WO2015127689A1 - 一种活塞式发动机 - Google Patents
一种活塞式发动机 Download PDFInfo
- Publication number
- WO2015127689A1 WO2015127689A1 PCT/CN2014/073026 CN2014073026W WO2015127689A1 WO 2015127689 A1 WO2015127689 A1 WO 2015127689A1 CN 2014073026 W CN2014073026 W CN 2014073026W WO 2015127689 A1 WO2015127689 A1 WO 2015127689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- cylinder
- rack
- gear shaft
- steering
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 claims description 16
- 238000013461 design Methods 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910001141 Ductile iron Inorganic materials 0.000 description 2
- 229910001060 Gray iron Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/32—Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B1/00—Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
- F01B1/08—Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders arranged oppositely relative to main shaft and of "flat" type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
- F01B9/04—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
- F01B9/047—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with rack and pinion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/24—Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
Definitions
- the present invention relates to a piston engine which is widely used in small gasoline and diesel generators, motorcycle vehicles, RC engines, automobile engines, aerial equipment, low speed drones, helicopters and the like. Background technique
- the reciprocating piston engine of the prior art can be classified into a single row type and a double row type according to the arrangement of the cylinders.
- the individual cylinders of the single row engine are arranged in a row, generally vertically, but in order to reduce the height, the cylinders are sometimes arranged to be inclined or even horizontal.
- the two-row engine has two cylinders in a row, and the angle between the two columns is ⁇ 180° (-90°), which is called a V-type engine.
- crankshaft mechanism is used in all conventional reciprocating piston engines. It is heavy and also takes up space. The machining process is very difficult. The oscillation of the crankshaft and the piston shank causes the output of the force to be unstable, and there is also a large friction loss, and thus the engine life is short and the maintenance is difficult.
- the technical problem to be solved by the present invention is to provide a piston type engine which removes the crank mechanism with the heaviest and most space occupation and the most difficult processing process, and the production process is simple, the vibration is greatly reduced, and the volume and weight are greatly reduced.
- the force output is quite stable, the friction loss is smaller, the modular design can be adopted, and the application range of the engine in the industry is also increased, the installation is convenient, and the maintenance and replacement are easy.
- the utility model comprises a cylinder body, a left cylinder head, a right cylinder head, a plurality of left pistons, a plurality of right pistons, a plurality of rack sleeves, a plurality of micro-motion joints, a gear shaft and two steering camshafts;
- the cylinder body has a rectangular parallelepiped shape, and a plurality of parallel cylindrical bodies are arranged on the cylinder body in the longitudinal direction, and a rotating shaft through hole is opened in the width direction of the cylinder body;
- the left red cover and the right red cover are respectively installed at the left end and the right end of the red body;
- Each of the cylindrical bodies is mounted with a left piston mounted on the left end and a right piston mounted on the right end, and both the left piston and the right piston are slidable in the cylinder;
- a left combustion chamber is formed between the left cylinder head, the left piston and the cylinder body, and a right combustion chamber is formed between the right cylinder head and the right piston and the cylinder block;
- Each of the cylindrical bodies is mounted with a rack sleeve between the left piston and the right piston, and each rack sleeve includes an upper rack and a lower rack parallel to each other;
- Two cylindrical joints are mounted in each cylinder, one end of one micro-joint joint is connected to the left piston through a rotating shaft, and the other end is connected to the rack sleeve through a rotating shaft, and the other micro-motion joint One end is connected to the right piston through a rotating shaft, and the other end is connected to the rack sleeve through a rotating shaft;
- the gear shaft is mounted in a rotating shaft through hole of the cylinder body, and the gear shaft is from the upper rack of the plurality of rack sleeves Passing between the upper rack and the lower rack, the distance between the upper rack and the lower rack is larger than the outer diameter of the gear shaft;
- the two steering cam shafts are installed in the through hole of the rotating shaft of the cylinder, and are respectively disposed on a plurality of cams are mounted on the two sides of the gear shaft;
- One end of the gear shaft is mounted with a synchronizing gear, and a gear is mounted on the same end of the two steering cam shafts;
- the synchronizing gear and the two gears on both sides mesh with each other to synchronize the rotation of the gear shaft and the two steering camshafts;
- the cams on the two steering camshafts are rotated to the upper end to push the rack sleeve up, so that the lower lower rack meshes with the gear shaft, and the left and right micro-motion joints jump to the upper position;
- the cams on the two steering camshafts rotate to the lower end, pushing the rack sleeve down, making the upper portion The upper rack meshes with the gear shaft, and the left and right micro-motion joints jerk to the lower position.
- the above technical solution is further defined by: a direction in which the bump of at least one cam at one end is directed, and a direction in which the bump of at least one cam in the middle is pointed, and a plurality of cams on the steering camshaft The direction in which the bumps of at least one of the cams of the other end point, in turn, evenly distributes the entire stroke, so that the more the combined cylinder groups, the smoother the operation of the engine.
- the shaft through hole is perpendicular to the direction of the cylinder.
- the left piston and the right piston are closely matched with the inner wall of the cylinder without air leakage, and the left cylinder head and the right cylinder head tightly close the cylinder body.
- the piston engine further includes an inertia wheel mounted on the other end of the gear shaft for outputting the kinetic energy transmitted after the gear shaft rotates.
- tooth profiles of the gear shaft, the upper rack and the lower rack are helical teeth, herringbone teeth or ratchet teeth.
