WO2015097389A1 - Procédé intégré d'oxycombustion et de production d'oxygène - Google Patents

Procédé intégré d'oxycombustion et de production d'oxygène Download PDF

Info

Publication number
WO2015097389A1
WO2015097389A1 PCT/FR2014/053478 FR2014053478W WO2015097389A1 WO 2015097389 A1 WO2015097389 A1 WO 2015097389A1 FR 2014053478 W FR2014053478 W FR 2014053478W WO 2015097389 A1 WO2015097389 A1 WO 2015097389A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
combustion chamber
stream
flow
temperature
Prior art date
Application number
PCT/FR2014/053478
Other languages
English (en)
Inventor
Luc Jarry
Nicolas SPIEGL
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US15/107,542 priority Critical patent/US10197274B2/en
Priority to JP2016541125A priority patent/JP2017502245A/ja
Priority to MX2016008291A priority patent/MX2016008291A/es
Priority to KR1020167018986A priority patent/KR20160111380A/ko
Priority to BR112016014489A priority patent/BR112016014489A2/pt
Priority to CN201480074698.XA priority patent/CN105980776A/zh
Priority to EP14830993.3A priority patent/EP3087319A1/fr
Publication of WO2015097389A1 publication Critical patent/WO2015097389A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07007Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/06Preheating gaseous fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an oxycombustion process incorporating the production or generation of oxygen.
  • ITMs ion transport membranes
  • solid electrolytes in English “Ion Transport Membranes” or ITM.
  • the MTIs are capable of ionizing the oxygen molecules present in the air that comes into contact with a first face of the MTI, selectively transporting the oxygen ions through the MTI and reconstituting oxygen molecules at the same time. from said oxygen ions on the face of the membrane opposite the first face (in the direction of movement of the oxygen ions).
  • oxygen thus produced as an oxidant (combustion oxidant) for the combustion of a fuel and the production of heat.
  • WO-A-2011/015616 there is known a method of operating a glass melting furnace in which the burners are fed, on the one hand with fuel and, on the other hand, with hot oxygen directly derived from an oxygen extractor at MTI.
  • the oxygen supply of the extractor is not sufficient, an additional supply of oxygen is carried out directly at the burner.
  • the fumes leaving the melting furnace are passed through a first heat exchanger, called primary exchanger, for heating a heat transfer fluid, especially air.
  • the thus heated air feeds a series of secondary heat exchangers in which circulates compressed air, typically at a pressure of the order of 1.5 to 2.10 6 Pa.
  • the air The tablet After passing through the secondary exchangers, the air The tablet has a temperature of 500 ° C to 550 ° C.
  • This hot compressed air can be further heated in a boiler to reach higher temperatures, for example of the order of 900 ° C.
  • the hot compressed air thus obtained passes over the MTI extractor for the production of oxygen and the oxygen thus extracted from the compressed hot air is directed directly onto a burner.
  • the oxygen-depleted air can be used to activate a turbine for the production of the compressed air introduced into the MTI extractor.
  • the immediate vicinity of a glass melting furnace is generally very congested, particularly at the burners, in particular with the oxidizer supply devices and the fuel supply devices of the burners and, if appropriate, devices for preheating the oxidant and / or fuel upstream of the burners. Despite this congestion, it remains necessary to provide easy access to said burners to allow their maintenance and repair.
  • the present invention aims to at least partially overcome the problems described above.
  • the present invention more particularly provides an oxy-fuel combustion method in an oven in which a fuel is combusted with an oxygen-rich oxidant in a furnace combustion chamber with generation of heat and smoke in the combustion chamber.
  • the fumes generated are removed from the combustion chamber, said exhaust fumes containing residual heat.
  • a flow of air is heated by means of at least a part of the residual heat present in the evacuated fumes. This produces a hot air flow having a temperature TA1.
  • the temperature TA1 is chosen so as to allow extraction of oxygen from the hot air by MTI.
  • At least a part of the hot air flow is introduced into an oxygen production unit in which a portion of the oxygen present in the at least part of the hot air flow is extracted by means of one or more MTI.
  • the first oxygen stream Downstream of this oxygen production unit, the first oxygen stream is mixed with a second oxygen stream so as to obtain an overall flow of oxygen at a temperature T0 2, with T0 2 ⁇ TOI.
  • the lower temperature T02 is generally obtained because the temperature of the second oxygen stream is lower than the temperature TO1 of the first oxygen stream.
  • At least a portion of the overall oxygen stream is then transported to the furnace combustion chamber and used as an oxygen rich oxidant in the combustion chamber.
  • the said at least part of the overall flow of oxygen is heated directly upstream of the combustion chamber at a temperature TOf, with TOf> T02.
  • “Furnace” includes an appliance or appliance in which a material or parts other than fuel and oxidant are heated for the purpose of subjecting such material or parts to physical or chemical transformations under the effect of the heat supplied, for example, a melting furnace, a calcining furnace, a steel heating furnace, etc.
  • oxidant or gas “rich in oxygen” or simply “rich” it includes an oxidizer or gas having an oxygen content greater than 60% vol.
  • the residual heat of the evacuated fumes is thus used in order to heat a flow of air up to a temperature TA1 allowing an extraction of oxygen by MTI at an industrial level.
