WO2015129503A1 - 硬化性組成物及びその硬化物、並びにウェハレベルレンズ - Google Patents

硬化性組成物及びその硬化物、並びにウェハレベルレンズ Download PDF

Info

Publication number
WO2015129503A1
WO2015129503A1 PCT/JP2015/054128 JP2015054128W WO2015129503A1 WO 2015129503 A1 WO2015129503 A1 WO 2015129503A1 JP 2015054128 W JP2015054128 W JP 2015054128W WO 2015129503 A1 WO2015129503 A1 WO 2015129503A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
compound
wafer level
cured product
weight
Prior art date
Application number
PCT/JP2015/054128
Other languages
English (en)
French (fr)
Inventor
竹中啓起
石田恭平
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2016505152A priority Critical patent/JP6491637B2/ja
Priority to EP15755298.5A priority patent/EP3112389B1/en
Priority to KR1020167022556A priority patent/KR20160127733A/ko
Priority to US15/113,399 priority patent/US9856347B2/en
Priority to CN201580004329.8A priority patent/CN105899567B/zh
Publication of WO2015129503A1 publication Critical patent/WO2015129503A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a curable composition containing an alicyclic epoxy compound and a siloxane compound, a cured product obtained by curing the curable composition, and a wafer level lens obtained using the curable composition.
  • thermoplastic resin such as cycloolefin polymer or polycarbonate
  • Patent Document 1 a thermoplastic resin such as cycloolefin polymer or polycarbonate
  • the resin is inferior in heat resistance, like a lens for an in-vehicle camera. It could not be used in applications requiring heat resistance.
  • Patent Document 2 As a method for solving the problem of heat resistance, there is a method using an epoxy compound having a structure having an isocyanuric ring as a main skeleton (Patent Document 2).
  • the epoxy compound is inferior in curability, it has been difficult to use it as a material for wafer level lenses that are required to be cured quickly by heating for about 2 to 3 minutes. Further, the obtained cured product is easily yellowed when exposed to a high temperature environment for a long time, and it is difficult to maintain transparency.
  • an object of the present invention is to provide a curable composition that forms a cured product that can be cured quickly, suppress yellowing over a long period of time even in a high-temperature environment, and maintain excellent transparency. There is to do.
  • Another object of the present invention is to provide a cured product that can suppress yellowing over a long period of time in a high temperature environment and maintain excellent transparency.
  • the inventors of the present invention have two or more glycidyl groups in the molecule, and can form a cured product excellent in heat resistance and yellowing prevention property,
  • the curable composition containing a specific alicyclic epoxy compound excellent in curability and a curing agent has excellent curability capable of forming a cured product quickly by heating, and in a high temperature environment. It was also found that a cured product that can suppress yellowing over a long period of time and maintain excellent transparency can be formed.
  • the present invention has been completed based on these findings.
  • the present invention provides the following formula (1): (Wherein X represents a single bond or a linking group)
  • the curable composition characterized by including the alicyclic epoxy compound (A) represented by these, the siloxane compound (B) which has a 2 or more glycidyl group in a molecule
  • the alicyclic epoxy compound (A) is bis (3,4-epoxycyclohexylmethyl) ether and / or 2,2-bis (3,4-epoxycyclohexane-1-yl) propane.
  • a curable composition is provided.
  • the present invention also provides the above-mentioned curable composition containing 5 to 70% by weight of the alicyclic epoxy compound (A) in the total amount (100% by weight) of the curable composition.
  • the present invention also provides the curable composition as described above, which is a curable composition for wafer level lenses.
  • the present invention also provides a cured product obtained by curing the curable composition.
  • the present invention also provides a method for producing a wafer level lens, characterized in that the curable composition is subjected to molding.
  • the present invention also provides a wafer level lens obtained by the method for producing a wafer level lens described above.
  • the present invention also provides a camera comprising the wafer level lens.
  • the present invention relates to the following.
  • Curability characterized by containing an alicyclic epoxy compound (A) represented by formula (1), a siloxane compound (B) having two or more glycidyl groups in the molecule, and a curing agent (C).
  • Composition [2] Curing according to [1], wherein the alicyclic epoxy compound (A) is a compound represented by the formula (1), wherein X is a linking group containing a quaternary carbon and / or a hetero atom. Sex composition.
  • the alicyclic epoxy compound (A) is bis (3,4-epoxycyclohexylmethyl) ether and / or 2,2-bis (3,4-epoxycyclohexane-1-yl) propane
  • the curable composition as described.
  • Composition Composition.
  • the siloxane compound (B) is a compound having a cyclic siloxane skeleton represented by the formula (2).
  • the content of the compound other than the alicyclic epoxy compound (A), the siloxane compound (B), the hydrogenated glycidyl ether epoxy compound, the isocyanuric acid glycidyl compound, and the curing agent (C) is the total amount of the curable composition ( The curable composition according to any one of [10] to [15], which is 5% by weight or less of 100% by weight). [17] The curable composition according to any one of [1] to [16], wherein the curable composition has a viscosity [at 25 ° C., shear rate 20 (1 / s)] of 0.05 to 5 Pa ⁇ s. Composition.
  • the cured product according to [20], wherein the cured product [thickness 0.5 mm] has an internal transmittance of light having a wavelength of 400 nm of 70% or more.
  • the curable composition of the present invention has the above-described configuration, it has excellent curability capable of forming a cured product quickly by heating for about 2 to 3 minutes. It is possible to suppress yellowing and maintain excellent transparency. Therefore, it can be suitably used as a wafer level lens material (particularly, a wafer level lens material used for an in-vehicle camera).
  • the alicyclic epoxy compound (A) which is an essential component of the curable composition of the present invention is represented by the following formula (1). (Wherein X represents a single bond or a linking group)
  • the compound which has the epoxy group ( alicyclic epoxy group) comprised by two adjacent carbon atoms and oxygen atoms which comprise an alicyclic ring represented by these.
  • the following siloxane compound (B) is not included in the alicyclic epoxy compound (A).
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group (—CO—), an ether bond (—O—), an ester bond (—COO—), an amide bond (—CONH—), a carbonate bond ( -OCOO-) and a group in which a plurality of these are bonded.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, a dimethylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, Examples thereof include cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • alicyclic epoxy compounds (A) in the present invention among them, a compound that hardly takes a conjugated structure (particularly, a ⁇ -electron conjugated structure) by dehydrogenation can obtain a cured product that is further excellent in heat-resistant transparency. It is preferable at the point which can do, and especially the compound which two alicyclic epoxy groups in 1 molecule couple
  • the content (blending amount) of the alicyclic epoxy compound (A) in the total amount (100% by weight) of the curable composition of the present invention is, for example, about 5 to 70% by weight, preferably 15 to 60% by weight, and particularly preferably 30%. ⁇ 60% by weight.
  • an alicyclic epoxy compound (A) can be used individually by 1 type or in combination of 2 or more types.
  • the content (blending amount) of the alicyclic epoxy compound (A) with respect to the total amount of the curable compound (100% by weight; for example, the sum of curable compounds such as epoxy compounds and oxetane compounds) contained in the curable composition of the present invention. ) Is, for example, about 20 to 70% by weight, preferably 30 to 60% by weight, particularly preferably 40 to 60% by weight.
  • Examples of the siloxane skeleton in the siloxane compound (B) include a cyclic siloxane skeleton and a polysiloxane skeleton [for example, linear or branched silicone (linear or branched polysiloxane), cage type or ladder type]. Polysilsesquioxane, etc.].
  • siloxane compound (B) in the present invention a compound having a cyclic siloxane skeleton represented by the following formula (2) (hereinafter referred to as the siloxane compound (B)), which is excellent in curability and particularly excellent in heat-resistant transparency. May be referred to as “cyclic siloxane”).
  • R ⁇ 1 >, R ⁇ 2 > shows the monovalent group or alkyl group containing a glycidyl group.
  • at least two of the n R 1 and n R 2 in the compound represented by the formula (2) are monovalent groups containing a glycidyl group.
  • n in Formula (2) shows an integer greater than or equal to 3.
  • R 1 and R 2 may be the same or different.
  • R ⁇ 1 > may be the same and may differ.
  • a plurality of R 2 may be the same or different.
  • the monovalent group containing a glycidyl group is preferably a glycidyl ether group represented by —A—O—R 3 [A represents an alkylene group, and R 3 represents a glycidyl group].
  • a (alkylene group) include linear or branched alkylene groups having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, a dimethylene group, and a trimethylene group. Can do.
  • alkyl group examples include linear or branched groups having 1 to 18 carbon atoms (preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • a chain alkyl group can be mentioned.
  • N in the formula (2) represents an integer of 3 or more, and among them, an integer of 3 to 6 is preferable in view of excellent curability of the curable composition, heat resistance and mechanical strength of the cured product.
  • the number of glycidyl groups in the molecule of the siloxane compound (B) is 2 or more, preferably 2 to 6 from the viewpoint of curability of the curable composition, heat resistance of the cured product, and mechanical strength, and particularly preferably 2-4.
  • the epoxy equivalent (based on JIS K7236) of the siloxane compound (B) is preferably from 100 to 350, particularly preferably from 150 to 300, most preferably from the viewpoint of excellent curability of the curable composition and heat-resistant transparency of the cured product. Is 200-270.
  • the curable composition of the present invention includes other siloxane compounds (for example, alicyclic epoxy group-containing cyclic siloxane, alicyclic epoxy group-containing silicone resin described in JP-A-2008-248169). Or an organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule as described in JP-A-2008-19422, etc., but the curable composition of the present invention