- the present invention has the following beneficial effects:
- the crank mechanism with the heaviest and most space-consuming and the most difficult processing is removed.
- the transmission principle of the rack and pinion is used to facilitate the commutation of the rack sleeve by the micro-motion joint and the steering camshaft, so that the gear shaft can be continuously stable. Rotate the direction and pass the engine out.
- the vibration of the engine is greatly reduced (only vibration in one direction, and the vibration energy generated by one combustion chamber can be slowed down by the combustion chamber facing the position, and the vibrations of other pairs of cylinders will be evenly split);
- the driving force of the piston almost completely falls on the gear shaft (only the thrust component below 5 degrees), so the force output is relatively stable and the output is larger, and there is less friction loss;
- the piston engine of the present invention replaces the traditional crank mechanism with a rack and pinion drive.
- Others such as pistons, intake and exhaust, lubrication and cooling, and peripherals are the same, so it can be disclosed now.
- the technology shares the same parts and design, which allows the patent to quickly produce finished products with the support of the prior art and the corresponding factory.
- the cylinder can be stretched by aluminum to form a profile. After the product is stabilized, it is necessary to use steel stretching to cut off the profile, or to continuously cast gray iron ductile iron to improve productivity and reduce costs.
- the engine can be modularly designed and modularized. Two 6-cylinder engine body transmission gears are meshed into a 12-cylinder engine. Other parts such as oil supply, cooling, power generation, and power rotation Other functions can be modularized and designed into the next module. This brings the following benefits: Small size, easy installation, easy maintenance and replacement. DRAWINGS
- Figure 1 is a perspective view of a piston engine of the present invention.
- Figure 2 is a perspective view of the cylinder of the present invention.
- Figure 3 is a perspective view of the piston engine of the present invention with the cylinder removed.
- Figure 4 is a cross-sectional view of the piston engine of the present invention.
- Fig. 5 is a cross-sectional view taken along line DD of Fig. 4;
- Figure 6 is a cross-sectional view taken along line C-C of Figure 4 .
- Figure 7 is a cross-sectional view taken along line E-E of Figure 4.
- Figure 8 is a side view of the piston engine of the present invention.
- Figure 9 is a perspective view of the rack sleeve of the present invention.
- Figure 10 is a side elevational view of the rack sleeve of the present invention.
- Figure 11 is a perspective view of the micromotion joint of the present invention.
- Figure 12 is a perspective view of a gear shaft of the present invention.
- FIG. 13 is a perspective view of the steering camshaft of the present invention. detailed description
- a piston engine includes a cylinder block 12 , a left cylinder head 14 , a right cylinder head 16 , three left pistons 18 , three right pistons 20 , and three rack sleeves . 22.
- the cylinder block 12 has a rectangular parallelepiped shape.
- the cylinder block 12 is provided with three parallel cylindrical bodies 122 extending in the longitudinal direction.
- the cylinder block 12 defines a rotating shaft through hole 124 in the width direction.
- the shaft through hole 124 is perpendicular to the direction of the cylindrical body 122.
- the left cylinder head 14 is mounted at the left end of the cylinder block 12.
- the right cylinder head 16 is mounted at the right end of the cylinder block 12.
- the three left pistons 18 are respectively mounted in three cylindrical bodies 122 which are respectively mounted in the three cylindrical bodies 122.
- Each of the cylindrical bodies 122 is mounted with a left piston 18 mounted at the left end and a right piston 20 mounted at the right end, and both the left piston 18 and the right piston 20 are slidable within the cylindrical body 122.
- the left piston 18 and the right piston 20 are tightly fitted to the inner wall of the cylinder block 12 without leaking.
- the left cylinder head 14 tightly closes the cylindrical body 122, the left cylinder head 14, the left piston 18 and A left combustion chamber 182 is formed between the cylinder blocks 12.
- the right cylinder head 16 tightly closes the cylindrical body 122, and a right combustion chamber 202 is formed between the right cylinder head 16, the right piston 20 and the cylinder block 12.
- the three rack sleeves 22 are respectively mounted in the three cylindrical bodies 122.
- a rack sleeve 22 between the left piston 14 and the right piston 20 is mounted in each of the cylindrical bodies 122.
- Each of the rack sleeves 22 includes an upper rack 222 and a lower rack 224 that are parallel to each other.
- the six micro-motion joints 24 are divided into three groups in two groups and mounted in three cylindrical bodies 122, respectively.
- Two micro-motion joints 24 are mounted in each of the cylindrical bodies 122, one end of one of the micro-motion joints 24 is connected to the left piston 18 via a rotating shaft (not labeled), and the other end is connected to the tooth by a rotating shaft (not labeled).
- one end of the other micro-motion joint 24 is coupled to the right piston 20 via a rotating shaft (not labeled), and the other end is coupled to the rack sleeve 22 via a rotating shaft (not labeled).
- the gear shaft 26 is mounted in the shaft through hole 124 of the cylinder block 12.
- the gear shaft 26 passes between the upper rack 222 and the lower rack 224 of the three rack sleeves 22.
- the distance between the upper rack 222 and the lower rack 224 is slightly larger than the outer diameter of the gear shaft 26.
- the tooth profiles of the gear shaft 26, the upper rack 222 and the lower rack 224 are helical teeth, herringbone teeth or ratchet teeth.
- the two steering camshafts 28 are mounted in the shaft through holes 124 of the cylinder block 12, and are respectively disposed on the left and right sides of the gear shaft 26.
