WO2015127691A1 - 一种直流无刷电机用永磁体内嵌式转子 - Google Patents

一种直流无刷电机用永磁体内嵌式转子 Download PDF

Info

Publication number
WO2015127691A1
WO2015127691A1 PCT/CN2014/073136 CN2014073136W WO2015127691A1 WO 2015127691 A1 WO2015127691 A1 WO 2015127691A1 CN 2014073136 W CN2014073136 W CN 2014073136W WO 2015127691 A1 WO2015127691 A1 WO 2015127691A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
rotor core
brushless
sector
Prior art date
Application number
PCT/CN2014/073136
Other languages
English (en)
French (fr)
Inventor
王科威
温瑞光
Original Assignee
睿能机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿能机电有限公司 filed Critical 睿能机电有限公司
Priority to US14/430,913 priority Critical patent/US20160248284A1/en
Publication of WO2015127691A1 publication Critical patent/WO2015127691A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a rotor for a brushless DC motor, and more particularly to a permanent magnet embedded rotor for a DC brushless motor.
  • the existing permanent magnet embedded rotor In order to reduce the magnetic flux leakage coefficient and increase the utilization rate of the permanent magnet material, the existing permanent magnet embedded rotor generally adopts a magnetic isolation measure, that is, a magnetic isolation air gap is arranged at the left and right ends of the built-in permanent magnet.
  • Chinese invention patent "a built-in permanent magnet motor rotor punch and built-in permanent magnet motor rotor” discloses a built-in permanent magnet motor rotor punch and built-in permanent magnet motor rotor, including punching
  • the main body, the punching body comprises an inner circular punching piece having a circular shape, a plurality of notches are equally spaced along the circumferential direction of the inner layering punching piece, and a plurality of fixing holes are fixedly arranged with the notch.
  • An outer punching piece a gap for fixing the permanent magnet is left between the outer layer punching piece and the inner layer punching piece; the permanent magnet is placed in a gap formed between the notch of the inner layering piece and the outer layer punching piece or In the permanent magnet slot, it is used to limit the movement of the permanent magnet.
  • Non-air gap permanent magnet motor rotor punching sheet (application No. 201210074091.4) discloses a unequal air gap permanent magnet motor rotor punching piece, which is assembled by a plurality of fan-shaped rotor punching pieces, and the fan-shaped rotor punching
  • the outer arc of the piece is provided with a permanent magnet mounting groove and a magnetic magnetic bridge, and a positioning hole is formed in the inner arc of the fan-shaped rotor punching piece;
  • the outer arc of the fan rotor has different centers; the outer arc and the inner arc of the single sector rotor have different centers.
  • ZL01 121704.9 discloses a permanent magnet rotor in which a permanent magnet is embedded in a rotor core, comprising: a slit in which the permanent magnet is embedded; and an inner side of the longitudinal end of the slit near its longitudinal direction a bridging portion disposed at a central portion, the bridging portion spanning a radially outer portion and a radially inner portion of the rotor core with respect to each slit; a longitudinal end of the slit is open to the rotor The outer circumferential surface of the core.
  • the Chinese invention patent application "an in-line sinusoidal surface permanent magnet motor rotor” (China Patent Application No. 201210316633.4, publication No. CN102857000A) discloses an in-line sinusoidal surface permanent magnet motor rotor.
  • the invention is provided with a plurality of arcuate protrusions which are continuously connected around the axis of the rotor, and divides the rotor into a plurality of equally divided regions according to the line connecting the intersection points of the adjacent protrusions and the axis of the rotor, and is respectively arranged in each area.
  • the magnetic flux gap ⁇ and the punch margin b of the existing permanent magnet embedded rotor have sudden changes in the magnetic circuit structure. As shown in Fig. 1 ⁇ 2, such a structure causes two problems:
  • each magnetic pole is saddle-shaped, as shown in Figure 3, and the peak-to-valley points are relatively different, which causes the torque fluctuation of the motor and affects the smoothness of the motor running.
  • the object of the present invention is to provide a permanent magnet embedded rotor for a brushless DC motor, which adopts a permanent rotor with a reasonable rotor layout and a trapezoidal cross section, and guides the magnetic flux of the permanent magnet inside the rotor to improve the local magnetic field.
  • the dense flow direction and the magnetic density abrupt phenomenon make the rotor magnetic curve greatly improved.
  • Another object of the present invention is to provide a permanent magnet embedded rotor for a DC brushless motor, in which a heat dissipation through hole is provided between the permanent magnets, which can improve the heat dissipation performance of the rotor and save material.
