WO2015133559A1 - スフィンゴシン1リン酸により修飾されたヒアルロン酸 - Google Patents

スフィンゴシン1リン酸により修飾されたヒアルロン酸 Download PDF

Info

Publication number
WO2015133559A1
WO2015133559A1 PCT/JP2015/056448 JP2015056448W WO2015133559A1 WO 2015133559 A1 WO2015133559 A1 WO 2015133559A1 JP 2015056448 W JP2015056448 W JP 2015056448W WO 2015133559 A1 WO2015133559 A1 WO 2015133559A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
liver
sphingosine
sphingosine monophosphate
hepatic
Prior art date
Application number
PCT/JP2015/056448
Other languages
English (en)
French (fr)
Inventor
原島 秀吉
守 兵藤
尚之 鳥谷部
信弘 大河内
孝史 田村
佐野 直樹
Original Assignee
国立大学法人北海道大学
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人筑波大学 filed Critical 国立大学法人北海道大学
Priority to JP2016506542A priority Critical patent/JP6579470B2/ja
Priority to KR1020167024519A priority patent/KR101994517B1/ko
Priority to EP15759216.3A priority patent/EP3115378A4/en
Priority to US15/123,359 priority patent/US10485874B2/en
Priority to CN201580012337.7A priority patent/CN106414507B/zh
Publication of WO2015133559A1 publication Critical patent/WO2015133559A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to hyaluronic acid modified with sphingosine monophosphate. More specifically, the present invention relates to hyaluronic acid modified with sphingosine monophosphate which is useful as an active ingredient of a medicament for the prevention and / or treatment of hepatic ischemia-reperfusion injury.
  • LSEC hepatic sinusoidal endothelial cells
  • S1P sphingosine monophosphate
  • S1P a sphingolipid mediator
  • S1P is known to have an anti-apoptotic effect (Cuvillier et al., Nature, 381, pp.800-803, 1996) and suppresses LSEC apoptosis in alcoholic liver injury (Dong-Mei ⁇ Zheng et al. Hepatology, 44, pp. 1278-1287, 2006) and inhibiting renal damage caused by ischemia-reperfusion (Lee et al. Nephrology, 2011) have also been reported.
  • S1P is a metabolite of sphingolipids that make up biological membranes, and since it is abundant in platelets and endothelial cells, S1P itself can be used for the prevention and / or treatment of hepatic ischemia-reperfusion injury by targeting LSEC. There is a problem that can not be.
  • the S1P receptor agonist FTY720 (fingolimod hydrochloride: converted to FTY720 phosphorylated by sphingosine kinase in vivo) reduces liver damage caused by hypoxia / reoxygenation
  • FTY720 fingolimod hydrochloride: converted to FTY720 phosphorylated by sphingosine kinase in vivo
  • This compound will act as an antagonist of S1P on long-term administration.
  • this compound has a chemical structure similar to sphingosine as a whole, but because it has a phenylene group in the carbon chain, it is not a direct derivative of S1P but a compound for using S1P itself for LSEC protection is not.
  • Hyaluronic acid has been reported to accumulate in LSEC after intravascular administration (FraserFJ et al. Cell Tissue Res., 242, .pp.505-510, ⁇ 1985) and hyaluronic acid receptor (HARE / Stabilin-2) has been reported to be expressed specifically in LSEC (Bin Zhou et al. J. Biol.
  • the present invention is to provide a substance that can reduce liver damage caused by hypoxia / reoxygenation by protecting LSEC. More specifically, substances that can be efficiently accumulated in LSEC by an administration form such as intravenous administration, exhibit an anti-apoptotic effect, and reduce liver damage due to hypoxia / reoxygenation by protecting LSEC It is an object of the present invention to provide
  • hyaluronic acid modified with S1P is very efficiently accumulated in LSEC, and that this modified hyaluronic acid is caused by low oxygen / reoxygen load. It was found that LSEC has high effectiveness in suppressing apoptosis.
  • S1P-modified hyaluronic acid to mammals including humans by administration routes such as intravenous administration, it is possible to effectively prevent and / or treat liver damage caused by hypoxia / reoxygenation. I found out that I can do it.
  • the present invention has been completed based on these findings.
  • hyaluronic acid modified with sphingosine monophosphate is provided.
  • This hyaluronic acid can be obtained by covalently binding sphingosine monophosphate to hyaluronic acid.
  • hyaluronic acid modified with sphingosine monophosphate which can be obtained by condensing hyaluronic acid and sphingosine monophosphate.
  • This hyaluronic acid can be preferably obtained by amide bond between the carboxyl group of hyaluronic acid and the amino group of sphingosine monophosphate.
  • a medicament for preventing and / or treating liver failure associated with hepatic ischemia / reperfusion which comprises hyaluronic acid modified with sphingosine monophosphate as an active ingredient
  • a medicament for the prevention and / or treatment of liver failure after hepatic surgery with hepatic blood flow block comprising hyaluronic acid modified with sphingosine monophosphate as an active ingredient.
  • liver surgery involving hepatic blood flow blockage include liver transplantation and partial hepatectomy.
  • a medicament for preventing and / or treating liver failure caused by hypoxia / reoxygenation caused by hepatic ischemia / reperfusion comprising hyaluronic acid modified with sphingosine monophosphate as an active ingredient
  • a medicine for suppressing apoptosis of hepatic sinusoidal endothelial cells caused by hypoxia / reoxygenation load caused by hepatic ischemia-reperfusion, comprising hyaluronic acid modified with sphingosine 1-phosphate as an active ingredient is provided.
  • a method for preventing and / or treating hepatic failure associated with hepatic ischemia / reperfusion the use of hyaluronic acid modified with sphingosine monophosphate for the manufacture of the above-mentioned medicament
  • a method comprising the steps of: administering a prophylactic and / or therapeutically effective amount of hyaluronic acid modified with sphingosine monophosphate to a mammal, including a human; prevention of hepatic failure after liver surgery with hepatic blood flow blockage and / or Or a therapeutic method comprising the step of administering to a mammal, including a human, a prophylactic and / or therapeutically effective amount of hyaluronic acid modified with sphingosine monophosphate; hypoxia / regeneration caused by hepatic ischemia reperfusion
  • a method for the prevention and / or treatment of liver failure caused by oxygen load wherein mammals including humans
  • Hyaluronic acid modified with sphingosine monophosphate provided by the present invention can be very efficiently accumulated in hepatic sinusoidal endothelial cells and can suppress apoptosis of hepatic sinusoidal endothelial cells due to hypoxia / reoxygenation .