- Six cams 282 are mounted on the steering camshaft 28.
- the direction in which the bumps 284 of the two cams 282 at one end point, and the direction in which the bumps 284 of the two cams 282 in the middle point, and the two cams 282 at the other end is sequentially spaced by an angle of 120 degrees.
- gear shaft 26 One end of the gear shaft 26 is mounted with a synchronizing gear 266, and a gear 286 is mounted at the same end of the two steering cam shafts 28.
- the inertia wheel 30 is mounted on the other end of the gear shaft 26 for outputting the rotation of the gear shaft 26 The kinetic energy that is transmitted.
- the synchronizing gear 266 and the two gears 286 on both sides mesh with each other to synchronize the rotation of the gear shaft 26 and the two steering camshafts 28.
- the working process is described by taking a group of cylinders as an example.
- the left piston 18 and the right piston 20 are operated to the leftmost side, and the two cams 282 on the two steering camshafts 28 are rotated to the upper end to push the rack sleeve. 22 ascending, the lower lower rack 224 is engaged with the gear shaft 26, and the left and right micro-motion joints 24 are moved to the upper position.
- the left combustion chamber 182 is inflated and ignited, and pushes the left piston 18, the right piston 20, and the left and right micro-motion joints 24 to the right; under the action of the right combustion chamber 202 to limit the air pressure, the left and right micro-motions
- the joint 24 remains upwardly pressed during the entire right shift; as the lower rack 224 of the lower portion of the rack sleeve 22 engages with the gear shaft 26, the right shift of the rack sleeve 22 urges the gear shaft 26 to rotate counterclockwise.
- the left piston 18, the right piston 20, the left and right micro-motion joints 24 are moved to the right to the right, the left combustion chamber 182 is exhausted, and the left piston 18 and the right piston 20 are close to zero, and the two steering camshafts are simultaneously
- the cam 282 on the 28 is rotated to the lower end, and the rack sleeve 22 is pushed downward to engage the upper upper rack 222 with the gear shaft 26, while the left and right micro-motion joints 24 are moved to the lower position.
- the right combustion chamber 202 is inflated and ignited, and pushes the left piston 18, the right piston 20, and the left and right micro-motion joints 24 to the left; under the action of the left combustion chamber 182 to limit the air pressure, the left and right micro-motions
- the joint 24 remains in a downwardly compressed state throughout the left shift; as the upper rack 222 on the upper portion of the rack sleeve 22 engages with the gear shaft 26, the left shift of the rack sleeve 22 pushes the gear shaft 26 counterclockwise.
- the synchronizing gear 266 of the gear shaft 26 and the two gears 286 of the steering camshaft 28 on both sides mesh with each other to control the steering camshaft 28 to synchronize with the gear shaft 26, and the steering cam is ensured when the rack sleeve 22 swings back and forth for one cycle.
- the shaft 28 is rotated 360 degrees so that the cylinders complete one cycle of intake, combustion, and exhaust.
- the vibration of the engine is greatly reduced (only one direction of vibration, and the vibration generated by one combustion chamber can be slowed down by the combustion chamber in the opposite position, while the vibrations of other pairs of cylinders are evenly split and the stroke is staggered);
- the piston engine of the present invention replaces the traditional crank mechanism with a rack and pinion drive.
- Others such as pistons, intake and exhaust, lubrication and cooling, and peripherals are the same, so it can be disclosed now.
- the technology shares the same parts and design, which allows the patent to quickly produce finished products with the support of the prior art and the corresponding factory.
- the engine can be modularly designed and modularized. Two 6-cylinder engine body transmission gears are meshed into a 12-cylinder engine. Other parts such as oil supply, cooling, power generation, and power rotation Other functions can be modularized and designed into the next module. This brings the following benefits: Small size, easy installation, easy maintenance and replacement.
- This patent adopts the one-cylinder double-piston mode, which is more suitable for the engine of the motorcycle. Because the small size and smoothness will make the motorcycle more compact and the product shape is more abundant.
- Model aircraft engine This patent adopts a one-cylinder double-piston model.
- the small size of the aluminum alloy is more suitable for use as a model aircraft engine, which can increase the thrust-to-weight ratio and obtain a larger stroke or a larger load.
