WO2015132082A1 - Four industriel pour chauffer des produits tels des produits siderurgiques - Google Patents

Four industriel pour chauffer des produits tels des produits siderurgiques Download PDF

Info

Publication number
WO2015132082A1
WO2015132082A1 PCT/EP2015/053581 EP2015053581W WO2015132082A1 WO 2015132082 A1 WO2015132082 A1 WO 2015132082A1 EP 2015053581 W EP2015053581 W EP 2015053581W WO 2015132082 A1 WO2015132082 A1 WO 2015132082A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
industrial furnace
burners
pipe
fumes
Prior art date
Application number
PCT/EP2015/053581
Other languages
English (en)
Inventor
Ludovic Ferrand
Patrick Dubois
Eduardo PINTO DE SOUSA
Original Assignee
Cockerill Maintenance & Ingenierie Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cockerill Maintenance & Ingenierie Sa filed Critical Cockerill Maintenance & Ingenierie Sa
Priority to CN201580011859.5A priority Critical patent/CN106164302A/zh
Priority to RU2016138842A priority patent/RU2016138842A/ru
Priority to EP15705323.2A priority patent/EP3114243B1/fr
Priority to US15/122,931 priority patent/US20170082364A1/en
Publication of WO2015132082A1 publication Critical patent/WO2015132082A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3044Furnace regenerators
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/007Systems for reclaiming waste heat including regenerators

