of the P-polarized light component transmitted through the light splitter 7 reaches the screen 11 after passing through the modulator 12. Therefore, the light having the polarization direction common from the image plane 5 is directed to the screen 11 after being driven by the modulators 12 and 13 in one P-polarized state.
  • the divergent origin of the reflected light is the reflected light image plane 10, which may have a distance difference from the image plane 5 of the transmitted light. Therefore, the size, for example, the height of the transmitted and reflected light on the screen 11 is d 4 and d 5 , respectively, so that they are different from each other and are difficult to use as they are.
  • FIG. 12 it is assumed that an optical axis of light reflected and transmitted by the light splitter 7 is formed on the screen 11. If the value ⁇ ⁇ is very small or the distance d 3 from the light splitter 7 to the screen 11 is very long compared to the distance d 2 from the light splitter 7 to the reflecting member 9, the transmitted The distance between the image plane 5 of the light and the reflected light image plane 10 is approximately equal to the distance d 2 from the light splitter 7 to the reflecting member 9. Due to this difference, the size of light transmitted by the light splitter 7 on the screen 11 d 4 becomes smaller than the size d 5 of the reflected light.
  • the size of the transmitted light and the reflected light on the screen 11 is preferably the same as described above.
  • FIG. 13 shows a screen caused by light in which the light transmitted through the light splitter 7 reflects the height d 4 on the screen 11 and the size of the image by using the lens 14 in the optical path of the transmitted light.
  • This method looks simple at first glance, but because the magnification of the lens 14 at the distance d 3 between the light splitter 7 and the screen 11 must be different depending on the conditions of each theater, Be prepared and walk at each distance d 3 .
  • the lens type can be reduced by using the lens, but the number of individual lenses of the zoom lens should be limited to two or three due to factors such as transmittance, size, and price. You need a kind of zoom lens.
  • the lens 14 the design and manufacture and a lot of manpower is required.
  • the divergence angle of light from (6) is large, it means that it is practically difficult to use, and thus it is applicable only to an imaging system having a relatively small divergence angle.
  • a reflective member 15 such as a mirror having a predetermined curvature instead of the lens 14 of FIG. 13, in this case the curvature of the reflective member 15 is about 5Km It is not possible to manufacture, and even if manufactured, the difference between the optical axis of the reflective member 15 and the optical axis of the reflected light is generated a lot, so that the aberration is large and focus adjustment is not easy Therefore, the image is distorted on the screen 11, which makes it practically difficult to use.
  • FIG. 15 Another example of a technique of separating polarized light and then combining the polarized light in the same direction is shown in FIG. 15.
  • the P-polarized light and the S-polarized light are commonly transmitted by the light splitter 18 provided between the optical members 17 and 19, such as a prism, and the S-polarized light is reflected.
  • P-polarized light is transmitted and S-polarized light is reflected by the optical splitter 21 provided between the other optical members ⁇ and ⁇ ).
  • the reflected S-polarized light rays are converted into P-polarized light by the half-wave retarders 20 and 22, respectively.
  • the P-polarized light is theoretically completely transmitted, but the S-polarized light is split and reflected based on the diameter of the incident light, and this technology is derived from a light source such as a lamp. It is used to align the polarized light of the light to a specific polarized light (eg P-polarized light) and use it in the liquid crystal display device.
  • a light source such as a lamp. It is used to align the polarized light of the light to a specific polarized light (eg P-polarized light) and use it in the liquid crystal display device.
  • 16 is a side view showing the movement of light in the stereoscopic imaging apparatus that is the basis in one aspect of the present invention.
  • the stereoscopic imaging apparatus includes a light splitter 34 and 35 for reflecting or transmitting incident light according to a polarization component, and a light splitter 34 and 35.
  • Prisms 23, 24, 25 provided outside and arranged to enclose the light splitters 34, 35, and a reflecting member for reflecting light reflected back from the light splitters 34, 35 back toward the screen 33. (26, 27).
  • the half-wave retarder 28 converts the light directed to the screen into another polarization component (eg, S-polarized light into P-polarized light).
  • a modulator 29 for modulating the converted light e.g., modulating linearly polarized light into circularly polarized light.
  • the modulators 29 and 32 may have the structure described above with reference to FIGS. 6 and 7.
  • Light splitters 34 and 35 may be comprised of two light splitters that are disposed obliquely. For convenience, let's define the first light splitter 34 and the second light splitter 35. The first light splitter 34 and the second light splitter 35 may be disposed at a predetermined interval.
  • Light of P-polarized light passes through the second light splitter 35, and light of S-polarized light is reflected upward.
  • the prism (23, 24, 25) is a plurality of unit prisms
  • the light splitter (34, 35) may be disposed therein.
  • a first light splitter 34 is coated on the interface (bonding surface) between the crab 1 unit prism 23 and the second unit prism 24, and the third unit prism 25 and the second unit are coated.
  • the second light splitter 35 may be coated on the interface (bonding surface) between the prisms 24.
  • Light incident on the light splitters 34 and 35 may enter the light splitters 34 and 35 through the entrance face of the prism 23 and 25 before incidence.
  • the light reflected or transmitted by the light splitters 34 and 35 may be emitted through the exit surface of the prisms 23 and 24 and 25.
  • the light reflected by the first light splitter 34 is The interference between the mip slope of the first unit prism 23 and the exit surface of the second unit prism 24 should not be interfered with, and the light reflected by the second light splitter 35 is incident on the third unit prism 25. And so as not to interfere with the exit face of the second unit prism 24.
  • it is preferable that the angle between the two sides of the second unit prism 24 is smaller than 90 degrees.
  • the incident surface of the first unit prism 23, the angle between the light reflected from the first light splitter 34 ( ⁇ 2 ), and the incident surface of the third unit prism 25, should be at least 0.1 degrees.
  • the exit surface of the first unit prism 23 is refracted so that no additional aberration occurs. It is preferable to function as. And this condition can be applied even when the light reflected by the second light splitter 35 passes through the third unit prism 25.
  • the angle formed by the exit surface ( ⁇ 3 ) and the angle formed by the two sides of the second unit prism 24 (0 1 ) also have the same value ( ⁇ ⁇ 3 ).
  • light passing through the light splitters 34 and 35 may be projected onto the screen 33 through the first modulator 30.
  • the optical splitter (34 , The light reflected by 35 may pass through the second and third modulators 29 and 32 and may be projected onto the screen 33 to overlap the light passing through the transmission path on the screen 33.
  • 17 and 18 show a state in which the prism is coupled to the separated state in one embodiment of the present invention.
  • FIG. 17 illustrates a case where each unit prism constituting the prism is separated
  • FIG. 18 illustrates a case where each unit prism is joined.
  • angles ⁇ 5 , ⁇ 6 , and ⁇ 7 are formed.
  • the defining angle means the angle formed between the incident surface and the bonding surface (surface bonded to the second unit prism) in the case of the first and third unit prisms 23 and 25.
  • it means an angle formed between two joining surfaces (the surface in contact with the first unit prism and the surface in contact with the third unit prism) except for the emission surface.
  • angles may have a certain tolerance ⁇ when compared to a theoretical value. This is because when the unit prisms are manufactured by using an optical material, fine errors may occur even if the processing accuracy is increased.
  • the theoretical angle of the angle ⁇ 8 between the incident surface of the first unit prism 23 and the incident surface of the third unit prism 25 should be 180 degrees.
  • the actual angle which is the sum of the angles of 23 ( ⁇ 7 ), the second angle of the prism 24 ( ⁇ 6 ), and the third angle of the prism 25 ( ⁇ 5 ), is 180 degrees ⁇ °
  • the gap between the incidence surfaces of the third unit prisms 25 may be widened or overlapped, whereby the light passing through the portion may be affected and the image quality of the image implemented on the screen may be degraded.
  • When the distance from the projector to the screen is L, and the distance overlapped or separated as described above is ⁇ , ⁇ may be expressed as follows.
  • the substrate 36 across the incidence plane of the first unit prism 25, and the incidence plane of the third unit prism 23 Suggest to deploy.
  • 19 is a view showing a state in which a substrate is attached to the prism in one embodiment of the present invention.
  • Substrate 36 is composed of a transparent optical member through which light is transmitted is preferably provided in the form of a flat plate.
  • the substrate 36 covers a gap formed between the incident surface of the first unit prism 23 and the incident surface of the third unit prism 25, thereby preventing light from directly entering the gap portion.
  • the loss of light energy means scattering of light, diffuse reflection, An unexpected change in the path of light propagation, such as refraction or extinction.
  • the refraction of the substrate 36 is preferably equal to or almost similar to the refractive index of the prism (23, .24, 25), which is the substrate 36 and the prism (23, 24, 25) This is to prevent further refraction in between. Therefore, the light passing through the substrate 36 is incident on the first and third unit prisms 23 and 25, and then is incident on the light splitters 34 and 35, and the light splitter 34 according to the polarization component thereof. It may be reflected by 35, or transmitted through the light splitters 34 and 35.
  • a separate adhesive layer 37 is formed so that the substrate 36 can be disposed on the incident surface of the first unit prism 23 and the incident surface of the third unit prism 25, and the substrate 36 Make sure it is stable.
  • the material constituting the adhesive layer 37 suppresses the occurrence of aberration by using a transparent adhesive material having a refractive index equal to or similar to that of the first and third unit prisms 23 and 25 and the refractive index of the substrate 36. It is desirable to.
  • FIG. 20 is a side view illustrating the movement of light in the stereoscopic imaging apparatus to which the lens of the prism, the substrate, and the transmission path of FIG. 19 is applied.
  • FIG. 20 illustrates a method of minimizing a difference between an image size d 6 due to transmitted light and an image size d 7 due to reflected light in a system such as FIG. 16.
  • the lens 37 is placed on a path of light passing through the light splitters 34 and 35 and the second unit prism 24. In this case, the size of the image by the transmitted light is adjusted.
  • FIG. 21 shows another method for eliminating this difference when a difference between the size (d 6 ) of the image due to the transmitted light and the size (d 7 ) due to the reflected light occurs in the system as shown in FIG. 16. will be.
  • the embodiment according to FIG. 21 proposes to reduce the image by the reflected light and implement the same as the image size of the transmitted light.
  • a reflection member-prism assembly 38 , 39
  • the light reflected by the light splitters 34 and 35 and passed through the first and third unit prisms 23 and 25 is the size of the image than the state of FIG. 16 via the reflector-prism assemblies 38 and 39. It may be cattle and become equal to the size of the image by the transmitted light.
  • Figure 22 shows a method that can increase the light efficiency than Figures 16, 18, 19, 20.
  • each unit prism in FIG. 22 the vertices of each unit prism are gathered in a circle portion indicated by a dotted line.
  • a fine space can be formed on the boundary where the incidence surface of the first unit prism 23 and the incidence surface of the third unit prism 25 are joined, and the size of the space is defined as. ti is 0.1-0.2 kPa normally. In this case, the light passing through this space is scattered and there is a loss of light.
  • the refractive members 40, 41 in front of the substrate 36.
  • Refractive members 40, 41 for convenience When divided into the first refractive member 40 and the second refractive member 41 is defined, the mutual placement angle of the first refractive member 40 and the second refractive member 41 is not 180 degrees (plane state). It is preferable to become more or less. That is, the mutual placement angle between the incident surface of the first refractive member 40 and the incident surface of the second refractive member 41 is preferably less than 180 degrees, and the exit surface and the second refractive index of the first refractive member 40 are smaller than 180 degrees. It is preferable that the mutual arrangement angle between the emission surfaces of the members 41 is larger than 180 degrees.
  • the refractive members (40, 41) is assumed to be made by bending a flat optical member, the bending angle can be seen to be less than 180 degrees in the entrance plane entrance, more than 180 degrees in the exit plane entry.
  • the connecting portion of the first refractive member 40 and the second refractive member 41 there may be no gap or may have a minute gap t 2 .
  • the separated light at the connection is to support the change the direction from the exit face of the refractive members (40,41), parallel in the separated state, wherein the spacing can be maintained for the t 3, the distance t 3 Since the space is larger than the space, the optical energy loss due to the space can be prevented.
  • the mirror is generally produced by coating aluminum or silver on the prism surface.
  • FIG. 23 shows the reflectance in the visible light region of aluminum and silver. That is, the reflectance between 400 nm and 700 nm is shown for the wavelength of incident light.
  • the reflectance of silver is about 5% higher than that of aluminum, but if the surface is coded, corrosion may occur due to oxidation compared to aluminum. Therefore, generally, the mirror of the reflector-prism assembly or the mirror-prism assembly 34,35 is generally used aluminum. However, the process of coating the prism surface itself requires a high cost, and there is a disadvantage in that optical loss due to reflection may also occur.
  • FIG. 24 is a diagram illustrating a stereoscopic imaging device according to an embodiment of the present invention.
  • the light is divided into two by one polarized light splitter (PBS), but as described above with reference to FIG. 21, one light is divided into three or more paths and projected onto a screen.
  • the light reflected from the PBS 2 passes through the prism-shaped total reflection mirror 10 having two refractive surfaces and one reflective surface to be directed in the screen direction. Be bought. This total reflection mirror is related to the incident angle of light incident on the mirror surface.
  • FIG. 25 is a diagram illustrating a reflectance according to an incident angle.
  • FIG. 25 illustrates a case where the material of the prism is BK7.
  • the total reflection angle that is, the critical angle (cr it ical angle) is about 41.2 ° . Therefore, when the minimum incident angle 6) 1 and the maximum incident angle ⁇ 2 in FIG. 24 are larger than this critical angle, total reflection occurs.
  • the reflectance becomes 100% as shown in FIG. 25 to obtain a significantly higher reflectance than the reflectance of 91.8% of conventional aluminum, thereby improving the brightness of the reflected light.
  • This method can be applied to the reflection member-prism assembly in the above-described double or triple light stereoscopic imaging apparatus can improve the brightness can improve the brightness of the entire image itself.
  • FIG. 26 illustrates a multi-division stereoscopic image display device according to an embodiment of the present invention.
  • a case where light is divided into three by PBSs 11 and 12 is assumed.
  • the light emitted from the projector 1 is split by the PBSs 11 and 12 so that the S-polarized light is reflected and the P-polarized light is transmitted.
  • the minimum incident angles ⁇ 3 and ⁇ 5 and the maximum incident angles ⁇ 4 and ⁇ 6 at which the reflected S-polarized light is incident on the prism type total reflection mirrors 13 and 14 are greater than or equal to the critical angle, all the light is totally reflected and reflected. Efficiency 100% can be achieved.
  • the modulator according to the present invention may be used not only for the stereoscopic image apparatus described above, but also for various stereoscopic image apparatuses in which a left image and a right image are screened from a projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