- Automobile engine The main application direction of this patent is automobile engine. It can be used in a small amount of space, small weight and small weight, and low cost. If necessary, use two sets of 12-piston or 16-piston drive, plus Two sets of independent control systems, one set of engine dead fire while the other group still works to solve the anchoring problem caused by engine failure. When a large thrust is not required, one group of engines works for a group of rest, and when two thrusts are required, the two groups work together. , in order to get less fuel consumption and greater thrust.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transmission Devices (AREA)
Abstract
一种活塞式发动机包括缸体(12)、左缸盖(14)、右缸盖(16)、左活塞(18)、右活塞(20)、齿条套(22)、微动关节(24)、齿轮轴(26)、转向凸轮轴(28);缸体(12)上沿长度方向开设有若干个平行的圆筒体(122),缸体(12)上沿宽度方向开设一个转轴通孔(124);左缸盖(14)、右缸盖(16)分别安装在缸体(12)的左端和右端;每个圆筒体(122)中安装有一个左活塞(18)和一个右活塞(20);每一个圆筒体(122)中安装有一条齿条套(22),每一个齿条套(22)包括相互平行的上齿条(222)、下齿条(224);每个圆筒体(122)中安装有两个上述的微动关节(24);齿轮轴(26)安装在缸体(12)的转轴通孔(124)中,齿轮轴(26)从若干个齿条套(22)的上齿条(222)和下齿条(224)之间穿过;两根转向凸轮轴(28)安装在缸体(12)的转轴通孔(124)中,并分别设于齿轮轴(26)的两侧边,转向凸轮轴(28)上安装有若干个凸轮(282)。该活塞式发动机应用于汽车、航拍器材、直升机、低速无人机等。
Description
一种活塞式发动机 技术领域
本发明涉及一种活塞式发动机, 其广泛应用于小型汽柴油发电机、 摩托 车车发动机、 航模发动机、 汽车发动机、 航拍器材、 低速无人机、 直升机等。 背景技术
现有技术中的往复活塞式发动机, 按照气缸排列方式不同可以分为单列 式和双列式。 单列式发动机的各个气缸排成一列, 一般是垂直布置的, 但为 了降低高度, 有时也把气缸布置成倾斜的甚至水平的。 双列式发动机把气缸 排成两列, 两列之间的夹角 <180° (—般为 90° )称为 V型发动机。
传统的所有往复活塞式发动机, 都要用到曲轴机构, 它很重, 同时也很 占空间, 工艺加工难度非常大。 曲轴及活塞柄的摆动, 造成力的输出不平稳, 也存在很大的摩擦力损失, 并且因此导致发动机机使用寿命短, 使用维护困 难。
另外, 传统的所有往复活塞式发动机的活塞产生的输出力再推动曲轴, 采用摆动式的运动方式, 传送的力浪费很多, 振动很大。 发明内容
本发明要解决的技术问题在于: 提供一种活塞式发动机, 其去除了最重 最占空间并且工艺加工难度最大的曲轴机构, 生产工艺筒单, 振动大幅度下 降, 体积与重量大幅度减小, 力输出相当平稳, 更小的摩擦力损失, 可以模 块化设计, 也增加了发动机在行业的运用范围, 安装方便, 维修更换容易。
为了解决上述技术问题, 本发明提出以下技术方案: 一种活塞式发动机,
其包括一个缸体、 一左缸盖、 一右缸盖、 若干个左活塞、 若干个右活塞、 若 干条齿条套、 若干个微动关节、 一根齿轮轴、 两根转向凸轮轴;
该缸体是一个长方体形, 该缸体上沿长度方向开设有若干个平行的圓筒 体, 该缸体上沿宽度方向开设一个转轴通孔;
该左紅盖、 右紅盖分别安装在该紅体的左端和右端;
该每个圓筒体中安装有一个安装在左端的上述左活塞和一个安装在右端 的上述右活塞, 该左活塞和右活塞都可以在该圓筒体之中滑动;
该左缸盖、 左活塞和缸体之间形成一个左燃烧室, 该右缸盖、 右活塞和 缸体之间形成一个右燃烧室;
该每一个圓筒体中安装有一条位于左活塞和右活塞之间的上述齿条套, 该每一个齿条套包括相互平行的一个上齿条、 一个下齿条;
每个圓筒体中安装有两个上述的微动关节, 其中一个微动关节的一端通 过转轴连接在该左活塞上, 另一端通过转轴连接在该齿条套上, 另一个微动 关节的一端通过转轴连接在该右活塞上, 另一端通过转轴连接在该齿条套上; 该齿轮轴安装在该缸体的转轴通孔中, 该齿轮轴从该若干个齿条套的上 齿条和下齿条之间穿过, 该上齿条和下齿条之间的距离大于该齿轮轴的外径; 该两根转向凸轮轴安装在该缸体的转轴通孔中, 并分别设于该齿轮轴的 两侧边, 该转向凸轮轴上安装有若干个凸轮;
该齿轮轴的一端安装有一个同步齿轮, 该两根转向凸轮轴的同一端各安 装有一个齿轮;
该同步齿轮和两侧的两个齿轮相互啮合, 使该齿轮轴和两根转向凸轮轴 旋转保持同步;
该两根转向凸轮轴上的凸轮旋转到上端, 推动齿条套上行, 使其下部的 下齿条与齿轮轴啮合, 同时左、 右两个微动关节跃动到上部位置;
该两根转向凸轮轴上的凸轮旋转到下端, 推动齿条套下行, 使其上部的
