WO2015127769A1 - 一种HS-SCCH-less HARQ中处理重传数据的方法及装置 - Google Patents

一种HS-SCCH-less HARQ中处理重传数据的方法及装置 Download PDF

Info

Publication number
WO2015127769A1
WO2015127769A1 PCT/CN2014/085111 CN2014085111W WO2015127769A1 WO 2015127769 A1 WO2015127769 A1 WO 2015127769A1 CN 2014085111 W CN2014085111 W CN 2014085111W WO 2015127769 A1 WO2015127769 A1 WO 2015127769A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
harq process
subframe
harq
scch
Prior art date
Application number
PCT/CN2014/085111
Other languages
English (en)
French (fr)
Inventor
邓春华
李爱军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/121,388 priority Critical patent/US20180227087A1/en
Priority to EP14884144.8A priority patent/EP3113402A4/en
Publication of WO2015127769A1 publication Critical patent/WO2015127769A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for processing retransmission data in an HS-SCCH-less. Background technique
  • HS-SCCH-less High Speed Shared Control less operation
  • CPC Continuous Packet Connectivity
  • UMTS Universal Mobile Telecommunications System
  • VOIP Voice over Internet Protocol
  • the improvement of VOIP in UMTS system, that is, HS-SCCH-less and other data downloads need to use HS-SCCH (High Speed Shared Control Channel) for dynamic scheduling every time, which is different from fixed configuration N ( N l , 2 3, 4)
  • the transmission format allows the UE to perform blind detection to save the overhead of the control channel HS-SCCH, thereby effectively increasing the system capacity.
  • the network configuration UE works in HS-SCCH-less mode, when the UE does not detect a valid format corresponding to its own ID in the corresponding HS-SCCH, it needs to immediately start HS-SCCH-less blind detection.
  • the HS-SCCH-less blind detection protocol specifies the amount of data storage, which is a cyclic buffer of 12 subframes and a HARQ buffer of 3 HARQ (Hybrid Automatic Repeat Request) processes.
  • the protocol does not explicitly specify only three HARQ processes, so the management of the HARQ process is a technical problem.
  • some manufacturers' practices are to expand the HARQ buffer and become 13 processes. The problem of this will cause the chip area to be 4 times larger than the original, and the power consumption will be large. This is for the end products of cost and power consumption. Said to be very unfavorable. Summary of the invention The technical problem to be solved by the embodiments of the present invention is to provide a method and apparatus for processing retransmission data in HS-SCCH-less to save control signaling load.
  • an embodiment of the present invention provides a method for processing retransmission data in an HS-SCCH-less, including:
  • the retransmitted data is processed according to the status of the HARQ process.
  • the foregoing method further has the following features: the processing the retransmitted data according to the status of the HARQ process, including:
  • the HARQ process is not full, the data of the historical subframe and the data of the current subframe are merged by the HARQ process, and the data after the HARQ process is processed;
  • the retransmission data is self-decoded.
  • the above method has the following features:
  • the HARQ process is merged between the data of the historical subframe and the data of the current subframe, including:
  • the HARQ process When the data is retransmitted for the first time, if the HARQ process is not full, the HARQ process is merged with the data of the historical subframe and the data of the current subframe when the cyclic redundancy check error is confirmed when the initial data is confirmed.
  • the processing of the data after the merged HARQ process includes:
  • the data after the merged HARQ process is decoded and the cyclic redundancy check is performed. If the cyclic redundancy check is correct, the report command is correctly acknowledged, and the current HARQ process occupation flag is cleared.
  • the above method has the following features:
  • the HARQ process is merged between the data of the historical subframe and the data of the current subframe, including:
  • the HARQ process is merged between the data of the historical subframe and the data of the current subframe.
  • the processing of the data after the merged HARQ process includes: Decoding and cyclic redundancy check of the data after the merged HARQ process, and clearing the current HARQ process occupation flag.
  • the foregoing method further has the following features: the processing the retransmitted data according to the status of the HARQ process, including:
  • the HARQ process is cleared.
  • the embodiment of the present invention further provides an apparatus for processing retransmission data in the HS-SCCH-less, including:
  • a lookup module configured to look up an automatic repeat request (HARQ) process when retransmitting data during HS-SCCH-less blind detection
  • the processing module is configured to process the retransmitted data according to the status of the HARQ process.
  • the above device also has the following features:
  • the processing module is configured to: if the HARQ process is not full, perform HARQ process merging on the data of the historical subframe and the current subframe, and process the data after the merging HARQ process; if the HARQ process is full, The data is retransmitted for self-decoding.
  • the above device also has the following features:
  • the processing module is configured to perform HARQ process merging on the data of the historical subframe and the data of the current subframe in the following manner, and process the data after the merging HARQ process: when the data is retransmitted for the first time, such as the HARQ process is not If it is full, when the cyclic redundancy check error is confirmed when the initial data is received, the HARQ process is merged between the data of the historical subframe and the data of the current subframe, and the data after the HARQ process is decoded and cyclically redundant. Verification, if the cyclic redundancy check is correct, the report command responds correctly and clears the current HARQ process occupancy flag.
  • the above device also has the following features:
  • the processing module is configured to perform HARQ process merging on the data of the historical subframe and the data of the current subframe in the following manner, and process the data after the merging HARQ process: when re-transmitting the data for the second time,
  • the data of the historical subframe and the data of the current subframe are combined by the HARQ process, the data after the HARQ process is combined, the cyclic redundancy check is performed, and the current The HARQ process occupies the flag.
  • the processing module is configured to process the retransmission data according to the HARQ process status in the following manner: If the HARQ process continuously occupies more than 13 subframes, the HARQ process is cleared.
  • the embodiments of the present invention provide a method and a device for processing retransmission data in the HS-SCCH-less, which can save control signaling load and flexibly schedule the HS-SCCH-less process.
  • FIG. 1 is a flow chart of a method for processing retransmission data in HS-SCCH-less according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an apparatus for processing retransmission data in an HS-SCCH-less according to an embodiment of the present invention. Preferred embodiment of the invention
  • Embodiments of the present invention are applicable to UMTS (Universal Mobile Telecommunications
  • HSPA+ High-Speed Packet Access+, Enhanced High-Speed Packet Access Technology
  • Terminal HS-SCCH-less blind detection HARQ Hybrid Automatic Repeat Request buffer (buffer) )management.
  • An important attribute of HS-SCCH-less CPC Continuous Packet Connectivity is mainly applied to services such as VoIP (Voice over Internet Protocol), which are cyclical and have a very small amount of traffic.
  • HS-SCCH-less does not use HS-SCCH channel dynamic scheduling when data service is initially transmitted, but is blindly detected by HS-DSCH (High-Speed Downlink Shared Channel). This has the advantage of saving. A large amount of control signaling load.
  • the parameters provided by the HS-SCCH-less upper layer include: HS-DSCH (High Speed Downlink Shared Channel) code channel number, and TBSize (transport block size) list (up to 4). If the HS-SCCH less process is started, the UE processes as follows:
  • the HS-SCCH less must be started. Blind detection. At this time, it is necessary to perform a blind detection operation on the TBSize list configured by the upper layer one by one. If a TB blind test passes, then ACK (acknowledgement) is required. If all blind detections fail, the original LLR (Log-Likelihood Ratio) needs to be maintained for subsequent HS-SCCH type2 Used for scheduling when scheduling. It should be noted that the HS-DSCH blind detection needs to be demasked with the UE's H-RNTI in the upper 16 bits of the CRC. The core of blind detection is to mask the CRC for UE-specific H-RNTI.
  • the H-RNTI mask of the UE is performed on the CRC when the CRC is added to the data of the packet.
  • the H-RNTI is a unique identifier of the network configuration to the connected state UE, which is unique within the scope of the RNC and does not overlap with other UEs).
  • the HS-DSCH is a shared channel.
  • each UE is based on its own H-RNTI.
  • HSDPA High Speed Downlink Packet Access
  • the HS-SCCH-less mode the HS-SCCH is not delivered to the initial transmission network. Therefore, each UE needs to identify the HS-SCCH channel allocated to itself according to its assigned H-RNTI.
  • HS-DSCH process. If a valid HS-SCCH type2 is detected in one subframe and it is the second transmission (first retransmission), then the previous initial transmission must be de-rate matched (the turbo decoding is not started), and then Perform rate de-matching on this transmission, and start HARQ merging. After the merging, you need to start turbo decoding and perform CRC (Cyclic Redundancy Check). If the CRC check is successful, the ACK (Acknowledgement) is fed back. If the CRC check is unsuccessful, the NACK (Negative Acknowledgement) is fed back.
  • CRC Cyclic Redundancy Check
  • the HS-DSCH blind detection requires the H-RNTI (HSDPA-Radio Network Temporary Indentifier, HSDPA (High Speed Downlink Package Access)) temporary identification of the high 16 bits of the CRC. ) to demask.
  • H-RNTI HSDPA-Radio Network Temporary Indentifier, HSDPA (High Speed Downlink Package Access)
  • the normal HARQ combining procedure is initiated, and the turbo decoding and CRC check operations are initiated. If the CRC check is successful, the ACK is fed back, and if the CRC check is unsuccessful, the NACK is fed back. Also note that the HS-DSCH blind detection needs to be in the low and high levels of the CRC and the UE. The H-RNTI is demasked.
  • the network is dynamically scheduled by HS-SCCH type2, TBSize is specified by 2bit Index, and the subframe number ptr to be merged with it is also specified, 3bit representation (1 ...7) , the combined subframe number is 6+ptr, and the maximum is 13, so it is necessary to store the original information LLR of up to 13 subframes.
  • the redundancy version number of the second transmission is 3, and the redundancy version number of the third transmission is 4.
  • the deinterleaving buffer needs to store a total of 24960 LLRs for 13 subframes, and which data is stored for each subframe received. The space is determined by the software.
  • the HS-SCCH-less mode of WCDMA needs to open the HARQ Process separately. Therefore, the corresponding read/write HARQ requires additional registers to distinguish between the normal HARQ service and the HS-SCCH-less HARQ service. There are no provisions in the specification for HS-SCCH-less HARQ process management.
  • FIG. 1 is a flowchart of a method for processing retransmission data in an HS-SCCH-less according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment includes:
  • the method according to the embodiment of the present invention can implement HARQ process management for HS-SCCH-less, and can save control signaling load.
  • the UE for the first transmission, is configured according to the TBS of the upper layer.
  • Transmission-Block Size (Transmission-Block Size) list, up to 4 blind detections. If the blind detection result is correct, an ACK is reported. If not correct, do not report. If it is correct, record the sub-frame number.