본 발명은 2개의 이격된 기판과, 기판들 사이에 마련된 2개의 전극과, 전극들 사이에 마련된 액정부를 포함하는 입체영상용 변조기에 있어서, 2개의 기판중 적어도 하나 이상이 서로 다른 복수의 전압이 인가될 수 있도록 복수의 전극으로 구분되어 각각 절연되게 형성되는 것을 특징으로 하는 입체 영상 장치용 변조기에 대한 것이다.

Description

【명세서】
【발명의 명칭】
입체영상장치용 변조기 및 이를 이용한 입체영상장치
【기술분야 i
[001] 이하의 설명은 입체영상의 크로스록을 최소화하도록 구성된 입체영상장치용 변조기 및 이를 이용하는 고휘도 입체영상장치로서, 광분할기로 인한 광로차 문 제 및 반사부재의 효율 문제를 해결한 입체영상장치에 대한 것이다.
【배경기술】
[002] 도 1 은 일반적인 프로젝터, 변조기 및 입체 안경을 사용하는 입체영상 구현 ' 방법의 개략도이다.
[003] 프로젝터 (1)에서 생성된 영상은 직선편광으로 변환되어 변조기 (2)를 투과한 다. 한편, 프로젝터 (1)와 연동된 신호로 변조기 (2)를 구동함으로써 변조기 (2)를 투과한 영상광은 시계 방향 또는 반시계 방향의 원형편광으로 변조되어 스크린 에 조사하게 된다. 한편, 스크린에서 반사된 영상광을 입체 안경 (4)을 통해 시 청자에게 입체영상으로서 구현될 수 있다.
[004] 도 2는 종래의 변조기의 기본 구성을 도시한 도면이다.
[005] 직선 편광된 입사광은 투명기판 (9)과 투명전극 (8)을 투과하여 IX 층 (Liquid Crystal Layer) (7)을 거친 후, 투명전극 (6) 및 투명기판 (5)을 지나서 출사된다.
[006] 상호 이격되는 투명전극 (6, 8)은 전압구동장치 (10)에 의하여 서로 다른 전압 으로 구동되어 출사광을 시계 방향 또는 반시계 방향의 원편광 광으로 바꾸어 준다. [007] 도 3은 입사광의 입사각도에 따른 LC층내에서의 광의 진행경로를 나타낸 도면 이다.
[008] 입사각이 상기 IX 충 (13)과 수직하지 않고 각도 ©1을 갖고 입사되는 경우, LC층 (13) 두께 d와실제로 상기 LC층 (13)을 지나는 거리 1과의 차이, 즉 (1-d) 는 다음과 같다.
[009] 【수학식 1】
[0010] I -d=d(l/Cos[ASin{(ni/n2)Sin6i}]-l)
[0011] 여기서, ¾은 공기의 굴절율 1이고, n2는 LC층의 굴절율 약 1.5이다.
[0012] 도 4는 수학식 1에 의한 입사각 Θ 의 변화에 대한 광로차 ( £ -d)/d를 도시한 도면이다.
[0013] 도 4에서 광로차 0%는 광이 LC층에 대해서 수직으로 입사하는 경우이고, 입사각이 커지면, £ 이 d보다 커져서 광로차가 증가하게 된다.
[0014] 최대입사각은 입체 영상 시스템의 TR(Throw ratio; 프로젝터에서 스크린까지의 거리 /스크린 폭)에 의하여 정해지며, 예컨대 TR 이 1.5 와 1.3일때의 최대 입사각은 각각 약 18도와 21도이다.
[0015] 따라서 광로차는 각각, 2.1%(18 도인 경우)와 3.0%(21 도인 경우)에 해당되며 상기의 광로차에 따라서 편광변환 효율이 비례하므로 이들간에 위상지연이 발생하게 된다, 이 광로차에 의하여 변조기의 중앙부분과 최 외각부를 지나는 광의 원편광 변환효율이 각각 2.1%와 3.0%의 차이가 발생한다.
[0016] TR 이 1.3 이고, 입사각이 1~24 도에서의 각각의 광로차 값을 평균한 수치는 1.4%이다. [0017] 이 차이에 의하여 입체 안경 (4)의 좌 /우안에서 받아들이는 크로스록 (cross-talk)이 발생하여 선명한 입체영상의 화질올 얻올 수 없게 된다.
[0018] 상술한 바와 같이 입체영상장치용 변조기의 문제와 더불어 고휘도 입 체영상 구현을 위해 광분할기를 이용하는 입체영상장치는 다음과 같은 문제점이 있다.
[0019] 도 5는 고휘도 입체영상 구현을 위해 입체영상장치에 사용되는 광분할 기의 측면도이다.
[0020] 도 5 에서 도시한 바와 같이 입체 영상 장치에 사용되는 광 분할기에 있어서, P-편광과, S-편광이 흔재된 광이 광 분할기 (1)에 입사되면, P-편광의 광 은 투과되고, S편광의 광은 반사될 수 있다. 반사된 S-편광의 광은 광 분할기 ( 1) 의 상부 측에 마련되는 미러 (2)에 반사되고, 반사된 후 반 파장 리타터 (4)를 통 과할 수 있다. 이에 의하여 반사된 S-편광이 P-편광으로 변환된 후, 스크린으로 진행할 수 있다. 한편, 광 분할기 ( 1)를 투과한 P-편광의 광은 광 분할기 ( 1)의 아래 쪽에 마련되는 프리즘 (3)을 투과하여 스크린으로 진행할 수 있다.
[0021] 도 5 에 도시되지는 않았으나, 상술한 바와 같이 광분할기를 투과한 광 은 도 2와 같은 변조기에 의해 변조된 후 스크린에 투영될 수 있다.
[0022] 그러나 이러한 기술을 입체영상장치에 적용하기 위하여는 다음과 같은 조건이 필요하다.
[0023] 프로젝터로부터 나온 광의 이미지는 소정의 크기를 갖게 되는데, 투과 경로를 따라서 이동하는 광에 의한 스크린 상의 이미지의 크기 및 반사 경로를 따라서 이동하는 광에 의한 스크린 상의 이미지의 크기가 동일하거나 유사하여 서로 중첩이 되어야 효율과 품질이 좋은 입체 영상이 스크린 상에서 구현된다. 즉, 고휘도 입체영상을 구현하기 위한 광분할기 방식 입체영상 장치에서 2 개의 경로를 거친 광이 스크린 상에서 높은 중첩도를 가질수록 입체영상의 품질이 높아질 수 있다. 다만, 투과광의 경로와 반사광의 경로 차이로 인하여 이러한 경로 차이를 보상하기 위한 수단이 필요하다.
[0024] 아울러, 상술한 광분할기의 미러 (2)를 프리즘상에 형성하는데 있어서의 제작비와 이를 통해 반사될 경우에 발생하는 광손실 문제가 존재한다. 【발명의 상세한 설명】
【기술적 과제】
[0025] 본 발명은 이와 같은 문제점을 해결하기 위한 것으로서, 입체 영상의 중심부와 외곽부에서 발생하는 크로스 톡 현상을 저감할 수 있는 입체 영상 장 치용 변조기를 제공하는데 그 목적이 있다.
[0026] 또한 본 발명은 상술한 변조기가 적용될 수 있는 입체영상 장치로서 고휘도 입체영상 구현을 위해 광분할기를 추가적으로 사용하되 투과광과 반사광 에 의한 영상광의 광로 차이로 인한 영향을 효율적으로 저감할 수 있는 입체영 상 장치를 제공하는 데 또 다른 목적이 있다.
[0027] 아울러, 본 발명은 상술한 발명에 추가적으로 또는 독립적으로 전반사 를 이용함으로써 광 이용효율을 증가시킨 고휘도 입체영상장치를 제공하는데 또 다른 목적이 있다. [0028] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【기술적 해결방법】
[0029] 이와 같은 목적을 달성하기 위한 본 발명은 입체영상용 변조기에 있어 서, 제 1 기판 및 상기 게 1 기판과 이격되어 배치되는 제 2 기판; 상기 제 1 기판과 상기 제 2 기판사이에 마련되는 제 1 전극 및 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 마련되는 액정부를 포함하되, 상기 제 1 전극 또 는 상기 제 2 전극 중 하나 이상은 서로 다른 복수의 전압이 인가될 수 있도록 복수의 전극으로 구분되어 각각 절연되게 형성되는 것을 특징으로 하는 입체 영 상 장치용 변조기를 제안한다.
[0030] 또한, 이를 이용한 입체영상 장치는 입체영상을 조사하는 프로젝터; 및 상기 프로젝터와 연동된 신호를 기반하여 상기 프로젝터로부터 조사된 입체 영상을 시계방향 또는 반시계 방향의 원편광으로 변조하는 변조기를 포함한다.
[0031] 또한, 상기 프로젝터로부터 조사된 광 중 제 1 편광 방향을 가지는 광 을 투과시키고, 제 2 편광 방향을 가지는 광을 반사시키는 광 분할기를 추가적 으로 포함할 수 있다.
[0032] 또한, 본 발명의 다른 일 측면에서는 상기 광 분할기에 입사되는 광 및 상기 광 분할기를 거쳐 투과 또는 반사된 광이 통과하도록, 상기 광 분할기 주위에 상호 접합되어 배치되는 복수의 단위 프리즘; 및 상기 광 분할기 주위에 상기 복수의 단위 프리즘 배치 시 발생하는 공차로 인한 광 에너지 손실을 방지 하기 위하여, 입사광을 상기 복수의 단위 프리즘으로 안내하는 기판을 추가적으 로 포함할 수 있다.
[0033] 아울러, 상기 광 분할기에 의해 반사된 광을 굴절 및 반사시켜 스크린 방향으로 조사하기 위한 프리즘을 추가적으로 포함할 수 있으며, 이때 상기 광 분할기에 의해 반사된 광이 상기 프리즘의 반사면으로의 입사각은 상기 광 분할 기에 의해 반사된 광이 상기 프리즘에 의해 상기 스크린 방향으로 전반사되기 위한 임계각 이상인 것이 바람직하다. [유리한 효과】
[0034] 이와 같은 본 발명에 의하면, 전극을 구간별로 구분하고, 상호 분리한 뒤, 구간 별로 서로 다른 전압을 인가함으로써, 변조기에서의 광로차에 의한 편 광의 위상지연, 그리고 이에 따른 크로스톡을 현저하게 줄일 수 있다는 장점이 있다.
[0035] 즉, 전극의 중앙 부분에서는 낮은 전압을 인가하고, 전극의 외곽 부분 에서는 높은 전압을 인가하여 구간별로 액정의 패턴이 달라지게 하고, 이를 통 해서 구간에 따른 위상 지연의 정도를 다르게 함으로써 광로차에 의한 위상 지 연을 줄일 수 있다.