  • the pharmaceutical comprising hyaluronic acid modified with sphingosine monophosphate provided by the present invention as an active ingredient is high in prevention and / or treatment of liver failure caused by hypoxia / reoxygenation accompanying hepatic ischemia / reperfusion Because of its effectiveness, it is extremely useful as a medicament for the prevention and / or treatment of liver failure after liver surgery with hepatic blood flow blockade.
  • Example 2 is an NMR chart of hyaluronic acid modified with sphingosine monophosphate synthesized in Example 1 of the Examples. It is the figure which showed the experimental procedure of 4 groups in Example 2 of an Example. It is the figure which showed the measurement result of liver function (ALT). It is the figure which showed the result which confirmed the expression of Cleaved
  • the present invention provides hyaluronic acid modified with sphingosine monophosphate (hereinafter sometimes abbreviated as “HA-S1P”).
  • HA-S1P can be obtained by covalently binding sphingosine 1-phosphate to hyaluronic acid, for example, by condensing hyaluronic acid and sphingosine 1-phosphate in the presence of a condensing agent.
  • an amide bond may be generated by condensation between the carboxyl group of hyaluronic acid and the amino group of sphingosine monophosphate.
  • the mode of covalent bonding of sphingosine monophosphate to hyaluronic acid is not limited to the amide bond described above, and may be an ester bond between the carboxyl group of hyaluronic acid and the hydroxyl group of sphingosine monophosphate.
  • Hyaluronic acid is a polymer in which a disaccharide unit of N-acetylglucosamine and glucuronic acid (the molecular weight of this unit is about 400) is connected, and generally has a molecular weight of about 5,000 to 8,000,000. For example, about 1,500 disaccharide units are contained in hyaluronic acid having a molecular weight of 600,000, and about 20 disaccharide units are contained in hyaluronic acid having a molecular weight of 8,000.
  • Hyaluronic acid is generally available in free form as hyaluronic acid or sodium hyaluronate. As used herein, the term “hyaluronic acid” includes sodium hyaluronate. Hyaluronic acid or sodium hyaluronate is provided for foods and cosmetics, and is also used as a medicine.
  • sodium hyaluronate used for osteoarthritis has a molecular weight of about 600,000 to 1,200,000 (trade name “Alz”) and about 500,000 to 730,000 (trade name “Hyalgan”).
  • the molecular weight is about 600,000 to 1,200,000 (trade name “Opegan”)
  • the molecular weight is about 1,900,000 to 3,900,000 (trade name “Opegan-High”)
  • the molecular weight is about 1,900,000 to 3,900,000 (trade name “Hearon”)
  • 1,530,000 to About 2,130,000 (trade name “Opelead”) is used, but low molecular weight of about 10,000 to 100,000 and ultra-low molecular weight of about 500 to 5,000 are also provided by enzyme treatment. ing.
  • the molecular weight of hyaluronic acid used as a raw material for preparing HA-S1P of the present invention is not particularly limited, and hyaluronic acid having various molecular weights can be used in addition to those exemplified above.
  • a material having an average molecular weight of about 500,000 to 700,000 or hyaluronic acid having an average molecular weight of about 8,000 by enzyme treatment can be used as a raw material.
  • the origin of the hyaluronic acid used as a raw material for preparing the hyaluronic acid modified with the sphingosine monophosphate of the present invention is not particularly limited, for example, any origin such as a chicken crown or a fermentation origin Also good.
  • the method for producing HA-S1P of the present invention is not particularly limited, but for example, it can be easily produced by condensing hyaluronic acid and sphingosine monophosphate in the presence of a condensing agent.
  • the type of the condensing agent is not particularly limited, and any generally usable condensing agent can be used.
  • a carbodiimide condensing agent, an imidazole condensing agent, a triazine condensing agent, and the like can be used.
  • carbodiimide condensing agent examples include N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide (DIC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) hydrochloride, etc.
  • EDC can be used particularly preferably.
  • N-hydroxysuccinimide (NHS) can also be used as a carboxylic acid activator together with a condensing agent.
  • the condensation reaction is generally carried out by adding a condensing agent such as EDC and an activator of carboxylic acid such as NHS to hyaluronic acid (free form), and then adding sphingosine monophosphate to room temperature or under heating. What is necessary is just to react for several days from time.
  • the reaction can be carried out using about 0.5 to 2 ⁇ g of sphingosine monophosphate per 1 mg of hyaluronic acid.
  • the condensing agent can be used in an amount of about 1 to 20 molar equivalents, preferably about 10 molar equivalents relative to sphingosine monophosphate.
  • the reaction can be performed, for example, in a solvent such as water, methanol, ethanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane or a mixed solvent thereof, or in the absence of a solvent.
  • a solvent such as water, methanol, ethanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane or a mixed solvent thereof, or in the absence of a solvent.
  • the desired product can be usually obtained by removing EDC, NHS and unreacted sphingosine monophosphate by means such as dialysis.
  • the binding of sphingosine monophosphate to hyaluronic acid can usually be confirmed by NMR.
  • a modified product in which about 10 to 50%, preferably about 12 to 40%, of the total number of carboxylic acids of one molecule of hyaluronic acid is bonded to the amine of sphingosine monophosphate may be prepared.
  • the number of sphingosine monophosphates bonded per molecule of hyaluronic acid is, for example, determined by proton NMR using the N-acetyl group of hyaluronic acid (1.8 ppm) and the terminal methyl group and methylene group of the lipid part of sphingosine monophosphate (0.9 ppm and 0.9 ppm). 1.1 ppm) can be determined by calculating the integral value.
  • HA-S1P provided by the present invention efficiently accumulates in hepatic sinusoidal endothelial cells and can suppress apoptosis of hepatic sinusoidal endothelial cells due to hypoxia / reoxygenation.
  • the medicament contained as is useful as a medicament for the prevention and / or treatment of liver failure associated with hepatic ischemia / reperfusion.
  • the type of treatment or therapy that causes hepatic ischemia / reperfusion is not particularly limited, and for example, liver surgery with hepatic blood flow interruption can be cited as a typical treatment. Examples of such liver surgery include, for example, liver transplantation and partial hepatectomy, but are not limited to these, and the blood flow is blocked by temporarily clipping the blood vessels leading to the liver.