  • the first oxygen flow Downstream of the production unit, the first oxygen flow has a high temperature such that the transport of this first oxygen flow would pose a safety problem.
  • the first stream with a second stream of oxygen, it is possible to produce an overall flow of oxygen having a lower temperature T02, which allows the safe transport of the overall flow, without however that the heat energy present in the first oxygen flow at the output of the production unit is lost.
  • Providing a second flow of oxygen from a source other than the production unit also avoids problems due to the limited production capacity of most oxygen-based oxygen production units. MTI.
  • the heating of the air flow by means of residual heat present in the evacuated fumes can be carried out in a recuperator or heat exchanger.
  • the flow of hot air, at least part or all of which is introduced into the oxygen production unit has a temperature TA1 of 700 ° C. to 1000 ° C, preferably from 750 ° C to 950 ° C and more preferably from 800 ° C to 900 ° C, These temperatures facilitate the extraction of oxygen by MTI.
  • the at least part of the hot air flow preferably has a pressure PA1 of 1 bar ab to 6 bar ab at the inlet of the oxygen production unit, preferably 1 bar ab to 3 bar ab and still preferably 1 bar ab to 2 bar ab.
  • the portion of oxygen extracted from the at least a portion of the hot air flow may correspond to between 10% and 100%, preferably between 20% and 70%, more preferably between 20% and 50% of the oxygen present in said at least a portion of the hot air flow. Although the most complete extraction of oxygen is desired, partial extraction is often more profitable and therefore preferable in an industrial context.
  • the first flow of oxygen from the production unit can correspond to between 90%> and 0% ovol, preferably between 90%> and 15%> vol, more preferably between 80%> and 20%> vol, even between 80%> and 30%> vol, and still preferably between 80%> and 50%> vol of the overall flow of oxygen.
  • the use of a global stream containing no oxygen from the production unit and therefore consisting entirely of oxygen from another source is exceptional and limited in time (and not during the total duration of the process).
  • an overall flow consisting entirely allows continuous operation of the combustion chamber despite a stop or failure of the oxygen production unit.
  • the second oxygen stream is provided by an air gas separation unit, such as a PSA (i.e., an installation known as “Pressure Swing Adsorption") or a VPSA (that is to say an installation known under the name “Vacuum Pressure Swing Adsorption", a liquefied oxygen reservoir or a gaseous or liquefied oxygen pipeline.
  • a PSA i.e., an installation known as "Pressure Swing Adsorption”
  • VPSA that is to say an installation known under the name "Vacuum Pressure Swing Adsorption”
  • a liquefied oxygen reservoir or a gaseous or liquefied oxygen pipeline such as a liquefied oxygen reservoir or a gaseous or liquefied oxygen pipeline.
  • the present invention is particularly useful for processes using a preheated rich oxidant.
  • preheating refers to the heating of a product, such as a fuel, an oxidizer or a charge to be heated or melted, before its introduction into the combustion chamber.
  • the at least part of the overall flow of oxygen is advantageously heated to a temperature TOf between 250 ° C. and 620 ° C., preferably between 300 ° C and 600 ° C and preferably between 350 ° C and 580 ° C directly upstream of the combustion chamber, that is to say directly upstream of burners or lances which is equipped with the combustion chamber and which are used for the injection of oxygen preheated in the combustion chamber.
  • the oxygen-depleted air stream is used for preheating the at least part of the overall flow of oxygen, for example by heat exchange between the depleted air and the at least part of the overall flow in a heat exchanger. heat.
  • the depleted air flow at the outlet of this oxygen production unit may have a temperature TA2 of 400 ° C to 750 ° C, preferably 450 ° C to 700 ° C and more preferably 500 ° C and 650 ° C.
  • This oxygen-depleted airflow therefore has a thermal energy which can be usefully used to increase the energy efficiency of the process.
  • the at least part of the overall flow of oxygen is heated directly upstream of the combustion chamber by heat exchange with the stream of oxygen depleted air from the production unit of oxygen. It is also advantageous to preheat at least a portion of the burned fuel in the combustion chamber. In this case, it is preferable that at least a portion of the fuel burned in the combustion chamber is preheated upstream of the combustion chamber by heat exchange with the oxygen depleted air stream from the production unit. oxygen, typically in a heat exchanger.
  • heat exchanger or “exchanger” is meant an installation or device in which two fluids of different temperatures circulate in separate enclosures and transmit heat from one of the two fluids (the hottest fluid) to the other of the two fluids (less hot fluid) through one or walls separating the two enclosures, and therefore without direct contact or mixing between the two fluids.
  • the process according to the invention is useful and advantageous for any high temperature combustion chamber of a furnace.
  • the combustion chamber may thus be a melting chamber, such as a metal melting chamber or, preferably, a vitrifiable material melting chamber.
  • a melting chamber is a "float" type glass melting chamber.
  • the chamber can also be a calcination chamber, by example for the calcination of cement or a reheating chamber, such as steel heating chambers.
  • combustion chamber is not limited to static combustion chambers, but also covers rotary combustion chambers.
  • FIG. 1 is a schematic representation of such an installation for glass melting adapted to the implementation of the method according to the invention.