  • the proportion of the siloxane compound (B) in the total siloxane compound contained in is preferably 10% by weight or more, more preferably 20% by weight or more, still more preferably 30% by weight or more, and particularly preferably 50% by weight or more. Most preferably, it is 80% by weight or more.
  • siloxane compound (B) More specific examples include cyclic siloxanes represented by the following formulas (2-1) to (2-11) having two or more glycidyl groups in the molecule. .
  • a siloxane compound (B) can be used individually by 1 type or in combination of 2 or more types.
  • examples of the siloxane compound (B) include trade names “X-40-2701”, “X-40-2728”, “X-40-2738”, “X-40-2740” (Shin-Etsu Chemical ( Commercially available products such as those manufactured by KK) can be used.
  • the content (blending amount) of the siloxane compound (B) in the total amount (100% by weight) of the curable composition of the present invention is, for example, about 1 to 50% by weight, preferably 5 to 45% by weight, particularly preferably 10 to 40%. % By weight, most preferably 20-40% by weight.
  • the content of the siloxane compound (B) is out of the above range, it tends to be difficult to have both curability and heat-resistant transparency of the obtained cured product.
  • the content (blending amount) of the siloxane compound (B) with respect to the total amount of the curable compound contained in the curable composition of the present invention (100% by weight; for example, the sum of curable compounds such as epoxy compounds and oxetane compounds) is For example, about 1 to 60% by weight, preferably 5 to 55% by weight, particularly preferably 10 to 50% by weight, and most preferably 25 to 40% by weight.
  • the content of the siloxane compound (B) is out of the above range, it tends to be difficult to have both curability and heat-resistant transparency of the obtained cured product.
  • the curing agent (C) which is an essential component of the curable composition of the present invention, is a cured curable compound having a curable group (particularly an epoxy group) such as an alicyclic epoxy compound (A) or a siloxane compound (B). It is a compound having a function of curing the curable compound by initiating or promoting the reaction or by reacting with the curable compound.
  • curing agent (C) can be used individually by 1 type or in combination of 2 or more types.
  • a cationic polymerization initiator that initiates polymerization by generating cationic species by performing ultraviolet irradiation or heat treatment can be used.
  • Examples of the cationic polymerization initiator that generates cationic species upon irradiation with ultraviolet rays include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts, and the like.
  • UVACURE1590 manufactured by Daicel Cytec Co., Ltd.
  • trade names “CD-1010”, “CD-1011”, “CD-1012” above, manufactured by Sartomer, USA
  • trade name “Irgacure 264” Commercial products such as BASF (trade name) “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) and trade name “CPI-101A” (manufactured by San Apro Co., Ltd.) may be used.
  • product names “PP-33”, “CP-66”, “CP-77” manufactured by ADEKA Corporation
  • product name “FC-509” manufactured by 3M
  • product name “UVE1014” G E.
  • trade names “Sun-Aid SI-60L”, “Sun-Aid SI-80L”, “Sun-Aid SI-100L”, “Sun-Aid SI-110L”, “Sun-Aid SI-150L” aboveve, Sanshin Chemical Industry ( Or a commercial name such as “CG-24-61” (manufactured by Ciba Japan) may be used.
  • a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and a silanol such as triphenylsilanol, or a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and bisphenol S A compound with any of the above phenols may also be used.
  • the content (blending amount) of the curing agent (C) is, for example, about 0.01 to 15 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the curable compound contained in the curable composition. Particularly preferred is 0.05 to 10 parts by weight, and most preferred is 0.1 to 5 parts by weight.
  • the curable composition of the present invention may contain a curable compound other than the alicyclic epoxy compound (A) and the siloxane compound (B) (sometimes referred to as “other curable compound”).
  • examples of other curable compounds include epoxy compounds other than the alicyclic epoxy compound (A) and the siloxane compound (B) (sometimes referred to as “other epoxy compounds”), oxetane compounds, vinyl ether compounds, and the like. Can do.
  • the viscosity of the curable composition may be controlled to improve the handleability, or the curing shrinkage when forming a cured product may be suppressed.
  • another curable compound can be used individually by 1 type or in combination of 2 or more types.
  • epoxy compounds include, for example, alicyclic epoxy compounds containing one or more alicyclic epoxy groups in one molecule [for example, 1,2: 8,9-diepoxy limonene, epoxy hexahydrophthalate. Acid di-2-ethylhexyl, etc.], a compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond [for example, 1,2-epoxy-4- (2 of 2,2-bis (hydroxymethyl) -1-butanol -Oxiranyl) cyclohexane adducts, etc.], aromatic glycidyl ether type epoxy compounds [for example, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, biphenol type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, bisphenol A Cresol novolac epoxy compound Talen type epoxy compounds, epoxy compounds obtained from trisphenol methane, etc.], aliphatic glycidyl ether type epoxy compounds [for example,
  • a hydrogenated glycidyl ether epoxy compound and / or a glycidyl isocyanurate compound are preferable in that a cured product having excellent transparency and moisture resistance can be obtained.
  • glycidyl isocyanurate compound examples include triglycidyl isocyanurate, diglycidyl monoallyl isocyanurate, monoglycidyl diallyl isocyanurate, and the like.
  • epoxy compounds include, for example, trade names “YX8000”, “YX8034”, “YX8040” (manufactured by Mitsubishi Chemical Corporation), trade names “TEPIC-VL” (manufactured by Nissan Chemical Industries, Ltd.), Commercial products such as trade names “MA-DGIC” and “DA-MGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.) can also be used.
  • oxetane compound examples include trimethylene oxide, 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3 -Ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis ([1-ethyl (3-oxetanyl)] methyl) ether, 4,4 '-Bis [(3-ethy
  • vinyl ether compound examples include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexyl vinyl ether, 1,6-hexane Diol monovinyl ether, 1,4-cyclohexanedimethanol monovinyl ether 1,3-cyclohexanedimethanol monovinyl ether, 1,2-cyclohexanedimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol monovinyl ether, o-xylene glycol monovinyl
  • the content (blending amount) of the other curable compound is, for example, 40% by weight (preferably 5 to 40% by weight), preferably 30% by weight or less (100% by weight) with respect to the total amount of the curable composition (100% by weight). Preferably 5 to 30% by weight).
  • the hydrogenated glycidyl ether-based epoxy compound is preferably contained in an amount of, for example, about 5 to 40% by weight, particularly preferably 10 to 10% by weight based on the total amount (100% by weight) of the curable compound contained in the curable composition. 30% by weight.
  • the hydrogenated glycidyl ether-based epoxy compound is contained in the above range, the heat-resistant transparency of the cured product can be improved.
  • the content of the hydrogenated glycidyl ether-based epoxy compound exceeds the above range, curability and Tg are lowered, and it may be difficult to use as a wafer level lens material.
  • the glycidyl isocyanurate compound is preferably contained in an amount of, for example, 5 to 30% by weight, particularly preferably 5 to 20% by weight, based on the total amount (100% by weight) of the curable compound contained in the curable composition. .
  • an appropriate viscosity can be imparted to the curable composition while maintaining the transparency of the resulting cured product.
  • the content of the glycidyl isocyanurate compound exceeds the above range, the curability is lowered and it may be difficult to use as a wafer level lens material.
  • the ratio of the alicyclic epoxy group to the total epoxy groups (sum of glycidyl group and alicyclic epoxy group) (100 mol%) contained in the curable composition is, for example, about 30 to 83 mol% (preferably 50 to 50 mol%). 80 mol%, particularly preferably 60 to 80 mol%) is preferred from the viewpoint that the curability of the curable composition and the heat-resistant transparency of the resulting cured product can be combined.
  • the curable composition of the present invention may contain known or commonly used additives in addition to the above compounds.
  • the additive is not particularly limited, and examples thereof include metal oxide particles, rubber particles, silicone-based and fluorine-based antifoaming agents, silane coupling agents, fillers, plasticizers, leveling agents, antistatic agents, release agents. Examples include molds, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, water and oil repellents, and the like.
  • the content (blending amount) of these additives is preferably 5% by weight or less with respect to the curable composition (100% by weight).
  • the curable composition of the present invention may contain a solvent, but if it is too much, bubbles may be generated in the cured product, so that it is 10% by weight or less with respect to the curable composition (100% by weight). Preferably, it is 1% by weight or less.
  • curing agent (C), and other components etc. are mix
  • the temperature at the time of stirring and mixing is preferably about 10 to 60 ° C., for example.
  • a known or conventional apparatus for example, a rotation / revolution mixer, a single or multi-screw extruder, a planetary mixer, a kneader, a dissolver, etc.
  • a known or conventional apparatus for example, a rotation / revolution mixer, a single or multi-screw extruder, a planetary mixer, a kneader, a dissolver, etc.
  • a cured product By subjecting the curable composition of the present invention to, for example, heat treatment and / or light irradiation, a cured product (sometimes referred to as “cured product of the present invention”) is obtained.
  • the curable composition of the present invention is excellent in curability, and when heat treatment is performed, for example, at a temperature of about 100 to 200 ° C. (preferably 120 to 160 ° C.) for a short time (for example, about 1 to 10 minutes, preferably 1).
  • a cured product can be formed by heating ( ⁇ 3 minutes). Therefore, deterioration of the wafer level lens mold due to heat can be prevented.
  • a mercury lamp, a xenon lamp, a carbon arc lamp, a metal halide lamp, sunlight, an electron beam, a laser beam etc. can be used as the light source, for example.
  • a heat treatment may be performed at a temperature of about 50 to 180 ° C. to further advance the curing reaction.
  • the heat treatment and / or the light irradiation it is preferable to further perform an annealing treatment to remove internal strain, and for example, it is preferable to heat at a temperature of 100 to 200 ° C. for about 30 minutes to 1 hour.