Definitions

  • the invention relates to an industrial furnace for heating products such as steel products.
  • Many industrial furnaces for heating steel products such as preheating furnaces for processing steel coils, comprise a thermally insulated enclosure and a plurality of burners arranged in the enclosure to heat the steel products circulating in the 1 ' pregnant.
  • the burners are supplied with combustion air and with a natural gas type fuel, produce, by a first combustion, flames that heat the iron and steel products, and generate fumes circulating counter-cyclically. current of said steel products.
  • These fumes are usually themselves treated by a second combustion called "post-combustion", whose role is to ensure complete combustion to remove fumes at least a portion of polluting gases such as carbon monoxide. The resulting smoke and less polluting are then removed from the oven and released into the atmosphere by a chimney.
  • the energy consumption of preheating furnaces for processing steel coils is particularly high, of the order of 220 kWh of natural gas per tonne of heated steel. It is therefore particularly important, both from an environmental and an economic point of view, to try to improve the energy efficiency of these ovens.
  • a first method usually used is to equip the furnaces with means of recovery of energy to recover the heat lost in the fumes.
  • These recovery means are typically constituted by a tubular bundle heat exchanger comprising metal tubes in which circulates the combustion air used by the burners. The fumes, circulating around the tubes, preheat the combustion air, which improves the efficiency of the first combustion mentioned earlier.
  • This heat recovery is, however, limited by the maximum permissible temperature that can withstand the tubes, which makes it necessary to dilute the fumes with cold air.
  • a second method which has now largely supplanted the first method, consists in using regenerative burners.
  • This solution has a number of disadvantages.
  • the regenerative burners are not suitable for sucking fumes that are unburned in the burner, because it then becomes impossible to carry out an afterburner.
  • This solution is moreover difficult to apply to compact furnaces because of the one hand, of the space of regenerative tanks which are equipped with the burners and, on the other hand, the need to install the double of regenerative burners compared to to the number of burners of a standard solution.
  • Regenerative burners operate in pairs, according to a cyclic operation: the burners are half of the time in one mode of combustion and the other half of the time in a mode of accumulation of heat.
  • the invention aims to improve the energy efficiency of an industrial furnace while having an acceptable size.
  • a industrial furnace for heating products such as steel products, the furnace comprising a thermally insulated enclosure and a plurality of burners arranged in the enclosure for heating the products flowing from one end to the other of the enclosure, the burners being distributed in a plurality of temperature controlled heating zones.
  • the oven further comprises recovery means for recovering thermal energy recovery fumes from a first combustion performed by the burners so as to improve energy efficiency of the furnace.
  • the recovery means comprise a rotating regenerator associated with each heating zone, each of the rotating regenerators being adapted to receive a predetermined flow rate of the recovery fumes via a first pipe, to receive a predetermined flow rate of air from a supply via a second pipe, to preheat this supply air to provide the burners of the associated heating zone a predetermined flow of preheated combustion air via a third pipe, and to exhaust exhaust gases via a fourth pipe .
  • the energy efficiency of the furnace is improved through a recovery of thermal energy achieved by means of rotating regenerators which have congestion acceptable for most industrial furnaces.
  • the invention relates to an industrial furnace for heating products such as steel products, and is here implemented in a non-oxidizing preheating furnace of steel strips for continuous lines for processing steel coils.
  • the furnace of the invention 1 comprises a thermally insulated enclosure 2, a plurality of burners 3 arranged in the enclosure 2 to achieve a first combustion and heat a steel strip 4 flowing from one end to the other of the enclosure 2, so-called "post-combustion" means 5 adapted to achieve a second combustion, and recovery means 6.
  • the plurality of burners 3 is constituted by ten burners 3 distributed according to a plurality of temperature-controlled heating zones, in this case according to three heating zones Z1, Z2, Z3.
  • This distribution makes it possible to regulate the temperature of the oven 1 by means of only three thermocouples 7 positioned in the heating zones ZI, Z2, Z3, so as to conform the temperature of the oven to predetermined heating curves which depend in particular on a temperature of
  • the heating zones ZI, Z2, Z3 are therefore controlled according to temperature setpoints typically between 1200 and 1350 degrees Celsius for a desired band temperature at the level of a desired band at the furnace 1.
  • SI strip output of oven 1 between 550 and 750 degrees Celsius.
  • the first combustion performed by the burners 3 requires a fuel, here natural gas, and an oxidant, here combustion air Ac.
  • the burners 3 operate here in so-called "sub-chiometric" mode, also called combustion in air defect or combustion in rich gas.
  • a combustion air flow is always less than an air flow necessary to completely burn a flow of natural gas Gn introduced into the same burner.
  • Fumes of first combustion Fl are then generated by the burners 3, said first combustion fumes F1 having a so-called "incomplete" combustion, an oxygen content of which is almost zero, the oxygen of the combustion air being combined entirely or almost with natural gas.
  • the sub-stoichiometric regime is particularly advantageous since it makes it possible to confer on the fumes of first combustion Fl a reducing power on the steel strip 4, which makes it possible to avoid the formation of oxides on the steel strip, type of iron oxide for example, and even to reduce some oxides possibly present on the steel strip before this first combustion. This improves the quality of the steel strip preheated by the furnace of the invention.
  • the fumes of the first combustion Fl are charged with intermediate compounds after the first incomplete combustion, for example dihydrogen or carbon monoxide. Carbon monoxide can not be released into the atmosphere because it is a pollutant whose emissions are regulated.
