WO2015129242A1 - 無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム - Google Patents

無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム Download PDF

Info

Publication number
WO2015129242A1
WO2015129242A1 PCT/JP2015/000873 JP2015000873W WO2015129242A1 WO 2015129242 A1 WO2015129242 A1 WO 2015129242A1 JP 2015000873 W JP2015000873 W JP 2015000873W WO 2015129242 A1 WO2015129242 A1 WO 2015129242A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
period
control unit
communication method
communication
Prior art date
Application number
PCT/JP2015/000873
Other languages
English (en)
French (fr)
Inventor
利康 田中
シュテファン アウスト
Original Assignee
日本電気通信システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気通信システム株式会社 filed Critical 日本電気通信システム株式会社
Priority to US15/120,410 priority Critical patent/US20170013556A1/en
Priority to JP2016505057A priority patent/JPWO2015129242A1/ja
Publication of WO2015129242A1 publication Critical patent/WO2015129242A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication control device, a wireless communication control method, a storage medium, and a wireless communication control system.
  • IEEE802.15.4g / e can be used as one of 920MHz band wireless communication standards.
  • IEEE 802.15.4 g / e is a standard for the sub-giga band, and is mainly used in WPAN (Wireless Personal Area Network).
  • IEEE is an abbreviation for Institute of Electrical and Electronics Engineers.
  • IEEE 802.11ah which is expected to be used as a sub-gigabit WiFi (Wireless Fidelity)
  • IEEE 802.11ah which is expected to be used as a sub-gigabit WiFi (Wireless Fidelity)
  • it is considered that a monitoring system using a wireless sensor network that utilizes these two standards will be realized in the near future.
  • the above problem may occur in addition to the coexistence of the WPAN standard and the WLAN standard. That is, when a plurality of wireless communication systems coexist in a certain environment, there arises a problem that interference may occur between the plurality of wireless communication systems. Therefore, realization of a technique for reducing interference between different communication methods is desired.
  • Patent Document 1 is known as one of techniques for reducing such interference.
  • Patent Document 1 describes a technique for reducing interference between different communication systems sharing a common wireless communication medium.
  • Patent Document 1 assumes a standard corresponding to IEEE802.15.3 and IEEE802.11 as two wireless communication systems that interfere with each other.
  • CAP Contention Access Period
  • CFP Contention Period Period
  • CP Contention Period
  • CFP Commission Period Equivalent to the IEEE 802.11 standard.
  • unnecessary communication collision can be avoided by synchronizing the CAP and CFP corresponding to the IEEE 802.15.3 standard with the CP and CFP corresponding to the IEEE 802.11 standard.
  • Patent Document 2 is known as a related technique.
  • Patent Document 2 describes a technique for effectively switching a frequency band used for wireless communication between a plurality of wireless devices to another one.
  • one wireless device notifies a request for switching the first frequency band to another second frequency band.
  • the other wireless device notifies a response for permitting switching to the second frequency band, notifies the schedule information, and starts wireless communication based on the schedule information.
  • it is possible to effectively switch the frequency band used for wireless communication to another by such a method.
  • Patent Document 3 is known as a related technique.
  • a session is operated in the first frequency band, while an agreement to operate the session in the second frequency band is set and a physical link is established in the second frequency band.
  • a technique for transferring a session to a band is described.
  • the length of the CP / CFP of the communication network corresponding to the IEEE 802.11 standard is limited to the length of the CAP / CFP corresponding to the IEEE 802.15.3 standard. For this reason, there has been a problem that interference cannot be suppressed during the CP period equivalent to the IEEE 802.11 standard (the CAP period equivalent to the IEEE 802.15.3 standard). Further, since there is a CFP period corresponding to the IEEE 802.11 standard, communication is performed according to the schedule during the CFP period. Therefore, there is a problem that there is a concern that the maximum throughput may be reduced.
  • Patent Documents 2 and 3 are systems that use a plurality of channels in order to suppress a decrease in communication efficiency due to interference between a plurality of communication systems. For this reason, all of the suppression methods described in Patent Documents 2 and 3 have a problem that they are inefficient.
  • an object of the present invention is to provide a wireless communication capable of solving the problem that interference between a plurality of wireless communication methods cannot be effectively prevented when a plurality of wireless communication methods are used simultaneously.
  • a control device, a wireless communication control method, a storage medium, and a wireless communication control system are provided.
  • the wireless communication control device of the present invention includes a first communication method control unit that performs wireless communication by a first wireless communication method, and a second communication method control unit that performs wireless communication by a second wireless communication method,
  • the second communication method control unit detects the start of wireless communication by the first wireless communication method, and performs wireless communication by the second wireless communication method during a wireless communication period by the first wireless communication method. And operates so as to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method.
  • a wireless communication control method includes a plurality of first communication method controllers that perform wireless communication using a first wireless communication method and a second communication method control unit that performs wireless communication using a second wireless communication method.
  • a method for controlling wireless communication by a wireless communication method wherein the second communication method control unit detects the start of wireless communication by a first wireless communication method and is in a wireless communication period by the first wireless communication method. Controls not to perform wireless communication by the second wireless communication method, and controls to perform wireless communication by the second wireless communication method outside the wireless communication period by the first wireless communication method. .
  • the storage medium of the present invention uses a first communication method control unit that performs wireless communication by the first wireless communication method and a second communication method control unit that performs wireless communication by the second wireless communication method.
  • a computer of a wireless communication control device that controls wireless communication according to the method causes the second communication method control unit to detect the start of wireless communication according to the first wireless communication method, and wireless communication according to the first wireless communication method. Operate so as not to perform wireless communication by the second wireless communication method during the period, and operate to perform wireless communication by the second wireless communication method outside the wireless communication period by the first wireless communication method
  • a program for executing processing is stored.
  • the wireless communication control system of the present invention includes a first communication method control device that performs wireless communication by a first wireless communication method, and a second communication method control device that performs wireless communication by a second wireless communication method,
  • the second communication method control device detects the start of wireless communication by the first wireless communication method, and performs wireless communication by the second wireless communication method during a wireless communication period by the first wireless communication method. And operates so as to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method.
  • FIG. 1 It is a figure which shows the structural example of the wireless sensor network which concerns on the 1st Embodiment of this invention. It is a block diagram which shows an example of a structure of the gateway shown in FIG. It is a figure for demonstrating the parameter used when performing radio
  • FIG. 1 It is a block diagram which shows an example of a structure of the backhaul node shown in FIG. It is a block diagram which shows an example of a structure of the gateway shown in FIG. It is a block diagram which shows the structural example of the radio
  • FIG. 1 is a diagram illustrating a configuration example of a wireless sensor network 1 (WSN, Wireless Sensor Networks) according to the first embodiment of the present invention.
  • the wireless sensor network 1 is a wireless sensor network that performs wireless communication using the 920 MHz band. Specifically, in the wireless sensor network 1, wireless communication based on the WPAN standard and wireless communication based on the WLAN standard are performed using the 920 MHz band.
  • the wireless sensor network 1 includes a gateway 2 (wireless communication control device), a WPAN terminal 3 (WPAN terminals 3a, 3b, 3c,...), A WLAN terminal 4 (WLAN terminals 4a, 4b, 4c,...), A backhaul. Node 5.
  • the WPAN terminal 3 and the WLAN terminal 4 correspond to sensor nodes of the wireless sensor network 1.
  • the gateway 2 corresponds to a sink node of the wireless sensor network 1.
  • FIG. 1 illustrates the case where the number of WPAN terminals 3 and WLAN terminals 4 is “3”, but this is merely an example, and in the present embodiment, the number of WPAN terminals 3 and WLAN It does not depend on the number of terminals 4.
  • the number of WPAN terminals 3 and WLAN terminals 4 may be two or four or more. Further, the number of WPAN terminals 3 and the number of WLAN terminals 4 may be different.
  • Wireless communication using radio waves can be executed between the gateway 2 and the WPAN terminal 3 and between the gateway 2 and the WLAN terminal 4. Specifically, wireless communication based on the WPAN standard (for example, IEEE802.15.4g / e) is performed between the gateway 2 and the WPAN terminal 3, and the WLAN standard (for example, the WLAN terminal 4). , IEEE802.11ah) is performed.
  • the WPAN standard for example, IEEE802.15.4g / e
  • the WLAN standard for example, the WLAN terminal 4
  • IEEE802.11ah IEEE802.11ah
  • the gateway 2 and the backhaul node 5 are configured to be able to perform wireless communication based on the WLAN standard (for example, IEEE 802.11ah).
  • the backhaul node 5 is connected to the Internet 6 by wire.
  • the center frequencies of the communication channels used between the gateway 2 and the WPAN terminal 3 and between the gateway 2 and the WLAN terminal 4 are the same (for example, 924 MHz).
  • the wireless sensor network 1 in the present embodiment constitutes a star type network topology centered on the gateway 2. Therefore, data (sensor data) sensed by the WPAN terminal 3 and the WLAN terminal 4 is collected to the gateway 2 and transmitted to the Internet 6 via the backhaul node 5, for example.
  • the wireless sensor network 1 configures a star-type network topology is illustrated, but the wireless sensor network 1 may configure, for example, a mesh-type network topology. Absent.
  • the gateway 2 is not only a coordinator in the WPAN standard, but also an access point (AP, Access Point) in the WLAN standard.
  • the coordinator is a node that controls communication at the center of the network in the WPAN standard.
  • An access point is a node that controls communication at the center of the network in the WLAN standard. That is, the gateway 2 has a function of controlling both wireless communication using the WPAN standard and wireless communication using the WLAN standard performed in the wireless sensor network 1.
  • the gateway 2 also serves as a sink node in the wireless sensor network 1 as described above. That is, the gateway 2 has a function of collecting data sensed by the WPAN terminal 3 and the WLAN terminal 4 which are sensor nodes. In the present embodiment, the gateway 2 transmits data collected from the WPAN terminal 3 and the WLAN terminal 4 to the Internet 6 via the backhaul node 5. Note that the gateway 2 may have a function of collecting collected data into a database, a function of performing predetermined calculation processing using the collected data, and the like.
  • the gateway 2 includes a harmonized controller 21 (control means), a WPAN communication control unit 22 (first communication method control unit), a WLAN communication control unit 23 (second communication method control unit), have.
  • the harmonized controller 21 has a function of performing predetermined control on the WPAN communication control unit 22, a function of performing predetermined control on the WLAN communication control unit 23, and the like. Specifically, the harmonized controller 21 in this embodiment controls the superframe length SD and the beacon interval BI, which are parameters used when wireless communication is performed according to the WPAN standard. Further, the harmonized controller 21 controls a NAV (Network Allocation Vector) length DUR, which is a parameter (included in a CTS (Clear to Send) frame described later) used when wireless communication is performed according to the WLAN standard. Furthermore, the harmonized controller 21 manages the timing at which the WPAN communication control unit 22 transmits a beacon and the timing at which the WLAN communication control unit 23 transmits a CTS frame. In addition, the harmonized controller 21 instructs the start of wireless communication according to the WLAN standard. Then, the harmonized controller 21 collects data sensed by the WPAN terminal 3 or the WLAN terminal 4 and transfers it to the backhaul node 5 as described above
  • the harmonized controller 21 has various functions. The roles of the harmonized controller 21 are enumerated as follows, for example. -WPAN SD and BI management-WPAN beacon transmission timing instruction (WPAN communication start instruction) -WLAN NAV length management-WLAN CTS transmission timing instruction-WLAN communication start instruction-Transfer of collected WPAN / WLAN communication data to backhaul node 5
  • FIG. 3A performs wireless communication in accordance with the WPAN standard It is a figure for demonstrating the parameter used in the case.
  • FIG. 3B is a diagram for explaining parameters used when wireless communication is performed according to the WLAN standard.
  • the super frame length SD the beacon interval BI, the NAV length DUR, and the CTS frame (wireless communication signals including information indicating the activity period) controlled by the harmonized controller 21 will be described in detail.
  • the superframe in the present embodiment is composed of three parts: a beacon that is a synchronization signal, a CAP period (Contention Access Period), and a CFP period (Contention Free Period).
  • the CAP period is a period for competing for communication rights in CSMA / CA (Carrier Sense Multiple Access / Collection Avoidance), and is a period for acquiring the right to use the channel and communicating.
  • CSMA / CA Carrier Sense Multiple Access / Collection Avoidance
  • all WPAN terminals 3 can access the channel.
  • the CFP period is a period in which the gateway 2 as a coordinator performs communication by managing the communication timing schedule. In the CFP period, only the WPAN terminal 3 permitted by the gateway 2 is controlled to perform communication.
  • the super frame in this embodiment is composed of a beacon, a CAP period, and a CFP period.
  • the harmonized controller 21 controls the super frame length SD, which is the length of such a super frame, by controlling the length of the CAP period and the CFP period, for example.
  • the beacon interval BI is an interval from when a beacon is transmitted until the next beacon is transmitted.
  • the super frame length SD occupies a part of the beacon interval BI. Therefore, the harmonized controller 21 controls the beacon interval BI to be longer than the super frame length SD.
  • the harmonized controller 21 controls the super frame length SD and the beacon interval BI.
  • beacon transmission, wireless communication in the CAP period, and the CFP period are performed.
  • wireless communication using the WPAN standard is not performed from the elapse of the super frame length SD until the next beacon transmission (a period obtained by subtracting the super frame length SD from the beacon interval BI). That is, the harmonized controller 21 controls the super frame length SD and the beacon interval BI, thereby not performing communication using the active period (activity period) in which communication is performed using the WPAN standard and the WPAN standard.
  • the inactive period (inactive period) which is a period is controlled.
  • the harmonized controller 21 notifies the WPAN communication control unit 22 of the controlled super frame length SD and beacon period BI. That is, the harmonized controller 21 sets an active period and an inactive period for the WPAN communication control unit 22. For this reason, as will be described later, the WPAN communication control unit 22 performs wireless communication in the active section according to the notification from the harmonized controller 21, but does not perform wireless communication in the inactive section. Further, the WPAN communication control unit 22 transmits a beacon including information indicating the superframe length SD and the beacon interval BI received from the harmonized controller 21. For this reason, the WPAN terminal 3 can know the superframe length SD and the beacon interval BI by receiving the beacon transmitted by the WPAN communication control unit 22.
  • the WPAN terminal 3 performs wireless communication in the active section, but does not perform wireless communication in the inactive section.
  • the harmonized controller 21 controls the wireless communication using the WPAN standard by notifying the WPAN communication control unit 22 of the super frame length SD and the beacon period BI.
  • the CTS frame is a signal for permitting transmission.
  • the CTS frame is a signal that is generally transmitted as a response to an RTS (Request To Send) frame.
  • the CTS frame includes information indicating a period for occupying a channel for transmission. The period of occupying this channel is the NAV length DUR.
  • wireless communication using the WLAN standard is not performed by the NAV length DUR indicated by the information included in the CTS frame.
  • the WLAN communication control unit 23 transmits a CTS frame in accordance with an instruction from the harmonized controller 21, it shifts to the non-communication mode by an amount corresponding to the NAV length indicated by the information included in the CTS frame.
  • the WLAN terminal 4 that has received the CTS frame shifts to a non-communication mode in which communication is not performed for the NAV length DUR indicated by the information included in the received CTS frame.
  • wireless communication using the WLAN standard is controlled by the NAV length DUR.
  • the harmonized controller 21 controls the period during which wireless communication according to the WLAN standard is not performed by instructing the WLAN communication control unit 23 to transmit the CTS frame.
  • the period in which the channel is occupied in this embodiment refers to a period in which the channel is used in wireless communication according to the WPAN standard. Accordingly, the period of occupying the channel (NAV length DUR) is the same length as the super frame length SD and the active section of the WPAN standard.
  • the harmonized controller 21 in this embodiment instructs the WLAN communication control unit 23 to transmit a CTS frame immediately before the WPAN communication transitions to the active section. Specifically, the harmonized controller 21 instructs the WLAN communication control unit 23 when the beacon interval BI has elapsed after instructing the WPAN communication control unit 22 to start wireless communication using the WPAN standard. Instructs to transmit a CTS frame. Alternatively, the harmonized controller 21 instructs the WLAN communication control unit 23 to transmit the CTS frame when the beacon interval BI has elapsed after instructing to transmit the CTS frame. As described above, in the WPAN standard, a beacon is transmitted every time the beacon interval BI elapses (transition to an active section).
