WO2015129834A1 - 手術システムおよび医療器具の干渉回避方法 - Google Patents

手術システムおよび医療器具の干渉回避方法 Download PDF

Info

Publication number
WO2015129834A1
WO2015129834A1 PCT/JP2015/055724 JP2015055724W WO2015129834A1 WO 2015129834 A1 WO2015129834 A1 WO 2015129834A1 JP 2015055724 W JP2015055724 W JP 2015055724W WO 2015129834 A1 WO2015129834 A1 WO 2015129834A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical instrument
interference
organ
unit
dimensional position
Prior art date
Application number
PCT/JP2015/055724
Other languages
English (en)
French (fr)
Inventor
昌夫 二梃木
悟 菊池
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP15755720.8A priority Critical patent/EP3111878A4/en
Priority to CN201580010502.5A priority patent/CN106028999B/zh
Publication of WO2015129834A1 publication Critical patent/WO2015129834A1/ja
Priority to US15/238,963 priority patent/US20160354164A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00055Operational features of endoscopes provided with output arrangements for alerting the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention relates to a surgical system and a method for avoiding interference between medical instruments.
  • an endoscope and a treatment tool such as forceps are simultaneously inserted into the abdominal cavity through separate holes formed in the patient's body wall, and treatment is performed using both the endoscope and the treatment tool.
  • the technique to do is used. Since the endoscope inserted into the abdominal cavity and the treatment tool are operated independently of each other, interference between the endoscope and the treatment tool may occur and hinder the operation.
  • an endoscope having a function of avoiding interference with a treatment tool has been proposed (see, for example, Patent Document 1).
  • an interference sensor that detects interference with a treatment tool or a peripheral organ is provided at an insertion portion of an endoscope, and the insertion portion has a bent shape that does not interfere with the treatment tool based on the detection of the interference sensor.
  • the angle of the joint provided in the insertion portion is controlled.
  • the endoscope of Patent Document 1 adjusts the angle of the joint after detecting the interference between the insertion portion and the treatment tool or the surrounding organ, so that the interference between the insertion portion and the treatment tool or the surrounding organ is obviated. It cannot be avoided. Patent Document 1 does not describe any means for avoiding interference in advance. Furthermore, although the endoscope of Patent Document 1 uses a gyro sensor, a strain gauge, or a piezoelectric sensor as an interference sensor, the interference with a soft organ is particularly stable with good sensitivity when such an interference sensor is used. This is technically difficult to detect and is insufficient as a means for avoiding interference with surrounding organs.
  • the present invention has been made in view of the above-described circumstances, and provides a surgical system and a medical instrument interference avoidance method that can surely prevent the occurrence of interference with peripheral organs of a medical instrument in a body cavity.
  • the purpose is to do.
  • the present invention provides the following means. According to a first aspect of the present invention, there is provided a medical instrument that can be inserted into a body cavity of a living body, an organ measuring unit that measures a three-dimensional position of an organ in the body cavity, and the 3 of the organ measured by the organ measuring unit.
  • a non-interference area setting unit for setting a non-interference area excluding the organ in the space in the body cavity based on a three-dimensional position; and a medical instrument detection means for detecting a three-dimensional position of the medical instrument in the body cavity; Based on the three-dimensional position of the medical instrument detected by the medical instrument detection means, a medical instrument occupation area calculation unit for calculating a medical instrument occupation area occupied by the medical instrument in the body cavity, and the non-interference area Based on the positional relationship between the non-interference area set by the setting unit and the medical instrument occupation area calculated by the medical instrument occupation area calculation unit, the interference between the medical instrument and the organ is predicted.
  • An interference predictor when interference between the organ and the medical instrument has been predicted by the interference predictor, a surgical system and a reminder unit for performing alerting the operator.
  • the three-dimensional position in the body cavity of the medical instrument is detected by the medical instrument detection means, and the medical instrument occupation area is calculated based on the detected three-dimensional position. Is calculated by At the same time, the three-dimensional position of the organ in the body cavity is measured by the organ measuring means, and a non-interference area in which no organ exists in the body cavity is set by the non-interference area setting unit based on the measured three-dimensional position.
  • the operator is alerted.
  • the operator may take an avoidance action such as operating the medical device more carefully or moving the medical device away from a peripheral organ that is likely to interfere before the medical device interferes with the surrounding organ. It is possible to reliably prevent the occurrence of interference between the medical instrument and the surrounding organs in the body cavity.
  • a medical instrument that can be inserted into a body cavity of a living body, organ measuring means for measuring a three-dimensional position of an organ in the body cavity, and 3 of the organ measured by the organ measuring means.
  • a non-interference area setting unit for setting a non-interference area excluding the organ in the space in the body cavity based on a three-dimensional position; and a medical instrument detection means for detecting a three-dimensional position of the medical instrument in the body cavity; Based on the three-dimensional position of the medical instrument detected by the medical instrument detection means, a medical instrument occupation area calculation unit for calculating a medical instrument occupation area occupied by the medical instrument in the body cavity, and the non-interference area Predicting the interference between the medical instrument and the organ based on the positional relationship between the non-interference area set by the setting unit and the medical instrument occupation area calculated by the medical instrument occupation area calculation unit An interference predictor that, when the interference between the organ and the medical instrument has been predicted by the interference predictor, a surgical system and a medical instrument control unit to restrict the operation of the medical instrument.
  • the medical instrument control unit restricts the operation of the medical instrument, so that the medical treatment in the body cavity is performed. Occurrence of interference with peripheral organs of the instrument can be surely prevented.
  • the interference with the said medical instrument and the said organ is estimated by the said interference prediction part, you may further provide the alerting part which alerts an operator.
  • the alerting unit may output a notification signal appealing to at least one of the visual, auditory, and tactile sensations of the operator. In this way, it is possible to alert the operator with a simple method.
  • the organ measuring means includes a cylindrical trocar that is inserted into the body cavity through a hole formed in the body surface of the living body and into which the medical instrument can be inserted.
  • a stereoscopic camera that is provided at the tip of the trocar and captures a field of view in front of the tip of the trocar from two different viewpoints to obtain a pair of viewpoint images, and a position and posture of the stereoscopic camera in the body cavity
  • a three-dimensional position of the organ in the body cavity is calculated from a viewpoint position detection unit to detect, a pair of viewpoint images acquired by the stereoscopic camera, and the position and posture of the stereoscopic camera detected by the viewpoint position detection unit.
  • an arithmetic unit obtained by the above.
  • the pair of viewpoint images acquired by the stereoscopic camera includes information on the distance from the tip of the trocar to each position on the surface of the surrounding organ.
  • the calculation unit can acquire the three-dimensional position of the surface of the surrounding organ from the distance information calculated from the pair of viewpoint images and the position and orientation of the stereoscopic camera detected by the viewpoint position detection unit.
  • the three-dimensional positions of surrounding organs can be acquired in real time from a viewpoint image obtained by observing the inside of a body cavity during surgery.
  • another medical instrument that can be inserted into the body cavity
  • the organ measuring means detects the three-dimensional position of the tip of the other medical instrument in the body cavity.
  • the three-dimensional position detected by the designated position detecting unit when the non-interference area setting unit is operated by the designated position detecting unit and an instruction unit operated by the operator.
  • the non-interference area may be set with the plane including the stored three-dimensional position as the boundary plane of the non-interference area. In this way, the operator can set a non-interference area with the position designated by the operator as a boundary surface by repeating the operation of the instruction unit while moving another medical instrument in the body cavity. .
  • the organ measuring means is provided at the distal end of the medical instrument so as to be rotatable about the longitudinal axis of the medical instrument, and is measured in a one-dimensional direction intersecting the longitudinal direction.
  • the measurement light is irradiated to the surrounding organ while rotating the optical distance meter, and the distance to each position on the surface of the surrounding organ is measured by two-dimensional scanning of the measurement light on the surface of the surrounding organ.
  • the three-dimensional position of each position on the peripheral organ surface can be measured.
  • the non-interference area setting unit assumes that the dimension of the organ is larger than a dimension obtained from a three-dimensional position measured by the organ measuring means.
  • the non-interference area may be set with the contour of the organ having a specific dimension as a boundary surface of the non-interference area.
  • the medical device occupation area calculation unit assumes that the size of the medical device is larger than the actual size of the medical device, and the medical device has the assumed size.
  • the medical device occupation region may be set with the contour of the medical device occupation region as a boundary surface of the medical device occupation region. In this way, when the interval between the medical instrument and the surrounding organ is less than a predetermined value, the interference between the medical instrument and the surrounding organ is predicted, so that the interference between the medical instrument and the surrounding organ is further ensured. Can be prevented.
  • the medical device includes a plurality of the medical devices
  • the medical device detection means detects a three-dimensional position of each of the plurality of medical devices
  • the medical device occupation region calculation unit includes: The medical instrument occupation area is calculated for each of the plurality of medical instruments, and the interference prediction unit is configured to calculate the plurality of medical instruments based on the positional relationship between the plurality of medical instrument occupation areas calculated by the medical instrument occupation area. Interference between instruments may be further predicted. By doing in this way, not only interference with a medical instrument and surrounding organs but also interference between medical instruments in a body cavity can be prevented.
  • the medical instrument may be an endoscope or a treatment instrument.
  • an organ measurement step for measuring a three-dimensional position of an organ in a body cavity of a living body, and a space in the body cavity based on the three-dimensional position of the organ measured in the organ measurement step.
  • An interference avoidance method for a medical instrument comprising: an interference predicting step for predicting; and an alerting step for alerting an operator when interference between the medical instrument and the organ is predicted in the interference predicting step. is there.
  • an organ measurement step for measuring a three-dimensional position of an organ in a body cavity of a living body, and a space in the body cavity based on the three-dimensional position of the organ measured in the organ measurement step.
  • interference between the medical device and the organ based on the positional relationship between the medical device occupation region calculated in the medical device occupation region calculation step
  • An interference prediction method for a medical device comprising: an interference prediction step for predicting; and a medical device restriction step for restricting the operation of the medical device when interference between the medical device and the organ is predicted in the interference prediction step It is.
  • FIG. 1 is an overall configuration diagram of a surgery system according to a first embodiment of the present invention. It is a flowchart explaining the interference avoidance method of the endoscope by the surgery system of FIG. It is a figure which shows an example of the warning display displayed on a display part in the surgery system of FIG. It is a flowchart explaining the modification of the interference avoidance method of the endoscope by the surgery system of FIG. It is a whole block diagram which shows the modification of the surgery system of FIG. It is a whole block diagram of the surgery system which concerns on the 2nd Embodiment of this invention. It is a whole block diagram of the surgery system which concerns on the 3rd Embodiment of this invention.
