WO2015133204A1 - 超電導ケーブル線路、及び断熱管路 - Google Patents

超電導ケーブル線路、及び断熱管路 Download PDF

Info

Publication number
WO2015133204A1
WO2015133204A1 PCT/JP2015/052277 JP2015052277W WO2015133204A1 WO 2015133204 A1 WO2015133204 A1 WO 2015133204A1 JP 2015052277 W JP2015052277 W JP 2015052277W WO 2015133204 A1 WO2015133204 A1 WO 2015133204A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
shielding member
magnetic field
magnetic shielding
superconducting cable
Prior art date
Application number
PCT/JP2015/052277
Other languages
English (en)
French (fr)
Inventor
正義 大屋
昇一 本庄
丸山 修
哲太郎 中野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP15758663.7A priority Critical patent/EP3115997B1/en
Publication of WO2015133204A1 publication Critical patent/WO2015133204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/06Installations of electric cables or lines in or on the ground or water in underground tubes or conduits; Tubes or conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable line in which a superconducting cable is laid and a heat insulating conduit suitable for a component of the superconducting cable line.
  • the present invention relates to a superconducting cable line having a small load on a refrigerator that cools a refrigerant.
  • Superconducting cables are expected as an energy-saving technology because they can transmit large-capacity power with low loss compared to existing normal conducting cables (eg, OF cables and CV cables). Recently, a demonstration test has been carried out in which a superconducting cable is laid and power is actually transmitted.
  • existing normal conducting cables eg, OF cables and CV cables.
  • a cable core having a superconducting layer (superconducting conductor layer, superconducting shield layer) formed by spirally winding a superconducting wire around the former is housed in a heat insulating tube, and a refrigerant (for example, A structure that cools the superconducting layer by circulating liquid nitrogen) is typical (Patent Document 1). Since the superconducting shield layer is provided, an induced current having approximately the same magnitude as the current flowing in the superconducting conductor layer flows through the superconducting shield layer.
  • the heat insulating tube is generally a double structure tube having an inner tube and an outer tube, and a space between the inner tube and the outer tube is evacuated, and a vacuum heat insulating layer is formed in this space.
  • the superconducting cable To put the superconducting cable into practical use, it is being considered to add a superconducting cable in an existing underground conduit or tunnel where a normal conducting cable has already been installed. However, when the superconducting cable and the normal conducting cable are arranged close to each other, the superconducting cable may be affected by the magnetic field from the normal conducting cable.
  • a magnetic field When a magnetic field is applied from the outside in a superconducting cable, a magnetic field is first applied to the heat insulating tube. Since the heat insulating tube is generally made of a metal material, when a magnetic field is applied to the heat insulating tube, eddy current loss may occur due to Joule heat generated by the eddy current. When eddy current loss occurs in the heat insulation pipe, it becomes a load of the refrigerator that cools the refrigerant filled in the heat insulation pipe. Therefore, it is desired to develop a heat insulation pipe line and a superconducting cable line with a small refrigerant refrigerator load even under the influence of an external magnetic field.
  • the present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a superconducting cable line having a small load on a refrigerator for cooling the refrigerant.
  • Another object of the present invention is to provide a heat insulating conduit having a small load on the refrigerator for cooling the refrigerant.
  • a superconducting cable line includes a superconducting cable and a plate-like magnetic shielding member.
  • the superconducting cable includes a cable core having a superconducting conductor layer, and an insulating pipe having an inner pipe that houses the cable core and is filled with a refrigerant, and an outer pipe that is disposed outside the inner pipe.
  • the magnetic shielding member is interposed between the superconducting cable and a magnetic field generating cable that applies a magnetic field to the superconducting cable, and shields the superconducting cable from the magnetic field.
  • the magnetic shielding member has a ferromagnetic layer made of a ferromagnetic material and is electromagnetically independent from members made of other ferromagnetic materials.
  • the heat insulation pipe line concerning one form of the present invention has a heat insulation pipe which has an inner pipe filled with a refrigerant and an outer pipe arranged outside the inner pipe, the heat insulation pipe, and a magnetic field with respect to the heat insulation pipe And a plate-like magnetic shielding member that is interposed between the magnetic field generating cable and the heat insulating tube to shield the magnetic field from the magnetic field.
  • the magnetic shielding member has a ferromagnetic layer made of a ferromagnetic material and is electromagnetically independent from members made of other ferromagnetic materials.
  • the superconducting cable line has a small load on the refrigerator that cools the refrigerant even when it is affected by an external magnetic field.
  • the heat insulating pipeline has a small load on the refrigerator that cools the refrigerant even when it is affected by an external magnetic field.
  • FIG. 1 is a schematic cross-sectional view of a superconducting cable line according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a superconducting cable line according to Embodiment 2.
  • FIG. 1 is a schematic cross-sectional view of a superconducting cable line according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a superconducting cable line according to Embodiment 2.
  • the present inventors examined eddy current loss that occurs in a heat insulating tube when the superconducting cable is affected by an external magnetic field (hereinafter sometimes referred to as an external magnetic field). Since the heat insulation pipe of the superconducting cable is filled with a refrigerant such as liquid nitrogen, it is generally made of a material excellent in resistance to the operating temperature of the superconducting cable such as stainless steel. When a magnetic field is applied to a metal material such as stainless steel, eddy current loss occurs due to Joule heat generated by the eddy current.
  • the magnetic field is reduced to some extent in the outer tube
  • the external magnetic field that could not be reduced in the outer tube passes through the outer tube and is applied to the inner tube, causing eddy current loss in the inner tube.
  • the outer tube is exposed to the external environment (normal temperature part) side, and Joule heat due to the eddy current is radiated to the normal temperature part side, so the influence on the load of the cooling mechanism (refrigerator) for cooling the refrigerant is small.
  • the inner tube is located on the side (low temperature part) in contact with the refrigerant, Joule heat due to the eddy current radiates to the refrigerant side.
  • the influence of the eddy current loss generated in the inner pipe on the load of the refrigerator is large, and it is desired to reduce the eddy current loss generated in the inner pipe as much as possible in order to reduce the load of the refrigerator.
  • the eddy current loss generated in the inner tube was found to be about 5 to 10 W / m, which cannot be ignored. Therefore, it was studied to shield the influence of the external magnetic field in the superconducting cable, and the present invention was completed. The contents of the embodiments of the present invention will be listed and described below.
  • a superconducting cable line includes a superconducting cable and a plate-like magnetic shielding member.
  • the superconducting cable includes a cable core having a superconducting conductor layer, and an insulating pipe having an inner pipe that houses the cable core and is filled with a refrigerant, and an outer pipe that is disposed outside the inner pipe.
  • the magnetic shielding member is interposed between the superconducting cable and a magnetic field generating cable that applies a magnetic field to the superconducting cable, and shields the superconducting cable from the magnetic field.
  • the magnetic shielding member has a ferromagnetic layer made of a ferromagnetic material and is electromagnetically independent from members made of other ferromagnetic materials.
  • Examples of the “magnetic field generating cable for applying a magnetic field to the superconducting cable” include a normal conducting cable arranged close to the superconducting cable, a superconducting cable not provided with a superconducting shield layer, and the like. When there are a plurality of superconducting cables that do not include the superconducting shield layer, the superconducting cables that also serve as the magnetic field generating cables influence the magnetic field mutually.
  • “Members composed of other ferromagnetic materials” means that each of the magnetic shielding members when there are a plurality of magnetic shielding members, or a member that constitutes a superconducting cable line other than the magnetic shielding members (for example, a sinus or a sinus And a support stand for supporting each cable in the road).
  • a member that constitutes a superconducting cable line other than the magnetic shielding members for example, a sinus or a sinus And a support stand for supporting each cable in the road.
  • separate magnetic shielding members are interposed between the superconducting cable and each magnetic field generation cable.
  • Electromagnetically independent means that a plurality of members are separated as conductive paths and magnetic paths and are not continuous. Therefore, even if a plurality of magnetic shielding members are mechanically connected by nonmagnetic and non-conductive members such as plastic, each magnetic shielding member is “electromagnetically independent”.
  • the superconducting cable can be shielded from the magnetic field (external magnetic field) generated by the magnetic field generating cable by the magnetic shielding member interposed between the superconducting cable and the magnetic field generating cable.
  • the magnetic shielding member has a ferromagnetic layer
  • the magnetic flux lines of the external magnetic field can be made to follow the ferromagnetic layer, and the ferromagnetic layer can This is because the direction can be changed.
  • the vertical magnetic field is the main cause of eddy current loss in the heat-insulated tube. Therefore, changing the direction of this vertical magnetic field causes eddy current loss.
  • the external magnetic field to be reduced can be reduced. Therefore, it is possible to suppress the occurrence of eddy current loss due to the external magnetic field in the superconducting cable (heat insulating tube). Since the eddy current loss which arises in the inner pipe located in the low temperature part especially among heat insulation pipes can be reduced, the load of a refrigerator can be reduced.
  • the magnetic shielding member is electromagnetically independent from a member (ferromagnetic member) made of another ferromagnetic material, so that eddy current loss due to an external magnetic field can be reduced in the magnetic shielding member.
  • a member ferromagnetic member
  • the magnetic shielding member needs to have a size capable of shielding the superconducting cable from the external magnetic field, but can be prevented from becoming unnecessarily large by being independent of other ferromagnetic members, and eddy current loss. Can be reduced.
  • the magnetic shielding member is independent of other ferromagnetic members, the eddy current path can be divided, and eddy current loss can be reduced. By reducing the eddy current loss in the magnetic shielding member, the shielding effect by the magnetic shielding member can be improved, and the eddy current loss in the heat insulating tube can also be reduced.
  • the superconducting cable line there is a form in which the three superconducting cables also serving as the magnetic field generating cables are arranged in a triangular shape. At this time, the magnetic shielding members are respectively disposed between the three superconducting cables.
  • each superconducting cable As a superconducting cable line, there are cases where three superconducting cables without a superconducting shield layer are arranged in a triangular shape. At this time, since each superconducting cable is also a magnetic field generating cable, each superconducting cable has an influence on the magnetic field. Since the magnetic shielding member is disposed between each superconducting cable, the external magnetic field that causes eddy current loss in each superconducting cable (heat insulating tube) can be reduced. Since each magnetic shielding member is electromagnetically independent, eddy current loss due to an external magnetic field can be reduced in each magnetic shielding member.
  • the ferromagnetic layer may have a saturation magnetic flux density of 1T or more.
  • the thickness of the ferromagnetic layer can be reduced. Therefore, since the volume of the ferromagnetic layer can be reduced, eddy current loss in the magnetic shielding member can be further reduced.
  • the ferromagnetic layer has a conductivity of 5 MS / m or less.
  • the eddy current flowing in the ferromagnetic layer can be further reduced, the eddy current loss in the magnetic shielding member can be further easily reduced.
  • the magnetic shielding member may have a thickness of 2 mm or more and 10 mm or less.
  • the eddy current loss in the magnetic shielding member is further reduced, and the eddy current loss in the heat insulating tube is easily reduced.
  • the thickness of the magnetic shielding member is 2 mm or more, the external magnetic field applied to the superconducting cable (heat insulating tube) can be sufficiently shielded, and eddy current loss in the heat insulating tube can be easily reduced.
  • the thickness of the magnetic shielding member is increased, the volume of the magnetic shielding member is increased, so that eddy current loss in the magnetic shielding member is likely to increase.
  • the thickness of the magnetic shielding member is 10 mm or less
  • the volume of the magnetic shielding member can be reduced, and eddy current loss in the magnetic shielding member can be reduced.
  • the magnetic shielding member may be a laminated body in which a plurality of the ferromagnetic layers are laminated via an insulating material.
  • the thickness of the magnetic shielding member when the thickness of the magnetic shielding member is constant, the thickness of the ferromagnetic layer can be reduced compared to the case where the magnetic shielding member is configured with a single ferromagnetic layer. It is easy to further reduce eddy current loss in the magnetic shielding member. Since an insulating material is interposed between each ferromagnetic layer, an eddy current flows independently in each ferromagnetic layer, but by reducing the thickness of each ferromagnetic layer, This is because eddy current loss in each ferromagnetic layer can be reduced. By reducing the eddy current loss of each ferromagnetic layer, the eddy current loss in the magnetic shielding member (the total eddy current loss of each ferromagnetic layer) can be reduced.
  • the ferromagnetic layer may have a thickness of 0.5 mm or less.
  • the magnetic shielding member is the above-described laminated body, the eddy current loss in the magnetic shielding member can be further reduced easily because the thickness of each ferromagnetic layer is 0.5 mm or less.
  • the ferromagnetic layer may be an electromagnetic steel plate.
  • each ferromagnetic layer is a magnetic steel sheet, the conductivity can be reduced while ensuring a saturation magnetic flux density of 1 T or more, so that the eddy current loss in the magnetic shielding member can be further reduced, and the eddy current in the heat insulating tube of the superconducting cable. Loss can be further reduced.
  • the heat insulation pipe line includes a heat insulation pipe having an inner pipe filled with a refrigerant and an outer pipe disposed outside the inner pipe, the heat insulation pipe, and the heat insulation pipe. And a plate-like magnetic shielding member interposed between the magnetic field generating cable for applying a magnetic field and shielding the heat insulating tube from the magnetic field.
  • the magnetic shielding member has a ferromagnetic layer made of a ferromagnetic material and is electromagnetically independent from members made of other ferromagnetic materials.
  • the heat insulating tube filled with the refrigerant can be shielded from the magnetic field (external magnetic field) generated by the magnetic field generating cable, and the occurrence of eddy current loss due to the external magnetic field in the heat insulating tube can be suppressed. Therefore, since the eddy current loss which arises in the heat insulation pipe, especially the inner pipe located in the low temperature part side can be reduced, the load of a refrigerator can be reduced.
  • the magnetic shielding members 3A, 3B, and 3C are shielded from an external magnetic field.
  • each configuration will be described in detail.
  • the size of the superconducting cables 1a, 1b, 1c with respect to the sinus 4 is increased.
  • Each of the superconducting cables 1a, 1b, and 1c has a single-core cable structure in which one cable core 10 is housed in a heat insulating tube 20.
  • the cable core 10 includes a former 11, a superconducting conductor layer 12, an electrical insulating layer 13, a normal conducting ground layer 14, and a protective layer 15 in order from the center, and does not include a superconducting shield layer.