  • the internal transmittance at 400 nm [in terms of thickness 0.5 mm] of the cured product of the present invention is, for example, 70% or more (for example, 70 to 100%), preferably 75% or more, particularly preferably 80% or more, and most preferably 85%. That's it. Further, even when exposed to a high temperature environment of 150 ° C. for about 220 hours, yellowing can be prevented, and the internal transmittance at 400 nm [in terms of thickness of 0.5 mm] of the cured product is 70% or more (preferably 75% or more). ) Can be maintained.
  • the internal transmittance at 450 nm [in terms of thickness 0.5 mm] of the cured product of the present invention is, for example, 80% or more (for example, 80 to 100%), preferably 85% or more, particularly preferably 90% or more. Further, even when exposed to a high temperature environment at 150 ° C. for about 220 hours, yellowing can be prevented, and the internal transmittance at 450 nm [in terms of thickness of 0.5 mm] of the cured product is 75% or more (preferably 80% or more). , Particularly preferably 85% or more).
  • the glass transition temperature (Tg) of the cured product of the present invention is about 100 ° C. or higher (eg, 100 to 200 ° C.), preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher. If the glass transition temperature is less than 100 ° C., the heat resistance of the cured product may be insufficient depending on the use mode (when used as an in-vehicle camera lens, etc.).
  • the glass transition temperature of the cured product can be measured by, for example, various thermal analyzes [DSC (differential scanning calorimeter), TMA (thermomechanical analyzer), etc.], dynamic viscoelasticity measurement, and the like. It can be measured by the measurement method described in 1.
  • the refractive index of the cured product of the present invention is, for example, about 0 to 1.60, preferably 1.45 to 1.55, and the value is maintained even when exposed to a high temperature environment of 150 ° C. for about 220 hours. Can do. Further, the Abbe number of the cured product of the present invention is, for example, 45 or more, preferably 50 or more, and the value can be maintained even when exposed to a high temperature environment of 150 ° C. for 220 hours.
  • the curable composition of the present invention is excellent in curability and can be cured very rapidly to form a cured product having excellent heat-resistant transparency. Therefore, it can be suitably used as a curable composition for a wafer level lens (particularly, a curable composition for a wafer level lens used for an in-vehicle camera).
  • the curable composition is subjected to molding (for example, casting molding method, injection molding method).
  • the wafer level lens mold may be made of metal, glass, or plastic.
  • Casting molding methods include simultaneous molding methods and individual piece molding methods, each having the following steps.
  • Step 1 Pour the curable composition into a wafer level lens mold having a shape in which a plurality of lens molds are aligned in a certain direction, and cure by heating and / or light irradiation.
  • Step 2 Wafer level lens mold To obtain a cured product having a shape in which a plurality of wafer level lenses are combined.
  • Step 3 A cured product having a shape in which a plurality of wafer level lenses are combined is singulated to obtain a wafer level lens.
  • Step 1 Pour the curable composition into a wafer level lens mold having one lens mold and cure it by heating and / or light irradiation.
  • Step 2 Remove the wafer level lens mold and perform an annealing treatment. Get a wafer level lens
  • the injection molding method has the following steps. Step 1: Pour the curable composition into a wafer level lens mold for injection molding and cure it by heating and / or light irradiation Step 2: Remove the wafer level lens mold and perform an annealing treatment to remove burrs And get a wafer level lens
  • the heat treatment, light irradiation, and annealing treatment of the curable composition can be carried out by the method described in the above section [cured product].
  • the curable composition has a low viscosity and excellent fluidity from the viewpoint of excellent filling property in a mold.
  • the curable composition used in the above co-molding method has a viscosity at 25 ° C. and a shear rate of 20 (1 / s), for example, about 0.05 to 5 Pa ⁇ s, preferably 0.1 to 2 Pa ⁇ s.
  • the curable composition having a viscosity in the above range is excellent in fluidity, hardly causes bubbles to remain, and can be filled into a mold while suppressing an increase in injection pressure. That is, it is excellent in application property and filling property, and is excellent in workability over the entire molding operation.
  • the cured product of the curable composition of the present invention has excellent heat resistance even in a high temperature environment of about 100 to 200 ° C. and excellent shape retention. Therefore, a wafer level lens having excellent lens center position accuracy can be efficiently manufactured even if annealing is performed after removing from the mold. Therefore, in step 3 of the above simultaneous molding method, by stacking a plurality of cured products having a shape in which a plurality of wafer level lenses are combined, by determining the position of the cutting line based on the cured product at the top, and cutting, The wafer level lens can be separated without being damaged, and the wafer level lens or a laminate thereof can be efficiently manufactured at low cost.
  • the wafer level lens obtained by the method for producing a wafer level lens of the present invention can prevent yellowing even when exposed to a high temperature environment for a long time, and can maintain high transparency. Therefore, for example, an imaging lens, a spectacle lens, a light beam condensing lens, a light diffusion lens of a camera (camera such as an in-vehicle camera, a digital camera, a PC camera, a camera for a mobile phone, a camera such as a surveillance camera, particularly a wafer level camera).
  • a camera such as an in-vehicle camera, a digital camera, a PC camera, a camera for a mobile phone, a camera such as a surveillance camera, particularly a wafer level camera.
  • it can be suitably used as a wafer level lens for an in-vehicle camera that is particularly required to have heat resistance.
  • the wafer level lens obtained by the method for producing a wafer level lens of the present invention is excellent in heat resistance, it can be mounted by soldering by reflow when mounted on a circuit board. Therefore, the camera equipped with the wafer level lens of the present invention can be directly mounted on a PCB (Printed Circuit Circuit) board by the same solder reflow process as the surface mounting of other electronic components, which is extremely efficient. Product manufacturing becomes possible.
  • PCB Printed Circuit Circuit
  • the curable composition obtained above was cured by the following heat treatment method to obtain a cured product.
  • a flat mold was used for producing the following cured product.
  • ⁇ Heat treatment method> Using an imprint molding machine (trade name “NANOIMPRINTER NM-0501”, manufactured by Myeongchang Kiko Co., Ltd.), with the following molding profile, cured and molded at a thickness of 0.5 mm, cooled to 25 ° C., and then released. Annealing treatment was performed by heating in an oven preheated to 180 ° C. for 30 minutes to obtain cured products (five pieces each).
  • Molding profile A curable composition was applied to a mold at 25 ° C., the press shaft position was adjusted to a predetermined thickness, the mold was pressed, the temperature was raised to 150 ° C. at 30 ° C./min, and then 150 Hold at °C for 2 minutes
  • cured calorific value of the cured product a cured product obtained by curing the curable compositions obtained in Examples and Comparative Examples by the above-mentioned ⁇ heat treatment method>, and curing after annealing treatment
  • the product was measured for the calorific value when cured under the following temperature conditions (referred to as “cured calorific value of the cured product”), and the curing rate was calculated by the following formula.
  • (Temperature conditions) Hold at 50 ° C. for 3 minutes, then heat up to 250 ° C. at 20 ° C./min and hold at 250 ° C. for 3 minutes.
  • Curing rate (%) ⁇ 1 ⁇ (curing calorific value of cured product) / (curing calorific value of curable composition) ⁇ ⁇ 100
  • Glass transition temperature Tg
  • the glass transition temperature of the cured products obtained in the examples and comparative examples was raised in a nitrogen stream using a solid viscoelasticity measuring device (trade name “RSA-III”, manufactured by T.A. Instruments Inc.). Measurement was performed under conditions of a speed of 5 ° C./minute, a measurement temperature range of 0 ° C. to 300 ° C., a frequency of 10 Hz, and a strain of 0.05%, and Tg was read from the peak top of tan ⁇ .
  • RSA-III solid viscoelasticity measuring device
  • the refractive index (refractive index of light at a wavelength of 589 nm at 25 ° C.) of the cured product obtained in the examples and comparative examples and the cured product exposed to the time shown in Table 1 in a 150 ° C. environment is JIS K 7142. It was measured by a compliant method using a refractometer (trade name “Model 2010”, manufactured by Metricon).
  • Abbe number (n d ⁇ 1) / (n f ⁇ n c )
  • n d represents the refractive index of light having a wavelength of 589.2 nm
  • n f represents the refractive index of light having a wavelength of 486.1 nm
  • n c represents the refractive index of light having a wavelength of 656.3 nm.
  • the value of the refractive index of the light of each wavelength measured by the said method was used for the refractive index.
  • X-40-2728 Cyclic siloxane having two glycidyl groups in the molecule, epoxy equivalent: 262 g / eq, trade name “X-40-2728”, manufactured by Shin-Etsu Chemical Co., Ltd.
  • X-40-2670 molecule Cyclic siloxane having 4 alicyclic epoxy groups, epoxy equivalent: 184 g / eq, trade name “X-40-2670”, manufactured by Shin-Etsu Chemical Co., Ltd.
  • YX8040 hydrogenated bisphenol A type diglycidyl compound (trade name) "YX8040" (Mitsubishi Chemical Corporation)
  • A-1 Bis (3,4-epoxycyclohexylmethyl) ether
  • TEPIC-VL Triglycidyl isocyanurate (trade name “TEPIC-VL”, manufactured by Nissan Chemical Industries, Ltd.)
  • PB3600 Epoxidized polybutadiene (trade name “Epolide PB3600”, manufactured by Daicel Corporation)
  • SI-100L thermal cationic polymerization initiator, PF 6 as an anion species - aromatic sulfonium salt having a (trade name "San-Aid SI-100L", available from Sanshin Chemical Industry Co., Ltd.)
  • IRG1010 Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenol) propionate] (trade name “IRGANOX10
  • the curable composition of the present invention has excellent curability capable of quickly forming a cured product by heating for about 2 to 3 minutes, and the resulting cured product is yellowed over a long period of time in a high temperature environment. It can be suppressed and excellent transparency can be maintained. Therefore, it can be suitably used as a wafer level lens material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 速やかに硬化して、高温環境下においても長期に亘って黄変を抑制し、優れた透明性を維持することができ、ウェハレベルレンズに好適に使用することができる硬化物を形成する硬化性組成物を提供する。 本発明の硬化性組成物は、下記式(1)で表される脂環エポキシ化合物(A)、分子内に2以上のグリシジル基を有するシロキサン化合物(B)、及び硬化剤(C)を含むことを特徴とする。下記式中、Xは単結合又は連結基を示す。