  • the post-combustion means 5 are thus used to carry out the second combustion, which consists in injecting air called "post-combustion air" Apc, whose role is to complete the first combustion, performed by the burners 3, in order to suppress the first combustion fumes Fl the intermediate compounds. Since the fumes of the first combustion Fl circulate generally counter-current of the steel strip 4, the post-combustion means 5 are located in the furnace 1 upstream of the burners 3, that is to say they are located between an inlet E of the furnace and the burners 3. The post-combustion air Apc is injected by the post-combustion means 5 according to a post-combustion air flow Apc dosed to ensure complete combustion without adding unnecessary air.
  • post-combustion air Apc
  • the post-combustion air Apc is injected into an area of the enclosure in which the steel strip has a temperature that is too low to undergo the effects of oxidation caused by oxygen in the air. ⁇ post combustion Apc excess.
  • air ⁇ Apc post combustion can be injected from the exhaust flue fumes.
  • Recovery fumes F2 at least partially depolluted, are generated by the second combustion.
  • the recovery means 6 are intended to recover thermal energy from these recovery fumes F2, which are therefore derived from the first combustion and the second combustion. This improves the energy efficiency of the furnace 1.
  • the recovery means 6 comprise a rotating regenerator 7 associated with each heating zone ZI, Z2, Z3, and thus here three rotating regenerators 7.
  • the role of these rotating regenerators 7 is to heat a predetermined flow of supply air 8 so as to provide a predetermined flow rate of preheated combustion air 9.
  • the fact of using a preheated combustion air Ac makes it possible to significantly increase the efficiency of the first combustion by decreasing the amount of natural gas Gn required for that and, therefore, to increase the energy efficiency of the furnace of the invention 1.
  • Each rotary regenerator 7 is adapted to receive a predetermined flow of recovery fumes 10 via a first pipe 11, to receive the predetermined flow of supply air 8 via a second pipe 12, to preheat this supply air Aa for supplying to the burners 3 of the heating zone associated with the rotating regenerator 7 the predetermined flow rate of preheated combustion air 9 via a third pipe 14, and discharging exhaust fumes F3 via a fourth pipe 15.
  • Each rotating regenerator 7 is fed continuously by the predetermined flow of feed air 8 and by the predetermined flow rate of recovery fumes 10.
  • Each rotating regenerator 7 comprises, in a manner known per se, rotating compartments which are placed in communication a first half of the time with the first pipe 11, which allows a warming of the interior of the regenerator 7, then a second half of the time with the second pipe 12, which allows to supply air supply Aa the rotating regenerator 7.
  • the supply air Aa which is never in contact with the recovery fumes, is thus preheated, which allows to provide the associated burner 7 the predetermined flow of preheated combustion air 9 .
  • the recovery fumes F2 are distributed in each rotating regenerator 7 so as to always maintain a certain distribution ratio between the predetermined flow rate of supply air 8 and the predetermined flow rate of recovery fumes 10.
  • a distribution ratio is set between the predetermined flow rate of supply air 8 and the predetermined flow rate of recovery fumes 10 of between approximately 1 and 1.2, such a distribution ratio making it possible to optimize the energy efficiency of the oven of the invention.
  • the predetermined flow rate of recovery fumes received by each rotating regenerator 7 is first regulated by first regulating means comprising a first valve 17 mounted on the fourth line 15 of said rotating regenerator 7.
  • first regulating means comprising a first valve 17 mounted on the fourth line 15 of said rotating regenerator 7.
  • the predetermined flow rate of recovery fumes 10 is regulated indirectly, through a regulation of the flow of exhaust fumes F3.
  • This regulation is effected by means in particular of the first valve 17 which is mounted downstream of said rotary regenerator 7, that is to say which is located between the rotating regenerator 7 and a furnace exhaust outlet S2 which is here implemented. communication with a chimney 25 through which the exhaust fumes are removed from the furnace 1.
  • the predetermined flow rate of supply air 8 received by each rotating regenerator 7 is further regulated by second regulating means comprising a second valve 20 mounted on the second pipe 12 of the said rotary regenerator 7.
  • second regulating means comprising a second valve 20 mounted on the second pipe 12 of the said rotary regenerator 7.
  • a flowmeter 21 is mounted on the third conduit 14 each rotary regenerator 7, each flowmeter 21 being adapted to measure the combustion air flow 9 supplied to the burners 3 of the heating zone ZI, Z2, Z3 associated with said rotating regenerator 7.
  • a flow measurement generating little loss of pressure in the pipe, which helps maintain combustion air at a relatively low pressure.
  • a flowmeter 21 of the Venturi tube or Pitot tube or Vortex effect type will be chosen.
  • the preheated combustion air is heated to temperatures typically between 800 degrees Celsius and 1000 degrees Celsius, while the exhaust fumes are brought to temperatures typically between 150 degrees Celsius and 250 degrees Celsius.
  • first and second regulating means respectively comprising the first 17 and second valves 20, are situated on the fourth and second ducts 8, which have relatively low temperatures relative to the first 11 and third ducts 14. These means of regulation therefore constitute a less expensive and more reliable solution than a similar solution located on the hotter pipes.
  • the third pipe 14 of each regenerator rotating two shutoff valves 22 is mounted on the third pipe 14, and inert gas injection means 23 is mounted on the third pipe 14. nitrogen, to fill a gas gap between the two valves of 23. This maintains a positive pressure between the two shutoff valves 23, so that in case of leakage at one of the shutoff valves, only an inert gas leakage flow can enter the enclosure 2.
  • the post-combustion air (Apc) comes in part from the preheated combustion air generated by at least one rotating regenerator, possibly oversized for this purpose. This makes it possible to further improve the energy efficiency of the oven of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)
  • Furnace Details (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