  • Known constituents and materials can be used for these constituent members.
  • the former 11 is used for supporting a superconducting conductor layer, a tensile strength material for a cable, and other current paths for diverting an accident current at the time of an accident such as a short circuit or a ground fault.
  • a solid body or a hollow body (tubular body) made of a normal conductive material such as copper or aluminum can be suitably used as the former 11.
  • the solid body include a stranded wire obtained by twisting a plurality of copper wires each having an insulation coating such as enamel.
  • a cushion layer (not shown) can be provided by winding an insulating tape such as kraft paper or PPLP (registered trademark of Sumitomo Electric Industries, Ltd.) around the outer periphery of the former 11.
  • the superconducting conductor layer 12 has a configuration in which a tape-like wire rod having an oxide superconducting conductor, for example, a Bi2223 series superconducting tape wire (Ag-Mn sheath wire) is spirally wound in a single layer or multiple layers.
  • RE123-based thin film wires RE: rare earth elements such as Y, Ho, Nd, Sm, and Gd
  • an interlayer insulating layer in which insulating paper such as kraft paper is wound can be formed between the layers of each superconducting wire.
  • the electrical insulating layer 13 may be configured by winding an insulating paper tape such as kraft paper, a semi-synthetic insulating tape obtained by combining kraft paper and plastic, for example, a tape-like insulating material such as PPLP.
  • an insulating paper tape such as kraft paper, a semi-synthetic insulating tape obtained by combining kraft paper and plastic, for example, a tape-like insulating material such as PPLP.
  • the normal conductive ground layer 14 is a layer that is provided outside the insulating layer as in the case of conventional OF cables and CV cables to form a ground potential, and has a configuration in which a metal tape made of a normal conductive material such as copper is wound. Can be mentioned. As a result, the electric field distribution in the electrical insulating layer 13 can be made uniform, and a stable insulation performance can be obtained. This is also the case with existing cables.
  • the normal conductive ground layer 14 is grounded via a ground wire (not shown).
  • the normal conducting ground layer 14 can be grounded at a single point, for example, so that an induced current for the magnetic field from the superconducting conductor layer 12 does not flow.
  • the protective layer 15 is disposed on the outermost periphery of the cable core 10, and is mainly used for mechanical protection of members disposed inside the cable core 10 and ensuring electrical insulation between the normal conducting ground layer 14 and the heat insulating tube 20.
  • the protective layer 15 include an insulating paper tape such as kraft paper, a semi-synthetic insulating paper in which kraft paper and plastic are combined, for example, PPLP wound in a tape shape.
  • the heat insulating tube 20 is a double-corrugated tube having an inner tube 21 and an outer tube 22 made of stainless steel.
  • the space between the inner tube 21 and the outer tube 22 is evacuated, and a vacuum heat insulating layer is formed in this space. Is formed.
  • a heat insulating material (not shown) such as a super insulation (trade name) may be disposed in the vacuum heat insulating layer in order to enhance heat insulating properties.
  • the refrigerant C is circulated in the inner pipe 21 (a space between the cable core 10 and the inner pipe 21).
  • the heat insulating pipe 20 may be a straight pipe in addition to a corrugated pipe.
  • an anticorrosion layer 23 made of a resin such as polyvinyl chloride is provided on the outer periphery of the outer tube 22.
  • each superconducting cable 1a, 1b, 1c does not have a superconducting shield layer, a magnetic field (external magnetic field) is generated outside each superconducting cable 1a, 1b, 1c by the current flowing through the superconducting conductor layer 12. That is, each superconducting cable 1a, 1b, 1c is a magnetic field generating cable. Then, the superconducting cable 1a is affected by the external magnetic field generated from the superconducting cable 1b and the external magnetic field generated from the superconducting cable 1c. Similarly, the superconducting cable 1b is affected by the external magnetic field generated from the superconducting cable 1c and the external magnetic field generated from the superconducting cable 1a.
  • the superconducting cable 1c is separated from the external magnetic field generated from the superconducting cable 1a and the superconducting cable 1b. Under the influence of the generated external magnetic field. Therefore, by arranging the magnetic shielding members 3A, 3B, and 3C between the superconducting cables 1a, 1b, and 1c, it is possible to suppress the influence of the external magnetic field applied to each of the superconducting cables 1a, 1b, and 1c.
  • the magnetic shielding members 3A, 3B, 3C are plate-like bodies having a ferromagnetic layer 31 made of a ferromagnetic material.
  • the “ferromagnetic material” referred to here is a material having a relative magnetic permeability of 500 or more.
  • the relative magnetic permeability is preferably 1000 or more, more preferably 5000 or more. Examples of the material satisfying such a relative magnetic permeability include iron and iron alloys.
  • the magnetic shielding members 3A, 3B, and 3C have the ferromagnetic layer 31, when an external magnetic field is applied to the magnetic shielding members 3A, 3B, and 3C, the magnetic flux lines of the external magnetic field are aligned along the ferromagnetic layer 31. The direction of the external magnetic field can be changed by the ferromagnetic layer 31.
  • the vertical magnetic field is mainly the cause of eddy current loss in each heat insulating tube 20. Therefore, the eddy current is changed by changing the direction of the vertical magnetic field.
  • the external magnetic field that causes loss can be reduced (shielded).
  • the magnetic shielding members 3A, 3B, 3C are disposed between the superconducting cables 1a, 1b, 1c, respectively.
  • the magnetic shielding member 3A is disposed between the superconducting cables 1a and 1b, and shields an external magnetic field generated from the superconducting cable 1a and an external magnetic field generated from the superconducting cable 1b.
  • the magnetic shielding member 3B is disposed between the superconducting cables 1b and 1c and shields the external magnetic field generated from the superconducting cable 1b and the external magnetic field generated from the superconducting cable 1c.
  • the magnetic shielding member 3C is disposed between the superconducting cables 1c and 1a and shields an external magnetic field generated from the superconducting cable 1c and an external magnetic field generated from the superconducting cable 1a.
  • the three superconducting cables 1a, 1b, and 1c are arranged in a triangular shape, when the superconducting cable line 100 is viewed in a cross section (see FIG. 1), three plate-like magnetic shielding members are used.
  • 3A, 3B, and 3C are arranged so as to extend in the center direction of the triangle formed by the three superconducting cables 1a, 1b, and 1c, respectively.
  • the three magnetic shielding members 3A, 3B, and 3C are independent without being electromagnetically connected.
  • the three magnetic shielding members 3A, 3B, 3C are all the same shape and material.
  • the magnetic shielding members 3A, 3B, and 3C are disposed at locations where the superconducting cables 1a, 1b, and 1c can be shielded from an external magnetic field, respectively.
  • the magnetic shielding members 3A, 3B, and 3C are at the center of the line segment that connects the centers of the adjacent superconducting cables (cable cores). It arrange
  • Magnetic shielding members 3A, 3B, 3C are disposed only on the side where adjacent superconducting cables face each other.
  • the magnetic shielding members 3A, 3B, 3C are of a size that can shield external magnetic fields from each other in adjacent superconducting cables, and are preferably not unnecessarily large.
  • the magnetic shielding members 3A, 3B, 3C are divided and arranged in the longitudinal direction of the superconducting cables 1a, 1b, 1c (not shown). By doing so, since the eddy current path along the longitudinal direction of the magnetic shielding members 3A, 3B, 3C can be divided, eddy current loss in the magnetic shielding members 3A, 3B, 3C can be reduced.
  • the magnetic shielding members 3A, 3B, and 3C are likely to become heat insulating materials by being heated by Joule heat that generates eddy current loss, but the magnetic shielding members 3A, 3B, and 3C are separated in the longitudinal direction, The effect is also reduced.
  • the shape of the magnetic shielding members 3A, 3B, and 3C may be any shape that can be disposed at a location where a vertical magnetic field is applied among the external magnetic fields, such as a rectangular cross section (see FIG. 1) or a circular arc shape. It is done.
  • the magnetic shielding members 3A, 3B, 3C may be mechanically connected to each end by a member (insulating member) made of an insulating material. By doing so, it is easy to handle each magnetic shielding member 3A, 3B, 3C as an integral object, and to arrange at a predetermined position.
  • the ferromagnetic layer 31 has a saturation magnetic flux density of 1T or more. Since the saturation magnetic flux density is 1 T or more, the effect of changing the direction of the external magnetic field (vertical magnetic field) in the ferromagnetic layer 31 is increased, and thus the thickness of the ferromagnetic layer 31 can be reduced.
  • the saturation magnetic flux density is preferably 1.5T or more, 1.6T or more, and particularly preferably 1.9T or more.
  • the ferromagnetic layer 31 may have a conductivity of 12 MS / m (mega siemens per meter) or less. Since the electrical conductivity is 12 MS / m or less, the eddy current flowing in the ferromagnetic layer 31 can be easily reduced, so that the eddy current loss in the magnetic shielding members 3A, 3B, 3C can be further reduced.
  • the conductivity is further preferably 8 MS / m or less, 5 MS / m or less, and particularly preferably 2 MS / m or less.
  • the magnetic shielding members 3A, 3B, and 3C have a thickness of 2 mm or more and 10 mm or less. When the thicknesses of the magnetic shielding members 3A, 3B, and 3C are in the above range, the eddy current loss in the heat insulating tube 20 is reduced, and the eddy current loss in the magnetic shielding members 3A, 3B, and 3C can be easily reduced.
  • the thicknesses of the magnetic shielding members 3A, 3B, 3C are further preferably 3 mm or more and 8 mm or less, particularly about 5 mm.
  • the magnetic shielding members 3A, 3B, and 3C may be a laminated body in which a plurality of ferromagnetic layers are laminated with an insulating material interposed therebetween. At this time, the thickness of each ferromagnetic layer is preferably 2.5 mm or less. The thinner each ferromagnetic layer, the easier it is to reduce the eddy current loss in each ferromagnetic layer, and hence the eddy current loss in the magnetic shielding member. When the magnetic shielding members 3A, 3B, and 3C are laminated bodies, the thickness of each ferromagnetic layer is preferably 2 mm or less, 1 mm or less, particularly 0.5 mm or less, 0.3 mm or less.
  • Each ferromagnetic layer is an electromagnetic steel plate.
  • An electromagnetic steel sheet is a material that contains an additive element such as silicon in high-purity iron and reduces iron loss that occurs under an alternating magnetic field by performing advanced metallurgical treatment. As the content of additive elements such as silicon increases, the conductivity can be reduced, the eddy current loss in the magnetic shielding member can be further reduced, and the eddy current loss in the heat insulating tube can be further reduced. Furthermore, the eddy current loss in a magnetic shielding member and the eddy current loss in a heat insulation pipe
  • This superconducting cable line includes a refrigerant pipe (not shown) that is connected to the superconducting cables 1a, 1b, and 1c and forms a refrigerant circulation path.
  • This refrigerant pipe is a heat insulating pipe having an inner pipe filled with a refrigerant and an outer pipe disposed outside the inner pipe, and the same structure as the above-described heat insulating pipe 20 can be used.
  • a magnetic shielding member is provided between the refrigerant pipe and a magnetic field generating cable (for example, the superconducting cables 1a, 1b, and 1c) that applies a magnetic field to the refrigerant pipe and shields the refrigerant pipe from an external magnetic field. .
  • the magnetic shielding member has the same configuration as the magnetic shielding members 3A, 3B, 3C described above.
  • One end of the refrigerant pipe is connected to the cooling system, the other end side is connected to the termination connection portion, and the termination connection portion is connected to the heat insulation pipe 20 of the superconducting cables 1a, 1b, and 1c.
  • the refrigerant cooled by the refrigerator of the cooling system is sent to the heat insulating pipe 20 of the superconducting cables 1a, 1b, 1c, circulates through the heat insulating pipe 20, and then passes through the refrigerant pipe connected to the terminal connection portion.
  • tube 20 of the superconducting cable 1a, 1b, 1c becomes an outward path of a refrigerant
  • a refrigerant pipe becomes a return path
  • the fixing member has, for example, three gripping portions that fit on the outer peripheral portions of the respective superconducting cables 1a, 1b, and 1c, and each superconducting cable 1a, 1b, 1c, The mutual positional relationship of 1c can be fixed.
  • the magnetic shielding member can be disposed by being attached to the fixing member.
  • each magnetic shielding member and the fixing member are mechanically connected by an insulating member.
  • the magnetic shielding member can be easily disposed after the superconducting cable is laid.
  • the superconducting cables 1a, 1b, and 1c not provided with a superconducting shield layer influence each other by the magnetic field.
  • the magnetic shielding members 3A, 3B, and 3C are disposed between the superconducting cables 1a, 1b, and 1c, respectively, so that an external magnetic field that causes eddy current loss in the heat insulating tubes 20 of the superconducting cables 1a, 1b, and 1c. (Vertical magnetic field) can be reduced respectively.
  • Superconducting cables 1a, 1b, and 1c are linearly placed on the same support base 41, and superconducting cables 1d, 1e, and 1f are linearly placed on the same support base 41.
  • Each of the magnetic shielding members 3D to 3H is interposed between adjacent superconducting cables 1a-1b, 1b-1c, 1c-1d, 1d-1e, 1e-1f.
  • the magnetic shielding members 3D to 3H are not electromagnetically connected to the support bases 41, but are mechanically connected by insulating members (not shown).
  • each of the magnetic shielding members 3D to 3H and each of the support bases 41 are independent of each other without being electromagnetically connected, even if the support base 41 is made of a ferromagnetic material or a conductive material, An increase in eddy current loss in the shielding members 3D to 3H can be suppressed.
  • Embodiment 3 demonstrates the form which does not accommodate a cable core in the inside of a heat insulation pipe
  • a cryogenic refrigerant when a cryogenic refrigerant is filled inside the heat insulation tube, when an external magnetic field is applied to the heat insulation tube, eddy current loss occurs in the heat insulation tube, It becomes the load of the refrigerator that cools the refrigerant.
  • the configuration of the magnetic shielding member is the same as that of the magnetic shielding member in the first embodiment.
  • Test example 1 When a superconducting cable in which a cable core without a superconducting shield layer is housed in a heat insulating tube is arranged in a three-phase equilateral triangle, and a plate-like magnetic shielding member is arranged between each superconducting cable, the loss and magnetism generated in the heat insulating tube The loss generated in the shielding member was examined by FEM analysis.
  • the heat insulating tube has an inner tube conductivity of 2.02 MS / m and an outer tube conductivity of 1.45 MS / m.
  • the center-to-center distance of each phase is 350 mm.
  • a conductor current of 12 kArms was passed through the superconducting conductor layer of each phase.
  • each magnetic shielding member is an independent member which is not electromagnetically connected to each other (see FIG. 1). One end of each magnetic shielding member is disposed 25 mm away from the three-phase center.
  • Each magnetic shielding member is formed of a single ferromagnetic layer having a thickness of 10 mm.
  • the ferromagnetic layer is made of pure iron.
  • the conductivity of pure iron is 10.44 MS / m.
  • each magnetic shielding member is an independent member that is not electromagnetically connected to each other (similar to Test Example 1-1).
  • Each magnetic shielding member is formed of a single conductor layer having a thickness of 10 mm.
  • the conductor layer is made of aluminum.
  • the conductivity of aluminum is 34.45 MS / m.
  • Test Example 1-3 is an integral member in which each magnetic shielding member is electromagnetically connected to each other. Each magnetic shielding member is formed such that one end thereof is electromagnetically connected at the three-phase central portion. Each magnetic shielding member is formed of the same ferromagnetic layer as in Test Example 1-1.
  • Test Example 1-4 is an integral member in which each magnetic shielding member is electromagnetically connected to each other (similar to Test Example 1-3). Each magnetic shielding member is formed of the same conductor layer as in Test Example 1-2.