[0036] 이를 통해서 입체 영상의 중심부와 외곽부에서 발생하는 크로스록을 최소화 하여 고품질의 입체 영상을 얻을 수 있다. [0037] 한편, 본 발명의 다른 일 측면에 따라 고휘도 입체영상 제공을 위한 광분할기를 이용할 때 반사광에 의한 영상과, 투과광에 의한 영상의 크기를 동 일하게 할 수 있어서, 스크린 상에의 화질 및 밝기가 개선되는 효과를 제공할 수 있다.
[0038] 특히, 프리즘 앞에 기판을 배치함으로써, 프리즘의 입사면에 형성된 이격 공간으로 인하여 발생할 수 있는 광 손실을 억제할 수 있다.
[0039] 더 나아가, 추가적으로 기판 앞에 굴절부재를 배치함으로써, 프리즘의 입사면에 형성된 이격 공간에 광이 입사되는 것 자체를 차단함으로써 그 부분에 서의 광 소멸 현상도 방지할 수 있다.
[0040] 또한, 투과 경로에 렌즈를 배치하거나, 반사 경로에 반사부재-프리즘 어셈블리를 배치함으로써 반사광에 의한 영상과 투과광에 의한 영상올 매칭시킬 수 있어서 고품질의 입체 영상을 구현할 수 있다.
[0041] 아울러, 상술한 방식에 추가적으로 또는 독립적으로 전반사를 이용하 여 광 이용효율을 증대시킨 고휘도 입체영상 장치의 구현이 가능하다.
【도면의 간단한 설명】
[0042] 도 1 은 일반적인 프로젝터, 변조기 및 입체 안경을 사용하는 입체영상 구현방법의 개략도이다.
[0043] 도 2는 종래의 변조기의 기본 구성을 도시한 도면이다.
[0044] 도 3은 입사광의 입사각도에 따른 LCD내에서의 광의 진행경로를 나타낸 도면이다.
[0045] 도 4는 입사각의 변화에 대한 광로차를 도시한 도면이다.
[0046] 도 5는 고휘도 입체영상 구현올 위해 입체영상장치에 사용되는 광분할 기의 측면도이다.
[0047] 도 6은 본 발명의 일 실시예에 따른 변조기의 단면도이다.
[0048] 도 7 은 중심전극과 외곽 전극이 배치된 상태를 평면도 형태로 표현한 도면이다.
[0049] 도 8 은 본 발명의 일 실시예에 따른 변조기에서 인가 전압에 따라 달 라지는 액정 패턴을 도시한 것이다.
[0050] 도 9는 도 7에 도시한 전극에 인가되는 전압을 최적화한 결과로서의 광 로차와 위상지연의 그래프를 표시하고 있다.
[0051] 도 10은 본 발명의 일 실시예에 따른 변조기의 부분 단면도이다.
[0052] 도 11은 본 발명의 동작에 따른 광의 이동 경로를 도시한 것이다.
[0053] 도 12는 입체 영상 장치에서 광의 이동을 도시한 측면도이다.
[0054] 도 13 및 도 14 는 광 분할기를 투과한 광과 반사한 광의 광로차를 맞 추는 방법을 설명하기 위한 도면이다. [0055] 도 15 는 편광광을 분리한 후 다시 동일한 방향으로 합치는 기술의 일 례를 설명하기 위한 도면이다.
[0056] 도 16은 본 발명의 일 측면에서 기초가 되는 입체 영상 장치에서 광의 이동을 도시한 측면도이다.
[0057] 도 17 및 18 은 본 발명의 일 실시예에서 프리즘이 분리된 상태와 결합된 상태를 도시한 것이다.
[0058] 도 19 는 본 발명의 일 실시예에서 프리즘에 기판이 부착된 상태를 도시한 도면이다.
[0059] 도 20은 도 19에 의한 프리즘, 기판 및 투과경로의 렌즈가 적용된 입체 영상 장치에서 광의 이동을 도시한 측면도이다.
[0060] 도 21 은 도 16 과 같은 시스템에서 투과광에 의한 이미지의 크기와, 반사광에 의한 이미지의 크기간의 차이를 없애기 위한 또 다른 방법을 나타낸 도면이다.
[0061] 도 22는 도 16, 도 18, 도 19, 도 20보다 광 효율을 증가시킬 수 있는 방법을 설명하기 위한 도면이다.
[0062] 도 23은 알루미늄과 은의 가시 광선 영역에서의 반사율을 도시한다.
[0063] 도 24 는 본 발명의 실시예에 따른 입체 영상 장치를 예시하는 도면이 다.
[0064] 도 25는 입사각에 따른 반사율을 예시하는 도면이다.
[0065] 도 26 은 본 발명의 실시예에 따른 다중 분할 밉체 영상 표시 장치를 예시한다. 【발명의 실시를 위한 형태】
[0066] 이하에서는 첨부된 도면을 참조하여 본 발명의 실시예에 대해서 설명 하도록 하겠다.
[0067] 도 6은 본 발명의 일 실시예에 따른 변조기의 단면도이다.
[0068] 도 6 에서 도시한 바와 같이, 본 발명의 실시예에 따른 변조기는 제 1 기판 (39)과, 제 2기판 (35)이 그 외곽을 구성하며, 상기 제 1 , 2기판 (35 , 39)은 투 명한 재질로 구성되는 것이 바람직하다. 상기 제 1 기판 (39)과 상기 게 2 기판 (35) 사이에는 제 1 전극 (38)과, 제 2 전극 (36)이 마련되며, 상기 제 1전극 (38) 과 상기 제 2전극 (36) 사이에는 액정부 (37)가 마련될 수 있다.
[0069] 상기 제 1전극 (38)과 상기 제 2전극 (36) 중 어느 하나는 공통전극으로 기능하고, 다른 하나는 분할된 전극으로서 기능하여, 분할된 각각의 전극에는 서로 다른 전위의 전압이 인가될 수 있고, 이를 위해 서로 분할된 각각의 전극 들은 절연상태가 되는 것이 바람직하다.
[0070] 상기 제 1 전극 (38) 및 상기 제 2 전극 (36)은 투명전극으로서, 예를 들어 ITO( Indium Tin Oxide) 또는 ZnO 와 같은 투명 도전성 무기 물질로 형성될 수 있다.
[0071] 도 6에서 제 1전극 (38)이 공통전극이 되고, 제 2전극 (36)이 분할된 전 극이 되는 경우, 제 2 전극 (36)의 중심에 배치된 전극을 중심 전극 (20)이라 하 고, 그 외곽에 배치된 전극들을 외곽 전극 ( 16, 17 , 18, 19, 21, 22, 23 , 24)이라 고 정의할 수 있다. [0072] 다만, 제 2 전극 (36)이 공통전극이 되고, 제 1 전극 (38)이 분할된 전극 이 되어도 무방하고, 제 1,2전극 (36, 38) 모두 분할된 전극이 되어도 무방하다.
[0073] 도 7 은 중심전극 (20)과, 외곽 전극 (16, 17, 18 , 19, 21, 22, 23, 24) 이 배치된 상태를 평면도 형태로 표현한 것이다.
[0074] 상기 중심전극과 상기 외곽전극은 상호 분리되어 절연되고, 외곽 전극 도 복수개로 분리되어 상호 간에 절연되는 것이 바람직하다. 여기서 중심 전극 (20)과 외곽 전극 (16, 17, 18, 19, 21, 22, 23, 24)에는 서로 다른 전압이 인가 되어 구동되는 것이 바람직하다. 중심전극 (20)을 중심으로 하여, 외곽전극들 (16, 17, 18, 19, 21, 22, 23 , 24)이 상기 중심 전극 (20)의 주위에 배치될 수 있다
[0075] 상기 변조기의 각 전극의 배치의 형태는 동심원 형태에서 상하로 잘린 형태가 되어 그 외곽은 가로 길이가 긴 직사각형 형태가 되는 것이 바람직한데, 이는 프로젝터에서 나오는 이미지 형태 및 스크린의 형태에 대웅되게 하기 위한 것이며, 전원을 공급하기 위한 커넥터의 연결의 용이성올 위해서 그러한 것도 있다. 상기 중심전극 (20)은 빛의 입사각도가 가장 작은 부분이며, 외곽 전극 (16, 17, 18, 19, 21 , 22, 23, 24)은 빛의 입사각도가 상대적으로 큰 부분이 된다.
[0076] 한편, 상기 중심 전극 (20)의 양 측에는 복수의 외곽 전극 (16, 17, 18,
19, 21, 22, 23, 24)들이 배치되며, 상기 중심 전극 (20)을 기준으로 하여 대칭된 형태가 되는 것이 바람직하다. 특히 상기 중심전극 (20)에서 동일한 거리만큼 떨 어져 있는 외곽 전극에는 동일한 전압이 인가되는 것이 바람직한데 이는 중심 전극 (20)으로부터 우측으로 제 1 거리만큼 떨어져 있는 외곽전극 (예, 21번 표시 외곽 전극) 및 좌측으로 제 1거리만큼 떨어져 있는 외곽 전극 (예, 19번 표시 외 곽 전극)으로 입사되는 빛의 경사각이 동일할 수 있기 때문이다.
[0077] 상기 중심 전극 (20)을 기준으로 서로 대칭되고, 중심 전극 (20)으로부 터 동일한 거리만큼 떨어져 있는 각 외곽 전극 즉, 16번과 24번, 17번과 23번, 18번과 22번, 19번과 21번으로 표시된 각각의 외곽전극이 한쌍을 이루면서 배 치되고, 이들에는 각각 동일한 전압이 인가되는 것이 바람직하다. 이를 위해 이 들은 전기적으로 연결되어 구성될 수도 있다.
[0078] 한편, 중심 전극 (20)에 인가되는 전압은 외곽 전극 (16, 17 , 18, 19, 21,
22 , 23, 24)에 인가되는 전압보다 낮게 인가되는 것이 바람직하며, 외곽 전극 중 에서도 바깥으로 갈 수톡 인가되는 전압이 높게 형성되는 것이 바람직하다.
[0079] 도 8 은 본 발명의 일 실시예에 따른 변조기에서 인가 전압에 따라 달 라지는 액정 패턴을 도시한 것이다.
[0080] 인가 전압이 높은 경우에는 위상 지연 (retardance)이 적고, 인가전압 이 상대적으로 낮은 때는 위상 지연이 커지게 되는데, 도 8(a)에는 높은 인가 전 압으로 인한 제 1,2전극 (36 ,38)간의 높은 전위차에 의한 액정의 배열상태가 나타 나고, 도 8(b)에서는 상대적으로 낮은 인가 전압으로 인한 제 1,2 전극 (36 , 38)간 의 낮은 전위차에 의한 액정의 배열상태가 나타나는 것을 도시하고 있다.