  • the CRC For the second transmission, firstly, according to the PTR (pointer pointing to the data that has been sent before), it is confirmed whether the CRC is correct when the first transmission is performed. If it is correct, the ACK is directly reported, and no decoding is performed. The corresponding sub-frame number is also recorded. If the CRC is wrong, find a HARQ process, first start the HS-DSCH de-rate matching operation of the PTR corresponding subframe, and then start the current subframe HS-DSCH de-rate matching operation, and perform HARQ combining, and then merge the HARQ. The latter data is subjected to turbo decoding and CRC check. If the CRC check is correct, the ACK is reported, and the HARQ occupation flag is cleared; if the CRC check is incorrect, the NACK is reported.
  • the software configures a TBS, and the hardware performs rate matching according to the TBS.
  • the hardware needs to rate match the data of the current subframe and the data of the historical subframe separately, and perform HARQ combining. If the CRC is incorrect, a HARQ needs to be occupied. Buffer.
  • the HARQ process For the third transmission, it is required to find out which process the HARQ corresponding to the second transmission is placed, start the solution rate matching, HARQ merge, turbo decoding, and CRC check. If the CRC check succeeds, the ACK is reported. If it is unsuccessful, report NACK. Regardless of whether the CRC check is successful or not, the HARQ process needs to be cleared.
  • the advantage of HARQ process merging is that the data stored in the HARQ buffer is the HARQ merged data of the previous two transmissions. Therefore, it is only necessary to start the rate matching of the third data and perform HARQ merging. If it is a merge of the original LLR, then three rate matching is initiated, and the buffer of the original LLR is doubled.
  • the data of the subframe is only rate matched, decoded, CRC checked, and HARQ combining is not performed (the average rate of HS-SCCH-less HS-DSCH is compared) Low). If there is no corresponding HARQ process, it indicates that the previous data is clear or the HARQ management has been faulty, and the current subframe data is decoded. It is hoped that the current subframe can be solved to compensate for the loss caused by the HARQ management error.
  • the current HARQ process corresponds to subframe 5, so after 13 subframes, it returns to 5, indicating that there will be no retransmission at this time, and the HARQ process needs to be cleared.
  • the HS-SCCH-less process is dynamically scheduled by software, which is highly flexible.
  • the HARQ process for the second transmission and the third transmission, if the HARQ process is full, the data of the subframe is directly de-rate matched, turbo decoding and CRC check.
  • the HARQ process indicates that the network has called more than three HARQ processes. At this time, the occupied HARQ process data cannot be cleared. Therefore, the data transmitted for this time can only be self-decoded, which loses performance.
  • the HS-SCCH dynamic scheduling deinterleaving buffer can be used to temporarily perform the HARQ buffer of the HARQ process, and perform HARQ merging for decoding to improve performance. If the repetition rate match or the puncturing rate matches and the code rate is below a certain threshold, the self-decoding function is activated.
  • FIG. 2 is a schematic diagram of an apparatus for processing retransmission data in an HS-SCCH-less according to an embodiment of the present invention. As shown in FIG. 2, the method may include:
  • the search module is configured to look up the HARQ process when retransmitting data during the HS-SCCH-less blind detection process
  • the processing module is configured to process the retransmitted data according to the status of the HARQ process.
  • the processing module may be configured to perform HARQ process merging on the data of the historical subframe and the data of the current subframe as the HARQ process is not full, and process the data after the merging HARQ process; for example, HARQ When the process is full, the retransmitted data is self-decoded.
  • the processing module if the HARQ process is not full, performs HARQ process merging on the data of the historical sub-frame and the data of the current sub-frame, and processing the data after the merging of the HARQ process, which may include: when re-transmitting data for the first time If the HARQ process is not full, in the case of confirming the cyclic redundancy check error when the initial data is received, the HARQ process is merged with the data of the historical subframe and the data of the current subframe, and the data after the HARQ process is merged. Decoding and cyclic redundancy check. If the cyclic redundancy check is correct, the report command responds correctly and clears the current HARQ process occupancy flag.
  • the processing module if the HARQ process is not full, performs HARQ process merging on the data of the historical subframe and the data of the current subframe, and processes the data after the merging HARQ process, including: when retransmitting data for the second time, In the case that the HARQ process corresponding to the first retransmission data is found, the data of the historical subframe and the data of the current subframe are combined by the HARQ process, and the data after the HARQ process is combined and the cyclic redundancy check is performed. And clear the current HARQ process occupancy flag.
  • the processing module when processing the retransmission data according to the HARQ process status, may include: if the HARQ process continuously occupies more than 13 subframes, the HARQ process is cleared.
  • a program to instruct the associated hardware such as a read only memory, a magnetic disk, or an optical disk.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the embodiment of the invention can save the control signaling load and can flexibly schedule the HS-SCCH-less process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种HS-SCCH-less中处理重传数据的方法及装置,该方法包括:HS-SCCH-less盲检测过程中重传数据时,查找自动重传请求(HARQ)进程;根据HARQ进程状况,对重传数据进行处理。