  • Table 1 shows the loss occurring in the heat insulating pipe (inner pipe and outer pipe) and the loss occurring in the magnetic shielding member.
  • Test Example 1-1 the loss in both the inner tube and the outer tube was reduced by half compared to Test Example 1-5 in which no magnetic shielding member was provided. In particular, the loss of the inner pipe could be reduced to 3 W / m or less.
  • Test Example 1-2 the loss of both the inner tube and the outer tube was reduced compared to Test Example 1-5, but the loss of the inner tube was 4 W / m or more, and the reduction rate was about 20%. there were. That is, in Test Example 1-2, it was found that the shielding effect by the magnetic shielding member was not so high.
  • the magnetic shielding member When the magnetic shielding member is formed of a ferromagnetic layer, when an external magnetic field (vertical magnetic field) is applied to the magnetic shielding member, the direction of the external magnetic field is changed, and the magnetic field applied to the heat insulating tube is reduced. On the other hand, when the magnetic shielding member is formed of a conductor layer, even if an external magnetic field is applied to the magnetic shielding member, the direction of the external magnetic field does not change, and the external magnetic field passes through the magnetic shielding member and is applied to the heat insulating tube. Therefore, the shielding effect of the external magnetic field is considered to be low.
  • Test Example 1-3 the loss of both the inner tube and the outer tube was reduced as compared with Test Example 1-5, but the loss of the inner tube was more than 3 W / m.
  • Test Example 1-4 the loss of both the inner tube and the outer tube was reduced as compared with Test Example 1-5, but the loss of the inner tube was more than 3 W / m. That is, in Test Examples 1-3 and 1-4 in which each magnetic shielding member is electromagnetically coupled, it was found that the shielding effect by the magnetic shielding member is not so high. When each magnetic shielding member is connected, since the eddy current loss generated in each magnetic shielding member becomes larger than when they are not connected, it is considered that the shielding effect by the magnetic shielding member is lowered.
  • Test Example 2 In Test Example 2, with respect to Test Example 1-1, the thickness of the magnetic shielding member was used as a parameter, and the loss occurring in the heat insulating tube and the loss occurring in the magnetic shielding member were examined by FEM analysis (Test Examples 2-1 to 2- 7. Test Example 2-7 is the same as Test Example 1-1).
  • the magnetic shielding member is formed of a single ferromagnetic layer. Table 2 shows the loss generated in the heat insulating tube and the loss generated in the magnetic shielding member for each test example.
  • the loss of the inner tube can be reduced to 3 W / m or less when the thickness of the magnetic shielding member is 2 mm or more. Particularly, when the thickness of the magnetic shielding member is 5 mm, the loss of the inner tube can be reduced to 2 W / m. Further, it has been found that the loss of the magnetic shielding member increases as the thickness of the magnetic shielding member increases. This is probably because the volume of the magnetic shielding member increases as the thickness of the magnetic shielding member increases, resulting in an increase in eddy current loss generated in the magnetic shielding member. When the eddy current loss of the magnetic shielding member is increased, the shielding effect by the magnetic shielding member is lowered. Therefore, in Test Example 2-7, it is considered that the loss of the inner tube is increased as compared with Test Example 2-6.
  • Test Example 3 In Test Example 3, as in Test Example 1-1, the magnetic shielding member having a thickness of 10 mm is a laminated body in which a plurality of ferromagnetic layers are laminated, and the thickness of each ferromagnetic layer is used as a parameter for a heat insulating tube.
  • the loss generated and the loss generated in the magnetic shielding member were examined by FEM analysis (Test Examples 3-1 to 3-6 and Test Example 3-1 were the same as Test Example 1-1). Although an insulating material is interposed between the ferromagnetic layers, in Test Example 3, the thickness of the insulating material is not considered. Table 3 shows the loss generated in the heat insulating tube and the loss generated in the magnetic shielding member for each test example.
  • both the loss of the heat insulating tube and the loss of the magnetic shielding member can be reduced when the magnetic shielding member is a laminated body in which a plurality of ferromagnetic layers are laminated via an insulating material.
  • the loss of the inner tube could be reduced to 2 W / m or less.
  • the loss of the inner tube could be reduced to 1.5 W / m. It was also found that the loss of the magnetic shielding member can be reduced as the thickness of each ferromagnetic layer is reduced.
  • the loss of the magnetic shielding member could be reduced to 600 W / m or less. Furthermore, when the thickness of each ferromagnetic layer is 0.5 mm or less, the loss of the magnetic shielding member can be reduced to 150 W / m or less. In particular, when the thickness of each ferromagnetic layer is 0.25 mm or less, the loss of the magnetic shielding member can be reduced to 100 W / m or less. This is thought to be because eddy current loss in the magnetic shielding member is reduced because the volume is reduced as the thickness of each magnetic shielding member is reduced. And since the eddy current loss of a magnetic shielding member became small, the shielding effect by a magnetic shielding member improved, and it is thought that the loss of the inner tube was reduced to 1.5 W / m.
  • Test example 4 the magnetic shielding member having a thickness of 5 mm is a laminate in which a plurality of ferromagnetic layers are laminated, and the loss generated in the heat insulating tube and the magnetic shielding member are caused by using the thickness of each ferromagnetic layer as a parameter.
  • the loss was examined by FEM analysis (Test Examples 4-1 to 4-5). Conditions other than the thickness of the magnetic shielding member are the same as in Test Example 3 above. Although an insulating material is interposed between the ferromagnetic layers, in Test Example 4, the thickness of the insulating material is not considered. Table 4 shows the loss generated in the heat insulating tube and the loss generated in the magnetic shielding member for each test example.
  • both the loss of the heat insulating tube and the loss of the magnetic shielding member can be reduced because the magnetic shielding member is a laminated body in which a plurality of ferromagnetic layers are laminated via an insulating material. . That is, in order to reduce both the loss of the inner tube and the loss of the magnetic shielding member, it has been found effective to stack the thin ferromagnetic layer via the insulating material.
  • Test example 5 a magnetic shielding member having a thickness of 10 mm is a laminated body in which a plurality of ferromagnetic layers are laminated, and each ferromagnetic layer is subjected to the conditions shown in Table 5 (type (whether the orientation of crystal axes is directional). Non-directional)) Thickness, conductivity, saturation magnetic flux density)
  • Table 5 type (whether the orientation of crystal axes is directional). Non-directional)
  • As a magnetic steel sheet the loss generated in the heat insulating tube and the loss generated in the magnetic shielding member were examined by FEM analysis (Test Examples 5-1 to 5-10) .
  • the arrangement of the superconducting cable and the magnetic shielding member, the energization conditions, and the like are the same as in Test Example 1-1.
  • tube and the loss which arises in a magnetic shielding member are combined with Table 5, and is shown.
  • the magnetic shielding member is a laminate in which a plurality of electromagnetic steel plates are laminated via an insulating material, the loss of the inner tube can be reduced to 1.5 W / m or less, and the loss of the magnetic shielding member can be reduced to 100 W / m. It was found that it can be reduced to m or less, particularly 50 W / m or less. In Test Example 5, there was no difference between orientation and non-directionality in the orientation of the electrical steel sheet. Regarding the thickness of each electromagnetic steel sheet, it was found that the loss of the magnetic shielding member tends to be reduced as the thickness is reduced. In particular, when the thickness of the electromagnetic steel sheet was reduced to 0.23 mm, the loss of the magnetic shielding member could be reduced to 20 W / m or less.
  • the loss of the magnetic shielding member tends to be reduced when the electrical conductivity is reduced.
  • the loss of the magnetic shielding member could be reduced to 50 W / m or less.
  • Test Example 6 the magnetic shielding member having a thickness of 5 mm is a laminated body in which a plurality of ferromagnetic layers are laminated, and each ferromagnetic layer is an electromagnetic steel plate having the same conditions as in Test Example 5, and loss generated in the heat insulating tube.
  • the loss generated in the magnetic shielding member was examined by FEM analysis (Test Examples 6-1 to 6-10). Conditions other than the thickness of the magnetic shielding member are the same as in Test Example 5 above.
  • tube and the loss which arises in a magnetic shielding member are combined with Table 6, and is shown.
  • the magnetic shielding member is a laminate in which a plurality of electromagnetic steel plates are laminated via an insulating material, so that the loss of the inner tube can be reduced to 1.6 W / m or less and magnetic It has been found that the loss of the shielding member can be reduced to 100 W / m or less, particularly 50 W / m or less. That is, in order to reduce both the loss of the inner tube and the loss of the magnetic shielding member, it has been found that it is effective to stack the electromagnetic steel plates via the insulating material.
  • a superconducting cable comprising a cable core having a superconducting conductor layer, an inner tube that houses the cable core and that is filled with a refrigerant, and an outer tube that is disposed outside the inner tube, and the superconducting cable Is disposed inside and a magnetic shielding member that shields the superconducting cable from an external magnetic field outside the outer tube, and the magnetic shielding member is a conductive material made of a highly conductive material.
  • a superconducting cable line having a body layer.
  • the “good conductive material” referred to here is a material having a conductivity of 15 MS / m or more.
  • the conductivity is more preferably 30 MS / m or more. Examples of the material satisfying such conductivity include aluminum, copper, and alloys based on any of them.
  • Appendix 2 The superconducting cable line according to appendix 1, wherein the magnetic shielding member has a ferromagnetic layer made of a ferromagnetic material.
  • the magnetic shielding member includes the ferromagnetic layer, so that the magnetic flux lines of the external magnetic field can be made to follow the ferromagnetic layer, and the direction of the external magnetic field can be changed by the ferromagnetic layer. Can be changed.
  • the vertical magnetic field is the main cause of eddy current loss in the adiabatic tube, so changing the direction of this vertical magnetic field causes the eddy current loss to occur. Magnetic field can be reduced. By reducing the magnetic field due to eddy current loss in the conductor layer and further reducing the magnetic field by changing the direction of the external magnetic field in the ferromagnetic layer, the external magnetic field applied to the superconducting cable is more effectively reduced. it can.
  • Appendix 3 The superconducting cable line according to appendix 2, wherein the ferromagnetic layer is disposed on the superconducting cable side, and the conductor layer is disposed immediately above the ferromagnetic layer.
  • an eddy current loss is generated in the conductor layer to reduce the external magnetic field to some extent, and the direction of the external magnetic field that could not be reduced can be changed in the ferromagnetic layer.
  • the external magnetic field applied to can be more effectively reduced.
  • the conductor layer is disposed on the outer side of the superconducting cable with respect to the ferromagnetic layer, thereby generating a joule generated in the conductor layer. It is easy to dissipate heat to the room temperature side.
  • Appendix 4 The superconducting cable line according to any one of appendix 1 to appendix 3, wherein the magnetic shielding member is disposed in a part of at least one of a circumferential direction and a length direction of the superconducting cable.
  • the magnetic shielding member Since the conductor layer that generates eddy current loss is heated by Joule heat, if the magnetic shielding member is disposed over the entire circumference and the entire length of the superconducting cable, the magnetic shielding member tends to be a heat insulating material. Then, the heat insulation effect is reduced (it is excellent in heat dissipation) because the magnetic shielding member is interrupted in at least one direction of the circumferential direction or the length direction of the superconducting cable. As described above, since the vertical magnetic field of the external magnetic field applied to the superconducting cable (heat insulating tube) is the main cause of eddy current loss in the heat insulating tube, the magnetic shielding member is at least a place where the vertical magnetic field is applied. The external magnetic field applied to the superconducting cable can be reduced. Moreover, the usage-amount of a magnetic shielding member can be reduced and cost reduction can be achieved.
  • the magnetic shielding member since the magnetic shielding member is fixed to the outer tube, it can be handled for each superconducting cable, and is excellent in workability such as laying.
  • the magnetic shielding member is disposed between the superconducting cable and the other cable.
  • a plurality of cables can be used. Since the shielding member is shared, the number of magnetic shielding members can be reduced in the laying path. Moreover, the usage-amount of a magnetic shielding member can be reduced and cost reduction can be achieved.
  • Appendix 7 The superconducting device according to any one of appendix 1 to appendix 4, wherein the magnetic shielding member is formed by winding a tape material made of a highly conductive material on the outer periphery of the outer tube. Cable track.
  • the magnetic shielding member is formed by winding the tape material, so that it can be handled for each superconducting cable, and is excellent in workability during installation.
  • the conductor layer has a wide layer formed by winding a wide tape wire with a gap material between the wires, and a plurality of tape wires having a width narrower than the wide layer, and a gap material is provided between the wires.
  • eddy current loss due to an external magnetic field can be generated preferentially in the wide layer, and the external magnetic field applied to the superconducting cable can be reduced. Then, the narrow current layer preferentially receives induction from the superconducting conductor layer, so that an induced current can flow.
  • the magnetic field generated from the induced current cancels the magnetic field generated from the superconducting conductor layer to some extent, and the leakage magnetic field of the superconducting cable itself is reduced. Can be reduced. Therefore, when it is set as the superconducting cable which does not have a superconducting shield layer, while shielding an external magnetic field, it can shield a magnetic field also with respect to another cable.
  • the magnetic shielding member is disposed between the laying path and the other laying path, the external magnetic field from the cable laid on the other laying path is applied to the superconducting cable. This can be suppressed.
  • the magnetic field generated from the superconducting conductor layer is the magnetic field generated from the induced current.
  • the leakage magnetic field can be reduced. Therefore, the external magnetic field can be shielded by the magnetic shielding member, and the magnetic field can be shielded from other cables by the superconducting shield layer.
  • a heat insulating pipe having an inner pipe filled with a refrigerant and an outer pipe disposed outside the inner pipe; a laying path in which the heat insulating pipe is housed; and the heat insulating pipe outside the outer pipe.
  • a magnetic shielding member that shields the magnetic shielding member from an external magnetic field, and the magnetic shielding member has a conductor layer made of a highly conductive material.
  • the heat insulation pipe line of appendix 11 even if an external magnetic field is applied to the heat insulation pipe filled with the refrigerant, eddy current loss due to the external magnetic field can be generated in the conductor layer, and the external magnetic field applied to the heat insulation pipe Can be reduced. Therefore, since the eddy current loss which arises in the heat insulation pipe, especially the inner pipe located in the low temperature part side can be reduced, the load of a refrigerator can be reduced.
  • the superconducting cable line of the present invention can be suitably used for a power transmission line to which a magnetic field from the outside may be applied in the superconducting cable.
  • the heat insulation pipe line of this invention can be utilized suitably for the heat insulation pipe line in which the magnetic field from the outside may be applied in the heat insulation pipe filled with the cryogenic refrigerant.

