WO2015125743A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015125743A1
WO2015125743A1 PCT/JP2015/054175 JP2015054175W WO2015125743A1 WO 2015125743 A1 WO2015125743 A1 WO 2015125743A1 JP 2015054175 W JP2015054175 W JP 2015054175W WO 2015125743 A1 WO2015125743 A1 WO 2015125743A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
temperature
pressure
Prior art date
Application number
PCT/JP2015/054175
Other languages
English (en)
French (fr)
Inventor
宗史 池田
若本 慎一
直史 竹中
山下 浩司
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015536695A priority Critical patent/JP5847366B1/ja
Priority to CN201580009157.3A priority patent/CN106030219B/zh
Priority to EP15752562.7A priority patent/EP3109567B1/en
Priority to US15/117,103 priority patent/US10208987B2/en
Publication of WO2015125743A1 publication Critical patent/WO2015125743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • an air conditioner such as a building multi-air conditioner has, for example, a pipe between an outdoor unit (outdoor unit) that is a heat source unit arranged outside a building and an indoor unit (indoor unit) arranged inside a building.
  • outdoor unit outdoor unit
  • indoor unit indoor unit
  • refrigerant circuit Those having a connected refrigerant circuit are known.
  • the refrigerant circulates in the refrigerant circuit, and heats or cools the air-conditioning target space by heating or cooling the air by using heat dissipation or heat absorption of the refrigerant.
  • an air conditioner using a CFC-based refrigerant having a small global warming potential such as R32 refrigerant has been considered as a multi-air conditioner for buildings.
  • the air conditioner of Patent Document 1 has a circuit configuration that allows injection even during cooling operation.
  • the air conditioner of Patent Document 1 includes a bypass throttle device that controls the flow rate of refrigerant injected into the intermediate pressure chamber of the compressor, and an inter-refrigerant heat exchanger that cools the refrigerant flowing from the bypass throttle device. It has. Then, the flow rate of the refrigerant flowing through the inter-refrigerant heat exchanger is controlled by the expansion device, and the discharge temperature of the refrigerant discharged from the compressor is controlled. For this reason, both the discharge temperature and the degree of supercooling at the condenser outlet cannot be controlled separately using the target values, and the discharge temperature cannot be properly controlled while maintaining an appropriate degree of supercooling. .
  • the extension pipe connecting the outdoor unit and the indoor unit is long, if the discharge temperature is controlled so as to be the target value, it is not possible to perform the control so that the degree of supercooling of the outdoor unit outlet becomes the target value. For this reason, there is a possibility that the refrigerant flowing into the indoor unit will be gas-liquid two-phase due to pressure loss in the extension pipe.
  • a throttle device is provided on the indoor unit side, such as a multi-type air conditioner having a plurality of indoor units, when a gas-liquid two-phase refrigerant flows into the inlet side of the throttle device
  • the reliability of the system is deteriorated such that abnormal noise is generated or the control becomes unstable.
  • the present invention has been made in order to solve the above-described problems, and is an air conditioner that ensures system reliability even when an inexpensive compressor is used instead of a compressor having a special structure. Is to provide.
  • the state and flow rate of the refrigerant flowing from the bypass pipe to the suction portion of the compressor in all operating states can be determined using the auxiliary heat exchanger, the flow rate regulator, and the second expansion device.
  • the auxiliary heat exchanger By controlling, it is possible to suppress an increase in the discharge temperature of the refrigerant discharged from the compressor. Therefore, the reliability of the system can be improved at low cost without using a special structure for the compressor.
  • FIG. 1 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 1.
  • the air conditioner 100 of FIG. 1 has a configuration in which an outdoor unit 1 and an indoor unit 2 are connected by a main pipe 5.
  • the number of connected indoor units 2 is not limited to one. Multiple units may be connected.
  • the refrigerant flow switching device 11 includes, for example, a four-way valve and the like, and switches between the refrigerant flow channel in the heating operation mode and the refrigerant flow channel in the cooling operation mode.
  • the heating operation mode is a case where the heat source side heat exchanger 12 acts as a condenser or a gas cooler, and the heating operation mode is a case where the heat source side heat exchanger 12 acts as an evaporator.
  • the bypass pipe 41 is a pipe that allows a high-pressure refrigerant to flow into the auxiliary heat exchanger 40 and causes the liquid refrigerant condensed in the auxiliary heat exchanger 40 to flow into the suction portion of the compressor 10 via the flow rate regulator 42.
  • One end of the bypass pipe 41 is connected to the refrigerant pipe 4 between the compressor 10 and the refrigerant flow switching device 11, and the other end is connected to the refrigerant pipe 4 between the compressor 10 and the accumulator 19. .
  • the flow regulator 42 is made of an electronic expansion valve or the like whose opening degree can be variably controlled, and is provided on the outlet side of the auxiliary heat exchanger 40.
  • the flow rate adjuster 42 adjusts the flow rate of the liquid refrigerant that is flown into the suction portion of the compressor 10 after being condensed by the auxiliary heat exchanger 40.
  • the outdoor unit 1 includes a discharge temperature sensor 43 that detects the temperature of the high-temperature and high-pressure refrigerant discharged from the compressor 10, a refrigerating machine oil temperature sensor 44 that detects the temperature of the refrigerating machine oil of the compressor 10, and the compressor 10. And a low pressure detection sensor 45 for detecting the low pressure of the refrigerant on the suction side. Further, the outdoor unit 1 is provided with an outside air temperature sensor 46 that measures the temperature around the outdoor unit 1 in the air suction portion of the heat source side heat exchanger 12.
  • the indoor unit 2 includes a load side heat exchanger 26 and a load side expansion device 25.
  • the load-side heat exchanger 26 is connected to the outdoor unit 1 through the main pipe 5, performs heat exchange between the air and the refrigerant, and generates heating air or cooling air to be supplied to the indoor space. To do.
  • the load-side heat exchanger 26 is supplied with indoor air from a blower such as a fan (not shown).
  • the load-side throttle device 25 is configured to be variably controllable, for example, an electronic expansion valve, and has a function as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant.
  • the load side expansion device 25 is provided on the upstream side of the load side heat exchanger 26 in the cooling only operation mode.
  • the indoor unit 2 is provided with an inlet side temperature sensor 31 and an outlet side temperature sensor 32 made of a thermistor or the like.
  • the inlet-side temperature sensor 31 detects the temperature of the refrigerant flowing into the load-side heat exchanger 26 and is provided in the refrigerant inlet-side piping of the load-side heat exchanger 26.
  • the outlet side temperature sensor 32 is provided on the refrigerant outlet side of the load side heat exchanger 26 and detects the temperature of the refrigerant flowing out of the load side heat exchanger 26.
  • the control device 60 is configured by a microcomputer or the like, and based on detection information detected by the various sensors described above and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), Switching of the refrigerant flow switching device 11, the opening degree of the flow rate regulator 42, the opening degree of the load side throttle device 25, and the like are controlled, and each operation mode described later is executed.
  • the control apparatus 60 is provided in the outdoor unit 1, you may provide for every unit or the indoor unit 2 side.
  • the air conditioner 100 performs a cooling operation mode and a heating operation mode in the indoor unit 2 based on an instruction from the indoor unit 2.
  • the operation mode executed by the air conditioner 100 of FIG. 1 includes a cooling operation mode in which all the driven indoor units 2 execute the cooling operation, and all the driven indoor units 2 execute the heating operation. There is a heating operation mode.
  • each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 26.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the low-temperature / low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 becomes a high-pressure liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the indoor unit 2 through the main pipe 5.
  • the high-pressure refrigerant is expanded by the load-side expansion device 25 and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the load-side heat exchanger 26 acting as an evaporator and absorbs heat from the room air, thereby becoming a low-temperature and low-pressure gas refrigerant while cooling the room air.
  • the opening degree of the load side expansion device 25 is constant superheat (superheat degree) obtained as a difference between the temperature detected by the inlet side temperature sensor 31 and the temperature detected by the outlet side temperature sensor 32. Control is performed by the control device 60 as described above.
  • the gas refrigerant flowing out from the load side heat exchanger 26 flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10 again.
  • the refrigerant that has become a high-pressure supercooling liquid while radiating heat to the outdoor air supplied from the fan 16 by the auxiliary heat exchanger 40 flows into the suction portion of the compressor 10 via the flow rate regulator 42. Thereby, the temperature of the refrigerant discharged from the compressor 10 can be lowered, and it can be used safely.
  • the control device 60 opens the flow rate regulator 42 so that the supercooled refrigerant in the auxiliary heat exchanger 40 flows to the suction portion of the compressor 10. Control. At this time, the control device 60 adjusts the opening degree (opening area) of the flow rate regulator 42 so that the discharge temperature becomes equal to or lower than the discharge temperature threshold value.
  • the control device 60 stores a table or a mathematical expression in which the discharge temperature and the opening degree of the flow rate regulator 42 are associated with each other, and controls the opening degree of the flow rate regulator 42 based on the discharge temperature.
  • the low-pressure / low-temperature gas refrigerant flowing out of the accumulator 19 and the liquid refrigerant supercooled in the auxiliary heat exchanger 40 are mixed, and the high-dryness low-pressure gas-liquid two-phase refrigerant is supplied to the compressor 10. It will be sucked from the suction part.