  • the NAV length DUR is controlled to the same length as the super frame length SD and the active section of the WPAN standard. Therefore, the NAV length DUR elapses at the same timing as when the WPAN communication transitions to the inactive period. That is, the WLAN communication can transition to the communication mode at the timing when the WPAN communication transitions to the inactive section.
  • the harmonized controller 21 does not perform wireless communication using the WLAN standard during the wireless communication period (active period) using the WPAN standard. Can be controlled. Further, the harmonized controller 21 restricts wireless communication using the WLAN standard as described above, while performing wireless communication using the WLAN standard during a period (inactive period) in which wireless communication using the WPAN standard is not performed. It is possible to perform control.
  • the radio frame instructed to be transmitted by the harmonized controller 21 is not necessarily a CTS frame.
  • the WPAN communication control unit 22 has a function of performing wireless communication with the WPAN terminal 3 in accordance with the WPAN standard (first wireless communication method). As shown in FIG. 2, the WPAN communication control unit 22 includes an antenna unit, and performs wireless communication with the WPAN terminal 3 through the antenna unit. Further, the WPAN communication control unit 22 in the present embodiment performs wireless communication using the 920 MHz band.
  • the superframe length SD and the beacon interval BI are notified from the harmonized controller 21 to the WPAN communication control unit 22. That is, the WPAN communication control unit 22 sets the active period and the inactive period by the harmonized controller 21. For this reason, the WPAN communication control unit 22 operates so as not to perform wireless communication in the inactive section while performing wireless communication in the active section.
  • the WPAN communication control unit 22 transmits a beacon in response to an instruction from the harmonized controller 21 or every time the beacon interval BI elapses. Thereafter, the WPAN communication control unit 22 performs wireless communication with the WPAN terminal 3 in the CAP period and the CFP period which are active periods. Then, after the elapse of the active period, the transition to the inactive period occurs until the next beacon transmission timing.
  • the WPAN communication control unit 22 in the present embodiment is in a communication mode in which power is consumed in the active section and wireless communication is performed, while in the inactive section, the power consumption is reduced without performing wireless communication. Transition to power mode.
  • the WLAN communication control unit 23 has a function of performing wireless communication with the WLAN terminal 4 and the backhaul node 5 according to the WLAN standard (second wireless communication method). As shown in FIG. 2, the WLAN communication control unit 23 includes an antenna unit, and performs wireless communication with the WLAN terminal 4 and the backhaul node 5 via the antenna unit. In addition, the WLAN communication control unit 23 in the present embodiment performs wireless communication using the 920 MHz band.
  • the WLAN communication control unit 23 is instructed to start communication or to transmit a CTS frame from the harmonized controller 21.
  • the WLAN communication control unit 23 starts wireless communication according to an instruction from the harmonized controller 21 (changes to the communication mode). After that, every time the WLAN communication control unit 23 is instructed by the harmonized controller 21 to transmit a CTS frame, the WLAN communication control unit 23 transmits the CTS frame and shifts to the non-communication mode by the NAV length DUR.
  • the WLAN communication control unit 23 detects the start of wireless communication according to the WPAN standard by receiving an instruction from the harmonized controller 21 to transmit a CTS frame. Also, the WLAN communication control unit 23 does not perform wireless communication based on the WLAN standard under the control of the harmonized controller 21 (by receiving an instruction to transmit a CTS frame) during the wireless communication period based on the WPAN standard. Operates on. On the other hand, the WLAN communication control unit 23 operates under the control of the harmonized controller 21 (in accordance with the NAV length DUR included in the CTS frame) to perform wireless communication based on the WLAN standard outside the wireless communication period based on the WPAN standard. .
  • any access method (PCF (Point Coordination Function), DCF (Distributed Coordination Function), HCF (Hybrid Coordination Function), etc.) defined in the WLAN standard can be used.
  • wireless communication may be performed using either CP or CFP.
  • the WPAN terminal 3 has a function of performing wireless communication with the WPAN communication control unit 22 of the gateway 2 using the WPAN standard.
  • the WPAN terminal 3 has a general function as a sensor node.
  • the WPAN terminal 3 includes, for example, a wireless communication unit 31, a control unit 32, and a sensor 33.
  • the configuration of the WPAN terminal 3 is not limited to the above case. As long as the WPAN terminal 3 has a function of performing communication using the WPAN standard and a function as a sensor node, the specific configuration thereof is not particularly limited.
  • the wireless communication unit 31 has a function of performing wireless communication using the WPAN standard.
  • the wireless communication unit 31 includes an antenna unit, and performs wireless communication with the WPAN communication control unit 22 via the antenna unit. Note that the wireless communication unit 31 in the present embodiment performs wireless communication with the WPAN communication control unit 22 using the 920 MHz band.
  • the control unit 32 has a function of controlling the entire WPAN terminal 3. For example, the control unit 32 performs control when acquiring sensor data from the sensor 33, transmitting the acquired sensor data, or constructing a route. Further, the control unit 32 controls the transition to the active period and the transition to the inactive period according to the information of the superframe length SD and the beacon interval BI included in the beacon transmitted from the WPAN communication control unit 22. Do. For example, during the inactive period, the control unit 32 stops the functions of the wireless communication unit 31, the control unit 32, and the sensor 33, and controls the WPAN terminal 3 to transition to the power saving mode.
  • the sensor 33 has a function of sensing predetermined data such as temperature and power value. In addition, the sensor 33 transmits sensed data (sensor data) to the control unit 32. Note that the WPAN terminal 3 may be mounted with an actuator such as a motor or a switch instead of the sensor 33.
  • the wireless communication unit 31 of the WPAN terminal 3 receives a beacon transmitted from the WPAN communication control unit 22. Subsequently, the control unit 32 determines whether the active period (between the super frame length SD) and the inactive period (after the super frame length SD has elapsed) according to the information of the super frame length SD and the beacon interval BI included in the beacon. Until the beacon is transmitted). That is, the control unit 32 controls the WPAN terminal 3 so as to perform wireless communication in the active section, but not perform wireless communication in the inactive section. As a result, the WPAN terminal 3 transitions to the active period and the inactive period in synchronization with the timing when the WPAN communication control unit 22 transitions to the active period and the inactive period.
  • the WLAN terminal 4 has a function of performing wireless communication with the WLAN communication control unit 23 of the gateway 2 using the WLAN standard.
  • the WLAN terminal 4 has a general function as a sensor node.
  • the WLAN terminal 4 includes, for example, a wireless communication unit 41, a control unit 42, and a sensor 43.
  • the configuration of the WLAN terminal 4 is not limited to the above case. As long as the WLAN terminal 4 has a function of performing communication using the WLAN standard and a function as a sensor node, the specific configuration thereof is not particularly limited.
  • the wireless communication unit 41 has a function of performing wireless communication using the WLAN standard.
  • the wireless communication unit 41 includes an antenna unit, and performs wireless communication with the WLAN communication control unit 23 via the antenna unit. Note that the wireless communication unit 41 in this embodiment performs wireless communication with the WLAN communication control unit 23 using the 920 MHz band.
  • the control unit 42 has a function of controlling the entire WLAN terminal 4. For example, the control unit 42 performs control when acquiring sensor data from the sensor 43, transmitting the acquired sensor data, or constructing a route. In addition, the control unit 42 performs control to shift the WLAN terminal 4 to the non-communication mode by the NAV length DUR included in the CTS frame transmitted from the WLAN communication control unit 23. In addition, when the NAV length DUR has elapsed, the control unit 42 performs control to cause the WLAN terminal 4 to transition to the communication mode.
  • the configuration of the sensor 43 is the same as the configuration of the sensor 33 provided in the WPAN terminal 3 described above. Therefore, explanation is omitted.
  • the wireless communication unit 41 of the WLAN terminal 4 receives the CTS frame transmitted from the WLAN communication control unit 23. Subsequently, the control unit 42 performs control to shift the WLAN terminal 4 to the non-communication mode by the amount of the NAV length DUR included in the CTS frame. As a result, the WLAN terminal 4 transitions to the non-communication mode in synchronization with the timing at which the WLAN communication control unit 23 transitions to the non-communication mode. Further, when the NAV length DUR has elapsed, the control unit 42 causes the WLAN terminal to transition to the communication mode. As a result, the WLAN terminal 4 transitions to the communication mode in synchronization with the timing when the WLAN communication control unit 23 transitions to the communication mode. That is, the WLAN terminal 4 is controlled not to perform wireless communication during the wireless communication period (active period) according to the WPAN standard, but to perform wireless communication outside the wireless communication period (in the inactive period) according to the WPAN standard. become.
  • the backhaul node 5 is a node that relays the sensor data collected by the gateway 2 to the Internet 6. As described above, the backhaul node 5 in this embodiment performs wireless communication with the WLAN communication control unit 23 of the gateway 2 using the WLAN standard. Note that the backhaul node 5 and the gateway 2 may be connected by a wire.
  • the backhaul node 5 includes a backhaul controller 51, a WLAN communication control unit 52, and an Internet communication control unit 53.
  • the backhaul controller 51 has a function of controlling the WLAN communication control unit 52 and the Internet communication control unit 53.
  • the backhaul controller 51 transfers the sensor data acquired by the WLAN communication control unit 52 communicating with the gateway 2 to the user via the Internet communication control unit 53 and the Internet 6, for example.
  • the WLAN communication control unit 52 has a function of performing wireless communication with the WLAN communication control unit 23 of the gateway 2 using the WLAN standard. As illustrated in FIG. 6, the WLAN communication control unit 52 includes an antenna unit, and performs wireless communication with the WLAN communication control unit 23 of the gateway 2 via the antenna unit. In addition, the WLAN communication control unit 52 in the present embodiment performs wireless communication using the 920 MHz band.
  • the Internet communication control unit 53 is connected to the Internet 6 by wire.
  • the internet communication control unit 53 is used when communicating with the internet 6.
  • the Internet communication control unit 53 is used when the sensed sensor data is transferred to the user via the Internet.
  • the harmonized controller 21 notifies the WPAN communication control unit 22 of the super frame length SD and the beacon interval BI (step S002). That is, the harmonized controller 21 sets the active period and the inactive period in the WPAN communication control unit 22.
  • the harmonized controller 21 instructs the WPAN communication control unit 22 to start WPAN communication (step S003).
  • the harmonized controller 21 waits for the super frame length SD (t1) after instructing to start WPAN communication (step S004).
  • the harmonized controller 21 instructs the WLAN communication control unit 23 to start the WLAN communication after waiting for the super frame length SD (step S005).
  • the harmonized controller 21 waits for the time (t2-t1 minutes) obtained by subtracting the superframe length SD from the beacon interval BI (step S006). That is, the harmonized controller 21 waits until the beacon interval BI has elapsed from the timing at which the WPAN communication is instructed to start.
  • the harmonized controller 21 instructs the WLAN communication control unit 23 to transmit a CTS frame (step S007). Thereafter, the harmonized controller 21 waits for the beacon interval BI (t2) (step S008) and then repeats the operation of instructing the WLAN communication control unit 23 to transmit a CTS frame (step S009) (step S010, ).
  • the WPAN communication control unit 22 is notified of the super frame length SD and the beacon interval BI from the harmonized controller 21 (step S002). That is, the WPAN communication control unit 22 is set with the active period and the inactive period from the harmonized controller 21.
  • the WPAN communication control unit 22 receives an instruction to start WPAN communication from the harmonized controller 21 (step S003). Then, the WPAN communication control unit 22 transitions to the communication mode (step S021). The WPAN communication control unit 22 that has transitioned to the communication mode transmits a beacon and performs wireless communication according to the CAP period and the CFP period.
  • the WPAN communication control unit 22 has an active period and an inactive period. Therefore, the WPAN communication control unit 22 transitions to the inactive period after performing wireless communication during the active period. That is, the WPAN communication control unit 22 performs wireless communication for the super frame length SD (t1), and then transitions to the inactive period (power saving mode) (step S022). Then, the WPAN communication control unit 22 waits for the time (t2 ⁇ t1 minutes) obtained by subtracting the superframe length SD from the beacon interval BI. That is, the WPAN communication control unit 22 waits until the beacon interval BI time elapses after the previous beacon is transmitted.
  • the WPAN communication control unit 22 transitions to the communication mode and transmits a beacon (step S023). Thereafter, the WPAN communication control unit 22 performs wireless communication during the super frame length SD (t1) (active period), and then transitions to the power saving mode (inactive period) (step S024). Then, the operation of waiting for the beacon interval BI-superframe length SD (t2-t1), transitioning to the communication mode again, and transmitting a beacon (step S025) is repeated (step S026,).
  • the WLAN communication control unit 23 first receives a communication start instruction (step S005) from the harmonized controller 21. Then, the WLAN communication control unit 23 transitions to the communication mode (step S031). The WLAN communication control unit 23 may use either CP / CFP in the communication mode.
  • the WLAN communication control unit 23 receives an instruction to transmit a CTS frame from the harmonized controller 21 (step S007). Then, the WLAN communication control unit 23 receives the instruction and transmits a CTS frame. Further, after transmitting the CTS frame, the WLAN communication control unit 23 shifts to the non-communication mode by (t1) of the NAV length DUR (step S032).
  • the WLAN communication control unit 23 transitions to the communication mode after the NAV length DUR (t1) has elapsed (step S033). Thereafter, the WLAN communication control unit 23 receives an instruction to transmit a CTS frame from the harmonized controller 21 and switches to the non-communication mode after transmitting the CTS frame (step S034), and enters the communication mode after the NAV length DUR has elapsed. The transition operation (step S035) is repeated.
  • the WPAN terminal 3 receives the beacon (step S021) transmitted by the WPAN communication control unit 22 (step S041).
  • the beacon includes information indicating the super frame length SD and the beacon interval BI. Therefore, after receiving the beacon, the WPAN terminal 3 performs wireless communication for the super frame length SD. Thereafter, the WPAN terminal 3 transitions to an inactive section (power saving mode) (step S042).
  • the WPAN terminal 3 transitions to the communication mode after the amount of subtraction of the superframe length SD from the beacon interval BI has elapsed (after the beacon interval BI has elapsed since the previous beacon was received). Then, the WPAN terminal 3 receives the beacon (step S023) transmitted by the WPAN communication control unit 22 (step S043). Thereafter, the WPAN terminal 3 performs wireless communication for the super frame length SD included in the beacon, and then transitions to the power saving mode (step S044). Thereafter, after the elapse of the amount obtained by subtracting the superframe length SD from the beacon interval BI, the WPAN terminal 3 repeats the operation of transitioning to the communication mode and receiving a beacon (step S045) (step S046,).
  • the WLAN terminal 4 receives the CTS frame (step S032) transmitted by the WLAN communication control unit 23. Then, the WLAN terminal 4 shifts to the non-communication mode by the NAV length DUR included in the CTS frame (step S051).
  • the WLAN terminal 4 transitions to the communication mode after the NAV length DUR has elapsed (step S052). Thereafter, when receiving the CTS frame transmitted by the WLAN communication control unit 23, the WLAN terminal 4 transitions to the non-communication mode (step S053). Then, the WLAN terminal 4 repeats the operation of transitioning to the communication mode after the NAV length DUR has elapsed (step S054).
  • the gateway 2 includes the harmonized controller 21, the WPAN communication control unit 22, and the WLAN communication control unit 23.
  • the harmonized controller 21 can set an active period and an inactive period for the WPAN communication control unit 22 (can set a superframe length SD and a beacon interval BI).
  • the harmonized controller 21 transmits a CTS frame including a NAV length DUR having a length equal to the active period to the WLAN communication control unit 23 immediately before the WPAN communication control unit 22 transitions to the active period. Can be instructed.
  • the harmonized controller 21 performs control so that wireless communication based on the WLAN standard is not performed during the wireless communication period based on the WPAN standard, while performing wireless communication based on the WLAN standard outside the wireless communication period based on the WPAN standard. Can be controlled.
  • FIG. 10 shows an example of the wireless communication based on the WPAN standard and the wireless communication based on the WPAN standard performed under the control of the harmonized controller 21 described above.
  • wireless communication according to the WPAN standard includes an active period (communication mode, superframe length SD) including a beacon, a CAP period, and a CFP period, and an inactive period (power saving) in which no wireless communication is performed. Mode).
  • the wireless communication based on the WLAN standard is performed while the wireless communication based on the WPAN standard is in the inactive period.
  • the CTS frame is transmitted immediately before the wireless communication based on the WPAN standard shifts to the active section, so that the wireless communication based on the WLAN standard shifts to the non-communication mode while the wireless communication based on the WPAN standard is in the active section.
  • the beacon includes information related to the super frame length SD and the beacon interval BI has been described.