  • Said installation comprises a combustion chamber 100 of an oven, more particularly a melting or melting / melting chamber of glass, provided with one or more burners 200 adapted for the combustion of a fuel rich in oxygen and preheated.
  • the plant also comprises an oxygen-rich oxidizer distribution network for supplying said burners 200 with oxidant, as well as a fuel distribution network for supplying said burners 200 with fuel (for example, natural gas). .
  • combustion chamber typically comprises several or even a large number of burners, for example in the case of a "float" type melting furnace.
  • the fumes generated by the combustion are discharged from the combustion chamber 100 and sent into a flue gas evacuation circuit 11.
  • One or more heat exchangers 10, referred to as primary heat exchangers, are placed on the flue gas discharge circuit 11 downstream of the combustion chamber 100.
  • primary heat exchanger 10 a part of the residual heat of the exhaust fumes is transferred. to an air flow 21, obtaining on the one hand, a flow of hot air 22 and, on the other hand, a flow of exhaust gases tempered 12.
  • the hot air reaches a temperature of about 700 ° C. and up to 900 ° C., or even up to 950 ° C. at the outlet of a primary exchanger 10.
  • the flow of hot air 22 is thus raised to a temperature level at which the extraction of oxygen on an MTI can be carried out on an industrial scale. It is at a pressure close to atmospheric.
  • This flow of hot air 22 is introduced into an oxygen production unit by extraction using ceramic MTI 20 with a capacity of 1 to 100 tons of oxygen per day.
  • the extraction yield is, for example, of the order of 50%.
  • the first oxygen flux 50 produced from MTI is hot, with a temperature
  • This hot oxygen 50 is directly injected into an oxygen distribution network where it is mixed with colder oxygen 60 from another source of oxygen (such as a US gas separation unit).
  • ASU air separation unit
  • LOX liquid oxygen
  • the hot oxygen produced from MTI is thus cooled without loss of energy for the installation and can safely be transported in the oxygen distribution network whose materials do not have to withstand the very aggressive conditions of the environment. oxygen at very high temperature.
  • the oxygen mixture of different sources thus obtained is then used as an oxygen-rich oxidant to generate combustion of the fuel in the combustion / melting chamber 30.
  • the oxygen production unit (s) it is possible to optimize the configuration of the glass melting installation by positioning the oxygen production unit (s) at the most appropriate place, even if it is at a distance from the burners 200 of the combustion chamber 100 and it is not necessary to use for the transport of the overall flow of oxygen 70 generally very expensive materials that are resistant to oxygen at high temperature.
  • the oxygen production by MTI is integrated with a technology for preheating oxygen and fuel, for example natural gas, for supplying the oxy-fuel burners 200 of the combustion chamber 100. the glass melting installation.
  • a similar oxygen preheating technology is in particular known from US-A-6071116.
  • part of the oxygen-depleted air 23 is used for preheating the fuel 25, for example natural gas, upstream of the burners 200 of the combustion chamber 100.
  • a fuel flow is obtained preheated 26 which is supplied to the burners 200 and a first tempered stream of oxygen depleted air 27.
  • part of the oxygen-depleted air 23 is used for preheating at least part of the overall flow of oxygen 70 upstream of said burners 200.
  • preheated oxygen 71 which is supplied to the burners 200 and a second tempered stream of oxygen depleted air 28.
  • a single first secondary exchanger 31 and a single second secondary exchanger 32 are shown in FIG. 1.
  • the installation may comprise several first secondary exchangers 31 and several second secondary exchangers 32.
  • the installation may comprise a number of first secondary heat exchangers 31 and a number of second secondary heat exchangers 32, each heat exchanger 31 and 32 supplying a limited number of burners 200, or even a single burner (200). This allows in particular to limit the pipes for transporting preheated fuel, respectively preheated oxygen.
  • the oxygen produced from MTI is cooled by mixing it with oxygen from another source
  • the invention nevertheless makes it possible to have a temperature of oxygen (mixture of oxygen or oxygen stream) at the inlet of the secondary heat exchanger 32, typically at a temperature of about 300 ° C, and thus to reduce the size and cost of the secondary heat exchanger (s) 31 for the preheating of the heat exchanger. 'oxygen.
  • the present invention thus makes it possible to use the residual heat of the fumes discharged from the combustion chamber 100 for the production of oxygen and for the preheating of the fuel and an oxygen-rich oxidant, to optimize the configuration of the installation. and limit the use of materials that must withstand hot oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Air Supply (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Procédé de chauffe par oxycombustion dans lequel un flux d'air (21) est chauffé au moyen d'au moins une partie de la chaleur résiduelle présente dans les fumées évacuées (11) de la chambre de combustion (100), au moins une partie dudit flux d'air chaud (22) est introduite dans une unité de production d'oxygène (20) dans lequel on extrait une portion de l'oxygène présent dans le flux d'air chaud (22) au moyen d'une ou des MTI, avec obtention d'un premier flux d'oxygène (50) à température élevé, ledit premier flux d'oxygène (50) est mélangé avec un deuxième flux d'oxygène (60) de manière à obtenir un flux global d'oxygène (70) à une température plus basse que celle du premier flux d'oxygène (50), au moins une partie du flux global d'oxygène (70) étant transportée vers la chambre de combustion (100) et utilisée dedans comme comburant riche en oxygène.