  • the controller 60 controls the flow rate regulator 42 based on the refrigerating machine oil superheat degree which is the difference between the refrigerating machine oil temperature detected by the refrigerating machine oil temperature sensor 44 and the evaporation temperature calculated from the low pressure pressure detected by the low pressure detection sensor 45.
  • the opening degree is controlled in an auxiliary manner. That is, the refrigerating machine oil superheat degree of the compressor 10 increases the opening degree (opening area) of the flow rate regulator 42 and the amount of supercooled liquid refrigerant that flows from the auxiliary heat exchanger 40 into the suction portion of the compressor 10. Decrease with increase.
  • the control device 60 performs control so that the flow rate regulator 42 is fully closed. Then, the flow path of the refrigerant flowing into the suction portion of the compressor 10 from the auxiliary heat exchanger 40 via the bypass pipe 41 is blocked. At this time, since the discharge temperature rises, the control device 60 performs control so that the rotation speed of the compressor 10 is lowered so that the discharge temperature becomes equal to or lower than the discharge temperature threshold value.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the load-side heat exchanger 26.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the liquid refrigerant flowing out from the load-side heat exchanger 26 is expanded by the load-side expansion device 25 to become a low-temperature / low-pressure gas-liquid two-phase refrigerant and flows again into the outdoor unit 1 through the main pipe 5. .
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and becomes a low-temperature and low-pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12. Then, the refrigerant is again sucked into the compressor 10 through the refrigerant flow switching device 11 and the accumulator 19.
  • the heating operation mode for example, when the refrigerant discharge temperature of the compressor 10 is high, such as R32, in order to prevent deterioration of the refrigerating machine oil and burning of the compressor 10 It is necessary to lower the discharge temperature. Therefore, in the heating operation mode, a part of the high-pressure gas refrigerant discharged from the compressor 10 flows into the auxiliary heat exchanger 40 via the bypass pipe 41. Then, the refrigerant that has become a high-pressure supercooled liquid while radiating heat to the outdoor air supplied from the fan 16 by the auxiliary heat exchanger 40 flows into the suction portion of the compressor 10 via the flow rate regulator 42. Thereby, the temperature of the refrigerant discharged from the compressor 10 can be lowered, and it can be used safely.
  • the control of the flow rate regulator 42 by the control device 60 in the heating operation mode will be described.
  • the control device 60 controls the opening degree of the flow rate regulator 42 based on the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43. That is, the discharge temperature of the compressor 10 increases the opening degree (opening area) of the flow rate regulator 42 and increases the amount of supercooled liquid refrigerant that flows from the auxiliary heat exchanger 40 into the suction portion of the compressor 10. And drop.
  • the opening degree (opening area) of the flow rate regulator 42 is reduced to reduce the amount of supercooled liquid refrigerant flowing from the auxiliary heat exchanger 40 into the suction portion of the compressor 10, the discharge temperature of the compressor 10 is reduced. Rises.
  • the control device 60 adjusts the opening degree (opening area) of the flow rate regulator 42 so that the discharge temperature becomes equal to or lower than the discharge temperature threshold value.
  • the control device 60 stores a table or a mathematical expression in which the discharge temperature and the opening degree of the flow rate regulator 42 are associated with each other, and controls the opening degree of the flow rate regulator 42 based on the discharge temperature.
  • the discharge temperature threshold is set according to the limit value of the discharge temperature of the compressor 10.
  • auxiliary heat exchanger 40 heat is exchanged between the air supplied from the fan 16 and the high-pressure gaseous refrigerant having a saturation temperature higher than the air temperature, and the supercooled high-pressure liquid
  • the refrigerant flows into the suction portion of the compressor 10 via the flow rate regulator 42.
  • the low-pressure and low-temperature gas refrigerant flowing out of the accumulator 19 and the liquid refrigerant cooled in the auxiliary heat exchanger 40 are mixed to form a low-pressure gas-liquid two-phase refrigerant with high dryness.
  • the refrigerant in a state where the suction enthalpy of the compressor 10 is reduced flows into the compressor 10 and an excessive increase in the discharge temperature of the compressor 10 can be suppressed, so that deterioration of the refrigerating machine oil is suppressed. It is possible to prevent the compressor 10 from being damaged.
  • the controller 60 controls the flow rate regulator 42 based on the refrigerating machine oil superheat degree which is the difference between the refrigerating machine oil temperature detected by the refrigerating machine oil temperature sensor 44 and the evaporation temperature calculated from the low pressure pressure detected by the low pressure detection sensor 45.
  • the degree of opening is controlled. That is, the refrigerating machine oil superheat degree of the compressor 10 increases the opening degree (opening area) of the flow rate regulator 42 and the amount of supercooled liquid refrigerant that flows from the auxiliary heat exchanger 40 into the suction portion of the compressor 10. Decrease with increase.
  • the control device 60 performs control so that the flow rate regulator 42 is fully closed. Then, the flow path of the refrigerant flowing into the suction portion of the compressor 10 from the auxiliary heat exchanger 40 via the bypass pipe 41 is blocked. At this time, since the discharge temperature rises, the control device 60 performs control so that the rotation speed of the compressor 10 is lowered so that the discharge temperature becomes equal to or lower than the discharge temperature threshold value.
  • a first flow path opening / closing device having a fully closed function may be provided on the inlet side of the auxiliary heat exchanger 40.
  • the control device 60 closes the first flow path opening / closing device and the opening / closing device 47 and makes the flow rate regulator 42 slightly open so as not to be fully closed. Control.
  • the liquid refrigerant is excessively discharged from the flow rate regulator 42. Can be prevented from flowing into the suction portion of the compressor 10, and damage to the compressor 10 due to excessive liquid back can be prevented.
  • the temperature difference between the saturation temperature of the high-pressure and high-temperature gas refrigerant that needs to be supercooled in the auxiliary heat exchanger 40 and the environmental temperature becomes large, and even if the heat transfer area of the auxiliary heat exchanger 40 is small, it is sufficient. Can be supercooled.
  • an environment in which the increase in the discharge temperature of the compressor 10 needs to be suppressed is an environment in which the outdoor unit 1 is installed with a high environmental temperature (for example, an environmental temperature of 40 ° C. or higher). It is done. Under this environment, the temperature difference between the saturation temperature of the high-pressure and high-temperature gas refrigerant that needs to be supercooled in the auxiliary heat exchanger 40 and the environmental temperature becomes small. For this reason, in order to fully subcool in the auxiliary heat exchanger 40, it is necessary to make the heat transfer area of the auxiliary heat exchanger 40 larger than that in the heating operation mode.
  • a high environmental temperature for example, an environmental temperature of 40 ° C. or higher.
  • the heat transfer area of the auxiliary heat exchanger 40 may be selected under the condition that the amount of supercooled liquid flowing into the suction portion of the compressor 10 is the largest during the injection in the cooling operation mode.
  • this condition depends on the environmental temperature at which the air conditioner 100 can be operated, the difference between the pressure of the refrigerant cooled in the heat source side heat exchanger 12 and the pressure of the refrigerant heated in the load side heat exchanger 26. Is the condition under which the temperature of the high-pressure and high-temperature refrigerant discharged from the compressor 10 rises the most.
  • the heat transfer area of the auxiliary heat exchanger 40 is determined assuming an environment in which the temperature of the high-pressure and high-temperature refrigerant discharged from the compressor 10 is highest.
  • the environmental temperature at which the air conditioner 100 can be operated is such that the maximum environmental temperature at which the outdoor unit 1 is installed is 43 ° C., and the minimum environmental temperature at which the indoor unit 2 is installed is 15 ° C.
  • this environment is a condition in which the temperature of the refrigerant discharged from the compressor 10 is the highest, and the heat transfer area of the auxiliary heat exchanger 40 is determined under this condition.
  • the discharge refrigerant temperature of the compressor 10 when the maximum environmental temperature value where the outdoor unit 1 is installed is 43 ° C. and the minimum environmental temperature value where the indoor unit 2 is installed is 15 ° C.
  • the refrigerant flow rate (injection amount) of the supercooled liquid that needs to flow from the auxiliary heat exchanger 40 that is required to make the discharge temperature threshold value or less (for example, 115 ° C. or less) into the suction portion of the compressor 10 is: What is necessary is just to calculate from the energy conservation law of Formula (1).
  • Gr1 (kg / h) and h1 (kJ / kg) are the flow rate, enthalpy, Gr2 (kg) of the low-temperature and low-pressure gas refrigerant flowing from the accumulator 19 into the suction portion of the compressor 10.
  • the combined enthalpy h (kJ / kg) calculated from the equation (1) is smaller than the enthalpy h1 (kJ / kg) of the low-temperature / low-pressure gas refrigerant flowing from the accumulator 19 into the suction portion of the compressor 10. Become. For this reason, the discharge temperature of the refrigerant discharged from the compressor 10 is lower when the refrigerant is injected from the auxiliary heat exchanger 40 than when the liquid refrigerant does not flow from the auxiliary heat exchanger 40.
  • the flow rate regulator 42 when the flow rate regulator 42 is fully closed, the refrigerant is compressed from enthalpy h1 (kJ / kg) to a predetermined pressure, and the flow rate regulator 42 is opened and liquid injection from the bypass pipe 41 is performed.
  • the refrigerant is compressed to a predetermined pressure, the refrigerant is compressed to the same pressure with the same heat insulation efficiency and the same displacement.
  • the refrigerant flow rate Gr2 at which the temperature of the gas refrigerant discharged from the compressor 10 becomes equal to or lower than the discharge temperature threshold (for example, 115 ° C. or lower) is derived from the equation (1).