  • the present invention can be implemented without being limited to the above case.
  • the harmonized controller 21 instructs the WPAN communication control unit 22 to transmit a wakeup signal, for example, when issuing an instruction to transmit the CTS frame to the WLAN communication control unit 23. Will do.
  • the WPAN terminal 3 can receive a wakeup signal.
  • the CFP period in the superframe length SD of the WPAN standard is a period that can be used for irregularly generated high priority communication such as emergency data transmission (fire alarm, etc.). Therefore, when there is no emergency data transmission, the CFP period can be used for WLAN communication without being used for WPAN communication.
  • the harmonized controller 21 sets a super frame composed of a beacon and a CAP period.
  • the configuration of the superframe set by the harmonized controller 21 does not necessarily have to be composed of a beacon, a CAP period, and a CFP period.
  • the WPAN standard inactive period is longer for the CFP period, while the WLAN standard communication mode period is longer.
  • the harmonized controller 21 may be controlled so as to lengthen the time during which the WLAN standard is in the communication mode by not setting the CFP period in the active period of the WPAN standard.
  • the present invention can be implemented without being limited to use in a wireless sensor network.
  • the present invention can be applied to a wide-area security system based on position information.
  • the present invention may be applied to an agricultural IT system that controls crops in an arbitrary environment (temperature, humidity, amount of sunlight, etc.) in agriculture, for example.
  • the present invention may be applied to a general wireless communication system other than a wireless sensor network, for example, applied to an environment where wireless LAN communication and wireless PAN communication coexist.
  • the embodiment of the present invention may use a band other than the 920 MHz band.
  • the gateway 2 has a function of performing both control for the WPAN standard and control for the WLAN standard.
  • the implementation of the present invention is not limited to the above case.
  • the present invention can also be implemented by having two nodes, a node that controls the WPAN standard and a node that controls the WLAN standard.
  • the backhaul node is a WLAN AP (Access Point) and the gateway is an STA (Station).
  • the basic configuration is the same as that of the first embodiment. Therefore, in the following, a characteristic part of this embodiment will be described.
  • the wireless sensor network 7 in the present embodiment includes a gateway 9, a WPAN terminal 3, a WLAN terminal 4, and a backhaul node 8.
  • the number of gateways 9 included in the wireless sensor network 7 is not limited to one.
  • the wireless sensor network 7 may have one gateway 9 or may have many gateways 9.
  • symbol shall be attached
  • characteristic parts in the present embodiment will be described.
  • the backhaul node 8 in this embodiment is an access point in the WLAN standard. That is, the backhaul node 8 has a function of controlling wireless communication using the WLAN standard.
  • the backhaul node 8 includes a backhaul controller 81, a WLAN communication control unit 82, and an Internet communication control unit 53.
  • the configuration of the Internet communication control unit 53 is the same as that already described. Therefore, the characteristic parts of the backhaul controller 81 and the WLAN communication control unit 82 will be described below.
  • the backhaul controller 81 in the present embodiment has a function of synchronizing the timings of the harmonized controller 91 and the backhaul controller 81 of the gateway 9 described later by communicating with the gateway 9.
  • the backhaul controller 81 has a function of determining and managing the super frame length SD, the beacon interval BI, and the NAV length DUR. Further, the backhaul controller 81 is configured to give instructions to the WLAN communication control unit 82 of the backhaul node 8 and the WPAN communication control unit 83 of the gateway 9 at appropriate timing.
  • the roles of the backhaul controller 81 in this embodiment are listed as follows, for example. ⁇ Management of WPAN SD and BI, and notification to harmonized controller 91 ⁇ Synchronization of beacon transmission timing of WPAN and harmonized controller 91 of gateway 9 ⁇ Management of NAM length DUR of WLAM ⁇ CTS transmission timing of WLAN Instruction / Management of WLAN Communication Start As described above, the backhaul controller 81 in this embodiment instructs the WLAN communication control unit 82 to transmit a CTS frame or instructs the WLAN communication start. That is, the backhaul controller 81 can manage the WLAN standard. The management of the WPAN standard is performed via the gateway 9.
  • the WLAN communication control unit 82 has a function of performing wireless communication with the WLAN terminal 4 and the gateway 9 in accordance with the WLAN standard. As illustrated in FIG. 13, the WLAN communication control unit 82 includes an antenna unit, and performs wireless communication with the WLAN terminal 4 and the gateway 9 via the antenna unit. In addition, the WLAN communication control unit 82 in the present embodiment performs wireless communication using the 920 MHz band. The WLAN communication control unit 82 transmits a CTS frame or starts wireless communication based on the WLAN standard in accordance with an instruction from the backhaul controller 81.
  • the gateway 9 in this embodiment is a coordinator in the WPAN standard. That is, the gateway 9 has a function of controlling wireless communication using the WPAN standard.
  • the gateway 9 in the present embodiment has a harmonized controller 91, a WPAN communication control unit 22, and a WLAN communication control unit 23.
  • the configurations of the WPAN communication control unit 22 and the WLAN communication control unit 23 are the same as those already described. Therefore, the characteristic part of the harmonized controller 91 will be described below.
  • the harmonized controller 91 in the present embodiment has a function of controlling the WPAN communication control unit 22 in synchronization with a timing instruction from the backhaul node 8 (backhaul controller 81).
  • the roles of the harmonized controller 91 in the present embodiment are listed as follows, for example. -WPAN SD and BI management-WPAN beacon transmission timing instruction-Transfer of collected WPAN / WLAN communication data to the backhaul node 8
  • the harmonized controller 91 in this embodiment is a WPAN communication control unit. 22 instruct the beacon transmission timing.
  • the harmonized controller 91 acquires and manages the superframe length SD and the beacon interval BI determined by the backhaul controller 81. That is, the harmonized controller 91 can manage the WPAN standard. As described above, management of the WLAN standard is performed via the backhaul node 8.
  • the wireless sensor network 7 in the present embodiment includes the backhaul node 8 including the backhaul controller 81 and the gateway 9 including the harmonized controller 91. Further, the backhaul controller 81 can manage the WLAN standard. The harmonized controller 91 can manage the WPAN standard.
  • control is performed so that wireless communication based on the WLAN standard is not performed during the wireless communication period based on the WPAN standard, while control is performed so that wireless communication based on the WLAN standard is performed outside the wireless communication period based on the WPAN standard. I can do it.
  • management of WPAN and WLAN is not realized on the same node, but can be realized on two separate nodes, for example, a gateway and a backhaul node.
  • the wireless communication control device 10 includes a first communication method control unit 101 and a second communication method control unit 102.
  • the first communication system control unit 101 can perform wireless communication using the first wireless communication system.
  • the second communication system control unit 102 can perform wireless communication using the second wireless communication system.
  • the second communication system control unit 102 has a function of detecting the start of wireless communication using the first wireless communication system.
  • the second wireless communication method control unit 102 detects the start of wireless communication by the first wireless communication method (by the first communication method control unit 101)
  • the second wireless communication method control unit 102 performs the second wireless communication during the wireless communication period using the first wireless communication method. It operates so as not to perform wireless communication by the communication method.
  • the second communication system control unit 102 operates so as to perform wireless communication using the second wireless communication system outside the wireless communication period using the first wireless communication system.
  • the wireless communication control device 10 avoids performing wireless communication using the second wireless communication method during the wireless communication period using the first wireless communication method, while maintaining the wireless communication period using the first wireless communication method.
  • Wireless communication by the second wireless communication method can be performed outside.
  • first wireless communication system and second wireless communication system are used at the same time, it is possible to effectively prevent interference between the plurality of wireless communication systems.
  • a program according to another aspect of the present invention provides a wireless communication control device with a first communication method control unit that performs wireless communication using a first wireless communication method and wireless communication using a second wireless communication method.
  • a second communication method control unit that performs the second communication method control unit, wherein the second communication method control unit detects the start of wireless communication by the first wireless communication method and performs second during the wireless communication period by the first wireless communication method.
  • the program operates so as not to perform wireless communication according to the wireless communication method, and operates to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method.
  • the wireless communication method executed by the operation of the above-described wireless communication control apparatus 10 detects the start of wireless communication by the first wireless communication method, and the first is during the wireless communication period by the first wireless communication method.
  • the second wireless communication method is controlled not to perform wireless communication, and the second wireless communication method is controlled to perform wireless communication outside the wireless communication period of the first wireless communication method.
  • the present invention can be implemented without being limited to the above case.
  • the present invention may be, for example, a wireless communication control system including two nodes, a node having a function as the first communication method control unit 101 and a node having a function as the second communication method control unit 102. .
  • Even the invention of the program, the wireless communication method, or the wireless communication control system having the above-described configuration has the same object as that of the above-described invention in order to have the same operation as the wireless communication control device 10 described above. Can be achieved.
  • a program for realizing all or part of the functions of the first to third embodiments described above is recorded on a computer-readable recording medium, and the program recorded on the recording medium is stored in a computer system.
  • the processing of each unit may be performed by reading and executing.
  • An example of a “computer system” is a CPU (Central Processing Unit).
  • Computer-readable recording medium is, for example, a non-transitory storage device.
  • non-temporary storage devices include a magneto-optical disk, a ROM (Read Only Memory), a portable medium such as a nonvolatile semiconductor memory, and a hard disk built in a computer system.
  • the “computer-readable recording medium” may be a temporary storage device.
  • a temporary storage device for example, a communication line in the case of transmitting a program via a network such as the Internet or a communication line such as a telephone line, or a volatile memory inside a computer system can be cited.
  • the program may be for realizing a part of the above-described functions, and may be capable of realizing the above-described functions in combination with a program already recorded in the computer system. .
  • Appendix 1 A first communication method control unit for performing wireless communication by the first wireless communication method; A second communication method control unit for performing wireless communication by the second wireless communication method; With The second communication method control unit detects the start of wireless communication by the first wireless communication method, and performs wireless communication by the second wireless communication method during a wireless communication period by the first wireless communication method. Operating to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method, Wireless communication control device.
  • the wireless communication control device includes the first communication method control unit and the second communication method control unit.
  • the second communication system control unit detects the start of wireless communication using the first wireless communication system, and does not perform wireless communication using the second wireless communication system during the wireless communication period using the first wireless communication system. It is configured to operate.
  • the second communication system control unit is configured to operate so as to perform wireless communication using the second wireless communication system outside the wireless communication period using the first wireless communication system.
  • Communication using the first wireless method and communication using the second wireless method can be controlled so as to perform wireless communication using the second wireless communication method.
  • the wireless communication control device according to attachment 1, wherein The first communication method control unit is configured to set an active period that is a period of performing wireless communication and an inactive period that is a period of not performing wireless communication, and to operate according to the set period,
  • the second communication method control unit detects the start of the activity period of the first communication method control unit, and operates so as not to perform wireless communication by the second wireless communication method during the activity period; Operating to perform wireless communication according to the second wireless communication system during an inactive period; Wireless communication control device.
  • the wireless communication control device (Appendix 6) The wireless communication control device according to attachment 5, wherein The control means is configured to specify at least a beacon transmission period and a contention access period that does not limit a wireless communication terminal that performs wireless communication using the first wireless communication method, as the activity period, Wireless communication control device. (Appendix 7) The wireless communication control device according to appendix 5 or 6, The first wireless communication method is a WPAN (Wireless Personal Area Network) standard, and the second wireless communication method is a WLAN (Wireless Local Area Network) standard, The control means is configured to set the active period and the inactive period by setting a superframe length and a beacon interval for the first communication scheme control unit, Wireless communication control device.
  • WPAN Wireless Personal Area Network
  • WLAN Wireless Local Area Network
  • the wireless communication control device according to any one of appendices 3 to 7,
  • the wireless communication signal including information indicating the activity period of the first communication method control unit is a CTS (Clear To Send) signal.
  • Wireless communication control device (Appendix 9)
  • the wireless communication control unit according to any one of appendices 1 to 8,
  • the first wireless communication system is a WPAN (Wireless Personal Area Network) standard
  • the second wireless communication system is a WLAN (Wireless Local Area Network) standard.
  • Wireless communication control device is a Wi-Fi
  • the second communication method control unit detects the start of wireless communication by the first wireless communication method, and does not perform wireless communication by the second wireless communication method during the wireless communication period by the first wireless communication method.
  • the wireless communication control method according to appendix 10, wherein The first communication method control unit is set with an active period that is a period for performing wireless communication and an inactive period that is a period for not performing wireless communication, and operates according to the set period, The second communication method control unit detects the start of the activity period of the first communication method control unit, and operates so as not to perform wireless communication by the second wireless communication method during the activity period; Operating to perform wireless communication according to the second wireless communication system during an inactive period; Wireless communication control method.
  • (Appendix 12) Wireless communication for controlling wireless communication by a wireless communication method using a first communication method control unit that performs wireless communication by a first wireless communication method and a second communication method control unit that performs wireless communication by a second wireless communication method
  • the second communication method control unit detects the start of wireless communication by the first wireless communication method, and performs wireless communication by the second wireless communication method during the wireless communication period by the first wireless communication method.
  • a storage medium storing a program for executing a process of operating to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method.
  • a storage medium comprising: a process for operating to perform wireless communication by the second wireless communication method during the inactive period outside the active period.
  • a first communication system control device for performing wireless communication by the first wireless communication system; A second communication system control device for performing wireless communication by the second wireless communication system; With The second communication method control device detects the start of wireless communication by the first wireless communication method, and performs wireless communication by the second wireless communication method during a wireless communication period by the first wireless communication method. Operating to perform wireless communication according to the second wireless communication method outside the wireless communication period according to the first wireless communication method, Wireless communication control system.
  • the wireless communication control system according to appendix 14,
  • the first communication method control unit is configured to set an active period that is a period of performing wireless communication and an inactive period that is a period of not performing wireless communication, and to operate according to the set period,
  • the second communication method control unit detects the start of the activity period of the first communication method control unit, and operates so as not to perform wireless communication by the second wireless communication method during the activity period; Operative to perform wireless communication by the second wireless communication method during the inactive period outside the active period; Wireless communication control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の無線通信方式を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することが出来ない、という問題を解決するために、本発明の無線通信制御装置は、第1の無線通信方式による無線通信を行う第1通信方式制御部と、第2の無線通信方式による無線通信を行う第2通信方式制御部と、を備え、第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないように作動し、第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する。