Description

Procédé intégré d'oxycombustion et de production d'oxygène
La présente invention concerne un procédé d'oxycombustion intégrant la production ou génération d'oxygène.
Il est connu d'extraire de l'oxygène d'un gaz tel que l'air au moyen de membranes de transport ioniques (MTI), aussi appelées « électrolytes solides » (en anglais « Ion Transport Membranes » ou ITM). Lesdites MTI sont capable d'ioniser les molécules d'oxygène présentes dans l'air qui entre en contact avec une première face de la MTI, de sélectivement transporter les ions d'oxygène à travers la MTI et de reconstituer des molécules d'oxygène à partir desdits ions d'oxygène sur la face de la membrane à l'opposé de la première face (dans le sens de déplacement des ions d'oxygène).
Il est également connu d'utiliser de l'oxygène ainsi produit en tant que comburant (oxydant de combustion) pour la combustion d'un combustible et la production de chaleur.
De WO-A-2011/015616, il est connu un procédé d'opération d'un four de fusion de verre dans lequel les brûleurs sont alimentés, d'une part en combustible et, d'autre part en oxygène chaud directement issu d'un extracteur d'oxygène à MTI. Selon WO-A- 2011/015616, si l'apport en oxygène de l'extracteur ne suffit pas, un apport supplémentaire d'oxygène est effectué directement au niveau du brûleur. Les fumées sortant du four de fusion sont passées dans un premier échangeur de chaleur, dit échangeur primaire, pour le réchauffage d'un fluide caloporteur, notamment de l'air. L'air ainsi réchauffé alimente une série d'échangeurs de chaleur secondaires dans lesquels circule de l'air comprimé, typiquement à une pression de l'ordre de 1,5 à 2.106 Pa. Après passage dans les échangeurs secondaires, l'air comprimé présente une température de 500°C à 550°C. Cet air comprimé chaud peut être encore réchauffé dans une chaudière pour atteindre des températures plus élevées, par exemple de l'ordre de 900° C. L'air comprimé chaud ainsi obtenu passe sur l'extracteur à MTI pour la production d'oxygène et l'oxygène ainsi extrait de l'air chaud comprimé est dirigé directement sur un brûleur. L'air appauvri en oxygène peut être utilisé pour activer une turbine pour la production de l'air comprimé introduit dans l'extracteur à MTI.
Comme indiqué dans WO-A-2011/015616, les propriétés d'oxygène chaud, tel qu'il sort de l'extracteur à MTI, impose des limites pratiques aux dispositifs dans lesquels l'oxygène chaud circule. Il est donc particulièrement indiqué d'utiliser l'oxygène immédiatement après son extraction et donc de localiser l'extracteur à MTI à proximité des brûleurs du four afin de limiter le parcours suivi par l'oxygène jusqu'au brûleur pour limiter les risques de dégradation des dispositifs en contact avec cet oxygène.
La nécessité, par souci de sécurité, de localiser chaque extracteur à proximité du brûleur associé limite fortement F intérêt du procédé décrit dans WO-A-2011/015616.
En effet, le voisinage immédiat d'un four de fusion de verre est généralement très encombré, en particulier au niveau des brûleurs, notamment avec les dispositifs d'alimentation en comburant et les dispositif d'alimentation en combustible des brûleurs et le cas échéant des dispositifs pour le préchauffage du comburant et/ou du combustible en amont des brûleurs. Malgré cet encombrement, il reste nécessaire d'assurer un accès aisé auxdits brûleurs afin de permettre leur entretien et réparation.
De plus, les fours de fusion comportent souvent un grand nombre de brûleurs. La réalisation d'extracteurs d'oxygène à MTI de petites dimensions, unitaires pour chaque brûleurs augmente le coût considérablement le coût des installations.
Par conséquent, le design actuel des fours ne permet généralement pas l'implantation d'extracteurs d'oxygène à MTI immédiatement en amont des brûleurs comme proposé dans WO-A-2011/015616, tandis que, comme également expliqué dans WO-A-2011/015616, une implantation de l'extracteur à MTI à plus grande distance du brûleur pose un problème de sécurité généralement inacceptable pour l'opérateur du four lié au transport d'oxygène à température élevée.
La présente invention à pour but de remédier au moins partiellement aux problèmes décrits ci-dessus.
La présente invention propose plus particulièrement un procédé de chauffe par oxycombustion dans un four dans lequel un combustible est brûlé avec un comburant riche en oxygène dans une chambre de combustion du four avec génération de chaleur et de fumées dans la chambre de combustion. Les fumées générées sont évacuées de la chambre de combustion, lesdites fumées évacuées contenant de la chaleur résiduelle.
Suivant l'invention, on chauffe un flux d'air au moyen d'au moins une partie de la chaleur résiduelle présente dans les fumées évacuées. On obtient ainsi un flux d'air chaud ayant une température TA1. La température TA1 est choisie de manière à permettre une extraction d'oxygène de l'air chaud par MTI.
Au moins une partie du flux d'air chaud est introduite dans une unité de production d'oxygène dans lequel on extrait une portion de l'oxygène présent dans ladite au moins une partie du flux d'air chaud au moyen d'une ou des MTI. De cette manière, on obtient un premier flux d'oxygène à une température TOI et un flux d'air appauvri en oxygène ayant une température TA2, avec TA2 < TA1.
En aval de cette unité de production d'oxygène, le premier flux d'oxygène est mélangé avec un deuxième flux d'oxygène de manière à obtenir un flux global d'oxygène à une température T02, avec T02 < TOI . La température T02 plus basse est en règle général obtenu du fait que la température du deuxième flux d'oxygène est inférieure à la température TOI du premier flux d'oxygène.
Au moins une partie du flux global d'oxygène est alors transportée vers la chambre de combustion du four et utilisée comme comburant riche en oxygène dans la chambre de combustion. Suivant l'invention, ladite au moins une partie du flux global d'oxygène est chauffé directement en amont de la chambre de combustion à une température TOf, avec TOf> T02.
Par « four », on comprend un appareil ou une installation dans lequel on chauffe une matière ou des pièces autres que le combustible et le comburant, en vue de soumettre cette matière ou ces pièces à des transformations physiques ou chimiques sous l'effet de la chaleur fournie, par exemple, un four de fusion, un four de calcination, un four de réchauffage d'acier, etc.
Par « chaleur résiduelle, on comprend la chaleur qui est évacuée d'une chambre de combustion avec les fumées générées par la combustion dans la chambre.
Par comburant ou gaz « riche en oxygène » ou simplement « riche », on comprend un comburant ou gaz ayant une teneur en oxygène supérieure 60%vol.
Suivant l'invention, on utilise ainsi la chaleur résiduelle des fumées évacuées afin de chauffer un flux d'air jusqu'à une température TA1 permettant une extraction d'oxygène par MTI à un niveau industriel.