L' invention concerne un four industriel comportant une enceinte isolée thermiquement et une pluralité de brûleurs répartis selon une pluralité de zones de chauffage, le four comportant en outre des moyens de récupération (6) destinés à récupérer une énergie thermique de fumées de récupération (F2) issues d'une première combustion réalisée par les brûleurs. Selon l'invention, les moyens de récupération (6) comportent un régénérateur tournant (7) associé à chaque zone de chauffage (Z1, Z2, Z3), chacun des régénérateurs tournants (7) étant adapté à recevoir un débit prédéterminé de fumées de récupérations, un débit prédéterminé d'un air d'alimentation, et à préchauffer cet air d'alimentation pour fournir aux brûleurs (3) de la zone de chauffage associée un débit prédéterminé d' air de combustion préchauffé (9).

Description

Four industriel pour chauffer des produits tels des produits sidérurgiques
1/ invention concerne un four industriel pour chauffer des produits tels des produits sidérurgiques.
ARRIERE PLAN DE L' INVENTION
De nombreux fours industriels destinés à chauffer des produits sidérurgiques, comme par exemple les fours de préchauffe pour traitement de bobines d'acier, comportent une enceinte isolée thermiquement et une pluralité de brûleurs agencés dans l'enceinte pour chauffer les produits sidérurgiques circulant dans 1 ' enceinte .
Les brûleurs, classiquement répartis selon plusieurs zones de chauffage régulées en température, sont alimentés par un air de combustion et par un combustible de type gaz naturel, produisent par une première combustion des flammes chauffant les produits sidérurgiques, et génèrent des fumées circulant à contre- courant desdits produits sidérurgiques. Ces fumées sont généralement elles-mêmes traitées par une seconde combustion dite « post-combustion », dont le rôle est d'assurer une combustion complète permettant de supprimer des fumées au moins une partie de gaz polluants tels que du monoxyde de carbone. Les fumées résultantes et moins polluantes sont alors évacuées du four et rejetées dans l'atmosphère par une cheminée.
La consommation énergétique des fours de préchauffe pour traitement de bobines d' acier est particulièrement élevée, de l'ordre de 220 kWh de gaz naturel par tonne d'acier réchauffé. Il est donc particulièrement important, aussi bien d'un point de vue environnemental que d'un point de vue économique, de tenter d'améliorer le rendement énergétique de ces fours .
Pour cela, une première méthode utilisée habituellement consiste à équiper les fours de moyens de récupération d' énergie pour récupérer la chaleur perdue dans les fumées. Ces moyens de récupération sont typiquement constitués par un échangeur de chaleur à faisceaux tubulaires comportant des tubes métalliques dans lesquels circule l'air de combustion utilisé par les brûleurs. Les fumées, en circulant autour des tubes, préchauffent l'air de combustion, ce qui améliore le rendement de la première combustion évoquée plus tôt. Cette récupération de chaleur est cependant limitée par la température maximale admissible que peuvent supporter les tubes, qui rend nécessaire de diluer les fumées par de l'air froid.
Une seconde méthode, qui a aujourd'hui nettement supplanté la première méthode, consiste à utiliser des brûleurs régénérâtifs . Cette solution présente cependant un certain nombre d'inconvénients. Tout d'abord, les brûleurs régénératifs ne sont pas adaptés à aspirer des fumées chargées en imbrûlés dans le brûleur, car il devient alors impossible d'effectuer une post-combustion. Cette solution est de plus difficilement applicable à des fours compacts du fait d'une part, de l'encombrement de bacs régénératifs dont sont équipés les brûleurs et, d'autre part, de la nécessité d'installer le double de brûleurs régénératifs par rapport au nombre de brûleurs d'une solution standard. Les brûleurs régénératifs fonctionnent en effet par paire, selon un fonctionnement cyclique : les brûleurs sont la moitié du temps dans un mode de combustion et l'autre moitié du temps dans un mode d'accumulation de chaleur.
OBJET DE L' INVENTION
L' invention a pour but d' améliorer le rendement énergétique d'un four industriel tout en présentant un encombrement acceptable.
RESUME DE L'INVENTION
En vue de la réalisation de ce but, on propose un four industriel pour chauffer des produits tels des produits sidérurgiques, le four comportant une enceinte isolée thermiquement et une pluralité de brûleurs agencés dans l'enceinte pour chauffer les produits circulant d'une extrémité à l'autre de l'enceinte, les brûleurs étant répartis selon une pluralité de zones de chauffage régulées en température. Le four comporte en outre des moyens de récupération destinés à récupérer une énergie thermique de fumées de récupération issues d'une première combustion réalisée par les brûleurs de manière à améliorer un rendement énergétique du four. Selon l'invention, les moyens de récupération comportent un régénérateur tournant associé à chaque zone de chauffage, chacun des régénérateurs tournants étant adapté à recevoir un débit prédéterminé des fumées de récupération via une première conduite, à recevoir un débit prédéterminé d'un air d'alimentation via une deuxième conduite, à préchauffer cet air d'alimentation pour fournir aux brûleurs de la zone de chauffage associée un débit prédéterminé d'air de combustion préchauffé via une troisième conduite, et à évacuer des fumées d'échappement via une quatrième conduite.
Ainsi, le rendement énergétique du four est amélioré grâce à une récupération d'énergie thermique réalisée au moyen des régénérateurs tournants qui présentent en encombrement acceptable pour la plupart des fours industriels .
L' invention sera mieux comprise à la lumière de la description qui suit d'un mode de mise en œuvre particulier non limitatif de l'invention.
BREVE DESCRIPTION DES DESSINS