Description

無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム
 本発明は、無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システムに関する。
 現在の日本では、920MHz帯の無線通信規格の1つとして、IEEE802.15.4g/eを利用することが出来る。IEEE802.15.4g/eはサブギガ帯に対する規格であり、主にWPAN(Wireless Personal Area Network)において使用されている。上記において、IEEEは、Institute of Electrical and Electronics Engineersの略である。また、同じ920MHz帯を使用する国際標準規格の1つとして、サブギガ版WiFi(Wireless Fidelity)としての活用を期待されるIEEE802.11ahの策定が進んでいる。そのため、近い将来、これら2つの規格を活用した無線センサーネットワークによる監視システムが実現すると考えられる。
 このように、IEEE802.15.4g/eに代表されるWPAN規格とIEEE802.11ahに代表されるWLAN(Wireless Local Area Network)規格とが共存した場合、異なる規格相互に干渉が生じることになる。その結果、配信遅延の増加や最大スループットの低下など通信品質が低下するという問題が生じることが懸念されている。
 上記問題は、WPAN規格とWLAN規格との共存以外でも起こりうる。つまり、ある環境下において複数の無線通信方式が共存すると、当該複数の無線通信方式相互に干渉が生じることがあるという問題が生じることになる。そこで、異なる通信方式間の干渉を低減する技術の実現が望まれている。
 このような干渉の低減を目的とする技術の一つとして、例えば、特許文献1が知られている。特許文献1には、共通の無線通信媒体を共有する異なる通信システム間の干渉の低減を目的とした技術が記載されている。具体的には、特許文献1は、干渉する2つの無線通信方式として、IEEE802.15.3およびIEEE802.11に相当する規格を想定している。そして、特許文献1では、IEEE802.15.3規格相当のCAP(Contention Access Period)とCFP(Contention Free Period)とを、IEEE802.11規格相当のCP(Contention Period)とCFPとに同期させている。このようにIEEE802.15.3規格相当のCAPとCFPとを、IEEE802.11規格相当のCPとCFPとに同期させることで、特許文献1によると、不要な通信の衝突を避けることが出来る。
 また、関連する技術として特許文献2が知られている。特許文献2には、複数の無線デバイス間において無線通信に使用している周波数帯を別のものに効果的に切り替えるための技術が記載されている。特許文献2に記載されている方法において、一の無線デバイスは、第1周波数帯を別の第2周波数帯に切り替えるための要求を通知する。他の無線デバイスは、第2周波数帯へ切り替えを許可するための応答を通知し、スケジュール情報を通知し、当該スケジュール情報に基づいて無線通信を開始する。特許文献2によると、このような方法により無線通信に使用している周波数帯を別のものに効果的に切り替えることが可能となる。
 また、関連する技術として特許文献3が知られている。特許文献3には、第1の周波数帯でセッションを動作させる一方で、第2の周波数帯でセッションを動作させる同意を設定して第2の周波数帯で物理リンクを構築し、第2の周波数帯にセッションを転送するという技術が記載されている。
特許第4490824号公報 特開2013-085099号公報 特開2012-010316号公報
 しかしながら、特許文献1の技術では、IEEE802.11規格相当の通信ネットワークのCP/CFPの長さが、IEEE802.15.3規格相当のCAP/CFPの長さに制限されることになる。このため、IEEE802.11規格相当のCP期間(IEEE802.15.3規格相当のCAP期間)では、干渉を抑制することが出来ないという問題があった。また、IEEE802.11規格相当のCFP期間が存在するため、当該CFP期間はスケジュールに従って通信することとなる。そのため、最大スループットの低下を招くことが懸念されるという問題があった。
 また、特許文献2、3に記載されている技術はいずれも、複数通信システム間の干渉による通信効率の低下を抑制するため複数のチャネルを使用する方式である。そのため、特許文献2、3に記載されている抑制方法はいずれも非効率的であるという問題があった。
 このように、複数の無線通信方式を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することが出来ない、という問題が生じていた。
 そこで、本発明の目的は、複数の無線通信方式を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することが出来ない、という問題を解決することが可能な無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システムを提供することにある。
 本発明の無線通信制御装置は、第1の無線通信方式による無線通信を行う第1通信方式制御部と、第2の無線通信方式による無線通信を行う第2通信方式制御部と、を備え、前記第2通信方式制御部は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する。
 本発明の無線通信制御方法は、第1の無線通信方式による無線通信を行う第1通信方式制御部と第2の無線通信方式による無線通信を行う第2通信方式制御部とを用いて複数の無線通信方式による無線通信を制御する方法であって、前記第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないよう制御し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うよう制御することを特徴とする。
 本発明の記憶媒体は、第1の無線通信方式による無線通信を行う第1通信方式制御部と第2の無線通信方式による無線通信を行う第2通信方式制御部とを用いて複数の無線通信方式による無線通信を制御する無線通信制御装置のコンピュータに、前記第2通信方式制御部に、前記第1の無線通信方式による無線通信の開始を検出させ、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動させ、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動させる処理を実行させるためのプログラムを記憶する。
 本発明の無線通信制御システムは、第1の無線通信方式による無線通信を行う第1通信方式制御装置と、第2の無線通信方式による無線通信を行う第2通信方式制御装置と、を備え、前記第2通信方式制御装置は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する。
 本発明によれば、複数の無線通信方式を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することができる。
本発明の第1の実施形態に係る無線センサーネットワークの構成例を示す図である。 図1で示すゲートウェイの構成の一例を示すブロック図である。 WPAN規格にて無線通信を行う際に用いるパラメータを説明するための図である。 WLAN規格にて無線通信を行う際に用いるパラメータを説明するための図である。 図1で示すWPAN端末の構成の一例を示すブロック図である。 図1で示すWLAN端末の構成の一例を示すブロック図である。 図1で示すバックホールノードの構成の一例を示すブロック図である。 本発明の第1の実施形態に係るハーモナイズドコントローラによる制御の流れの一例を説明するシーケンス図である。 本発明の第1の実施形態に係るWPAN端末の動作例を説明するシーケンス図である。 本発明の第1の実施形態に係るWLAN端末の動作例を説明するシーケンス図である。 本発明の第1の実施形態において行われるWPAN規格による無線通信とWLAN規格による無線通信とを説明するための図である。 スーパーフレーム長の他の構成例を説明するための図である。 本発明の第2の実施形態に係る無線センサーネットワークの構成例を示す図である。 図12で示すバックホールノードの構成の一例を示すブロック図である。 図12で示すゲートウェイの構成の一例を示すブロック図である。 本発明の第3の実施形態に係る無線通信制御装置の構成例示すブロック図である。
 次に本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る無線センサーネットワーク1(WSN、Wireless Sensor Networks)の構成例を示す図である。無線センサーネットワーク1は、920MHz帯を使用して無線通信を行う無線センサーネットワークである。具体的には、無線センサーネットワーク1において、920MHz帯を使用して、WPAN規格に基づく無線通信とWLAN規格に基づく無線通信とが行われている。
 無線センサーネットワーク1は、ゲートウェイ2(無線通信制御装置)と、WPAN端末3(WPAN端末3a、3b、3c、…)と、WLAN端末4(WLAN端末4a、4b、4c、…)と、バックホールノード5と、を有している。後述するように、本実施形態においては、WPAN端末3とWLAN端末4とが無線センサーネットワーク1のセンサノードに相当する。また、ゲートウェイ2が無線センサーネットワーク1のシンクノードに相当する。
 なお、図1では、WPAN端末3およびWLAN端末4の数がそれぞれ“3”である場合が例示されているが、これはあくまで一例であって、本実施形態は、WPAN端末3の数およびWLAN端末4の数に依存しない。例えば、WPAN端末3及びWLAN端末4の数は、2つでも構わないし4つ以上でも構わない。また、WPAN端末3の数とWLAN端末4の数とが異なっていても構わない。
 ゲートウェイ2とWPAN端末3との間、及びゲートウェイ2とWLAN端末4との間では、電波による無線通信が実行可能である。具体的には、ゲートウェイ2とWPAN端末3との間ではWPAN規格(例えば、IEEE802.15.4g/e)に基づく無線通信が行われ、ゲートウェイ2とWLAN端末4との間ではWLAN規格(例えば、IEEE802.11ah)に基づく無線通信が行われる。
 また、ゲートウェイ2とバックホールノード5ではWLAN規格(例えば、IEEE802.11ah)に基づく無線通信を行うことが出来るよう構成されている。そして、バックホールノード5は有線にてインターネット6と接続されている。なお、本実施形態においては、ゲートウェイ2とWPAN端末3の間、及び、ゲートウェイ2とWLAN端末4の間においてそれぞれ用いる通信チャネルの中心周波数は同一であるものとする(例えば、924MHz)。
 また、図1で示すように、本実施形態における無線センサーネットワーク1は、ゲートウェイ2を中心とするスター型のネットワークトポロジを構成している。そのため、WPAN端末3及びWLAN端末4がセンシングしたデータ(センサデータ)はゲートウェイ2へと集約され、例えば、バックホールノード5を介してインターネット6へと送信されることになる。なお、本実施形態では、無線センサーネットワーク1がスター型のネットワークトポロジを構成している場合を例示しているが、無線センサーネットワーク1は、例えば、メッシュ型のネットワークトポロジを構成していても構わない。
 ゲートウェイ2は、WPAN規格におけるコーディネータであると同時にWLAN規格におけるアクセスポイント(AP、Access Point)である。ここで、コーディネータとはWPAN規格においてネットワークの中心となって通信を制御するノードのことである。また、アクセスポイントとは、WLAN規格においてネットワークの中心となって通信を制御するノードのことである。つまり、ゲートウェイ2は、無線センサーネットワーク1において行われるWPAN規格を用いた無線通信とWLAN規格を用いた無線通信とを共に制御する機能を有している。
 また、ゲートウェイ2は、上述したように、無線センサーネットワーク1におけるシンクノードを兼ねている。つまり、ゲートウェイ2は、センサノードであるWPAN端末3及びWLAN端末4がセンシングしたデータを収集する機能を有している。本実施形態においては、ゲートウェイ2は、WPAN端末3及びWLAN端末4から収集したデータを、バックホールノード5を介してインターネット6へと送信する。なお、ゲートウェイ2は、収集したデータをデータベース化する機能や収集したデータを用いて所定の計算処理を行う機能などを有していても構わない。
 図2を参照すると、ゲートウェイ2は、ハーモナイズドコントローラ21(制御手段)と、WPAN通信制御部22(第1通信方式制御部)と、WLAN通信制御部23(第2通信方式制御部)と、を有している。
 ハーモナイズドコントローラ21は、WPAN通信制御部22に対する所定の制御を行う機能やWLAN通信制御部23に対する所定の制御を行う機能などを有している。具体的には、本実施形態におけるハーモナイズドコントローラ21は、WPAN規格にて無線通信を行う際に用いるパラメータであるスーパーフレーム長SDとビーコン間隔BIとを制御する。また、ハーモナイズドコントローラ21は、WLAN規格にて無線通信を行う際に用いる(後述するCTS(Clear to send)フレームに含まれる)パラメータであるNAV(Network Allocation Vector)長DURを制御する。さらに、ハーモナイズドコントローラ21は、WPAN通信制御部22がビーコンを送出するタイミングやWLAN通信制御部23がCTSフレームを送信するタイミングの管理を行う。また、ハーモナイズドコントローラ21は、WLAN規格による無線通信の開始を指示する。そして、ハーモナイズドコントローラ21は、上述したように、WPAN端末3やWLAN端末4がセンシングしたデータを収集してバックホールノード5へと転送する。
 このように、ハーモナイズドコントローラ21は様々な機能を有している。ハーモナイズドコントローラ21の役割を列挙すると、例えば、以下のようになる。
・WPANのSD、BIの管理
・WPANのビーコン送出タイミングの指示(WPANの通信開始の指示)
・WLANのNAV長の管理
・WLANのCTS送信タイミングの指示
・WLANの通信開始の指示
・収集したWPAN/WLAN通信データのバックホールノード5への転送
 図3Aは、WPAN規格にて無線通信を行う際に用いるパラメータを説明するための図である。図3Bは、WLAN規格にて無線通信を行う際に用いるパラメータを説明するための図である。
 図3Aおよび図3Bを用いて、ハーモナイズドコントローラ21が制御するスーパーフレーム長SD、ビーコン間隔BI、NAV長DUR、CTSフレーム(活動期間を表す情報を含む無線通信信号)について詳細に説明する。
 図3Aを参照すると、本実施形態におけるスーパーフレームは、同期信号であるビーコンとCAP期間(Contention Access Period)とCFP期間(Contention Free Period)との3つのパートで構成されている。ここで、CAP期間とは、CSMA/CA(Carrier Sense Multipule Access/Collision Avoidance)で通信権利を競い合う期間のことであり、チャネルを使用する権利を取得して通信する期間のことである。CAP期間においては、全てのWPAN端末3がチャネルにアクセスすることが出来ることになる。また、CFP期間とは、コーディネータであるゲートウェイ2が通信タイミングをスケジュール管理して通信する期間のことである。CFP期間においては、ゲートウェイ2が許可したWPAN端末3のみが通信を行うよう制御されることになる。このように、本実施形態におけるスーパーフレームは、ビーコンとCAP期間とCFP期間とから構成される。ハーモナイズドコントローラ21は、このようなスーパーフレームの長さであるスーパーフレーム長SDを、例えばCAP期間やCFP期間の長さを制御することで、制御する。