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 冷媒を冷却する冷凍機の負荷が小さい超電導ケーブル線路、及び断熱管路を提供する。 超電導導体層を有するケーブルコアと、前記ケーブルコアを収納すると共に冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管とを備える超電導ケーブルと、前記超電導ケーブルと、前記超電導ケーブルに対して磁場を印加する磁場発生ケーブルとの間に介在され、前記超電導ケーブルを前記磁場から遮蔽する板状の磁気遮蔽部材とを備え、前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している超電導ケーブル線路。

Description

超電導ケーブル線路、及び断熱管路
 本発明は、超電導ケーブルが布設された超電導ケーブル線路、及びこの超電導ケーブル線路の構成部材に適した断熱管路に関する。特に、冷媒を冷却する冷凍機の負荷が小さい超電導ケーブル線路に関する。
 超電導ケーブルは、既存の常電導ケーブル(例、OFケーブルやCVケーブル)と比較して、大容量の電力を低損失で送電できることから、省エネルギー技術として期待されている。最近では、超電導ケーブルを布設し、実際に送電を行う実証試験が進められている。
 超電導ケーブルは、フォーマの外周に超電導線材を螺旋状に巻回して形成された超電導層(超電導導体層、超電導シールド層)を有するケーブルコアを断熱管内に収納し、この断熱管内に冷媒(例えば、液体窒素)を流通させることで、超電導層を冷却する構造が代表的である(特許文献1)。超電導シールド層が設けられていることで、この超電導シールド層には、超電導導体層に流れる電流と逆向きでほぼ同じ大きさの誘導電流が流れる。誘導電流から生じる磁場にて、超電導導体層から生じる磁場を打ち消し合うことで、磁場が外部に漏れる(漏れ磁場が生じる)ことを抑制している。断熱管は、一般的に、内管と外管とを有する二重構造管であり、内管と外管との間の空間が真空引きされ、この空間に真空断熱層が形成されている。
特開2006-59695号公報
 超電導ケーブルを実用化する上で、すでに常電導ケーブルが布設されている既存の地中管路や洞道内に超電導ケーブルを増設することが検討されている。しかし、超電導ケーブルと常電導ケーブルとを近接配置した場合、超電導ケーブルは、常電導ケーブルからの磁場の影響を受ける虞がある。
 また、常電導ケーブルの代替として超電導ケーブルを布設することが検討されている。このとき、超電導ケーブルのコスト削減のために、超電導シールド層を省くことが検討されている。しかし、超電導シールド層を備えない超電導ケーブルでは漏れ磁場が生じるため、複数の超電導ケーブルを近接配置するにあたり超電導シールド層を備えない超電導ケーブルが含まれると、他の超電導ケーブルがこの漏れ磁場の影響を受けることになる。
 超電導ケーブルにおいて外部から磁場が印加されると、まず断熱管に磁場が印加される。断熱管は一般的に金属材料で構成されているため、断熱管に磁場が印加されると渦電流によってジュール熱が生じることによる渦電流損失が発生する虞がある。断熱管に渦電流損失が発生すると、断熱管の内部に充填される冷媒を冷却する冷凍機の負荷となる。そこで、外部からの磁場の影響を受けた場合にも、冷媒の冷凍機の負荷が小さい断熱管路、及び超電導ケーブル線路の開発が望まれる。
 本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、冷媒を冷却する冷凍機の負荷が小さい超電導ケーブル線路を提供することにある。
 また、本発明の別の目的は、冷媒を冷却する冷凍機の負荷が小さい断熱管路を提供することにある。
 本発明の一態様に係る超電導ケーブル線路は、超電導ケーブルと、板状の磁気遮蔽部材とを備える。超電導ケーブルは、超電導導体層を有するケーブルコアと、前記ケーブルコアを収納すると共に冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管とを備える。磁気遮蔽部材は、前記超電導ケーブルと、前記超電導ケーブルに対して磁場を印加する磁場発生ケーブルとの間に介在され、前記超電導ケーブルを前記磁場から遮蔽する。前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している。
 本発明の一形態に係る断熱管路は、冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管と、前記断熱管と、前記断熱管に対して磁場を印加する磁場発生ケーブルとの間に介在され、前記断熱管を前記磁場から遮蔽する板状の磁気遮蔽部材とを備える。前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している。
 上記超電導ケーブル線路は、外部からの磁場の影響を受けた場合でも、冷媒を冷却する冷凍機の負荷が小さい。
 また、上記断熱管路は、外部からの磁場の影響を受けた場合でも、冷媒を冷却する冷凍機の負荷が小さい。
実施形態1の超電導ケーブル線路の概略横断面図である。 実施形態2の超電導ケーブル線路の概略横断面図である。
 [本発明の実施形態の説明]
 本発明者らは、超電導ケーブルにおいて外部からの磁場(以下、外部磁場と呼ぶことがある)の影響を受けた場合に断熱管に生じる渦電流損失を検討した。超電導ケーブルの断熱管は、液体窒素といった冷媒が充填されるため、一般的に、ステンレス鋼といった超電導ケーブルの運用温度に対する耐性に優れる材料から構成される。ステンレス鋼といった金属材料は、磁場が印加されると、渦電流によってジュール熱が生じることによる渦電流損失が発生する。そこで、超電導シールド層を備えない3本の単心型超電導ケーブルを近接配置した際に、各超電導ケーブルの断熱管に生じる渦電流損失をFEM(Finite Element Method)解析によって調べた。その結果、断熱管の内管及び外管ともに渦電流が流れて大きな渦電流損失が発生することがわかった。内管及び外管ともに渦電流損失が発生する理由は、以下のように考えられる。超電導ケーブルに外部磁場が印加されると、まず外管に印加され、この外管で渦電流損失が発生することである程度外部磁場は低減する。しかし、外管においてある程度の磁場は低減するものの、外管で低減できなかった外部磁場は外管を透過して内管に印加され、内管でも渦電流損失を生じる。外管は外部環境(常温部)側に露出しており、渦電流によるジュール熱は常温部側に放熱するため、冷媒を冷却する冷却機構(冷凍機)の負荷に及ぼす影響は小さい。一方、内管は冷媒と接触する(低温部)側に位置するため、渦電流によるジュール熱は冷媒側に放熱する。よって、内管に生じる渦電流損失が冷凍機の負荷に及ぼす影響は大きく、この冷凍機の負荷を低減するために内管に生じる渦電流損失を極力低減したい。この内管に生じる渦電流損失は、上記FEM解析の結果、5~10W/m程度と無視できない程大きいことがわかった。そこで、超電導ケーブルにおいて外部磁場の影響を遮蔽することを検討し、本発明を完成するに至った。以下、本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る超電導ケーブル線路は、超電導ケーブルと、板状の磁気遮蔽部材とを備える。超電導ケーブルは、超電導導体層を有するケーブルコアと、前記ケーブルコアを収納すると共に冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管とを備える。磁気遮蔽部材は、前記超電導ケーブルと、前記超電導ケーブルに対して磁場を印加する磁場発生ケーブルとの間に介在され、前記超電導ケーブルを前記磁場から遮蔽する。前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している。
 前記実施形態で規定する各要件の具体的意義は次の通りである。「超電導ケーブルに対して磁場を印加する磁場発生ケーブル」とは、超電導ケーブルに近接配置した常電導ケーブルや、超電導シールド層を備えない超電導ケーブルなどが挙げられる。超電導シールド層を備えない超電導ケーブルが複数ある場合、磁場発生ケーブルを兼ねた超電導ケーブルは、それぞれ相互に磁場の影響を及ぼし合うことになる。
 「他の強磁性材料で構成される部材」とは、磁気遮蔽部材が複数ある場合の各磁気遮蔽部材同士や、磁気遮蔽部材以外で超電導ケーブル線路を構成する部材(例えば、洞道や、洞道内において各ケーブルを支持する支持台など)などが挙げられる。磁場発生ケーブルが複数ある場合、超電導ケーブルと各磁場発生ケーブルとの間にそれぞれ別体の磁気遮蔽部材が介在されることになる。
 「電磁気的に独立」とは、複数の部材が導通路や磁路として分断されて連続していないことをいう。よって、複数の磁気遮蔽部材同士が、プラスチックなどの非磁性及び非導通性部材で機械的に連結されていても、各磁気遮蔽部材は「電磁気的に独立」していることになる。
 上記構成によれば、超電導ケーブルと磁場発生ケーブルとの間に介在される磁気遮蔽部材によって、超電導ケーブルを磁場発生ケーブルが発生する磁場(外部磁場)から遮蔽することができる。磁気遮蔽部材が強磁性体層を有することで、磁気遮蔽部材に外部磁場が印加されると、外部磁場の磁束線を強磁性体層に沿わせることができ、強磁性体層で外部磁場の向きを変えることができるからである。超電導ケーブル(断熱管)に印加される外部磁場のうち主に垂直磁場が断熱管に渦電流損失を生じさせる主な原因であるため、この垂直磁場の向きを変えることで、渦電流損失を生じさせる外部磁場を低減できる。よって、超電導ケーブル(断熱管)において外部磁場による渦電流損失が発生することを抑制できる。断熱管のうち特に低温部側に位置する内管に生じる渦電流損失を低減できるため、冷凍機の負荷を低減できる。
 磁気遮蔽部材は、他の強磁性材料で構成される部材(強磁性部材)とは電磁気的に独立していることで、磁気遮蔽部材において外部磁場による渦電流損失を低減できる。磁気遮蔽部材は、体積が大きいと渦電流損失も大きくなる。よって、磁気遮蔽部材は、超電導ケーブルを外部磁場から遮蔽できる大きさを有する必要はあるが、他の強磁性部材と独立していることで、不必要に大きくなることを抑制でき、渦電流損失を低減できる。また、磁気遮蔽部材が他の強磁性部材と独立していることで、渦電流パスを分断することができ、渦電流損失を低減できる。磁気遮蔽部材における渦電流損失を低減することで、その磁気遮蔽部材による遮蔽効果を向上でき、断熱管における渦電流損失も低減できる。
 (2)上記の超電導ケーブル線路の一例として、前記磁場発生ケーブルを兼ねた三つの前記超電導ケーブルが、三角形状に配設される形態が挙げられる。このとき、前記磁気遮蔽部材が、三つの前記超電導ケーブル間にそれぞれ配設されている。
 超電導ケーブル線路として、超電導シールド層を備えない三つの超電導ケーブルが三角形状に配設されることがある。このとき、各超電導ケーブルは磁場発生ケーブルでもあるため、各超電導ケーブルはそれぞれ相互に磁場の影響を及ぼし合う。磁気遮蔽部材が、各超電導ケーブル間にそれぞれ配設されていることで、各超電導ケーブル(断熱管)において渦電流損失を生じさせる外部磁場をそれぞれに低減できる。各磁気遮蔽部材は電磁気的に独立しているため、各磁気遮蔽部材において外部磁場による渦電流損失を低減できる。
 (3)上記の超電導ケーブル線路の一例として、前記強磁性体層は、飽和磁束密度が1T以上である形態が挙げられる。
 上記構成によれば、強磁性体層で外部磁場(垂直磁場)の向きを変える効果が大きくなるため、強磁性体層の厚さを薄くすることができる。よって、強磁性体層の体積を小さくできることで、磁気遮蔽部材における渦電流損失をさらに低減し易い。
 (4)上記の超電導ケーブル線路の一例として、前記強磁性体層は、導電率が5MS/m以下である形態が挙げられる。
 上記構成によれば、強磁性体層に流れる渦電流をより低減できるため、磁気遮蔽部材における渦電流損失をさらに低減し易い。
 (5)上記の超電導ケーブル線路の一例として、前記磁気遮蔽部材は、厚さが2mm以上10mm以下である形態が挙げられる。
 上記構成によれば、磁気遮蔽部材における渦電流損失をより低減し、断熱管における渦電流損失を低減し易い。磁気遮蔽部材の厚さが2mm以上であることで、超電導ケーブル(断熱管)に印加される外部磁場を十分に遮蔽でき、断熱管における渦電流損失を低減し易い。一方、磁気遮蔽部材の厚さが厚くなると、磁気遮蔽部材の体積が大きくなるため、磁気遮蔽部材における渦電流損失が大きくなり易い。よって、磁気遮蔽部材の厚さが10mm以下であることで、磁気遮蔽部材の体積を小さくでき、磁気遮蔽部材における渦電流損失を低減できる。磁気遮蔽部材における渦電流損失を低減することで、その磁気遮蔽部材による遮蔽効果を向上でき、断熱管における渦電流損失も低減し易い。