  • the heat exchange amount of the auxiliary heat exchanger 40 is Q1 (W), which is the enthalpy of the high-pressure and high-temperature refrigerant discharged from the compressor 10 in the cooling operation mode, and the refrigerant on the inlet side of the auxiliary heat exchanger 40
  • the enthalpy is h3 (kJ / kg)
  • the general equation for heat exchange by enthalpy change shown in equation (2) is established.
  • the total heat transfer area A1 (m2)
  • heat is easily transferred due to the temperature difference between the refrigerant and the air.
  • A1 m2
  • the logarithm average temperature difference which is a temperature difference in consideration of the temperature change in the flow direction of each of the inlet and outlet of the refrigerant and air in the auxiliary heat exchanger 40, is ⁇ Tm (K or ° C), and the rate is k (W / (m2 ⁇ K)).
  • the heat exchange amount Q1 (W) of the auxiliary heat exchanger 40 can be expressed as a general heat exchange amount equation (3).
  • the auxiliary heat exchanger Assuming that the logarithm average temperature difference is ⁇ Tm (K or ° C), the saturation temperature of the refrigerant is Tc (K or ° C), assuming that the method of exchanging heat with the air of the auxiliary heat exchanger 40 is a countercurrent type, the auxiliary heat exchanger Assuming that the temperature of the air flowing into 40 is T1 (K or ° C) and the temperature of the air flowing out is T2 (K or ° C), it can be calculated by equation (4).
  • the total heat transfer area A1 of the auxiliary heat exchanger 40 can be calculated by using the above formulas (1) to (4). As an example, the case where the total heat transfer area A1 is calculated
  • coolant is demonstrated.
  • the total refrigerant flow rate Gr of equation (1) under the condition that the environmental temperature where the outdoor unit 1 is installed is about 43 ° C. and the environmental temperature where the indoor unit 2 is installed is about 15 ° C. ( Gr1 + Gr2) is about 340 (kg / h).
  • the saturation temperature of the refrigerant discharged from the compressor 10 is 54 ° C., for example, and the enthalpy h3 of the saturated gas at 54 ° C. is about 503 (kJ / kg).
  • the 54 ° C. saturated gas exchanges heat with about 43 ° C. air in the auxiliary heat exchanger 40, and in order to sufficiently subcool, the 54 ° C. saturated liquid and the liquid refrigerant on the outlet side of the auxiliary heat exchanger 40
  • the degree of supercooling which is a temperature difference
  • the enthalpy h2 at the outlet of the auxiliary heat exchanger 40 is a mixture of the 54 ° C.
  • the total refrigerant flow rate Gr and the enthalpies h1 and h2 in the equation (1) are obtained based on the operating conditions of the air conditioner 100 and the like. And when compressing a refrigerant to the pressure of 54 degreeC which is the saturation temperature of the refrigerant
  • the required refrigerant flow rate Gr2 is about 12 (kg / h) from the equation (1).
  • the heat exchange amount Q1 required in the auxiliary heat exchanger 40 is approximately 690 (W) by substituting the refrigerant flow rate Gr2 and the enthalpies h2 and h3 into the equation (2).
  • the saturation temperature Tc of the refrigerant discharged from the compressor 10 is about 54 (° C.)
  • the air temperature T 1 flowing into the auxiliary heat exchanger 40 is 43 (° C.)
  • the temperature T 2 of the flowing out air is the auxiliary heat exchange. Since the heat exchange amount Q1 in the vessel 40 is as large as about 690 (W), it is assumed that the temperature almost rises to the saturation temperature of the refrigerant, and rises by about 10 ° C. from the inflowing air temperature. ),
  • the logarithmic average temperature difference is about 4.17 (° C.), and the total heat transfer area A1 of the auxiliary heat exchanger 40 required from the equation (3) is about 2.298 (m2).
  • the total heat transfer area A2 required by the heat source side heat exchanger 12 is about 141 (m2).
  • the auxiliary heat exchanger 40 is formed of a part of the heat source side heat exchanger 12, the total heat transfer area A2 required for the heat source side heat exchanger 12 and the total heat transfer required for the auxiliary heat exchanger 40 are provided.
  • the calculation of the total heat transfer area A1 of the auxiliary heat exchanger 40 is performed by taking the air conditioner 100 equivalent to 10 horsepower under a predetermined operable condition as an example, it is not limited to this.
  • the refrigerant operates at high pressure and low pressure with respect to the environmental temperature at which the outdoor unit 1 and the indoor unit 2 are installed.
  • the state does not change substantially, only the change in displacement of the compressor 10 (change in the total refrigerant flow rate Gr (kg / h)) changes the cooling and heating capacity (horsepower).
  • the refrigerant flow rate Gr2 flowing into the auxiliary heat exchanger 40 is changed in accordance with the change ratio of the displacement amount of the compressor 10, and the total amount of the auxiliary heat exchanger 40 is calculated from the equations (2) and (3).
  • the heat transfer area A1 may be calculated.
  • the heat exchange amount Q1 in the auxiliary heat exchanger 40 is about 996 (W From Equation (3), the heat transfer rate k and the logarithmic average temperature difference ⁇ Tm can be regarded as almost equivalent to the case of the air conditioner 100 equivalent to 10 horsepower.
  • the heat transfer area A1 is 3.217 (m2), which is about 1.4 times the total heat transfer area A1 of the auxiliary heat exchanger 40 of the air conditioner equivalent to 10 horsepower.
  • the cooling and heating capacity (only by the change in displacement of the compressor 10 (change in the total refrigerant flow rate Gr (kg / h)) ( If it is considered that the (horsepower) changes, it can be considered that the total heat transfer area A2 required for the heat source side heat exchanger 12 is also about 1.4 times that of the air conditioner equivalent to 10 horsepower. That is, the auxiliary heat for the sum of the total heat transfer area A2 required for the heat source side heat exchanger 12 and the total heat transfer area A1 required for the auxiliary heat exchanger 40, regardless of the horsepower of the air conditioner 100.
  • the ratio A1 / (A1 + A2) of the total heat transfer area A1 of the exchanger 40 is about 1.62% or more.
  • auxiliary heat exchanger 40 When a part of the heat source side heat exchanger 12 is used as the auxiliary heat exchanger 40, for example, a restriction in the height direction of the outdoor unit 1 occurs, and the number of stages of the heat source side heat exchanger 12 cannot be increased. There is. In this case, if the auxiliary heat exchanger 40 that is a part of the heat source side heat exchanger 12 is excessively large, the total heat transfer area A1 of the heat source side heat exchanger 12 is reduced, and the performance of the heat source side heat exchanger 12 is deteriorated. To do.
  • the ratio A1 / (A1 + A2) of the total heat transfer area A1 of the auxiliary heat exchanger 40 is within 5%, and the ratio A1 / of the total heat transfer area A1 of the auxiliary heat exchanger 40 to the sum A1 + A2 of the total heat transfer area. It is desirable to set (A1 + A2) to a size within about 5%. However, when the auxiliary heat exchanger 40 is not a part of the heat source side heat exchanger 12 and is installed independently, the ratio A1 / (A1 + A2) does not need to be within about 5%, and A1 / (A1 + A2) May be about 1.62% or more.
  • FIG. FIG. 5 is a refrigerant circuit diagram illustrating an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air-conditioning apparatus 200 will be described with reference to FIG. In FIG. 5, parts having the same configuration as the air conditioner 100 of FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the outdoor unit 201 includes first backflow prevention devices 13a to 13d including a first connection pipe 4a, a second connection pipe 4b, a check valve, and the like.
  • the first backflow prevention device 13a prevents high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 4a to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode.
  • the first backflow prevention device 13b prevents a high-pressure liquid or a gas-liquid two-phase refrigerant from flowing back from the first connection pipe 4a to the accumulator 19 in the cooling only operation mode and the cooling main operation mode. It is.
  • the load-side throttle device 25b obtains a subcool (supercooling degree) obtained as a difference between a value obtained by converting the pressure detected by the inlet-side pressure sensor 33 into a saturation temperature and a temperature detected by the inlet-side temperature sensor 31b. ) Is controlled to be constant.
  • the liquid refrigerant flowing out from the load side heat exchanger 26b is expanded by the load side expansion device 25b and passes through the branch pipe 6 and the third backflow prevention device 22b.
  • the load side expansion device 25b is a subcool (supercooling degree) obtained as a difference between a value obtained by converting the pressure detected by the inlet side pressure sensor 33 into a saturation temperature and a temperature detected by the inlet side temperature sensor 31b. ) Is controlled to be constant.
  • the degree of supercooling which is the temperature difference of the refrigerant
  • the enthalpy h2 at the outlet of the auxiliary heat exchanger 40 is determined from the pressure at which the refrigerant saturation temperature is calculated from 54 ° C. and the temperature of the liquid refrigerant at the outlet of the auxiliary heat exchanger 40, and is about 296 (kJ / kg). It becomes.
  • the enthalpy h1 of the refrigerant flowing from the accumulator 19 into the suction portion of the compressor 10 is about 515 (kJ / kg) when the saturated gas temperature in the suction portion of the compressor 10 is about 0 ° C.