[0081] 따라서 , 도 7및 도 8과 같은 구조에서 중심전극 (20)으로부터 외곽전극
( 16, 17, 18 , 19, 21, 22, 23, 24)으로 갈수록 높은 전압을 인가하면 중심전극 (20) 에 대웅되는 액정부 (37)에는 도 8(b)와 같은 액정 배열상태가 형성되고, 외곽 전 극 (16, 17 , 18, 19 , 21 , 22, 23 , 24)에 대응되는 액정부 (37)에는 도 8(a)와 같은 액 정 배열 상태가 형성될 수 있다. 예를 들어, 중심전극 (20)에 5V를 인가하고, 외 곽 전극 중 도면번호 19 및 21번에는 5.2V, 18 및 22번에는 5.4V, 17 및 23번에 는 5.6V, 16 및 24번에는 5.8V를 인가하는 방식으로 제어함으로써 변조기 (30)의 외곽 부분보다 변조기 (30)의 중심 부분에서의 위상지연을 증대시키고, 이를 통 해 외곽부분과 증심 부분에서의 광로차에 의한 위상지연을 종래보다 감소시킬 수 있다.
[0082] 도 9에는 도 7에 도시한 전극에 인가되는 전압을 최적화한 결과로서의 광로차와 위상지연의 그래프를 표시하고 있다.
[0083] 여기서 (A)로 표시된 부분은 종래 기술에 의한 광로차 변화 그래프이 고, (B)는 본 발명에 의한 위상 변화 그래프이다.
[0084] (B)는 변조기에 인가되는 전압을 구간에 따라 조절하여 최적의 원편광 이 발생하도록 하는 경우 위상지연을 나타낸다.
[0085] (B)의 그래프를 보면, 전극이 분리된 구간에 대웅되게 위상지연 곡선 은 롭니 모양으로 형성되는데, 톱니 모양에서 상승하는 기을기는 (A)에서의 각 구간에 대웅되는 광로차의 기을기에 대응될 수 있다.
[0086] 도 9 의 (B) 곡선을 보면, 입사각이 증가함에도 불구하고, 워상지연이 일정한 범위 내에서 변화하고 있는데 이는 입사각의 증가에 따라 광로차가 증가 고 이러한 광로차의 증가가 그대로 위상지연의 증가가 되는 종래 기술과 비교하 면 그 차이가 현저하다.
[0087] 즉, (A)의 경우, 전극에 동일한 전압이 인가되는 상태에서 입사각이 증 가할 수록 광로차가지속적으로 증가하는 형태를 보이고 있다. 한편, (B)에서 위 상지연이 급격하게 낮아지는 부분은 상호 분리되어 절연된 중심전극과 외곽전극 사이 또는 외곽 전극과 더 바깥에 있는 워곽 전극 사이를 의미한다. .이와 같이 위상지연이 일정 수준을 넘지 않는 것은 상술한 바와 같이, 전극의 위치 (증심 또는 외곽)에 따라서 인가 전압을 서로 다르게 하기 때문이다.
[0088] (B)에서 나타난 톱니형태 곡선 중 상승하는 곡선의 기을기는 광로차 계산식 (수학식 1)에 의한 기을기이며, 전극이 분리된 경계선에서 위상지연 값이 거의 수직으로 감소하고, 그 최저점에서 위 기을기에 따른 상승이 이루어지다가 그 다음의 경계에서 하강하는 패턴을 반복한다.
[0089] 이를 최적화 하기 위해서는 전극의 크기 및 허용 크로스특을 감안하여 각각 전극의 구간을 정한 후에 각 구간에서의 크로스록 평균값을 빼주도록 전압 을 변경하면 가능하며, 구간을 여섯으로 분할하면, 도 9의 (B)와 같은 톱니 형태 의 그래프를 얻을 수 있다.
[0090] 광로차 /위상지연으로 인한 크로스톡의 영향은 각각의 곡선에 있어서 면적의 비율로 나타날 수 있는데, (A)곡선의 아래 공간의 면적과 (B)곡선의 아래 공간의 면적 비율을 계산하면, 대략 (B)곡선의 아래 공간의 면적이 (A) 곡선의 아래 공간의 면적 대비 감소하게 되어 기존의 방법에 비해 현저하게 감소하였음 을 알 수 있다.
[0091] 도 10은 본 발명의 일 실시예에 따른 변조기의 부분 단면도이다.
[0092] 도 10 에서 도시한 바와 같이, 서로 분리된 전극에 서로 다른 전압이 인가될 수 있도록 상호 분리된 전극 사이에는 절연이 될 수 있게, 간격 t 를 설 정하며, 그 간격의 크기는 변조기를 투과하는 광속의 영향이 최소화 될 수 있도 록 수~수십 ti m 가 될 수 있게 설정할 수 있다. [0093] 도 11은 본 발명의 동작에 따른 광의 이동 경로를 도시한 것이다.
[0094] 프로젝터에서 나온 빛은 확산되고, 상기 변조기 (30)로 밉사될 수 있다. 이때, 상기 변조기 (30)의 제 2 전극 (36)의 중심 전극 (20)에서 외곽 전극 ( 16~29 , 21-24)로 갈수록 인가 전압이 높아지도록 설정하는 것이 바람직하다. 이와 같이 중심과 외곽 간의 인가 전압이 달라지기 때문에 상기 제 2 전극 (36)과 상기 제 1 전극 (38) 간의 전위차는 중심에서 외곽으로 갈수록 커지게 된다.
[0095] 상술한 바와 같이, 전위차가 작으면 액정부 (37)의 위상 지연량이 커지 고, 전위차가 커지면 액정부 (37)의 위상 지연량이 작아질 수 있다. 이에 의하여 중앙 부분으로 입사되는 광과 외곽부분으로 입사되는 광의 경로는 전위차에 따 라 변하지 않지만, 이들에 인가되는 전위차는 이러한 광 경로차에 의한 위상지 연을 보상하도록 사용하므로, 실질적으로 외곽부분의 액정부를 통과하는 광은 액정부의 중앙부분을 통과하는 광의 위상과 차이가 없게 된다.
[0096] 한편, 이하에서는 상술한 바와 같은 변조기가 적용될 수 있는 입체영 상장치에 대해 설명한다. 구체적으로 이하에서 설명하는 입체영상장치는 종래에 비해 향상된 밝기를 제공하는 입체영상장치에 대한 것이다.
[0097] 도 12는 입체 영상 장치에서 광의 이동을 도시한 측면도이다.
[0098] 도 12 에서 도시된 바와 같이, 프로젝터 내의 영상을 발생시키는 화상 면 (5)으로부터 나오는 빛은 프로젝션 렌즈 (6)를 거쳐서 광 분할기 (7)에서 두 개 의 편광성분을 갖는 빛으로 나뉜다. 즉, S-편광 및 P-편광성분을 갖는 빛은 광 분할기 (7)에서 반사 및 투과된다. [0099] 반사된 S-편광성분을 갖는 광은 반사부재 (9)에서 반사된 후 반파장 리 타더 (8)를 지나면서 P-편광을 갖는 빛이 되어 변조기 (13)를 거쳐서 스크린 (11) 에 집속된다. 이때 사용되는 변조기 (13)은 도 6 및 도 7 과 관련하여 상술한 변 조기가 이용될 수 있다.
[00100] 변조기 (13)는 전기적인 신호에 의하여 편광상태를 바꿀 수 있다. 또한, 상슬한 바와 같이 중심전극과 외곽전극 사이에 서로 다른 전위차를 발생시켜 크 로스톡을 저감시킬 수도 있다.
[00101] 한편 광 분할기 (7)를 투과한 P-편광성분의 광은 변조기 (12)를 투과한 후 스크린 (11)에 도달한다. 따라서, 화상면 (5)로부터 나온 편광방향이 흔재된 광은 하나의 P-편광상태로 변조기 ( 12, 13)로 구동된 후 스크린 (11)으로 향하게 된다.
[00102] 이때, 반사광의 발산 원점은 반사광 화상면 (10)이며, 이는 투과광의 화상면 (5)과 의 거리차를 가질 수 있다. 따라서 스크린 (11)상에서의 투과 및 반사된 광의 크기 예컨대 높이는 각각 d4와 d5로 되어 서로 차이가 나서 그대로 는 사용하기가 어렵다.
[00103] 도 12 에서 광 분할기 (7)에서 반사 및 투과된 광들의 광축이 스크린 (11) 상에서 이루는 각도 이라고 하자. θ ι 값이 매우 작거나 또는 광 분할기 (7)에 서 스크린 (11)까지의 거리 d3가 광 분할기 (7)에서 반사부재 (9)까지의 거리 d2에 비하여 매우 길 경우에는, 투과된 광의 화상면 (5)과 반사광 화상면 (10)사이의 간격은 근사적으로 광 분할기 (7)에서 반사부재 (9)까지의 거리 d2와 같다. 이러 한 차이에 의하여 스크린 (11)상에서 광 분할기 (7)에 의하여 투과된 광의 크기 d4는 반사된 광의 크기 d5보다 작게 된다.
[00104] 기본적으로 투과된 광과 반사된 광의 스크린 (11)상에서의 크기는 동일 한 것이 바람직함은 상술한 바와 같다.
[00105] 도 13은 광 분할기 (7)를 투과한 광이 스크린 (11)상의 높이 d4를, 투과 광의 광로에 렌즈 (14)를 사용하여 상의 크기를 카워서 반사한 광에 의한 스크린
(11)상에서의 높이 d5에 맞추는 방법이다.
[00106] 이 방법은 일견 간단해 보이지만, 광 분할기 (7)와 스크린 (11)사이의 거리 d3에 렌즈 (14)의 배율을 달리 해야 하므로 각각의 극장의 조건에 따라 많 은 종류의 렌즈를 준비하여 각각의 거리 d3에 대웅해야 한다. 또한 즘렌즈를 사 용하여 렌즈종류를 줄일 수 있으나, 투과율 및 크기 그리고 가격 등의 요인으로 줌렌즈의 개별 렌즈숫자를 2개 내지 3개로 제한하여야 하므로, 각각의 프로젝션 시스템에 대웅하여 줌 위치를 조절하더라도 여러 종류의 줌렌즈가 필요하다.
[00107] 따라서 렌즈 (14)설계와 제작 그리고 유지인력이 많이 필요하게 된다.
[00108] 또 하나의 단점으로서는 렌즈의 (14) 곡률 및 렌즈의 재질이 한정이 되 어 있어서 렌즈 (14)의 구경, 즉 유효직경도 제한이 된다. 이것은 프로젝션 렌즈
(6)로부터 나오는 광의 발산각이 클 경우는 사용하기가 실질적으로 어려운 것을 뜻하며, 따라서 발산각이 비교적 작은 영상시스템에만 적용이 가능하다.