 (6)上記の超電導ケーブル線路の一例として、前記磁気遮蔽部材は、絶縁材を介して複数の前記強磁性体層が積層された積層体である形態が挙げられる。
 上記構成によれば、磁気遮蔽部材の厚さを一定としたとき、単層の強磁性体層で磁気遮蔽部材を構成する場合に比較して、強磁性体層の厚さを薄くできるため、磁気遮蔽部材における渦電流損失をさらに低減し易い。各強磁性体層間には絶縁材が介在されているため、各強磁性体層のそれぞれに独立して渦電流が流れることになるが、各強磁性体層の厚さを薄くすることで、各強磁性体層における渦電流損失を低減できるからである。各強磁性体層の渦電流損失を低減することで、磁気遮蔽部材における渦電流損失(各強磁性体層の渦電流損失の合計)を低減することができる。
 (7)上記(6)の超電導ケーブル線路の一例として、前記強磁性体層は、厚さが0.5mm以下である形態が挙げられる。
 磁気遮蔽部材が上記積層体である場合、各強磁性体層の厚さが0.5mm以下であることで、磁気遮蔽部材における渦電流損失をさらに低減し易い。
 (8)上記の超電導ケーブル線路の一例として、前記強磁性体層は、電磁鋼板である形態が挙げられる。
 各強磁性体層が電磁鋼板であることで、1T以上の飽和磁束密度を確保しつつ導電率を低減できるため、磁気遮蔽部材における渦電流損失をさらに低減でき、超電導ケーブルの断熱管における渦電流損失をさらに低減できる。
 (9)本発明の実施形態に係る断熱管路は、冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管と、前記断熱管と、前記断熱管に対して磁場を印加する磁場発生ケーブルとの間に介在され、前記断熱管を前記磁場から遮蔽する板状の磁気遮蔽部材とを備える。前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している。
 上記構成によれば、冷媒が充填された断熱管を磁場発生ケーブルが発生する磁場(外部磁場)から遮蔽することができ、断熱管において外部磁場による渦電流損失が発生することを抑制できる。よって、断熱管、特に低温部側に位置する内管に生じる渦電流損失を低減できるため、冷凍機の負荷を低減できる。
 [本発明の実施形態の詳細]
 本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。図中の同一符号は、同一名称物を示す。
 <実施形態1>
 〔超電導ケーブル線路〕
 実施形態1の超電導ケーブル線路100は、図1に示すように、三本の超電導ケーブル1a,1b,1cを三角形状に近接配置(例えば、各超電導ケーブルの中心間距離が100mm以上500mm以下程度)して、一つの洞道4内に布設されている。本実施形態1の超電導ケーブル線路100の主たる特徴とするところは、各超電導ケーブル1a,1b,1cは超電導シールド層を備えておらず、各超電導ケーブル1a,1b,1cをそれぞれ外部の磁場(以下、外部磁場と呼ぶことがある)から遮蔽する磁気遮蔽部材3A,3B,3Cを備えることにある。以下、各構成について詳しく説明する。なお、説明の便宜上、洞道4に対する超電導ケーブル1a,1b,1cの大きさを大きくしている。
 (超電導ケーブル)
 超電導ケーブル1a,1b,1cは、それぞれ一つのケーブルコア10が断熱管20に収納された単心のケーブル構造である。ケーブルコア10は、中心から順にフォーマ11、超電導導体層12、電気絶縁層13、常電導接地層14、保護層15を備え、超電導シールド層を備えない。これら各構成部材には、公知の構成・材料を用いることができる。
 フォーマ11は、超電導導体層の支持、ケーブルの抗張力材、その他、短絡や地絡などの事故時における事故電流を分流する通電路などに利用される。通電路にも利用する場合、フォーマ11は、銅やアルミニウムなどの常電導材料からなる中実体や中空体(管体)が好適に利用できる。中実体は、例えば、エナメルなどの絶縁被覆を備える銅線を複数本撚り合わせた撚り線材が挙げられる。フォーマ11の外周にクラフト紙やPPLP(住友電気工業株式会社の登録商標)といった絶縁性テープなどを巻回してクッション層(図示せず)を設けることができる。
 超電導導体層12は、酸化物超電導導体を備えるテープ状線材、例えばBi2223系超電導テープ線(Ag-Mnシース線)を単層又は多層に螺旋状に巻回した構成が挙げられる。その他、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど)も超電導導体層12に利用できる。一つの超電導導体層12を多層構造とする場合、各超電導線材の層間にクラフト紙などの絶縁紙を巻回した層間絶縁層を形成することができる。
 電気絶縁層13は、クラフト紙などの絶縁紙テープや、クラフト紙とプラスチックとを複合した半合成絶縁テープ、例えばPPLPといったテープ状の絶縁性材料を巻回した構成が挙げられる。
 常電導接地層14は、従来のOFケーブルやCVケーブルと同様に絶縁層の外側に設けられて、接地電位を形成する層であり、銅といった常電導材料からなる金属テープを巻回した構成が挙げられる。これにより、電気絶縁層13内の電界分布の均一化が図れ、安定した絶縁性能が得られるが、これは既存ケーブルも同じである。常電導接地層14は、接地線(図示せず)を介して接地されている。常電導接地層14は、例えば一点接地することで、超電導導体層12からの磁場に対する誘導電流が流れないようにすることができる。
 保護層15は、ケーブルコア10の最外周に配置され、その内側に配置された部材の機械的保護、常電導接地層14と断熱管20との間の電気的絶縁の確保を主な目的として設けられる。保護層15は、クラフト紙などの絶縁紙テープや、クラフト紙とプラスチックとを複合した半合成絶縁紙、例えばPPLPをテープ状にして巻回した構成が挙げられる。
 断熱管20は、ステンレス鋼製の内管21と外管22とを有する二重構造のコルゲート管であり、内管21と外管22との間が真空引きされ、この空間に真空断熱層が形成されている。真空断熱層には、断熱性を高めるためにスーパーインシュレーション(商品名)などの断熱材(図示せず)を配置してもよい。内管21内(ケーブルコア10と内管21との間の空間)には冷媒Cが流通される。断熱管20はコルゲート管で構成する他、直管で構成してもよい。外管22の外周には、ポリ塩化ビニルなどの樹脂からなる防食層23を備える。
 各超電導ケーブル1a,1b,1cは、超電導シールド層を備えないため、超電導導体層12に流れる電流によって各超電導ケーブル1a,1b,1cの外側に磁場(外部磁場)が発生する。つまり、各超電導ケーブル1a,1b,1cは磁場発生ケーブルとなる。そうすると、超電導ケーブル1aは、超電導ケーブル1bから発生する外部磁場、及び超電導ケーブル1cから発生する外部磁場の影響を受けることになる。同様に、超電導ケーブル1bは、超電導ケーブル1cから発生する外部磁場、及び超電導ケーブル1aから発生する外部磁場の影響を受け、超電導ケーブル1cは、超電導ケーブル1aから発生する外部磁場、及び超電導ケーブル1bから発生する外部磁場の影響を受ける。そこで、各超電導ケーブル1a,1b,1c間にそれぞれ磁気遮蔽部材3A,3B,3Cを配設することで、各超電導ケーブル1a,1b,1cのそれぞれが受ける外部磁場の影響を抑制できる。
 (磁気遮蔽部材)
 磁気遮蔽部材3A,3B,3Cは、強磁性材料で構成される強磁性体層31を有する板状体である。ここで言う「強磁性材料」とは、比透磁率が500以上である材料のことである。比透磁率は、好ましくは1000以上、さらに好ましくは5000以上であることが挙げられる。このような比透磁率を満たす材料としては、例えば鉄や鉄合金などを挙げることが挙げる。
 磁気遮蔽部材3A,3B,3Cが強磁性体層31を有することで、磁気遮蔽部材3A,3B,3Cに外部磁場が印加されると、外部磁場の磁束線を強磁性体層31に沿わせることができ、強磁性体層31で外部磁場の向きを変えることができる。超電導ケーブル1a,1b,1cに印加される外部磁場のうち主に垂直磁場が各断熱管20に渦電流損失を生じさせる主な原因であるため、この垂直磁場の向きを変えることで、渦電流損失を生じさせる外部磁場を低減(遮蔽)できる。
 磁気遮蔽部材3A,3B,3Cは、図1に示すように、各超電導ケーブル1a,1b,1c間にそれぞれ配設されている。具体的には、磁気遮蔽部材3Aは、超電導ケーブル1a,1b間に配設され、超電導ケーブル1aから発生する外部磁場、及び超電導ケーブル1bから発生する外部磁場を遮蔽する。磁気遮蔽部材3Bは、超電導ケーブル1b,1c間に配設され、超電導ケーブル1bから発生する外部磁場、及び超電導ケーブル1cから発生する外部磁場を遮蔽する。磁気遮蔽部材3Cは、超電導ケーブル1c,1a間に配設され、超電導ケーブル1cから発生する外部磁場、及び超電導ケーブル1aから発生する外部磁場を遮蔽する。ここでは、三本の超電導ケーブル1a,1b,1cが三角形状に配設されているため、超電導ケーブル線路100を横断面で見たとき(図1を参照)、板状の三つの磁気遮蔽部材3A,3B,3Cが、それぞれ三本の超電導ケーブル1a,1b,1cで形作られる三角形の中心方向に伸びるように配設されている。ただし、三つの磁気遮蔽部材3A,3B,3Cは、それぞれ電磁気的に接続されずに独立している。三つの磁気遮蔽部材3A,3B,3Cは、全て同じ形状及び材質である。
 磁気遮蔽部材3A,3B,3Cは、各超電導ケーブル1a,1b,1cをそれぞれ外部磁場から遮蔽できる箇所に配設される。ここでは、超電導ケーブル線路100を横断面で見たとき(図1を参照)、磁気遮蔽部材3A,3B,3Cは、隣り合う超電導ケーブル(ケーブルコア)の各中心を結ぶ線分の中央で、この線分の直交方向に伸びるように配設されている。磁気遮蔽部材3A,3B,3Cは、隣り合う超電導ケーブル同士が対向する側にのみ配設されている。つまり、各超電導ケーブル1a,1b,1cの周方向に伸びるようには配設されていない。磁気遮蔽部材3A,3B,3Cは、体積が大きくなると磁気遮蔽部材3A,3B,3Cで発生する渦電流損失が大きくなる傾向にある。そのため、磁気遮蔽部材3A,3B,3Cは、隣り合う超電導ケーブルにおいて相互に外部磁場を遮蔽できる程度の大きさであり、不必要に大きくないことが好ましい。
 磁気遮蔽部材3A,3B,3Cは、超電導ケーブル1a,1b,1cの長手方向に分断して配設されている(図示せず)。そうすることで、磁気遮蔽部材3A,3B,3Cの長手方向に沿った渦電流パスを分断することができるため、磁気遮蔽部材3A,3B,3Cにおける渦電流損失を低減できる。磁気遮蔽部材3A,3B,3Cは、渦電流損失を発生させるジュール熱によって昇温することで保温材となり易いが、磁気遮蔽部材3A,3B,3Cが長手方向に分断されていることで、保温効果も低減される。
 磁気遮蔽部材3A,3B,3Cの形状は、外部磁場のうち垂直磁場が印加される箇所に配設できる形状であればよく、断面矩形状(図1を参照)や、断面円弧状などが挙げられる。
 各磁気遮蔽部材3A,3B,3Cは、各端部を絶縁性材料で構成される部材(絶縁部材)によって機械的に接続してもよい。そうすることで、各磁気遮蔽部材3A,3B,3Cを一体物として取り扱い易く、所定位置に配設し易い。
 強磁性体層31は、飽和磁束密度が1T以上であることが挙げられる。飽和磁束密度が1T以上であることで、強磁性体層31で外部磁場(垂直磁場)の向きを変える効果が大きくなるため、強磁性体層31の厚さを薄くすることができる。飽和磁束密度は、さらに1.5T以上、1.6T以上、特に1.9T以上が好ましい。強磁性体層31の厚さを薄くすることで、強磁性体層31の体積を小さくできるため、磁気遮蔽部材3A,3B,3Cにおける渦電流損失をさらに低減し易い。
 強磁性体層31は、導電率が12MS/m(メガジーメンス毎メートル)以下であることが挙げられる。導電率が12MS/m以下であることで、強磁性体層31に流れる渦電流を低減し易くなるため、磁気遮蔽部材3A,3B,3Cにおける渦電流損失をさらに低減し易い。導電率は、さらに8MS/m以下、5MS/m以下、特に2MS/m以下が好ましい。
 磁気遮蔽部材3A,3B,3Cは、厚さが2mm以上10mm以下であることが挙げられる。磁気遮蔽部材3A,3B,3Cの厚さが上記範囲であることで、断熱管20における渦電流損失を低減して、磁気遮蔽部材3A,3B,3Cにおける渦電流損失を低減し易い。磁気遮蔽部材3A,3B,3Cの厚さは、さらに3mm以上8mm以下、特に5mm程度が好ましい。