Il sera fait référence à la figure unique sur laquelle est représenté schématiquement un four industriel de l'invention.
DESCRIPTION DETAILLEE DE L'INVENTION 15 053581
4
L' invention concerne un four industriel pour chauffer des produits tels que des produits sidérurgiques, et est ici mise en application dans un four de préchauffe non-oxydante de bandes d'acier pour lignes continues de traitement de bobines d'acier.
Le four de l'invention 1 comporte une enceinte isolée thermiquement 2, une pluralité de brûleurs 3 agencés dans l'enceinte 2 pour réaliser une première combustion et chauffer une bande d'acier 4 circulant d'une extrémité à l'autre de l'enceinte 2, des moyens dits « de post-combustion » 5 adaptés à réaliser une deuxième combustion, et des moyens de récupération 6.
La pluralité de brûleurs 3 est ici constituée de dix brûleurs 3 répartis selon une pluralité de zones de chauffage régulées en température, en l'occurrence selon trois zones de chauffage ZI, Z2, Z3. Cette répartition permet de réguler la température du four 1 grâce à seulement trois thermocouples 7 positionnés dans les zones de chauffage ZI, Z2, Z3, de manière à conformer la température du four à des courbes de chauffage prédéterminées qui dépendent notamment d'une température de bande souhaitée au niveau d'une sortie de bande SI du four 1. Les zones de chauffage ZI, Z2, Z3 sont donc régulées selon des consignes de température comprises typiquement entre 1200 et 1350 degrés Celsius pour une température souhaitée de bande au niveau de la sortie de bande SI du four 1 comprise entre 550 et 750 degrés Celsius .
La première combustion réalisée par les brûleurs 3 nécessite un combustible, ici du gaz naturel, et un comburant, ici de l'air de combustion Ac .
Les brûleurs 3 fonctionnent ici en régime dit « sub- st chiométrique », appelé également combustion en défaut d'air ou bien combustion en gaz riche. Dans le régime sub-stcechiométrique, un débit d'air de combustion est toujours inférieur à un débit d'air nécessaire pour brûler complètement un débit de gaz naturel Gn introduit dans un même brûleur. Des fumées de première combustion Fl sont alors générées par les brûleurs 3, lesdites fumées de première combustion Fl ayant une combustion dite « incomplète », dont une teneur en oxygène est quasiment nulle, l'oxygène de l'air de combustion s' étant combinée entièrement ou presque avec le gaz naturel. Le régime sub-stœchiométrique est particulièrement avantageux puisqu'il permet de conférer aux fumées de première combustion Fl un pouvoir réducteur sur la bande d'acier 4, ce qui permet d'éviter une formation d'oxydes sur la bande d'acier, de type oxydes de fer par exemple, et même de réduire certains oxydes éventuellement présents sur la bande d'acier avant cette première combustion. On améliore ainsi la qualité de la bande d'acier préchauffée par le four de l'invention.
Les fumées de première combustion Fl sont chargées en composés intermédiaires après la première combustion incomplète, par exemple en dihydrogène ou en oxyde de carbone. L'oxyde de carbone ne peut être rejeté dans l'atmosphère, car il s'agit d'un polluant dont les émissions sont réglementées.
Les moyens de post-combustion 5 sont donc utilisés pour réaliser la deuxième combustion, qui consiste à injecter de l'air appelé « air de post-combustion » Apc, dont le rôle est de compléter la première combustion, réalisée par les brûleurs 3, de manière à supprimer des fumées de première combustion Fl les composés intermédiaires. Comme les fumées de première combustion Fl circulent globalement à contre-courant de la bande d'acier 4, les moyens de post-combustion 5 sont situés dans le four 1 en amont des brûleurs 3, c'est-à-dire qu'ils sont situés entre une entrée E du four et les brûleurs 3. L'air de post-combustion Apc est injecté par les moyens de post-combustion 5 selon un débit d'air de post-combustion Apc dosé pour assurer une combustion complète sans ajouter d'air inutile. Avantageusement, l'air de post-combustion Apc est injecté dans une zone de l'enceinte dans laquelle la bande d'acier a une température trop basse pour subir des effets d'une oxydation provoquée par de l'oxygène de l'air de post¬ combustion Apc en excès. Alternativement, l'air de post¬ combustion Apc peut être injecté depuis des carneaux d'évacuation des fumées.
Des fumées de récupération F2, au moins partiellement dépolluées, sont générées par la deuxième combustion .
Les moyens de récupération 6 sont destinés à récupérer une énergie thermique de ces fumées de récupération F2 , qui sont donc issues de la première combustion et de la deuxième combustion. On améliore ainsi un rendement énergétique du four 1.
Les moyens de récupération 6 comportent un régénérateur tournant 7 associé à chaque zone de chauffage ZI, Z2, Z3, et donc ici trois régénérateurs tournants 7. Le rôle de ces régénérateurs tournants 7 est de réchauffer un débit prédéterminé d' air d' alimentation 8 de manière à fournir un débit prédéterminé d'air de combustion préchauffé 9. Le fait d'utiliser un air de combustion Ac préchauffé permet en effet d'augmenter nettement le rendement de la première combustion en diminuant la quantité de gaz naturel Gn nécessaire à celle-ci, et donc d'augmenter le rendement énergétique du four de l'invention 1.
Chaque régénérateur tournants 7 est adapté à recevoir un débit prédéterminé de fumées de récupération 10 via une première conduite 11, à recevoir le débit prédéterminé d'air d'alimentation 8 via une deuxième conduite 12, à préchauffer cet air d'alimentation Aa pour fournir aux brûleurs 3 de la zone de chauffage associée au régénérateur tournant 7 le débit prédéterminé d' air de combustion préchauffé 9 via une troisième conduite 14, et à évacuer des fumées d' échappement F3 via une quatrième conduite 15.