Description

硬化性組成物及びその硬化物、並びにウェハレベルレンズ
 本発明は、脂環エポキシ化合物及びシロキサン化合物を含む硬化性組成物、該硬化性組成物を硬化して得られる硬化物、並びに、該硬化性組成物を使用して得られるウェハレベルレンズに関する。本願は、2014年2月28日に日本に出願した、特願2014-038275号の優先権を主張し、その内容をここに援用する。
 従来、レンズ(特に、車載カメラ用レンズ)用材料としては、耐熱性、透明性、及び寸法安定性に優れるガラスが用いられてきた。しかし、たとえ低融点ガラスであっても溶融温度が約400℃以上と高いため加工性の点で劣り、その上、金型が熱で劣化して繰り返し使用することができなくなるため、製造コストが高くつくことが問題であった。そこで、近年、樹脂材料への代替が盛んに検討されている。
 レンズ用樹脂材料としては、シクロオレフィンポリマーやポリカーボネート等の熱可塑性樹脂を使用することが知られているが(特許文献1)、前記樹脂は耐熱性の点で劣るため車載カメラ用レンズのように耐熱性が求められる用途においては使用不可能であった。
 耐熱性の問題を解決する方法としては、イソシアヌル環を主骨格とする構造を有するエポキシ化合物を使用する方法が挙げられる(特許文献2)。しかし、前記エポキシ化合物は硬化性の点で劣るため、2~3分程度の加熱で速やかに硬化することが求められるウェハレベルレンズの材料として使用することは困難であった。また、得られる硬化物は高温環境下に長期間曝すと黄変し易く、透明性を維持することが困難であった。
特開平9-263627号公報 特開2000-344867号公報
 従って、本発明の目的は、速やかに硬化して、高温環境下においても長期に亘って黄変を抑制し、優れた透明性を維持することができる硬化物を形成する硬化性組成物を提供することにある。
 また、本発明の他の目的は、高温環境下において長期に亘って黄変を抑制し、優れた透明性を維持することができる硬化物を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討した結果、分子内に2以上のグリシジル基を有し、耐熱性及び黄変防止性に優れた硬化物を形成することができるシロキサン化合物と、硬化性に優れた特定の脂環エポキシ化合物、及び硬化剤を含有する硬化性組成物は、加熱することにより速やかに硬化物を形成することができる優れた硬化性を有し、高温環境下においても長期に亘って黄変を抑制し、優れた透明性を維持することができる硬化物を形成できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、Xは単結合又は連結基を示す)
で表される脂環エポキシ化合物(A)、分子内に2以上のグリシジル基を有するシロキサン化合物(B)、及び硬化剤(C)を含むことを特徴とする硬化性組成物を提供する。
 本発明は、また、脂環エポキシ化合物(A)が、ビス(3,4-エポキシシクロヘキシルメチル)エーテル及び/又は2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパンである前記の硬化性組成物を提供する。
 本発明は、また、硬化性組成物全量(100重量%)に脂環エポキシ化合物(A)を5~70重量%含有する前記の硬化性組成物を提供する。
 本発明は、また、ウェハレベルレンズ用硬化性組成物である前記の硬化性組成物を提供する。
 本発明は、また、前記の硬化性組成物を硬化させて得られる硬化物を提供する。
 本発明は、また、前記の硬化性組成物を成型に付すことを特徴とするウェハレベルレンズの製造方法を提供する。
 本発明は、また、前記のウェハレベルレンズの製造方法により得られるウェハレベルレンズを提供する。
 本発明は、また、前記のウェハレベルレンズを備えるカメラを提供する。
 すなわち、本発明は以下に関する。
[1] 式(1)で表される脂環エポキシ化合物(A)、分子内に2以上のグリシジル基を有するシロキサン化合物(B)、及び硬化剤(C)を含むことを特徴とする硬化性組成物。
[2] 脂環エポキシ化合物(A)が、式(1)で表され、式中のXが4級炭素及び/又はヘテロ原子を含有する連結基である化合物である[1]に記載の硬化性組成物。
[3] 脂環エポキシ化合物(A)が、ビス(3,4-エポキシシクロヘキシルメチル)エーテル及び/又は2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパンである[1]に記載の硬化性組成物。
[4] 脂環エポキシ化合物(A)の含有量が、硬化性組成物全量(100重量%)の5~70重量%である[1]~[3]の何れか1つに記載の硬化性組成物。
[5] シロキサン化合物(B)が、式(2)で表される環状シロキサン骨格を有する化合物である[1]~[4]の何れか1つに記載の硬化性組成物。
[6] シロキサン化合物(B)が、分子内に2以上のグリシジルエーテル基を有する環状シロキサンである[1]~[5]の何れか1つに記載の硬化性組成物。
[7] シロキサン化合物(B)のエポキシ当量が100~350g/eqである[1]~[6]の何れか1つに記載の硬化性組成物。
[8] シロキサン化合物(B)が、式(2-1)~(2-11)で表される化合物である[1]~[4]の何れか1つに記載の硬化性組成物。
[9] シロキサン化合物(B)の含有量が、硬化性組成物全量(100重量%)の1~50重量%である[1]~[8]の何れか1つに記載の硬化性組成物。
[10] 更に、水素化グリシジルエーテル系エポキシ化合物及び/又はイソシアヌル酸グリシジル化合物を硬化性組成物全量(100重量%)の5~40重量%含有する[1]~[9]の何れか1つに記載の硬化性組成物。
[11] 更に、水素化グリシジルエーテル系エポキシ化合物を硬化性組成物全量(100重量%)の5~40重量%含有する[1]~[10]の何れか1つに記載の硬化性組成物。
[12] 更に、イソシアヌル酸グリシジル化合物を硬化性組成物全量(100重量%)の5~30重量%含有する[1]~[11]の何れか1つに記載の硬化性組成物。
[13] 硬化性組成物に含まれる全エポキシ基(100モル%)に占める脂環エポキシ基の割合が60~83モル%である[1]~[12]の何れか1つに記載の硬化性組成物。
[14] 硬化剤(C)がカチオン重合開始剤である[1]~[13]の何れか1つに記載の硬化性組成物。
[15] 硬化剤(C)の含有量が、硬化性組成物に含まれる硬化性化合物100重量部に対して0.01~15重量部である[1]~[14]の何れか1つに記載の硬化性組成物。
[16] 脂環エポキシ化合物(A)、シロキサン化合物(B)、水素化グリシジルエーテル系エポキシ化合物、イソシアヌル酸グリシジル化合物、及び硬化剤(C)以外の化合物の含有量が、硬化性組成物全量(100重量%)の5重量%以下である[10]~[15]の何れか1つに記載の硬化性組成物。
[17] 硬化性組成物の粘度[25℃、せん断速度20(1/s)における]が0.05~5Pa・sである[1]~[16]の何れか1つに記載の硬化性組成物。
[18] ウェハレベルレンズ用硬化性組成物である[1]~[17]の何れか1つに記載の硬化性組成物。
[19] 車載カメラに使用するウェハレベルレンズ用硬化性組成物である[1]~[17]の何れか1つに記載の硬化性組成物。
[20] [1]~[19]の何れか1つに記載の硬化性組成物を硬化させて得られる硬化物。
[21] 硬化物[厚み0.5mm]の波長400nmの光の内部透過率が70%以上である[20]に記載の硬化物。
[22] 硬化物[厚み0.5mm]の波長450nmの光の内部透過率が80%以上である[20]又は[21]に記載の硬化物。
[23] ガラス転移温度(Tg)が100~200℃である[20]~[22]の何れか1つに記載の硬化物。
[24] 25℃における波長589nmの光の屈折率(JIS K 7142準拠)が1.45~1.55である[20]~[23]の何れか1つに記載の硬化物。
[25] [1]~[19]の何れか1つに記載の硬化性組成物を成型に付すことを特徴とするウェハレベルレンズの製造方法。
[26] [25]に記載のウェハレベルレンズの製造方法により得られるウェハレベルレンズ。
[27] [26]に記載のウェハレベルレンズを備えるカメラ。
 本発明の硬化性組成物は上記構成を有するため2~3分程度の加熱により速やかに硬化物を形成することができる優れた硬化性を有し、得られる硬化物は高温環境下において長期に亘って黄変を抑制し、優れた透明性を維持することができる。そのため、ウェハレベルレンズ用材料(特に、車載カメラに使用するウェハレベルレンズ用材料)として好適に使用することができる。
 [脂環エポキシ化合物(A)]
 本発明の硬化性組成物の必須成分である脂環エポキシ化合物(A)は、下記式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、Xは単結合又は連結基を示す)
で表される、脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(=脂環エポキシ基)を有する化合物である。但し、脂環エポキシ化合物(A)には、下記のシロキサン化合物(B)は含まれない。
 式(1)中、Xは単結合又は連結基(1以上の原子を有する二価の基)を示す。前記連結基としては、例えば、2価の炭化水素基、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-CONH-)、カーボネート結合(-OCOO-)、及びこれらが複数個結合した基等を挙げることができる。
 上記二価の炭化水素基としては、例えば、炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等を挙げることができる。炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、ジメチレン基、トリメチレン基等を挙げることができる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等のシクロアルキレン基(シクロアルキリデン基を含む)等を挙げることができる。
 本発明における脂環エポキシ化合物(A)は、なかでも、脱水素により共役系構造(特に、π電子共役系構造)をとりにくい化合物が、より一層耐熱透明性に優れた硬化物を得ることができる点で好ましく、特に、一分子内の2個の脂環エポキシ基が4級炭素及び/又はヘテロ原子を含有する連結基を介して結合している化合物が好ましい。
 脂環エポキシ化合物(A)の代表的な例としては、ビス(3,4-エポキシシクロヘキシルメチル)エーテル及び/又は2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン[=2,2-ビス(3,4-エポキシシクロヘキシル)プロパン]等を挙げることができる。
 本発明の硬化性組成物全量(100重量%)における脂環エポキシ化合物(A)の含有量(配合量)は、例えば5~70重量%程度、好ましくは15~60重量%、特に好ましくは30~60重量%である。脂環エポキシ化合物(A)の含有量が上記範囲を外れると、硬化性組成物の硬化性と硬化物の黄変防止性を兼ね備えることが困難となる傾向がある。尚、本発明の硬化性組成物において、脂環エポキシ化合物(A)は1種を単独で、又は2種以上を組み合わせて使用することができる。
 また、本発明の硬化性組成物に含まれる硬化性化合物全量(100重量%;例えば、エポキシ化合物、オキセタン化合物等の硬化性化合物の総和)に対する脂環エポキシ化合物(A)の含有量(配合量)は、例えば20~70重量%程度、好ましくは30~60重量%、特に好ましくは40~60重量%である。脂環エポキシ化合物(A)の含有量が上記範囲を外れると、硬化性と得られる硬化物の耐熱透明性を兼ね備えることが困難となる傾向がある。
 [シロキサン化合物(B)]
 本発明の硬化性組成物の必須成分であるシロキサン化合物(B)は、得られる硬化物に、長期に亘って高温環境下に曝した場合の黄変防止性(=耐熱透明性)を付与する化合物であり、分子内に2以上のグリシジル基を有し、さらに、シロキサン結合(Si-O-Si)により構成されたシロキサン骨格を有する化合物である。シロキサン化合物(B)におけるシロキサン骨格としては、例えば、環状シロキサン骨格やポリシロキサン骨格[例えば、直鎖状又は分岐鎖状のシリコーン(直鎖状又は分岐鎖状ポリシロキサン)や、かご型やラダー型のポリシルセスキオキサン等]等を挙げることができる。
 本発明におけるシロキサン化合物(B)としては、なかでも、硬化性に優れ、得られる硬化物が耐熱透明性に特に優れる点で、下記式(2)で表される環状シロキサン骨格を有する化合物(以後、「環状シロキサン」と称する場合がある)が好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記式(2)中、R1、R2は、グリシジル基を含有する一価の基又はアルキル基を示す。但し、式(2)で表される化合物におけるn個のR1及びn個のR2のうち、少なくとも2個はグリシジル基を含有する一価の基である。また、式(2)中のnは3以上の整数を示す。尚、式(2)で表される化合物におけるR1、R2は同一であってもよいし、異なっていてもよい。また、複数のR1は同一であってもよいし、異なっていてもよい。複数のR2も同一であってもよいし、異なっていてもよい。