上齿条与齿轮轴啮合, 同时左、 右两个微动关节跃动到下部位置。 上述技术方案的进一步限定在于: 该转向凸轮轴上的若干个凸轮中, 靠 一端的至少一个凸轮的凸点所指向的方向, 和靠中间的至少一个凸轮的凸点 所指向的方向, 以及靠另一端的至少一个凸轮的凸点所指向的方向, 依次平 均分配整个行程, 使得组合的气缸组越多, 发动机的运行越平稳。
上述技术方案的进一步限定在于: 该转轴通孔与该圓筒体方向垂直。 上述技术方案的进一步限定在于: 该左活塞、 右活塞都和该缸体的内壁 紧密配合不漏气, 该左缸盖和右缸盖把该圓筒体紧密封闭起来。
上述技术方案的进一步限定在于: 该活塞式发动机还包括一惯性轮, 该 惯性轮安装在该齿轮轴的另一端, 用于输出该齿轮轴旋转后所传递出来的动 能。
上述技术方案的进一步限定在于: 该齿轮轴、 上齿条和下齿条的齿形是 斜齿、 人字齿或棘齿。
与现有技术相比, 本发明具有以下有益效果:
1、 去除了最重最占空间并且工艺加工难度最大的曲轴机构, 利用齿轮齿 条的传动原理, 利于微动关节与转向凸轮轴对齿条套进行换向, 以使齿轮轴 获得持续稳定不变方向的转动并传出发动机。
2、 左活塞、 右活塞在同一轴线上运动, 传送的力直接作用到齿轮轴上, 只有齿轮齿条上的压力角产生极小的分力会作用到缸体壁上, 以此带来五个 好处:
一是整个发动机生产工艺的难度要求大幅度下降;
二是发动机的振动大幅度下降(只有一个方向上的振动, 并且一个燃烧 室产生的振动能被正对位置的燃烧室减緩, 同时其它几对气缸的振动会平分 行程错开);
四是没有曲轴及活塞柄的摆动, 活塞的推动力几乎全部垂直落在齿轮轴 上(只有 5度以下的推力分量), 因此力输出相当平稳输出也更大, 有更小的 摩擦力损失;
五是因整个机构平直流畅, 力的输出比较干净, 可以优先使用模块化的 设计, 这样也会便于后续研发设计的展开, 也增加了发动机在行业的运用范 围。
3、 本发明活塞式发动机与传统的往复活塞式发动机比较, 只是以齿轮齿 条传动取代了传统的曲轴机构, 其他如活塞、 进排气、 润滑冷却及外设都相 同, 所以可以与现在公开的技术共用相同零件与设计, 这样能让本专利在现 有技术及相应工厂的支持下快速生产出成品。
4、 模块化的设计及生产
因为是左右两活塞在同一轴线上运动, 带来了体积小, 振动小, 内部机 构及外观平整, 所以比较方便模块化的设计及生产, 如缸体可以用铝材拉伸 为型材截断成形, 在产品稳定型之后必要时采用钢拉伸为型材截断成形, 或 是采用连续性铸造灰铁球铁再加工成形, 以此提高生产率并降低成本。
因为外观的平顺特性, 可以将发动机模块化设计及模块化使用, 将两个 分别为 6缸的发动机本体通动齿轮啮合为 12缸的发动机, 其他部分如供油、 冷却、 发电、 动力轮出等功能能够模块化的也设计到一下模块中。 这样带来 如下好处: 体积小, 安装方便, 维修更换容易。 附图说明
图 1是本发明活塞式发动机的立体图。
图 2是本发明缸体的立体图。
图 3是本发明活塞式发动机卸去缸体的立体图。
图 4是本发明活塞式发动机的剖视图。
图 5是图 4的 D-D方向剖视图。
图 6是图 4的 C-C方向剖视图。
图 7是图 4的 E-E方向剖视图。
图 8是本发明活塞式发动机的侧视图。
图 9是本发明齿条套的立体图。
图 10是本发明齿条套的侧视图。
图 11是本发明微动关节的立体图。
图 12是本发明齿轮轴的立体图。
图 1 3是本发明转向凸轮轴的立体图。 具体实施方式
请参阅图 1至图 1 3 , —种活塞式发动机, 其包括一个缸体 12、 一左缸盖 14、 一右缸盖 16、 三个左活塞 18、 三个右活塞 20、 三条齿条套 22、 六个微 动关节 24、 一根齿轮轴 26、 两根转向凸轮轴 28、 一惯性轮 30。
该缸体 12是一个长方体形, 该缸体 12上沿长度方向开设有三个平行的 圓筒体 122 , 该缸体 12上沿宽度方向开设一个转轴通孔 124。
该转轴通孔 124与该圓筒体 122方向垂直。
该左缸盖 14安装在该缸体 12的左端。
该右缸盖 16安装在该缸体 12的右端。
该三个左活塞 18分别安装在三个圓筒体 122中, 该三个右活塞 20分别 安装在三个圓筒体 122中。
该每个圓筒体 122中安装有一个安装在左端的左活塞 18和一个安装在右 端的右活塞 20 , 该左活塞 18和右活塞 20都可以在该圓筒体 122之中滑动。
该左活塞 18、 右活塞 20都和该缸体 12的内壁紧密配合不漏气。
该左缸盖 14把该圓筒体 122紧密封闭起来, 该左缸盖 14、 左活塞 18和
缸体 12之间形成一个左燃烧室 182。
该右缸盖 16把该圓筒体 122紧密封闭起来, 该右缸盖 16、 右活塞 20和 缸体 12之间形成一个右燃烧室 202。
该三条齿条套 22分别安装在该三个圓筒体 122中。 该每一个圓筒体 122 中安装有一条位于左活塞 14和右活塞 20之间的齿条套 22。
该每一个齿条套 22包括相互平行的一个上齿条 222、 一个下齿条 224。 该六个微动关节 24 , 以两个为一组分成三组分别安装在三个圓筒体 122 中。
每个圓筒体 122中安装有两个微动关节 24 ,其中一个微动关节 24的一端 通过转轴(未标号)连接在该左活塞 18上, 另一端通过转轴(未标号)连接 在该齿条套 22上, 另一个微动关节 24的一端通过转轴(未标号)连接在该 右活塞 20上, 另一端通过转轴(未标号)连接在该齿条套 22上。
该齿轮轴 26安装在该缸体 12的转轴通孔 124中。
该齿轮轴 26从该三个齿条套 22的上齿条 222和下齿条 224之间穿过。 该上齿条 222和下齿条 224之间的距离略大于该齿轮轴 26的外径。
该齿轮轴 26、 上齿条 222和下齿条 224的齿形是斜齿、 人字齿或棘齿。 该两根转向凸轮轴 28安装在该缸体 12的转轴通孔 124中, 并分别设于该齿 轮轴 26的左右两侧边。