  • an operation system 100 includes an endoscope (medical instrument) 1 that can be inserted into an abdominal cavity (body cavity) C through a hole B formed in a body wall A, An extracorporeal arm 2 that holds the proximal end portion of the endoscope 1 outside the body, a trocar 3 that supports the endoscope 1 in an inserted state in the hole B, and an operation input unit that is operated by an operator (operator).
  • an endoscope medical instrument
  • An extracorporeal arm 2 that holds the proximal end portion of the endoscope 1 outside the body
  • a trocar 3 that supports the endoscope 1 in an inserted state in the hole B
  • an operation input unit that is operated by an operator (operator).
  • a drive unit 5 that drives a bending portion 1 b (described later) of the endoscope 1 and a joint portion 2 a (described later) of the extracorporeal arm 2, and the drive unit 5 is controlled based on an operation input to the operation input unit 4.
  • a control unit 6 for performing the above operation.
  • the endoscope 1 includes an elongated insertion portion 1a inserted into the abdominal cavity C, a bendable bending portion 1b provided at the distal end portion of the insertion portion 1a, and a grip provided on the proximal end side of the insertion portion 1a.
  • the extracorporeal arm 2 includes a joint portion 2a composed of a plurality of joints, and the endoscope 1 held at the tip thereof can be moved by driving the joint portion 2a.
  • the operation input unit 4 can input an operation for the bending portion 1b and an operation for the joint portion 2a.
  • the operation input unit 4 transmits a signal corresponding to the operation to the control unit 6.
  • the control unit 6 controls the driving unit 5 based on the signal received from the operation input unit 4 to cause the bending unit 1b and the joint unit 2a to perform an operation corresponding to the operation input to the operation input unit 4. It has become.
  • the trocar 3 is a cylindrical member having a through hole into which the insertion portion 1a can be inserted, and is inserted into the abdominal cavity C through the hole B.
  • the insertion portion 1a can be held in the state of being inserted into the abdominal cavity C.
  • the trocar 3 is swingable with the position supported by the body wall A as a fulcrum P, and by changing the insertion angle of the trocar 3 into the abdominal cavity C, the insertion portion 1a is moved within the abdominal cavity C. It can be moved in a direction intersecting the longitudinal direction.
  • the surgical operation system 100 includes a stereoscopic camera (organ measuring means) 7 and a sensor group (medical instrument detecting means, organ measuring means, viewpoint position detecting unit) 8 provided in the trocar 3, and a stereoscopic camera 7.
  • a non-interference area setting unit 10 that sets a non-interference area based on the three-dimensional position of the endoscope, and an endoscope occupation area occupied by the insertion unit 1a in the abdominal cavity C based on the detection value of the sensor group 8 Based on the endoscope occupied area calculation unit 11, the non-interference area set by the non-interference area setting unit 10, and the endoscope occupied area calculated by the endoscope occupied area calculation unit 11 and the surrounding area Viscera
  • An interference predicting unit 12 that predicts interference with D, and an alerting unit 13 that alerts the surgeon when interference between the insertion unit 1a and the surrounding organ D is predicted by the interference predicting unit 12; It has.
  • the stereoscopic camera 7 is provided at the distal end portion of the trocar 3, and acquires a pair of viewpoint images constituting a parallax image by photographing the visual field in front of the distal end of the trocar 3 from two different viewpoints.
  • the parallax image is an image used for stereoscopic viewing of the subject and includes three-dimensional position information of the subject.
  • the stereoscopic camera 7 transmits the acquired parallax image to the calculation unit 9.
  • the sensor group 8 includes a posture sensor that detects the posture of the trocar 3, an insertion amount sensor that detects the amount of insertion of the insertion portion 1a into the trocar 3, and an angle sensor that detects the amount of rotation of the insertion portion 1a in the circumferential direction. At least. With these three types of sensors, the position and posture of the stereoscopic camera 7 in the abdominal cavity C and the three-dimensional position of the insertion portion 1a in the abdominal cavity C can be detected. Each sensor transmits a detection value to the calculation unit 9 and the endoscope occupation region calculation unit 11, respectively.
  • the calculation unit 9 obtains the distance from the parallax image received from the stereoscopic camera 7 to the respective positions on the surface of the peripheral organ D included in the parallax image by calculation. Then, the calculation unit 9 converts the acquired distance into a three-dimensional coordinate system using the detected value received from the sensor group 8 as the origin of the fulcrum P, so that the three-dimensional position of each position on the surface of the peripheral organ D is obtained. Get the coordinates. The calculation unit 9 transmits the obtained three-dimensional position coordinates to the non-interference area setting unit 10.
  • the non-interference area setting unit 10 sets an area located farther from the fulcrum P in the abdominal cavity C than the plane defined by the three-dimensional position coordinates received from the calculation unit 9 (that is, the surface of the peripheral organ D). It is set as an organ occupation area occupied by the peripheral organ D. Next, the non-interference area setting unit 10 sets an area obtained by enlarging the organ occupation area in each direction by a predetermined value as an interference area, and further, a space excluding the interference area in the abdominal cavity C is set as a non-interference area. Set. In other words, the non-interference region is a space where the peripheral organ D does not exist, with a surface separated from the surface of the peripheral organ D by a predetermined value as a boundary surface.
  • the endoscope occupation area calculation unit 11 receives the detection value from the sensor group 8, and acquires the bending direction and the bending angle of the bending portion 1b from the control unit 6.
  • the endoscope occupation area calculation unit 11 is occupied by the insertion unit 1a in the abdominal cavity C from the information acquired from the sensor group 8 and the control unit 6 and the dimensions of the insertion unit 1a stored in advance.
  • the endoscope occupation area in the above-described three-dimensional coordinate system is calculated, and the calculated endoscope occupation area is transmitted to the interference prediction unit 12.
  • the interference prediction unit 12 compares the endoscope occupation region with the non-interference region. When at least a part of the endoscope occupation region is located outside the boundary surface of the non-interference region, that is, the insertion unit If there is a part of the interval 1a that is less than the predetermined value in 1a, the insertion unit 1a is predicted to possibly interfere with the peripheral organ D, and a caution signal is transmitted to the alerting unit 13. To do.
  • the alerting unit 13 alerts the surgeon by outputting a notification signal when receiving an attention signal from the interference prediction unit 12.
  • the notification signal may be any signal that appeals to at least one of the operator's vision, hearing, and touch.
  • the alerting unit 13 may display a warning display informing the possibility of interference with the surrounding organ D of the insertion unit 1a on the display unit 14 or turn on the lamp. It may be output. Or the alerting part 13 may vibrate the holding part 1c currently hold
  • the trocar 3 is inserted into the hole B, and the insertion part 1a is inserted into the abdominal cavity C through the trocar 3 To do. Thereafter, the surgeon can move the entire endoscope 1 by operating the joint 2a of the extracorporeal arm 2 using the operation input unit 4. Further, the surgeon can move the distal end of the endoscope 1 by operating the bending portion 1 b of the endoscope 1 using the operation input unit 4.
  • FIG. 2 is a flowchart for explaining an endoscope interference avoiding method by the surgical operation system 100. While the insertion part 1a and the bending part 1b are operated in the abdominal cavity C as mentioned above, the following processes are performed. That is, the parallax image in the abdominal cavity C is acquired by the stereoscopic camera 7 arranged in the abdominal cavity C (organ measurement step S1), and the three-dimensional position of the surface of the peripheral organ D existing in the abdominal cavity C is determined from the parallax image. The acquired area (organ measurement step S2) and the area located in front of the peripheral organ D of the abdominal cavity C is set as a non-interference area (non-interference area setting step S3).
  • the sensor group 8 detects the three-dimensional position of the insertion portion 1a in the abdominal cavity C (medical instrument detection step S4), and the detected three-dimensional position and bending portion of the insertion portion 1a.
  • An endoscope occupation area is calculated based on the bending direction and the bending angle of 1b (medical instrument occupation area calculation step S5).
  • the interference prediction unit 12 determines whether or not the entire endoscope occupation area is located within the non-interference area is monitored by the interference prediction unit 12 (interference prediction step S6), and at least a part of the endoscope occupation area is outside the non-interference area.
  • a notification signal is output from the interference prediction unit 12 (attention step S7).
  • the notification signal prompts the surgeon to avoid interference between the insertion portion 1a and the surrounding organ D, and the surgeon may, for example, more carefully operate the insertion portion 1a or move the insertion portion 1a to the periphery. It is possible to take an action to avoid interference between the insertion portion 1a and the surrounding organ D, such as moving in a direction away from the organ D.
  • the accurate three-dimensional position of the peripheral organ D is measured by using the parallax image in the abdominal cavity C, and the insertion unit 1a can operate without interfering with the peripheral organ D.
  • the interference area is set accurately.
  • the interference with the insertion part 1a and the surrounding organ D is correctly estimated from the positional relationship between the position of the insertion part 1a in the abdominal cavity C and the non-interference area obtained by calculation. This notifies the surgeon that the possibility of the occurrence of the interference is high before the interference between the insertion portion 1a and the surrounding organ D occurs, and allows the surgeon to take appropriate avoidance action. There is an advantage that you can.
  • the insertion portion there is an advantage that interference with the surrounding organ D can be predicted and avoided for the portion close to the body wall A of 1a.
  • an interference area larger than the actual peripheral organ D is set, and an area excluding the interference area is set as a non-interference area.
  • an internal area is set.
  • the endoscope occupied area calculation unit 11 may use a size larger than the actual size of the insertion portion 1a for calculating the endoscope occupied area. Even if it does in this way, before the insertion part 1a and the surrounding organ D interfere, the said interference can be reliably estimated and avoided.
  • the operator when the interference with the surrounding organ D of the insertion portion 1a is predicted, the operator is notified of the direction of the insertion portion 1a to be moved by the operator in order to avoid the interference by a notification signal. May be.
  • a warning display 14 a may be displayed on the right side of the display unit 14.
  • the control unit (medical instrument control unit) 6 inserts, for example, prohibits the operation of the insertion unit 1a in a direction closer to the peripheral organ D regardless of the input to the operation input unit 4.
  • the operation of the unit 1a may be restricted (medical device restriction step S8).
  • the treatment tool 16 that can be inserted into the abdominal cavity C through a hole B ′ formed at a position different from the hole B is provided, and an insertion portion in the abdominal cavity C is provided. It is good also as a structure which also estimates the interference with 1a and the treatment tool 16.
  • FIG. 5 the surgical system 100 in FIG. 5 further includes another extracorporeal arm 17, another trocar 18, and a treatment instrument occupation area calculation unit 19.
  • the extracorporeal arm 17 is configured in the same manner as the extracorporeal arm 2, and has a joint portion 17a.
  • the trocar 18 is configured in the same manner as the trocar 3, and includes a posture sensor that detects the posture of the trocar 18, an insertion amount sensor that detects the amount of insertion of the treatment tool 16 into the trocar 18, and rotation of the treatment tool 16 in the circumferential direction.
  • a sensor group (medical instrument detection means) 20 including at least an angle sensor for detecting the amount is provided.
  • the three-dimensional position of the treatment tool 16 in the abdominal cavity C can be detected by these three types of sensors.
  • the treatment instrument occupation area calculation unit 19 uses the detection value received from the sensor group 20 and the treatment instrument stored in advance in the same manner as the endoscope occupation area calculation unit 11 calculates the endoscope occupation area. From the 16 dimensions, the area occupied by the treatment tool 16 in the abdominal cavity C and the treatment tool occupation area in the three-dimensional coordinate system described above is calculated, and the calculated treatment tool occupation area is sent to the interference prediction unit 12. Send.