 また、図3Aで示すように、ビーコン間隔BIとは、ビーコンが送出されてから次のビーコンを送出するまでの間隔のことである。スーパーフレーム長SDは、ビーコン間隔BIの一部を占めることになる。そのため、ハーモナイズドコントローラ21は、ビーコン間隔BIをスーパーフレーム長SDよりも長くなるように制御する。
 このように、ハーモナイズドコントローラ21は、スーパーフレーム長SDと、ビーコン間隔BIと、を制御する。上述したように、ハーモナイズドコントローラ21が制御するスーパーフレーム長の間では、ビーコンの送出やCAP期間、CFP期間における無線通信が行われる。一方、スーパーフレーム長SDの経過後次のビーコン送出まで(ビーコン間隔BIからスーパーフレーム長SDを引いた期間)においては、WPAN規格を用いた無線通信は行われない。つまり、ハーモナイズドコントローラ21は、スーパーフレーム長SDとビーコン間隔BIとを制御することで、WPAN規格を用いて通信を行う期間であるアクティブ区間(活動期間)とWPAN規格を用いて通信を行わない期間であるインアクティブ区間(非活動期間)とを制御することになる。
 本実施形態においては、ハーモナイズドコントローラ21は、WPAN通信制御部22に対して、上記制御したスーパーフレーム長SDとビーコン期間BIとを通知する。つまり、ハーモナイズドコントローラ21は、WPAN通信制御部22に対してアクティブ区間とインアクティブ区間とを設定する。このため、WPAN通信制御部22は、後述するように、ハーモナイズドコントローラ21からの通知に従って、アクティブ区間に無線通信を行う一方で、インアクティブ区間では無線通信を行わないことになる。また、WPAN通信制御部22は、ハーモナイズドコントローラ21から受信したスーパーフレーム長SDとビーコン間隔BIとを示す情報を含めてビーコンを送出する。このため、WPAN端末3は、WPAN通信制御部22が送出したビーコンを受信することによりスーパーフレーム長SDとビーコン間隔BIとを知ることが出来る。その結果、WPAN端末3はアクティブ区間に無線通信を行う一方で、インアクティブ区間では無線通信を行わないことになる。このように、ハーモナイズドコントローラ21は、WPAN通信制御部22に対してスーパーフレーム長SDとビーコン期間BIとを通知することで、WPAN規格を用いた無線通信の制御を行う。
 CTSフレームとは、送信を許可するための信号である。CTSフレームは、一般に、RTS(Request To Send)フレームに対する返答として送信される信号である。CTSフレームには、送信を行う際のチャネルを占有する期間を示す情報が含まれている。このチャネルを占有する期間がNAV長DURとなる。
 図3Bを参照すると、CTSフレームを送信することで、CTSフレームに含まれる情報が示すNAV長DURの分だけ、WLAN規格を用いた無線通信が行われないことになる。具体的には、後述するように、WLAN通信制御部23はハーモナイズドコントローラ21からの指示に従ってCTSフレームを送信すると、当該CTSフレームに含まれる情報が示すNAV長の分だけ非通信モードに遷移する。また、CTSフレームを受信したWLAN端末4は、当該受信したCTSフレームに含まれる情報が示すNAV長DURの分だけ通信を行わない非通信モードに遷移する。その結果、NAV長DURの分だけWLAN規格を用いた無線通信が制御されることになる。このように、ハーモナイズドコントローラ21は、WLAN通信制御部23に対してCTSフレームの送信の指示を行うことで、WLAN規格による無線通信を行わない期間を制御する。
 ここで、本実施形態におけるチャネルを占有する期間(無線通信を行う期間)とは、WPAN規格における無線通信でチャネルが使用される期間のことをいう。従って、上記チャネルを占有する期間(NAV長DUR)は、スーパーフレーム長SDやWPAN規格のアクティブ区間と同じ長さになることになる。
 また、本実施形態におけるハーモナイズドコントローラ21は、WPAN通信がアクティブ区間に遷移する直前に、WLAN通信制御部23に対してCTSフレームを送信するように指示する。具体的には、ハーモナイズドコントローラ21は、WPAN通信制御部22に対してWPAN規格を用いた無線通信を開始するよう指示した後ビーコン間隔BI分経過した段階で、WLAN通信制御部23に対してCTSフレームを送信するように指示する。または、ハーモナイズドコントローラ21は、CTSフレームを送信するよう指示した後ビーコン間隔BIが経過した段階で、WLAN通信制御部23に対してCTSフレームを送信するよう指示する。上述したように、WPAN規格では、ビーコン間隔BIが経過する毎にビーコンが送出される(アクティブ区間に遷移する)ことになる。そのため、ビーコン間隔BIに応じてCTSフレーム送信の指示を行うことで、WPAN通信がアクティブ区間に遷移するタイミングと同期して(直前に)CTSフレーム送信の指示を行うことが出来るようになる。また、上記のように、NAV長DURはスーパーフレーム長SDやWPAN規格のアクティブ区間と同じ長さに制御されている。そのため、WPAN通信がインアクティブ区間へと遷移するタイミングと同じタイミングでNAV長DURは経過することになる。つまり、WPAN通信がインアクティブ区間へと遷移するタイミングで、WLAN通信が通信モードへと遷移することが出来ることになる。
 このようにCTSフレームの送信タイミングとNAV長DURの制御とを行うことで、ハーモナイズドコントローラ21は、WPAN規格を用いた無線通信期間(アクティブ区間)中はWLAN規格を用いた無線通信を行わない、という制御を行うことが出来る。また、ハーモナイズドコントローラ21は、上記のようにWLAN規格を用いた無線通信を制限する一方で、WPAN規格を用いた無線通信を行わない期間(インアクティブ区間)にWLAN規格を用いた無線通信を行う、という制御を行うことが出来る。
 なお、上記NAV長DURが含まれている無線フレームであれば、ハーモナイズドコントローラ21が送信を指示する無線フレームは必ずしもCTSフレームでなくても構わない。
 WPAN通信制御部22は、WPAN規格(第1の無線通信方式)にてWPAN端末3と無線通信を行う機能を有している。図2で示すように、WPAN通信制御部22はアンテナ部を備えており、当該アンテナ部を介してWPAN端末3と無線通信を行うことになる。また、本実施形態におけるWPAN通信制御部22は、920MHz帯を使用して無線通信を行っている。
 上述したように、WPAN通信制御部22には、ハーモナイズドコントローラ21からスーパーフレーム長SDとビーコン間隔BIとが通知される。つまり、WPAN通信制御部22は、ハーモナイズドコントローラ21によりアクティブ区間とインアクティブ区間とを設定される。このため、WPAN通信制御部22は、アクティブ区間に無線通信を行う一方で、インアクティブ区間には無線通信を行わないように作動することになる。
 具体的には、WPAN通信制御部22は、ハーモナイズドコントローラ21からの指示に応じて、又は、ビーコン間隔BIが経過する毎にビーコンを送出する。その後、WPAN通信制御部22は、アクティブ期間中であるCAP期間及びCFP期間においてWPAN端末3と無線通信を行う。そして、アクティブ区間の経過後次のビーコン送出のタイミングまでインアクティブ区間に遷移する。また、本実施形態におけるWPAN通信制御部22は、アクティブ区間においては電力を消費して無線通信を行う通信モードになる一方で、インアクティブ区間においては無線通信を行わずに消費電力を低減する省電力モードに遷移する。
 WLAN通信制御部23は、WLAN規格(第2の無線通信方式)にてWLAN端末4やバックホールノード5と無線通信を行う機能を有している。図2で示すように、WLAN通信制御部23はアンテナ部を備えており、当該アンテナ部を介してWLAN端末4やバックホールノード5と無線通信を行うことになる。また、本実施形態におけるWLAN通信制御部23は、920MHz帯を使用して無線通信を行っている。
 上述したように、WLAN通信制御部23には、ハーモナイズドコントローラ21から通信開始の指示やCTSフレームを送信する旨の指示が行われる。WLAN通信制御部23は、ハーモナイズドコントローラ21からの指示に従って無線通信を開始する(通信モードに遷移する)。その後、WLAN通信制御部23は、ハーモナイズドコントローラ21からCTSフレームを送信するよう指示される毎に、CTSフレームを送信してNAV長DUR分非通信モードに遷移する。
 つまり、WLAN通信制御部23は、ハーモナイズドコントローラ21からCTSフレームを送信する旨の指示を受けることで、WPAN規格による無線通信の開始を検出する。また、WLAN通信制御部23は、ハーモナイズドコントローラ21の制御の下で(CTSフレームを送信する旨の指示を受けることで)、WPAN規格による無線通信期間中はWLAN規格による無線通信を行わないように作動する。一方で、WLAN通信制御部23は、ハーモナイズドコントローラ21の制御の下で(CTSフレームに含まれるNAV長DURに従って)、WPAN規格による無線通信期間外にWLAN規格による無線通信を行うように作動する。なお、WLANの通信モード中は、WLAN規格に規定されている任意のアクセス方式(PCF(Point Coordination Function)、DCF(Distributed Coordination Function)、HCF(Hybrid Coordination Function)など)を使用することが出来る。また、WLANの通信モード中は、CP、CFPのどちらを使用して無線通信を行っても構わない。
 WPAN端末3は、WPAN規格を用いてゲートウェイ2のWPAN通信制御部22と無線通信を行う機能を有している。また、WPAN端末3は、センサノードとしての一般的な機能を有している。
 図4を参照すると、WPAN端末3は、例えば、無線通信部31と、制御部32と、センサー33と、を有している。なお、WPAN端末3の構成は上記場合に限定されない。
WPAN端末3は、WPAN規格を用いて通信を行う機能とセンサノードとしての機能とを備えていれば、その具体的な構成は特に限定しなくても構わない。
 無線通信部31は、WPAN規格を使用して無線通信を行う機能を有している。無線通信部31はアンテナ部を備えており、当該アンテナ部を介してWPAN通信制御部22と無線通信を行うことになる。なお、本実施形態における無線通信部31は、920MHz帯を使用してWPAN通信制御部22と無線通信を行っている。
 制御部32は、WPAN端末3全体の制御を行う機能を有している。制御部32は、例えば、センサー33からのセンサデータの取得や取得したセンサデータの送信、経路構築などの際の制御を行う。また、制御部32は、WPAN通信制御部22から送出されるビーコンに含まれるスーパーフレーム長SDやビーコン間隔BIの情報に応じて、アクティブ区間への遷移とインアクティブ区間への遷移との制御を行う。制御部32は、例えば、インアクティブ区間の間は無線通信部31と制御部32とセンサー33との機能を停止させ、WPAN端末3を省電力モードに遷移するよう制御する。
 センサー33は、温度や電力値などの所定のデータをセンシングする機能を有している。また、センサー33は、センシングしたデータ(センサデータ)を制御部32へと送信する。なお、WPAN端末3は、センサー33の代わりにモーターやスイッチといったアクチュエーターを実装していても構わない。
 このような構成により、WPAN端末3の無線通信部31は、WPAN通信制御部22から送信されるビーコンを受信する。続いて、制御部32が、ビーコンに含まれるスーパーフレーム長SDやビーコン間隔BIの情報に応じて、アクティブ区間(スーパーフレーム長SDの間)とインアクティブ区間(スーパーフレーム長SDの経過後次のビーコンの送出までの間)との制御を行う。つまり、制御部32は、アクティブ区間においては無線通信を行う一方で、インアクティブ区間においては無線通信を行わないようにWPAN端末3を制御する。この結果、WPAN端末3は、WPAN通信制御部22がアクティブ区間とインアクティブ区間とに遷移するタイミングと同期してアクティブ区間とインアクティブ区間とに遷移することになる。
 WLAN端末4は、WLAN規格を用いてゲートウェイ2のWLAN通信制御部23と無線通信を行う機能を有している。また、WLAN端末4は、センサノードとしての一般的な機能を有している。
 図5を参照すると、WLAN端末4は、例えば、無線通信部41と、制御部42と、センサー43と、を有している。なお、WLAN端末4の構成は上記場合に限定されない。WLAN端末4は、WLAN規格を用いて通信を行う機能とセンサノードとしての機能とを備えていれば、その具体的な構成は特に限定しなくても構わない。
 無線通信部41は、WLAN規格を使用して無線通信を行う機能を有している。無線通信部41はアンテナ部を備えており、当該アンテナ部を介してWLAN通信制御部23と無線通信を行うことになる。なお、本実施形態における無線通信部41は、920MHz帯を使用してWLAN通信制御部23と無線通信を行うことになる。
 制御部42は、WLAN端末4全体の制御を行う機能を有している。制御部42は、例えば、センサー43からのセンサデータの取得や取得したセンサデータの送信、経路構築などの際の制御を行う。また、制御部42は、WLAN通信制御部23から送信されるCTSフレームに含まれるNAV長DURの分だけ、WLAN端末4を非通信モードに遷移させる制御を行う。また、制御部42は、NAV長DURが経過すると、WLAN端末4を通信モードに遷移させる制御を行う。
 センサー43の構成は、上述したWPAN端末3が備えるセンサー33の構成と同様である。そのため、説明は省略する。
 このような構成により、WLAN端末4の無線通信部41は、WLAN通信制御部23から送信されるCTSフレームを受信する。続いて、制御部42が、CTSフレームに含まれるNAV長DURの分だけ、WLAN端末4を非通信モードに遷移させる制御を行う。この結果、WLAN端末4は、WLAN通信制御部23が非通信モードに遷移するタイミングと同期して非通信モードに遷移することになる。また、制御部42は、NAV長DURが経過すると、WLAN端末を通信モードへと遷移させる。この結果、WLAN端末4は、WLAN通信制御部23が通信モードに遷移するタイミングと同期して通信モードに遷移することになる。つまり、WLAN端末4は、WPAN規格による無線通信期間(アクティブ区間)中は無線通信を行わない一方で、WPAN規格による無線通信期間外(インアクティブ区間中)に無線通信を行うよう制御されることになる。
 バックホールノード5は、ゲートウェイ2が収集したセンサデータをインターネット6に中継するノードである。本実施形態におけるバックホールノード5は、上述したように、WLAN規格を用いてゲートウェイ2のWLAN通信制御部23と無線通信を行う。なお、バックホールノード5とゲートウェイ2とは、有線にて接続されていても構わない。
 図6を参照すると、バックホールノード5は、バックホールコントローラ51と、WLAN通信制御部52と、インターネット通信制御部53と、を有している。
 バックホールコントローラ51は、WLAN通信制御部52と、インターネット通信制御部53と、を制御する機能を有している。バックホールコントローラ51は、WLAN通信制御部52がゲートウェイ2と通信して取得したセンサデータを、例えば、インターネット通信制御部53及びインターネット6を介してユーザへと転送する。
 WLAN通信制御部52は、WLAN規格を使用してゲートウェイ2のWLAN通信制御部23と無線通信を行う機能を有している。図6で示すように、WLAN通信制御部52はアンテナ部を備えており、当該アンテナ部を介してゲートウェイ2のWLAN通信制御部23と無線通信を行うことになる。また、本実施形態におけるWLAN通信制御部52は、920MHz帯を使用して無線通信を行っている。
 インターネット通信制御部53は、有線でインターネット6と接続されている。インターネット通信制御部53は、インターネット6との通信を行う際に使用される。例えば、上述したように、インターネット通信制御部53は、センシングしたセンサデータをインターネットを介してユーザへと転送する際に使用される。