En aval de l'unité de production, le premier flux d'oxygène présente une température élevée telle que le transport de ce premier flux d'oxygène poserait un problème de sécurité.
En mélangeant, suivant l'invention, le premier flux avec un deuxième flux d'oxygène, il est possible de réaliser un flux global d'oxygène ayant une température T02 plus basse, ce qui permet le transport en sécurité du flux global, sans toutefois qu'on perde l'énergie thermique présente dans le premier flux d'oxygène à la sortie de l'unité de production.
L'apport d'un deuxième flux d'oxygène venant d'une source autre que l'unité de production permet également d'éviter des problèmes dus à la capacité de production limitée de la plupart des unités de production d'oxygène à base de MTI. Le chauffage du flux d'air au moyen de chaleur résiduelle présente dans les fumées évacuées peut être réalisé dans un récupérateur ou échangeur de chaleur.
Suivant une forme d'exécution avantageuse de l'invention, le flux d'air chaud, dont au moins une partie, voire la totalité, est introduite dans l'unité de production d'oxygène, présente un température TAl de 700°C à 1000°C, de préférence de 750°C à 950°C et encore de préférence de 800 °C à 900°C, Ces températures facilitent l'extraction d'oxygène par MTI.
La au moins une partie du flux d'air chaud présente de préférence une pression PA1 de 1 bar ab à 6 bar ab à l'entrée de l'unité de production d'oxygène, de préférence de 1 bar ab à 3 bar ab et encore de préférence de 1 bar ab à 2 bar ab.
La portion d'oxygène extrait de la au moins une partie du flux d'air chaud peut correspondre à entre 10 % et 100 %, de préférence entre 20% et 70%>, encore de préférence entre 20%> et 50 % de l'oxygène présent dans ladite au moins une partie du flux d'air chaud. Bien qu'une extraction aussi complète que possible de l'oxygène est souhaité, une extraction partielle est souvent plus rentable et donc préférable dans un contexte industriel.
Le premier flux d'oxygène issu de l'unité de production peut correspondre à entre 90%> et 0%ovol, de préférence entre 90%> et 15%>vol, encore de préférence entre 80%> et 20%>vol, voire entre 80%> et 30%>vol, et encore de préférence entre 80%> et 50%>vol du flux global d'oxygène.
Suivant l'invention, l'utilisation d'un flux global ne contenant pas d'oxygène issu de l'unité de production et consistant donc entièrement d'oxygène venant d'une autre source est exceptionnelle et limitée dans le temps (et non pas pendant la durée totale du procédé). Toutefois, un tel flux global consistant entièrement permet un fonctionnement continu de la chambre de combustion malgré un arrêt ou défaillance de l'unité de production d'oxygène.
Le deuxième flux d'oxygène est fourni par une unité de séparation des gaz de l'air, telle qu'une PSA (c'est-à-dire une installation connue sous la dénomination anglaise « Pressure Swing Adsorption ») ou une VPSA (c'est-à-dire une installation connue sous la dénomination anglaise « Vacuum Pressure Swing Adsorption », un réservoir d'oxygène liquéfié ou une canalisation d'oxygène gazeux ou liquéfié.
La présente invention est particulièrement utile pour des procédés utilisant un comburant riche préchauffé. Dans le présent contexte, le terme « préchauffage » se réfère au chauffage d'un produit, tel qu'un combustible, un comburant ou encore une charge à chauffer ou fondre, avant son introduction dans la chambre de combustion.
Suivant l'invention la au moins une partie du flux global d'oxygène est avantageusement chauffée à une température TOf entre 250°C et 620°C, de préférence entre 300°C et 600°C et encore de préférence entre 350°C et 580°C directement en amont de la chambre de combustion, c'est-à-dire directement en amont de brûleurs ou lances dont est équipée la chambre de combustion et qui sont utilisés pour l'injection d'oxygène préchauffé dans la chambre de combustion.
On utilise avantageusement le flux d'air appauvri en oxygène pour le préchauffage de la au moins une partie du flux global d'oxygène, par exemple par échange thermique entre l'air appauvri et la au moins une partie du flux global dans un échangeur de chaleur.
En effet, en fonction de la température TA1 de l'air à l'entrée de l'unité de production d'oxygène, le flux d'air appauvri à la sortie de cette unité de production d'oxygène peut présenter une température TA2 de 400°C à 750°C, de préférence de 450°C à 700°C et encore de préférence de 500°C et 650°C. Ce flux d'air' appauvri en oxygène présente donc une énergie thermique qui peut de manière utile être utilisée pour augmenter le rendement énergétique du procédé.
Ainsi, suivant une forme de réalisation, la au moins une partie du flux global d'oxygène est chauffée directement en amont de la chambre de combustion par échange thermique avec le flux d'air appauvri en oxygène issu de l'unité de production d'oxygène. Il est également avantageux de préchauffer au moins une partie du combustible brûlé dans la chambre de combustion. Dans ce cas, il est préférable qu'au moins une partie du combustible brûlé dans la chambre de combustion soit préchauffée en amont de la chambre de combustion par échange thermique avec le flux d'air appauvri en oxygène issu de l'unité de production d'oxygène, typiquement dans un échangeur de chaleur.
Par « échangeur de chaleur » ou « échangeur », on comprend une installation ou un dispositif dans lequel deux fluides de températures différentes circulent dans des enceintes distinctes et transmettent de la chaleur de l'une des deux fluides (fluide la plus chaude) à l'autre des deux fluides (fluide la moins chaude) à travers une ou des parois séparant les deux enceintes, et donc sans contact direct ou mélange entre les deux fluides.
L'utilisation d'autres sources de chaleur pour le préchauffage de l'oxygène et/ou du combustible, seule ou, de préférence, en combinaison avec un échange thermique avec le flux d'air appauvri en oxygène n'est toutefois pas exclue.
Le procédé suivant l'invention est utile et avantageux pour toute chambre de combustion à haute température d'un four. La chambre de combustion peut ainsi être une chambre de fusion, telle qu'une chambre de fusion de métaux ou, de préférence, une chambre de fusion de matière vitrifïable. Un exemple d'une telle chambre de fusion est une chambre de fusion de verre de type « float ». La chambre peut aussi être une chambre de calcination, par exemple pour la calcination de ciment ou encore une chambre de réchauffage, comme notamment les chambres de réchauffages d'acier.
On note que le terme « chambre de combustion » n'est pas limité à des chambre statiques de combustion, mais couvre également les chambres rotatives de combustion.