  • liver failure caused by hypoxia / reoxygenation caused by hepatic ischemia-reperfusion results in apoptosis of hepatic sinusoidal endothelial cells due to hypoxia / reoxygenation
  • the medicament of the present invention has an action of suppressing this apoptosis.
  • the medicament of the present invention can be generally administered to mammals including humans by parenteral administration such as intravenous administration or intraperitoneal administration.
  • parenteral administration such as intravenous administration or intraperitoneal administration.
  • intravenous administration usual means such as intravenous injection and infusion can be employed.
  • the medicament of the present invention can be intravascularly administered from the portal vein during surgery.
  • low molecular weight hyaluronic acid it may be possible to administer by liquid or capsule by oral administration. It is desirable to administer it for several minutes to about 1 hour before blood flow interruption, for example, about 10 minutes to 30 minutes before, but there is no particular limitation as long as it is before blood flow interruption .
  • the pharmaceutical agent of the present invention is administered so that a sufficient amount of the pharmaceutical agent of the present invention remains in the liver, although the medicament of the present invention can be administered immediately before transplantation, such administration method can be appropriately selected and is not limited to a specific embodiment.
  • the medicament of the present invention is usually provided as an injection or a drop in the form of an aqueous solution or in the form of a lyophilized product.
  • an additive for preparations usually used for the production of injections or drops is used. It may be used.
  • a pH adjuster, stabilizer, or buffering agent can be used, and in the case of a lyophilized preparation, a solubilizing agent can be used in addition to these.
  • a solubilizing agent can be used in addition to these. It is not limited to pharmaceutical additives, and those skilled in the art can select appropriate pharmaceutical additives according to the purpose.
  • Example 1 Synthesis of HA-S1P Hyaluronic acid (2 mg / ml, molecular weight 600,000, or molecular weight 8,000) 5 ml of EDC (100 mg / ml) 95.85 ⁇ l, NHS (100 mg / ml) 57.535 Add ⁇ l and stir well. Thereto, 67.378 ⁇ l of S1P (25 mg / ml) was added and stirred at 55 ° C. for 24 hours. Dialysis operation was performed to remove EDC, NHS, and unbound S1P.
  • Example 2 (1) Method animals 200 to 250 g of male Sprague-Dawley (hereinafter SD) rats were obtained from Nippon Claire Co., Ltd. (Tokyo, Japan). Four groups of SD rats were studied.
  • Liver ischemia model Rats were injected with each drug into the tail vein. Ten minutes after injection, the hepatic artery, portal vein, and bile duct were collectively occluded for 20 minutes using a microclip. After 20 minutes of total liver ischemia, the occlusion was released. After 120 minutes of reperfusion, liver tissue was removed from 10-15 rats in each group for pathological examination. In addition, blood was collected immediately before drug injection and 30, 60, 120 minutes after reperfusion.
  • Tissue preparation Liver tissue was fixed in 10% buffered formalin and subsequently embedded in paraffin and stained with hematoxylin and eosin. Tissue sections from each group were evaluated. The sinusoidal structure was observed in the medium magnification field (x200) including the portal vein and central vein in the same visual field.
  • x200 medium magnification field
  • Liver tissue was stored at -80 ° C. and homogenized in 150 mmol / L NaCl, 50 mM TrisCl, 1% NP-40, and protease inhibitor. The sample was centrifuged and the supernatant was collected for analysis. Samples were separated by electrophoresis using 12% dodecyl sulfate and polyacrylamide gel and transferred to a nitrocellulose membrane (Millipore, Bedford, MA, USA). Anti-cleaved caspase 3 antibody (9661) and HO-1 antibody (5141) (Cell Signaling Technology, Beverly, MA, USA) were used as primary antibodies. Anti-rabbit IgG HRP linked (7074) (Cell Signaling Technology, Beverly, MA, USA) was used as a secondary antibody.
  • Biochemical analysis Serum ALT levels were measured using an automated analyzer (Fuji Dry Chem 7000V, Fuji Film, Tokyo, Japan) to evaluate liver parenchymal disorders.
  • Electron microscope The hepatic sinusoidal endothelial cells after ischemia-reperfusion were evaluated with an electron microscope.
  • the liver was rapidly removed 120 minutes after reperfusion.
  • a sample removed from the left liver lobe was excised into 1 mm 3 and stored in 2.5% glutaraldehyde. 1% osmium tetroxide was used for post-fixation. Thereafter, it was dehydrated through alcohol stepwise and embedded in Epon.
  • Ultrathin sections were prepared on a copper grid using Ultracut S microtome (Leica Aktiengesellschaft, Vienna, Austria). Sections were adjusted with uranyl acetate to enhance contrast and passed through citrate. The specimens were observed using a Hitachi H-7000 transmission electron microscope (Hitachi, Tokyo, Japan).
  • Rats were anesthetized with somnopentyl and isoflurane, and various drugs were administered via the tail vein after blood collection. Rats were laparotomized and 10 minutes after drug administration, 20 minutes of total liver ischemia was performed using microclips. After 20 minutes, the clip was removed for reperfusion, and blood collection was performed 30, 60, and 120 minutes after reperfusion. After 120 minutes, the rat was sacrificed and liver tissue (left lobe) was collected. The experimental procedure is shown in FIG.
  • Example 3 Confirmation of S1P Accumulation in Liver by Western Blot Expression of S1P in liver tissue was confirmed by Western blotting by the following method. Rat liver tissue stored at ⁇ 80 ° C. was homogenized using buffers prepared from various reagents (150 mmol / L NaCl, 50 mM Tris-Cl, 1% NP-40, protease inhibitor). The sample was centrifuged for analysis and the supernatant was collected. The collected samples were separated using a 10% SDS-PAGE gel and transferred to a nitrocellulose membrane (Millipore, Bedford, Mass.). Anti-S1P antibody (ab140592) (1: 1000, rabbit polyclonal, Abcam, Cambridge, UK) was used as the primary antibody. Anti-rabbit IgG, HRP-linked antibody (# 7074S) (1: 1000, Cell Signaling Technology, Beverley, MA, USA) was used as the secondary antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cardiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 スフィンゴシン1リン酸により修飾されたヒアルロン酸、及び該ヒアルロン酸を有効成分として含み、肝類洞内皮細胞を保護することにより低酸素/再酸素負荷による肝障害を軽減して肝虚血再灌流に伴う肝移植や肝切除などの手術による肝不全の予防及び/又は治療を行うことができる医薬。