 次に、無線センサーネットワーク1の動作について説明する。
 まずは、図7を用いて、ハーモナイズドコントローラ21による制御の流れ(ハーモナイズドコントローラ21とWPAN通信制御部22とWLAN通信制御部23との動作)について説明する。
 ハーモナイズドコントローラ21は、まず、所定のパラメータを決定する。具体的には、ハーモナイズドコントローラ21は、スーパーフレーム長SDとビーコン間隔BIとNAV長DURとを決定する(ステップS001)。例えば、ハーモナイズドコントローラ21は、上記パラメータとして、スーパーフレーム長SD=t1と、ビーコン間隔BI=t2と、NAV長DUR=t1と、を決定する。
 ハーモナイズドコントローラ21は、スーパーフレーム長SDとビーコン間隔BIとをWPAN通信制御部22に通知する(ステップS002)。つまり、ハーモナイズドコントローラ21は、アクティブ区間とインアクティブ区間とをWPAN通信制御部22に設定する。
 ハーモナイズドコントローラ21は、WPAN通信制御部22に対して、WPAN通信を開始するよう指示する(ステップS003)。
 ハーモナイズドコントローラ21は、WPAN通信を開始するよう指示した後、スーパーフレーム長SD(t1)分待機する(ステップS004)。
 ハーモナイズドコントローラ21は、スーパーフレーム長SD分待機した後に、WLAN通信制御部23に対してWLAN通信を開始するように指示する(ステップS005)。
 その後、ハーモナイズドコントローラ21は、ビーコン間隔BIからスーパーフレーム長SDを引いた時間の分(t2-t1分)だけ待機する(ステップS006)。つまり、ハーモナイズドコントローラ21は、WPAN通信を開始するよう指示したタイミングからビーコン間隔BI分経過するまで待機する。
 ハーモナイズドコントローラ21は、WLAN通信制御部23に対してCTSフレームを送信するように指示する(ステップS007)。以降、ハーモナイズドコントローラ21は、ビーコン間隔BI(t2)分待機(ステップS008)した後に、WLAN通信制御部23に対してCTSフレームの送信指示(ステップS009)を行うという動作を繰り返す(ステップS010、…)。
 WPAN通信制御部22は、まず、ハーモナイズドコントローラ21からスーパーフレーム長SDとビーコン間隔BIとを通知される(ステップS002)。つまり、WPAN通信制御部22は、ハーモナイズドコントローラ21から、アクティブ区間とインアクティブ区間とを設定される。
 次に、WPAN通信制御部22は、ハーモナイズドコントローラ21からWPAN通信の開始の指示(ステップS003)を受ける。すると、WPAN通信制御部22は、通信モードに遷移する(ステップS021)。通信モードに遷移したWPAN通信制御部22は、ビーコンを送出してCAP期間とCFP期間に応じた無線通信を行う。
 ここで、上記のように、WPAN通信制御部22は、アクティブ区間とインアクティブ区間とが設定されている。そのため、WPAN通信制御部22は、アクティブ区間の間無線通信を行った後にインアクティブ区間へと遷移する。つまり、WPAN通信制御部22は、スーパーフレーム長SD(t1)の間無線通信を行った後、インアクティブ区間(省電力モード)に遷移する(ステップS022)。そして、WPAN通信制御部22は、ビーコン間隔BIからスーパーフレーム長SDを引いた時間の分(t2-t1分)だけ待機する。つまり、WPAN通信制御部22は、前回ビーコンを送出してからビーコン間隔BI時間分経過するまで待機する。
 その後、WPAN通信制御部22は、通信モードへと遷移してビーコンを送出する(ステップS023)。以降、WPAN通信制御部22は、スーパーフレーム長SD(t1)の間無線通信を行った(アクティブ区間)後、省電力モード(インアクティブ区間)へ遷移する(ステップS024)。そして、ビーコン間隔BI―スーパーフレーム長SD(t2-t1)分だけ待機して再度通信モードへ遷移してビーコンを送出する(ステップS025)、という動作を繰り返す(ステップS026、…)。
 WLAN通信制御部23は、まず、ハーモナイズドコントローラ21からの通信の開始の指示(ステップS005)を受ける。すると、WLAN通信制御部23は、通信モードへと遷移する(ステップS031)。WLAN通信制御部23は、通信モードにおいては、CP/CFPのどちらを使用しても構わない。
 WLAN通信制御部23は、ハーモナイズドコントローラ21から、CTSフレームを送信するよう指示を受信する(ステップS007)。すると、WLAN通信制御部23は、当該指示を受けてCTSフレームを送信する。また、WLAN通信制御部23は、CTSフレームを送信した後、NAV長DURの(t1)分だけ非通信モードへと遷移する(ステップS032)。
 そして、WLAN通信制御部23は、NAV長DUR(t1)の経過した後、通信モードへと遷移する(ステップS033)。以降、WLAN通信制御部23は、ハーモナイズドコントローラ21からのCTSフレームの送信の指示を受けてCTSフレーム送信後非通信モードに遷移する動作(ステップS034)と、NAV長DUR経過後通信モードへと遷移する動作(ステップS035)と、を繰り返す。
 次に、図8を用いて、WPAN端末3の動作について説明する。
 WPAN端末3は、WPAN通信制御部22が送信したビーコン(ステップS021)を受信する(ステップS041)。ここで、ビーコンには、スーパーフレーム長SDとビーコン間隔BIとを示す情報が含まれている。そのため、WPAN端末3は、ビーコンを受信した後、スーパーフレーム長SDの間分無線通信を行う。その後、WPAN端末3は、インアクティブ区間(省電力モード)へと遷移する(ステップS042)。
 続いて、WPAN端末3は、ビーコン間隔BIからスーパーフレーム長SDを引いた分が経過した後(前回ビーコンを受信してからビーコン間隔BI分経過した後)に、通信モードへと遷移する。そして、WPAN端末3は、WPAN通信制御部22が送出するビーコン(ステップS023)を受信する(ステップS043)。以降、WPAN端末3は、ビーコンに含まれるスーパーフレーム長SD分無線通信を行った後、省電力モードへと遷移する(ステップS044)。その後、ビーコン間隔BIからスーパーフレーム長SDを引いた分が経過した後に、WPAN端末3は、通信モードへと遷移してビーコンを受信する(ステップS045)、という動作を繰り返す(ステップS046、…)。
 次に、図9を用いて、WLAN端末4の動作について説明する。
 WLAN端末4は、WLAN通信制御部23が送信するCTSフレーム(ステップS032)を受信する。すると、WLAN端末4はCTSフレームに含まれるNAV長DURの分だけ非通信モードへと遷移する(ステップS051)。
 WLAN端末4は、NAV長DURが経過した後通信モードへと遷移する(ステップS052)。以降、WLAN端末4は、WLAN通信制御部23が送信するCTSフレームを受信すると、非通信モードへと遷移する(ステップS053)。そして、WLAN端末4は、NAV長DUR経過した後に通信モードへと遷移する(ステップS054)、という動作を繰り返す。
 このように、本実施形態におけるゲートウェイ2は、ハーモナイズドコントローラ21と、WPAN通信制御部22と、WLAN通信制御部23と、を有している。このような構成により、ハーモナイズドコントローラ21は、WPAN通信制御部22に対してアクティブ区間とインアクティブ区間とを設定することが出来る(スーパーフレーム長SDとビーコン間隔BIとを設定することが出来る)。また、ハーモナイズドコントローラ21は、WPAN通信制御部22がアクティブ区間へと遷移する直前に、WLAN通信制御部23に対して、アクティブ区間と等しい長さのNAV長DURを含むCTSフレームを送信する旨の指示を行うことが出来る。その結果、ハーモナイズドコントローラ21は、WPAN規格による無線通信期間中はWLAN規格による無線通信を行わないように制御する一方で、WPAN規格による無線通信の期間外にWLAN規格による無線通信を行うように制御することが出来る。
 これにより、WPAN規格による通信とWLAN規格による通信との間に干渉が生じることを防ぐ事が出来る。すなわち、複数の無線通信方式(WPAN規格による無線通信方式および無線LAN規格による無線通信方式)を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することができる。
 具体的には、上記構成を備えることにより、WPAN規格による通信期間中は、WLAN規格からの干渉がないことになる。そのため、WLAN規格からの干渉による最大スループットの低下を抑止することが出来る。また、省電力モードである期間を長くとることにより無線センサーネットワーク1のライフタイムを長くすることに寄与することになる。さらに、WLAN規格による通信期間中は、WPAN規格からの干渉がないことになる。そのため、WPAN規格からの干渉による最大スループットの低下を抑止することが出来る。さらに、WLAN規格による通信期間中はCP/CFPのどちらで通信を行っても構わないため、CP/CFPの制限を考慮せず無線通信を利用することが出来る。
 上記説明した、ハーモナイズドコントローラ21の制御の下で行われるWPAN規格による無線通信とWPAN規格による無線通信との一例として、図10を示す。
 図10を参照すると、WPAN規格による無線通信は、ビーコンとCAP期間とCFP期間とからなるアクティブ区間(通信モード、スーパーフレーム長SD)と、無線通信を行わない期間であるインアクティブ区間(省電力モード)と、を繰り返す。また、WLAN規格による無線通信は、WPAN規格による無線通信がインアクティブ区間にある間に行われる。そして、WPAN規格による無線通信がアクティブ区間へと遷移する直前にCTSフレームが送信されることで、WLAN規格による無線通信はWPAN規格による無線通信がアクティブ区間にある間非通信モードへと遷移する。このように、WPAN規格による無線通信を行う期間とWLAN規格による無線通信を行う期間とを分けることで、WPAN規格による無線通信とWLAN規格による無線通信との間に干渉が生じることを防ぐことが出来る。
 なお、本実施形態においては、ビーコンにスーパーフレーム長SDとビーコン間隔BIとに関する情報が含まれている場合について説明した。しかしながら、本発明は上記場合に限定されず実施可能である。例えば、ビーコンにスーパーフレーム長SDに関する情報のみを含ませることも考えられる。このように構成した場合、ハーモナイズドコントローラ21は、例えば、WLAN通信制御部23に対するCTSフレームの送信の指示を出す際に、WPAN通信制御部22に対して、ウェイクアップ信号を送信するように指示することになる。この場合、WPAN端末3は、ウェイクアップ信号を受信することができる。
 また、WPAN規格のスーパーフレーム長SD中のCFP期間は、緊急データ伝送(火災警報など)のような、不規則に生じる高優先度の通信のために使用する事の出来る期間である。そのため、緊急データ伝送がない場合は、CFP期間をWPAN通信に使用せず、WLAN通信に使用することも出来る。
 図11を参照すると、ハーモナイズドコントローラ21は、ビーコンとCAP期間とからなるスーパーフレームを設定している。このように、ハーモナイズドコントローラ21が設定するスーパーフレームの構成は、必ずしもビーコンとCAP期間とCFP期間とから構成されていなくても構わない。また、図11では、CFP期間分、WPAN規格のインアクティブ区間が長くなっている一方で、WLAN規格の通信モード期間が長くなっている。このように、ハーモナイズドコントローラ21は、WPAN規格のアクティブ区間にCFP期間を設定しないことで、WLAN規格が通信モードである時間を長くするように制御しても構わない。
 また、本実施形態では、本発明の実施の一例として、本発明を無線センサーネットワークに用いる場合について説明した。しかしながら、本発明は、無線センサーネットワークに用いる場合に限定されず実施可能である。本発明は、例えば、位置情報に基づいた広域の防犯システムに適用することが考えられる。また、本発明は、例えば、農業において農作物を任意の環境(温度・湿度・日照量など)に制御する農業ITシステムに適用することも考えられる。本発明は、例えば、無線LAN通信と無線PAN通信とが共存する環境に適用するなど、無線センサーネットワーク以外の一般的な無線通信システムに適用しても構わない。また、本発明の実施は、920MHz帯以外を用いていても構わない。
 また、本実施形態では、ゲートウェイ2がWPAN規格に対する制御とWLAN規格に対する制御との両方の制御を行う機能を備えるとした。しかしながら、本発明の実施は、上記場合に限定されない。例えば、WPAN規格に対する制御を行うノードとWLAN規格に対する制御を行うノードとの2つのノードを有することによっても、本発明は実施することが出来る。
[第2の実施形態]
 次に本発明の第2の実施形態について図面を参照して説明する。第2の実施形態では、バックホールノードがWLAN AP(Access Point)となり、ゲートウェイがSTA(Station)となる場合について説明する。なお、基本的な構成は第1の実施形態と同様になる。そのため、以下においては、本実施形態に特徴的な部分について説明する。
 図12を参照すると、本実施形態における無線センサーネットワーク7は、ゲートウェイ9と、WPAN端末3と、WLAN端末4と、バックホールノード8と、を有している。なお、本実施形態では、無線センサーネットワーク7が有するゲートウェイ9の数は1つに限られない。無線センサーネットワーク7は、1つのゲートウェイ9を有していても構わないし、多数のゲートウェイ9を有していても構わない。また、本実施形態においては、第1の実施形態と同じ構成については同じ符号を付すこととする。以下、本実施形態において特徴的な部分について説明する。
 本実施形態におけるバックホールノード8は、WLAN規格におけるアクセスポイントである。つまり、バックホールノード8は、WLAN規格を用いた無線通信を制御する機能を有している。
 図13を参照すると、バックホールノード8は、バックホールコントローラ81と、WLAN通信制御部82と、インターネット通信制御部53と、を有している。なお、インターネット通信制御部53の構成は既に説明したものと同様である。そのため、以下においては、バックホールコントローラ81とWLAN通信制御部82の特徴的な部分について説明する。
 本実施形態におけるバックホールコントローラ81は、ゲートウェイ9と通信することで、後述するゲートウェイ9のハーモナイズドコントローラ91とバックホールコントローラ81とのタイミングを同期する機能を有している。また、バックホールコントローラ81は、スーパーフレーム長SD,ビーコン間隔BI、NAV長DURの決定・管理を行う機能を有している。さらに、バックホールコントローラ81は、バックホールノード8のWLAN通信制御部82とゲートウェイ9のWPAN通信制御部83に対して適切なタイミングで指示を与えるよう構成されている。
 本実施形態におけるバックホールコントローラ81の役割を列挙すると、例えば、以下のようになる。
・WPANのSD、BIの管理、およびハーモナイズドコントローラ91への通知
・WPANのビーコン送出タイミングとゲートウェイ9のハーモナイズドコントローラ91との同期
・WLAMのNAV長DURの管理
・WLANのCTS送出のタイミングの指示
・WLANの通信開始の管理
 このように、本実施形態におけるバックホールコントローラ81は、WLAN通信制御部82に対してCTSフレームの送信を指示したり、WLANの通信開始を指示したりする。つまり、バックホールコントローラ81は、WLAN規格の管理を行うことが出来る。なお、WPAN規格の管理はゲートウェイ9を介して行われることになる。
 WLAN通信制御部82は、WLAN規格にてWLAN端末4やゲートウェイ9と無線通信を行う機能を有している。図13で示すように、WLAN通信制御部82は、アンテナ部を備えており、当該アンテナ部を介してWLAN端末4やゲートウェイ9と無線通信を行う。また、本実施形態におけるWLAN通信制御部82は、920MHz帯を使用して無線通信を行っている。WLAN通信制御部82は、バックホールコントローラ81からの指示に従って、CTSフレームを送信したり、WLAN規格による無線通信を開始したりする。