  • the present invention provides a permanent magnet embedded rotor for a brushless DC motor, comprising:
  • a cylindrical rotor core A formed by laminating a rotor punch having a p-pair strip-shaped permanent magnet slot C and 2p heat-dissipating through-holes B; wherein the p-pair permanent magnet slot C and 2p heat-dissipating through-holes B Both are disposed inside the rotor core A along the central axis direction of the rotor core A, and are evenly spaced around the central axis of the rotor core A; each of the heat dissipation through holes B is located between the two permanent magnet slots C, p An integer greater than or equal to 1; and
  • the p-shaped permanent magnet D is fixedly disposed in the permanent magnet slot C, wherein the permanent magnet D has a trapezoidal cross section and p is an integer greater than or equal to 1.
  • the shape of the permanent magnet slot C and the permanent magnet D are completely matched.
  • the cross section of the heat dissipation through hole B is a fan shape; the two sides of the fan shape are respectively opposite to the adjacent two trapezoidal waists; and the leakage of each magnetic pole is controlled by controlling local magnetic saturation.
  • the magnetic coefficient increases the surface magnetism of each pole of the rotor, and the utilization of the permanent magnet is improved.
  • the distance H between the trapezoidal waist and the edge of the sector is 0.5 to 3 mm.
  • the sides of the sector are respectively parallel to the two trapezoidal waists adjacent thereto.
  • the arc of the sector is closer to the outer circumference of the rotor core A than the central angle of the sector, and the distance I between the arc of the sector and the edge of the rotor core A is 0.5 to 3 mm; Magnetic saturation is used to reduce the magnetic flux leakage between the magnetic poles.
  • the angle between the two waists of the trapezoid is 5°-20°.
  • the rotor core A is integrally formed.
  • the cross section of the permanent magnet D may also be curved.
  • the permanent magnet D used in the corresponding embodiment of the present invention is 2 pairs, and may also adopt 1 or 3, 4,
  • the permanent magnet embedded rotor of the present invention adopts a reasonable rotor layout and a permanent magnet with a trapezoidal cross section, which can improve the saddle shape of each magnetic pole, make the waveform tend to be gentle, and effectively suppress the occurrence of the intersection of the two magnetic poles.
  • the two magnetic convex waves greatly improve the Hall signal jitter phenomenon when the motor is commutating, avoiding the distortion of the output waveform of the drive circuit, reducing the output torque ripple of the motor, making the motor run smoothly and operate more efficiently. Less vibration.
  • the permanent magnet embedded rotor of the present invention can increase the corresponding magnetic mean value of each pole of the rotor by more than 50% compared with the prior art; meanwhile, the present invention significantly improves the surface magnetic waveform corresponding to each magnetic pole, thereby improving The overall performance and power density of the motor have also increased significantly.
  • the permanent magnet embedded rotor for the DC brushless motor of the invention has the advantages of good heat dissipation effect and material saving, and the motor has better dynamic balance effect and less wind noise under the high speed running condition of the motor, further reducing Cost and performance for the purpose.
  • FIG. 1 is a schematic structural view of a conventional permanent magnet embedded rotor.
  • Fig. 2 is a partial enlarged view of a portion A shown in Fig. 1.
  • Fig. 3 is a table magnetic distribution diagram of a conventional permanent magnet embedded rotor.
  • FIG. 4 is a table magnetic distribution diagram of a permanent magnet embedded rotor according to a preferred embodiment of the present invention.
  • Figure 5 is a partial enlarged view of Figure 3 showing two surges between two magnetic poles.
  • Fig. 6 is a partial enlarged view of Fig. 4 showing that the two surges between the two magnetic poles are suppressed.
  • Figure 7 is a partial enlarged view of Figure 3 showing the magnetic field of a magnetic pole.
  • Figure 8 is a partial enlarged view of Figure 4 showing the magnetic field of a magnetic pole.
  • Figure 9 is a cross-sectional view of a permanent magnet in accordance with a preferred embodiment of the present invention.
  • Figure 10 is a cross-sectional view of a rotor core in accordance with a preferred embodiment of the present invention.
  • Figure 11 is a cross-sectional view of a permanent magnet embedded rotor in accordance with a preferred embodiment of the present invention.