 磁気遮蔽部材3A,3B,3Cは、絶縁材を介して複数の強磁性体層が積層された積層体であることが挙げられる。このとき、各強磁性体層は、厚さが2.5mm以下であることが好ましい。各強磁性体層の厚さが薄いほど、各強磁性体層における渦電流損失を低減し易く、ひいては磁気遮蔽部材における渦電流損失を低減し易い。磁気遮蔽部材3A,3B,3Cが積層体である場合、各強磁性体層の厚さは、さらに2mm以下、1mm以下、特に0.5mm以下、0.3mm以下が好ましい。
 各強磁性体層は電磁鋼板であることが挙げられる。電磁鋼板は、高純度の鉄に珪素などの添加元素を含有し、高度の冶金的処理を施すことによって、交流磁場下で発生する鉄損を低減した材料である。珪素などの添加元素の含有量が多いほど導電率を低減でき、磁気遮蔽部材における渦電流損失をより低減でき、断熱管における渦電流損失をより低減できる。さらに、各強磁性体層を厚さが0.5mm以下の電磁鋼板とすることで、磁気遮蔽部材における渦電流損失、及び断熱管における渦電流損失をより低減できる。
 (その他の構成:冷媒管)
 この超電導ケーブル線路においては、超電導ケーブル1a,1b,1cと接続され冷媒の循環経路を構成する冷媒管(図示せず)を備えることが挙げられる。この冷媒管は、冷媒が充填される内管及び内管の外側に配設される外管を有する断熱管であり、上述した断熱管20と同様の構成のものを利用できる。そして、冷媒管とこの冷媒管に対して磁場を印加する磁場発生ケーブル(例えば、上記超電導ケーブル1a,1b,1c)との間に介在され、冷媒管を外部磁場から遮蔽する磁気遮蔽部材を備える。磁気遮蔽部材は、上述した磁気遮蔽部材3A,3B,3Cと同様の構成を有する。冷媒管は、一端が冷却システムに接続され、他端側が終端接続部に接続され、終端接続部で超電導ケーブル1a,1b,1cの断熱管20と繋がっている。冷却システムの冷凍機で冷却された冷媒は、超電導ケーブル1a,1b,1cの断熱管20に送られ、断熱管20内を流通した後、終端接続部に接続された冷媒管を通って冷却システムに戻される。つまり、超電導ケーブル1a,1b,1cの各断熱管20が冷媒の往路となり、冷媒管が冷媒の復路となる。この冷媒管(断熱管)と磁場発生ケーブルとの間に磁気遮蔽部材を配設することで、冷媒管に印加する外部磁場を低減でき、冷媒管内の冷媒を冷却する冷凍機の負荷を低減できる。
 〔超電導ケーブルの布設方法〕
 超電導ケーブル1a,1b,1cの布設は、超電導ケーブル1a,1b,1c及び磁気遮蔽部材3A,3B,3Cを準備⇒超電導ケーブル1a,1b,1cを洞道内に布設⇒超電導ケーブル1a,1b,1c間に磁気遮蔽部材3A,3B,3Cを配設、によって行うことができる。超電導ケーブル1a,1b,1cは、工場で製造し、ドラムに巻き取ったものを準備する。磁気遮蔽部材3A,3B,3Cは、超電導ケーブル1a,1b,1cとは独立して準備する。超電導ケーブル1a,1b,1cを洞道内に布設する際、超電導ケーブル1a,1b,1cは、その長手方向に間隔をあけて固定部材などで固定する。固定部材は、例えば、各超電導ケーブル1a,1b,1cの外周部分に嵌る三つの把持部を有し、各把持部に各超電導ケーブル1a,1b,1cを嵌めることで各超電導ケーブル1a,1b,1cの相互の位置関係を固定できる。磁気遮蔽部材の配設は、例えば、上記固定部材に取り付けることで行える。このとき、各磁気遮蔽部材と固定部材とは、絶縁部材で機械的に接続する。一般に洞道内には磁気遮蔽部材を超電導ケーブルに取り付けるための作業空間があるため、磁気遮蔽部材を超電導ケーブルの布設後に容易に配設できる。
 超電導ケーブル線路100として、超電導シールド層を備えない三つの超電導ケーブル1a,1b,1cが三角形状に配設された場合、各超電導ケーブル1a,1b,1cはそれぞれ相互に磁場の影響を及ぼし合う。各超電導ケーブル1a,1b,1c間に、磁気遮蔽部材3A,3B,3Cがそれぞれ配設されていることで、各超電導ケーブル1a,1b,1cの断熱管20において渦電流損失を生じさせる外部磁場(垂直磁場)をそれぞれに低減できる。よって、各超電導ケーブル1a,1b,1cの断熱管20において外部磁場による渦電流損失が発生することを抑制できる。断熱管20のうち特に低温部側に位置する内管21に生じる渦電流損失を低減できるため、冷凍機の負荷を低減できる。
 <実施形態2>
 実施形態2では、図2に示すように、超電導シールド層を備えない六本の超電導ケーブル1a~1fが直線状に近接配置されており、磁気遮蔽部材3D~3Hが各超電導ケーブル1a~1f間にそれぞれ配設されている超電導ケーブル線路200を説明する。実施形態2では、各超電導ケーブル1a~1f及び各磁気遮蔽部材3D~3Hの配置形態が異なるだけであり、他の構成は実施形態1と同様である。以下の説明では、相違点を中心に行う。
 超電導ケーブル1a,1b,1cが同じ支持台41に直線状に載置されており、超電導ケーブル1d,1e,1fが同じ支持台41に直線状に載置されている。各磁気遮蔽部材3D~3Hは、それぞれ隣り合う超電導ケーブル1a-1b,1b-1c,1c-1d,1d-1e,1e-1f間に介在されている。各磁気遮蔽部材3D~3Hは、各支持台41とは電磁気的に接続されておらず、絶縁部材(図示せず)で機械的に接続されている。各磁気遮蔽部材3D~3Hと各支持台41とがそれぞれ電磁気的に接続されずに独立していることで、支持台41が強磁性材料や導電性材料で構成されていたとしても、各磁気遮蔽部材3D~3Hにおける渦電流損失が増大することを抑制できる。
 超電導ケーブル線路200として、超電導シールド層を備えない複数の超電導ケーブル1a~1fが直線状に配設された場合であっても、各超電導ケーブル1a~1f間にそれぞれ磁気遮蔽部材3D~3Hが配設されていることで、各超電導ケーブル1a~1fの断熱管20において渦電流損失を生じさせる外部磁場(垂直磁場)をそれぞれに低減できる。よって、各超電導ケーブル1a~1fの断熱管20において外部磁場による渦電流損失が発生することを抑制できる。断熱管20のうち特に低温部側に位置する内管21に生じる渦電流損失を低減できるため、冷凍機の負荷を低減できる。
 <実施形態3>
 実施形態1,2では、断熱管の内部にケーブルコアが収納された複数の超電導ケーブル間の相互に及ぼし合う磁場を遮蔽する形態を説明した。実施形態3では、断熱管の内部にケーブルコアを収納しない形態を説明する。例えば、実施形態1で説明した冷媒管のように、断熱管の内部に極低温の冷媒が充填された場合、断熱管に外部磁場が印加されると、断熱管では渦電流損失が発生し、冷媒を冷却する冷凍機の負荷となる。そこで、断熱管とこの断熱管に磁場を印加する磁場発生ケーブルとの間に、断熱管を外部磁場から遮蔽する磁気遮蔽部材を備えることで、渦電流損失を低減でき、冷凍機の負荷を低減できる。この磁気遮蔽部材の構成は、実施形態1における磁気遮蔽部材と同様である。
 <試験例>
 ・試験例1
 超電導シールド層を備えないケーブルコアが断熱管内に収納された超電導ケーブルを三相正三角形配置し、各超電導ケーブル間に板状の磁気遮蔽部材を配設した場合に、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた。断熱管は、内管の導電率が2.02MS/m、外管の導電率が1.45MS/mである。各相の中心間距離は350mmである。各相の超電導導体層に12kArmsの導体電流を流した。
 ・・試験例1-1
 試験例1-1は、各磁気遮蔽部材が、それぞれに電磁気的に接続されずに独立した独立部材である(図1を参照)。各磁気遮蔽部材は、一端部が三相中心から25mm離れて配設されている。各磁気遮蔽部材は、厚さ10mmの単層の強磁性体層で形成されている。強磁性体層は、純鉄で構成されている。純鉄の導電率は10.44MS/mである。
 ・・試験例1-2
 試験例1-2は、各磁気遮蔽部材が、それぞれに電磁気的に接続されずに独立した独立部材である(試験例1-1と同様)。各磁気遮蔽部材は、厚さ10mmの単層の導電体層で形成されている。導電体層は、アルミニウムで構成されている。アルミニウムの導電率は34.45MS/mである。
 ・・試験例1-3
 試験例1-3は、各磁気遮蔽部材が、それぞれに電磁気的に接続された一体部材である。各磁気遮蔽部材は、それぞれの一端部が三相中心部で電磁気的に接続して形成されている。各磁気遮蔽部材は、試験例1-1と同様の強磁性体層で形成されている。
 ・・試験例1-4
 試験例1-4は、各磁気遮蔽部材が、それぞれに電磁気的に接続された一体部材である(試験例1-3と同様)。各磁気遮蔽部材は、試験例1-2と同様の導電体層で形成されている。
 ・・試験例1-5
 試験例1-5は、磁気遮蔽部材自体が配設されていない。
 試験例1-1~1-5において、断熱管(内管及び外管)に生じる損失及び磁気遮蔽部材に生じる損失を表1に示す。試験例1-1では、磁気遮蔽部材が配設されていない試験例1-5に比較して、内管及び外管ともに損失が半減した。特に、内管の損失を3W/m以下にまで低減できた。試験例1-2では、試験例1-5に比較して、内管及び外管ともに損失は低減されたが、内管の損失は4W/m以上であり、その低減率は20%程度であった。つまり、試験例1-2では、磁気遮蔽部材による遮蔽効果はそれほど高くないことがわかった。磁気遮蔽部材を強磁性体層で形成した場合、磁気遮蔽部材に外部磁場(垂直磁場)が印加されると、その外部磁場の向きが変わり、断熱管に印加される磁場が低減される。一方、磁気遮蔽部材を導電体層で形成した場合、磁気遮蔽部材に外部磁場が印加されても、その外部磁場の向きは変わらず、外部磁場は磁気遮蔽部材を透過して断熱管に印加されることになるため、外部磁場の遮蔽効果は低くなると考えられる。試験例1-3では、試験例1-5に比較して、内管及び外管ともに損失は低減されたが、内管の損失は3W/m超であった。また、試験例1-4では、試験例1-5に比較して、内管及び外管ともに損失は低減されたが、内管の損失は3W/m超であった。つまり、各磁気遮蔽部材が電磁気的に連結している試験例1-3及び1-4では、磁気遮蔽部材による遮蔽効果はそれほど高くないことがわかった。各磁気遮蔽部材が連結している場合、連結していない場合に比較して、各磁気遮蔽部材に生じる渦電流損失が大きくなるため、磁気遮蔽部材による遮蔽効果が低くなったと考えられる。
Figure JPOXMLDOC01-appb-T000001
 ・試験例2
 試験例2では、上記試験例1-1について、磁気遮蔽部材の厚さをパラメータとして、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた(試験例2-1~2-7、試験例2-7は上記試験例1-1と同じ)。磁気遮蔽部材は、単層の強磁性体層で形成されている。各試験例について、断熱管に生じる損失及び磁気遮蔽部材に生じる損失を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 磁気遮蔽部材の厚さが2mm以上であることで、内管の損失を3W/m以下にまで低減できることがわかった。特に、磁気遮蔽部材の厚さが5mmであることで、内管の損失を2W/mにまで低減できた。また、磁気遮蔽部材の厚さが厚くなるにつれて、磁気遮蔽部材の損失は大きくなることがわかった。これは、磁気遮蔽部材の厚さが厚くなると体積が大きくなるため、磁気遮蔽部材に生じる渦電流損失が大きくなったためと考えられる。磁気遮蔽部材の渦電流損失が大きくなると、磁気遮蔽部材による遮蔽効果が低くなるため、試験例2-7では、試験例2-6に比較して、内管の損失が大きくなったと考えられる。
 ・試験例3
 試験例3では、上記試験例1-1について、厚さ10mmの磁気遮蔽部材を複数の強磁性体層が積層された積層体とし、各強磁性体層の厚さをパラメータとして、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた(試験例3-1~3-6、試験例3-1は上記試験例1-1と同じ)。各強磁性体層間には絶縁材を介しているが、試験例3では、絶縁材の厚さは考慮していない。各試験例について、断熱管に生じる損失及び磁気遮蔽部材に生じる損失を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 磁気遮蔽部材が、絶縁材を介して複数の強磁性体層が積層された積層体であることで、断熱管の損失及び磁気遮蔽部材の損失ともに低減できることがわかった。磁気遮蔽部材が、厚さ5.0mm以下の強磁性体層が積層された積層体であると、内管の損失を2W/m以下にまで低減できた。各強磁性体層の厚さが1.25mm以下と薄くなると、内管の損失を1.5W/mにまで低減できた。また、各強磁性体層の厚さが薄いほど、磁気遮蔽部材の損失を低減できることがわかった。各強磁性体層の厚さが2.5mm以下であると、磁気遮蔽部材の損失を600W/m以下にまで低減できた。さらに、各強磁性体層の厚さが0.5mm以下であると、磁気遮蔽部材の損失を150W/m以下にまで低減できた。特に、各強磁性体層の厚さが0.25mm以下であると、磁気遮蔽部材の損失を100W/m以下にまで低減できた。これは、各磁気遮蔽部材の厚さが薄くなると体積が小さくなるため、磁気遮蔽部材における渦電流損失が小さくなったためと考えられる。そして、磁気遮蔽部材の渦電流損失が小さくなったことで、磁気遮蔽部材による遮蔽効果が向上し、内管の損失を1.5W/mにまで低減できたと考えられる。