L'invention et ses avantages seront mieux compris à la lumière de l'exemple ci-après d'un procédé suivant l'invention et d'une installation adaptée pour la mise en œuvre d'un tel procédé, référence étant faite à la figure 1 qui est une représentation schématique d'une telle installation pour la fusion de verre adaptée à la mise en œuvre du procédé suivant l'invention.
Ladite installation comporte une chambre de combustion 100 d'un four, plus particulièrement une chambre de fusion ou de fusion/affinage de verre, munie d'un ou plusieurs brûleurs 200 adapté pour la combustion d'un combustible riche en oxygène et préchauffé.
L'installation comporte également un réseau de distribution de comburant riche en oxygène pour l'alimentation desdits brûleurs 200 en comburant, ainsi qu'un réseau de distribution de combustible pour l'alimentation desdits brûleurs 200 en combustible (par exemple, du gaz naturel).
Bien qu'un seul brûleur est représenté dans la figure, la chambre de combustion comporte typiquement plusieurs, voire un grand nombre de brûleurs, par exemple dans le cas d'un four de fusion de type « float ».
Les fumées générées par la combustion sont évacuées de la chambre de combustion 100 et envoyées dans un circuit d'évacuation des fumées 11.
Un ou des échangeurs de chaleurs 10, dits échangeurs primaires, sont placés sur le circuit d'évacuation des fumées 11 en aval de la chambre de combustion 100. Dans l'échangeur primaire 10, une partie de la chaleur résiduelle des fumées évacuées est transférée à un flux d'air 21, avec obtention d'une part, d'un flux d'air chaud 22 et, d'autre part, d'un flux de fumées évacuées tempérées 12.
L'air chaud atteint une température de l'ordre 700°C et jusqu'à 900°C, voire jusqu'à 950°C en sortie d'un l'échangeur primaire 10.
Le flux d'air chaud 22 est ainsi porté à un niveau de température à laquelle l'extraction de l'oxygène sur une MTI peut être réalisée à l'échelle industrielle. Il est à une pression proche de l'atmosphérique.
Ce flux d'air chaud 22 est introduit dans une unité de production d'oxygène par extraction au moyen de MTI céramique 20 avec une capacité de 1 à 100 tonnes d'oxygène par jour. A ces pressions et avec une surface de membrane adaptée, le rendement d'extraction est, par exemple, de l'ordre 50%.
On obtient ainsi à la sortie de l'unité de production 20 un premier flux d'oxygène 50 ainsi qu'un flux d'air appauvri en oxygène 23.
Le premier flux d'oxygène 50 produit à partir de MTI est chaud, avec une température
TOI de l'ordre de 900°C. Cet oxygène chaud 50 est directement injecté dans un réseau de distribution d'oxygène où il est mélangé avec de l'oxygène plus froide 60 issu d'une autre source d'oxygène (telle qu'une USA (unité de séparation des gaz de l'air, en anglais : ASU (air séparation unit), une VSA (vacuum swing adsorption = adsorption avec mise sous vide), un réservoir de LOX (oxygène liquide) ou circuit d'oxygène gazeux).
On obtient ainsi un flux global d'oxygène 70 contenant de 20 à 25%vol (et jusqu'à 50%vol) d'oxygène issue de l'unité de production d'oxygène à MTI et de 75 à 80%vol (et jusqu'à 50%vol) d'oxygène issu de l'autre source d'oxygène.
L'oxygène chaud produit à partir de MTI est ainsi refroidi sans perte d'énergie pour l'installation et peut sans risque être transporté dans le réseau de distribution d'oxygène dont les matériaux n'ont pas à résister aux conditions très agressives de l'oxygène à très haute température.
Le mélange d'oxygène de différentes sources ainsi obtenu est alors utilisé comme comburant riche en oxygène pour générer la combustion du combustible dans la chambre de combustion/fusion 30.
Suivant l'invention, il est possible d'optimiser la configuration de l'installation de fusion de verre en positionnant le ou les unités de productions d'oxygène 20 à l'endroit le plus approprié, même si celui se trouve à une distance des brûleurs 200 de la chambre de combustion 100 et il n'est pas nécessaire d'utiliser pour le transport du flux global d'oxygène 70 des matériaux généralement très onéreux qui résistent à l'oxygène à haute température..
Dans la forme d'exécution illustrée, la production d'oxygène par MTI est intégrée à une technologie de préchauffage d'oxygène et du combustible, par exemple du gaz naturel, pour l'alimentation des brûleurs oxycombustibles 200 de la chambre de combustion 100 de l'installation de fusion de verre.
Une technologie de préchauffage d'oxygène similaire est notamment connue d'US-A-6071116.
L'air appauvri en oxygène 21 issue de l'unité de production d'oxygène 20, qui présente une température TA2 de l'ordre de 450°C, est canalisé vers des échangeurs de chaleur secondaires 31 et 32. Dans le premier échangeur secondaire 31, une partie de l'air appauvri en oxygène 23 est utilisé pour le préchauffage du combustible 25, par exemple du gaz naturel, en amont des brûleurs 200 de la chambre de combustion 100. On obtient un flux de combustible préchauffé 26 qui est fourni aux brûleurs 200 et un premier flux tempéré d'air appauvri en oxygène 27.
De manière analogue, dans le deuxième échangeur secondaire 32, une partie de l'air appauvri en oxygène 23 est utilisé pour le préchauffage d'au moins une partie du flux global d'oxygène 70 en amont desdits brûleurs 200. On obtient un flux d'oxygène préchauffé 71 qui est fourni aux brûleurs 200 et un deuxième flux tempéré d'air appauvri en oxygène 28.
Un seul premier échangeur secondaire 31 et un seul deuxième échangeur secondaire 32 sont montrés dans la figure 1. Toutefois, l'installation peut comporter plusieurs premiers échangeurs secondaires 31 et plusieurs deuxièmes échangeurs secondaires 32. En particulier quand la chambre de combustion comporte un grand nombre de brûleurs 200, l'installation peut comporter un nombre de premiers échangeurs secondaires 31 et un nombre de deuxièmes échangeurs secondaires 32, chaque échangeur de chaleur 31 et 32 alimentant un nombre limité de brûleurs 200, voire un seul brûleur (200). Ceci permet notamment de limiter les canalisations pour le transport de combustible préchauffé, respectivement d'oxygène préchauffé.
Bien que, suivant l'invention, l'oxygène produite à partir de MTI est refroidi en le mélangeant avec de l'oxygène d'une autre source, l'invention permet toutefois d'avoir une température de l'oxygène (mélange d'oxygène ou flux global d'oxygène) à l'entrée de l'échangeur secondaire 32, typiquement à une température d'environ 300°C, et ainsi de réduire la taille et le coût du ou des échangeurs secondaires 31 pour le préchauffage de l'oxygène.
La présente invention permet ainsi d'utiliser la chaleur résiduelle des fumées évacuées de la chambre de combustion 100 pour la production d'oxygène et pour le préchauffage du combustible et d'un comburant riche en oxygène, d'optimiser la configuration de l'installation et de limiter l'utilisation de matériaux qui doivent résister à de l'oxygène chaud.