  • a permanent magnet embedded rotor for a brushless DC motor includes: a cylindrical rotor core A laminated by a rotor punch, and a pair of strip-shaped permanent magnet slots C and 2p a heat dissipation through hole B; wherein the p pair of permanent magnet slots C and the 2p heat dissipation through holes B are disposed inside the rotor core A along a central axis direction of the rotor core A, and surround the center of the rotor core A
  • the shafts are evenly spaced; each of the heat dissipation through holes B is located between two permanent magnet slots C, and p is an integer greater than or equal to 1;
  • the p-shaped permanent magnet D is fixedly disposed in the permanent magnet slot C, wherein the permanent magnet D has a trapezoidal cross section and p is an integer greater than or equal to 1.
  • the shape of the permanent magnet slot C and the permanent magnet D are completely matched.
  • the cross section of the heat dissipation through hole B is a fan shape; the two sides of the fan shape are respectively opposite to the adjacent two trapezoidal waists; the magnetic flux leakage of each magnetic pole is controlled by controlling local magnetic saturation saturation, so that the rotor The magnetism of each pole increases, and the utilization of permanent magnets is improved.
  • the distance H between the trapezoidal waist and the edge of the sector is 0.5 to 3 mm.
  • the sides of the sector are respectively parallel to the two trapezoidal waists adjacent thereto.
  • the arc of the sector is closer to the outer circumference of the rotor core A than the central angle of the sector, and the distance I between the arc of the sector and the edge of the rotor core A is 0.5 to 3 mm; Magnetic saturation is used to reduce the magnetic flux leakage between the magnetic poles.
  • the angle between the two waists of the trapezoid is 5°-20°.
  • the rotor core A is integrally formed.
  • the cross section of the permanent magnet D may also be curved.
  • the invention adopts a reasonable rotor layout and a permanent magnet with a trapezoidal cross section, and guides the magnetic dense flow direction of the permanent magnet inside the rotor to improve the local magnetic dense flow direction and the magnetic density abrupt phenomenon, so that the rotor magnetic curve is greatly improved.
  • the permanent magnet embedded rotor in the prior art is provided with a magnetic air gap on the left and right sides of the permanent magnet, and the surface magnetic field of the existing permanent magnet embedded rotor is measured to obtain a surface magnetic distribution map. , As shown in Figure 3.
  • the surface magnetism of the permanent magnet embedded rotor of the present invention was measured to obtain a surface magnetic distribution map as shown in FIG.
  • the existing permanent magnet embedded rotor has a plurality of convex waves on the surface magnetic curve, and the permanent magnet embedded rotor of the present invention does not have a convex wave on the surface magnetic curve, which indicates The invention discloses a permanent magnet embedded rotor capable of effectively suppressing the surface magnetic convex wave, thereby improving the Hall signal jitter phenomenon occurring when the motor is commutating, avoiding the distortion of the output waveform of the driving circuit, reducing the output torque fluctuation of the motor, and making the motor Smooth operation and improved efficiency of motor operation.
  • FIGS. 5-6 it can be found that the existing permanent magnet embedded rotor has a plurality of convex waves on the surface magnetic curve, and the permanent magnet embedded rotor of the present invention does not have a convex wave on the surface magnetic curve, which indicates The invention discloses a permanent magnet embedded rotor capable of effectively suppressing the surface magnetic convex wave, thereby improving the Hall signal jitter phenomenon occurring when the motor is commutating, avoiding the distortion of the output wave
  • the magnetic mean value corresponding to each magnetic pole of the existing permanent magnet embedded rotor is 90 mT, and the permanent magnet embedded rotor of the present invention
  • the average value of the magnetic field corresponding to each magnetic pole is 140 mT. It can be seen that the magnetic mean value corresponding to each magnetic pole of the permanent magnet embedded rotor of the present invention is increased by more than 50% compared with the existing permanent magnet embedded rotor. At the same time, the saddle shape of the surface magnetic waveform corresponding to each magnetic pole is significantly improved, thereby improving the overall performance of the motor and the power density is also significantly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种直流无刷电机用永磁体内嵌式转子,包括:由转子冲片叠压而成的圆柱状的转子芯(A),具有p对条状的永磁体槽(C)和2p个散热通孔(B);其中,该p对永磁体槽(C)和2p个散热通孔(B)均沿该转子芯(A)的中心轴方向设置于该转子芯(A)的内部,且围绕该转子芯(A)的中心轴均匀间隔分布;每个该散热通孔(B)位于两个永磁体槽(C)之间;及p对条状的永磁体(D),固定设置于该永磁体槽(C)内,其中,该永磁体(D)的横截面为一梯形,p为大于或等于1的整数。