该转向凸轮轴 28上安装有六个凸轮 282。
该六个凸轮 282中, 靠一端的两个凸轮 282的凸点 284所指向的方向, 和靠中间的两个凸轮 282的凸点 284所指向的方向, 以及靠另一端的两个凸 轮 282的凸点 284所指向的方向, 依次间隔有 120度的角度。
该齿轮轴 26的一端安装有一个同步齿轮 266 ,该两根转向凸轮轴 28的同 一端各安装有一个齿轮 286。
该惯性轮 30安装在该齿轮轴 26的另一端, 用于输出该齿轮轴 26旋转后
所传递出来的动能。
该同步齿轮 266和两侧的两个齿轮 286相互啮合, 使该齿轮轴 26和两根 转向凸轮轴 28旋转保持同步。
下面以一组气缸为例介绍工作过程, 如图 5所示, 左活塞 18、 右活塞 20 运行到最左边, 该两根转向凸轮轴 28上的两个凸轮 282旋转到上端, 推动齿 条套 22上行, 使其下部的下齿条 224与齿轮轴 26啮合, 同时左、 右两个微 动关节 24跃动到上部位置。
左燃烧室 182进气、 点火燃烧, 推动左活塞 18、 右活塞 20、 左、 右两个 微动关节 24向右移动; 在右燃烧室 202限制气压的作用下, 左、 右两个微动 关节 24在整个右移过程中保持向上压紧状态不变; 因齿条套 22下部的下齿 条 224与齿轮轴 26啮合, 齿条套 22的右移推动齿轮轴 26逆时针旋转。
左活塞 18、 右活塞 20、 左、 右两个微动关节 24向右移动到最右边, 左 燃烧室 182排气, 左活塞 18、 右活塞 20的气压接近 0值, 同时两根转向凸轮 轴 28上的凸轮 282旋转到下端, 推动齿条套 22下行, 使其上部的上齿条 222 与齿轮轴 26啮合, 同时左、 右两个微动关节 24跃动到下部位置。
右燃烧室 202进气、 点火燃烧, 推动左活塞 18、 右活塞 20、 左、 右两个 微动关节 24向左移动; 在左燃烧室 182限制气压的作用下, 左、 右两个微动 关节 24在整个左移过程中保持向下压紧状态不变; 因齿条套 22上部的上齿 条 222与齿轮轴 26啮合, 齿条套 22的左移推动齿轮轴 26逆时针旋转。
该齿轮轴 26的同步齿轮 266和两侧的转向凸轮轴 28的两个齿轮 286相 互啮合, 以控制转向凸轮轴 28与齿轮轴 26同步, 当齿条套 22左右来回摆动 一个周期时保证转向凸轮轴 28旋转 360度, 以使气缸同步完成一个周期的进 气、 燃烧、 排气。
如图 4至图 7所示, 是三组气缸的行程图, 为了使运行更加平稳, 把振 动减少到最小, 并减小惯性飞轮的尺寸及重量, 把火花塞点火到下一次点火
的这一周期的时间三等分, 使这三缸的行程、 推力的衰减、 振动均勾分布在 一个周期的行程中, 以便得到均匀平稳及最小振动的输出。
本发明具有如下有益效果:
1、 去除了最重最占空间并且工艺加工难度最大的曲轴机构, 利用齿轮齿 条的传动原理, 利于微动关节 24与转向凸轮轴 28对齿条套 22进行换向, 以 使齿轮轴 26获得持续稳定不变方向 (逆时针方向) 的转动并传出发动机。
2、 左活塞 18、 右活塞 20在同一轴线上运动, 传送的力直接作用到齿轮 轴 26上, 只有齿轮齿条上的压力角产生极小的分力会作用到缸体壁上, 以此 带来五个好处:
一是整个发动机生产工艺的难度要求大幅度下降;
二是发动机的振动大幅度下降(只有一个方向上的振动, 并且一个燃烧 室产生的振动能被正对位置的燃烧室减緩, 同时其它几对气缸的振动会平分 行程错开);
三是整个发动机的体积与重量大幅度减小;
四是没有曲轴及活塞柄的摆动, 活塞的推动力几乎全部垂直落在齿轮轴 26上(只有 5度的推力分量), 因此力输出相当平稳输出也更大, 有更小的摩 擦力损失;
五是因整个机构平直流畅, 力的输出比较干净, 可以优先使用模块化的 设计, 这样也会便于后续研发设计的展开, 也增加了发动机在行业的运用范 围。
3、 本发明活塞式发动机与传统的往复活塞式发动机比较, 只是以齿轮齿 条传动取代了传统的曲轴机构, 其他如活塞、 进排气、 润滑冷却及外设都相 同, 所以可以与现在公开的技术共用相同零件与设计, 这样能让本专利在现 有技术及相应工厂的支持下快速生产出成品。
4、 模块化的设计及生产
因为是左右两活塞在同一轴线上运动, 带来了体积小, 振动小, 内部机 构及外观平整, 所以比较方便模块化的设计及生产, 如缸体可以用铝材拉伸 为型材截断成形, 在产品稳定型之后必要时采用钢拉伸为型材截断成形, 或 是采用连续性铸造灰铁球铁再加工成形, 以此提高生产率并降低成本。
因为外观的平顺特性, 可以将发动机模块化设计及模块化使用, 将两个 分别为 6缸的发动机本体通动齿轮啮合为 12缸的发动机, 其他部分如供油、 冷却、 发电、 动力轮出等功能能够模块化的也设计到一下模块中。 这样带来 如下好处: 体积小, 安装方便, 维修更换容易。
5、 本发明可运用的行业非常广泛
小型汽柴油发电机;
摩托车车发动机: 本专利采用一缸双活塞的模式比较适合用作麻托车的 发动机, 因为体积小外面平顺会使摩托车更精巧, 产品造型更丰富。
航模发动机: 本专利采用一缸双活塞的模式铝合金小尺寸的设计比较适 合用作航模发动机, 能提高推重比, 获得更大行程或是更大载重。
汽车发动机: 本专利的主要运用方向是汽车发动机, 以更小的体积便宜 小的重量,便低的成本来获得大量的运用, 必要时采用两组共 12活塞或是 16 活塞方式驱动, 加上两组独立的控制系统, 一组发动机死火时另一组仍工作, 以解决因发动机故障导致的抛锚问题, 不需要大推力时一组发动机工作一组 休息, 需要大推力时两组一同工作, 以此获得更小的油耗及更大的推力。
航拍器材、 低速无人机、 直升机等的特殊运用: 主要利用本专利的以下 优点: 体积小、 重量轻、 振动小、 多模块化工作时的安全性高。
Claims