[00109] 도 14는 도 13의 렌즈 (14) 대신에 소정의 곡률을 갖는 거울과 같은 반 사부재 (15)를 사용하는 방법이나, 이 경우 반사부재 (15)의 곡률은 약 5Km 로 되 어 제작이 불가한 실정이며, 제작하더라도 반사부재 (15)의 광축과 반사광의 광 축 차이가 많이 발생하게 되므로 수차도 크게 되며 초점조절이 용이하지 않게 되어 따라서 스크린 (11)에서 영상이 왜곡되어 실질적으로 사용이 어렵게 된다.
[00110] 한편, 편광광을 분리한 후 다시 동일한 방향으로 합치게 하는 기술의 또 하나의 예는 도 15와 같다.
[00111] 도 15 에 있어서 Pᅳ편광 및 S-편광이 흔재된 광이 프리즘과 같은 광학 부재 (17, 19)사이에 설치된 광 분할기 (18)에 의하여 P-편광은 투과되고 S-편광은 반사된다ᅳ 또한 다른 광학부재^ , ^)사이에 설치된 광 분할기 (21)에 의하여 P- 편광은 투과되고 S-편광은 반사된다. 반사된 S-편광광들은 반파장 리타더 (20, 22) 에 의하여 각각 P-편광으로 변환된다.
[00112] 도 15 의 구성에 따르면 P-편광광은 이론적으로 전부 투과되지만, S-편 광광은 입사광의 직경을 기준으로 하면 이분할 되어 반사되는 점에 있으며, 이 기술은 램프 등의 광원으로부터 나온 광의 편광을 특정 편광 (예, P-편광)으로 정 렬하여 액정표시장치에 활용하는데 사용된다.
[00113] 이하에서는 상술한 바와 같은 광로차 문제를 효율적으로 해결할 수 있 는 입체영상장치에 대해 제안한다.
[00114] 도 16은 본 발명의 일 측면에서 기초가 되는 입체 영상 장치에서 광의 이동을 도시한측면도이다.
[00115] 도 16 에서 도시한 바와 같이, 본 발명의 일 실시예에 의한 입체 영상 장치는 입사광을 편광 성분에 따라 반사 또는 투과시키는 광 분할기 (34, 35)와, 광 분할기 (34, 35)의 외부에 마련되며 광 분할기 (34, 35)를 들러싸도록 배치되는 프리즘 (23, 24, 25)과, 광 분할기 (34, 35)에서 반사된 광을 스크린 (33) 방향으로 재반사시키는 반사부재 (26, 27)을 포함할 수 있다. [00116] 또한, 반사부재 (26 , 27)의 뒤에는 스크린으로 향하는 빛을 다른 편광성분으로 (예, S-편광의 광을 P-편광으로)으로변환시키는 반파장 리타더 (28,
31) 및 변환된 광을 변조하는 (예, 선편광을 원편광으로 변조하는) 변조기 (29,
32)가 마련될 수 있다. 이때 변조기 (29, 32)는 도 6 및 도 7 과 관련하여 상술한 구조를 가질 수 있다.
[00117] 광 분할기 (34, 35)는 경사지게 배치되는 두 개의 광 분할기로 구성될 수 있다. 편의상 제 1광 분할기 (34) 및 제 2광 분할기 (35)라고 정의하자. 제 1광 분할기 (34)와 제 2광 분할기 (35)는 일정한 사이각을 두고 배치될 수 있다.
[00118] 제 1 광 분할기 (34)로 입사된 P-편광의 광은 제 1 광 분할기 (34)를 투과하고, S-편광의 광은 아래 방향으로 반사된다. 제 2광 분할기 (35)로 입사된
P-편광의 광은 제 2 광 분할기 (35)를 투과하고, S-편광의 광은 윗 방향으로 반사된다.
[00119] 한편, 프리즘 (23 , 24, 25)은 복수의 단위 프리즘들이고, 그 내부에 광 분할기 (34, 35)가 배치될 수 있다. 특히, 게 1 단위 프리즘 (23)과, 제 2 단위 프리즘 (24) 사이의 경계면 (접합면)에는 제 1 광 분할기 (34)가 코팅 처리되어 위치하고 제 3 단위 프리즘 (25)과, 제 2 단위 프리즘 (24) 사이의 경계면 (접합면)에도 제 2광 분할기 (35)가 코팅 처리 되어 위치할 수도 있다.
[00120] 광 분할기 (34, 35)로 입사되는 광은 입사 전 프리즘 (23, 25)의 입사면을 통과하여 광 분할기 (34, 35)로 입사될 수 있다. 그리고 , 광 분할기 (34, 35)에 의하여 반사되거나 투과되는 광은 프리즘 (23, 24, 25)의 출사면을 통과하여 출사될 수 있다. 여기서, 제 1 광 분할기 (34)에서 반사된 광은 제 1 단위 프리즘 (23)의 밉사면 및 제 2 단위 프리즘 (24)의 출사면에 간섭되지 않도록 하여야 하고, 제 2광 분할기 (35)에서 반사된 광은 제 3단위 프리즘 (25)의 입사면 및 제 2단위 프리즘 (24)의 출사면에 간섭되지 않도록 하여야 한다. 이를 위해서, 제 2단위 프리즘 (24)의 두 변의 사잇각 ( θ ;^^ 90도 보다 작게 형성되는 것이 바람직하다.
[00121] 또한, 제 1단위 프리즘 (23)의 입사면과, 제 1광 분할기 (34)에서 반사된 광 간에 이루는 각도 ( θ2) 및, 제 3 단위 프리즘 (25)의 입사면과, 게 2 광 분할기 (35)에서 반사된 광 간에 이루는 각도 ( θ2)는 적어도 0.1 도 이상은 되어야 한다.
[00122] 한편, 제 1 광 분할기 (34)에서 반사된 광이 제 1 단위 프리즘 (23)을 통과하는 경우, 굴절이 되어 추가적 수차가 발생하지 않도록 제 1 단위 프리즘 (23)의 출사면은 평판으로 기능하는 것이 바람직하다. 그리고, 이 조건은 제 2광 분할기 (35)에서 반사된 광이 제 3 단위 프리즘 (25)을 통과하는 경우에도 적용될 수 있다.
[00123] 이를 위하여, 제 1 단위 프리즘 (23)의 입사면과 출사면이 이루는 각 ( θ3)과 제 2 단위 프리즘 (24)의 두 변이 이루는 사이각 ( θ ;^ 동일한 값으로 구현되는 것이 바람직하다 그리고, 제 2 단위 프리즘 (25)의 입사면과
Figure imgf000022_0001
출사면이 이루는 각 ( θ3)과 제 2 단위 프리즘 (24)의 두 변이 이루는 사이각 ( 01)도 동일한 값으로 구현되는 것이 바람직하다 ( Θ Θ3) .
[00124] 위와 같은 구성 하에서, 광 분할기 (34, 35)를 투과하는 광은 제 1변조기 (30)를 통과하여 스크린 (33)에 투사될 수 있다. 또한, 광 분할기 (34, 35)에 의하여 반사된 광은 제 2,3 변조기 (29, 32)를 통과하여, 스크린 (33)에 투사되어, 투과 경로를 거친 빛과 스크린 (33) 상에서 중첩될 수 있다.
[00125] 도 17 및 18 은 본 발명의 일 실시예에서 프리즘이 분리된 상태와 결합된 상태를 도시한 것이다.
[00126] 즉, 도 17 은 프리즘을 구성하는 각 단위 프리즘이 분리된 경우를 도시하고, 도 18은 각 단위 프리즘이 접합된 경우를 도시하고 있다.
[00127] 도 17 에 있어서 단위 프리즘들을 제작할 때 사잇각 θ5, θ6, θ7 이 형성된다. 여기서, 사잇각을 정의하면, 제 1 ,3 단위 프리즘 (23 , 25)의 경우, 입사면과 접합면 (제 2 단위 프리즘과 접합되는 면) 간에 형성되는 각도를 의미한다. 제 2 단위 프리즘 (24)의 경우, 출사면을 제외한 두 개의 접합면 (제 1 단위 프리즘과 접하는 면 및 제 3 단위 프리즘과 접하는 면) 간에 형성되는 각도를 의미한다.
[00128] 이 사잇각들은 이론치와 비교할 때 소정의 공차 δ 를 가질 수도 있다. 광학 재료를 이용하여 단위 프리즘들올 각각 제작하는 경우, 가공의 정밀도를 높인다고 하여도 미세한오차가 발생할 수 있기 때문이다.
[00129] 따라서, 도 18 과 같이 제 1 단위 프리즘 (23)의 입사면과 제 3 단위 프리즘 (25)의 입사면 사이의 각도 ( θ8)의 이론적 각도는 180도가 되어야 하는데, 제 1 단위 프리즘 (23)의 사잇각 ( θ7)과 제 2 단위 프리즘 (24)의 사잇각 ( θ6)과, 제 3 단위 프리즘 (25)의 사잇각 ( θ5)의 합산 각도인 실제 각도가 180 도士 δ ° 가 될 수 있다.
[00130] 이와 같은 공차가 발생한다면, 제 1 단위 프리즘 (23)의 입사면과, 제 3 단위 프리즘 (25)의 입사면 사이가 벌어지거나, 또는 겹쳐질 수 있고, 이에 의하여 이 부분을 통과하는 광이 영향을 받아서 스크린에서 구현되는 화상의 화질이 저하될 수 있다.
[00131] 프로젝터에서 스크린까지의 거리가 L 이고, 상술한 바와 같이 겹치거나 떨어진 거리를 Δ라고 하면 Δ는 다음과 같이 표현될 수 있다.
[00132] 【수학식 2】
[00133] Δ %L*Tan ( δ )
[00134] 예컨대 L=25m , δ =3 ' (초)인 경우는 Δ ^22薩가 되어 실질적으로 사용이 어렵게 된다.
[00135] 이 공차 3 '는 현재 가능한 정밀 가공 정도이며, 예컨데 δ =1 '로 초 정밀 가공한다 하더라도 화면의 어긋남이 7隱정도로 사용이 어렵게 될 수 있다.
[00136] 따라서 이를 개선하기 위하여, 본 발명의 바람직한 실시예에서는 도 19 와 같이, 기판 (36)을 제 1 단위 프리즘 (25)의 입사면과, 제 3 단위 프리즘 (23)의 입사면에 걸쳐서 배치하는 것을 제안한다.
[00137] 도 19 는 본 발명의 일 실시예에서 프리즘에 기판이 부착된 상태를 도시한 도면이다.
[00138] 기판 (36)은 광이 투과하는 투명한 광학부재로 구성되며 평판형태로 마련되는 것이 바람직하다. 상기 기판 (36)은 상기 제 1 단위 프리즘 (23)의 입사면과 상기 제 3단위 프리즘 (25)의 입사면 사이에 형성된 틈새를 덮음으로써, 해당 틈새 부분에 광이 직접적으로 진입하는 것을 방지하여 그 부분에서의 광에너지 손실을 방지한다. 여기서 광에너지의 손실이란, 광의 산란, 난반사, 굴절, 소멸 등과 같이 예기치 못한 광의 진행 경로의 변화를 의미한다 .