  • the interference prediction unit 12 compares the endoscope occupation area and the treatment instrument occupation area. For example, when the distance between the two occupation areas is smaller than a predetermined value, the interference prediction unit 12 detects interference between the insertion unit 1a and the treatment instrument 16. Predict and transmit a caution signal to the alerting unit 13. By doing in this way, not only the interference between the insertion portion 1a and the surrounding organ D but also the interference between the insertion portion 1a and the treatment instrument 16 used simultaneously in the abdominal cavity C can be predicted and avoided in advance. The insertion portion 1a and the treatment instrument 16 can be smoothly operated.
  • the stereoscopic camera 7 may be provided in any trocar 3 or 18.
  • the endoscope 1 capable of stereoscopic observation may be used in place of the stereoscopic camera 7, and the parallax image acquired by the endoscope 1 may be used for measuring the three-dimensional position of the peripheral organ D.
  • the surgical operation system 200 is mainly different from the first embodiment in the configuration relating to the setting of the non-interference area.
  • the surgical system 200 includes a treatment tool 16, another extracorporeal arm 17 that holds the proximal end portion of the treatment tool 16 outside the body, and the treatment tool 16 in the abdominal cavity C. It further includes another trocar 18 that is inserted into the trocar.
  • the treatment instrument 16 includes a pointing portion 21 such as a button operated by an operator on a gripping portion 16a provided at a base end thereof.
  • the instruction unit 21 transmits a signal indicating that to the non-interference area setting unit 10.
  • the non-interference area setting unit 10 receives a detection value from a sensor group (designated position detection unit) 20 provided in the trocar 18, and calculates the abdominal cavity from the received detection value and the dimensions of the treatment instrument 16 stored in advance. The three-dimensional position of the distal end of the treatment tool 16 in C is calculated. The non-interference area setting unit 10 stores the three-dimensional position of the distal end of the treatment tool 16 when receiving a signal from the instruction unit 21. And the non-interference area
  • the trocar 3 is inserted into the hole B, and the insertion part 1a is inserted into the abdominal cavity C through the trocar 3 To do.
  • the trocar 18 is inserted into the hole B ′, and the treatment tool 16 is inserted into the abdominal cavity C through the trocar 18.
  • the surgeon can move the entire endoscope 1 or the entire treatment instrument 16 by operating the joint portions 2a and 17a of the extracorporeal arms 2 and 17 using the operation input unit 4.
  • the surgeon can move the distal end of the endoscope 1 by operating the bending portion 1 b of the endoscope 1 using the operation input unit 4.
  • a non-interference area is set by the operator performing the following procedure. That is, the surgeon operates the treatment tool 16 and operates the instruction unit 21 in a state where the distal end of the treatment tool 16 is disposed near the surface of the peripheral organ D (organ measurement step). This operation is repeated while moving the distal end of the treatment tool 16 to the back of the abdominal cavity C along the surface of the peripheral organ D.
  • the non-interference area setting unit 10 stores the three-dimensional positions arranged along the vicinity of the surface of the peripheral organ D, and sets a non-interference area having the boundary near the surface of the peripheral organ D (non-interference). Area setting step). Since other procedures are the same as steps S4 to S7 described in the first embodiment, the description thereof is omitted.
  • a surgical operation system 300 according to a third embodiment of the present invention will be described with reference to FIG.
  • the configuration different from the first embodiment will be mainly described, and the configuration common to the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the operation system 300 is mainly different from the first embodiment in the configuration relating to the setting of the non-interference area.
  • the surgical system 300 includes a light wave distance meter (organ measuring means) 22 provided at the distal end of the insertion portion 1 a in place of the stereoscopic camera 7.
  • the optical distance meter 22 emits measurement light such as laser light while scanning in a one-dimensional direction intersecting the longitudinal direction of the insertion portion 1a, receives reflected light from the peripheral organ D, and receives the phase of the received reflected light. And the distance to the surrounding organ D is calculated based on the reception time of the reflected light.
  • the lightwave distance meter 22 transmits the calculated distance to the non-interference area setting unit 10.
  • a rotating portion (not shown) that can rotate around the longitudinal axis of the insertion portion 1a is provided at the distal end portion of the insertion portion 1a.
  • the light wave distance meter 22 is provided so as to rotate integrally with the rotating part, and the rotation of the rotating part causes the scanning direction of the measurement light of the light wave distance meter 22 to be 360 ° around the longitudinal axis of the insertion part 1a.
  • the measurement light can be rotated and scanned two-dimensionally.
  • the non-interference area setting unit 10 receives the detection value from the sensor group 8, acquires the bending direction and the bending angle of the bending portion 1 b from the control unit 6, and receives the distance from the lightwave distance meter 22. Then, the non-interference area setting unit 10 calculates the three-dimensional position of the distal end of the insertion part 1a in the abdominal cavity C from the received information and the dimension of the insertion part 1a stored in advance. Further, the non-interference area setting unit 10 calculates and obtains the three-dimensional position of each position on the surface of the peripheral organ D from the three-dimensional position of the distal end of the insertion unit 1a and the distance measured by the optical wave distance meter 22. The non-interference area is set with the plane defined by the three-dimensional position of the surface of the surrounding organ D as the boundary plane of the non-interference area.
  • a non-interference area is set by the following procedure instead of steps S1 to S3 described above. That is, the surgeon operates the insertion portion 1a to irradiate the surface of the peripheral organ D while performing two-dimensional scanning of the measurement light from the light wave distance meter 22 provided at the distal end of the insertion portion 1a (organ measurement step). Thereby, the distance from the distal end of the insertion portion 1a to each position on the surface of the peripheral organ D is measured, and the three-dimensional position of each position on the surface of the peripheral organ D is acquired and obtained based on the measured distance.
  • a non-interference area is set based on the three-dimensional position of the surrounding organ D.
  • the distance measurement by the lightwave distance meter 22 and the setting of the non-interference area are performed as the insertion portion 1a moves in the abdominal cavity C. Since other procedures are the same as steps S4 to S7 described in the first embodiment, the description thereof is omitted.
  • the distance from the distal end of the insertion portion 1a to the peripheral organ D is measured using the optical distance meter 22, and the boundary of the non-interference area is set based on the obtained distance.
  • the boundary surface of the non-interference area that accurately follows the shape of the peripheral organ D can be set even in an uneven place or a deep place in the abdominal cavity C, which is difficult to observe with the stereoscopic camera 7. Therefore, there is an advantage that interference between the insertion portion 1a and the peripheral organ D can be avoided more reliably when the treatment is performed by inserting the insertion portion 1a while curving the bending portion 1b in a particularly narrow curved portion. .
  • an endoscope 1 capable of stereoscopic observation is used in place of the light wave distance meter 22, and a parallax image acquired by the endoscope 1 is used to extend from the distal end of the insertion portion 1a to the surrounding organ D. The distance may be measured.
  • the endoscope 1 is mainly described as a medical instrument.
  • a treatment tool such as forceps is used, and the treatment tool interferes with the surrounding organ D. May be predicted.
  • An organ measurement step for measuring a three-dimensional position of the organ in the body cavity of the living body;
  • a non-interference area setting step for setting a non-interference area excluding the organ in the space in the body cavity based on the three-dimensional position of the organ measured in the organ measurement step;
  • a medical instrument detection step of detecting a three-dimensional position of the medical instrument inserted into the body cavity;
  • a medical instrument occupation area calculating step for calculating a medical instrument occupation area occupied by the medical instrument in the body cavity based on the three-dimensional position of the medical instrument detected in the medical instrument detection step; Predicting the interference between the medical instrument and the organ based on the positional relationship between the non-interference area set in the non-interference area setting step and the medical instrument occupation area calculated in the medical instrument occupation area calculation step
  • An interference prediction step An interference avoidance method for a medical instrument, comprising: an alerting step for alert
  • An organ measurement step for measuring a three-dimensional position of the organ in the body cavity of the living body;
  • a non-interference area setting step for setting a non-interference area excluding the organ in the space in the body cavity based on the three-dimensional position of the organ measured in the organ measurement step;
  • a medical instrument detection step of detecting a three-dimensional position of the medical instrument inserted into the body cavity;
  • a medical instrument occupation area calculating step for calculating a medical instrument occupation area occupied by the medical instrument in the body cavity based on the three-dimensional position of the medical instrument detected in the medical instrument detection step; Predicting the interference between the medical instrument and the organ based on the positional relationship between the non-interference area set in the non-interference area setting step and the medical instrument occupation area calculated in the medical instrument occupation area calculation step
  • An interference prediction step A medical device interference avoiding method comprising: a medical device restriction step of restricting the operation of the medical device when interference between the medical device and the organ is predicted in the interference prediction step.
  • the organ measurement step captures the inside of the body cavity from two different viewpoints to acquire a pair of viewpoint images, and acquires the three-dimensional position of the organ in the body cavity by calculation from the acquired pair of viewpoint images Item 5.
  • the medical device interference avoidance method according to any one of Items 1 to 4.
  • the organ measurement step detects a three-dimensional position of the tip of another medical device in the body cavity when instructed by an operator;
  • the non-interference area setting step stores the three-dimensional position detected in the organ measurement step, and sets the non-interference area as a boundary surface of the non-interference area using a plane including the stored three-dimensional position. 5.
  • the medical device interference avoidance method according to any one of items 1 to 4.
  • the organ measuring step is provided at the distal end of the medical instrument so as to be rotatable about an axis in the longitudinal direction of the medical instrument, and uses a light wave distance meter that scans the measuring light in a one-dimensional direction intersecting the longitudinal direction.
  • Item 5 The medical device interference avoidance method according to any one of Items 1 to 4.
  • the non-interference area setting step assumes that the organ size is larger than a size obtained from the three-dimensional position measured by the organ measurement step, and the contour of the organ having the assumed size is determined as the non-interference region.
  • the medical device interference avoidance method according to any one of appendices 1 to 7, wherein the non-interference region is set as a boundary surface of the region.
  • the medical device occupation area calculation step assumes that the size of the medical device is larger than the actual size of the medical device, and defines the contour of the medical device of the assumed size as the boundary surface of the medical device occupation region.
  • the medical instrument interference avoidance method according to any one of appendices 1 to 7, wherein the medical instrument occupation area is set as follows.
  • the medical device detection step detects a three-dimensional position of each of the plurality of medical devices;
  • the medical device occupation area calculation step calculates the medical device occupation area for each of the plurality of medical instruments, Any one of Additional Item 1 to Additional Item 9, wherein the interference prediction step further predicts interference between the plurality of medical devices based on the positional relationship between the plurality of medical device occupation regions calculated by the medical device occupation region.
  • a method for avoiding interference of the medical device according to claim 1. (Appendix 11) The medical instrument interference avoidance method according to any one of appendix 1 to appendix 10, wherein the medical instrument is an endoscope or a treatment instrument.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Robotics (AREA)
  • Dentistry (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