 ・試験例4
 試験例4では、厚さ5mmの磁気遮蔽部材を複数の強磁性体層が積層された積層体とし、各強磁性体層の厚さをパラメータとして、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた(試験例4-1~4-5)。磁気遮蔽部材の厚さ以外の条件は、上記試験例3と同様である。強磁性体層間には絶縁材を介しているが、試験例4では、絶縁材の厚さは考慮していない。各試験例について、断熱管に生じる損失及び磁気遮蔽部材に生じる損失を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 試験例3と同様に、磁気遮蔽部材が、絶縁材を介して複数の強磁性体層が積層された積層体であることで、断熱管の損失及び磁気遮蔽部材の損失ともに低減できることがわかった。つまり、内管の損失及び磁気遮蔽部材の損失ともに低減するためには、薄い強磁性体層を、絶縁材を介して積層することが効果的であることがわかった。
 ・試験例5
 試験例5では、厚さ10mmの磁気遮蔽部材を複数の強磁性体層が積層された積層体とし、各強磁性体層を表5に示す条件(種類(結晶軸の配向性が方向性か無方向性か)、厚さ、導電率、飽和磁束密度)の電磁鋼板として、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた(試験例5-1~5-10)。超電導ケーブル及び磁気遮蔽部材の配置形態や通電条件などは、上記試験例1-1と同様である。各試験例について、断熱管に生じる損失及び磁気遮蔽部材に生じる損失を表5に併せて示す。
Figure JPOXMLDOC01-appb-T000005
 磁気遮蔽部材が、絶縁材を介して複数の電磁鋼板が積層された積層体であることで、内管の損失を1.5W/m以下にまで低減でき、かつ磁気遮蔽部材の損失を100W/m以下、特に50W/m以下にまで低減できることがわかった。試験例5では、電磁鋼板の配向性について、方向性と無方向性の違いは見られなかった。各電磁鋼板の厚さについて、厚さが薄くなると、磁気遮蔽部材の損失が低減される傾向にあることがわかった。特に、電磁鋼板の厚さが0.23mmまで薄くなると、磁気遮蔽部材の損失を20W/m以下にまで低減できた。各電磁鋼板の導電率について、導電率が小さくなると、磁気遮蔽部材の損失が低減される傾向にあることがわかった。特に、電磁鋼板の導電率が3MS/m以下まで小さくなると、磁気遮蔽部材の損失を50W/m以下にまで低減できた。
 ・試験例6
 試験例6では、厚さ5mmの磁気遮蔽部材を複数の強磁性体層が積層された積層体とし、各強磁性体層を試験例5と同様の条件の電磁鋼板として、断熱管に生じる損失及び磁気遮蔽部材に生じる損失をFEM解析によって調べた(試験例6-1~6-10)。磁気遮蔽部材の厚さ以外の条件は、上記試験例5と同様である。各試験例について、断熱管に生じる損失及び磁気遮蔽部材に生じる損失を表6に併せて示す。
Figure JPOXMLDOC01-appb-T000006
 試験例5と同様に、磁気遮蔽部材が、絶縁材を介して複数の電磁鋼板が積層された積層体であることで、内管の損失を1.6W/m以下にまで低減でき、かつ磁気遮蔽部材の損失を100W/m以下、特に50W/m以下にまで低減できることがわかった。つまり、内管の損失及び磁気遮蔽部材の損失ともに低減するためには、電磁鋼板を、絶縁材を介して積層することが効果的であることがわかった。
 以上説明した本発明の実施形態に関連して、更に以下の付記を開示する
 [付記]
 (付記1)
 超電導導体層を有するケーブルコアと、前記ケーブルコアを収納すると共に冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管とを備える超電導ケーブルと、前記超電導ケーブルが内部に収納される布設路と、前記外管の外方に、前記超電導ケーブルを外部の磁場から遮蔽する磁気遮蔽部材とを備え、前記磁気遮蔽部材は、良導電性材料で構成される導電体層を有する超電導ケーブル線路。
 付記1の超電導ケーブル線路によれば、外管の外方に導電体層を有する磁気遮蔽部材を備えることで、導電体層で外部磁場による渦電流損失を発生させることができ、超電導ケーブルに印加する外部磁場を低減できる。よって、超電導ケーブルの構成部材(断熱管)において磁場による渦電流損失が発生することを抑制できる。断熱管のうち特に低温部側に位置する内管に生じる渦電流損失を低減できるため、冷凍機の負荷を抑制できる。ここで言う「良導電性材料」とは、導電率が15MS/m以上である材料のことである。導電率は、さらに好ましくは30MS/m以上であることが挙げられる。このような導電率を満たす材料としては、例えばアルミニウムや銅、またはそのいずれかをベースとする合金などを挙げることができる。
 (付記2)
 さらに、前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有する付記1に記載の超電導ケーブル線路。
 付記2の超電導ケーブル線路によれば、磁気遮蔽部材が強磁性体層を備えることで、外部磁場の磁束線を強磁性体層に沿わせることができ、強磁性体層で外部磁場の向きを変えることができる。超電導ケーブル(断熱管)に印加される外部磁場のうち垂直磁場が断熱管に渦電流損失を発生させる主な原因であるため、この垂直磁場の向きを変えることで、渦電流損失を生じさせる外部磁場を低減できる。導電体層で渦電流損失による磁場の低減を行い、さらに強磁性体層で外部磁場の向きを変えることによる磁場の低減を行うことで、超電導ケーブルに印加される外部磁場をより効果的に低減できる。
 (付記3)
 前記強磁性体層は、前記超電導ケーブル側に配設され、前記導電体層は前記強磁性体層の直上に配設されている付記2に記載の超電導ケーブル線路。
 付記3の超電導ケーブル線路によれば、まず導電体層で渦電流損失を発生させてある程度外部磁場を低減し、低減できなかった外部磁場を強磁性体層で向きを変えることができ、超電導ケーブルに印加される外部磁場をより効果的に低減できる。また、磁気遮蔽部材を超電導ケーブル(断熱管)に近接して配設する場合、導電体層を強磁性体層よりも超電導ケーブルの外方側に配設することで、導電体層で生じるジュール熱を常温部側に放熱し易い。
 (付記4)
 前記磁気遮蔽部材は、前記超電導ケーブルの周方向又は長さ方向の少なくとも一方向の一部に配設されている付記1~付記3のいずれか1項に記載の超電導ケーブル線路。
 渦電流損失を発生させる導電体層はジュール熱によって昇温されるため、磁気遮蔽部材が超電導ケーブルの全周及び全長に亘って配設されていると、磁気遮蔽部材が保温材となり易い。そこで、磁気遮蔽部材が超電導ケーブルの周方向又は長さ方向の少なくとも一方向において途切れていることで、保温効果が低減される(放熱性に優れる)。上述したように、超電導ケーブル(断熱管)に印加される外部磁場のうち垂直磁場が断熱管に渦電流損失を発生させる主な原因であるため、磁気遮蔽部材は少なくとも垂直磁場が印加される箇所に配設されていれば、超電導ケーブルに印加される外部磁場を低減できる。また、磁気遮蔽部材の使用量を低減でき、低コスト化が図れる。
 (付記5)
 前記磁気遮蔽部材は、前記外管に固定されている付記1~付記4のいずれか1項に記載の超電導ケーブル線路。
 付記5の超電導ケーブル線路によれば、磁気遮蔽部材が外管に固定されていることで、超電導ケーブルごとに取り扱うことができ、布設などの作業性に優れる。
 (付記6)
 前記布設路内には、前記超電導ケーブルを含む複数のケーブルが布設されており、前記磁気遮蔽部材は、前記超電導ケーブルと他のケーブルとの間に配設されている付記1~付記4のいずれか1項に記載の超電導ケーブル線路。
 付記6の超電導ケーブル線路によれば、磁気遮蔽部材が超電導ケーブルと他のケーブルとの間に配設されていることで、例えば他のケーブルにおいても外部磁場を遮蔽する場合、複数のケーブルで磁気遮蔽部材を共用するため、布設路内において磁気遮蔽部材の点数を低減できる。また、磁気遮蔽部材の使用量を低減でき、低コスト化が図れる。
 (付記7)
 前記磁気遮蔽部材は、前記導電体層が前記外管の外周上に良導電性材料で構成されるテープ材を巻回して形成されている付記1~付記4のいずれか1項に記載の超電導ケーブル線路。
 付記7の超電導ケーブル線路によれば、磁気遮蔽部材がテープ材を巻回して形成されていることで、超電導ケーブルごとに取り扱うことができ、布設時の作業性に優れる。
 (付記8)
 前記導電体層は、幅が広いテープ線材を線材間にギャップ材を設けて巻回して形成された幅広層と、前記幅広層より幅が狭い複数のテープ線材を線材間にギャップ材を設けて巻回して形成された幅狭層と、前記幅広層と前記幅狭層との間に配設される層間絶縁層とを備え、前記幅狭層は、前記超電導ケーブル側に配設される付記7に記載の超電導ケーブル線路。
 付記8の超電導ケーブル線路によれば、幅広層で優先的に外部磁場による渦電流損失を発生させることができ、超電導ケーブルに印加する外部磁場を低減できる。そして、幅狭層で優先的に超電導導体層からの誘導を受けることで誘導電流を流すことができ、誘導電流から生じる磁場で超電導導体層から生じる磁場をある程度打ち消して超電導ケーブル自体の漏れ磁場を低減できる。よって、超電導シールド層を備えない超電導ケーブルとする場合、外部磁場を遮蔽するとともに、他のケーブルに対しても磁場を遮蔽することができる。
 (付記9)
 前記布設路と並列して、前記超電導ケーブルとは別のケーブルが布設された他布設路を備え、前記磁気遮蔽部材は、前記布設路と前記他布設路との間に配設されている付記1~付記8のいずれか1項に記載の超電導ケーブル線路。
 付記9の超電導ケーブル線路によれば、布設路と他布設路との間に磁気遮蔽部材が配設されるため、他布設路に布設されたケーブルからの外部磁場が、超電導ケーブルに印加されることを抑制できる。
 (付記10)
 前記超電導ケーブルは、超電導シールド層を有する付記1~付記9のいずれか1項に記載の超電導ケーブル線路。
 付記10の超電導ケーブル線路によれば、超電導シールド層には超電導導体層に流れる電流と逆向きでほぼ同じ大きさの誘導電流が流れるため、誘導電流から生じる磁場にて、超電導導体層から生じる磁場を打ち消し合うことで、漏れ磁場を低減できる。よって、磁気遮蔽部材によって外部磁場を遮蔽するとともに、超電導シールド層で他のケーブルに対しても磁場を遮蔽することができる。
 (付記11)
 冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管と、前記断熱管が内部に収納される布設路と、前記外管の外方に、前記断熱管を外部の磁場から遮蔽する磁気遮蔽部材とを備え、前記磁気遮蔽部材は、良導電性材料で構成される導電体層を有する断熱管路。
 付記11の断熱管路によれば、冷媒が充填された断熱管に外部磁場が印加されても、導電体層で外部磁場による渦電流損失を発生させることができ、断熱管に印加する外部磁場を低減できる。よって、断熱管、特に低温部側に位置する内管に生じる渦電流損失を低減できるため、冷凍機の負荷を低減できる。
 本発明の超電導ケーブル線路は、超電導ケーブルにおいて外部からの磁場が印加される可能性のある送電線路に好適に利用することができる。また、本発明の断熱管路は、極低温の冷媒を充填する断熱管において外部からの磁場が印加される可能性のある断熱管路に好適に利用することができる。
 100,200 超電導ケーブル線路
 1a,1b,1c,1d,1e,1f 超電導ケーブル
  10 ケーブルコア
  11 フォーマ  12 超電導導体層  13 電気絶縁層
  14 常電導接地層  15 保護層
  20 断熱管  21 内管  22 外管  23 防食層
  C 冷媒
 3A~3C,3D~3H 磁気遮蔽部材  31 強磁性体層
 4 洞道  41 支持台