Description

スフィンゴシン1リン酸により修飾されたヒアルロン酸
 本発明はスフィンゴシン1リン酸により修飾されたヒアルロン酸に関する。より具体的には肝虚血再灌流障害の予防及び/又は治療のための医薬の有効成分として有用なスフィンゴシン1リン酸で修飾されたヒアルロン酸に関するものである。
 肝移植や肝切除時の術後肝不全の主要な原因は虚血再灌流により生じる低酸素/再酸素負荷(Hypoxia-reoxygenation)であることが知られており、虚血再灌流による肝障害の予防に肝類洞内皮細胞(LSEC)の保護が重要であることも知られている(Caldwell et al. Hepatology, 10, pp.292-299, 1989)。低酸素/再酸素負荷によりLSECのアポトーシスが生じることが報告されていることから(Neal R.Banga et al. J. Surg. Res., 178, pp.e35-41, 2012)が報告されているため、LSECは肝虚血再灌流障害の主要因子であると考えられる。
 一方、スフィンゴ脂質メディエーターであるスフィンゴシン1リン酸(S1P)は細胞膜の構成成分であるスフィンゴミエリン由来のスフィンゴシンがスフィンゴシンキナーゼによってリン酸化されることにより生成し、S1P受容体を介して多彩な生理活性を示す。例えば、S1Pは抗アポトーシス作用を有することが知られており(Cuvillier et al., Nature, 381, pp.800-803, 1996)、アルコール性肝障害においてLSECのアポトーシスを抑制し(Dong-Mei Zheng et al. Hepatology, 44, pp.1278-1287, 2006)、虚血再灌流による腎障害を抑制すること(Lee et al. Nephrology, 2011)も報告されている。
 このような観点から、S1Pを用いてLSECを保護することにより低酸素/再酸素負荷による肝障害を軽減できることが期待される。しかしながら、S1Pは生体膜を構成するスフィンゴ脂質の代謝産物であり、血小板や内皮細胞に多く含まれることから、S1P自体をLSECを標的として肝虚血再灌流障害の予防及び/又は治療に用いることはできないという問題がある。
 この問題を解決するために、S1P受容体アゴニストであるFTY720(フィンゴリモド塩酸塩:生体内でスフィンゴシンキナーゼによりFTY720リン酸化体に変換される)を用いて低酸素/再酸素負荷による肝障害を軽減する試みがなされている(American Journal of Transplantation, 5, pp.40-49, 2005)。しかしながら、この化合物は長期投与においてS1Pのアンタゴニストとして作用することが懸念されている。また、この化合物は全体としてはスフィンゴシンに類似する化学構造を有するものの、炭素鎖中にフェニレン基を有していることからS1Pの直接の誘導体ではなく、S1P自体をLSECの保護に用いるための化合物ではない。
Figure JPOXMLDOC01-appb-C000001
 また、ヒアルロン酸(HA)は血管内投与後にLSECに集積することが報告されており(Fraser J et al. Cell Tissue Res., 242, pp.505-510, 1985)、ヒアルロン酸受容体(HARE/Stabilin-2)はLSEC特異的に発現することが報告されていることから(Bin Zhou et al. J. Biol. Chem., 275, pp.37733-37741, 2000)、ヒアルロン酸で被覆したリポソームにS1Pを搭載することにより効率的にS1PをLSECに送達する試みもなされている(科学研究費助成事業、研究課題番号:23390319、「S1P・ヒアルロン酸修飾リポソームを用いた難治性肝障害に対する新規治療薬の開発」、大河内信弘ら、2011~2013年度)。しかしながら、リポソームの電荷や分子量の大きさなどからヒアルロン酸のリガンドとしての機能が不十分であり、所望のDDS効果を達成できないという問題があった。
Caldwell et al., Hepatology, 10, pp.292-299, 1989 Neal R.Banga et al., J. Surg. Res., 178, pp.e35-41, 2012 Cuvillier et al., Nature, 381, pp.800-803, 1996 Dong-Mei Zheng et al., Hepatology, 44, 1278-1287, 2006 Lee et al., Nephrology, 16, pp.163-173, 2011 American Journal of Transplantation, 5, pp.40-49, 2005 Fraser J et al. Cell Tissue Res., 242, 505-510, 1985 科学研究費助成事業、研究課題番号:23390319、「S1P・ヒアルロン酸修飾リポソームを用いた難治性肝障害に対する新規治療薬の開発」、大河内信弘ら、2011~2013年度(2013年外科学会:肝類洞内皮細胞を標的としたSphingosine-1-phosphate搭載肝再生新規DDS製剤の開発)
 本発明は、LSECを保護することにより低酸素/再酸素負荷による肝障害を軽減することができる物質を提供することにある。より具体的には、静脈内投与などの投与形態によりLSECに効率よく集積して抗アポトーシス作用を発揮し、LSECを保護することにより低酸素/再酸素負荷による肝障害を軽減することができる物質を提供することが本発明の課題である。
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、S1Pにより修飾されたヒアルロン酸が極めて効率的にLSECに集積すること、及びこの修飾ヒアルロン酸が低酸素/再酸素負荷によるLSECのアポトーシスの抑制に高い有効性を有していることを見出した。また、このS1Pにより修飾されたヒアルロン酸を例えば静脈内投与などの投与経路でヒトを含む哺乳類動物に投与することにより低酸素/再酸素負荷による肝障害を有効に予防及び/又は治療することができることを見出した。本発明はこれらの知見に基づいて完成されたものである。
 すなわち、本発明により、スフィンゴシン1リン酸により修飾されたヒアルロン酸が提供される。このヒアルロン酸はスフィンゴシン1リン酸をヒアルロン酸に共有結合することにより得ることができる。
 この発明の好ましい態様によれば、ヒアルロン酸とスフィンゴシン1リン酸とを縮合することにより得ることができるスフィンゴシン1リン酸により修飾されたヒアルロン酸が提供される。このヒアルロン酸は、好ましくは、ヒアルロン酸のカルボキシル基とスフィンゴシン1リン酸のアミノ基とをアミド結合させることにより得ることができる。
 別の観点からは、本発明により、肝虚血再灌流に伴う肝不全の予防及び/又は治療のための医薬であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬;及び肝血流遮断を伴う肝手術後の肝不全の予防及び/又は治療のための医薬であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬が提供される。肝血流遮断を伴う肝手術としては、例えば肝移植や肝部分切除などを挙げることができる。
 また、本発明により、肝虚血再灌流により生じる低酸素/再酸素負荷により生じる肝不全の予防及び/又は治療のための医薬であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬;肝虚血再灌流により生じる低酸素/再酸素負荷に起因する肝類洞内皮細胞のアポトーシスを抑制するための医薬であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬が提供される。
 さらに別の観点からは、本発明により、上記の医薬の製造のためのスフィンゴシン1リン酸により修飾されたヒアルロン酸の使用;肝虚血再灌流に伴う肝不全の予防及び/又は治療方法であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法;肝血流遮断を伴う肝手術後の肝不全の予防及び/又は治療方法であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法;肝虚血再灌流により生じる低酸素/再酸素負荷により生じる肝不全の予防及び/又は治療方法であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法;肝虚血再灌流により生じる低酸素/再酸素負荷に起因する肝類洞内皮細胞のアポトーシスを抑制する方法であって、スフィンゴシン1リン酸により修飾されたヒアルロン酸の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。