手術システム(100)は、医療器具(1)と、体腔内の臓器(D)の3次元位置を測定する臓器測定手段(7)と、臓器(D)の3次元位置に基づいて体腔内の空間のうち臓器(D)を除く非干渉領域を設定する非干渉領域設定部(10)と、体腔内における医療器具(1)の3次元位置を検出する医療器具検出手段(8)と、医療器具(1)の3次元位置に基づいて医療器具(1)の体腔内における医療器具占有領域を計算する医療器具占有領域計算部(11)と、非干渉領域と医療器具占有領域との位置関係に基づいて、医療器具(1)と臓器(D)との干渉を予測する干渉予測部(12)と、該干渉予測部(12)によって干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起部(13)とを備える。

Description

手術システムおよび医療器具の干渉回避方法
 本発明は、手術システムおよび医療器具の干渉回避方法に関するものである。
 従来、腹腔鏡下手術において、患者の体壁に形成した別々の孔から内視鏡と鉗子等の処置具とを腹腔内に同時に挿入し、内視鏡と処置具の両方を用いて処置を行う手法が用いられている。腹腔内に挿入された内視鏡と処置具とは互いに独立に操作されるため、内視鏡と処置具との干渉が発生して手術の妨げとなることがある。そこで、処置具との干渉を回避する機能を備える内視鏡が提案されている(例えば、特許文献1参照。)。特許文献1では、内視鏡の挿入部に処置具または周辺臓器との干渉を感知する干渉センサを設け、該干渉センサの感知に基づいて、挿入部が処置具と干渉しない屈曲形状となるように挿入部に設けられた関節の角度を制御している。
特開2004-81277号公報
 しかしながら、特許文献1の内視鏡は、挿入部と処置具または周辺臓器との干渉を感知した後に関節の角度を調節するものであり、挿入部と処置具または周辺臓器との干渉を未然に回避することはできない。また、特許文献1では、干渉を未然に回避する手段については何ら述べられていない。さらに、特許文献1の内視鏡は、干渉センサとして、ジャイロセンサ、歪ゲージまたは圧電センサを用いているが、このような干渉センサを用いたのでは特に柔らかい臓器との干渉を感度良く安定的に感知することが技術的に難しく、周辺臓器との干渉を回避するための手段としては不十分であるという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、体腔内における医療器具の周辺臓器との干渉の発生を確実に未然に防ぐことができる手術システムおよび医療器具の干渉回避方法を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の第1の態様は、生体の体腔内に挿入可能な医療器具と、前記体腔内の臓器の3次元位置を測定する臓器測定手段と、該臓器測定手段によって測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定部と、前記体腔内における前記医療器具の3次元位置を検出する医療器具検出手段と、該医療器具検出手段によって検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算部と、前記非干渉領域設定部によって設定された非干渉領域と、前記医療器具占有領域計算部によって算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測部と、該干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起部とを備える手術システムである。
 本発明の第1の態様によれば、医療器具の体腔内における3次元位置が医療器具検出手段によって検出され、検出された3次元位置に基づいて、医療器具占有領域が医療器具占有領域計算部によって算出される。これと同時に、体腔内の臓器の3次元位置が臓器測定手段によって測定され、測定された3次元位置に基づいて、体腔内のうち臓器が存在しない非干渉領域が非干渉領域設定部によって設定される。
 そして、医療器具占有領域と非干渉領域との位置関係に基づいて、医療器具の、非干渉領域の外側に位置する周辺臓器との干渉が干渉予測部によって予測されたときに、注意喚起部によって操作者に注意喚起がなされる。これにより、操作者は、医療器具が周辺臓器に干渉する前に、医療器具の操作をより慎重に行ったり、干渉しそうな周辺臓器から医療器具を離間させたりするなどの回避行動を取ることができ、体腔内における医療器具の周辺臓器との干渉の発生を確実に未然に防ぐことができる。
 本発明の第2の態様は、生体の体腔内に挿入可能な医療器具と、前記体腔内の臓器の3次元位置を測定する臓器測定手段と、該臓器測定手段によって測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定部と、前記体腔内における前記医療器具の3次元位置を検出する医療器具検出手段と、該医療器具検出手段によって検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算部と、前記非干渉領域設定部によって設定された非干渉領域と、前記医療器具占有領域計算部によって算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測部と、該干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、前記医療器具の動作に制限を加える医療器具制御部とを備える手術システムである。
 本発明の第2の態様によれば、医療器具の周辺臓器との干渉が干渉予測部によって予測されたときに、医療器具制御部によって医療器具の動作が制限されることによって、体腔内における医療器具の周辺臓器との干渉の発生を確実に未然に防ぐことができる。
 上記第2の態様においては、前記干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起部をさらに備えていてもよい。
 上記第1および第2の態様においては、前記注意喚起部は、前記操作者の視覚、聴覚および触覚のうち少なくとも1つに訴える報知信号を出力してもよい。
 このようにすることで、簡易な方法で操作者に対して注意喚起を行うことができる。
 上記第1および第2の態様においては、前記生体の体表に形成された孔を介して前記体腔内に挿入され、前記医療器具が挿入可能な筒状のトロッカを備え、前記臓器測定手段が、前記トロッカの先端部に設けられ、該トロッカの先端前方の視野を互いに異なる2つの視点から撮影して一対の視点画像を取得する立体カメラと、該立体カメラの前記体腔内における位置および姿勢を検出する視点位置検出部と、前記立体カメラによって取得された一対の視点画像と前記視点位置検出部によって検出された前記立体カメラの位置および姿勢とから、前記体腔内の臓器の3次元位置を計算によって取得する演算部とを備えていてもよい。
 このようにすることで、立体カメラによって取得された一対の視点画像にはトロッカの先端部から周辺臓器表面の各位置までの距離の情報が含まれている。演算部は、一対の視点画像から算出したこの距離の情報と、視点位置検出部によって検出された立体カメラの位置および姿勢とから、周辺臓器の表面の3次元位置を取得することができる。また、CT画像等の術前に取得された画像とは異なり、手術の最中の体腔内を観察した視点画像からは周辺臓器の3次元位置をリアルタイムに取得することができる。
 上記第1および第2の態様においては、前記体腔内に挿入可能なもう1つの医療器具を備え、前記臓器測定手段が、前記体腔内における前記もう1つの医療器具の先端の3次元位置を検出する指定位置検出部と、前記操作者によって操作される指示部とを備え、前記非干渉領域設定部が、前記指示部が操作されたときに前記指定位置検出部によって検出された前記3次元位置を記憶し、記憶された3次元位置を含む面を前記非干渉領域の境界面として該非干渉領域を設定してもよい。
 このようにすることで、操作者がもう1つの医療器具を体腔内で移動させながら指示部の操作を繰り返すことによって、自身が指定した位置を境界面とする非干渉領域を設定することができる。
 上記第1および第2の態様においては、前記臓器測定手段が、前記医療器具の先端に該医療器具の長手方向の軸線回りに回転可能に設けられ、前記長手方向に交差する1次元方向に測定光を走査する光波距離計を備えていてもよい。
 このようにすることで、光波距離計を回転させながら測定光を周辺臓器に対して照射することによって、測定光を周辺臓器表面において2次元走査して周辺臓器表面の各位置までの距離を測定し、周辺臓器表面の各位置の3次元位置を測定することができる。また、周辺臓器の凸凹した場所や体腔内の深い場所においても、周辺臓器の3次元位置を正確に測定することができる。
 上記第1および第2の態様においては、前記非干渉領域設定部が、前記臓器の寸法を、前記臓器測定手段によって測定された3次元位置から求められる寸法よりも大きな寸法に仮定し、仮定された寸法の前記臓器の輪郭を前記非干渉領域の境界面として該非干渉領域を設定してもよい。
 上記第1および第2の態様においては、前記医療器具占有領域計算部が、前記医療器具の寸法を、実際の前記医療器具の寸法よりも大きな寸法に仮定し、仮定された寸法の前記医療器具の輪郭を前記医療器具占有領域の境界面として該医療器具占有領域を設定してもよい。