Description

一种 HS-SCCH-less HARQ中处理重传数据的方法及装置 技术领域
本发明涉及通信领域,特别是涉及一种 HS-SCCH-less中处理重传数据的 方法及装置。 背景技术
HS-SCCH-less ( High Speed Shared Control less operation, 高速共享控制 信道节省 )是在 UMTS ( Universal Mobile Telecommunications System, 通用移 动通信系统)在 R7引入的 CPC ( Continuous Packet Connectivity, 连续性分组 连接)的一个重要特性, 用来增加 UMTS系统对于小数据量相对固定业务的 业务容量(比如 VOIP ( Voice over Internet Protocol, 网络电话) ) 。 UMTS 系统对 VOIP 的改进, 也就是 HS-SCCH-less和其它数据下载每次都需要用 HS-SCCH (高速共享控制信道) 来进行动态调度不同, 是釆用固定配置 N ( N=l , 2 , 3 , 4 )种传输格式, 让 UE进行盲检测的形式来节省控制信道 HS-SCCH的开销, 从而有效提高系统容量。
当网络配置 UE工作在 HS-SCCH-less模式时,当 UE在相应的 HS-SCCH 里面没有检测到对应自己 ID的有效格式时, 就需要立即启动 HS-SCCH-less 盲检测。
HS-SCCH-less盲检测协议规定了数据存储量, 分别为 12个子帧的循环 buffer (緩存)和 3个 HARQ ( Hybrid Automatic Repeat Request, 混合自动重 传请求)进程的 HARQ buffer。 对于 HARQ进程, 协议并没有明确规定只有 3个 HARQ进程, 因此对 HARQ进程的管理是一个技术难题。 目前有的厂商 的做法是扩大 HARQ buffer, 也变成 13个进程, 这样做的问题会导致芯片面 积比原来大 4艮多, 功耗也会大, 这个对于对成本和功耗的终端产品来说是非 常不利的。 发明内容 本发明实施例要解决的技术问题是提供一种 HS-SCCH-less 中处理重传 数据的方法及装置, 以节省控制信令负载。
为了解决上述技术问题,本发明实施例提供了一种 HS-SCCH-less中处理 重传数据的方法, 包括:
HS-SCCH-less盲检测过程中重传数据时, 查找自动重传请求( HARQ ) 进程;
根据 HARQ进程状况, 对重传数据进行处理。
较佳地, 上述方法还具有下面特点: 所述根据 HARQ进程状况, 对重传 数据进行处理, 包括:
如 HARQ进程未满,对历史子帧的数据和当前子帧的数据进行 HARQ进 程合并, 对合并 HARQ进程后的数据进行处理;
如 HARQ进程已满, 则对重传数据进行自解码处理。
较佳地, 上述方法还具有下面特点:
所述如 HARQ 进程未满, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并, 包括:
第一次重传数据时, 如 HARQ进程未满, 则在确认到初传数据时循环冗 余校验错误的情况下, 对历史子帧的数据和当前子帧的数据进行 HARQ进程 合并,
所述对合并 HARQ进程后的数据进行处理, 包括:
对合并 HARQ进程后的数据进行解码及循环冗余校验, 如循环冗余校验 正确, 则上报命令正确应答, 并清掉当前 HARQ进程占用标志。
较佳地, 上述方法还具有下面特点:
所述如 HARQ 进程未满, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并, 包括:
第二次重传数据时, 在查找到第一次重传数据对应的 HARQ进程的情况 下, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并,
所述对合并 HARQ进程后的数据进行处理, 包括: 对合并 HARQ 进程后的数据进行解码及循环冗余校验, 并清掉当前 HARQ进程占用标志。
较佳地, 上述方法还具有下面特点: 所述根据 HARQ进程状况, 对重传 数据进行处理, 包括:
如 HARQ进程连续占用 13个子帧以上, 则将该 HARQ进程清掉。
为了解决上述问题,本发明实施例还提供了一种 HS-SCCH-less中处理重 传数据的装置, 包括:
查找模块, 其设置为 HS-SCCH-less盲检测过程中重传数据时, 查找自动 重传请求(HARQ )进程; 以及
处理模块, 其设置为根据 HARQ进程状况, 对重传数据进行处理。
较佳地, 上述装置还具有下面特点:
所述处理模块, 是设置为: 如 HARQ进程未满, 对历史子帧的数据和当 前子帧的数据进行 HARQ进程合并, 对合并 HARQ进程后的数据进行处理; 如 HARQ进程已满, 则对重传数据进行自解码处理。
较佳地, 上述装置还具有下面特点:
所述处理模块, 是设置为以如下方式对历史子帧的数据和当前子帧的数 据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理: 第一次重传 数据时, 如 HARQ进程未满, 则在确认到初传数据时循环冗余校验错误的情 况下, 对历史子帧的数据和当前子帧的数据进行 HARQ 进程合并, 对合并 HARQ进程后的数据进行解码及循环冗余校验, 如循环冗余校验正确, 则上 报命令正确应答, 并清掉当前 HARQ进程占用标志。
较佳地, 上述装置还具有下面特点:
所述处理模块, 是设置为以如下方式对历史子帧的数据和当前子帧的数 据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理: 第二次重传 数据时, 在查找到第一次重传数据对应的 HARQ进程的情况下, 对历史子帧 的数据和当前子帧的数据进行 HARQ进程合并,对合并 HARQ进程后的数据 进行解码及循环冗余校验, 并清掉当前 HARQ进程占用标志。
较佳地, 上述装置还具有下面特点: 所述处理模块, 是设置为以如下方式根据 HARQ进程状况, 对重传数据 进行处理: 如 HARQ进程连续占用 13个子帧以上, 则将该 HARQ进程清掉。