Claims

Revendications
1) Procédé de chauffe par oxycombustion dans un four dans lequel :
• un combustible est brûlé avec un comburant riche en oxygène dans une chambre de combustion (100) du four avec génération de chaleur et de fumées dans la chambre de combustion
• les fumées générées (11) sont évacuées de la chambre de combustion (100), lesdites fumées évacuées contenant de la chaleur résiduelle,
• un flux d'air (21) est chauffé au moyen d'au moins une partie de la chaleur résiduelle présente dans les fumées évacuées, avec obtention d'un flux d'air chaud (22) à une température TAl,
• au moins une partie du flux d'air chaud (22) est introduite dans une unité de production d'oxygène (20) dans lequel on extrait une portion de l'oxygène présent dans ladite au moins une partie du flux d'air chaud (20) au moyen d'une ou des MTI, avec obtention d'un premier flux d'oxygène (50) à une température TOI et un flux d'air appauvri en oxygène (23) à une température TA2, avec TA2 < TAl,
• en aval de l'unité de production d'oxygène (20), le premier flux d'oxygène (50) est mélangé avec un deuxième flux d'oxygène (60) de manière à obtenir un flux global d'oxygène (70) à une température T02, avec T02 < TOI,
• au moins une partie du flux global d'oxygène (70) est transportée vers la chambre de combustion (100) et utilisée comme comburant riche en oxygène dans la chambre de combustion (100), ladite au moins une partie du flux global d'oxygène (70) étant chauffé à une température TOf directement en amont de la chambre de combustion (100), avec TOf > T02.
2) Procédé de chauffe suivant la revendication 1, dans lequel le flux d'air chaud (22) présente un température TAl de 700°C à 1000°C, de préférence de 750°C à 950°C et encore de préférence de 800 °C à 900°C.
3) Procédé suivant l'une quelconque des revendications précédentes, dans lequel le flux d'air chaud (22) présente une pression PA1 de 1 bar ab à 6 bar ab à l'entrée de l'unité de production d'oxygène, de préférence de 1 bar ab à 3 bar ab et encore de préférence de 1 bar ab à 2 bar ab
4) Procédé suivant l'une quelconque des revendications précédentes, dans lequel la portion d'oxygène extrait du au moins une partie du flux d'air chaud (22) correspond à entre
10 % et 100 %, de préférence entre 20% et 70%>, encore de préférence entre 20%> et 50 % de l'oxygène présent dans ladite au moins une partie du flux d'air chaud.
5) Procédé suivant l'une quelconque des revendications précédentes, dans lequel la température TA2 du flux d'air appauvri en oxygène (23) de 400°C à 750°C, de préférence de
450°C à 700°C et encore de préférence de 500°C et 650°C
6) Procédé suivant l'une quelconque des revendications précédentes, dans lequel le premier flux d'oxygène (50) correspond à entre 90%> et 0%>vol, de préférence entre 90%> et 15%) vol, encore de préférence entre 80%> et 20%>vol, voire entre 80%> et 30%>vol, et encore de préférence entre 80%> et 50%>vol du flux global d'oxygène (70).
7) Procédé suivant l'une quelconque des revendications précédentes, dans lequel le deuxième flux d'oxygène (60) est fourni par une unité de séparation des gaz de l'air, un VSA, un réservoir d'oxygène liquéfié ou une canalisation d'oxygène gazeux.
8) Procédé suivant l'une quelconque des revendications précédentes, dans lequel la au moins une partie du flux global d'oxygène (70) est chauffée à une température TOf entre 250°C et 620°C, de préférence entre 300°C et 600°C et encore de préférence entre 350°C et 580°C directement en amont de la chambre de combustion (100).
9) Procédé suivant l'une quelconque des revendications précédentes, dans lequel la au moins une partie du flux global d'oxygène (70) est chauffée directement en amont de la chambre de combustion (100) par échange thermique avec le flux d'air appauvri en oxygène (23) issu de l'unité de production d'oxygène (20).
10) Procédé suivant l'une quelconque des revendications précédentes, dans lequel au moins une partie du combustible (25) brûlé dans la chambre de combustion (100) est préchauffée en amont de la chambre de combustion (100) par échange thermique avec le flux d'air appauvri en oxygène (23) issu de l'unité de production d'oxygène (20).
11) Procédé suivant l'une quelconque des revendications précédentes dans lequel la chambre de combustion (100) est une chambre de fusion, de préférence une chambre de fusion de matière vitrif able, une chambre de calcination ou une chambre de réchauffage d'acier.
PCT/FR2014/053478 2013-12-23 2014-12-19 Procédé intégré d'oxycombustion et de production d'oxygène WO2015097389A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/107,542 US10197274B2 (en) 2013-12-23 2014-12-19 Integrated process for oxy-fuel combustion and production of oxygen
JP2016541125A JP2017502245A (ja) 2013-12-23 2014-12-19 酸素燃焼および酸素生成の統合プロセス
MX2016008291A MX2016008291A (es) 2013-12-23 2014-12-19 Procedimiento integrado de oxicombustion y de produccion de oxigeno.
KR1020167018986A KR20160111380A (ko) 2013-12-23 2014-12-19 산소-연료 연소 및 산소 생산을 위한 통합된 방법
BR112016014489A BR112016014489A2 (pt) 2013-12-23 2014-12-19 Processo integrado de oxicombustão e de produção de oxigénio
CN201480074698.XA CN105980776A (zh) 2013-12-23 2014-12-19 用于氧燃料燃烧和氧气生产的综合方法
EP14830993.3A EP3087319A1 (fr) 2013-12-23 2014-12-19 Procédé intégré d'oxycombustion et de production d'oxygène

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363503A FR3015635B1 (fr) 2013-12-23 2013-12-23 Procede integre d'oxycombustion et de production d'oxygene
FR1363503 2013-12-23

Publications (1)

Publication Number Publication Date
WO2015097389A1 true WO2015097389A1 (fr) 2015-07-02

Family

ID=50179843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/053478 WO2015097389A1 (fr) 2013-12-23 2014-12-19 Procédé intégré d'oxycombustion et de production d'oxygène

Country Status (9)

Country Link
US (1) US10197274B2 (fr)
EP (1) EP3087319A1 (fr)
JP (1) JP2017502245A (fr)
KR (1) KR20160111380A (fr)
CN (1) CN105980776A (fr)
BR (1) BR112016014489A2 (fr)
FR (1) FR3015635B1 (fr)
MX (1) MX2016008291A (fr)
WO (1) WO2015097389A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039535B1 (fr) 2015-07-30 2017-08-25 Air Liquide Procede et installation de fabrication de produits reticules en fibre de verre
FR3039534B1 (fr) 2015-07-30 2017-08-25 Air Liquide Procede et installation de fabrication de fibre de verre
FR3039536B1 (fr) 2015-07-31 2017-08-25 Air Liquide Procede de fabrication de produits de fibre de verre comportant des etapes d'ensimage et de desensimage et installation adaptee pour sa mise en œuvre.
CN107228356B (zh) * 2017-07-06 2023-05-30 山西大学 一种用于对冲锅炉的自动稳燃系统
CN107246607B (zh) * 2017-07-06 2023-05-30 山西大学 一种用于四角切圆锅炉的自动稳燃系统
EP3428532A1 (fr) * 2017-07-12 2019-01-16 Linde Aktiengesellschaft Procédé de fonctionnement d'un brûleur de claus
CN115354140B (zh) * 2022-08-18 2023-08-15 重庆赛迪热工环保工程技术有限公司 富氧加热炉系统
DE102022130074A1 (de) 2022-11-14 2024-05-16 Thyssenkrupp Ag Energieeffiziente Kohlendioxidabtrennung, insbesondere für ein Zementwerk
LU103035B1 (de) 2022-11-14 2024-05-14 Thyssenkrupp Ag Energieeffiziente Kohlendioxidabtrennung, insbesondere für ein Zementwerk