[00139] 그리고, 상기 기판 (36)의 굴절를은 상기 프리즘 (23, .24, 25)의 굴절률과 동일 또는 거의 유사하게 되는 것이 바람직한데, 이는 기판 (36)과 프리즘 (23 , 24, 25)사이의 추가적인 굴절을 방지하기 위함이다. 따라서, 상기 기판 (36)을 통과한 광은상기 제 1,3단위 프리즘 (23 , 25)에 입사한 후, 상기 광 분할기 (34, 35)에 입사되어 그 편광 성분에 따라서 상기 광 분할기 (34, 35)에 의하여 반사되거나, 상기 광 분할기 (34, 35)를 투과할 수 있다.
[00140] 기판 (36)이 제 1 단위 프리즘 (23)의 입사면과, 제 3 단위 프리즘 (25)의 입사면에 배치될 수 있도록, 별도의 접착층 (37)을 형성하여, 기판 (36)이 안정적으로 위치할 수 있도록 한다.
[00141] 접착층 (37)을 구성하는 물질은 제 1 ,3단위 프리즘 (23 , 25)의 굴절율 및 기판 (36)의 굴절율과 동일하거나 유사한 굴절율을 갖는 투명한 접착물질을 사용함으로써 수차의 발생을 억제하는 것이 바람직하다.
[00142] 도 20은 도 19에 의한 프리즘, 기판 및 투과경로의 렌즈가 적용된 입체 영상 장치에서 광의 이동을 도시한 측면도이다.
[00143] 도 20은 도 16과 같은 시스템에서 투과광에 의한 이미지의 크기 (d6)와, 반사광에 의한 이미지의 크기 (d7)간의 차이를 최소화하는 방법을 나타낸 것이다.
[00144] 도 20 에 의한 실시예에서는 투과광에 의한 이미지를 확대하여, 반사광의 이미지 크기와 동일하게 구현하는 것을 제안한다. 이를 위하여, 광 분할기 (34 , 35) 및 제 2 단위 프리즘 (24)를 투과한 광의 경로 상에 렌즈 (37)를 배치하여, 투과광에 의한 이미지의 크기를 조절한다.
[00145] 도 21은 도 16과 같은 시스템에서 투과광에 의한 이미지의 크기 (d6)와, 반사광에 의한 이미지의 크기 (d7)간의 차이가 발생한 경우, 이 차이를 없애기 위한 또 다른 방법을 나타낸 것이다.
[00146] 도 21 에 의한 실시예에서는 반사광에 의한 이미지를 축소하여, 투과광의 이미지 크기와 동일하게 구현하는 것올 제안한다. 이를 위하여, 반사광의 경로상에 단순한 거울과 같은 반사부재 대신, 반사부재와 프리즘을 동시에 구비하는 반사부재-프리즘 어셈블리 ( 38, 39)를 배치하였다. 따라서, 광 분할기 (34, 35)에서 반사되고, 제 1 ,3 단위 프리즘 (23, 25)를 통과한 광은 반사부재-프리즘 어셈블리 (38 , 39)을 거쳐서 도 16 의 상태보다 그 이미지의 크기가축소되어 투과광에 의한 이미지의 크기와 동일하게 될 수 있다.
[00147] 한편, 도 22는 도 16, 도 18, 도 19, 도 20보다 광 효율을 증가시킬 수 있는 방법을 제시한다.
[00148] 도 22 에서 각각의 단위 프리즘을 접합하는 경우, 점선으로 표시한 원 부분에는 각 단위 프리즘의 꼭지점이 모인다. 특히, 제 1 단위 프리즘 (23)의 입사면과, 제 3 단위 프리즘 (25)의 입사면이 접합되는 경계상에 미세한 이격 공간이 형성될 수 있는데, 이 이격 공간의 크기를 이라고 정의한다. ti은 통상 0.1 ~ 0.2腿 이다. 이렇게 되면, 이 이격 공간올 투과하는 광은 산란되어 광의 손실이 있게 된다.
[00149] 이러한 광 손실을 방지하기 위하여, 본 실시예에서는 기판 (36)의 앞에 굴절부재 (40, 41)을 배치하는 것을 제안한다. 굴절부재 (40 ,41)를 편의상 제 1굴절부재 (40)와, 제 2굴절부재 (41)로 구분하여 정의하면, 제 1굴절부재 (40)와 제 2굴절부재 (41)의 상호 배치각도는 180도 (평면 상태)가 아니라, 그 이상 또는 그 이하가 되는 것이 바람직하다. 즉, 제 1 굴절부재 (40)의 입사면과 제 2 굴절부재 (41)의 입사면 간의 상호 배치각도는 180 도보다 작은 것이 바람직하고, 제 1굴절부재 (40)의 출사면과 제 2굴절부재 (41)의 출사면 간의 상호 배치각도는 180도보다 큰 것이 바람직하다.
[00150] 굴절부재 (40,41)가 평평한 광학부재를 구부려서 만들어졌다고 가정한 경우, 그 벤딩 각도는 입사면 입장에서는 180도 미만, 출사면 입장에서는 180도 초과되는 것이라고도 볼 수 있다. 제 1 굴절부재 (40)와 제 2 굴절부재 (41)의 연결부의 경우, 그 간격이 없을 수도 있고 미세한 간격 (t2)을 가질 수도 있다.
[00151] 이와 같은 구성하에서 광이 굴절부재 (40, 41)로 입사되면, 연결부에서 광이 상하 방향으로 경사지게 분리되어, 제 1 단위 프리즘 (23)의 입사면과, 제 3 단위 프리즘 (25)의 입사면이 접합되는 경계상의 이격공간 ( )으로 빛이 들어가는 것이 방지된다. 이를 구체적으로 알아보면, 연결부에서 분리된 광은 굴절부재 (40,41)의 출사면에서 방향을 바꾸어, 분리된 상태에서 평행을 지하는데, 이때 간격은 t3를 유지할 수 있고, t3의 간격은 이격 공간인 보다 크기 때문에 이격 공간에 의한 광 에너지 손실을 방지할 수 있는 것이다.
[00152] 여기서 t2 가 생기는 경우에도 수십 卿로 구현이 가능하므로 광의 손실이 현실적으로 없다고 볼 수 있다.
[00153] 한편, 이하에서는 본 발명의 또 다른 일 측면으로서 전반사를 이용하여 밝기를 개선한 입체영상장치를 설명한다.
[00154] 도 21 과 관련하여 상술한 실시예에서 반사부재-프리즘 어셈블리 (38 ,
39) , 예를 들어, 미러-프리즘 조립체에 있어서 미러는 일반적으로 프리즘 표면 에 알루미늄 또는 은을 코팅하여 생성한다.
[00155] 도 23 은 알루미늄과 은의 가시 광선 영역에서의 반사율을 도시한다. 즉, 입사되는 광의 파장이 400nm에서 700nm사이의 반사율을 도시하였다.
[00156] 도 23 을 참조하면, 은의 반사율이 알루미늄의 반사율에 비하여 약 5% 높으나, 표면에 코딩을 한다면 은이 알루미늄에 비하여 산화로 인한 부식이 잘 일어날 수 있다. 따라서, 일반적으로 반사부재-프리즘 어셈블리 또는 미러 -프리 즘 조립체 (34,35)의 미러는 알루미늄이 일반적으로 사용되고 있다. 그러나, 프 리즘 표면에 코딩을 입히는 과정 자체가 고비용이 요구되며, 반사로 인한 광 손 실 또한 발생할 여지가 있다는 단점이 있다.
[00157] 이러한 단점을 개선하기 위하여, 본 발명의 일 측면에서는 전반사를 이용하여 반사 효율을 극대화 시키는 방법을 제안하고자 한다.
[00158] 도 24 는 본 발명의 실시예에 따른 입체 영상 장치를 예시하는 도면이 다.
[00159] 설명의 편의를 위하여 한 개의 편광광분할기 (PBS)에 의하여 광이 이분 할 되는 경우를 도시하지만, 도 21 등에서 상술한 바와 같이 하나의 광이 3 개 이상의 경로로 분할되어 스크린으로 영사되는 경우에도 적용 가능함은 물론이다 [00160] 도 24 를 참조하면, PBS(2)에서 반사된 광은 두개의 굴절면과 한 개의 반사면을 갖는 프리즘 형태의 전반사 미러 ( 10)를 통과하여 스크린 방향으로 조 사된다. 이러한 전반사 미러는 미러면에 입사하는 광의 입사각과 관련이 되어있 다.
[00161] 도 25는 입사각에 따른 반사율을 예시하는 도면이다. 특히, 도 25에서 는 프리즘의 재질이 BK7인 경우를 예시한다.
[00162] 도 25를 참조하면, 전반사가 되는 각도 즉, 임계각 (cr i t ical angle)은 약 41.2° 인 것을 알 수 있다. 따라서, 도 24에서 최소 입사각 6) 1과 최대 입사 각 Θ 2가 이 임계각보다 크면 전반사가 일어나게 된다. 또한, 프리즘으로 반사 되는 광이 상기 임계각 이상의 입사각을 갖는다면, 도 25와 같이 반사율은 100% 로 되어 종래 알루미늄의 반사율 91.8%보다 현격히 높은 반사율을 얻어 상기 반 사광의 밝기를 개선할 수 있게 된다.
[00163] 이러한 방식은 상술한 2 중광 또는 3 중광 입체영상장치에서 반사부재- 프리즘 어셈블리에 적용되어 밝기를 개선할 수 있어 전체 영상 자체의 밝기를 향상시킬 수 있다.
[00164] 도 26 은 본 발명의 실시예에 따른 다중 분할 입체 영상 표시 장치를 예시한다. 특히, 도 26의 경우 PBS( 11 , 12)에 의하여 광이 3분할 된 경우를 가 정한다.
[00165] 도 26 을 참조하면, 프로젝터 ( 1)에서 나온 광이 PBS( 11 , 12)에 의하여 분할 되어 S-편광광은 반사되고 P-편광광은 투과된다. 여기서, 프리즘 형태의 전반사 미러 ( 13, 14)에 상기 반사된 S-편광광이 입사되는 최소 입사각 Θ 3 와 Θ 5, 그리고 최대 입사각 Θ4과 Θ6이 임계각 이상이라면, 모든 광은 전반사되어 반사 효율 100%를 달성할 수 있다. [00166] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
[00167] 상술한 바와 같은 본 발명에 따른 변조기는 이상에서 설명한 입체영상 장치뿐만 아니라, 프로젝터로부터 좌측영상과 우측영상이 상영되는 다양한 입체 영상 장치에 이용될 수 있다.