Chaque régénérateur tournant 7 est alimenté en continu par le débit prédéterminé d'air d'alimentation 8 et par le débit prédéterminé de fumées de récupération 10. Chaque régénérateur tournant 7 comporte, de façon connue en elle-même, des compartiments en rotation qui sont mis en communication une première moitié du temps avec la première conduite 11, ce qui permet un réchauffement de l'intérieur du régénérateur 7, puis une deuxième moitié du temps avec la deuxième conduite 12, ce qui permet d'alimenter en air d'alimentation Aa le régénérateur tournant 7. L'air d'alimentation Aa, qui n'est jamais en contact avec les fumées de récupération, est ainsi préchauffé, ce qui permet de fournir au brûleur 7 associé le débit prédéterminé d'air de combustion préchauffé 9.
Les fumées de récupération F2 sont réparties dans chaque régénérateur tournant 7 de manière à toujours conserver un certain rapport de répartition entre le débit prédéterminé d'air d'alimentation 8 et le débit prédéterminé de fumées de récupération 10.
Avantageusement, on vise un rapport de répartition entre le débit prédéterminé d'air d'alimentation 8 et le débit prédéterminé de fumées de récupération 10 compris entre 1 et 1,2 environ, un tel rapport de répartition permettant d'optimiser le rendement énergétique du four de 1 ' invention .
Pour obtenir le rapport de répartition souhaité, on régule tout d' abord le débit prédéterminé de fumées de récupération 10 reçu par chaque régénérateur tournant 7 par des premiers moyens de régulation comportant une première vanne 17 montée sur la quatrième conduite 15 dudit régénérateur tournant 7. Ainsi, pour chaque régénérateur tournant 7, le débit prédéterminé de fumées de récupération 10 est régulé indirectement, grâce à une régulation du débit des fumées d'échappement F3. Cette régulation est effectuée au moyen notamment de la première vanne 17 qui est montée en aval dudit régénérateur tournant 7, c'est-à-dire qui est située entre le régénérateur tournant 7 et une sortie de fumées S2 du four qui est ici mise en communication avec une cheminée 25 par laquelle les fumées d'échappement sont évacuées du four 1.
On régule de plus le débit prédéterminé d'air d'alimentation 8 reçu par chaque régénérateur tournant 7 par des deuxièmes moyens de régulation comportant une deuxième vanne 20 montée sur la deuxième conduite 12 dudit régénérateur tournant 7. Ainsi, pour chaque régénérateur tournant 7, le débit prédéterminé d'air d'alimentation 8 est régulé directement au moyen notamment de la deuxième vanne 20, ce qui permet d'éliminer d'éventuelles imprécisions de régulation dues à d'éventuelles fuites entre air d'alimentation et fumées de récupération à l'intérieur des régénérateurs tournants 7.
II est nécessaire, pour réguler le débit prédéterminé des fumées de récupération 10 et le débit prédéterminé d'air d'alimentation 8, de mesurer le débit prédéterminé d'air de combustion 9. On monte pour cela un débitmètre 21 sur la troisième conduite 14 de chaque régénérateur tournant 7, chaque débitmètre 21 étant adapté à mesurer le débit d'air de combustion 9 fourni aux brûleurs 3 de la zone de chauffage ZI, Z2, Z3 associée audit régénérateur tournant 7. Avantageusement, on privilégie une mesure de débit générant peu de perte de pression dans la conduite, ce qui permet de maintenir l'air de combustion à une pression relativement faible. On choisira ainsi préférablement un débitmètre 21 de type à tube de Venturi ou à tube de Pitot ou à effet Vortex.
L'air de combustion préchauffé est porté à des températures comprises typiquement entre 800 degrés Celsius et 1000 degrés Celsius, alors que les fumées d' échappement sont portées à des températures comprises typiquement entre 150 degrés Celsius et 250 degrés Celsius .
On note ici que les premiers et deuxièmes moyens de régulation, comportant respec ivement les premières 17 et deuxièmes vannes 20, sont situés sur les quatrièmes 15 et deuxièmes conduites 8, qui présentent des températures relativement faibles par rapport aux premières 11 et troisièmes conduites 14. Ces moyens de régulation constituent donc une solution moins onéreuse et plus fiable qu'une solution similaire située sur les conduites plus chaudes.
On vise de plus à être en mesure d' assurer si nécessaire une étanchéité totale entre la troisième conduite 14 et l'intérieur de l'enceinte thermiquement isolé 2. En effet, lorsqu'une ou plusieurs zones de chauffage ZI, Z2, Z3 sont à l'arrêt, en raison par exemple d'une diminution d'une vitesse de circulation de la bande d'acier 4 dans l'enceinte 2, une pénétration d'air de combustion dans l'enceinte doit absolument être évitée. Une telle pénétration d'air aurait tendance à diminuer les avantages du régime sub-stœchiométrique évoqué plus tôt.
Comme une simple vanne ne peut être parfaitement étanche, on monte sur la troisième conduite 14 de chaque régénérateur tournant deux vannes de sectionnement 22, et on monte sur la troisième conduite 14 des moyens d'injection 23 de gaz inerte, en l'occurrence de l'azote, pour remplir de gaz un espace entre les deux vannes de sectionnement 23. On maintient ainsi une pression positive entre les deux vannes de sectionnement 23, de sorte qu'en cas de fuite au niveau de l'une des vannes de sectionnement, seul un débit de fuite de gaz inerte pourra pénétrer dans l'enceinte 2.
Avantageusement, l'air de post-combustion (Apc) provient en partie de l'air de combustion préchauffé généré par au moins un régénérateur tournant, éventuellement surdimensionné à cet effet. Ceci permet améliorer encore le rendement énergétique du four de 1 ' invention .
L'invention n'est pas limité au mode de réalisation particulier qui vient d'être décrit, mais, bien au contraire, couvre toute variante entrant dans le cadre de l'invention telle que définie par les revendications.
Il est notamment possible de prévoir un four comportant un nombre différent de brûleurs répartis selon un nombre différent de zones de chauffage.
Les gammes de température fournies le sont à titre indicatif, et peuvent bien sûr différer dans des applications différentes utilisant le four de 1 ' invention .