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071116A (en) 1997-04-15 2000-06-06 American Air Liquide, Inc. Heat recovery apparatus and methods of use
EP1338848A2 (fr) * 2002-02-25 2003-08-27 L'Air Liquide S. A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et dispositif pour la séparation d'air intégrée et la récupération de chaleur dans un four
EP2026004A1 (fr) * 2007-08-07 2009-02-18 Siemens Aktiengesellschaft Procédé de fonctionnement d'une installation de combustion et installation de combustion
WO2009118333A1 (fr) * 2008-03-25 2009-10-01 Agc Flat Glass Europe Sa Four de fusion du verre
WO2010000709A1 (fr) * 2008-07-02 2010-01-07 Agc Flat Glass Europe Sa Alimentation de brûleur à oxygène chaud
WO2011015616A1 (fr) 2009-08-06 2011-02-10 Agc Glass Europe Four de fusion du verre
EP2299090A2 (fr) * 2009-09-18 2011-03-23 Air Products and Chemicals, Inc. Système de combustion pour turbine intégrant une membrane de transport d'ions
EP2551243A1 (fr) * 2011-07-26 2013-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé hybrides de fusion de verre

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006141A (en) * 1990-01-30 1991-04-09 Air Products And Chemicals, Inc. Thermally efficient melting for glass making
JP3068888B2 (ja) * 1991-05-28 2000-07-24 株式会社日立製作所 燃焼装置及びその運転方法
US5807418A (en) * 1996-05-21 1998-09-15 Praxair Technology, Inc. Energy recovery in oxygen-fired glass melting furnaces
US5888272A (en) * 1997-06-05 1999-03-30 Praxair Technology, Inc. Process for enriched combustion using solid electrolyte ionic conductor systems
US5921771A (en) * 1998-01-06 1999-07-13 Praxair Technology, Inc. Regenerative oxygen preheat process for oxy-fuel fired furnaces
US6702570B2 (en) * 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
ZA200304880B (en) * 2003-02-24 2004-05-04 Air Liquide Integrated heat recovery systems and methods for increasing the efficiency of an oxygen-fired furnace.
FR2890155B1 (fr) * 2005-08-25 2007-11-23 Air Liquide Prechauffage de combustible et du comburant d'oxybruleurs a partir d'installation de prechauffage d'air de combustion
WO2011022653A2 (fr) * 2009-08-20 2011-02-24 Reilly Timothy J Système de combustion à récupération
AU2013233730B2 (en) * 2012-03-14 2015-11-26 Ihi Corporation Oxygen combustion boiler system
FR3015637B1 (fr) * 2013-12-23 2016-01-22 Air Liquide Procede et installation de combustion avec recuperation d'energie optimisee

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071116A (en) 1997-04-15 2000-06-06 American Air Liquide, Inc. Heat recovery apparatus and methods of use
EP1338848A2 (fr) * 2002-02-25 2003-08-27 L'Air Liquide S. A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et dispositif pour la séparation d'air intégrée et la récupération de chaleur dans un four
EP2026004A1 (fr) * 2007-08-07 2009-02-18 Siemens Aktiengesellschaft Procédé de fonctionnement d'une installation de combustion et installation de combustion
WO2009118333A1 (fr) * 2008-03-25 2009-10-01 Agc Flat Glass Europe Sa Four de fusion du verre
WO2010000709A1 (fr) * 2008-07-02 2010-01-07 Agc Flat Glass Europe Sa Alimentation de brûleur à oxygène chaud
WO2011015616A1 (fr) 2009-08-06 2011-02-10 Agc Glass Europe Four de fusion du verre
EP2299090A2 (fr) * 2009-09-18 2011-03-23 Air Products and Chemicals, Inc. Système de combustion pour turbine intégrant une membrane de transport d'ions
EP2551243A1 (fr) * 2011-07-26 2013-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé hybrides de fusion de verre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3087319A1

Also Published As

Publication number Publication date
FR3015635B1 (fr) 2019-05-31
EP3087319A1 (fr) 2016-11-02
KR20160111380A (ko) 2016-09-26
US20160313001A1 (en) 2016-10-27
US10197274B2 (en) 2019-02-05
JP2017502245A (ja) 2017-01-19
MX2016008291A (es) 2016-09-09
FR3015635A1 (fr) 2015-06-26
CN105980776A (zh) 2016-09-28
BR112016014489A2 (pt) 2017-08-08

Similar Documents

Publication Publication Date Title
EP3087319A1 (fr) Procédé intégré d&#39;oxycombustion et de production d&#39;oxygène
EP2736854B1 (fr) Installation et procede hybrides de fusion de verre
EP3087040B1 (fr) Procédé et installation de combustion avec récupération d&#39;énergie optimisée
EP2462055B1 (fr) Procédé de fusion du verre
EP2935132B1 (fr) Recuperation energetique des fumees d&#39;un four de fusion avec une turbine à gaz et des échangeurs de chaleur
EP2731918B1 (fr) Installation et procede de fusion de verre
EP3087041B1 (fr) Combustion avec récupération de chaleur ameliorée
EP2935133B1 (fr) Recuperation energetique des fumees d&#39;un four de fusion au moyen d&#39;une turbine a gaz et des échangeurs de chaleur
EP2546204A1 (fr) Procédé et installation de fusion de verre
EP2462067A1 (fr) Four de fusion du verre
EP3114243A1 (fr) Four industriel pour chauffer des produits tels des produits siderurgiques
EP3482130B1 (fr) Procédé de fonctionnement d&#39;un four discontinu avec préchauffage d&#39;un fluide en amont du four
WO2015097381A1 (fr) Procede pour la fabrication d&#39;ouvrages de verre
FR3037131B1 (fr) Procede et intallation de combustion
FR2969267A1 (fr) Procede de fusion a chargement discontinu
FR3007829A1 (fr) Procede de chauffe avec generation et combustion de syngaz et installation pour sa mise en œuvre
FR2932792A1 (fr) Procede de production de gaz de synthese par reformage a la vapeur d&#39;hydrocarbures utilisant de l&#39;air enrichi en oxygene en tant que comburant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541125

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008291

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15107542

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016014489

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016128503

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014830993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014830993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167018986

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016014489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160620