综上,本发明实施例提供一种 HS-SCCH-less中处理重传数据的方法及装 置, 能够节省控制信令负载, 可以灵活调度 HS-SCCH-less进程。 附图概述
图 1为本发明实施例的一种 HS-SCCH-less中处理重传数据的方法的流程 图;
图 2为本发明实施例的一种 HS-SCCH-less中处理重传数据的装置的示意 图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例适用于 UMTS ( Universal Mobile Telecommunications
System, 通用移动通信系统) HSPA+ ( High-Speed Packet Access+, 增强型 高速分组接入技术)终端 HS-SCCH-less盲检测的 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传请求) buffer (緩冲器)管理。 HS-SCCH-less CPC ( Continuous Packet Connectivity, 连续性分组连接)的一个重要属性, 主要应用于像 VoIP ( Voice over Internet Protocol, 网络电话 )这类周期性并且 业务量特别小的业务。 HS-SCCH-less在数据业务初传时不用 HS-SCCH信道 动态调度, 而是由 HS-DSCH ( High-Speed Downlink Shared Channel, 高速下 行链路共享信道)盲检测调度, 这样的好处是节省了大量的控制信令负载。
HS-SCCH-less 高层提供的参数包含: HS-DSCH ( High Speed Downlink Shared Channel, 高速下行共享信道) 的码道号, 以及 TBSize (传输块大小) 列表(最多提供 4个) 。 如果启动了 HS-SCCH less流程, 那么 UE的处理如 下:
如果在一个子帧内没有检测到有效的 HS-SCCH,就得启动 HS-SCCH less 盲检测。 这时需要对高层配置下来的 TBSize列表一个一个进行盲检测操作。 如果某个 TB盲检测通过, 那么需要反馈 ACK (确认) , 如果所有的盲检测 都失败, 则需要保持原始的 LLR ( Log-Likelihood Ratio, 对数似然率), 以供 后续 HS-SCCH type2调度时合并用。 需要注意的是 HS-DSCH盲检测在 CRC 的高 16位需要和 UE的 H-RNTI进行去掩码。盲检测的核心就是对 CRC进行 UE专门的 H-RNTI进行掩码。 如果基站把某一包的数据调度给某个 UE, 发 送的时候会对这包数据在添加 CRC时对 CRC进行 UE的 H-RNTI掩码。 ( H-RNTI是网络配置给连接态 UE的唯一标识,在 RNC的范围内是唯一的, 不会和其它 UE重叠) 。
HS-DSCH是共享信道, 对于普通的业务, 每个 UE根据自身的 H-RNTI
( HSDPA ( High Speed Downlink Packet Access, 高速下行分组接入)无线网 络临时标识 )去解码 HS-SCCH,便可以知道当前子帧是否有 HS-DSCH调度。 但是在 HS-SCCH-less模式, 对应初传网络并没有下发 HS-SCCH, 因此各个 UE需要根据自己分配的 H-RNTI去识别分配给自己的 HS-SCCH信道。
如果在一个子帧内检测到有效的 HS-SCCH typel , 那么进行正常的
HS-DSCH流程。 如果在一个子帧内检测到有效的 HS-SCCH type2, 并且是第 2 次传输(第一次重传) , 那么需要先对它之前的初传进行解速率匹配(不 启动 turbo解码), 然后对这次传输进行解速率匹配, 并且启动 HARQ合并, 合并完后需要启动 turbo解码, 进行 CRC ( Cyclic Redundancy Check, 循环冗 余校验) 。 如果 CRC校验成功, 则反馈 ACK ( Acknowledgement, 命令正确 应答) , 如果 CRC校验不成功, 则反馈 NACK ( Negative Acknowledgement, 命令错误应答) 。 同样需要注意的是 HS-DSCH盲检测在 CRC的高 16位需 要和 UE的 H-RNTI ( HSDPA-Radio Network Temporary Indentifier, HSDPA ( High Speed Downlink Package Access, 高速下行链路分组接入 )网络临时标 识)进行去掩码。
如果在一个子帧内检测到有效的 HS-SCCH type2,并且是第 3次传输(第 二次重传) , 那么启动正常的 HARQ合并流程, 并且启动 turbo解码和 CRC 校验操作。 如果 CRC校验成功, 则反馈 ACK, 如果 CRC校验不成功, 则反 馈 NACK。 同样需要注意的是 HS-DSCH盲检测在 CRC的低高位需要和 UE 的 H-RNTI进行去掩码。
第 2次传输和第 3次传输, 网络通过 HS-SCCH type2动态调度, TBSize 通过 2bit的 Index (索引)来指定, 并且还指定了和它之前要进行合并的子帧 号 ptr, 3bit表示 (1...7 ) , 合并的子帧号为 6+ptr, 最大为 13 , 因此需要存 储最多 13个子帧的原始信息 LLR。 第二次传输的冗余版本号为 3 , 第 3次传 输的冗余版本号为 4。
对于 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址 接入 ) 的 HS-SCCH-less模式, 解交织 buffer需要存储 13个子帧共 24960个 LLR, 对于每接收一个子帧, 数据存放在哪一片空间由软件决定。 同时, WCDMA的 HS-SCCH-less模式需要单独开 HARQ Process (进程 ) , 因此, 对应的读写 HARQ 需要额外的寄存器来区分普通的 HARQ 业务还是 HS-SCCH-less HARQ业务。 规范中并没有对 HS-SCCH-less的 HARQ进程管 理有什么规定。