 このようにすることで、医療器具と周辺臓器との間隔が所定値未満になったときに医療器具と周辺臓器との干渉が予測されるので、医療器具と周辺臓器との干渉をさらに確実に防ぐことができる。
 上記第1および第2の態様においては、複数の前記医療器具を備え、前記医療器具検出手段が、前記複数の医療器具の各々の3次元位置を検出し、前記医療器具占有領域計算部が、前記複数の医療器具の各々について前記医療器具占有領域を計算し、前記干渉予測部が、前記医療器具占有領域によって算出された複数の医療器具占有領域同士の位置関係に基づいて、前記複数の医療器具同士の干渉をさらに予測してもよい。
 このようにすることで、医療器具と周辺臓器との干渉のみならず、体腔内における医療器具同士の干渉も防ぐことができる。
 上記第1および第2の態様においては、前記医療器具が、内視鏡または処置具であってもよい。
 本発明の第3の態様は、生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起ステップとを含む医療器具の干渉回避方法である。
 本発明の第4の態様は、生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、前記医療器具の動作に制限を加える医療器具制限ステップとを含む医療器具の干渉回避方法である。
 本発明によれば、体腔内における医療器具の周辺臓器との干渉の発生を確実に未然に防ぐことができるという効果を奏する。
本発明の第1の実施形態に係る手術システムの全体構成図である。 図1の手術システムによる内視鏡の干渉回避方法を説明するフローチャートである。 図1の手術システムにおいて表示部に表示される警告表示の一例を示す図である。 図1の手術システムによる内視鏡の干渉回避方法の変形例を説明するフローチャートである。 図1の手術システムの変形例を示す全体構成図である。 本発明の第2の実施形態に係る手術システムの全体構成図である。 本発明の第3の実施形態に係る手術システムの全体構成図である。
(第1の実施形態)
 以下に、本発明の第1の実施形態に係る手術システム100について図1から図5を参照して説明する。
 本実施形態に係る手術システム100は、図1に示されるように、体壁Aに形成された孔Bを介して腹腔(体腔)C内に挿入可能な内視鏡(医療器具)1と、該内視鏡1の基端部分を体外において保持する体外アーム2と、内視鏡1を孔B内に挿入状態に支持するトロッカ3と、術者(操作者)によって操作される操作入力部4と、内視鏡1の湾曲部1b(後述)および体外アーム2の関節部2a(後述)を駆動する駆動部5と、操作入力部4に入力された操作に基づいて駆動部5を制御する制御部6とを備えている。
 内視鏡1は、腹腔C内に挿入される細長い挿入部1aと、該挿入部1aの先端部分に設けられた湾曲可能な湾曲部1bと、挿入部1aの基端側に設けられた把持部1cとを備えている。
 体外アーム2は、複数の関節からなる関節部2aを備え、その先端に保持している内視鏡1を関節部2aの駆動によって移動可能になっている。
 操作入力部4は、湾曲部1bに対する操作と、関節部2aに対する操作とを入力可能になっている。操作入力部4は、術者によって操作が入力されると、その操作に対応する信号を制御部6へ送信する。制御部6は、操作入力部4から受信した信号に基づいて駆動部5を制御することによって、操作入力部4に入力された操作に対応する動作を湾曲部1bおよび関節部2aに実行させるようになっている。
 トロッカ3は、挿入部1aを挿入可能な貫通孔を有する筒状の部材であり、孔Bを介して腹腔C内へ挿入される。このトロッカ3内に挿入部1aを挿入することによって、挿入部1aを腹腔C内に挿入した状態に保持することができる。また、トロッカ3は、体壁Aによって支持されている位置を支点Pとして揺動可能であり、トロッカ3の腹腔C内への挿入角度を変更することによって、挿入部1aを腹腔C内においてその長手方向に交差する方向へ移動させることができる。
 さらに、本実施形態に係る手術システム100は、トロッカ3に設けられた立体カメラ(臓器測定手段)7およびセンサ群(医療器具検出手段、臓器測定手段、視点位置検出部)8と、立体カメラ7によって取得された腹腔C内の視差画像から挿入部1aの周囲に位置する周辺臓器Dの3次元位置を取得する演算部(臓器測定手段)9と、該演算部9によって取得された周辺臓器Dの3次元位置に基づいて非干渉領域を設定する非干渉領域設定部10と、センサ群8の検出値に基づいて腹腔C内において挿入部1aが占有している内視鏡占有領域を計算する内視鏡占有領域計算部11と、非干渉領域設定部10によって設定された非干渉領域と内視鏡占有領域計算部11によって算出された内視鏡占有領域とに基づいて挿入部1aと周辺臓器Dとの干渉を予測する干渉予測部12と、該干渉予測部12によって挿入部1aと周辺臓器Dとの干渉が予測されたときに、術者に対して注意喚起を行う注意喚起部13とを備えている。
 立体カメラ7は、トロッカ3の先端部分に設けられており、トロッカ3の先端前方の視野を互いに異なる2つの視点から撮影することによって、視差画像を構成する一対の視点画像を取得する。視差画像は、被写体の立体視に用いられる画像であり、被写体の3次元の位置情報を含んでいる。立体カメラ7は、取得した視差画像を演算部9へ送信する。
 センサ群8は、トロッカ3の姿勢を検出する姿勢センサと、挿入部1aのトロッカ3内への挿入量を検出する挿入量センサと、挿入部1aの周方向の回転量を検出する角度センサとを少なくとも含んでいる。これら3種類のセンサによって、腹腔Cにおける立体カメラ7の位置および姿勢と、腹腔C内における挿入部1aの3次元位置とを検出することができる。各センサは、検出値をそれぞれ演算部9および内視鏡占有領域計算部11へ送信する。
 演算部9は、立体カメラ7から受信した視差画像から、該視差画像に含まれている、立体カメラ7から周辺臓器Dの表面の各位置までの距離を計算によって取得する。そして、演算部9は、取得した距離を、センサ群8から受信した検出値を用いて支点Pを原点する3次元座標系に変換することによって、周辺臓器Dの表面の各位置の3次元位置座標を得る。演算部9は、得られた3次元位置座標を、非干渉領域設定部10へ送信する。
 非干渉領域設定部10は、演算部9から受信した3次元位置座標によって画定される面(すなわち周辺臓器Dの表面)よりも、支点Pに対して遠くに位置する領域を、腹腔C内において周辺臓器Dが占有している臓器占有領域として設定する。次に、非干渉領域設定部10は、臓器占有領域を所定値だけ各方向に拡大した領域を干渉領域に設定し、さらに、腹腔C内の空間のうち干渉領域を除く空間を非干渉領域に設定する。すなわち、非干渉領域は、周辺臓器Dの表面から所定値だけ離れた面を境界面とする、周辺臓器Dの存在しない空間である。
 内視鏡占有領域計算部11は、センサ群8から検出値を受信し、制御部6から湾曲部1bの湾曲方向および湾曲角度を取得する。そして、内視鏡占有領域計算部11は、センサ群8および制御部6から取得した情報と、予め記憶している挿入部1aの寸法とから、腹腔C内において挿入部1aが占有している領域であって前述した3次元座標系での内視鏡占有領域を計算し、算出した内視鏡占有領域を干渉予測部12へ送信する。
 干渉予測部12は、内視鏡占有領域を非干渉領域と比較し、内視鏡占有領域の少なくとも一部分が非干渉領域の境界面よりも外側に位置している場合には、すなわち、挿入部1aのうち周辺臓器Dとの間隔が所定値未満である部分が存在する場合には、挿入部1aが周辺臓器Dと干渉する可能性があると予測し、注意喚起部13へ注意信号を送信する。
 注意喚起部13は、干渉予測部12から注意信号を受信したときに、報知信号の出力によって術者に対して注意喚起を行う。報知信号は、術者の視覚、聴覚および触覚のうち少なくとも1つに訴えるものであればよい。例えば、注意喚起部13は、挿入部1aの周辺臓器Dとの干渉の可能性を知らせる警告表示を表示部14に表示したり、ランプを点灯させたりしてもよく、スピーカ15から警告音を出力させてもよい。あるいは、注意喚起部13は、術者によって把持されている把持部1cを振動させてもよい。
 次に、このように構成された手術システム100の作用について説明する。
 本実施形態に係る手術システム100を用いて腹腔C内の患部Eを処置するためには、孔B内にトロッカ3を挿入し、該トロッカ3内を介して挿入部1aを腹腔C内へ挿入する。この後、術者は、操作入力部4を用いて体外アーム2の関節部2aを操作することによって内視鏡1全体を移動させることができる。また、術者は、操作入力部4を用いて内視鏡1の湾曲部1bを操作することによって内視鏡1の先端を移動させることができる。
 図2は、手術システム100による内視鏡の干渉回避方法を説明するフローチャートである。上述のように腹腔C内において挿入部1aおよび湾曲部1bが操作されている間、以下の処理が実行される。