1、 一种活塞式发动机, 其特征在于, 其包括一个缸体、 一左缸盖、 一右 缸盖、 若干个左活塞、 若干个右活塞、 若干条齿条套、 若干个微动关节、 一 根齿轮轴、 两根转向凸轮轴;
该缸体是一个长方体形, 该缸体上沿长度方向开设有若干个平行的圓筒 体, 该缸体上沿宽度方向开设一个转轴通孔;
该左紅盖、 右紅盖分别安装在该紅体的左端和右端;
该每个圓筒体中安装有一个安装在左端的上述左活塞和一个安装在右端 的上述右活塞, 该左活塞和右活塞都可以在该圓筒体之中滑动;
该左缸盖、 左活塞和缸体之间形成一个左燃烧室, 该右缸盖、 右活塞和 缸体之间形成一个右燃烧室;
该每一个圓筒体中安装有一条位于左活塞和右活塞之间的上述齿条套, 该每一个齿条套包括相互平行的一个上齿条、 一个下齿条;
每个圓筒体中安装有两个上述的微动关节, 其中一个微动关节的一端通 过转轴连接在该左活塞上, 另一端通过转轴连接在该齿条套上, 另一个微动 关节的一端通过转轴连接在该右活塞上, 另一端通过转轴连接在该齿条套上; 该齿轮轴安装在该缸体的转轴通孔中, 该齿轮轴从该若干个齿条套的上 齿条和下齿条之间穿过, 该上齿条和下齿条之间的距离大于该齿轮轴的外径; 该两根转向凸轮轴安装在该缸体的转轴通孔中, 并分别设于该齿轮轴的 两侧边, 该转向凸轮轴上安装有若干个凸轮;
该齿轮轴的一端安装有一个同步齿轮, 该两根转向凸轮轴的同一端各安 装有一个齿轮;
该同步齿轮和两侧的两个齿轮相互啮合, 使该齿轮轴和两根转向凸轮轴 旋转保持同步;
该两根转向凸轮轴上的凸轮旋转到上端, 推动齿条套上行, 使其下部的
下齿条与齿轮轴啮合, 同时左、 右两个微动关节跃动到上部位置; 该两根转向凸轮轴上的凸轮旋转到下端, 推动齿条套下行, 使其上部的 上齿条与齿轮轴啮合, 同时左、 右两个微动关节跃动到下部位置。
2、 根据权利要求 1所述的一种活塞式发动机, 其特征在于: 该转向凸轮 轴上的若干个凸轮中, 靠一端的至少一个凸轮的凸点所指向的方向, 和靠中 间的至少一个凸轮的凸点所指向的方向, 以及靠另一端的至少一个凸轮的凸 点所指向的方向, 依次间隔有 120度的角度。
3、 根据权利要求 1所述的一种活塞式发动机, 其特征在于: 该转轴通孔 与该圓筒体方向垂直。
4、 根据权利要求 1所述的一种活塞式发动机, 其特征在于: 该左活塞、 右活塞都和该缸体的内壁紧密配合不漏气, 该左缸盖和右缸盖把该圓筒体紧 密封闭起来。
5、 根据权利要求 1所述的一种活塞式发动机, 其特征在于: 该活塞式发 动机还包括一惯性轮, 该惯性轮安装在该齿轮轴的另一端, 用于输出该齿轮 轴旋转后所传递出来的动能。
6、 根据权利要求 1所述的一种活塞式发动机, 其特征在于: 该齿轮轴、 上齿条和下齿条的齿形是斜齿、 人字齿或棘齿。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410065821.3A CN103775205B (zh) | 2014-02-26 | 2014-02-26 | 一种活塞式发动机 |
CN201410065821.3 | 2014-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015127689A1 true WO2015127689A1 (zh) | 2015-09-03 |
Family
ID=50567870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073026 WO2015127689A1 (zh) | 2014-02-26 | 2014-03-07 | 一种活塞式发动机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103775205B (zh) |
WO (1) | WO2015127689A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028771B2 (en) * | 2016-05-16 | 2021-06-08 | Frank J. Ardezzone | Modular internal combustion engine with adaptable piston stroke |
CN106870156B (zh) * | 2017-01-20 | 2019-05-07 | 浙江大学 | 一种双棘轮式发动机传动结构 |
CN109268137A (zh) * | 2018-10-29 | 2019-01-25 | 龚勇辉 | 发动机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084248A (zh) * | 1993-03-30 | 1994-03-23 | 袁炳夫 | 梭子发动机 |
US6981483B1 (en) * | 2002-11-18 | 2006-01-03 | Keip Charles P | Linear gear transfer drive assembly |
CN201025125Y (zh) * | 2007-04-25 | 2008-02-20 | 北华大学 | 双面齿条传动式燃油发动机 |
CN102337967A (zh) * | 2011-09-15 | 2012-02-01 | 郭革委 | 直线活塞推力内燃机 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177712A (en) * | 1978-03-10 | 1979-12-11 | Herzig Albert M | Air driven tool with double-ended aligned pistons oppositely driven |