 上記グリシジル基を含有する一価の基としては、-A-O-R3で表されるグリシジルエーテル基[Aはアルキレン基を示し、R3はグリシジル基を示す]が好ましい。上記A(アルキレン基)としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、ジメチレン基、トリメチレン基等の炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基等を挙げることができる。
 上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~18(好ましくは炭素数1~6、特に好ましくは炭素数1~3)の直鎖状又は分岐鎖状のアルキル基を挙げることができる。
 式(2)中のnは3以上の整数を示し、なかでも、硬化性組成物の硬化性、及び硬化物の耐熱性及び機械強度に優れる点で3~6の整数が好ましい。
 シロキサン化合物(B)が分子内に有するグリシジル基の数は2個以上であり、硬化性組成物の硬化性、硬化物の耐熱性及び機械強度の観点から2~6個が好ましく、特に好ましくは2~4個である。
 シロキサン化合物(B)のエポキシ当量(JIS K7236に準拠)は、硬化性組成物の硬化性、及び硬化物の耐熱透明性に優れる点で100~350が好ましく、特に好ましくは150~300、最も好ましくは200~270である。
 本発明の硬化性組成物には、シロキサン化合物(B)以外にも他のシロキサン化合物(例えば、脂環エポキシ基含有環状シロキサン、特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂、特開2008-19422号公報に記載の1分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂等)を含有していてもよいが、本発明の硬化性組成物に含まれる全シロキサン化合物に占めるシロキサン化合物(B)の割合は、10重量%以上であることが好ましく、より好ましくは20重量%以上、更に好ましくは30重量%以上、特に好ましくは50重量%以上、最も好ましくは80重量%以上である。
 シロキサン化合物(B)としては、より具体的には、下記式(2-1)~(2-11)で表される、分子内に2以上のグリシジル基を有する環状シロキサン等を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 尚、本発明の硬化性組成物において、シロキサン化合物(B)は1種を単独で、又は2種以上を組み合わせて使用することができる。シロキサン化合物(B)としては、例えば、商品名「X-40-2701」、「X-40-2728」、「X-40-2738」、「X-40-2740」(以上、信越化学工業(株)製)等の市販品を用いることができる。
 本発明の硬化性組成物全量(100重量%)におけるシロキサン化合物(B)の含有量(配合量)は、例えば1~50重量%程度、好ましくは5~45重量%、特に好ましくは10~40重量%、最も好ましくは20~40重量%である。シロキサン化合物(B)の含有量が上記範囲を外れると、硬化性と得られる硬化物の耐熱透明性を兼ね備えることが困難となる傾向がある。
 また、本発明の硬化性組成物に含まれる硬化性化合物全量(100重量%;例えば、エポキシ化合物、オキセタン化合物等の硬化性化合物の総和)に対するシロキサン化合物(B)の含有量(配合量)は、例えば1~60重量%程度、好ましくは5~55重量%、特に好ましくは10~50重量%、最も好ましくは25~40重量%である。シロキサン化合物(B)の含有量が上記範囲を外れると、硬化性と得られる硬化物の耐熱透明性を兼ね備えることが困難となる傾向がある。
 [硬化剤(C)]
 本発明の硬化性組成物の必須成分である硬化剤(C)は、脂環エポキシ化合物(A)やシロキサン化合物(B)等の硬化性基(特に、エポキシ基)を有する硬化性化合物の硬化反応を開始乃至促進させることにより、又は上記硬化性化合物と反応することにより、上記硬化性化合物を硬化させる働きを有する化合物である。尚、本発明の硬化性組成物において、硬化剤(C)は1種を単独で、又は2種以上を組み合わせて使用することができる。
 硬化剤(C)としては、例えば、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させるカチオン重合開始剤(酸発生剤)を用いることができる。
 紫外線照射によりカチオン種を発生するカチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩等を挙げることができる。例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製)、商品名「イルガキュア264」(BASF製)、商品名「CIT-1682」(日本曹達(株)製)、商品名「CPI-101A」(サンアプロ(株)製)等の市販品を使用しても良い。
 加熱処理を施すことによりカチオン種を発生するカチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体等を上げることができる。例えば、商品名「PP-33」、「CP-66」、「CP-77」(以上、(株)ADEKA製)、商品名「FC-509」(スリーエム製)、商品名「UVE1014」(G.E.製)、商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」、「サンエイド SI-150L」(以上、三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン製)等の市販品を使用しても良い。さらに、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又はアルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。
 硬化剤(C)の含有量(配合量)は、硬化性組成物に含まれる硬化性化合物100重量部に対して、例えば0.01~15重量部程度、好ましくは0.01~10重量部、特に好ましくは0.05~10重量部、最も好ましくは0.1~5重量部である。硬化剤(C)を上記範囲内で使用することにより、耐熱性、耐光性、透明性に優れた硬化物を得ることができる。
 [他の硬化性化合物]
 本発明の硬化性組成物は、脂環エポキシ化合物(A)及びシロキサン化合物(B)以外の硬化性化合物(「他の硬化性化合物」と称する場合がある)を含んでいてもよい。他の硬化性化合物としては、例えば、脂環エポキシ化合物(A)及びシロキサン化合物(B)以外のエポキシ化合物(「他のエポキシ化合物」と称する場合がある)、オキセタン化合物、ビニルエーテル化合物等を挙げることができる。他の硬化性化合物を含有することにより、硬化性組成物の粘度が制御され取り扱い性が向上したり、硬化物を形成する際の硬化収縮が抑制される場合がある。尚、本発明の硬化性組成物において他の硬化性化合物は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 他のエポキシ化合物としては、例えば、1分子内に脂環エポキシ基を1個、又は3個以上含有する脂環エポキシ化合物[例えば、1,2:8,9-ジエポキシリモネン、エポキシヘキサヒドロフタル酸ジ2-エチルヘキシル等]、脂環にエポキシ基が直接単結合で結合している化合物[例えば、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物等]、芳香族グリシジルエーテル系エポキシ化合物[例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビフェノール型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビスフェノールAのクレゾールノボラック型エポキシ化合物、ナフタレン型エポキシ化合物、トリスフェノールメタンから得られるエポキシ化合物等]、脂肪族グリシジルエーテル系エポキシ化合物[例えば、脂肪族ポリグリシジルエーテル等]、グリシジルエステル系エポキシ化合物、グリシジルアミン系エポキシ化合物、水素化グリシジルエーテル系エポキシ化合物(核水素化芳香族グリシジルエーテル系エポキシ化合物)、イソシアヌル酸グリシジル化合物等を挙げることができる。
 他のエポキシ化合物としては、なかでも、透明性及び耐湿性に優れた硬化物を得ることができる点で、水素化グリシジルエーテル系エポキシ化合物及び/又はイソシアヌル酸グリシジル化合物が好ましい。
 上記水素化グリシジルエーテル系エポキシ化合物としては、具体的には、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、及びこれらの多量体等のビスフェノールA型ジグリシジル化合物を水素化した化合物(=水素化ビスフェノールA型ジグリシジル化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタン、及びこれらの多量体等のビスフェノールF型ジグリシジル化合物を水素化した化合物(=水素化ビスフェノールF型ジグリシジル化合物);水添ビフェノール型エポキシ化合物;水添フェノールノボラック型エポキシ化合物;水添クレゾールノボラック型エポキシ化合物;ビスフェノールAの水添クレゾールノボラック型エポキシ化合物;水添ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水添エポキシ化合物等を挙げることができる。
 上記イソシアヌル酸グリシジル化合物としては、具体的には、イソシアヌル酸トリグリシジル、イソシアヌル酸ジグリシジルモノアリル、イソシアヌル酸モノグリシジルジアリル等を挙げることができる。
 他のエポキシ化合物としては、例えば、商品名「YX8000」、「YX8034」、「YX8040」(以上、三菱化学(株)製)、商品名「TEPIC-VL」(日産化学工業(株)製)、商品名「MA-DGIC」、「DA-MGIC」(以上、四国化成工業(株)製)等の市販品を使用することもできる。
 上記オキセタン化合物としては、例えば、トリメチレンオキシド、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス([1-エチル(3-オキセタニル)]メチル)エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、3-エチル-3([(3-エチルオキセタン-3-イル)メトキシ]メチル)オキセタン等を挙げることができる。
 上記ビニルエーテル化合物としては、例えば、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、及びこれらの誘導体等を挙げることができる。
 他の硬化性化合物の含有量(配合量)は、硬化性組成物全量(100重量%)に対して、例えば40重量%以下(好ましくは5~40重量%)、好ましくは30重量%以下(好ましくは5~30重量%)である。
 なかでも、水素化グリシジルエーテル系エポキシ化合物を、硬化性組成物に含まれる硬化性化合物全量(100重量%)に対して、例えば5~40重量%程度含有することが好ましく、特に好ましくは10~30重量%である。水素化グリシジルエーテル系エポキシ化合物を上記範囲で含有すると、硬化物の耐熱透明性を向上することができる。一方、水素化グリシジルエーテル系エポキシ化合物の含有量が上記範囲を上回ると、硬化性とTgが低下し、ウェハレベルレンズ用材料として使用することが困難となる場合がある。
 また、イソシアヌル酸グリシジル化合物を、硬化性組成物に含まれる硬化性化合物全量(100重量%)に対して、例えば5~30重量%含有することが好ましく、特に好ましくは5~20重量%である。イソシアヌル酸グリシジル化合物を上記範囲で含有すると、得られる硬化物の透明性を維持しつつ、硬化性組成物に適度な粘度を付与することができる。一方、イソシアヌル酸グリシジル化合物の含有量が上記範囲を上回ると、硬化性が低下し、ウェハレベルレンズ用材料として使用することが困難となる場合がある。
 更に、硬化性組成物に含まれる全エポキシ基(グリシジル基及び脂環エポキシ基の和)(100モル%)に占める脂環エポキシ基の割合は、例えば30~83モル%程度(好ましくは50~80モル%、特に好ましくは60~80モル%)であることが、硬化性組成物の硬化性と、得られる硬化物の耐熱透明性を兼ね備えることができる点で好ましい。
 [添加剤等]
 本発明の硬化性組成物は上記化合物の他にも公知乃至慣用の添加剤を含有していても良い。前記添加剤としては、特に限定されないが、例えば、金属酸化物粒子、ゴム粒子、シリコーン系やフッ素系の消泡剤、シランカップリング剤、充填剤、可塑剤、レベリング剤、帯電防止剤、離型剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、撥水・撥油剤等を挙げることができる。これらの添加剤の含有量(配合量)は、硬化性組成物(100重量%)に対して、例えば5重量%以下とすることが好ましい。また、本発明の硬化性組成物は溶媒を含んでいてもよいが、あまり多いと硬化物に気泡が生じる場合があるので、硬化性組成物(100重量%)に対して10重量%以下とすることが好ましく、特に好ましくは1重量%以下である。