 すなわち、腹腔C内に配置されている立体カメラ7によって腹腔C内の視差画像が取得され(臓器測定ステップS1)、視差画像から、腹腔C内に存在する周辺臓器Dの表面の3次元位置が取得され(臓器測定ステップS2)、腹腔Cの、周辺臓器Dよりも手前に位置する領域が非干渉領域に設定される(非干渉領域設定ステップS3)。以上のステップS1からS3と並行して、センサ群8によって腹腔C内における挿入部1aの3次元位置が検出され(医療器具検出ステップS4)、検出された挿入部1aの3次元位置と湾曲部1bの湾曲方向および湾曲角度とに基づいて内視鏡占有領域が算出される(医療器具占有領域計算ステップS5)。
 そして、内視鏡占有領域の全体が非干渉領域内に位置しているか否かが干渉予測部12によって監視され(干渉予測ステップS6)、内視鏡占有領域の少なくとも一部分が非干渉領域の外側にはみ出したときに(ステップS6のYES)、干渉予測部12から報知信号が出力される(注意喚起ステップS7)。報知信号によって、挿入部1aと周辺臓器Dとの干渉を回避するための行動が術者に促され、術者は、例えば、挿入部1aの操作をより慎重に行ったり、挿入部1aを周辺臓器Dから離間させる方向へ移動させたりする等、挿入部1aと周辺臓器Dとの干渉を未然に回避するための行動を取ることができる。
 このように、本実施形態によれば、腹腔C内の視差画像を用いることによって周辺臓器Dの正確な3次元位置が測定され、挿入部1aが周辺臓器Dに干渉することなく動作可能な非干渉領域が正確に設定される。そして、計算によって求めた腹腔C内の挿入部1aの位置と、非干渉領域との位置関係から、挿入部1aと周辺臓器Dとの干渉が正確に予測される。これにより、術者に対して、挿入部1aと周辺臓器Dとの干渉が発生する前に当該干渉の発生の可能性が高いことを報知し、術者に適切な回避行動を取らせることができるという利点がある。
 また、CT画像等の術前に撮影した画像を用いた場合とは異なり、立体カメラ7を用いることによって、周辺臓器Dの現在の3次元位置を取得することができるという利点がある。また、従来、挿入部1aの体壁Aに近い部分は画像で観察することができないために周辺臓器Dとの干渉を確認することが困難であったが、本実施形態によれば、挿入部1aの体壁Aに近い部分についても周辺臓器Dとの干渉を予測して回避することができるという利点がある。
 本実施形態においては、実際の周辺臓器Dよりも大きな干渉領域を設定し、該干渉領域を除く領域を非干渉領域に設定することとしたが、これに代えて、またはこれに加えて、内視鏡占有領域計算部11が、実際の挿入部1aの寸法よりも大きな寸法を、内視鏡占有領域の計算に使用してもよい。このようにしても、挿入部1aと周辺臓器Dとが干渉する前に当該干渉を確実に予測して回避することができる。
 本実施形態においては、挿入部1aの周辺臓器Dとの干渉が予測されるときに、当該干渉を回避するために術者が移動させるべき挿入部1aの方向を報知信号によって術者に報知してもよい。例えば、図3に示されるように、挿入部1aをさらに右へ移動させると干渉が発生する場合には、表示部14の向かって右側に警告表示14aを表示してもよい。このようにすることで、術者は、干渉を回避するために挿入部1aをいずれの方向へ移動させればよいのかを容易に認識することができる。
 本実施形態においては、挿入部1aと周辺臓器Dとの干渉が予測されるときに、術者に対して注意喚起を行うこととしたが、これに代えて、またはこれに加えて、図4に示されるように、制御部(医療器具制御部)6が、操作入力部4への入力に関わらず、少なくとも周辺臓器Dにさらに近接する方向への挿入部1aの動作を禁止する等、挿入部1aの動作に制限を加えてもよい(医療器具制限ステップS8)。このようにすることで、挿入部1aと周辺臓器Dとの干渉をさらに確実に防ぐことができる。
 本実施形態においては、図5に示されるように、孔Bとは別の位置に形成された孔B’を介して腹腔C内に挿入可能な処置具16を備え、腹腔C内における挿入部1aと処置具16との干渉も予測する構成としてもよい。
 具体的には、図5の手術システム100は、もう1つの体外アーム17と、もう1つのトロッカ18と、処置具占有領域計算部19とをさらに備える。
 体外アーム17は、体外アーム2と同様に構成され、関節部17aを有している。
 トロッカ18は、トロッカ3と同様に構成され、トロッカ18の姿勢を検出する姿勢センサと、処置具16のトロッカ18内への挿入量を検出する挿入量センサと、処置具16の周方向の回転量を検出する角度センサとを少なくとも含むセンサ群(医療器具検出手段)20が設けられている。これら3種類のセンサによって腹腔C内における処置具16の3次元位置を検出することができる。
 処置具占有領域計算部19は、内視鏡占有領域計算部11が内視鏡占有領域を計算するのと同様の方法で、センサ群20から受信した検出値と、予め記憶している処置具16の寸法とから、腹腔C内において処置具16が占有している領域であって前述した3次元座標系での処置具占有領域を計算し、算出した処置具占有領域を干渉予測部12へ送信する。
 干渉予測部12は、内視鏡占有領域と処置具占有領域とを比較し、例えば、これら2つの占有領域の距離が所定値よりも小さい場合に、挿入部1aと処置具16との干渉を予測し、注意喚起部13へ注意信号を送信する。
 このようにすることで、挿入部1aと周辺臓器Dとの干渉のみならず、腹腔C内において同時に使用される挿入部1aと処置具16との干渉をも予測して未然に回避することができ、挿入部1aおよび処置具16を円滑に操作することができる。本変形例のように複数のトロッカ3,18を備える場合には、立体カメラ7はいずれのトロッカ3,18に設けられていてもよい。また、立体カメラ7に代えて立体観察可能な内視鏡1を使用し、周辺臓器Dの3次元位置の測定に、内視鏡1によって取得された視差画像を利用してもよい。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る手術システム200について図6を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について主に説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る手術システム200は、非干渉領域の設定に関する構成が第1の実施形態と主に異なる。
 具体的には、手術システム200は、図6に示されるように、処置具16と、該処置具16の基端部分を体外において保持するもう1つの体外アーム17と、処置具16を腹腔C内に挿入状態に支持するもう1つのトロッカ18とをさらに備えている。
 処置具16は、その基端に設けられた把持部16aに、術者によって操作されるボタンのような指示部21を備えている。指示部21は、術者によって操作されると、その旨を示す信号を非干渉領域設定部10へ送信する。
 非干渉領域設定部10は、トロッカ18に設けられたセンサ群(指定位置検出部)20から検出値を受信し、受信した検出値と、予め記憶している処置具16の寸法とから、腹腔C内における処置具16の先端の3次元位置を計算する。非干渉領域設定部10は、指示部21から信号を受信したときに、処置具16の先端の3次元位置を記憶する。そして、非干渉領域設定部10は、蓄積した3次元位置同士を接続する面を非干渉領域の境界面として該非干渉領域を設定する。
 次に、このように構成された手術システム200の作用について説明する。
 本実施形態に係る手術システム200を用いて腹腔C内の患部Eを処置するためには、孔B内にトロッカ3を挿入し、該トロッカ3内を介して挿入部1aを腹腔C内へ挿入する。また、孔B’内にトロッカ18を挿入し、該トロッカ18内を介して処置具16を腹腔C内へ挿入する。この後、術者は、操作入力部4を用いて体外アーム2,17の関節部2a,17aを操作することによって内視鏡1全体または処置具16全体を移動させることができる。また、術者は、操作入力部4を用いて内視鏡1の湾曲部1bを操作することによって内視鏡1の先端を移動させることができる。
 ここで、本実施形態においては、前述したステップS1からS3に代えて、以下の手順を術者が行うことによって非干渉領域を設定する。すなわち、術者は、処置具16を操作し、処置具16の先端を周辺臓器Dの表面近傍に配置した状態で指示部21を操作する(臓器測定ステップ)。この作業を、処置具16の先端を周辺臓器Dの表面に沿って腹腔C内の奥へ移動させながら繰り返す。これにより、非干渉領域設定部10には、周辺臓器Dの表面近傍に沿って並ぶ3次元位置が記憶され、周辺臓器Dの表面近傍を境界面とする非干渉領域が設定される(非干渉領域設定ステップ)。他の手順は、第1の実施形態において説明したステップS4からS7と同じであるので、説明を省略する。
 このように、本実施形態によれば、処置具16を用いて術者自身が手動で非干渉領域の境界を設定することによって、立体カメラ7では観察することが困難な、凸凹した場所や腹腔C内の深い場所においても、周辺臓器Dの形状に正確に沿った非干渉領域の境界面を設定することができる。したがって、特に狭く湾曲した部分に湾曲部1bを湾曲させながら挿入部1aを挿入して処置する場合に、挿入部1aと周辺臓器Dとの干渉をさらに確実に回避することができるという利点がある。
(第3の実施形態)