图 1为本发明实施例的一种 HS-SCCH-less中处理重传数据的方法的流程 图, 如图 1所示, 本实施例的方法包括:
511、 HS-SCCH-less盲检测过程中重传数据时, 查找 HARQ进程;
512、 根据 HARQ进程状况, 对重传数据进行处理。
根据本发明实施例的方法能够实现对 HS-SCCH-less的 HARQ进程管理, 可以节省控制信令负载。
本实施例中, 对于第一次传输, UE 根据高层配置下来的 TBS
( Transmission-Block Size, 传输块) 列表, 最多进行 4次盲检测。 如果盲检 测结果正确, 则上报 ACK。 如果都不正确, 不上报。 如果正确, 把该子帧号 记录下来。
对于第二次传输, 首先根据 PTR (指向前面已经发送数据的指针) , 确 认第一次传输时 CRC是否正确, 如果正确, 直接上报 ACK, 不进行解码。 同时也把相应的子帧号记录下来。 如果 CRC错误, 则找一个 HARQ进程, 先启动它之前 PTR对应子帧的 HS-DSCH解速率匹配操作, 然后启动当前子 帧 HS-DSCH解速率匹配操作, 并且进行 HARQ合并, 然后对 HARQ合并之 后的数据进行 turbo解码以及 CRC校验。 如果 CRC校验正确, 则上报 ACK, 并且清掉 HARQ占用标志; 如果 CRC校验错误, 则上报 NACK。
软件会配置一个 TBS, 硬件会根据这个 TBS进行速率匹配, 硬件需要分 别对当前子帧的数据和历史子帧的数据进行速率匹配,并且进行 HARQ合并, 如果 CRC校验错误, 需要占掉一个 HARQ buffer。
本实施例中, 对于第三次传输, 需要查找对应第二次传输的 HARQ放在 哪个进程, 启动解速率匹配, HARQ合并, turbo解码以及 CRC校验, 如果 CRC校验成功, 则上报 ACK, 如果不成功, 则上报 NACK。 不管 CRC校验 是否成功, 都需要把该 HARQ进程清掉。
在第三次传输的时候, HARQ进程合并的优势在于 HARQ buffer存储的 数据是前两次传输的 HARQ合并数据。 因此只需要启动第三次数据的速率匹 配并进行 HARQ合并就可以了。如果是原始 LLR的合并,那么要启动三次速 率匹配, 并且原始 LLR的 buffer要翻倍才行。
对于第三次传输, 如果没有找到相应的 HARQ进程, 则只对该子帧的数 据进行速率匹配, 解码, CRC校验, 不进行 HARQ合并 (HS-SCCH-less HS-DSCH的码率一般比较低) 。 如果没有对应的 HARQ进程, 说明前面的 数据已经清楚或者 HARQ管理已经出错, 对当前子帧数据进行解码, 希望当 前子帧能够解对以弥补 HARQ管理出错带来的损失。
本实施例中, 需要在每个子帧查找, 如果某一个 HARQ进程连续占用了 超过 13个子帧, 则需要把该 HARQ进程清掉, 以防止错误合并。
比如说当前 HARQ进程对应的是子帧 5,因此经过 13个子帧之后又回到 5, 说明此时不会再有重传了, 需要清掉该 HARQ进程。
通过软件动态调度 HS-SCCH-less进程, 灵活性高。
本实施例中, 对于第二次传输和第三次传输, 如果 HARQ进程满了, 则 直接把该子帧的数据进行解速率匹配, turbo解码和 CRC校验。 HARQ进程 满了,说明网络调用了多于 3个 HARQ进程, 这时又不能把占用的 HARQ进 程数据清掉。 因此只能对该次传输的数据进行自解码, 损失性能。
对于某一个 HARQ进程状态更新超过 13个子帧,需要清掉以防止 HARQ 合并错误。
更进一步, 如果第二次传输 HARQ进程满了, 可以利用 HS-SCCH动态 调度的解交织 buffer用来临时做该 HARQ进程的 HARQ buffer, 进行 HARQ 合并来进行解码, 提高性能。 如果是重复速率匹配或者打孔速率匹配并且码 率低于某个阔值时, 启动自解码功能。
图 2为本发明实施例的一种 HS-SCCH-less中处理重传数据的装置的示意 图, 如图 2所示, 可以包括:
查找模块,设置为 HS-SCCH-less盲检测过程中重传数据时, 查找 HARQ 进程;
处理模块, 设置为根据 HARQ进程状况, 对重传数据进行处理。
在一优选实施例中, 所述处理模块, 可以设置为如 HARQ进程未满, 对 历史子帧的数据和当前子帧的数据进行 HARQ进程合并,对合并 HARQ进程 后的数据进行处理; 如 HARQ进程已满, 则对重传数据进行自解码处理。
其中, 所述处理模块, 如 HARQ进程未满, 对历史子帧的数据和当前子 帧的数据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理, 可以 包括: 第一次重传数据时, 如 HARQ进程未满, 则在确认到初传数据时循环 冗余校验错误的情况下, 对历史子帧的数据和当前子帧的数据进行 HARQ进 程合并, 对合并 HARQ进程后的数据进行解码及循环冗余校验, 如循环冗余 校验正确, 则上报命令正确应答, 并清掉当前 HARQ进程占用标志。
其中, 所述处理模块, 如 HARQ进程未满, 对历史子帧的数据和当前子 帧的数据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理,包括: 第二次重传数据时, 在查找到第一次重传数据对应的 HARQ进程的情况下, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并,对合并 HARQ进 程后的数据进行解码及循环冗余校验, 并清掉当前 HARQ进程占用标志。
在一优选实施例中, 所述处理模块, 根据 HARQ进程状况, 对重传数据 进行处理,可以包括: 如 HARQ进程连续占用 13个子帧以上, 则将该 HARQ 进程清掉。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。
工业实用性
本发明实施例能够节省控制信令负载, 可以灵活调度 HS-SCCH-less进 程。