 本発明により提供されるスフィンゴシン1リン酸により修飾されたヒアルロン酸は極めて効率的に肝類洞内皮細胞に集積し、低酸素/再酸素負荷による肝類洞内皮細胞のアポトーシスを抑制することができる。また、本発明により提供されるスフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬は肝虚血再灌流に伴う低酸素/再酸素負荷により生じる肝不全の予防及び/又は治療に高い有効性を有していることから、肝血流遮断を伴う肝手術後の肝不全の予防及び/又は治療のための医薬として極めて有用である。
実施例の例1で合成したスフィンゴシン1リン酸により修飾されたヒアルロン酸のNMRチャートである。 実施例の例2における4群の実験手順を示した図である。 肝機能(ALT)の測定結果を示した図である。 ウェスタンブロットによりCleaved caspase 3の発現を確認した結果を示した図である。 肝臓病理評価としてHE染色の結果を示した図である。 肝臓病理評価としてTUNEL染色の結果を示した図である。 TUNEL染色で要請を示した細胞数を定量化した結果を示した図である。 電子顕微鏡による肝臓微細構造の評価結果を示した図である。 肝臓へのS1P集積をウェスタンブロットにより確認した結果を示した図である。
 本発明により、スフィンゴシン1リン酸により修飾されたヒアルロン酸(以下、「HA-S1P」と略す場合がある)が提供される。HA-S1Pはスフィンゴシン1リン酸をヒアルロン酸に共有結合することにより得ることができ、例えば、ヒアルロン酸とスフィンゴシン1リン酸とを縮合剤の存在下で縮合することにより得ることができる。一般的には、ヒアルロン酸のカルボキシル基とスフィンゴシン1リン酸のアミノ基との間で縮合によりアミド結合を生成させればよい。もっとも、スフィンゴシン1リン酸のヒアルロン酸に対する共有結合の様式は上記のアミド結合に限定されることはなく、ヒアルロン酸のカルボキシル基とスフィンゴシン1リン酸の水酸基とのエステル結合などであってもよい。
 ヒアルロン酸はN-アセチルグルコサミンとグルクロン酸の二糖単位(この単位の分子量はおよそ400)が連結した高分子であり、一般的には5,000~8,000,000程度の分子量を有している。例えば分子量600,000のヒアルロン酸に含まれる二糖単位は約1,500個、分子量8,000のヒアルロン酸に含まれる二糖単位は約20個である。ヒアルロン酸は一般的には遊離形態のヒアルロン酸又はヒアルロン酸ナトリウムとして入手可能である。本明細書において用いられる「ヒアルロン酸」という用語はヒアルロン酸ナトリウムを包含する。ヒアルロン酸又はヒアルロン酸ナトリウムは食品用や化粧料用として提供されており、医薬としても使用されている。
 例えば、変形性関節症に適用されているヒアルロン酸ナトリウムとしては分子量が600,000~1,200,000程度(商品名「アルツ」)、500,000~730,000程度(商品名「Hyalgan」)のものが用いられており、眼科手術用には分子量が600,000~1,200,000程度(商品名「オペガン」)、分子量が1,900,000~3,900,000程度(商品名「オペガン-ハイ」)、分子量が1,900,000~3,900,000程度(商品名「ヒアロン」)、1,530,000~2,130,000程度(商品名「オペリード」)などが用いられているが、酵素処理により分子量が10,000~100,000程度の低分子量のものや、さらに分子量が500~5,000程度の超低分子量のものなども提供されている。
 本発明のHA-S1Pを調製するための原料として使用されるヒアルロン酸の分子量は特に限定されず、上記に例示したもののほか、多様な分子量のヒアルロン酸を使用することができる。例えば平均分子量が500,000~700,000程度のものや、酵素処理により平均分子量を8,000程度にしたヒアルロン酸などを原料として使用することができる。本発明のスフィンゴシン1リン酸により修飾されたヒアルロン酸を調製するための原料として使用されるヒアルロン酸の由来は特に限定されず、例えば、鶏冠由来又は発酵由来などのいずれの由来のものであってもよい。
 本発明のHA-S1Pの製造方法は特に限定されないが、例えば、ヒアルロン酸とスフィンゴシン1リン酸とを縮合剤の存在下で縮合させることにより容易に製造することができる。縮合剤の種類は特に限定されず、一般的に使用可能な縮合剤はいずれも使用可能であるが、例えばカルボジイミド系縮合剤、イミダゾール系縮合剤、トリアジン系縮合剤などを使用することができる。カルボジイミド系縮合剤としては、例えばN,N'-ジシクロヘキシルカルボジイミド(DCC)、N,N'-ジイソプロピルカルボジイミド(DIC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)塩酸塩などを挙げることができるが、EDCを特に好適に使用することができる。縮合剤とともにカルボン酸の活性化剤として例えばN-ヒドロキシスクシンイミド(NHS)などを用いることもできる。
 縮合反応は、一般的にはヒアルロン酸(遊離形態)に対してEDCなどの縮合剤とNHSなどのカルボン酸の活性化剤を加えた後にスフィンゴシン1リン酸を加えて室温ないし加温下で数時間から数日程度反応させればよい。反応は、ヒアルロン酸1mgに対してスフィンゴシン1リン酸を0.5~2μg程度用いて行うことができる。縮合剤はスフィンゴシン1リン酸に対して1~20モル当量程度、好ましくは10モル当量程度を用いることができる。反応は例えば水、メタノール、エタノール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、ジクロロメタンなどの溶媒中もしくはこれらの混合溶媒、又は無溶媒で行うことができる。反応終了後、通常は透析などの手段によりEDC、NHS、及び未反応のスフィンゴシン1リン酸を除去することにより目的物を得ることができる。ヒアルロン酸にスフィンゴシン1リン酸が結合したことは通常はNMRにより確認することができる。一般的にはヒアルロン酸1分子のカルボン酸の総数の10~50%程度、好ましくは12~40%程度がスフィンゴシン1リン酸のアミンと結合した修飾体を調製すればよい。ヒアルロン酸1分子あたりに結合したスフィンゴシン1リン酸の個数は、例えばプロトンNMRによりヒアルロン酸のN-アセチル基(1.8 ppm)とスフィンゴシン1リン酸の脂質部分の末端メチル基及びメチレン基(0.9 ppm及び1.1 ppm)から積分値をとって計算により決定することができる。
 本発明により提供されるHA-S1Pは効率的に肝類洞内皮細胞に集積し、低酸素/再酸素負荷による肝類洞内皮細胞のアポトーシスを抑制することができることから、HA-S1Pを有効成分として含む医薬は、肝虚血再灌流に伴う肝不全の予防及び/又は治療のための医薬として有用である。肝虚血再灌流を生じさせる処置や治療の種類は特に限定されないが、例えば肝血流遮断を伴う肝手術などを代表的な処置として挙げることができる。このような肝手術としては、例えば肝移植や肝部分切除などを挙げることができるが、これらに限定されることはなく、一時的に肝臓に至る血管をクリップして血流を遮断し、数分から15分程度でクリップを解除して血流を再開させる手術はいずれも本発明の医薬の適用対象とすることができる。いかなる理論に拘泥するわけではないが、肝虚血再灌流により生じる低酸素/再酸素負荷により生じる肝不全では低酸素/再酸素負荷に起因する肝類洞内皮細胞のアポトーシスが生じているが、本発明の医薬はこのアポトーシスを抑制する作用を有している。
 本発明の医薬は、一般的には静脈内投与や腹腔内投与などの非経口投与によりヒトを含む哺乳類動物に対して投与することができる。静脈内投与を行う場合には静脈内注射や点滴などの通常の手段を採用することができる。あるいは手術中に門脈から本発明の医薬を血管内投与することも可能である。低分子量のヒアルロン酸を用いる場合には経口投与により液剤やカプセル剤などにより投与することができる場合もある。投与は血流遮断の数分前から1時間前ぐらいの間、例えば10分前から30分前ぐらいの時期に行うことが望ましいが、血流遮断の前であれば特に限定されることはない。肝移植の場合には、ドナーから肝臓の一部を摘出する際に肝臓内に本発明の医薬が十分量残留するように本発明の医薬を投与しておき、移植を受ける患者に対しても移植の直前に本発明の医薬を投与することができるが、このような投与方法は適宜選択可能であり、特定の態様に限定されるわけではない。
 本発明の医薬は、通常は水溶液の形態や凍結乾燥品の形態で注射剤又は点滴剤として提供されるが、製剤の調製にあたっては注射剤や点滴剤の製造に通常用いられる製剤用添加物を用いてもよい。例えば、水溶液の場合にはpH調節剤、安定化剤、又は緩衝剤などを用いることができ、凍結乾燥製剤の場合にはこれらのほか溶解補助剤などを用いることができるが、これらの特定の製剤用添加物に限定されることはなく、当業者は目的に応じて適宜の製剤用添加物を選択することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例により限定されることはない。