JPH06330701A (ja) * | 1993-05-24 | 1994-11-29 | Shin Yoneda | 差動圧力対向機関 |
CN2687353Y (zh) * | 2004-02-24 | 2005-03-23 | 黄家文 | 内齿条推动间歇齿轮式内燃机 |
CN2739375Y (zh) * | 2004-09-26 | 2005-11-09 | 何建华 | 一种发动机的活塞传动装置 |
CN100424328C (zh) * | 2005-08-11 | 2008-10-08 | 左学禹 | 齿条齿轮棘轮传动电控气门发动机 |
CN201027569Y (zh) * | 2007-05-28 | 2008-02-27 | 李忠 | 内燃机齿轮传动机构 |
CN201184240Y (zh) * | 2008-04-17 | 2009-01-21 | 雷仲升 | 二缸二冲程直轴式发动机 |
CN201351536Y (zh) * | 2008-04-25 | 2009-11-25 | 赵天佳 | 一种节能汽车 |
CN102588103A (zh) * | 2011-08-25 | 2012-07-18 | 龙全洪 | 平转发动机 |
CN102434279A (zh) * | 2011-11-28 | 2012-05-02 | 浙江吉利汽车研究院有限公司 | 无曲轴连杆的内燃机 |
CN103362644A (zh) * | 2012-03-30 | 2013-10-23 | 向探真 | 多能源低碳节能环保同步一冲程对爆内燃机 |
-
2014
- 2014-02-26 CN CN201410065821.3A patent/CN103775205B/zh active Active
- 2014-03-07 WO PCT/CN2014/073026 patent/WO2015127689A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084248A (zh) * | 1993-03-30 | 1994-03-23 | 袁炳夫 | 梭子发动机 |
US6981483B1 (en) * | 2002-11-18 | 2006-01-03 | Keip Charles P | Linear gear transfer drive assembly |
CN201025125Y (zh) * | 2007-04-25 | 2008-02-20 | 北华大学 | 双面齿条传动式燃油发动机 |
CN102337967A (zh) * | 2011-09-15 | 2012-02-01 | 郭革委 | 直线活塞推力内燃机 |
Also Published As
Publication number | Publication date |
---|---|
CN103775205A (zh) | 2014-05-07 |
CN103775205B (zh) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102434279A (zh) | 无曲轴连杆的内燃机 | |
US5673665A (en) | Engine with rack gear-type piston rod | |
CN102926862B (zh) | 外凸内两相凸轮滚移传动内燃机 | |
CN101852131B (zh) | 双向椭圆齿轮发动机 | |
WO2015127689A1 (zh) | 一种活塞式发动机 | |
CN213743680U (zh) | 圆弧气缸和活塞驱动的无曲轴发动机 | |
KR20060109497A (ko) | 왕복 엔진 | |
CN102230422A (zh) | 往复活塞式内燃机 | |
CN104895671B (zh) | 弧摆凸轮活塞内燃机 | |
CN104047711A (zh) | 齿轮式转子发动机 | |
US20130276761A1 (en) | Variable-compression engine assembly | |
CN100458118C (zh) | 交互变速双转子发动机 | |
CN210264918U (zh) | 四冲程直列式无曲轴内燃机 | |
CN103711583A (zh) | 圆弧曲面齿轮轴式发动机 | |
WO2016110073A1 (zh) | 内燃机 | |
CN210217918U (zh) | 一种双缸内燃机 | |
CN210317485U (zh) | 一种基于三周期曲沟球轴承的双缸内燃机 | |
RU2440500C2 (ru) | Однотактный рекуперационный двигатель | |
CN203239447U (zh) | 圆环发动机 | |
CN102996236A (zh) | 轮环样气缸环转活塞发动机 | |
RU184024U1 (ru) | Газопоршневой двигатель внутреннего сгорания для отопления и вентиляции зданий | |
CN101852093B (zh) | 微型椭圆齿轮发动机 | |
CN112177774B (zh) | 四冲程直列式无曲轴内燃机 | |
CN105351087A (zh) | 环形气缸转子发动机 | |
CN109268138B (zh) | 一种活塞水平对置的齿轮轴输出动力的发动机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14884022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14884022 Country of ref document: EP Kind code of ref document: A1 |