 本発明の硬化性組成物は、特に限定されないが、例えば、脂環エポキシ化合物(A)、シロキサン化合物(B)、硬化剤(C)、必要に応じてその他の成分等を配合し、例えば真空下で気泡を除去しながら撹拌・混合することにより調製することができる。撹拌・混合する際の温度は、例えば10~60℃程度が好ましい。尚、撹拌・混合には、公知乃至慣用の装置(例えば、自転公転型ミキサー、1軸又は多軸エクストルーダー、プラネタリーミキサー、ニーダー、ディゾルバー等)を使用できる。
 [硬化物]
 本発明の硬化性組成物に、例えば、加熱処理及び/又は光照射を施すことにより、硬化物(「本発明の硬化物」と称する場合がある)が得られる。本発明の硬化性組成物は硬化性に優れ、加熱処理を行う場合は、例えば100~200℃程度(好ましくは120~160℃)の温度で短時間(例えば1~10分間程度、好ましくは1~3分)加熱することで硬化物を形成することができる。そのためウェハレベルレンズ金型の熱による劣化を防止することができる。また、光照射を行う場合は、その光源として、例えば、水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ、太陽光、電子線、レーザー光等を使用することができる。また、光照射後、例えば50~180℃程度の温度で加熱処理を施して更に硬化反応を進行させてもよい。
 また、加熱処理及び/又は光照射終了後は、更にアニール処理を施して内部歪みを除去することが好ましく、例えば100~200℃の温度で30分~1時間程度加熱することが好ましい。
 本発明の硬化物の400nmにおける内部透過率[厚み0.5mm換算]は例えば70%以上(例えば、70~100%)、好ましくは75%以上、特に好ましくは80%以上、最も好ましくは85%以上である。また、150℃の高温環境下に220時間程度曝した場合でも黄変を防止することができ、硬化物の400nmにおける内部透過率[厚み0.5mm換算]を70%以上(好ましくは75%以上)に維持することができる。
 本発明の硬化物の450nmにおける内部透過率[厚み0.5mm換算]は例えば80%以上(例えば、80~100%)、好ましくは85%以上、特に好ましくは90%以上である。また、150℃の高温環境下に220時間程度曝した場合でも黄変を防止することができ、硬化物の450nmにおける内部透過率[厚み0.5mm換算]を75%以上(好ましくは80%以上、特に好ましくは85%以上)に維持することができる。
 本発明の硬化物のガラス転移温度(Tg)は、100℃以上程度(例えば100~200℃)、好ましくは110℃以上、特に好ましくは120℃以上である。ガラス転移温度が100℃未満であると、使用態様によっては(車載カメラ用レンズとして使用する場合等)硬化物の耐熱性が不十分となる場合がある。硬化物のガラス転移温度は、例えば、各種熱分析[DSC(示差走査熱量計)、TMA(熱機械分析装置)等]や動的粘弾性測定等により測定でき、より具体的には、実施例に記載の測定方法により測定できる。
 本発明の硬化物の屈折率は、例えば0~1.60程度、好ましくは1.45~1.55であり、150℃の高温環境下に220時間程度曝した場合でもその値を維持することができる。また、本発明の硬化物のアッベ数は、例えば45以上、好ましくは50以上であり、150℃の高温環境下に220時間曝した場合でもその値を維持することができる。
 本発明の硬化性組成物は硬化性に優れ、極めて速やかに硬化して、耐熱透明性に優れた硬化物を形成することができる。そのため、ウェハレベルレンズ用硬化性組成物(特に、車載カメラに使用するウェハレベルレンズ用硬化性組成物)として好適に使用することができる。
 [ウェハレベルレンズの製造方法]
 本発明のウェハレベルレンズの製造方法としては、上記硬化性組成物を成型(例えば、キャスティング成型法、射出成型法)に付すことを特徴とする。尚、ウェハレベルレンズ金型は、金属製、ガラス製、及びプラスチック製の何れであっても良い。
 キャスティング成型法には同時成型法や個片成型法が含まれ、それぞれ下記工程を有する。
 (同時成型法)
 工程1:上記硬化性組成物を複数個のレンズ型が一定方向に整列した形状を有するウェハレベルレンズ金型に流し込み、加熱及び/又は光照射を施して硬化させる
 工程2:ウェハレベルレンズ金型を外してアニール処理を行い、ウェハレベルレンズが複数個結合した形状を有する硬化物を得る
 工程3:ウェハレベルレンズが複数個結合した形状を有する硬化物を個片化してウェハレベルレンズを得る
 (個片成型法)
 工程1:上記硬化性組成物を1個のレンズ型を有するウェハレベルレンズ金型に流し込み、加熱及び/又は光照射を施して硬化させる
 工程2:ウェハレベルレンズ金型を外してアニール処理を行い、ウェハレベルレンズを得る
 射出成型法は下記工程を有する。
 工程1:上記硬化性組成物を射出成型用ウェハレベルレンズ金型に流し込み、加熱及び/又は光照射を施して硬化させる
 工程2:ウェハレベルレンズ金型を外してアニール処理を行い、バリを切除して、ウェハレベルレンズを得る
 硬化性組成物の加熱処理、光照射、及びアニール処理は、上記[硬化物]の項に記載の方法により行うことができる。
 上記同時成型法においては、硬化性組成物は低粘度で流動性に優れることが、金型への充填性に優れる点で好ましい。上記同時成型法において使用される硬化性組成物の25℃、せん断速度20(1/s)における粘度は、例えば0.05~5Pa・s程度、好ましくは0.1~2Pa・sである。上記範囲の粘度を有する硬化性組成物は流動性に優れ、気泡が残存しにくく、注入圧の上昇を抑制しつつ金型へ充填することができる。すなわち、塗布性及び充填性に優れ、成型作業全体に亘り、作業性に優れる。
 本発明の硬化性組成物の硬化物は100~200℃程度の高温環境下でも優れた耐熱性を有し、形状保持性に優れる。そのため、金型から外した後にアニール処理を施しても、優れたレンズ中心位置精度を有するウェハレベルレンズを効率よく製造することができる。そのため、上記同時成型法の工程3では、ウェハレベルレンズが複数個結合した形状を有する硬化物を複数枚重ね、最上部の硬化物を基準に切断ラインの位置を決定して切断することにより、ウェハレベルレンズを破損することなく分離させることができ、ウェハレベルレンズ又はその積層体を、低コストで効率よく製造することができる。
 本発明のウェハレベルレンズの製造方法により得られるウェハレベルレンズは高温環境下に長期に亘って曝しても黄変を防止することができ、高い透明性を維持することができる。そのため、例えば、カメラ(車載カメラ、デジタルカメラ、PC用カメラ、携帯電話用カメラ、監視カメラ等のカメラ、特にウェハレベルカメラ)の撮像用レンズ、メガネレンズ、光ビーム集光レンズ、光拡散用レンズ等として、とりわけ耐熱性が求められる車載カメラ用ウェハレベルレンズとして好適に使用することができる。
 更にまた、本発明のウェハレベルレンズの製造方法で得られるウェハレベルレンズは耐熱性に優れるため、回路基板に実装する場合、リフローによって半田付け実装が可能である。そのため、本発明のウェハレベルレンズを備えるカメラは、PCB(Printed Circuit Board)基盤上に、他の電子部品の表面実装と同一の半田リフロープロセスにて、直接実装することができ、極めて効率的な製品製造が可能となる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1~5、比較例1~3
 下記表1に記載の各成分を配合組成(単位;重量部)に従って配合し、室温で自転公転型ミキサーで撹拌・混合することにより、均一で透明な硬化性組成物(カチオン硬化性組成物)を得た。
 次いで、上記で得られた硬化性組成物を、下記加熱処理方法により硬化させて硬化物を得た。尚、下記硬化物の作製にあたっては平面の金型を用いた。
 <加熱処理方法>
 インプリント成型機(商品名「NANOIMPRINTER NM-0501」、明昌機工(株)製)を用い下記成型プロファイルにて、厚み0.5mmで硬化・成型し、25℃まで冷却した後に離型し、更に予め180℃に熱したオーブンで30分間加熱してアニール処理を行って硬化物を得た(それぞれ5個ずつ)。
 成型プロファイル:25℃で硬化性組成物を金型に塗布し、その後、所定の厚みまでプレス軸位置を調整して金型をプレスし、150℃まで30℃/分で昇温した後、150℃で2分間保持する
 実施例及び比較例で得られた硬化性組成物及びその硬化物について、以下の評価を行った。
 [粘度]
 実施例及び比較例で得られた硬化性組成物の粘度は、レオメーター(商品名「Physica MCR301」、Anton Paar社製)を使用して測定した、25℃、せん断速度が20(1/s)の時の粘度である。
 [硬化率]
 実施例及び比較例で得られた硬化性組成物について、示差走査熱量計(DSC)(商品名「Q2000」、ティー・エイ・インスツルメント社製)を使用し、窒素雰囲気下において、下記の温度条件で加熱した際の硬化性組成物の硬化発熱量(「硬化性組成物の硬化発熱量」とする)を測定した。
 次いで、実施例及び比較例で得られた硬化性組成物を上述の<加熱処理方法>により硬化させて得られた硬化物(成型後、アリール処理前の硬化物)、及びアニール処理後の硬化物について、下記の温度条件で加熱した際の硬化発熱量(「硬化物の硬化発熱量」とする)を測定し、硬化率を下記式により算出した。
(温度条件)
 50℃で3分間保持し、続いて20℃/分で250℃まで昇温し、250℃で3分間保持する。
(硬化率の算出式)
 硬化率(%)={1-(硬化物の硬化発熱量)/(硬化性組成物の硬化発熱量)}×100
 [ガラス転移温度:Tg]
 実施例及び比較例で得られた硬化物のガラス転移温度を、固体粘弾性測定装置(商品名「RSA-III」、ティー・エイ・インスツルメント社製)を用い、窒素気流下、昇温速度5℃/分、測定温度範囲0℃~300℃、周波数10Hz、歪0.05%の条件で測定し、tanδのピークトップからTgを読み取った。
 [内部透過率]
 実施例及び比較例で得られた硬化物、及び150℃環境下に表1に記載の時間曝した硬化物の400nmにおける内部透過率を、下記式によって算出した。
  400nmにおける内部透過率=400nmにおける光線透過率/(1-r)2
  r={(n1-1)/(n1+1)}2
 400nmにおける光線透過率は分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定した。n1は400nmにおける屈折率であり、下記方法で測定した400nmにおける屈折率の値を用いた。
 450nmにおける内部透過率も、上記に準じて算出した。
 [屈折率]
 実施例及び比較例で得られた硬化物、及び150℃環境下に表1に記載の時間曝した硬化物の屈折率(25℃における、波長589nmの光の屈折率)を、JIS K 7142に準拠した方法で、屈折率計(商品名「Model 2010」、メトリコン社製)を用いて測定した。
 [アッベ数]
 実施例及び比較例で得られた硬化物、及び150℃環境下に表1に記載の時間曝した硬化物のアッベ数を、下記式によって算出した。
  アッベ数=(nd-1)/(nf-nc
 式中、ndは波長589.2nmの光の屈折率、nfは波長486.1nmの光の屈折率、ncは波長656.3nmの光の屈折率を示す。尚、屈折率は、上記方法で測定した各波長の光の屈折率の値を用いた。
 上記評価結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 表1の略語について説明する。
[硬化性化合物]
 X-40-2728:分子内に2個のグリシジル基を有する環状シロキサン、エポキシ当量:262g/eq、商品名「X-40-2728」、信越化学工業(株)製
 X-40-2670:分子内に4個の脂環エポキシ基を有する環状シロキサン、エポキシ当量:184g/eq、商品名「X-40-2670」、信越化学工業(株)製
 YX8040:水素化ビスフェノールA型ジグリシジル化合物(商品名「YX8040」、三菱化学(株)製)
 A-1:ビス(3,4-エポキシシクロヘキシルメチル)エーテル
 TEPIC-VL:イソシアヌル酸トリグリシジル(商品名「TEPIC-VL」、日産化学工業(株)製)
 PB3600:エポキシ化ポリブタジエン(商品名「エポリードPB3600」、(株)ダイセル製)
[硬化剤]
 SI-100L:熱カチオン重合開始剤、アニオン種としてPF6 -を有する芳香族スルホニウム塩(商品名「サンエイドSI-100L」、三新化学工業(株)製)
[酸化防止剤]
 IRG1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート](商品名「IRGANOX1010」、BASF製)
 HP-10:2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(商品名「HP-10」、(株)ADEKA製)
[撥水・撥油剤]
 E-1630:3-パーフルオロヘキシル-1,2-エポキシプロパン(商品名「E-1630」、ダイキン工業(株)製)
 本発明の硬化性組成物は2~3分程度の加熱により速やかに硬化物を形成することができる優れた硬化性を有し、得られる硬化物は高温環境下において長期に亘って黄変を抑制し、優れた透明性を維持することができる。そのため、ウェハレベルレンズ用材料として好適に使用することができる。