  • the auxiliary heat exchanger 40 and the flow rate regulator 42 are used in the cooling operation mode and the heating operation mode. Then, the refrigerant is injected into the suction portion of the compressor 10. As a result, the reliability of the system can be ensured even when an inexpensive compressor is used instead of a compressor having a special structure. Further, by suppressing an excessive increase in the discharge temperature of the compressor 10, it is possible to increase the speed of the compressor 10, it is possible to ensure heating capacity and reduce user comfort.
  • the air conditioning apparatus 300 shown in FIG. 10 when the temperature increase of the refrigerant discharged from the compressor 10 is suppressed during the cooling only operation mode and the cooling main operation mode, the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 is suppressed. Since a part is caused to flow into the auxiliary heat exchanger 40 via the bypass pipe 41, the required auxiliary heat exchanger 40 can be reduced in size. Therefore, since the heat transfer area of the heat source side heat exchanger can be increased, the performance can be improved.
  • a first flow path opening / closing device including an opening / closing device or a throttling device having a fully-closed function capable of opening / closing the flow channel may be provided on the inlet side of the auxiliary heat exchanger 40.
  • the control device 60 controls the first flow path opening / closing device and the opening / closing device 47 to be closed, and the flow rate regulator 42 is not fully closed.
  • the opening degree By controlling the opening degree, it is possible to prevent the refrigerant from sleeping in the bypass pipe 41 and the auxiliary heat exchanger 40, and when it is necessary to suppress an excessive increase in the discharge temperature of the compressor 10, the flow rate regulator 42 It is possible to prevent the liquid refrigerant from excessively flowing into the suction portion of the compressor 10 and to prevent the compressor 10 from being damaged due to an excessive liquid back.
  • one end of the bypass pipe 41 is bifurcated into a first branch pipe 48 and a second branch pipe 49.
  • One end of the first branch pipe 48 is connected to the refrigerant pipe 4 between the heat source side heat exchanger 12 and the load side expansion device 25, and the other end of the first branch pipe 48 is connected via the backflow prevention device 13g. It merges with the two-branch pipe 49 and is connected to the bypass pipe 41.
  • One end of the second branch pipe 49 is connected to the refrigerant pipe 4 between the discharge side flow path of the compressor 10 and the refrigerant flow switching device 11, and the other end is connected to the first branch pipe via the opening / closing device 47.
  • 48 is joined to the bypass pipe 41.
  • the opening / closing device 47 only needs to be able to open and close the flow path, and may be a throttling device having a fully closing function.
  • the backflow prevention device 13g is illustrated as if it is a check valve, any device may be used as long as it can prevent the backflow of the refrigerant, and it may be an opening / closing device or a throttling device having a fully closed function. Further, the opening / closing device 47 only needs to be able to open and close the flow path, and may be a throttling device having a fully closing function.
  • the calculation method and the size of the total heat transfer area A1 (m2) which is an area in contact with the air in the environment where the outdoor unit 201 of the auxiliary heat exchanger 40 that is required is installed, This is the same as in the first embodiment.
  • the first flow control device 70a and the second flow control device 70b are provided on the upstream side of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b in the primary cycle in the refrigerant flow in the cooling only operation mode. ing.
  • the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b are composed of, for example, a double-pipe heat exchanger, a plate heat exchanger, or the like, and include a refrigerant in the primary cycle and a refrigerant in the secondary cycle. For exchanging heat. When all the indoor units in operation are cooling, both are evaporators, when all are heating, both are condensers, and when both cooling and heating are mixed, one intermediate heat exchanger is condensed. As an evaporator, the other intermediate heat exchanger operates as an evaporator.
  • the evaporator and the second intermediate heat exchanger 71b serve as a condenser, and the heating only operation mode refers to a case where both the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b function as a condenser.
  • the first flow path switching device 72a and the second flow path switching device 72b are arranged downstream of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b in the primary cycle in the refrigerant flow in the cooling only operation mode. Is provided.
  • the first pump 73a and the second pump 73b are, for example, inverter-type centrifugal pumps or the like, and are configured to suck in brine and raise the pressure.
  • the first pump 73a and the second pump 73b are provided on the upstream side of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b in the secondary side cycle.
  • the plurality of second flow path switching devices 75a to 75d are provided for each of the plurality of indoor units 2a to 2d according to the number of installed units (four in this case).
  • the plurality of second flow path switching devices 75a to 75d are constituted by, for example, two-way valves or the like, and the connection destinations on the outflow side of the indoor units 2a to 2d are respectively connected to the flow path to the first pump 73a and the second pump.
  • the flow path to 73b is switched.
  • the second flow path switching devices 75a to 75d are provided on the upstream side of the first pump 73a and the second pump 73b in the secondary side cycle.
  • the relay device 503 is provided with indoor unit inlet temperature sensors 85a to 85b at the outlets of the secondary side cycles of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b, and a plurality of load flow rate adjusting devices Indoor unit outlet temperature sensors 86a to 86d are provided at the inlets of 76a to 76d, and may be constituted by a thermistor or the like.
  • an outlet pressure sensor 87 is provided on the outlet side of the second intermediate heat exchanger 71b. The outlet pressure sensor 87 detects the pressure of the high-pressure refrigerant.
  • the gas refrigerant that has flowed out of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b passes through the first flow path switching device 72a and the second flow path switching device 72b, and passes through the inter-refrigerant heat exchanger 50. It merges with the gas refrigerant that has flowed out, flows out from the relay device 503, passes through the main pipe 5, and flows into the outdoor unit 501 again.
  • the refrigerant that has flowed into the outdoor unit 501 passes through the first backflow prevention device 13d and is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the brine boosted by the first pump 73a and the second pump 73b flows into the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b.
  • the brine having a low temperature in the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b is in communication with both or one of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b. It passes through the set first flow path switching devices 74a to 74d and flows into the load side heat exchangers 26a to 26d.
  • the brine cools the room air by using the load side heat exchangers 26a to 26d and performs cooling.
  • the merged liquid refrigerant is expanded by the first flow control device 70a to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the remaining part of the liquid refrigerant is expanded by the fourth expansion device 27 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the fourth expansion device 27 opens so that the superheat (superheat degree) obtained as a difference between the temperature detected by the inlet temperature sensor 81 and the temperature detected by the outlet temperature sensor 82 becomes constant. Is controlled.
  • the first flow rate control device 70a has an opening degree so that the superheat (superheat degree) obtained as a difference between the temperature detected by the inlet temperature sensor 83a and the temperature detected by the outlet temperature sensor 84a is constant. Is controlled.
  • the gas refrigerant that has flowed out of the first intermediate heat exchanger 71a joins with the remaining part of the gas refrigerant that has flowed out of the inter-refrigerant heat exchanger 50 via the first flow path switching device 72a, and then from the relay device 503. It flows out and flows into the outdoor unit 201 again through the main pipe 5.
  • the refrigerant that has flowed into the outdoor unit 501 passes through the first backflow prevention device 13d and is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the secondary side cycle will be described below when the indoor units 2a and 2b are in cooling operation and the indoor units 2c and 2d are in heating operation.
  • the brine whose pressure has been increased by the first pump 73a flows into the first intermediate heat exchanger 71a.
  • the brine having a low temperature in the first intermediate heat exchanger 71a passes through the first flow path switching devices 74a to 74b set in a state communicating with the first intermediate heat exchanger 71a, and the load-side heat exchanger 26a.
  • This brine cools the room air by the load-side heat exchangers 26a to 26b and performs cooling.
  • the brine is heated by the room air, passes through the load flow control devices 76a to 76b and the second flow path switching devices 75a to 75b, and returns to the first pump 73a in the relay device 503.
  • the load flow rate adjusting devices 76a to 76b and the first pump 73a are set such that the difference between the temperature detected by the indoor unit inlet temperature sensor 85a and the temperature detected by the indoor unit outlet temperature sensors 86a to 86b becomes constant.
  • the opening and voltage are controlled.
  • the high-temperature / high-pressure gas refrigerant that has flowed into the relay device 503 passes through the first flow path switching device 72a and the second flow path switching device 72b, and then acts as a condenser, the first intermediate heat exchanger 71a. And the second intermediate heat exchanger 71b.
  • the refrigerant flowing into the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b becomes a liquid refrigerant while heating the brine.
  • the liquid refrigerant flowing out from the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b is expanded by the first flow control device 70a and the second flow control device 70b, respectively, and is controlled to be in the open state.
  • the load-side throttle device 25a obtains a subcool (supercooling degree) obtained as a difference between a value obtained by converting the pressure detected by the outlet pressure sensor 87 into a saturation temperature and a temperature detected by the inlet temperature sensors 83a to 83b. ) Is controlled to be constant.
  • the brine boosted by the first pump 73a and the second pump 73b flows into the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b.
  • the brine that has reached a high temperature in the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b is in communication with both or either of the first intermediate heat exchanger 71a and the second intermediate heat exchanger 71b. It passes through the set first flow path switching devices 74a to 74d and flows into the load side heat exchangers 26a to 26d. This brine heats the room air by the load side heat exchangers 26a to 26d and performs heating.
  • the brine is cooled by indoor air, passes through the load flow control devices 76a to 76d and the second flow path switching devices 75a to 75d, and returns to the first pump 73a and the second pump 73b in the relay device 503. .
  • the load flow rate adjusting devices 76a to 76d, the first pump 73a and the second pump 73b are connected to the temperatures detected by the indoor unit inlet temperature sensors 85a to 85b and the temperatures detected by the indoor unit outlet temperature sensors 86a to 86b.