 次に、本発明の第3の実施形態に係る手術システム300について図7を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について主に説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る手術システム300は、非干渉領域の設定に関する構成が第1の実施形態と主に異なる。
 具体的には、手術システム300は、図7に示されるように、立体カメラ7に代えて、挿入部1aの先端に設けられた光波距離計(臓器測定手段)22を備えている。光波距離計22は、レーザ光のような測定光を挿入部1aの長手方向に交差する1次元方向に走査しながら出射し、周辺臓器Dからの反射光を受信し、受信した反射光の位相や反射光の受信時間に基づいて周辺臓器Dまでの距離を算出する。光波距離計22は、算出した距離を非干渉領域設定部10へ送信する。
 また、挿入部1aの先端部には、挿入部1aの長手方向の軸線回りに回転可能な回転部(図示略)が設けられている。光波距離計22は、回転部と一体的に回転するように設けられており、回転部の回転によって、光波距離計22の測定光の走査方向を挿入部1aの長手方向の軸線回りに360°回転させ、測定光を2次元的に走査することができるようになっている。
 非干渉領域設定部10は、センサ群8から検出値を受信し、また、制御部6から湾曲部1bの湾曲方向および湾曲角度を取得し、光波距離計22から距離を受信する。そして、非干渉領域設定部10は、受信したこれらの情報と、予め記憶している挿入部1aの寸法とから、腹腔C内における挿入部1aの先端の3次元位置を算出する。さらに、非干渉領域設定部10は、挿入部1aの先端の3次元位置と光波距離計22によって測定された距離とから周辺臓器Dの表面の各位置の3次元位置を算出し、得られた周辺臓器Dの表面の3次元位置によって画定される面を非干渉領域の境界面として該非干渉領域を設定する。
 次に、このように構成された手術システム300の作用について説明する。
 本実施形態においては、前述したステップS1からS3に代えて、以下の手順によって非干渉領域が設定される。すなわち、術者は、挿入部1aを操作し、挿入部1aの先端に設けられた光波距離計22から測定光を2次元走査させながら周辺臓器Dの表面に照射する(臓器測定ステップ)。これにより、挿入部1aの先端から周辺臓器Dの表面の各位置までの距離が測定され、測定された距離に基づいて周辺臓器Dの表面の各位置の3次元位置が取得され、得られた周辺臓器Dの3次元位置に基づいて非干渉領域が設定される。光波距離計22による距離の測定と非干渉領域の設定とは、挿入部1aの腹腔C内での移動に伴って行われる。他の手順は、第1の実施形態において説明したステップS4からS7と同じであるので、説明を省略する。
 このように、本実施形態によれば、光波距離計22を用いて挿入部1aの先端から周辺臓器Dまでの距離を測定し、得られた距離に基づいて非干渉領域の境界を設定することによって、立体カメラ7では観察することが困難な、凸凹した場所や腹腔C内の深い場所においても、周辺臓器Dの形状に正確に沿った非干渉領域の境界面を設定することができる。したがって、特に狭く湾曲した部分に湾曲部1bを湾曲させながら挿入部1aを挿入して処置する場合に、挿入部1aと周辺臓器Dとの干渉をさらに確実に回避することができるという利点がある。
 本実施形態においては、光波距離計22に代えて立体観察可能な内視鏡1を使用し、該内視鏡1によって取得された視差画像を用いて挿入部1aの先端から周辺臓器Dまでの距離を測定してもよい。
 第1から第3の実施形態においては、医療器具として内視鏡1について主に説明したが、内視鏡1に代えて鉗子等の処置具を使用し、処置具と周辺臓器Dとの干渉を予測してもよい。
 上述した第1から第3の実施形態から、以下の付記項に係る医療器具の干渉回避方法の発明が導かれる。
(付記項1)
 生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、
 該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、
 前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、
 該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、
 前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、
 該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起ステップとを含む医療器具の干渉回避方法。
(付記項2)
 生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、
 該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、
 前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、
 該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、
 前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、
 該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、前記医療器具の動作に制限を加える医療器具制限ステップとを含む医療器具の干渉回避方法。
(付記項3)
 前記干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起ステップをさらに含む付記項2に記載の医療器具の干渉回避方法。
(付記項4)
 前記注意喚起ステップが、前記操作者の視覚、聴覚および触覚のうち少なくとも1つに訴える報知信号を出力する付記項1または付記項3に記載の医療器具の干渉回避方法。
(付記項5)
 前記臓器測定ステップが、互いに異なる2つの視点から前記体腔内を撮影して一対の視点画像を取得し、取得された一対の視点画像から前記体腔内の臓器の3次元位置を計算によって取得する付記項1から付記項4のいずれかに記載の医療器具の干渉回避方法。
(付記項6)
 前記臓器測定ステップが、前記体腔内におけるもう1つの医療器具の先端の3次元位置を、操作者によって指示されたときに検出し、
 前記非干渉領域設定ステップが、前記臓器測定ステップにおいて検出された前記3次元位置を記憶し、記憶された3次元位置を含む面を前記非干渉領域の境界面として該非干渉領域を設定する付記項1から付記項4のいずれかに記載の医療器具の干渉回避方法。
(付記項7)
 前記臓器測定ステップが、前記医療器具の先端に該医療器具の長手方向の軸線回りに回転可能に設けられ、前記長手方向に交差する1次元方向に測定光を走査する光波距離計を使用する付記項1から付記項4のいずれかに記載の医療器具の干渉回避方法。
(付記項8)
 前記非干渉領域設定ステップが、前記臓器の寸法を、前記臓器測定ステップによって測定された3次元位置から求められる寸法よりも大きな寸法に仮定し、仮定された寸法の前記臓器の輪郭を前記非干渉領域の境界面として該非干渉領域を設定する付記項1から付記項7のいずれかに記載の医療器具の干渉回避方法。
(付記項9)
 前記医療器具占有領域計算ステップが、前記医療器具の寸法を、実際の前記医療器具の寸法よりも大きな寸法に仮定し、仮定された寸法の前記医療器具の輪郭を前記医療器具占有領域の境界面として該医療器具占有領域を設定する付記項1から付記項7のいずれかに記載の医療器具の干渉回避方法。
(付記項10)
 前記医療器具検出ステップが、複数の医療器具の各々の3次元位置を検出し、
 前記医療器具占有領域計算ステップが、前記複数の医療器具の各々について前記医療器具占有領域を計算し、
 前記干渉予測ステップが、前記医療器具占有領域によって算出された複数の医療器具占有領域同士の位置関係に基づいて、前記複数の医療器具同士の干渉をさらに予測する付記項1から付記項9のいずれかに記載の医療器具の干渉回避方法。
(付記項11)
 前記医療器具が、内視鏡または処置具である付記項1から付記項10のいずれかに記載の医療器具の干渉回避方法。
1 内視鏡(医療器具)
1a 挿入部
1b 湾曲部
1c 把持部
2,17 体外アーム
2a,17a 関節部
3,18 トロッカ
4 操作入力部
5 駆動部
6 制御部(医療器具制御部)
7 立体カメラ(臓器測定手段)
8 センサ群(医療器具検出手段、臓器測定手段、視点位置検出部)
9 演算部(臓器測定手段)
10 非干渉領域設定部
11 内視鏡占有領域計算部(医療器具占有領域計算部)
12 干渉予測部
13 注意喚起部
14 表示部
15 スピーカ
16 処置具(医療器具)
19 処置具占有領域計算部(医療器具占有領域計算部)
20 センサ群(医療器具検出手段、指定位置検出部)
21 指示部
22 光波距離計(臓器測定手段)
100 手術システム
A 体壁
B 孔
C 腹腔(体腔)
D 周辺臓器
E 患部
S1,S2 臓器測定ステップ
S3 非干渉領域設定ステップ
S4 医療器具検出ステップ
S5 医療器具占有領域計算ステップ
S6 干渉予測ステップ
S7 注意喚起ステップ
S8 医療器具制限ステップ