 本実施形態におけるゲートウェイ9は、WPAN規格におけるコーディネータである。つまり、ゲートウェイ9は、WPAN規格を用いた無線通信を制御する機能を有している。
 図14を参照すると、本実施形態におけるゲートウェイ9は、ハーモナイズドコントローラ91と、WPAN通信制御部22と、WLAN通信制御部23と、を有している。なお、WPAN通信制御部22、WLAN通信制御部23、の構成は既に説明したものと同様である。そのため、以下においては、ハーモナイズドコントローラ91の特徴的な部分について説明する。
 本実施形態におけるハーモナイズドコントローラ91は、バックホールノード8(バックホールコントローラ81)からのタイミング指示に同期してWPAN通信制御部22を制御する機能を有している。
 本実施形態におけるハーモナイズドコントローラ91の役割を列挙すると、例えば、以下のようになる。
・WPANのSD、BIの管理
・WPANのビーコン送出タイミングの指示
・収集したWPAN/WLAN通信データのバックホールノード8への転送
 このように、本実施形態におけるハーモナイズドコントローラ91は、WPAN通信制御部22に対してビーコン送出タイミングを指示する。また、ハーモナイズドコントローラ91は、バックホールコントローラ81が決定したスーパーフレーム長SDとビーコン間隔BIとを取得して管理する。つまり、ハーモナイズドコントローラ91は、WPAN規格の管理を行うことが出来る。なお、上述したように、WLAN規格の管理はバックホールノード8を介して行われる。
 以上のように、本実施形態における無線センサーネットワーク7は、バックホールコントローラ81を備えるバックホールノード8とハーモナイズドコントローラ91を備えるゲートウェイ9を備えている。また、バックホールコントローラ81はWLAN規格の管理を行うことが出来る。そして、ハーモナイズドコントローラ91はWPAN規格の管理を行うことが出来る。
 このような構成により、WPAN規格による無線通信期間中はWLAN規格による無線通信を行わないように制御する一方で、WPAN規格による無線通信の期間外にWLAN規格による無線通信を行うように制御することが出来る。
 これにより、WPAN規格による通信とWLAN規格による通信との間に干渉が生じることを防ぐ事が出来る。すなわち、複数の無線通信方式(WPAN規格による無線通信方式および無線LAN規格による無線通信方式)を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することができる。
 さらに、本実施形態によれば、WPANとWLANの管理を同一ノードで実現せず、例えば、ゲートウェイとバックホールノードとの2つの別のノード上で実現することも可能である。
[第3の実施形態]
 次に本発明の第3の実施形態について図面を参照して説明する。
 図15を参照すると、本実施形態における無線通信制御装置10は、第1通信方式制御部101と、第2通信方式制御部102と、を有している。
 第1通信方式制御部101は、第1の無線通信方式を用いて無線通信を行うことが出来る。
 第2通信方式制御部102は、第2の無線通信方式を用いて無線通信を行うことが出来る。また、第2通信方式制御部102は、第1の無線通信方式による無線通信の開始を検出する機能を有している。第2通信方式制御部102は、第1の無線通信方式による(第1通信方式制御部101による)無線通信の開始を検出すると、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないように作動する。また、第2通信方式制御部102は、第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する。
 上記構成により、無線通信制御装置10は、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行うことを避ける一方で、第1の無線通信方式による無線通信期間外に第2の無線通信方式による無線通信を行うことが出来る。
 その結果、複数の無線通信方式(第1の無線通信方式および第2の無線通信方式)を同時に使用する場合において、効果的に複数の無線通信方式間の干渉を防止することができる。
 また、上述した無線通信制御装置10は、当該無線通信制御装置10に所定のプログラムが組み込まれることで実現できる。具体的に、本発明の他の形態であるプログラムは、無線通信制御装置に、第1の無線通信方式による無線通信を行う第1通信方式制御部と、第2の無線通信方式による無線通信を行う第2通信方式制御部と、を実現させ、第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないように作動し、第1の無線通信方式による無線通信期間外に第2の無線通信方式による無線通信を行うように作動するプログラムである。
 また、上述した無線通信制御装置10が作動することにより実行される無線通信方法は、第1の無線通信方式による無線通信の開始を検出し、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないよう制御し、第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うよう制御する、という方法である。
 また、本実施形態では、1つの無線通信制御装置が第1通信方式制御部101と第2通信方式制御部102と備えている場合について説明した。しかしながら、本発明は、上記場合に限定されず実施可能である。本発明は、例えば、第1通信方式制御部101としての機能を備えるノードと第2通信方式制御部102としての機能を備えるノードとの2つのノードを備える無線通信制御システムであっても構わない。 上述した構成を有する、プログラム、又は、無線通信方法、又は、無線通信制御システム、の発明であっても、上記無線通信制御装置10と同様の作用を有するために、上述した本発明の目的を達成することが出来る。
 また、以上説明した第1-第3の実施形態の全部又は一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。
 「コンピュータシステム」の例としては、例えば、CPU(Central Processing Unit)を挙げることができる。
 「コンピュータ読み取り可能な記録媒体」は、例えば、非一時的な記憶装置である。非一時的な記憶装置の例としては、例えば、光磁気ディスク、ROM(Read Only Memory)、不揮発性半導体メモリ等の可搬媒体、コンピュータシステムに内蔵されるハードディスクを挙げることができる。また、「コンピュータ読み取り可能な記録媒体」は、一時的な記憶装置であってもよい。一時的な記憶装置の例としては、例えば、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線、あるいは、コンピュータシステム内部の揮発性メモリを挙げることができる。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよく、更に前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。
(付記1)
 第1の無線通信方式による無線通信を行う第1通信方式制御部と、
 第2の無線通信方式による無線通信を行う第2通信方式制御部と、
 を備え、
 前記第2通信方式制御部は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する、
 無線通信制御装置。
 この構成によると、無線通信制御装置が第1通信方式制御部と第2通信方式制御部とを備えている。また、第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないように作動するよう構成されている。さらに、第2通信方式制御部は、第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動するよう構成されている。このような構成により、無線通信制御装置は、第1の無線通信期間中は第2の無線通信方式による無線通信を行うことを避ける一方で、第1の無線通信方式による無線通信期間外に第2の無線通信方式による無線通信を行うよう、第1の無線方式による通信と第2の無線方式による通信とを制御することが出来る。その結果、第1の無線通信方式による通信と第2の無線通信方式による通信との間に干渉が生じることを防ぐことが出来る。
(付記2)
 付記1に記載の無線通信制御装置であって、
 前記第1通信方式制御部は、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定され、当該設定された期間に従って作動するよう構成され、
 前記第2通信方式制御部は、前記第1通信方式制御部の前記活動期間の開始を検出し、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動する、
 無線通信制御装置。
(付記3)
 付記2に記載の無線通信制御装置であって、
 前記第2通信方式制御部は、前記第1通信方式制御部の前記活動期間の開始及び長さを検出し、当該検出した前記活動期間の長さに応じた前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動する、
 無線通信制御装置。
(付記4)
 付記3に記載の無線通信制御装置であって、
 前記第1通信方式制御部と前記第2通信方式制御部との動作を制御する制御手段を備え、
 前記制御手段は、前記第1通信方式制御部が前記活動期間に遷移する直前に前記第2通信方式制御部に対して前記活動期間を表す情報を含む無線通信信号を送信するよう指示し、
 前記第2通信方式制御部は、前記指示を受けることで前記活動期間の開始及び長さを検出し、前記指示に応じて前記活動期間を表す情報を含む無線通信信号を外部に送信した後、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動する、
 無線通信制御装置。
(付記5)
 付記4に記載の無線通信制御装置であって、
 前記制御手段は、前記第1通信方式制御部の前記活動期間と前記非活動期間を設定するよう構成された、
 無線通信制御装置。
(付記6)
 付記5に記載の無線通信制御装置であって、
 前記制御手段は、前記活動期間として、ビーコン送信期間と前記第1の無線通信方式を用いて無線通信を行う無線通信端末を制限しないコンテンションアクセス期間とを少なくとも指定するよう構成された、
 無線通信制御装置。
(付記7)
 付記5又は6に記載の無線通信制御装置であって、
 前記第1の無線通信方式はWPAN(Wireless Personal Area Network)規格であり、前記第2の無線通信方式はWLAN(Wireless Local Area Network)規格であり、
 前記制御手段は、前記第1通信方式制御部に対してスーパーフレーム長とビーコン間隔とを設定することで、前記活動期間と前記非活動期間を設定するよう構成された、
 無線通信制御装置。
(付記8)
 付記3乃至7の何れかに記載の無線通信制御装置であって、
 前記第1通信方式制御部の活動期間を表す情報を含む無線通信信号はCTS(Clear To Send)信号である、
 無線通信制御装置。
(付記9)
 付記1乃至8の何れかに記載の無線通信制御部であって、
 前記第1の無線通信方式はWPAN(Wireless Personal Area Network)規格であり、前記第2の無線通信方式はWLAN(Wireless Local Area Network)規格である、
 無線通信制御装置。
(付記10)
 第1の無線通信方式による無線通信を行う第1通信方式制御部と第2の無線通信方式による無線通信を行う第2通信方式制御部とを用いて複数の無線通信方式による無線通信を制御する方法であって、
 前記第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないよう制御し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うよう制御する、
 無線通信制御方法。
(付記11)
 付記10に記載の無線通信制御方法であって、
 前記第1通信方式制御部は、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定され、当該設定された期間に従って作動し、
 前記第2通信方式制御部は、前記第1通信方式制御部の前記活動期間の開始を検出し、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動する、
 無線通信制御方法。
(付記12)
 第1の無線通信方式による無線通信を行う第1通信方式制御部と、第2の無線通信方式による無線通信を行う第2通信方式制御部を用いて無線通信方式による無線通信を制御する無線通信制御装置のコンピュータに、
 前記第2通信方式制御部に、前記第1の無線通信方式による無線通信の開始を検出させ、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動させ、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動させる処理
 を実行させるためのプログラムを記憶する記憶媒体。
(付記13)
 付記12に記載の記憶媒体であって、
 前記プログラムが、
 前記第1通信方式制御部に、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定させ、当該設定された期間に従って作動させ、
 前記第2通信方式制御部に、前記第1通信方式制御部の前記活動期間の開始を検出させ、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動させ、前記活動期間外である前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動させる処理
 を含む記憶媒体。
(付記14)
 第1の無線通信方式による無線通信を行う第1通信方式制御装置と、
 第2の無線通信方式による無線通信を行う第2通信方式制御装置と、
 を備え、
 前記第2通信方式制御装置は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する、
 無線通信制御システム。
(付記15)
 付記14に記載の無線通信制御システムであって、
 前記第1通信方式制御部は、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定され、当該設定された期間に従って作動するよう構成され、
 前記第2通信方式制御部は、前記第1通信方式制御部の前記活動期間の開始を検出し、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記活動期間外である前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動する、
 無線通信制御システム。
 以上、各実施形態を参照して本願発明を説明したが、本願発明は上記各実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年2月28日に出願された日本出願特願2014-038077号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、7  無線センサーネットワーク
 2、9  ゲートウェイ
 21、91  ハーモナイズドコントローラ
 22  WPAN通信制御部
 23  WLAN通信制御部
 3  WPAN端末
 31  無線通信部
 32  制御部
 33  センサー
 4  WLAN端末
 41  無線通信部
 42  制御部
 43  センサー
 5、8  バックホールノード
 51、81  バックホールコントローラ
 52、82  WLAN通信制御部
 53  インターネット通信制御部
 6  インターネット
 10  無線通信制御装置
 101  第1通信方式制御部
 102  第2通信方式制御部