例1:HA-S1Pの合成
 ヒアルロン酸(2 mg/ml, 分子量600,000のもの、又は分子量8,000のもの) 5 mlにEDC(100 mg/ml)を95.85 μl、NHS(100 mg/ml)を57.535 μl加えてよくかき混ぜた。そこにS1P(25 mg/ml) 67.378 μlを加えて55℃で撹拌し24時間反応させた。透析操作を行いEDC、NHS、及び未結合のS1Pの除去を行った。S1Pの導入はNMRを測定して1.15 ppm付近のピークが存在することにより確認した(図1)。このヒアルロン酸のカルボン酸に結合したS1Pの量は13.5~40%であった。
例2
(1)方法
動物
 200~250gの雄性Sprague-Dawley(以下SD)ラットは日本クレア株式会社(日本、東京)より入手した。4グループのSDラットについて研究した。
 S1Pの溶媒であるメタノール投与グループ(投与内容はメタノール50μl+3%BSA150μl、計200μl)、HA投与グループ(投与内容は8kDaのHAを0.32564g/lでメタノール:超純水=1:3に溶解、計200μl)、S1P投与グループ(投与内容はS1P投与量として100μg/kg、S1P50μl+3%BSA150μl、計200μl)、HA-S1P投与グループ(投与内容はS1P投与量として100μg/kg、北大で作成したHA-S1P製剤を0.358g/lでメタノール:超純水=1:3に溶解、計200μl)について研究した。
 動物実験で用いた全ての手順は、筑波大学の動物実験における対処および用途の指針に述べられている基準に従った。
肝虚血モデル
 各々の薬剤をラットに尾静脈注射した。注射10分後にマイクロクリップを用いて肝動脈・門脈・胆管を20分間一括閉塞させた。20分の全肝虚血後、閉塞を解除した。再灌流120分後に、病理検査のために、各グループ10~15匹のラットから肝組織を除去した。また、薬剤注射直前と再灌流の30、60、120分後に血液を採取した。
組織の調整
 肝組織を10%緩衝ホルマリン中で固定し、続いてパラフィン中に埋め込み、ヘマトキシリンおよびエオジンを用いて染色した。各グループの組織切片を評価した。門脈・中心静脈を同一視野に含んだ中倍率フィールド(x200)において、類洞構造を観察した。
免疫組織化学研究
 プロメガ株式会社のDeadEnd(登録商標) Colorimetric TUNEL System(G7360)を用いて、アポトーシス陽性細胞を免疫組織化学的に検出した。各グループの組織切片を評価した。無作為に選択した門脈を中心とする10の強倍率フィールド(x400)において、TUNEL陽性細胞と肝細胞総数をカウントした。これをTUNLE陽性細胞数/肝細胞総数の比で示してグループ毎に比較した。
蛋白抽出とウェスタンブロット解析
 肝組織は-80℃で保存し、150mmol/LのNaClと50mMのTrisCl、1%NP-40、蛋白質分解酵素阻害剤の中でホモジナイズした。サンプルを遠心して上清を解析用に採取した。サンプルは12%ドデシル硫酸塩とポリアクリルアミドゲルを用いて電気泳動して分離させ、ニトロセルロースメンブレン(Millipore、Bedford、MA、USA)に転写させた。一次抗体として抗cleaved caspase 3抗体(9661)とHO-1抗体(5141)(Cell Signaling Technology、Beverly、MA、USA)を用いた。二次抗体として抗ウサギIgG HRP linked(7074)(Cell Signaling Technology、Beverly、MA、USA)を用いた。
生化学分析
 肝実質障害を評価するため、血清ALT値を自動分析器(富士ドライケム7000V、富士フィルム、東京、日本)を用いて測定した。
電子顕微鏡
 虚血再灌流後の肝類洞内皮細胞を電子顕微鏡で評価した。再灌流120分後に肝臓を迅速に摘出した。肝左葉から摘出したサンプルを1mm3に切除し2.5%グルタールアルデヒドに保存した。後固定に1%四酸化オスミウムを用いた。その後、濃度段階的にアルコールを通して脱水しエポン包埋した。超薄切片はUltracut S microtome(Leica Aktiengesellschaft、Vienna、Austria)を用いてカッパーグリッドで作成した。切片はコントラストを強調させるためにウラニル酢酸塩で調整してクエン酸塩を通した。標本は日立H-7000透過型電子顕微鏡(日立、東京、日本)を用いて観察した。
統計分析
 統計分析はKruskal Wallis H-testと、post hoc testにMann-Whitney U test with Bonferroni correctionを用いた。統計的に有意であるとしてp<0.05を受け入れた。
(2)実験系
 200~250 gのSDラットを用いて4つの実験群(A)~(D)を作成した。(A)S1Pの溶媒であるメタノール単独のVehicle群(メタノール50μl+3% BSA150μl、計200μl)、(B)ヒアルロン酸単独のHA群(8000 kDaのヒアルロン酸を0.32564 g/Lとなるようにメタノール:超純水=1:3に溶解したもの、計200μl)、(C)S1P単独のS1P群(S1P投与量としては100μg/kg、メタノールに溶解したS1P50μl + 3% BSA 150μl、計200μl)、(D)HA-S1P群(S1P投与量としては100μg/kg、HA-S1Pを0.358 g/Lとなるようにメタノール:超純水=1:3に溶解したもの、計200 μl)。ラットをソムノペンチルとイソフルランを用いて全身麻酔し、採血後に各種薬剤を尾静脈より投与した。ラットを開腹し薬剤投与10分後にマイクロクリップを用いて20分間の全肝虚血を施行した。20分後にクリップを外して再灌流させ、再灌流から30、60、及び120分後に採血を施行した。120分後にはラットを犠牲死させて肝組織(左葉)を採取した。実験手順を図2に示す。
(3)肝機能(ALT)の測定
 血清ALTは再灌流30分後にVehicle・S1P群と比較してHA-S1P群が有意に低値であった。再灌流60分後はVehicle・HA・S1P群と比較してHA-S1P群が有意に低値であった。再灌流120分後にHA群と比較してHA-S1P群で有意に低値であった。結果を図3に示す。
(3)ウェスタンブロットによるアポトーシスと肝保護作用の確認
 ウェスタンブロットによりアポトーシス関連蛋白であるcleaved caspase 3の発現を文献記載の方法(Tamura et al., J Surg Res, 178, pp.443-451, 2012)により確認したところHA-S1P群でのみ抑制されていた。このことから、HA-S1P投与群が有意にアポトーシスを抑制していると示唆された。また、肝保護作用をもつHO-1の発現がHA-S1P群でのみ増加していた。結果を図4に示す。
(4)肝臓病理評価
 HE染色ではHA-S1Pでは類洞構造が保たれているのに対して、他の群では類洞の狭小化や蛇行を認めた(図5)。TUNEL染色ではHA-S1P群では陽性細胞をほとんど認めなかったが、他の群では虚血再灌流障害を受け易いとされる門脈近傍のZone1を中心として陽性細胞を認めた(図6)。またTUNEL染色の各サンプルにおいてZone1を中心に400倍視野で10視野ずつTUNEL陽性細胞数/総肝細胞数としてカウントし定量化するとHA-S1P群で有意にTUNEL陽性細胞率が低い結果となった(図7)。
(5)電子顕微鏡による肝臓微細構造評価
 電子顕微鏡像ではHA-S1P群においてLSECの裏打ち構造が保たれているのに対して、他の群ではLSECが障害されて類洞内に剥がれている像が確認された(図8)。
例3:ウェスタンブロットによる肝臓へのS1P集積の確認
 下記の方法でウェスタンブロットにより肝組織内でのS1Pの発現を確認した。
 -80℃で保存したラットの肝組織を各種試薬(150mmol/L NaCl, 50mM Tris-Cl, 1% NP-40, 蛋白分解酵素阻害剤)より作製したバッファーを用いてホモジェナイズした。解析するためにサンプルを遠心して上清を採取した。採取したサンプルは10%SDS-PAGEゲルを用いて分離し、ニトロセルロース膜(Millipore, Bedford, MA)へ転写した。1次抗体としてAnti-S1P antibody(ab140592)(1:1000, rabbit polyclonal, Abcam, Cambridge, UK)を用いた。2次抗体としてAnti-rabbit IgG, HRP-linked antibody(#7074S)(1:1000, Cell Signalling Technology, Beverley, MA, USA)を使用した。
 結果を図9に示す。S1P単独よりもHA-S1PのサンプルにおいてS1Pの発現が増加していた。このことから、HA-S1PはS1P単独よりも肝臓へ特異的に集積したことが示唆された。