Description

一种直流无刷电机用 7磁体内嵌式转子
技术领域
本发明涉及一种直流无刷电机用转子, 尤其是一种直流无刷电机用 永磁体内嵌式转子。
背景技术
为了减少漏磁系数, 增加永磁材料的利用率, 现有的永磁体内嵌式 转子一般会采用隔磁措施, 即在内置的永磁体的左右两端布置隔磁气隙。
中国发明专利 "一种内置式永磁电机转子冲片及内置式永磁电机转 子" (申请号 201210419454.3 )公开了一种内置式永磁电机转子冲片及内 置式永磁电机转子, 包括冲片本体, 所述冲片本体包括整体呈圆形的内层 冲片, 在所述内层冲片的边缘沿其圆周方向等距离地设有多个缺口, 还设 有多个与缺口固定配合的外层冲片,所述外层冲片和内层冲片之间留有供 固定永磁体用的间隙;永磁体置放于内层冲片的缺口和外层冲片之间形成 的间隙或永磁体槽中, 用以限制永磁体的移动。
中国发明专利 "不等气隙永磁电机转子冲片 " (申请号 201210074091.4 ) 公开了一种不等气隙永磁电机转子冲片, 由多个扇形转 子冲片拼装组合而成,扇形转子冲片的外圆弧内开设有永磁体安放槽和隔 磁磁桥, 扇形转子冲片的内圆弧上开设有定位孔; 组成同一转子冲片的各 扇形转子冲片的外圆弧具有不同圆心;单个扇形转子冲片的外圆弧与内圆 弧也具有不同圆心。
中国发明专利 "永磁体转子及其生产方法" (中国发明专利号
ZL01 121704.9 , 授权公告号 CN1201463C) 公开了一种转子铁心内嵌有永 磁体的永磁体转子, 包括: 里面嵌有所述永磁体的狭缝; 和在所述狭缝的 纵向末端内侧靠近其纵向中部的位置设置的跨接部分,该跨接部分跨接所 述转子铁心的相对于各个狭缝的径向靠外部分和径向靠内部分;所述狭缝 的纵向末端开在所述转子铁心的外圆周面。
中国发明专利申请 "一种内嵌式正弦型面永磁电机转子" (中国发 明专利申请号 201210316633.4, 公开号 CN102857000A)公开了一种内嵌 式正弦型面永磁电机转子。该发明在转子表面绕轴设置有若干连续相接的 弧形凸起,根据相邻凸起相交点与转子轴心的连线将转子划分成若干等分 的区域, 在每个区域内分别设置有两个呈倒八字形排布的槽体, 在槽体内 插置有永磁体。
现有永磁体内嵌式转子的隔磁气隙 ω和冲片边距 b存在磁路结构突 变, 如图 1~2所示, 这样的结构会导致两个问题:
1、每个磁极的表磁波形为马鞍形, 如图 3所示, 而且峰谷点相差较 大, 从而导致电机的转矩波动, 影响电机运转的平顺性。
2、两磁极交界处出现两个表磁凸波, 如图 5所示, 这种由磁路结构 性缺陷引起的表磁凸波会引起霍尔信号抖动, 驱动波形畸变, 以及电机输 出转矩波动增加, 电机损耗增大, 所以有必要进一步改进。
发明内容
本发明的目的在于提供一种直流无刷电机用永磁体内嵌式转子, 采 用采用合理的转子布局和横截面为梯形的永磁体,通过引导转子内部永磁 体的磁密流向, 以改善局部磁密流向、 磁密突变现象, 使得转子表磁曲线 大为改善。
本发明的又一目的在于提供本一种直流无刷电机用永磁体内嵌式转 子,在永磁体之间设置散热通孔,能改善转子的散热性能,并且节省材料。
为达到以上目的, 本发明提供一种直流无刷电机用永磁体内嵌式转 子, 包括:
由转子冲片叠压而成的圆柱状的转子芯 A, 具有 p对条状的永磁体 槽 C和 2p个散热通孔 B; 其中, 该 p对永磁体槽 C和 2p个散热通孔 B 均沿该转子芯 A的中心轴方向设置于该转子芯 A的内部, 且围绕该转子 芯 A的中心轴均匀间隔分布; 每个该散热通孔 B位于两个永磁体槽 C之 间, p为大于或等于 1的整数; 及
p对条状的永磁体 D, 固定设置于该永磁体槽 C内, 其中, 该永磁 体 D的横截面为一梯形, p为大于或等于 1的整数。
优选的, 该永磁体槽 C和永磁体 D的形状完全匹配。
优选的, 该散热通孔 B的横截面为一扇形; 该扇形的两边分别与相 邻的两个梯形的腰相对;通过控制局部的磁密饱和来达到控制每磁极的漏 磁系数, 使得转子每极的表磁增加, 永磁体的利用率得以提高。
优选的, 该梯形的腰与该扇形的边之间的距离 H为 0.5~3mm。
优选的, 该扇形的两边分别平行于与之相邻的两个梯形的腰。
优选的, 该扇形的弧相较于该扇形的圆心角更靠近该转子芯 A的外 圆周,该扇形的弧与该转子芯 A的边缘之间的距离 I为 0.5~3mm; 通过控 制局部的磁密饱和来减少磁极间的漏磁问题。
参见图 9, 优选的, 该梯形的两腰之间的夹角为 5° -20° 。
优选的, 该转子芯 A为一体成型。
替代的, 永磁体 D的横截面也可以采用弧形设计。
本发明对应的实施例采用的永磁体 D为 2对,也可以采用 1或 3、4、
5对。
本发明的有益效果是:
1、本发明的永磁体内嵌式转子采用合理的转子布局和横截面为梯形 的永磁体, 能够改善每个磁极的马鞍形现象, 使波形趋于平缓, 而且有效 抑制两磁极交界处出现的两个表磁凸波,从而极大地改善了电机换相时出 现的霍尔信号抖动现象, 避免了驱动电路输出波形的畸变, 减少了电机输 出转矩波动, 使电机运转平顺、 运转效率更高、 震动更少。
2、本发明的永磁体内嵌式转子可使转子每磁极对应的表磁平均值较 现有技术增加 50%以上; 同时,本发明使得每磁极对应的表磁波形得到明 显改善, 从而提高了电机的整体性能、 功率密度也得到明显增加。 3、本发明的直流无刷电机用永磁体内嵌式转子具有散热效果好、节 省材料的优点, 在电机高速运转条件下电机有更好的动平衡效果、更少的 风噪, 进一步达到降低成本和提高性能的目的。
本发明的这些目的, 特点, 和优点将会在下面的具体实施方式, 附 图, 和权利要求中详细的揭露。
附图说明
图 1为现有永磁体内嵌式转子的结构示意图。
图 2为图 1所示的 A部局部放大图。
图 3为现有永磁体内嵌式转子的表磁分布图。
图 4为根据本发明的一较佳实施例的永磁体内嵌式转子的表磁分布 图。
图 5为图 3的局部放大图, 展示了两磁极间的两个突波。
图 6为图 4的局部放大图, 展示了两磁极间的两个突波得到抑制。 图 7为图 3的局部放大图, 展示了一磁极的表磁。
图 8为图 4的局部放大图, 展示了一磁极的表磁。
图 9为根据本发明的一较佳实施例的永磁体的截面图。
图 10为根据本发明的一较佳实施例的转子芯截面图。
图 1 1 为根据本发明的一较佳实施例的的永磁体内嵌式转子的截面 图。
附图标号说明: A转子芯
B散热通孔
C永磁体槽