Claims

REVENDICATIONS
1. Four industriel pour chauffer des produits (4) tels des produits sidérurgiques, le four comportant une enceinte isolée thermiquement (2) et une pluralité de brûleurs (3) agencés dans l'enceinte (2) pour chauffer les produits circulant d'une extrémité à l'autre de l'enceinte, les brûleurs (3} étant répartis selon une pluralité de zones de chauffage (ZI, Z2, Z3) régulées en température, le four comportant en outre des moyens de récupération (6) destinés à récupérer une énergie thermique de fumées de récupération (F2) issues d'une première combustion réalisée par les brûleurs de manière à améliorer un rendement énergétique du four,
caractérisé en ce que les moyens de récupération
(6) comportent un régénérateur tournant (7} associé à chaque zone de chauffage (ZI, Z2, Z3), chacun des régénérateurs tournants (7) étant adapté à recevoir un débit prédéterminé de fumées de récupération (10) via une première conduite (11), à recevoir un débit prédéterminé d'un air d'alimentation (8) via une deuxième conduite (12), à préchauffer cet air d'alimentation pour fournir aux brûleurs (3) de la zone de chauffage associée un débit prédéterminé d'air de combustion préchauffé (9) via une troisième conduite (14), et à évacuer des fumées d'échappements (F3) via une quatrième conduite (15).
2. Four industriel selon la revendication 1, dans lequel le débit prédéterminé des fumées de récupération (10) reçu par chaque régénérateur tournant (7} est régulé par des premiers moyens de régulation comportant une première vanne (17) montée sur la quatrième conduite (15) dudit régénérateur tournant (7).
3. Four industriel selon la revendication 1, dans lequel le débit prédéterminé d'air d'alimentation (8) reçu par chaque régénérateur tournant (7) est régulé par des deuxièmes moyens de régulation comportant une deuxième vanne (20) montée sur la deuxième conduite (12) dudit régénérateur tournant (7) .
4. Four industriel selon la revendication 1, dans lequel, pour chaque régénérateur tournant, un débitmètre
(21) est monté sur la troisième conduite (14) dudit régénérateur tournant (7) .
5. Four industriel selon la revendication 4, dans lequel au moins l'un des débitmètres est de type à tube de Venturi ou à tube de Pitot ou à effet Vortex.
6. Four industriel selon la revendication 1, dans lequel, pour chaque régénérateur tournant, deux vannes de sectionnement (22) sont montées sur la troisième conduite (11), et des moyens d'injection de gaz (23) sont montés sur la troisième conduite (14) pour remplir de gaz inerte un espace entre les deux vannes de sectionnement (22).
7. Four industriel selon la revendication 6, dans lequel le gaz injecté est de l'azote.
8. Four industriel selon l'une des revendications précédentes, dans lequel les fumées de récupération sont générées par une deuxième combustion permettant de compléter la première combustion réalisée par les brûleurs (3) .
9. Four industriel selon la revendication 9, dans lequel un air de post-combustion (Apc) utilisé pour la deuxième combustion provient en partie de l'air de combustion préchauffé (Ac) généré par au moins un régénérateur tournant (7).
10. Four industriel selon l'une des revendications précédentes, un rapport entre le débit prédéterminé d'air d'alimentation (8) et le débit prédéterminé de fumées de récupération (10) est compris entre 1 et 1,2.
PCT/EP2015/053581 2014-03-04 2015-02-20 Four industriel pour chauffer des produits tels des produits siderurgiques WO2015132082A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580011859.5A CN106164302A (zh) 2014-03-04 2015-02-20 用于加热诸如钢制品的制品的工业炉
RU2016138842A RU2016138842A (ru) 2014-03-04 2015-02-20 Промышленная печь для нагрева изделий, таких как изделия черной металлургии
EP15705323.2A EP3114243B1 (fr) 2014-03-04 2015-02-20 Four industriel pour chauffer des produits tels des produits siderurgiques
US15/122,931 US20170082364A1 (en) 2014-03-04 2015-02-20 Industrial furnace for heating products such as steel products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451767 2014-03-04
FR1451767A FR3018344B1 (fr) 2014-03-04 2014-03-04 Four industriel pour chauffer des produits tels des produits siderurgiques

Publications (1)

Publication Number Publication Date
WO2015132082A1 true WO2015132082A1 (fr) 2015-09-11

Family

ID=50729674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/053581 WO2015132082A1 (fr) 2014-03-04 2015-02-20 Four industriel pour chauffer des produits tels des produits siderurgiques

Country Status (7)