Claims (9)

  1. スフィンゴシン1リン酸により修飾されたヒアルロン酸。
  2. スフィンゴシン1リン酸をヒアルロン酸に共有結合することにより得ることができる請求項1に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸。
  3. ヒアルロン酸とスフィンゴシン1リン酸とを縮合することにより得ることができる請求項2に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸。
  4. ヒアルロン酸のカルボキシル基とスフィンゴシン1リン酸のアミノ基とをアミド結合させることにより得ることができる請求項3に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸。
  5. 肝虚血再灌流に伴う肝不全の予防及び/又は治療のための医薬であって、請求項1ないし4のいずれか1項に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬。
  6. 肝血流遮断を伴う肝手術後の肝不全の予防及び/又は治療のための医薬であって、請求項1ないし4のいずれか1項に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬。
  7. 肝血流遮断を伴う肝手術が肝移植や肝部分切除である請求項6に記載の医薬。
  8. 肝虚血再灌流により生じる低酸素/再酸素負荷に起因する肝不全の予防及び/又は治療のための医薬であって、請求項1ないし4のいずれか1項に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬。
  9. 肝虚血再灌流により生じる低酸素/再酸素負荷に起因する肝類洞内皮細胞のアポトーシスを抑制するための医薬であって、請求項1ないし4のいずれか1項に記載のスフィンゴシン1リン酸により修飾されたヒアルロン酸を有効成分として含む医薬。
PCT/JP2015/056448 2014-03-06 2015-03-05 スフィンゴシン1リン酸により修飾されたヒアルロン酸 WO2015133559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016506542A JP6579470B2 (ja) 2014-03-06 2015-03-05 スフィンゴシン1リン酸により修飾されたヒアルロン酸
KR1020167024519A KR101994517B1 (ko) 2014-03-06 2015-03-05 스핑고신-1-인산에 의해 수식된 히알루론산
EP15759216.3A EP3115378A4 (en) 2014-03-06 2015-03-05 Hyaluronic acid modified by sphingosine-1-phosphoric acid
US15/123,359 US10485874B2 (en) 2014-03-06 2015-03-05 Hyaluronic acid modified by sphingosine-1-phosphoric acid
CN201580012337.7A CN106414507B (zh) 2014-03-06 2015-03-05 被鞘氨醇-1-磷酸修饰的透明质酸