Claims (9)

  1.  超電導導体層を有するケーブルコアと、前記ケーブルコアを収納すると共に冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管とを備える超電導ケーブルと、
     前記超電導ケーブルと、前記超電導ケーブルに対して磁場を印加する磁場発生ケーブルとの間に介在され、前記超電導ケーブルを前記磁場から遮蔽する板状の磁気遮蔽部材とを備え、
     前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している超電導ケーブル線路。
  2.  前記磁場発生ケーブルを兼ねた三つの前記超電導ケーブルが、三角形状に配設され、
     前記磁気遮蔽部材が、三つの前記超電導ケーブル間にそれぞれ配設されている請求項1に記載の超電導ケーブル線路。
  3.  前記強磁性体層は、飽和磁束密度が1T以上である請求項1または請求項2に記載の超電導ケーブル線路。
  4.  前記強磁性体層は、導電率が5MS/m以下である請求項1~請求項3のいずれか1項に記載の超電導ケーブル線路。
  5.  前記磁気遮蔽部材は、厚さが2mm以上10mm以下である請求項1~請求項4のいずれか1項に記載の超電導ケーブル線路。
  6.  前記磁気遮蔽部材は、絶縁材を介して複数の前記強磁性体層が積層された積層体である請求項1~請求項5のいずれか1項に記載の超電導ケーブル線路。
  7.  前記強磁性体層は、厚さが0.5mm以下である請求項6に記載の超電導ケーブル線路。
  8.  前記強磁性体層は、電磁鋼板である請求項1~請求項7のいずれか1項に記載の超電導ケーブル線路。
  9.  冷媒が充填される内管及び前記内管の外側に配設される外管を有する断熱管と、
     前記断熱管と、前記断熱管に対して磁場を印加する磁場発生ケーブルとの間に介在され、前記断熱管を前記磁場から遮蔽する板状の磁気遮蔽部材とを備え、
     前記磁気遮蔽部材は、強磁性材料で構成される強磁性体層を有し、他の強磁性材料で構成される部材とは電磁気的に独立している断熱管路。
PCT/JP2015/052277 2014-03-06 2015-01-28 超電導ケーブル線路、及び断熱管路 WO2015133204A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15758663.7A EP3115997B1 (en) 2014-03-06 2015-01-28 Superconducting cable line

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014044364 2014-03-06
JP2014-044364 2014-03-06
JP2014230242A JP6200402B2 (ja) 2014-03-06 2014-11-12 超電導ケーブル線路、及び断熱管路
JP2014-230242 2014-11-12

Publications (1)

Publication Number Publication Date
WO2015133204A1 true WO2015133204A1 (ja) 2015-09-11

Family

ID=54055016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052277 WO2015133204A1 (ja) 2014-03-06 2015-01-28 超電導ケーブル線路、及び断熱管路

Country Status (3)

Country Link
EP (1) EP3115997B1 (ja)
JP (1) JP6200402B2 (ja)
WO (1) WO2015133204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319412A (zh) * 2021-06-28 2021-08-31 中铁八局集团电务工程有限公司 电缆线路穿越预埋钢管的处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519383A (ja) * 2003-07-30 2007-07-12 プリスミアン・カビ・エ・システミ・エネルジア・ソチエタ・ア・レスポンサビリタ・リミタータ 電力送電線により発生された磁場を遮蔽するための方法、並びに、そのように遮蔽された電力送電線
JP2010238427A (ja) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd 直流超電導ケーブル
JP2011003468A (ja) * 2009-06-19 2011-01-06 Sumitomo Electric Ind Ltd 超電導ケーブル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202762B1 (de) * 2008-12-15 2011-02-09 Nexans Anordnung mit einem supraleitfähigen Kabel
WO2013072124A1 (en) * 2011-11-14 2013-05-23 Nv Bekaert Sa Steel wire for magnetic field absorption
JP2013140764A (ja) * 2011-12-06 2013-07-18 Sumitomo Electric Ind Ltd 超電導ケーブル、超電導ケーブル線路、超電導ケーブルの布設方法、及び超電導ケーブル線路の運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519383A (ja) * 2003-07-30 2007-07-12 プリスミアン・カビ・エ・システミ・エネルジア・ソチエタ・ア・レスポンサビリタ・リミタータ 電力送電線により発生された磁場を遮蔽するための方法、並びに、そのように遮蔽された電力送電線
JP2010238427A (ja) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd 直流超電導ケーブル
JP2011003468A (ja) * 2009-06-19 2011-01-06 Sumitomo Electric Ind Ltd 超電導ケーブル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319412A (zh) * 2021-06-28 2021-08-31 中铁八局集团电务工程有限公司 电缆线路穿越预埋钢管的处理方法

Also Published As

Publication number Publication date
EP3115997A1 (en) 2017-01-11
JP6200402B2 (ja) 2017-09-20
EP3115997B1 (en) 2019-03-06
JP2015181094A (ja) 2015-10-15
EP3115997A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
US9002423B2 (en) Superconducting cable
EP2858079B1 (en) Contactless power transfer transformer
AU2002345061B2 (en) Method for shielding the magnetic field generated by an electrical power transmission line, and magnetically shielded electrical power transmission line
JP5632152B2 (ja) 超伝導ケーブルを備える装置
CN101361143B (zh) 超导电缆
KR20120089568A (ko) 초전도 케이블 및 교류 송전 케이블
JP6117643B2 (ja) 超伝導性相導体を備えた装置
US8588877B2 (en) Arrangement having a superconductive cable
JP6200402B2 (ja) 超電導ケーブル線路、及び断熱管路
JP2017084524A (ja) 超電導ケーブル
JP2010277975A (ja) 超電導ケーブル線路
EP3819530B1 (en) Pipeline electric heating system
JPWO2017017715A1 (ja) 超電導線、超電導コイル、mri及びnmr
JP2015181095A (ja) 超電導ケーブル線路、及び断熱管路
WO2013077128A1 (ja) 超電導ケーブルの臨界電流測定方法
JP6216302B2 (ja) 断熱管絶縁ユニット、及び超電導ケーブル線路
KR100742499B1 (ko) 자기 차폐형 초전도 케이블 코아 및 이를 구비하는 초전도케이블
JP5252324B2 (ja) 超電導送電システム
WO2022077567A1 (zh) 三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体
JP2015216735A (ja) 超電導ケーブル、及び超電導ケーブル線路
KR100744412B1 (ko) 자기 차폐 도료가 코팅된 초전도 선재를 구비하는 초전도케이블 코아 및 이를 구비하는 초전도 케이블
WO2013072124A1 (en) Steel wire for magnetic field absorption
JP2011124252A (ja) ギャップ付き鉄心形超電導リアクトル
JP2016001582A (ja) 超電導ケーブル線路、及び冷媒輸送線路
Noji Numerical analysis of the AC losses of 500-m HTS power cable in Super-ACE project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758663

Country of ref document: EP