Country Link
US (1) US20170082364A1 (fr)
EP (1) EP3114243B1 (fr)
CN (1) CN106164302A (fr)
BE (1) BE1023618B1 (fr)
FR (1) FR3018344B1 (fr)
RU (1) RU2016138842A (fr)
WO (1) WO2015132082A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002309A1 (fr) * 2016-07-01 2018-01-04 Hans Krämer Four à haute température à récupération de chaleur
US20230003378A1 (en) * 2019-12-18 2023-01-05 Linde Gmbh Method and device for heating a furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585345B (zh) * 2016-08-15 2017-06-01 台技工業設備股份有限公司 廢氣排出系統及廢氣排出方法
CN117367122B (zh) * 2023-12-07 2024-02-09 山西卓越水泥有限公司 一种水泥制造脱硝用分解炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856588A2 (fr) * 1997-01-31 1998-08-05 Kawasaki Steel Corporation Four pour le traitement thermique de bandes métalliques en marche continue
WO2011072883A1 (fr) * 2009-12-15 2011-06-23 Siemens Vai Metals Technologies Sas Installation et procédé de préchauffage d'une bande d'acier en défilement continu
DE202013102653U1 (de) * 2012-06-19 2013-07-31 Cockerill Maintenance & Ingenierie Sa Anlassofen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807943A (en) * 1970-08-10 1974-04-30 Anchor Hocking Corp Muffle furnace for treatment of articles on conveyor
US4022571A (en) * 1975-10-10 1977-05-10 Agm Industries, Inc. Industrial heating
DE3203433C2 (de) * 1982-02-02 1984-08-09 Friedrich Wilhelm Dipl.-Ing. 7761 Moos Elhaus Anwärmofen für langgestrecktes Gut
FI96359C (fi) * 1994-11-17 1998-08-26 Tampella Power Oy Menetelmä ja laitteisto kattilalaitoksen palamisilman säätämiseksi
US5826610A (en) * 1996-05-06 1998-10-27 Vita International, Inc. Breakaway coupling device
US5921771A (en) * 1998-01-06 1999-07-13 Praxair Technology, Inc. Regenerative oxygen preheat process for oxy-fuel fired furnaces
JP3852363B2 (ja) * 2002-04-19 2006-11-29 日産自動車株式会社 エンジンの制御装置
PL2687801T3 (pl) * 2011-03-18 2017-02-28 Ngk Insulators, Ltd. Piec tunelowy do wypalania porowatego materiału ceramicznego

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856588A2 (fr) * 1997-01-31 1998-08-05 Kawasaki Steel Corporation Four pour le traitement thermique de bandes métalliques en marche continue
WO2011072883A1 (fr) * 2009-12-15 2011-06-23 Siemens Vai Metals Technologies Sas Installation et procédé de préchauffage d'une bande d'acier en défilement continu
DE202013102653U1 (de) * 2012-06-19 2013-07-31 Cockerill Maintenance & Ingenierie Sa Anlassofen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002309A1 (fr) * 2016-07-01 2018-01-04 Hans Krämer Four à haute température à récupération de chaleur
US20230003378A1 (en) * 2019-12-18 2023-01-05 Linde Gmbh Method and device for heating a furnace

Also Published As

Publication number Publication date
RU2016138842A (ru) 2018-04-04
EP3114243B1 (fr) 2018-10-24
BE1023618B1 (fr) 2017-05-17
US20170082364A1 (en) 2017-03-23
BE1023618A1 (fr) 2017-05-17
FR3018344B1 (fr) 2016-04-29
EP3114243A1 (fr) 2017-01-11
RU2016138842A3 (fr) 2018-10-22
CN106164302A (zh) 2016-11-23
FR3018344A1 (fr) 2015-09-11

Similar Documents

Publication Publication Date Title
EP2148935B1 (fr) Procede et installation de chauffage d'une bande metallique, notamment en vue d'un recuit
BE1023618B1 (fr) Four industriel pour chauffer des produits tels des produits sidérurgiques
FR2890155A1 (fr) Prechauffage de combustible et du comburant d'oxybruleurs a partir d'installation de prechauffage d'air de combustion
EP2294019B1 (fr) Alimentation de brûleur à oxygène chaud
FR2909994A1 (fr) Four de fusion de verre
WO2015097389A1 (fr) Procédé intégré d'oxycombustion et de production d'oxygène
FR2496697A1 (fr) Procede d'exploitation d'un four a atmosphere controlee pour le traitement thermique continu de bobines de feuillard d'acier
FR2757844A1 (fr) Procede de fabrication de verre technique et bruleur pour la mise en oeuvre d'un tel procede
EP1001237A1 (fr) Procédé de chauffage d'un four à chargement continu notamment pour produits sidérurgiques, et four de chauffage à chargement continu
EP2059616A2 (fr) Procede de rechauffage dans un four utilisant un combustible de faible puissance calorifique, et four mettant en oeuvre ce procede
EP1427978B1 (fr) Procede pour ameliorer le profil de temperature d'un four
EP3482130B1 (fr) Procédé de fonctionnement d'un four discontinu avec préchauffage d'un fluide en amont du four
EP3482131B1 (fr) Procédé de préchauffage d'un fluide en amont d'un four
LU84337A1 (fr) Procede pour alimenter en energie un four de rechauffage de produits metallurgiques
EP0211699B1 (fr) Brûleur avec des caloducs pour le préchauffage de l'air et du combustible
EP3671038B1 (fr) Ensemble et procédé pour l'injection d'un agent de combustion gazeux
WO2010000762A2 (fr) Oxy-bruleur a combustion etagee
FR3002025A1 (fr) Methode de combustion dans un four avec recuperation de chaleur
BE460236A (fr)
FR2512535A1 (fr) Procede d'alimentation energetique d'un four de rechauffage de produits metallurgiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15705323

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015705323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015705323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15122931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016138842

Country of ref document: RU

Kind code of ref document: A