D永磁体
具体实施方式
为了能更好地理解本发明的上述技术方案, 下面结合附图和实施例 进行进一步地详细描述。
参见图 10~12, 一种直流无刷电机用永磁体内嵌式转子, 包括: 由转子冲片叠压而成的圆柱状的转子芯 A, 具有 p对条状的永磁体 槽 C和 2p个散热通孔 B; 其中, 该 p对永磁体槽 C和该 2p个散热通孔 B 均沿该转子芯 A的中心轴方向设置于该转子芯 A的内部, 且围绕该转子 芯 A的中心轴均匀间隔分布; 每个该散热通孔 B位于两个永磁体槽 C之 间, p为大于或等于 1的整数; 及
p对条状的永磁体 D, 固定设置于该永磁体槽 C内, 其中, 该永磁 体 D的横截面为一梯形, p为大于或等于 1的整数。
优选的, 该永磁体槽 C和永磁体 D的形状完全匹配。
优选的, 该散热通孔 B的横截面为一扇形; 该扇形的两边分别与相 邻的两个梯形的腰相对;通过控制局部的磁密饱和来达到控制每磁极的漏 磁系数, 使得转子每极的表磁增加, 永磁体的利用率得以提高。
优选的, 该梯形的腰与该扇形的边之间的距离 H为 0.5~3mm。 优选的, 该扇形的两边分别平行于与之相邻的两个梯形的腰。
优选的, 该扇形的弧相较于该扇形的圆心角更靠近该转子芯 A的外 圆周,该扇形的弧与该转子芯 A的边缘之间的距离 I为 0.5~3mm; 通过控 制局部的磁密饱和来减少磁极间的漏磁问题。
参见图 9, 优选的, 该梯形的两腰之间的夹角为 5° -20° 。
优选的, 该转子芯 A为一体成型。
替代的, 永磁体 D的横截面也可以采用弧形设计。
本发明由于采用合理的转子布局和横截面为梯形的永磁体, 通过引 导转子内部永磁体的磁密流向, 以改善局部磁密流向、 磁密突变现象, 使 得转子表磁曲线大为改善。
参见图 1~2, 现有技术中的永磁体内嵌式转子在永磁体的左右两侧 设置隔磁气隙, 对现有永磁体内嵌式转子的表磁进行测量, 得到表磁分布 图, 如图 3所示。
对本发明的永磁体内嵌式转子的表磁进行测量, 得到表磁分布图, 如图 4所示。
参见图 5~6, 可以发现, 现有永磁体内嵌式转子的表磁曲线上具有 多个凸波, 本发明的永磁体内嵌式转子的表磁曲线上不具有凸波, 这说明 本发明的永磁体内嵌式转子能够有效地抑制表磁凸波,从而改善电机换相 时出现的霍尔信号抖动现象, 避免了驱动电路输出波形的畸变, 减少了电 机输出转矩波动, 使电机运转平顺, 提高电机运转的效率。 参见图 7~8, 在同样采用表磁为 200mT永磁体的条件下, 现有永磁 体内嵌式转子的每磁极对应的表磁平均值为 90mT, 而本发明的永磁体内 嵌式转子的每磁极对应的表磁平均值为 140mT ; 由此可见,本发明的永磁 体内嵌式转子的每磁极对应的表磁平均值相比于现有永磁体内嵌式转子 提高了 50%以上, 同时使得每磁极对应的表磁波形的马鞍形得到明显改 善, 从而提高了电机的整体性能、 功率密度也得到明显增加。
通过上述实施例, 本发明的目的巳经被完全有效的达到了。 熟悉该 项技艺的人士应该明白本发明包括但不限于附图和上面具体实施方式中 描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利 要求书的范围中。