  • the opening degree and the voltage are controlled so that the difference between them is constant.
  • the embodiment of the present invention is not limited to the above-described Embodiments 1 to 5, and various changes can be made.
  • the discharge temperature threshold value is 115 ° C.
  • the operation of the compressor 10 is controlled by the control device 60 so that the discharge temperature does not exceed this.
  • the control device 60 performs control so that the frequency of the compressor 10 is lowered and the speed is reduced.
  • a temperature between 100 ° C. and 110 ° C. which is a temperature slightly lower than 110 ° C. which is a temperature threshold for lowering the frequency of the compressor 10. It is preferable to set (for example, 105 ° C.).
  • the discharge temperature threshold value to be lowered by performing the injection is set between 100 ° C. and 120 ° C. (eg, 115 ° C., etc.). do it.
  • a mixed refrigerant non-azeotropic mixed refrigerant
  • the discharge temperature rises by about 20 ° C. in the same operation state as compared with the case where R410A is used. For this reason, it is necessary to lower the discharge temperature, and the effect of the injection according to the present invention is great. The effect is particularly great when a refrigerant having a high discharge temperature is used.
  • the refrigerant type in the mixed refrigerant is not limited to this, and even a mixed refrigerant containing a small amount of other refrigerant components has no significant effect on the discharge temperature and has the same effect.
  • the refrigerant circuit of the present embodiment can be used even when it is necessary to use a refrigerant whose supercritical pressure is operated on the high pressure side, such as CO2 (R744), as the refrigerant of the first to fifth embodiments, and to lower the discharge temperature. With the configuration, the discharge temperature can be lowered.
  • a refrigerant whose supercritical pressure is operated on the high pressure side such as CO2 (R744)
  • the auxiliary heat exchanger 40 and the heat source side heat exchanger 12 are illustrated as being integrally configured.
  • the auxiliary heat exchanger 40 is disposed independently. It may be what was done.
  • the auxiliary heat exchanger 40 may be arranged on the upper side.
  • the auxiliary heat exchanger 40 is on the lower side of the fin and the heat source side heat exchanger 12 is formed on the upper side of the heat transfer fin.
  • the auxiliary heat exchanger 40 is on the upper side.
  • the heat source side heat exchanger 12 may be formed on the lower side.
  • the present invention is not limited to this, and various known methods can be used.
  • the air conditioner that performs the cooling and heating simultaneous operation in which the outdoor unit 1 and the relay device 3 are connected using the three main pipes 5, similarly to the above-described second embodiment, from the compressor 10. An excessive increase in the temperature of the high-pressure and high-temperature gas refrigerant to be discharged can be suppressed.
  • the compressor 10 of the first to fifth embodiments has been described by way of example using a low-pressure shell type compressor. However, for example, the same effect can be obtained even when a high-pressure shell type compressor is used.
  • the injection port which flows a refrigerant into the intermediate pressure part of a compressor was provided. It can also be applied to a compressor having a structure.
  • the heat source side heat exchanger 12 and the load side heat exchangers 26a to 26d are often equipped with a blower that promotes condensation or evaporation of the refrigerant by blowing air. Absent.
  • a blower that promotes condensation or evaporation of the refrigerant by blowing air. Absent.
  • a panel heater using radiation can be used as the load-side heat exchangers 26a to 26d.
  • a water-cooled type heat exchanger that exchanges heat with a liquid such as water or antifreeze can be used. Any material can be used as long as it can dissipate or absorb heat from the refrigerant.
  • a plate heat exchanger may be used as the auxiliary heat exchanger 40.
  • the outdoor unit 1 and the indoor unit 2 or the direct expansion type air conditioner that circulates the refrigerant by pipe connection between the outdoor unit 1, the relay device 3, and the indoor unit 2, and the outdoor unit 1 and the indoor unit 2
  • the relay device 3 is connected between the two, and a heat exchanger that exchanges heat between a refrigerant such as a plate heat exchanger and a heat medium such as water and brine is provided in the relay device 3 as load-side heat exchangers 26a and 26b.
  • the indirect air conditioner including the heat exchangers 28a to 28d on the indoor units 2a to 2d side has been described as an example, but the present invention is not limited to this.
  • Refrigerant is circulated only in the outdoor unit, and heat medium such as water and brine is circulated between the outdoor unit, the relay device, and the indoor unit, and air conditioning is performed by exchanging heat between the refrigerant and the heat medium in the outdoor unit.
  • heat medium such as water and brine
  • air conditioning is performed by exchanging heat between the refrigerant and the heat medium in the outdoor unit.