Claims

【청구의 범위】
【청구항 1】
제 1 기판 및 상기 제 1 기판과 이격되어 배치되는 제 2 기판;
상기 제 1 기판과 상기 제 2 기판 사이에 마련되는 제 1 전극 및 제 2 전극; 및
상기 제 1 전극과 상기 제 2 전극사이에 마련되는 액정부를 포함하되, 상기 제 1 전극 또는 상기 제 2 전극 중 하나 이상은 서로 다른 복수의 전압이 인가될 수 있도록 복수의 전극으로 구분되어 각각 절연되게 형성되는 것을 특징으로 하는 입체 영상 장치용 변조기.
【청구항 2】
제 1 항에 있어서,
상기 제 1 전극 또는 상기 제 2 전극의 중심부에서 외곽으로 갈수록 인가되는 전압의 양은 커지도록 제어되는 것을 특징으로 하는 입체 영상 장치용 변조기 .
【청구항 3】
제 1 항에 있어서,
상기 액정부의 중심부로부터 외곽으로 갈수록 상기 액정부를 투과하는 광의 위상 지연량이 작아지도록 제어되는 것을 특징으로 하는 입체 영상 장치용 변조기 .
【청구항 4]
제 1 항에 있어서,
상기 제 1 전극 또는 상기 제 2 전극은 중심 전극과, 상기 중심전극과 이격되며 상기 중심전극 보다 외측으로 배치되는 외곽 전극을 포함하며, 상기 중심전극과 상기 외곽 전극은 상호 절연되게 배치되는 것을 특징으로 하는 입체 영상 장치용 변조기
【청구항 5】
제 4 항에 있어서,
상기 외곽전극은 상호 이격되는 복수의 외곽 전극으로 구성되되,
각각의 외곽 전극은 상호 절연되게 배치되는 것을 특징으로 하는 입체 영상 장치용 변조기 .
【청구항 6]
제 4 항에 있어서,
상기 중심전극에 인가되는 전압보다 상기 외곽 전극에 인가되는 전압이 높은 상태가 되도록 제어되는 것을 특징으로 하는 입체 영상 장치용 변조기.
【청구항 7]
제 4 항에 있어서,
상기 외곽전극은 상기 중심전극을 기준으로 상호 대칭되게 마련되며, 상기 중심전극으로부터 동일한 거리에 있는 외곽 전극에는 동일한 전압이 인가되는 것을 특징으로 하는 입체 영상 장치용 변조기.
【청구항 8】
제 1 항에 있어서,
상기 제 1 전극 또는 제 2 전극에 서로 다른 전압이 인가되는 경우, 상기 액정부에 형성되는 액정 패턴은 서로 다른 전압이 인가되는 부분에 대웅되게 서로 다른 패턴으로 형성되되,
상대적으로 높은 전압이 인가되는 전극 부분에 대웅되는 액정패턴에서 일어나는 위상 지연량은 상대적으로 낮은 전압이 인가되는 전극 부분에 대웅되는 액정패턴에서 일어나는 위상 지연량보다 작은 것을 특징으로 하는 입체 영상 장치용 변조기 .
【청구항 9】
입체영상을 조사하는 프로젝터; 및
상기 프로젝터와 연동된 신호를 기반하여 상기 프로젝터로부터 조사된 입체영상을 시계방향 또는 반시계 방향의 원편광으로 변조하는 변조기를 포함하되, 상기 변조기는 제 1 전극, 제 2 전극 및 상기 제 1 전극과 제 2 전극 사이에 마련되는 액정부를 포함하고,
상기 제 1 전극 또는 상기 제 2 전극 중 하나 이상은 서로 다른 복수의 전압이 인가될 수 있도록 복수의 전극으로 구분되어 각각 절연되게 형성되는, 입체 영상 장치 .
【청구항 10】
제 9 항에 있어서,
상기 제 1 전극 또는 상기 제 2 전극의 중심부에서 외곽으로 갈수록 인가되는 전압의 양은 커지도록 제어되는, 입체 영상 장치.
【청구항 11】
제 9 항에 있어서,
상기 액정부의 중심부로부터 외곽으로 갈수록 상기 액정부를 투과하는 광의 위상 지연량이 작아지도록 제어되는, 입체 영상 장치.
【청구항 12】
제 9항에 있어서,
상기 프로젝터로부터 조사된 광 증 제 1 편광 방향을 가지는 광을 투과시키고, 제 2 편광 방향을 가지는 광을 반사시키는 광 분할기를 추가적으로 포함하는, 입체 영상 장치 .
【청구항 13】
제 12 항에 있어서,
상기 광 분할기에 입사되는 광 및 상기 광 분할기를 거쳐 투과 또는 반사된 광이 통과하도록, 상기 광 분할기 주위에 상호 접합되어 배치되는 복수의 단위 프리즘; 및
상기 광 분할기 주위에 상기 복수의 단위 프리즘 배치 시 발생하는 공차로 인한 광 에너지 손실을 방지하기 위하여, 입사광을 상기 복수의 단위 프리즘으로 안내하는 기판을 추가적으로 포함하는, 입체 영상 장치 .
【청구항 14】
제 12 항에 있어서,
상기 광 분할기에 의해 반사된 광을 굴절 및 반사시켜 스크린 방향으로 조사하기 위한 프리즘을 추가적으로 포함하고,
상기 광 분할기에 의해 반사된 광이 상기 프리즘의 반사면으호의 입사각은 상기 광 분할기에 의해 반사된 광이 상기 프리즘에 의해 상기 스크린 방향으로 전반사되기 위한 임계각 이상인, 입체 영상 장치.
PCT/KR2015/000963 2014-03-04 2015-01-29 입체영상장치용 변조기 및 이를 이용한 입체영상장치 WO2015133732A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15758266.9A EP3115828A4 (en) 2014-03-04 2015-01-29 Modulator for stereoscopic image device and stereoscopic image device using same
JP2016554841A JP2017513045A (ja) 2014-03-04 2015-01-29 立体映像装置用の変調器及びこれを用いた立体映像装置
CN201580016858.XA CN106164751A (zh) 2014-03-04 2015-01-29 用于立体图像装置的调制器和使用该调制器的立体图像装置
US15/122,932 US9948925B2 (en) 2014-03-04 2015-01-29 Modulator for stereoscopic image device and stereoscopic image device using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140025711A KR20150103969A (ko) 2014-03-04 2014-03-04 입체 영상 장치용 변조기 및 변조기의 제어방법
KR10-2014-0025711 2014-03-04
KR10-2014-0029108 2014-03-12
KR1020140029108A KR101472893B1 (ko) 2014-03-12 2014-03-12 입체 영상 장치
KR10-2014-0068169 2014-06-05
KR1020140068169A KR20150140024A (ko) 2014-06-05 2014-06-05 전반사를 이용하여 밝기를 개선한 입체 영상 표시 장치