Claims

权 利 要 求 书
1、一种高速共享控制信道节省(HS-SCCH-less )中处理重传数据的方法, 包括:
HS-SCCH-less盲检测过程中重传数据时, 查找自动重传请求(HARQ ) 进程;
根据 HARQ进程状况, 对重传数据进行处理。
2、 如权利要求 1所述的方法, 其中: 所述根据 HARQ进程状况, 对重 传数据进行处理, 包括:
如 HARQ进程未满,对历史子帧的数据和当前子帧的数据进行 HARQ进 程合并, 对合并 HARQ进程后的数据进行处理;
如 HARQ进程已满, 则对重传数据进行自解码处理。
3、 如权利要求 2所述的方法, 其中:
所述如 HARQ 进程未满, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并, 包括:
第一次重传数据时, 如 HARQ进程未满, 则在确认到初传数据时循环冗 余校验错误的情况下, 对历史子帧的数据和当前子帧的数据进行 HARQ进程 合并;
所述对合并 HARQ进程后的数据进行处理, 包括:
对合并 HARQ进程后的数据进行解码及循环冗余校验, 如循环冗余校验 正确, 则上报命令正确应答, 并清掉当前 HARQ进程占用标志。
4、 如权利要求 2所述的方法, 其中:
所述如 HARQ 进程未满, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并, 包括:
第二次重传数据时, 在查找到第一次重传数据对应的 HARQ进程的情况 下, 对历史子帧的数据和当前子帧的数据进行 HARQ进程合并;
所述对合并 HARQ进程后的数据进行处理, 包括: 对合并 HARQ 进程后的数据进行解码及循环冗余校验, 并清掉当前 HARQ进程占用标志。
5、 如权利要求 1所述的方法, 其中: 所述根据 HARQ进程状况, 对重 传数据进行处理, 包括:
如 HARQ进程连续占用 13个子帧以上, 则将该 HARQ进程清掉。
6、一种高速共享控制信道节省(HS-SCCH-less )中处理重传数据的装置, 包括:
查找模块, 其设置为: HS-SCCH-less盲检测过程中重传数据时, 查找自 动重传请求(HARQ )进程; 以及
处理模块, 其设置为: 根据 HARQ进程状况, 对重传数据进行处理。
7、 如权利要求 6所述的装置, 其中:
所述处理模块, 是设置为: 如 HARQ进程未满, 对历史子帧的数据和当 前子帧的数据进行 HARQ进程合并, 对合并 HARQ进程后的数据进行处理; 如 HARQ进程已满, 则对重传数据进行自解码处理。
8、 如权利要求 7所述的装置, 其中:
所述处理模块, 是设置为以如下方式对历史子帧的数据和当前子帧的数 据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理: 第一次重传 数据时, 如 HARQ进程未满, 则在确认到初传数据时循环冗余校验错误的情 况下, 对历史子帧的数据和当前子帧的数据进行 HARQ 进程合并, 对合并 HARQ进程后的数据进行解码及循环冗余校验, 如循环冗余校验正确, 则上 报命令正确应答, 并清掉当前 HARQ进程占用标志。
9、 如权利要求 7所述的装置, 其中:
所述处理模块, 是设置为以如下方式对历史子帧的数据和当前子帧的数 据进行 HARQ进程合并,对合并 HARQ进程后的数据进行处理: 第二次重传 数据时, 在查找到第一次重传数据对应的 HARQ进程的情况下, 对历史子帧 的数据和当前子帧的数据进行 HARQ进程合并,对合并 HARQ进程后的数据 进行解码及循环冗余校验, 并清掉当前 HARQ进程占用标志。
10、 如权利要求 6所述的装置, 其中: 所述处理模块, 是设置为以如下方式根据 HARQ进程状况, 对重传数据 进行处理: 如 HARQ进程连续占用 13个子帧以上, 则将该 HARQ进程清掉。
PCT/CN2014/085111 2014-02-25 2014-08-25 一种HS-SCCH-less HARQ中处理重传数据的方法及装置 WO2015127769A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/121,388 US20180227087A1 (en) 2014-02-25 2014-08-25 Method and Apparatus for Processing Retransmitted Data in HS-SCCH-less HARQ
EP14884144.8A EP3113402A4 (en) 2014-02-25 2014-08-25 Method and apparatus for processing retransmitted data in hs-scch-less harq