Claims (8)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは単結合又は連結基を示す)
    で表される脂環エポキシ化合物(A)、分子内に2以上のグリシジル基を有するシロキサン化合物(B)、及び硬化剤(C)を含むことを特徴とする硬化性組成物。
  2.  脂環エポキシ化合物(A)が、ビス(3,4-エポキシシクロヘキシルメチル)エーテル及び/又は2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパンである請求項1に記載の硬化性組成物。
  3.  硬化性組成物全量(100重量%)に脂環エポキシ化合物(A)を5~70重量%含有する請求項1又は2に記載の硬化性組成物。
  4.  ウェハレベルレンズ用硬化性組成物である請求項1~3のいずれか1項に記載の硬化性組成物。
  5.  請求項1~3のいずれか1項に記載の硬化性組成物を硬化させて得られる硬化物。
  6.  請求項1~3のいずれか1項に記載の硬化性組成物を成型に付すことを特徴とするウェハレベルレンズの製造方法。
  7.  請求項6に記載のウェハレベルレンズの製造方法により得られるウェハレベルレンズ。
  8.  請求項7に記載のウェハレベルレンズを備えるカメラ。
PCT/JP2015/054128 2014-02-28 2015-02-16 硬化性組成物及びその硬化物、並びにウェハレベルレンズ WO2015129503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016505152A JP6491637B2 (ja) 2014-02-28 2015-02-16 硬化性組成物及びその硬化物、並びにウェハレベルレンズ
EP15755298.5A EP3112389B1 (en) 2014-02-28 2015-02-16 Curable composition, cured product thereof, and wafer level lens
KR1020167022556A KR20160127733A (ko) 2014-02-28 2015-02-16 경화성 조성물 및 그의 경화물, 및 웨이퍼 레벨 렌즈
US15/113,399 US9856347B2 (en) 2014-02-28 2015-02-16 Curable composition, cured product thereof, and wafer level lens
CN201580004329.8A CN105899567B (zh) 2014-02-28 2015-02-16 固化性组合物及其固化物、及晶片级透镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038275 2014-02-28
JP2014038275 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129503A1 true WO2015129503A1 (ja) 2015-09-03