Claims

权 利 要 求 书
1.一种直流无刷电机用永磁体内嵌式转子, 包括:
由转子冲片叠压而成的圆柱状的转子芯 (A),具有 p对条状的永磁体 槽 (C)和 2p个散热通孔 (B);其中,该 p对永磁体槽 (C)和 2p个散热通孔 (B) 均沿该转子芯 (A)的中心轴方向设置于该转子芯 (A)的内部, 且围绕该转子 芯 (A)的中心轴均匀间隔分布; 每个该散热通孔 (BM立于两个永磁体槽 (C) 之间, p为大于或等于 1的整数; 及
p对条状的永磁体 (D), 固定设置于该永磁体槽 (C)内, 其中, 该永磁 体 (D)的横截面为一梯形, p为大于或等于 1的整数。
2.根据权利要求 1所述的直流无刷电机用永磁体内嵌式转子, 其中, 该永磁体槽 (C)和永磁体 (D)的形状完全匹配。
3.根据权利要求 1所述的直流无刷电机用永磁体内嵌式转子, 其中, 该散热通孔 (B)的横截面为一扇形; 该扇形的两边分别与相邻的两个梯形 的腰相对。
4.根据权利要求 3所述的直流无刷电机用永磁体内嵌式转子, 其中, 该梯形的腰与该扇形的边之间的距离 H为 0.5~3mm。
5.根据权利要求 3所述的直流无刷电机用永磁体内嵌式转子, 其中, 该扇形的两边分别平行于与之相邻的两个梯形的腰。
6.根据权利要求 3所述的直流无刷电机用永磁体内嵌式转子, 其中, 该扇形的弧相较于该扇形的圆心角更靠近该转子芯 (A)的外圆周, 该扇形 的弧与该转子芯 (A)的边缘之间的距离 I为 0.5~3mm。
7.根据权利要求 1所述的直流无刷电机用永磁体内嵌式转子, 其中, 该梯形的两腰之间的夹角为 5 ° -20° 。
PCT/CN2014/073136 2014-02-27 2014-03-10 一种直流无刷电机用永磁体内嵌式转子 WO2015127691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/430,913 US20160248284A1 (en) 2014-02-27 2014-03-10 Permanent magnet embedded rotor of BLDC motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410068613.9 2014-02-27
CN201410068613.9A CN104883024A (zh) 2014-02-27 2014-02-27 一种直流无刷电机用永磁体内嵌式转子

Publications (1)

Publication Number Publication Date
WO2015127691A1 true WO2015127691A1 (zh) 2015-09-03

Family

ID=53950402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073136 WO2015127691A1 (zh) 2014-02-27 2014-03-10 一种直流无刷电机用永磁体内嵌式转子

Country Status (3)