  • the present invention can also be applied to an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 空気調和装置は、一端が圧縮機の吐出側に接続され、圧縮機から流出した冷媒が流れるバイパス配管と、バイパス配管の他端と圧縮機の吸入部とに接続され、バイパス配管を流れる冷媒を冷却して圧縮機の吸入部に供給する補助熱交換器と、補助熱交換器の冷媒の流出側に設けられており、補助熱交換器から圧縮機の吸入部に流入される冷媒の流量を調整する流量調整器とを備えたものである。

Description

空気調和装置
 本発明は、例えばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 従来から、ビル用マルチエアコンなどの空気調和装置は、例えば建物外に配置した熱源機である室外機(室外ユニット)と建物内に配置した室内機(室内ユニット)との間を配管を介して接続した冷媒回路を有するものが知られている。そして、冷媒回路において冷媒が循環し、冷媒の放熱または吸熱を利用して空気を加熱または冷却することにより、空調対象空間の暖房又は冷房を行なっている。そして、近年、ビル用マルチエアコンとして、R32冷媒等の地球温暖化係数が小さいフロン系冷媒を使用する空気調和装置が考えられている。
 R32冷媒は、冷媒の特性として従来からビル用マルチエアコンなどの空気調和装置の冷媒として広く使用されているR410A冷媒に対して、圧縮機の吐出温度が高いため冷凍機油の劣化等の問題が生じ、圧縮機の破損に繋がる。このため、圧縮機の吐出温度を低下させるために、圧縮機の回転数を減速させ圧縮比を小さくする必要がある。よって、圧縮機の回転数を増速することができず、冷房能力不足または暖房能力不足が生じる。このような問題を解決するために、圧縮機の圧縮過程で中間圧になる中間圧室に、気液二相状態の冷媒をインジェクションすることにより、圧縮機の回転数を増速しつつ、圧縮機の吐出温度を低下させる手法が提案されている(例えば、特許文献1参照)。
特開2008-138921号公報(図1、図2等)
 特許文献1に記載されている空気調和装置は、起動後、高圧冷媒の飽和温度が室内もしくは室外の空気温度以上になると、高圧ガス冷媒から室内空気もしくは室外空気へ放熱することにより冷媒が液化する。すると、インジェクションにより乾き度が小さい(液相が多い)気液二相状態の冷媒を圧縮機の中間圧部に流入させることができ、圧縮機の吐出温度を低下させることができる。しかし、圧縮機の中間圧部に冷媒を流入させる構造を有する圧縮機のみでしか吐出温度の抑制を行うことができず、汎用的ではない。また、圧縮機の中間圧部に冷媒を流入させる構造を有する圧縮機はその構造を有しない圧縮機に比べて高価になる。
 また、特許文献1の空気調和装置は、冷房運転時にもインジェクションが可能な回路構成になっている。具体的には、特許文献1の空気調和装置は、圧縮機の中間圧室にインジェクションする冷媒流量を制御するバイパス用絞り装置と、バイパス用絞り装置から流れる冷媒を冷却する冷媒間熱交換器とを備えている。そして、冷媒間熱交換器に流す冷媒の流量が絞り装置により制御され、圧縮機から吐出する冷媒の吐出温度が制御される。このため、吐出温度と凝縮器出口における過冷却度との双方を別々に目標値を用いて制御することができず、適正な過冷却度を保ちながら、吐出温度を適正に制御することができない。
 すなわち、室外機と室内機とを接続する延長配管が長い場合、吐出温度が目標値になるように制御すると、室外機出口の過冷却度が目標値になるような制御を行うことができない。このため、延長配管での圧力損失により、室内機に流入する冷媒が気液二相化してしまう可能性がある。例えば、複数の室内機を有するマルチ型の空気調和装置等のように室内機側に絞り装置が設けられている場合、絞り装置の流入口側に気液二相状態の冷媒が流入されると、異音が発生し、もしくは制御が不安定になる等のシステムの信頼性が低下してしまうという課題がある。
 本発明は、上記の課題を解決するためになされたもので、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保した空気調和装置を提供するものである。
 本発明に係る空気調和装置は、圧縮機と、冷媒流路切替装置と、熱源側熱交換器と、負荷側絞り装置と、負荷側熱交換器とを冷媒配管で接続した冷凍サイクルを備え、冷凍サイクルに冷媒が循環する空気調和装置であって、一端が圧縮機の吐出側に接続され、圧縮機から流出した冷媒が流れるバイパス配管と、バイパス配管の他端と圧縮機の吸入部とに接続され、バイパス配管を流れる冷媒を冷却して圧縮機の吸入部に供給する補助熱交換器と、補助熱交換器の冷媒の流出側に設けられており、補助熱交換器から圧縮機の吸入部に流入される冷媒の流量を調整する流量調整器とを備えたものである。
 本発明に係る空気調和装置によれば、あらゆる運転状態において、バイパス配管から圧縮機の吸入部へ流入される冷媒の状態及び流量を補助熱交換器、流量調整器及び第2絞り装置を用いて制御することにより、圧縮機から吐出される冷媒の吐出温度の上昇を抑制することができるため、圧縮機を特殊な構造にすることなく安価にシステムの信頼性を向上させることができる。
本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態1に係る空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の熱源側熱交換器の伝熱面積と補助熱交換器の伝熱面積の和に対する熱源側熱交換器の伝熱面積比と、空気調和装置の性能の大きさを表す指標の一つであるCOPとの関係を示すグラフである。 本発明の実施の形態2に係る空気調和装置の回路構成の一例を示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態3に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態4に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の別の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。
実施の形態1.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。図1の空気調和装置100は、室外機1と室内機2とが主管5で接続された構成を有している。なお、図1において、1台の室内機2が主管5を介して室外機1に接続されている場合を例に示しているが、室内機2の接続台数を1台に限定するものではなく、複数台接続してもよい。
[室外機1]
 室外機1は、圧縮機10と、冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19と、補助熱交換器40と、流量調整器42と、バイパス配管41と、が冷媒配管4で接続されており、送風機であるファン16と共に搭載されている。
 圧縮機10は、冷媒を吸入し圧縮して高温・高圧の状態にするものであり、例えば容量制御可能なインバータ圧縮機等で構成されている。圧縮機10は、例えば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気になり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用する。
 冷媒流路切替装置11は、例えば四方弁等からなっており、暖房運転モード時における冷媒流路と冷房運転モード時における冷媒流路とを切り替えるものである。なお、暖房運転モードとは、熱源側熱交換器12が凝縮器もしくはガスクーラとして作用する場合であり、暖房運転モードとは、熱源側熱交換器12が蒸発器として作用する場合である。
 熱源側熱交換器12は、暖房運転モード時には蒸発器として機能し、冷房運転モード時には凝縮器として機能するものであって、ファン16から供給される空気と冷媒との間で熱交換を行なう。アキュムレーター19は、圧縮機10の吸入部に設けられており、暖房運転モード時と冷房運転モード時との違いによる余剰冷媒または過渡的な運転の変化に対する余剰冷媒を蓄えるものである。
 補助熱交換器40は、暖房運転モード時及び冷房運転モード時の双方において凝縮器として機能し、ファン16から供給される空気と冷媒との間で熱交換を行なうものである。ここで、熱源側熱交換器12と補助熱交換器40とは、それぞれ冷媒流路が異なる伝熱管が共通の伝熱フィンに取り付けられた構造を有している。具体的には、複数の伝熱フィンは同一方向を向くように、互いに隣り合って配置されているとともに、複数の伝熱管に伝熱フィンが多数挿入されている。そして、熱源側熱交換器12と補助熱交換器40とは、同一の伝熱フィン上に一体的に設けられており、伝熱管は互いに独立した状態になっている。そして、例えば熱源側熱交換器12は上側に配置され、補助熱交換器40は下側に配置され、隣り合う複数の伝熱フィンは共有されている。よって、熱源側熱交換器12の周囲の空気は熱源側熱交換器12と補助熱交換器40との双方に流通する。また、補助熱交換器40は、伝熱面積が熱源側熱交換器12の伝熱面積よりも小さくなるように配置されている。さらに、補助熱交換器40は、冷媒を凝縮させ、補助熱交換器40出口での冷媒状態を液とするために必要な伝熱面積を有する。
 バイパス配管41は、高圧の冷媒を補助熱交換器40に流入させ、補助熱交換器40において凝縮された液冷媒を流量調整器42を介して、圧縮機10の吸入部に流入させる配管である。バイパス配管41は、一端が圧縮機10と冷媒流路切替装置11との間の冷媒配管4に接続され、他端が圧縮機10とアキュムレーター19との間の冷媒配管4に接続されている。
 流量調整器42は、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、補助熱交換器40の出口側に設けられている。流量調整器42は、補助熱交換器40で凝縮された後に圧縮機10の吸入部に流入させる液冷媒の流量を調整するものである。
 さらに、室外機1には、圧縮機10から吐出される高温・高圧の冷媒の温度を検出する吐出温度センサー43、圧縮機10の冷凍機油の温度を検出する冷凍機油温度センサー44、圧縮機10の吸入側の冷媒の低圧圧力を検出する低圧検出センサー45とが設けられている。また、室外機1には、室外機1の周囲の温度を測定する外気温度センサー46が熱源側熱交換器12の空気吸込み部に設けられている。
[室内機2]
 室内機2は、負荷側熱交換器26及び負荷側絞り装置25を有している。負荷側熱交換器26は、主管5を介して室外機1に接続されており、空気と冷媒との間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成する。なお、負荷側熱交換器26には、図示しないファン等の送風機から室内空気が送風されるようになっている。負荷側絞り装置25は、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、減圧弁や膨張弁としての機能を有して冷媒を減圧し膨張させるものである。負荷側絞り装置25は、全冷房運転モード時において負荷側熱交換器26の上流側に設けられている。
 また、室内機2には、サーミスター等からなる入口側温度センサー31及び出口側温度センサー32が設けられている。入口側温度センサー31は負荷側熱交換器26に流入する冷媒の温度を検出するものであり、負荷側熱交換器26の冷媒の入口側の配管に設けられている。出口側温度センサー32は、負荷側熱交換器26の冷媒の出口側に設けられており、負荷側熱交換器26から流出した冷媒の温度を検出するものである。
 制御装置60は、マイコン等で構成されており、上述した各種センサーにおいて検出された検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、流量調整器42の開度、負荷側絞り装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置60が、室外機1に設けられている場合について例示しているが、ユニット毎に設けてもよいし室内機2側に設けてもよい。