Publications (1)

Publication Number Publication Date
WO2015133732A1 true WO2015133732A1 (ko) 2015-09-11

Family

ID=54055495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000963 WO2015133732A1 (ko) 2014-03-04 2015-01-29 입체영상장치용 변조기 및 이를 이용한 입체영상장치

Country Status (5)

Country Link
US (1) US9948925B2 (ko)
EP (1) EP3115828A4 (ko)
JP (1) JP2017513045A (ko)
CN (1) CN106164751A (ko)
WO (1) WO2015133732A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164571A1 (ko) * 2016-03-24 2017-09-28 김상수 입체 영상 디스플레이 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675435B1 (ko) * 2015-05-11 2016-11-22 유한회사 마스터이미지쓰리디아시아 변조기 비대칭 구동을 이용한 고휘도 입체영상상영장치 및 이를 구동하는 방법
CN106716238B (zh) * 2016-12-13 2020-08-21 香港应用科技研究院有限公司 减少边缘场效应的空间光调制器
CN107085320B (zh) * 2017-04-14 2020-02-07 深圳市华星光电技术有限公司 一种液晶面板光程差的测量方法
US11092816B2 (en) * 2019-03-08 2021-08-17 Reald Inc. Polarizing beam splitter assembly with diffracting element
KR102481627B1 (ko) * 2020-09-25 2022-12-26 이철우 입체영상장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047800A1 (fr) * 2006-10-16 2008-04-24 Asahi Glass Co., Ltd. Dispositif d'affichage de type à projection
JP2009529149A (ja) * 2006-03-03 2009-08-13 リアル・ディ 立体視画像投写用の定常状態表面モードデバイス
KR20090094224A (ko) * 2006-09-29 2009-09-04 컬러링크, 인크. 입체 투사를 위한 편광 변환 시스템들
KR20120091414A (ko) * 2009-12-01 2012-08-17 시리얼 테크놀로지즈 에스.에이. 위상 변조기와 상호 작용하는 광을 변조하는 위상 변조기

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122733A (ja) * 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> 3次元画像表示装置
JPH05241103A (ja) 1992-02-21 1993-09-21 Nec Corp 投射型液晶表示装置
JPH0772428A (ja) 1993-09-03 1995-03-17 Nec Corp 投写型液晶表示装置の偏光光源装置
JPH07146474A (ja) 1993-11-22 1995-06-06 Nec Corp 投射型液晶表示装置の偏光変換光学系
JPH07301779A (ja) * 1994-04-28 1995-11-14 Canon Inc 画像投影装置及び画像投影方法
JP3459721B2 (ja) * 1995-05-22 2003-10-27 キヤノン株式会社 立体画像表示方法及びそれを用いた立体画像表示装置
JPH11260141A (ja) 1998-03-11 1999-09-24 Omron Corp 偏光変換光学素子及び直線偏光回転方法
JP3751928B2 (ja) 2002-10-16 2006-03-08 石川県 レーザ干渉計、及びそれを用いた測定装置
KR100852758B1 (ko) * 2006-09-14 2008-08-18 한국과학기술연구원 영상 디스플레이 장치
CN103383494B (zh) 2007-05-09 2021-10-29 瑞尔D股份有限公司 用于立体投影的偏振转换系统和方法
JP5402791B2 (ja) 2010-04-02 2014-01-29 セイコーエプソン株式会社 プロジェクター
WO2012073798A1 (en) * 2010-11-30 2012-06-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101993565B1 (ko) 2010-12-22 2019-06-26 시리얼 테크놀로지즈 에스.에이. 관찰자 트래킹을 위한 조합된 광변조 장치
KR101493555B1 (ko) * 2011-09-07 2015-02-16 엘지디스플레이 주식회사 입체 영상 표시장치
KR101475107B1 (ko) * 2011-11-16 2014-12-23 엘지디스플레이 주식회사 입체 영상 표시장치
KR101328846B1 (ko) * 2011-12-06 2013-11-13 엘지디스플레이 주식회사 입체영상 표시장치 및 그 구동방법
JP5591845B2 (ja) * 2012-02-28 2014-09-17 株式会社東芝 液晶光学素子及び立体画像表示装置
JP5591846B2 (ja) * 2012-02-29 2014-09-17 株式会社東芝 液晶光学素子及び立体画像表示装置
JP2014002193A (ja) * 2012-06-15 2014-01-09 Panasonic Corp 投写型映像表示装置
CN102967965B (zh) * 2012-11-08 2014-12-17 京东方科技集团股份有限公司 液晶狭缝光栅及立体显示装置
CN203444221U (zh) * 2013-07-31 2014-02-19 京东方科技集团股份有限公司 一种聚合物稳定液晶透镜及显示装置
CN203405635U (zh) * 2013-09-05 2014-01-22 深圳市时代华影科技开发有限公司 一种低投射比高光效立体投影装置及立体投影系统
KR102176592B1 (ko) * 2014-05-16 2020-11-09 삼성전자주식회사 나노안테나 전극을 포함하는 공간 광변조기, 및 상기 공간 광변조기를 포함하는 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529149A (ja) * 2006-03-03 2009-08-13 リアル・ディ 立体視画像投写用の定常状態表面モードデバイス
KR20090094224A (ko) * 2006-09-29 2009-09-04 컬러링크, 인크. 입체 투사를 위한 편광 변환 시스템들
WO2008047800A1 (fr) * 2006-10-16 2008-04-24 Asahi Glass Co., Ltd. Dispositif d'affichage de type à projection
KR20120091414A (ko) * 2009-12-01 2012-08-17 시리얼 테크놀로지즈 에스.에이. 위상 변조기와 상호 작용하는 광을 변조하는 위상 변조기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115828A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164571A1 (ko) * 2016-03-24 2017-09-28 김상수 입체 영상 디스플레이 장치
US10663851B2 (en) 2016-03-24 2020-05-26 Kim Hung YU Stereoscopic image display device

Also Published As

Publication number Publication date
EP3115828A1 (en) 2017-01-11
EP3115828A4 (en) 2017-03-15
US20170078656A1 (en) 2017-03-16
JP2017513045A (ja) 2017-05-25
CN106164751A (zh) 2016-11-23
US9948925B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US10678116B1 (en) Active multi-color PBP elements
JP6987082B2 (ja) コンパクトヘッドマウントディスプレイシステム
WO2015133732A1 (ko) 입체영상장치용 변조기 및 이를 이용한 입체영상장치
JP2021535444A (ja) 二次元の拡張を有する導光光学素子を含む光学システム
KR102117220B1 (ko) 지향성 백라이트
KR102055541B1 (ko) 지향성 디스플레이 디바이스에서의 편광 회복
JP5898817B2 (ja) 立体映像装置
CN105324605B (zh) 定向背光源
CN105911804B (zh) 用于硅基液晶投影显示器lcos的空间交错的偏振转换器
JP6714514B2 (ja) ホログラフィック光学素子を使用する裸眼立体視3d表示装置
KR101687095B1 (ko) 프로젝션 디스플레이 장치
US11740535B2 (en) Display apparatus and controlling method thereof
US20130328866A1 (en) Spatially multiplexed imaging directional backlight displays
US9405125B2 (en) Image display apparatus
TW201800805A (zh) 導光裝置及虛像顯示裝置
CN209895095U (zh) 一种偏振分光棱镜及3d投影光调制系统
KR20020004296A (ko) 액정표시판의 편광 특성을 이용한 입체영상 표시장치
US20220229223A1 (en) Display device, augmented reality apparatus and display method
CN107290865B (zh) 3d眼镜及3d显示系统
US9479765B2 (en) Autostereoscopic projection device
KR101472893B1 (ko) 입체 영상 장치
US9028101B2 (en) Display light source
US9268077B2 (en) Projection device
US9335572B2 (en) Image display apparatus
CN116560105A (zh) 光学成像组件、光学成像模块和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554841

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122932

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758266

Country of ref document: EP