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014043549 2014-03-06
JP2014-043549 2014-03-06
JP2014120485 2014-06-11
JP2014-120485 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015133559A1 true WO2015133559A1 (ja) 2015-09-11

Family

ID=54055359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056448 WO2015133559A1 (ja) 2014-03-06 2015-03-05 スフィンゴシン1リン酸により修飾されたヒアルロン酸

Country Status (6)

Country Link
US (1) US10485874B2 (ja)
EP (1) EP3115378A4 (ja)
JP (1) JP6579470B2 (ja)
KR (1) KR101994517B1 (ja)
CN (1) CN106414507B (ja)
WO (1) WO2015133559A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102482470B1 (ko) * 2019-04-11 2022-12-28 연세대학교 산학협력단 혈관 신생 촉진용 조성물 및 이의 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158196A (ja) * 1996-05-16 1998-06-16 Hisamitsu Pharmaceut Co Inc 核酸安定化用キャリアー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84252A (en) * 1987-10-23 1994-02-27 Yissum Res Dev Co Phospholipase inhibiting compositions
US20020016304A1 (en) * 1996-05-16 2002-02-07 Atsushi Maruyama Carrier for stabilizing nucleic acid
JP2001081103A (ja) 1999-09-13 2001-03-27 Denki Kagaku Kogyo Kk ヒアルロン酸結合薬剤
CA2397016C (en) * 2000-01-10 2011-03-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of disease
WO2005016386A1 (en) * 2003-08-19 2005-02-24 Meditech Research Limited Improved therapeutic protocols
WO2008100591A2 (en) * 2007-02-14 2008-08-21 The General Hospital Corporation Modulation of nitric oxide signaling to normalize tumor vasculature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158196A (ja) * 1996-05-16 1998-06-16 Hisamitsu Pharmaceut Co Inc 核酸安定化用キャリアー

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NAOKI SANO ET AL.: "Hyaluronic Acid Juyotai o Mochiita Kan Ruido Naihi Saibo e Shuseki suru Shinki Drug delivery system Seizai no Kaihatsu", DAI 30 KAI ANNUAL MEETING OF THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM PROGRAM YOKOSHU, vol. 30th, 1 July 2014 (2014-07-01), pages 169, XP008184901 *
NOBUHIRO OKOUCHI ET AL.: "SIP - Hyaluronic Acid Shushoku Liposome o Mochiita Nanjisei Kanshogai ni Taisuru Shinki Chiryoyaku no Kaihatsu", KAGAKU KENKYUHI JOSEI JIGYO, KENKYU KADAI NO:23390319, 2011 TO 2013 NENDO, XP008184646, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/d/p/23390319.en.html> [retrieved on 20150416] *
See also references of EP3115378A4 *
SHIN'ICHI MOCHIZUKI ET AL.: "Polysaccharide Conjugates as Bionanomaterials", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 61, no. 12, 2004, pages 601 - 605, XP055358148 *
TAKAFUMI TAMURA ET AL.: "Kan Ruido Naihi Saibo o Hyoteki to shita Sphingosine-1-phosphate Tosai Kan Saisei Shinki DDS Seizai no Kaihatsu", JOURNAL OF JAPAN SURGICAL SOCIETY, vol. 114, no. issue(2, 2013, pages 640, XP008184893 *
ZHENG, D.-M. ET AL.: "Sphingosine 1-phosphate protects rat liver sinusoidal endothelial cells from ethanol-induced apoptosis: Role of intracellular calcium and nitric oxide", HEPATOLOGY, vol. 44, no. 5, 2006, pages 1278 - 1287, XP055222923, ISSN: 0270-9139 *

Also Published As

Publication number Publication date
EP3115378A1 (en) 2017-01-11
KR101994517B1 (ko) 2019-06-28
JPWO2015133559A1 (ja) 2017-04-06
JP6579470B2 (ja) 2019-09-25
US20170056509A1 (en) 2017-03-02
EP3115378A4 (en) 2017-11-15
CN106414507A (zh) 2017-02-15
US10485874B2 (en) 2019-11-26
CN106414507B (zh) 2019-03-01
KR20160143646A (ko) 2016-12-14

Similar Documents

Publication Publication Date Title
KR101790649B1 (ko) 글리코사미노글리칸 화합물 및 이의 제조 방법과 용도
JP6464087B2 (ja) ポリロタキサン、及び医薬組成物
KR20200011485A (ko) 섬유증 치료를 위한 조성물
Maeda et al. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH
JP6579470B2 (ja) スフィンゴシン1リン酸により修飾されたヒアルロン酸
JP2010090054A (ja) アミロイド線維形成抑制剤
Li et al. Mannose 6-phosphate-modified bovine serum albumin nanoparticles for controlled and targeted delivery of sodium ferulate for treatment of hepatic fibrosis
WO2021202621A2 (en) Modified peptide nucleic acid compositions
EP1044679B1 (en) Stable Liposomes for Targeted Drug Delivery
US20200206369A1 (en) Imaging of tumor-associated macrophages
US20220195072A1 (en) Targeted anticoagulant
US20170065669A1 (en) Antithrombotic nanoparticle
JP2001055343A (ja) リポソーム
Lawanprasert et al. Heparin‐Peptide Nanogranules for Thrombosis‐Actuated Anticoagulation
WO2011002026A1 (ja) アミロイド線維形成抑制剤及びその利用
WO2011121645A1 (ja) アミロイド線維形成抑制剤
JP2010138160A (ja) 肝機能保護医薬品組成物
Li et al. Triptolide Self-Assembling Nanoparticles Engineering with Modified Erythrocyte Membranes for Targeting and Remodeling Inflammatory Microenvironment in Arthritis
US20140127182A1 (en) Using GNMT as a Novel Therapeutic or Preventing Agent for Fatty Liver Related Diseases
WO2023225597A2 (en) Pharmaceutical agent conjugates to modulate macrophage and inflammatory functions and uses thereof
WO2024150064A1 (en) Lipid binding protein molecule therapy
JP2022514672A (ja) ヒアルロナン合成阻害のための4-メチルウンベリフェリルグルクロニド
CA3160600A1 (en) Enhancing blood-brain barrier drug transport by targeting endogenous regulators
WO2009022756A1 (ja) 虚血性疾患の診断及び治療

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123359

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167024519

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016506542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015759216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759216

Country of ref document: EP