 次に、空気調和装置100が実行する各運転モードについて説明する。空気調和装置100は、室内機2からの指示に基づいて、その室内機2で冷房運転モード及び暖房運転モードを行うようになっている。なお、図1の空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する冷房運転モード、駆動している室内機2の全てが暖房運転を実行する暖房運転モードがある。以下に、各運転モードについて、冷媒の流れとともに説明する。
[冷房運転モード]
 図2は、空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。図2では、負荷側熱交換器26で冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図2では、冷媒の流れ方向を実線矢印で示している。
 図2において、低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12でファン16から供給される室外空気に放熱しながら高圧の液冷媒になる。熱源側熱交換器12から流出した高圧冷媒は室外機1から流出し、主管5を通って室内機2へ流入する。
 室内機2において、高圧冷媒は、負荷側絞り装置25で膨張させられて、低温・低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26に流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温・低圧のガス冷媒になる。この際、負荷側絞り装置25の開度は、入口側温度センサー31において検出された温度と出口側温度センサー32において検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように制御装置60により制御される。負荷側熱交換器26から流出したガス冷媒は、主管5を通って再び室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11及びアキュムレーター19を通って、圧縮機10へ再度吸入される。
 (全冷房運転モードにおけるインジェクションの必要性と効果概要)
 空気調和装置100の冷凍サイクルに使用される冷媒が、例えばR32等のようなR410A冷媒(以下、R410Aという)よりも圧縮機10の吐出温度が高温になる冷媒である場合、冷凍機油の劣化や圧縮機10の焼損を防ぐために、吐出温度を低下させる必要がある。そこで、冷房運転モード時において、圧縮機10を流出した高圧のガス冷媒の一部がバイパス配管41を介して補助熱交換器40に流入するようにする。そして、補助熱交換器40でファン16から供給される室外空気に放熱しながら高圧の過冷却液となった冷媒が、流量調整器42を介して圧縮機10の吸入部に流入する。これにより、圧縮機10の吐出冷媒の温度を低下させることができ、安全に使用できるようになる。
(流量調整器42の制御)
 冷房運転モード時における制御装置60による流量調整器42の制御について説明する。制御装置60は、吐出温度センサー43において検出された圧縮機10の吐出温度に基づいて流量調整器42の開度を制御するようになっている。すなわち、圧縮機10の吐出温度は、流量調整器42の開度(開口面積)を大きくし、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を増加させると低下する。一方、流量調整器42の開度(開口面積)を小さくして、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を減少させると圧縮機10の吐出温度は上昇する。
 そこで、制御装置60は、吐出温度センサー43において検出された圧縮機10の吐出温度が圧縮機10の焼損や冷凍機油の劣化する吐出温度しきい値以下(例えば115℃以下)である場合、流量調整器42が全閉状態になるように制御する。すると、補助熱交換器40からバイパス配管41を介して圧縮機10の吸入部に流入する冷媒の流路が遮断される。なお、吐出温度しきい値は、圧縮機10の吐出温度の限界値に応じて設定される。
 一方、吐出温度が吐出温度しきい値よりも大きくなった場合、制御装置60は流量調整器42が開き、補助熱交換器40において過冷却された冷媒が圧縮機10の吸入部に流れるように制御する。この際、制御装置60は、吐出温度が吐出温度しきい値以下になるように流量調整器42の開度(開口面積)を調整する。例えば制御装置60には、吐出温度と流量調整器42との開度とが関連づけされたテーブルもしくは数式が記憶されており、吐出温度に基づいて流量調整器42の開度を制御する。そして、アキュムレーター19から流出した低圧・低温のガス冷媒と補助熱交換器40において過冷却された液冷媒とが混合し、高乾き度の低圧の気液二相状態の冷媒が圧縮機10の吸引部から吸引されることになる。
 また、制御装置60は、冷凍機油温度センサー44において検出された冷凍機油温度と低圧検出センサー45において検出された低圧圧力より演算した蒸発温度の差である冷凍機油過熱度に基づいて流量調整器42の開度を補助的に制御するようになっている。すなわち、圧縮機10の冷凍機油過熱度は、流量調整器42の開度(開口面積)を大きくし、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を増加させると低下する。一方、流量調整器42の開度(開口面積)を小さくして、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を減少させると圧縮機10の吐出温度は上昇する。
 そこで、制御装置60は、冷凍機油温度センサー44及び低圧検出センサー45において検出、演算された圧縮機10の冷凍機油過熱度が冷凍機油温過熱度しきい値以上(例えば10℃以上)である場合、吐出温度のみに基づいて制御を行う。なお、冷凍機油過熱度しきい値は、圧縮機10の冷凍機油過熱度の限界値に応じて設定される。
 一方、冷凍機油過熱度が冷凍機油過熱度しきい値よりも小さくなった場合、制御装置60は流量調整器42が全閉状態になるように制御する。すると、補助熱交換器40からバイパス配管41を介して圧縮機10の吸入部に流入する冷媒の流路が遮断される。その際、吐出温度が上昇するため、制御装置60は、吐出温度が吐出温度しきい値以下になるように圧縮機10の回転数を低くするように制御する。
(冷房運転モード時のインジェクションの動作及び効果)
 このように、圧縮機10の吸入エンタルピが減少した状態の冷媒が圧縮機10の吸引部に流入することにより、圧縮機10の吐出温度の過昇を抑制することができる。このため、冷凍機油の劣化を抑制し、圧縮機10が破損することを防ぐことができる。よって、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保することができる。また、圧縮機10の吐出温度の過昇を抑制することにより、圧縮機10を増速することが可能になり、暖房能力を確保でき、ユーザーの快適性を低減させてしまうことを抑制できる。
 さらに、冷房運転モード時において、制御装置60は、圧縮機10から吐出した高圧の冷媒の一部を補助熱交換器40において過冷却することにより、流量調整器42に流入する冷媒は確実に液冷媒の状態になる。このため、流量調整器42に二相状態の冷媒が流入するのを防ぐことができ、流量調整器42での騒音発生を防ぐとともに、流量調整器42による圧縮機10の吐出温度の制御が不安定になるのを防ぐことができる。
[全暖房運転モード]
 図3は、空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。図3では、負荷側熱交換器26で温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図3では、冷媒の流れ方向を実線矢印で示している。
 図3において、低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は主管5を通り、負荷側熱交換器26で室内空気に放熱することにより、室内空間を暖房しながら液冷媒になる。負荷側熱交換器26から流出した液冷媒は、負荷側絞り装置25で膨張させられて、低温・低圧の気液二相状態の冷媒になり、主管5を通って再び室外機1へ流入する。室外機1へ流入した低温・低圧の気液二相状態の冷媒は熱源側熱交換器12に流入し、熱源側熱交換器12で室外空気から吸熱しながら、低温・低圧のガス冷媒になり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 (暖房運転モード時におけるインジェクションの必要性と効果概要)
 ここで、上述した冷房運転モードと同様、暖房運転モードにおいても例えばR32等のような圧縮機10の吐出温度が高温になる冷媒である場合、冷凍機油の劣化や圧縮機10の焼損を防ぐために、吐出温度を低下させる必要がある。そこで、暖房運転モード時においては圧縮機10から吐出された高圧のガス冷媒の一部が、バイパス配管41を介して補助熱交換器40に流入するようにする。そして、補助熱交換器40でファン16から供給される室外空気に放熱しながら高圧の過冷却液となった冷媒が、流量調整器42を介して圧縮機10の吸入部に流入させる。これにより、圧縮機10の吐出冷媒の温度を低下させることができ、安全に使用できるようになる。
(流量調整器42の制御)
 暖房運転モード時における制御装置60による流量調整器42の制御について説明する。制御装置60は、吐出温度センサー43において検出された圧縮機10の吐出温度に基づいて流量調整器42の開度を制御するようになっている。すなわち、圧縮機10の吐出温度は、流量調整器42の開度(開口面積)を大きくし、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を増加させると低下する。一方、流量調整器42の開度(開口面積)を小さくして、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を減少させると圧縮機10の吐出温度は上昇する。
 そこで、制御装置60は、吐出温度センサー43において検出された圧縮機10の吐出温度が圧縮機10の焼損や冷凍機油の劣化する吐出温度しきい値以下(例えば115℃以下)である場合、流量調整器42が全閉状態になるように制御する。すると、補助熱交換器40からバイパス配管41を介して圧縮機10の吸入部に流入する冷媒の流路が遮断される。
 一方、暖房運転モード時に、例えば室外機1が設置されている環境の温度が低温であり、かつ、室内機2が設置されている環境の温度が高温である場合、圧縮機10の吐出部の高圧と、圧縮機10の吸入部の低圧の比である圧縮比が高くなり、圧縮機10の吐出温度が過剰に上昇する。そして、吐出温度が吐出温度しきい値よりも大きくなった場合、制御装置60は流量調整器42が開き、補助熱交換器40を流通した冷媒が圧縮機10の吸入部に流れるように制御する。この際、制御装置60は、吐出温度が吐出温度しきい値以下になるように流量調整器42の開度(開口面積)を調整する。例えば制御装置60には、吐出温度と流量調整器42との開度とが関連づけされたテーブルもしくは数式が記憶されており、吐出温度に基づいて流量調整器42の開度を制御する。なお、吐出温度しきい値は、圧縮機10の吐出温度の限界値に応じて設定される。
 すると、補助熱交換器40において、ファン16から供給される空気と、空気温度よりも高い飽和温度である高圧のガス状態の冷媒との間で熱交換が行われ、過冷却された高圧の液冷媒が流量調整器42を介して圧縮機10の吸入部に流入させる。このとき、アキュムレーター19から流出した低圧・低温のガス冷媒と、補助熱交換器40において冷却された液冷媒とが混合して高乾き度の低圧の気液二相状態の冷媒になる。つまり、圧縮機10の吸入エンタルピが減少した状態の冷媒が圧縮機10に流入されることになり、圧縮機10の吐出温度の過昇を抑制することができるため、冷凍機油の劣化を抑制し、圧縮機10が破損することを防ぐことができる。