Country Link
US (1) US20160248284A1 (zh)
CN (1) CN104883024A (zh)
WO (1) WO2015127691A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571724A (zh) * 2016-10-20 2017-04-19 上海应用技术大学 110kW超高效永磁同步电动机
CN106571723A (zh) * 2016-10-20 2017-04-19 上海应用技术大学 160kW超高效永磁同步电动机
CN106411085A (zh) * 2016-10-20 2017-02-15 上海应用技术大学 3kW超高效永磁同步电动机
CN106571705A (zh) * 2016-10-20 2017-04-19 上海应用技术大学 30kW超高效永磁同步电动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018775A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 永久磁石形モータ
JP2004343915A (ja) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd 電動機
US20070075596A1 (en) * 2005-10-01 2007-04-05 Turbo Power Systems Limited Self-cooled rotor for an electrical machine
CN201887628U (zh) * 2010-11-25 2011-06-29 余虹锦 新型复合励磁方式的永磁式无刷单相同步发电机
CN202405897U (zh) * 2012-01-17 2012-08-29 广州光之歌能源科技有限公司 散热孔式轻载型风力发电机转子体及风力发电机
CN202475062U (zh) * 2012-02-29 2012-10-03 李金东 永磁直流无刷电机转子
CN202918079U (zh) * 2012-08-29 2013-05-01 浙江兆丰机械科技有限公司 一种风力发电机用转子铁芯
CN103490541A (zh) * 2013-09-27 2014-01-01 南京磁谷科技有限公司 高速电机自冷却转子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445062A (en) * 1978-12-26 1984-04-24 The Garrett Corporation Rotor assembly having anchors with undulating sides
JPH08256440A (ja) * 1995-03-15 1996-10-01 Yaskawa Electric Corp 永久磁石形同期回転電機のロータ
DE69839927D1 (de) * 1997-10-13 2008-10-02 Matsushita Electric Ind Co Ltd Motor mit innerem Permanentmagnetrotor
JP2002078259A (ja) * 2000-08-31 2002-03-15 Yamaha Motor Co Ltd 永久磁石回転子
CN1142621C (zh) * 2001-07-17 2004-03-17 哈尔滨工业大学 永磁电机转子
CN101978576A (zh) * 2008-03-19 2011-02-16 三洋电机株式会社 永久磁铁同步电动机
KR101021120B1 (ko) * 2009-07-14 2011-03-14 한양대학교 산학협력단 고속모터용 회전자
AU2011359891A1 (en) * 2011-02-24 2013-09-05 Andritz Ritz Gmbh Internally exicted synchronous motor comprising a permanent magnet rotor with multiple corrosion protection
US8917005B2 (en) * 2011-12-09 2014-12-23 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
CN202565143U (zh) * 2012-03-20 2012-11-28 大连液力机械有限公司 用于永磁涡流传动装置的梯形磁块分布结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018775A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 永久磁石形モータ
JP2004343915A (ja) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd 電動機
US20070075596A1 (en) * 2005-10-01 2007-04-05 Turbo Power Systems Limited Self-cooled rotor for an electrical machine
CN201887628U (zh) * 2010-11-25 2011-06-29 余虹锦 新型复合励磁方式的永磁式无刷单相同步发电机
CN202405897U (zh) * 2012-01-17 2012-08-29 广州光之歌能源科技有限公司 散热孔式轻载型风力发电机转子体及风力发电机
CN202475062U (zh) * 2012-02-29 2012-10-03 李金东 永磁直流无刷电机转子
CN202918079U (zh) * 2012-08-29 2013-05-01 浙江兆丰机械科技有限公司 一种风力发电机用转子铁芯
CN103490541A (zh) * 2013-09-27 2014-01-01 南京磁谷科技有限公司 高速电机自冷却转子

Also Published As

Publication number Publication date
US20160248284A1 (en) 2016-08-25
CN104883024A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5677584B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
CN106340982B (zh) 永磁同步电机的转子及电机
JP2006014457A (ja) 同期電動機
WO2015127691A1 (zh) 一种直流无刷电机用永磁体内嵌式转子
WO2016192581A1 (zh) 永磁电机转子及永磁同步电机
WO2013013435A1 (zh) 永磁同步电机
CN102957227A (zh) 无刷电机
CN102457113A (zh) 旋转电机的转子及旋转电机
JP2005027369A (ja) 電動機
CN105827087A (zh) 一种低齿槽转矩外转子电机
CN105305748B (zh) 永磁电机
WO2015051571A1 (zh) 一种直流无刷电机磁路结构及其永磁体内嵌式转子
CN107222046B (zh) 切向电机及切向电机转子
CN115833513B (zh) 一种带交替极结构的高转矩密度的盘式电机
JP7014227B2 (ja) ロータ及び当該ロータを有するモータ
JP2021083223A (ja) 永久磁石式モータの回転子構造
CN113489183B (zh) 一种自斜极的永磁电机转子冲片及永磁电机
CN202997723U (zh) 永磁电机
CN203086308U (zh) 异步启动永磁同步电机转子及其永磁电机
CN104410186A (zh) 具有斜极用永磁电机转子冲片
CN202798217U (zh) 一种具有正弦型面转子的直驱电机
CN203722345U (zh) 磁瓦、永磁转子和永磁电机
CN103904796A (zh) 盘式电机
CN203674831U (zh) 永磁直流无刷电机
CN210468925U (zh) 一种新型电机转子结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14430913

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883599

Country of ref document: EP

Kind code of ref document: A1