Claims (13)

  1.  生体の体腔内に挿入可能な医療器具と、
     前記体腔内の臓器の3次元位置を測定する臓器測定手段と、
     該臓器測定手段によって測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定部と、
     前記体腔内における前記医療器具の3次元位置を検出する医療器具検出手段と、
     該医療器具検出手段によって検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算部と、
     前記非干渉領域設定部によって設定された非干渉領域と、前記医療器具占有領域計算部によって算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測部と、
     該干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起部とを備える手術システム。
  2.  生体の体腔内に挿入可能な医療器具と、
     前記体腔内の臓器の3次元位置を測定する臓器測定手段と、
     該臓器測定手段によって測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定部と、
     前記体腔内における前記医療器具の3次元位置を検出する医療器具検出手段と、
     該医療器具検出手段によって検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算部と、
     前記非干渉領域設定部によって設定された非干渉領域と、前記医療器具占有領域計算部によって算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測部と、
     該干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、前記医療器具の動作に制限を加える医療器具制御部とを備える手術システム。
  3.  前記干渉予測部によって前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起部をさらに備える請求項2に記載の手術システム。
  4.  前記注意喚起部は、前記操作者の視覚、聴覚および触覚のうち少なくとも1つに訴える報知信号を出力する請求項1または請求項3に記載の手術システム。
  5.  前記生体の体表に形成された孔を介して前記体腔内に挿入され、前記医療器具が挿入可能な筒状のトロッカを備え、
     前記臓器測定手段が、
     前記トロッカの先端部に設けられ、該トロッカの先端前方の視野を互いに異なる2つの視点から撮影して一対の視点画像を取得する立体カメラと、
     該立体カメラの前記体腔内における位置および姿勢を検出する視点位置検出部と、
     前記立体カメラによって取得された一対の視点画像と前記視点位置検出部によって検出された前記立体カメラの位置および姿勢とから、前記体腔内の臓器の3次元位置を計算によって取得する演算部とを備える請求項1から請求項4のいずれかに記載の手術システム。
  6.  前記体腔内に挿入可能なもう1つの医療器具を備え、
     前記臓器測定手段が、
     前記体腔内における前記もう1つの医療器具の先端の3次元位置を検出する指定位置検出部と、
     前記操作者によって操作される指示部とを備え、
     前記非干渉領域設定部が、前記指示部が操作されたときに前記指定位置検出部によって検出された前記3次元位置を記憶し、記憶された3次元位置を含む面を前記非干渉領域の境界面として該非干渉領域を設定する請求項1から請求項4のいずれかに記載の手術システム。
  7.  前記臓器測定手段が、前記医療器具の先端に該医療器具の長手方向の軸線回りに回転可能に設けられ、前記長手方向に交差する1次元方向に測定光を走査する光波距離計を備える請求項1から請求項4のいずれかに記載の手術システム。
  8.  前記非干渉領域設定部が、前記臓器の寸法を、前記臓器測定手段によって測定された3次元位置から求められる寸法よりも大きな寸法に仮定し、仮定された寸法の前記臓器の輪郭を前記非干渉領域の境界面として該非干渉領域を設定する請求項1から請求項7のいずれかに記載の手術システム。
  9.  前記医療器具占有領域計算部が、前記医療器具の寸法を、実際の前記医療器具の寸法よりも大きな寸法に仮定し、仮定された寸法の前記医療器具の輪郭を前記医療器具占有領域の境界面として該医療器具占有領域を設定する請求項1から請求項7のいずれかに記載の手術システム。
  10.  複数の前記医療器具を備え、
     前記医療器具検出手段が、前記複数の医療器具の各々の3次元位置を検出し、
     前記医療器具占有領域計算部が、前記複数の医療器具の各々について前記医療器具占有領域を計算し、
     前記干渉予測部が、前記医療器具占有領域によって算出された複数の医療器具占有領域同士の位置関係に基づいて、前記複数の医療器具同士の干渉をさらに予測する請求項1から請求項9のいずれかに記載の手術システム。
  11.  前記医療器具が、内視鏡または処置具である請求項1から請求項10のいずれかに記載の手術システム。
  12.  生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、
     該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、
     前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、
     該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、
     前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、
     該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、操作者に対して注意喚起を行う注意喚起ステップとを含む医療器具の干渉回避方法。
  13.  生体の体腔内の臓器の3次元位置を測定する臓器測定ステップと、
     該臓器測定ステップにおいて測定された前記臓器の3次元位置に基づいて、前記体腔内の空間のうち前記臓器を除く非干渉領域を設定する非干渉領域設定ステップと、
     前記体腔内に挿入された医療器具の3次元位置を検出する医療器具検出ステップと、
     該医療器具検出ステップにおいて検出された医療器具の3次元位置に基づいて、前記医療器具が前記体腔内において占有している医療器具占有領域を計算する医療器具占有領域計算ステップと、
     前記非干渉領域設定ステップにおいて設定された非干渉領域と、前記医療器具占有領域計算ステップにおいて算出された前記医療器具占有領域との位置関係に基づいて、前記医療器具と前記臓器との干渉を予測する干渉予測ステップと、
     該干渉予測ステップにおいて前記医療器具と前記臓器との干渉が予測されたときに、前記医療器具の動作に制限を加える医療器具制限ステップとを含む医療器具の干渉回避方法。
PCT/JP2015/055724 2014-02-27 2015-02-26 手術システムおよび医療器具の干渉回避方法 WO2015129834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15755720.8A EP3111878A4 (en) 2014-02-27 2015-02-26 Surgery system and method of avoiding interference with medical instrument
CN201580010502.5A CN106028999B (zh) 2014-02-27 2015-02-26 手术系统和医疗器具的干涉避免方法
US15/238,963 US20160354164A1 (en) 2014-02-27 2016-08-17 Surgical system and medical-device-interference avoidance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-036794 2014-02-27
JP2014036794A JP2015159955A (ja) 2014-02-27 2014-02-27 手術システムおよび医療器具の干渉回避方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/238,963 Continuation US20160354164A1 (en) 2014-02-27 2016-08-17 Surgical system and medical-device-interference avoidance method

Publications (1)

Publication Number Publication Date
WO2015129834A1 true WO2015129834A1 (ja) 2015-09-03

Family

ID=54009148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055724 WO2015129834A1 (ja) 2014-02-27 2015-02-26 手術システムおよび医療器具の干渉回避方法

Country Status (5)

Country Link
US (1) US20160354164A1 (ja)
EP (1) EP3111878A4 (ja)
JP (1) JP2015159955A (ja)
CN (1) CN106028999B (ja)
WO (1) WO2015129834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476338A4 (en) * 2016-06-27 2019-08-14 A-Traction Inc. SURGICAL ASSISTANCE DEVICE, METHOD AND PROGRAM FOR CONTROLLING THE SAME, AND SURGICAL ASSISTANCE SYSTEM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108509B1 (ja) * 2016-06-24 2017-04-05 株式会社A−Traction 手術支援装置、その制御方法及びプログラム、並びに手術支援システム
WO2018026904A1 (en) 2016-08-03 2018-02-08 Spence Paul A Devices, systems and methods to improve placement and prevent heart block with percutaneous aortic valve replacement
JP7316762B2 (ja) 2018-04-27 2023-07-28 川崎重工業株式会社 外科手術システム及び外科手術システムの制御方法
US11033344B2 (en) 2018-12-13 2021-06-15 Cilag Gmbh International Improving surgical tool performance via measurement and display of tissue tension

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029232A (ja) * 2005-07-25 2007-02-08 Hitachi Medical Corp 内視鏡手術操作支援システム
JP2010240067A (ja) * 2009-04-02 2010-10-28 Aloka Co Ltd 医療用ナビゲーションシステム
JP2013150833A (ja) * 2006-06-13 2013-08-08 Intuitive Surgical Inc 低侵襲性外科手術用システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023986A1 (ja) * 2002-08-30 2004-03-25 Olympus Corporation 医療処置システム、内視鏡システム、内視鏡挿入動作プログラム及び内視鏡装置
DE102005028226A1 (de) * 2005-06-17 2006-12-28 Siemens Ag Vorrichtung zur Steuerung eines magnetischen Elements im Körper eines Patienten
US7976554B2 (en) * 2006-04-19 2011-07-12 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8454627B2 (en) * 2009-03-11 2013-06-04 Restoration Robotics, Inc. Systems and methods for harvesting and implanting hair using image-generated topological skin models
DE102010030285A1 (de) * 2010-06-21 2011-12-22 Olympus Winter & Ibe Gmbh Vorrichtung und Verfahren zum Einbringen und Halten einer intraabdominalen Kamera
JP2013059016A (ja) * 2011-08-12 2013-03-28 Sony Corp 画像処理装置および方法、並びにプログラム
US9204939B2 (en) * 2011-08-21 2015-12-08 M.S.T. Medical Surgery Technologies Ltd. Device and method for assisting laparoscopic surgery—rule based approach
WO2013042107A1 (en) * 2011-09-20 2013-03-28 M.S.T. Medical Surgery Technologies Ltd. A device and method for maneuvering endoscope
US9333044B2 (en) * 2011-12-30 2016-05-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for detection and avoidance of collisions of robotically-controlled medical devices
US20150145953A1 (en) * 2012-03-17 2015-05-28 Waseda University Image completion system for in-image cutoff region, image processing device, and program therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029232A (ja) * 2005-07-25 2007-02-08 Hitachi Medical Corp 内視鏡手術操作支援システム
JP2013150833A (ja) * 2006-06-13 2013-08-08 Intuitive Surgical Inc 低侵襲性外科手術用システム
JP2010240067A (ja) * 2009-04-02 2010-10-28 Aloka Co Ltd 医療用ナビゲーションシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3111878A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476338A4 (en) * 2016-06-27 2019-08-14 A-Traction Inc. SURGICAL ASSISTANCE DEVICE, METHOD AND PROGRAM FOR CONTROLLING THE SAME, AND SURGICAL ASSISTANCE SYSTEM

Also Published As

Publication number Publication date
CN106028999A (zh) 2016-10-12
JP2015159955A (ja) 2015-09-07
EP3111878A4 (en) 2017-11-01
EP3111878A1 (en) 2017-01-04
US20160354164A1 (en) 2016-12-08
CN106028999B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6091410B2 (ja) 内視鏡装置の作動方法及び内視鏡システム
WO2015129834A1 (ja) 手術システムおよび医療器具の干渉回避方法
US10419680B2 (en) Endoscope system and method of controlling endoscope system
US20190038364A1 (en) Image processing device and method, surgical system, and surgical member
WO2017115425A1 (ja) 医療用マニピュレータシステム
US12016522B2 (en) Medical safety control apparatus, medical safety control method, and medical support system
WO2015190514A1 (ja) 内視鏡システム
KR20160086629A (ko) 영상유도 수술에서 수술부위와 수술도구 위치정합 방법 및 장치
US20180160910A1 (en) Medical support device, method thereof, and medical support system
WO2017159335A1 (ja) 医療用画像処理装置、医療用画像処理方法、プログラム
JP6116754B2 (ja) 低侵襲手術において画像データを立体視表示するための装置およびその装置の作動方法
JP5477889B2 (ja) 医療用ナビゲーションシステム
JP2014042660A (ja) 医用システム
JP2019517846A (ja) 位置情報を提供するセンサを有する内視鏡型機器
JPWO2013011733A1 (ja) 内視鏡誘導システム及び内視鏡誘導方法
JPWO2016076262A1 (ja) 医療装置
WO2020262262A1 (ja) 医療用観察システム、制御装置及び制御方法
JP5118455B2 (ja) 内視装置
JP5283015B2 (ja) 測距装置及びそのプログラム、並びに測距システム
JP6221166B2 (ja) 表示装置、医用装置、およびプログラム
US20200205902A1 (en) Method and apparatus for trocar-based structured light applications
JP6464110B2 (ja) 内視鏡形状把握システム
US20230062782A1 (en) Ultrasound and stereo imaging system for deep tissue visualization
JP5854399B2 (ja) 医用システム
US9943213B2 (en) Medical image processing apparatus generating a three-dimensional image of a medical device superposed over a three-dimensional image of a preoperative structure of an object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755720

Country of ref document: EP