Claims (10)

  1.  第1の無線通信方式による無線通信を行う第1通信方式制御手段と、
     第2の無線通信方式による無線通信を行う第2通信方式制御手段と、
     を備え、
     前記第2通信方式制御手段は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する、
     無線通信制御装置。
  2.  請求項1に記載の無線通信制御装置であって、
     前記第1通信方式制御手段は、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定され、当該設定された期間に従って作動するよう構成され、
     前記第2通信方式制御手段は、前記第1通信方式制御手段の前記活動期間の開始を検出し、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動する、
     無線通信制御装置。
  3.  請求項2に記載の無線通信制御装置であって、
     前記第2通信方式制御手段は、前記第1通信方式制御手段の前記活動期間の開始及び長さを検出し、当該検出した前記活動期間の長さに応じた前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動する、
     無線通信制御装置。
  4.  請求項3に記載の無線通信制御装置であって、
     前記第1通信方式制御手段と前記第2通信方式制御手段との動作を制御する制御手段を備え、
     前記制御手段は、前記第1通信方式制御手段が前記活動期間に遷移する直前に前記第2通信方式制御手段に対して前記活動期間を表す情報を含む無線通信信号を送信するよう指示し、
     前記第2通信方式制御手段は、前記指示を受けることで前記活動期間の開始及び長さを検出し、前記指示に応じて前記活動期間を表す情報を含む無線通信信号を外部に送信した後、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動する、
     無線通信制御装置。
  5.  請求項4に記載の無線通信制御装置であって、
     前記制御手段は、前記第1通信方式制御手段の前記活動期間と前記非活動期間を設定するよう構成された、
     無線通信制御装置。
  6.  請求項5に記載の無線通信制御装置であって、
     前記制御手段は、前記活動期間として、ビーコン送信期間と前記第1の無線通信方式を用いて無線通信を行う無線通信端末を制限しないコンテンションアクセス期間とを少なくとも指定するよう構成された、
     無線通信制御装置。
  7.  第1の無線通信方式による無線通信を行う第1通信方式制御部と第2の無線通信方式による無線通信を行う第2通信方式制御部とを用いて複数の無線通信方式による無線通信を制御する方法であって、
     前記第2通信方式制御部は、第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は第2の無線通信方式による無線通信を行わないよう制御し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うよう制御する、
     無線通信制御方法。
  8.  請求項7に記載の無線通信制御方法であって、
     前記第1通信方式制御部は、無線通信を行う期間である活動期間と無線通信を行わない期間である非活動期間とを設定され、当該設定された期間に従って作動し、
     前記第2通信方式制御部は、前記第1通信方式制御部の前記活動期間の開始を検出し、前記活動期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記非活動期間に前記第2の無線通信方式による無線通信を行うように作動する、
     無線通信制御方法。
  9.  第1の無線通信方式による無線通信を行う第1通信方式制御部と第2の無線通信方式による無線通信を行う第2通信方式制御部とを用いて複数の無線通信方式による無線通信を制御する無線通信制御装置のコンピュータに、
     前記第2通信方式制御部に、前記第1の無線通信方式による無線通信の開始を検出させ、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動させ、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動させる処理
     を実行させるためのプログラムを記憶する記憶媒体。
  10.  第1の無線通信方式による無線通信を行う第1通信方式制御装置と、
     第2の無線通信方式による無線通信を行う第2通信方式制御装置と、
     を備え、
     前記第2通信方式制御装置は、前記第1の無線通信方式による無線通信の開始を検出し、前記第1の無線通信方式による無線通信期間中は前記第2の無線通信方式による無線通信を行わないように作動し、前記第1の無線通信方式による無線通信期間外に前記第2の無線通信方式による無線通信を行うように作動する、
     無線通信制御システム。
PCT/JP2015/000873 2014-02-28 2015-02-23 無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム WO2015129242A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/120,410 US20170013556A1 (en) 2014-02-28 2015-02-23 Wireless communication control device, wireless communication control method, storage medium, and wireless communication control system
JP2016505057A JPWO2015129242A1 (ja) 2014-02-28 2015-02-23 無線通信制御装置、無線通信制御方法、プログラム、および無線通信制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038077 2014-02-28
JP2014038077 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129242A1 true WO2015129242A1 (ja) 2015-09-03

Family

ID=54008576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000873 WO2015129242A1 (ja) 2014-02-28 2015-02-23 無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム

Country Status (3)

Country Link
US (1) US20170013556A1 (ja)
JP (1) JPWO2015129242A1 (ja)
WO (1) WO2015129242A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007071A (ja) * 2016-07-04 2018-01-11 キヤノン株式会社 情報処理装置、その制御方法、及びプログラム
JP2020511835A (ja) * 2017-06-19 2020-04-16 三菱電機株式会社 Wi−Fi HaLowネットワーク及び低レートワイヤレスパーソナルエリアネットワーク(LR−WPAN)の共存のためのネットワークシステム及びネットワークデバイス
WO2021001895A1 (ja) * 2019-07-01 2021-01-07 日本電信電話株式会社 制御装置、制御方法、及び制御プログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998501B2 (en) 2014-12-02 2018-06-12 Netgear, Inc. Sensor gateway
US10327214B2 (en) * 2015-12-21 2019-06-18 Northwestern University System and method for resolving neighborhood wireless network affairs with radio signals
US20170251488A1 (en) * 2016-02-26 2017-08-31 Comcast Cable Communications, Llc Network Scheduling For Improved Reliability
US11236807B2 (en) * 2019-06-03 2022-02-01 Power Engineering & Mfg., Inc. Actuators for use with an external controller
US11539545B2 (en) 2019-08-19 2022-12-27 Sonos, Inc. Multi-network playback devices
JP2023173887A (ja) * 2022-05-26 2023-12-07 キヤノン株式会社 通信装置、制御方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295869A (ja) * 2005-03-16 2006-10-26 Sony Computer Entertainment Inc 通信端末装置
JP2009540632A (ja) * 2006-06-02 2009-11-19 クゥアルコム・インコーポレイテッド 共同設置されたWLANおよびBluetoothのための効率的なオペレーション
JP2011082679A (ja) * 2009-10-05 2011-04-21 Nec Corp 無線通信システム、端末機器、無線lanアクセスポイント、及び無線通信方法
JP2012169740A (ja) * 2011-02-10 2012-09-06 Nippon Telegr & Teleph Corp <Ntt> 無線通信端末、及び無線通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049415A1 (en) * 2004-11-01 2006-05-11 Electronics And Telecommunications Research Institute Radio communications system, radio communication apparatus and radio communication method for uwb impulse communication
US20060292986A1 (en) * 2005-06-27 2006-12-28 Yigal Bitran Coexistent bluetooth and wireless local area networks in a multimode terminal and method thereof
US9066369B1 (en) * 2009-09-16 2015-06-23 Marvell International Ltd. Coexisting radio communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295869A (ja) * 2005-03-16 2006-10-26 Sony Computer Entertainment Inc 通信端末装置
JP2009540632A (ja) * 2006-06-02 2009-11-19 クゥアルコム・インコーポレイテッド 共同設置されたWLANおよびBluetoothのための効率的なオペレーション
JP2011082679A (ja) * 2009-10-05 2011-04-21 Nec Corp 無線通信システム、端末機器、無線lanアクセスポイント、及び無線通信方法
JP2012169740A (ja) * 2011-02-10 2012-09-06 Nippon Telegr & Teleph Corp <Ntt> 無線通信端末、及び無線通信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007071A (ja) * 2016-07-04 2018-01-11 キヤノン株式会社 情報処理装置、その制御方法、及びプログラム
JP2020511835A (ja) * 2017-06-19 2020-04-16 三菱電機株式会社 Wi−Fi HaLowネットワーク及び低レートワイヤレスパーソナルエリアネットワーク(LR−WPAN)の共存のためのネットワークシステム及びネットワークデバイス
WO2021001895A1 (ja) * 2019-07-01 2021-01-07 日本電信電話株式会社 制御装置、制御方法、及び制御プログラム
JPWO2021001895A1 (ja) * 2019-07-01 2021-01-07
JP7252491B2 (ja) 2019-07-01 2023-04-05 日本電信電話株式会社 制御装置、制御方法、及び制御プログラム
US11895641B2 (en) 2019-07-01 2024-02-06 Nippon Telegraph And Telephone Corporation Control apparatus, control method, and control program

Also Published As

Publication number Publication date
JPWO2015129242A1 (ja) 2017-03-30
US20170013556A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2015129242A1 (ja) 無線通信制御装置、無線通信制御方法、記憶媒体、および無線通信制御システム
JP4888396B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP6775668B2 (ja) デバイスの無線通信モジュールをウェイクアップするためのシステムおよび方法
JP4333413B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
KR101661594B1 (ko) 기회적 타임 스틸링에 의해 단일의 물리적 트랜시버 상에서 다수의 동시 동작 모드들을 멀티플렉싱하는 방법들 및 시스템
JP4449588B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US8509202B2 (en) Method for communicating in a network, a system and a primary station therefor
JP2018506203A (ja) 日和見的なデュアルバンド中継
CN110446251B (zh) 无线通信设备和无线通信方法
JP4591068B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4747646B2 (ja) 無線通信システム,無線通信装置,無線通信方法,およびコンピュータプログラム。
Demirors et al. RcUBe: Real-time reconfigurable radio framework with self-optimization capabilities
US20190349926A1 (en) Determining access slot for communications on radio interface
JP2005236819A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP6083608B2 (ja) 無線通信システム、統合端末装置、アクセスポイント、及び無線通信方法
JP2005287008A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP7012150B2 (ja) メッシュネットワークにおけるネットワークノードおよび方法
JP2015035744A (ja) 無線通信システム、無線端末および無線通信方法
JP4247199B2 (ja) 無線通信装置
JP4385829B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4333346B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4470628B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
CN113273098A (zh) 一种信号传输方法、相关设备及系统
KR101273192B1 (ko) 2개의 라디오들을 사용하여 주파수 스캐닝하기 위한 디바이스 및 방법
WO2021075290A1 (ja) 無線通信装置および方法、並びに無線通信端末および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755023

Country of ref document: EP

Kind code of ref document: A1