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410064119.5 2014-02-25
CN201410064119.5A CN104868981A (zh) 2014-02-25 2014-02-25 一种HS-SCCH-less HARQ中处理重传数据的方法及装置

Publications (1)

Publication Number Publication Date
WO2015127769A1 true WO2015127769A1 (zh) 2015-09-03

Family

ID=53914529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085111 WO2015127769A1 (zh) 2014-02-25 2014-08-25 一种HS-SCCH-less HARQ中处理重传数据的方法及装置

Country Status (4)

Country Link
US (1) US20180227087A1 (zh)
EP (1) EP3113402A4 (zh)
CN (1) CN104868981A (zh)
WO (1) WO2015127769A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10321356B2 (en) * 2017-06-02 2019-06-11 Hughes Network Systems, Llc System and method for performing retransmission of a packet
CN110831190B (zh) * 2018-08-10 2023-04-14 北京紫光展锐通信技术有限公司 上行免调度数据传输方法及装置、存储介质、用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175019A (zh) * 2006-10-31 2008-05-07 华为技术有限公司 移动通信网络中多用户设备数据传输方法及其系统
CN101562510A (zh) * 2008-04-14 2009-10-21 鼎桥通信技术有限公司 混合自动重传进程的启动方法
CN101990242A (zh) * 2009-07-31 2011-03-23 夏普株式会社 频谱聚合系统中的自适应重传方法和用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449981C (zh) * 2005-08-15 2009-01-07 大唐移动通信设备有限公司 多载波高速下行分组接入中混合自动重传方法
US8761144B2 (en) * 2007-06-28 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) HS-PDSCH blind decoding
CN101562511B (zh) * 2008-04-15 2012-02-08 鼎桥通信技术有限公司 一种获取混合自动重传进程号的方法及系统
CN101668337B (zh) * 2008-09-04 2012-05-23 中兴通讯股份有限公司 一种高速共享信息信道的配置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175019A (zh) * 2006-10-31 2008-05-07 华为技术有限公司 移动通信网络中多用户设备数据传输方法及其系统
CN101562510A (zh) * 2008-04-14 2009-10-21 鼎桥通信技术有限公司 混合自动重传进程的启动方法
CN101990242A (zh) * 2009-07-31 2011-03-23 夏普株式会社 频谱聚合系统中的自适应重传方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3113402A4 *

Also Published As

Publication number Publication date
EP3113402A1 (en) 2017-01-04
CN104868981A (zh) 2015-08-26
EP3113402A4 (en) 2017-02-15
US20180227087A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP3254394B1 (en) Code block cluster level harq
EP3751777B1 (en) Multiple tri-state harq processes
WO2020143701A1 (zh) 由用户设备执行的方法以及用户设备
US9014192B2 (en) Method and apparatus for improving data transmission reliability in a wireless communications system
US20080232284A1 (en) Apparatus, method and computer program product providing semi-dynamic persistent allocation
US8214709B2 (en) Communication apparatus, communication method and program
JP2018510570A (ja) マルチレイヤプロトコルワイヤレスシステムにおいてバースト性パンクチャリングおよび干渉を軽減するためのコードブロックレベルの誤り訂正および媒体アクセス制御(mac)レベルのハイブリッド自動再送要求
WO2018088549A1 (ja) 通信装置、及びデータ受信方法
US11303396B2 (en) Feedback information sending method and device
CN106330412B (zh) 利用harq ack/nack的rlc pdu发送方法及装置
US11962423B2 (en) Method and apparatus, UE, and base station for scheduling-free retransmission for a code block group
JP2011509586A (ja) 基地局及び移動局の間のデータ交換方法
US20100254275A1 (en) Apparatus and method for transmission time interval reconfiguration in a mobile communication system
JP2016518749A (ja) 限定されたharqプロセスを伴う分散型ネットワークトポロジにおけるより多くの伝送機会を使用するための方法および装置
US20120147832A1 (en) Apparatus and method for performing harq procedure
US10999016B2 (en) Control information sending method, control information receiving method, network device, and terminal device
WO2020083251A1 (zh) 数据传输方法及装置
WO2015127769A1 (zh) 一种HS-SCCH-less HARQ中处理重传数据的方法及装置
JP2017508408A (ja) データ送信及びフィードバック処理方法並びに装置
WO2018077195A1 (zh) 数据重传方法及装置、mac设备
WO2017211155A1 (zh) 一种下行控制信息dci0的处理方法和系统
US12009935B2 (en) Feedback information sending method and device
CN104104484B (zh) 用于对lte中时分双工配置的改变进行适配的方法和设备
CN113162732A (zh) 由用户设备执行的方法以及用户设备
WO2018028695A1 (zh) 混合自动重传请求信息的发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15121388

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014884144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884144

Country of ref document: EP