Family

ID=54008826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054128 WO2015129503A1 (ja) 2014-02-28 2015-02-16 硬化性組成物及びその硬化物、並びにウェハレベルレンズ

Country Status (7)

Country Link
US (1) US9856347B2 (ja)
EP (1) EP3112389B1 (ja)
JP (1) JP6491637B2 (ja)
KR (1) KR20160127733A (ja)
CN (1) CN105899567B (ja)
TW (1) TWI655220B (ja)
WO (1) WO2015129503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113221A (ko) 2016-03-25 2017-10-12 도쿄 오카 고교 가부시키가이샤 에너지 감수성 조성물, 경화물 및 경화물의 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188563A (ja) * 2017-05-09 2018-11-29 株式会社ダイセル 絶縁膜形成用組成物、絶縁膜、及び絶縁膜を備えた半導体デバイス
JP6538774B2 (ja) * 2017-07-28 2019-07-03 株式会社ダイセル モノマー混合物、及びそれを含む硬化性組成物
KR101964401B1 (ko) * 2017-08-25 2019-04-01 한국광기술원 열경화 웨이퍼 공정을 통한 어레이 타입 렌즈 제조 방법
JP7430503B2 (ja) * 2019-09-20 2024-02-13 株式会社ダイセル エポキシ化合物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426693A (en) * 1987-04-07 1989-01-27 Nitto Denko Corp Ultraviolet-curable silicone-based releasant
JP2004352771A (ja) * 2003-05-27 2004-12-16 Nitto Denko Corp 紫外線硬化型エポキシ樹脂組成物
JP2007270114A (ja) * 2006-03-09 2007-10-18 Sumitomo Bakelite Co Ltd 透明複合シート
JP2011138089A (ja) * 2010-01-04 2011-07-14 Fujifilm Corp ウェハレベルレンズアレイ、レンズモジュール及び撮像ユニット
WO2012093589A1 (ja) * 2011-01-07 2012-07-12 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2013525551A (ja) * 2010-04-29 2013-06-20 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー 硬化性組成物
WO2014034507A1 (ja) * 2012-08-31 2014-03-06 株式会社ダイセル 硬化性組成物及びその硬化物、光学部材、並びに光学装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242108A (en) * 1961-04-04 1966-03-22 Union Carbide Corp Compositions for producing polyurethane resins and resinous foams and products prepared therefrom
GB2305919B (en) * 1995-10-02 1999-12-08 Kansai Paint Co Ltd Ultraviolet-curing coating composition for cans
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
JP3465807B2 (ja) 1996-03-29 2003-11-10 日本ゼオン株式会社 ノルボルネン系開環重合体水素添加物からなる光学材料および光学部材
DE19648283A1 (de) 1996-11-21 1998-05-28 Thera Ges Fuer Patente Polymerisierbare Massen auf der Basis von Epoxiden
FR2762001B1 (fr) * 1997-04-11 1999-07-02 Rhodia Chimie Sa Amorceurs non toxiques, resines a groupements organofonctionnels reticulables comprenant les amorceurs, et leur utilisation pour la preparation de polymeres stables et non toxiques
FR2791995B1 (fr) * 1999-04-06 2001-07-06 Rhodia Chimie Sa Composition silicone utile notamment pour la realisation de vernis anti-friction, procede d'application de ce vernis sur un support et support ainsi traite
US6232362B1 (en) * 1999-05-04 2001-05-15 General Electric Company Self-sensitized epoxysilicones curable by ultraviolet light and method of synthesis therefor
JP3477111B2 (ja) 1999-06-01 2003-12-10 四国化成工業株式会社 熱硬化性エポキシ樹脂組成物
FR2849446B1 (fr) * 2002-12-26 2006-07-28 Rhodia Chimie Sa Vernis anti-salissures, procede d'application de ce vernis sur un support silicone et support ainsi traite
US6962948B2 (en) * 2003-08-07 2005-11-08 Polyset Company, Inc. Solventless, non-polluting radiation and thermal curable coatings
EP1591097B1 (en) * 2004-04-30 2012-06-20 3M Deutschland GmbH Cationically curing two component materials containing a noble metal catalyst
EP1932891B1 (en) * 2005-09-02 2014-03-05 Konica Minolta Medical & Graphic, Inc. Active ray-curable inkjet ink
JP4979963B2 (ja) 2006-03-10 2012-07-18 株式会社Adeka 光学材料用硬化性組成物及び光導波路
JP5354868B2 (ja) * 2006-07-06 2013-11-27 株式会社ダイセル 脂環式ジエポキシ化合物の製造方法、エポキシ樹脂組成物の製造方法、及び硬化物の製造方法
JP2008019422A (ja) * 2006-06-16 2008-01-31 Shin Etsu Chem Co Ltd エポキシ・シリコーン混成樹脂組成物及び発光半導体装置
CN101848915B (zh) * 2007-11-07 2013-10-09 昭和电工株式会社 含环氧基的有机硅氧烷化合物、转印材料用固化性组合物和使用该组合物的微细图案形成方法
KR101651157B1 (ko) * 2009-08-13 2016-08-25 후지필름 가부시키가이샤 웨이퍼 레벨 렌즈, 웨이퍼 레벨 렌즈의 제조 방법, 및 촬상 유닛
KR101191129B1 (ko) * 2010-11-10 2012-10-15 주식회사 엘지화학 광학 소자
JP5832740B2 (ja) * 2010-11-30 2015-12-16 株式会社ダイセル 硬化性エポキシ樹脂組成物
US8940852B2 (en) * 2010-12-28 2015-01-27 Toagosei Co., Ltd. Method for manufacturing reactive polysiloxane solution
CN103748488B (zh) * 2011-08-19 2016-04-06 Lg化学株式会社 偏光板
CN105452322A (zh) * 2013-05-10 2016-03-30 株式会社大赛璐 固化性环氧树脂组合物及其固化物、二烯烃化合物及其制造方法、以及二环氧化合物的制造方法
KR101869178B1 (ko) * 2013-12-26 2018-06-19 주식회사 다이셀 렌즈용 경화성 조성물, 및 렌즈 및 광학 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426693A (en) * 1987-04-07 1989-01-27 Nitto Denko Corp Ultraviolet-curable silicone-based releasant
JP2004352771A (ja) * 2003-05-27 2004-12-16 Nitto Denko Corp 紫外線硬化型エポキシ樹脂組成物
JP2007270114A (ja) * 2006-03-09 2007-10-18 Sumitomo Bakelite Co Ltd 透明複合シート
JP2011138089A (ja) * 2010-01-04 2011-07-14 Fujifilm Corp ウェハレベルレンズアレイ、レンズモジュール及び撮像ユニット
JP2013525551A (ja) * 2010-04-29 2013-06-20 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー 硬化性組成物
WO2012093589A1 (ja) * 2011-01-07 2012-07-12 株式会社ダイセル 硬化性エポキシ樹脂組成物
WO2014034507A1 (ja) * 2012-08-31 2014-03-06 株式会社ダイセル 硬化性組成物及びその硬化物、光学部材、並びに光学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112389A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113221A (ko) 2016-03-25 2017-10-12 도쿄 오카 고교 가부시키가이샤 에너지 감수성 조성물, 경화물 및 경화물의 제조 방법

Also Published As

Publication number Publication date
CN105899567B (zh) 2018-12-11
EP3112389A1 (en) 2017-01-04
TW201536829A (zh) 2015-10-01
CN105899567A (zh) 2016-08-24
JPWO2015129503A1 (ja) 2017-03-30
TWI655220B (zh) 2019-04-01
KR20160127733A (ko) 2016-11-04
JP6491637B2 (ja) 2019-03-27
EP3112389B1 (en) 2019-06-05
US9856347B2 (en) 2018-01-02
US20170009003A1 (en) 2017-01-12
EP3112389A4 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6846464B2 (ja) レンズ用硬化性組成物、並びにレンズ及び光学装置
US11029497B2 (en) Curable composition, cured product thereof, optical member and optical device
JP6491637B2 (ja) 硬化性組成物及びその硬化物、並びにウェハレベルレンズ
EP2998336A1 (en) Photo-curable resin composition for optical components, optical component using same, and optical component production method
KR102131193B1 (ko) 웨이퍼 레벨 렌즈용 경화성 조성물, 웨이퍼 레벨 렌즈의 제조 방법 및 웨이퍼 레벨 렌즈, 및 광학 장치
CN117467239A (zh) 固化性组合物、固化物、光学构件以及光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113399

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167022556

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755298

Country of ref document: EP