 また、制御装置60は、冷凍機油温度センサー44において検出された冷凍機油温度と低圧検出センサー45において検出された低圧圧力より演算した蒸発温度の差である冷凍機油過熱度に基づいて流量調整器42の開度を制御するようになっている。すなわち、圧縮機10の冷凍機油過熱度は、流量調整器42の開度(開口面積)を大きくし、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を増加させると低下する。一方、流量調整器42の開度(開口面積)を小さくして、補助熱交換器40から圧縮機10の吸入部に流入させる過冷却された液冷媒量を減少させると圧縮機10の吐出温度は上昇する。
 そこで、制御装置60は、冷凍機油温度センサー44及び低圧検出センサー45において検出、演算された圧縮機10の冷凍機油過熱度が冷凍機油温過熱度しきい値以上(例えば10℃以上)である場合、吐出温度のみに基づいて制御を行う。なお、冷凍機油過熱度しきい値は、圧縮機10の冷凍機油過熱度の限界値に応じて設定される。
 一方、冷凍機油過熱度が冷凍機油過熱度しきい値よりも小さくなった場合、制御装置60は流量調整器42が全閉状態になるように制御する。すると、補助熱交換器40からバイパス配管41を介して圧縮機10の吸入部に流入する冷媒の流路が遮断される。その際、吐出温度が上昇するため、制御装置60は、吐出温度が吐出温度しきい値以下になるように圧縮機10の回転数を低くするように制御する。
 なお、空気調和装置100において、補助熱交換器40の入口側に全閉機能を有する第一流路開閉装置が設けられていてもよい。そして、圧縮機10の吐出温度の過昇抑制が必要無い場合などに、制御装置60は第一流路開閉装置及び開閉装置47を閉とし、流量調整器42を全閉とならないわずかな開度に制御する。これにより、バイパス配管41と、補助熱交換器40に、冷媒が寝込むことを抑制でき、圧縮機10の吐出温度の過昇抑制が必要となった時に、流量調整器42から、過剰に液冷媒が圧縮機10の吸入部に流入することを防げ、過剰な液バックによる圧縮機10の破損を防ぐことができる。
(暖房運転モード時のインジェクションの効果)
 このように、暖房運転モードにおいて、室内機2から室外機1に流入する中圧・中温の冷媒の一部を補助熱交換器40において過冷却液にして圧縮機10の吸入部に流入させ、圧縮機10の吐出温度上昇を抑制する方式をとることにより、圧縮機10から吐出された全ての高圧・高温のガス冷媒を室内機2に供給することが可能になる。よって、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保することができる。また、圧縮機10の吐出温度の過昇を抑制することにより、圧縮機10を増速することが可能になり、暖房能力を確保でき、ユーザーの快適性を低減させてしまうことを抑制できる。
(補助熱交換器のサイズの選定)
 流量調整器42の制御性を安定させるために、補助熱交換器40から流出する冷媒を確実に液化させる必要があり、そのために補助熱交換器40の伝熱面積について考慮する必要がある。ここで、暖房運転モード時において、圧縮機10の吐出温度の上昇を抑制する必要がある環境としては、室外機1が設置されている環境温度が低い環境(例えば環境温度が-10℃以下)が考えられる。この場合には、補助熱交換器40において過冷却する必要がある高圧・高温のガス冷媒の飽和温度と環境温度との温度差が大きくなり、補助熱交換器40の伝熱面積は小さくとも十分に過冷却できる。
 一方、冷房運転モード時において、圧縮機10の吐出温度の上昇を抑制する必要がある環境としては、室外機1が設置されている環境温度が高い環境(例えば環境温度が40℃以上)が考えられる。この環境下においては、補助熱交換器40において過冷却する必要がある高圧・高温のガス冷媒の飽和温度と環境温度との温度差が小さくなる。このため、補助熱交換器40において十分に過冷却するためには、補助熱交換器40の伝熱面積を暖房運転モード時よりも大きくする必要がある。
 よって、補助熱交換器40の伝熱面積は、冷房運転モードのインジェクション時に圧縮機10の吸入部に流入する過冷却液の量が最も多い条件において選定すればよい。この条件は、空気調和装置100の運転可能な環境温度に依存するが、熱源側熱交換器12において冷却される冷媒の圧力と、負荷側熱交換器26において加熱される冷媒の圧力との差が最も大きくなる条件が、圧縮機10から吐出される高圧・高温の冷媒の温度が最も上昇する条件である。
 したがって、圧縮機10から吐出される高圧・高温の冷媒の温度が最も上昇する環境下を想定して補助熱交換器40の伝熱面積を決定する。例えば、空気調和装置100の運転可能な環境温度が、室外機1が設置されている環境温度の最大値が43℃、室内機2が設置されている環境温度の最小値が15℃であると仮定した場合、この環境下が圧縮機10から吐出される冷媒の温度が最も上昇する条件であり、この条件下において補助熱交換器40の伝熱面積が決定される。
 まず、冷房運転モード時に、室外機1が設置されている環境温度最大値を43℃、室内機2が設置されている環境温度最小値を15℃とした場合の圧縮機10の吐出冷媒温度を吐出温度しきい値以下(例えば115℃以下)とするために必要になる補助熱交換器40から、圧縮機10の吸入部に流入させる必要がある過冷却液の冷媒流量(インジェクション量)は、式(1)のエネルギ保存則から算出すればよい。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、Gr1(kg/h)及びh1(kJ/kg)は、アキュムレーター19から圧縮機10の吸入部に流入する低温・低圧のガス冷媒の流量及びエンタルピ、Gr2(kg/h)及びh2(kJ/kg)は、補助熱交換器40から流量調整器42及びバイパス配管41を介して圧縮機10の吸入部にインジェクションされる低温・低圧の液冷媒の流量及びエンタルピ、Gr(kg/h)及びh(kJ/kg)は圧縮機10の吸入部でそれぞれの冷媒が合流した後の合計冷媒流量及び合流後エンタルピである。
 式(1)より算出される合流後のエンタルピh(kJ/kg)は、アキュムレーター19から圧縮機10の吸入部に流入する低温・低圧のガス冷媒のエンタルピh1(kJ/kg)よりも小さくなる。このため、補助熱交換器40から液冷媒の流入が無い場合よりも補助熱交換器40から冷媒のインジェクションがなされた場合の方が圧縮機10から吐出される冷媒の吐出温度は低下する。
 ここで、流量調整器42が全閉状態の場合に冷媒がエンタルピh1(kJ/kg)から所定の圧力まで圧縮された場合と、流量調整器42が開いてバイパス配管41からの液インジェクションがなされた場合に冷媒が所定の圧力まで圧縮された場合とにおいて、冷媒は同等の断熱効率及び同等の押しのけ量で、同じ圧力まで圧縮されるものとする。この条件下において、圧縮機10から吐出されるガス冷媒の温度が吐出温度しきい値以下(例えば115℃以下)になる冷媒流量Gr2が式(1)から導出される。
 次に、補助熱交換器40の熱交換量をQ1(W)、冷房運転モード時の圧縮機10から吐出した高圧・高温の冷媒のエンタルピであって補助熱交換器40の入口側の冷媒のエンタルピをh3(kJ/kg)とすると、式(2)に示す一般的なエンタルピ変化による熱交換量の式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 また、補助熱交換器40が室外機1が設置されている環境の空気と接触する面積(以下、全伝熱面積と称する)をA1(m2)、冷媒と空気の温度差による熱の伝わり易さを示す係数であって、補助熱交換器40で使用されているフィンと伝熱管外面とが設置されている環境の空気と接触する側を基準(以下管外側基準と称する)とした熱通過率をk(W/(m2・K))、補助熱交換器40における冷媒と空気それぞれの出入口の流れ方向の温度変化を考慮した温度差である対数平均温度差をΔTm(Kまたは℃)とすると、補助熱交換器40の熱交換量Q1(W)は、一般的な熱通過による熱交換量の式(3)として表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、管外側基準の熱通過率kは、プレートフィンチューブ熱交換器である補助熱交換器40において使用する伝熱管の仕様、フィン形状、ファン風速、冷凍サイクルの運転状態等の変化による熱伝達率の変化において変化するものである。例えば、多くの冷房運転モードの試験結果より得られている凝縮器の値であるk=約72(W/(m2・K))とする。
 対数平均温度差をΔTm(Kまたは℃)は、補助熱交換器40の空気と熱交換する方式を向流式と仮定した場合、冷媒の飽和温度をTc(Kまたは℃)、補助熱交換器40に流入する空気温度をT1(Kまたは℃)、流出する空気の温度をT2(Kまたは℃)とすると、式(4)において算出できる。
Figure JPOXMLDOC01-appb-M000004
 上記式(1)~式(4)を使用することにより、補助熱交換器40の全伝熱面積A1を算出することができる。一例として、冷媒としてR32冷媒を使用した10馬力相当の空気調和装置100について全伝熱面積A1を求める場合について説明する。この空気調和装置100において、室外機1が設置されている環境温度が約43℃、室内機2が設置されている環境温度が約15℃の条件下において、式(1)の合計冷媒流量Gr(=Gr1+Gr2)は約340(kg/h)になる。また、圧縮機10から吐出される冷媒の飽和温度が例えば54℃であり、その54℃の飽和ガスのエンタルピh3は約503(kJ/kg)となる。その54℃の飽和ガスが補助熱交換器40において約43℃の空気と熱交換を行い、十分に過冷却するために、54℃の飽和液と補助熱交換器40の出口側の液冷媒の温度差である過冷却度を約5℃ほど確保するとした場合に、補助熱交換器40の出口のエンタルピh2は、入口側の54℃の飽和液と補助熱交換器40の出口の液冷媒の温度とから決まり、約296(kJ/kg)となる。また、アキュムレーター19から圧縮機10の吸入部に流入する冷媒のエンタルピh1は、圧縮機10の吸入部の飽和ガス温度を約0℃とすると、エンタルピh1=約515(kJ/kg)になる。
 このように、空気調和装置100の運転可能な条件等に基づき、式(1)における合計冷媒流量Gr及びエンタルピh1、h2が求まる。そして、熱源側熱交換器12内の冷媒の飽和温度である54℃の圧力まで冷媒を圧縮する場合に、圧縮機10の吐出温度が第一の所定値以下(115℃以下)になるために必要になる冷媒流量Gr2は、式(1)から約12(kg/h)となる。
 次に、上述のように、圧縮機10から吐出される冷媒の飽和温度が例えば54℃である場合、54℃の飽和ガスのエンタルピh3は約503(kJ/kg)となる。よって、補助熱交換器40で必要となる熱交換量Q1は、冷媒流量Gr2及びエンタルピh2、h3を式(2)に代入することにより約690(W)となる。
 また、圧縮機10から吐出される冷媒の飽和温度Tcは約54(℃)、補助熱交換器40に流入する空気温度T1は43(℃)であり、流出する空気の温度T2は補助熱交換器40における熱交換量Q1が約690(W)と大きいため、ほぼ冷媒の飽和温度まで上昇するとみて、流入する空気温度から10℃程度上昇するとし、53(℃)とした場合、式(4)より対数平均温度差は、約4.17(℃)となり、式(3)より必要とされる補助熱交換器40の全伝熱面積A1は約2.298(m2)になる。
 R32冷媒が10馬力相当の空気調和装置100の冷媒として使用される際、熱源側熱交換器12で必要とされる全伝熱面積A2は約141(m2)程度である。補助熱交換器40が熱源側熱交換器12の一部からなっている場合、熱源側熱交換器12の必要とされる全伝熱面積A2と補助熱交換器40の必要とされる全伝熱面積A1の和に対する、補助熱交換器40の全伝熱面積A1の比率A1/(A1+A2)=2.298/141.644は約1.62%以上になる。
 なお、所定の運転可能な条件下における10馬力相当の空気調和装置100を一例として、補助熱交換器40の全伝熱面積A1の算出を行ったが、これに限定されるものではない。例えば、空気調和装置100の構成において、必要とされる冷房、暖房能力(馬力)が変化しても、室外機1と室内機2が設置されている環境温度に対する冷媒の高圧・低圧の冷媒運転状態がほぼ変わらない場合、圧縮機10の押しのけ量の変化(合計冷媒流量Gr(kg/h)の変化)のみにより、冷房、暖房能力(馬力)が変化する。このため、圧縮機10の押しのけ量の変化比率に応じて、補助熱交換器40に流入させる冷媒流量Gr2が変化するようにし、式(2)と式(3)より補助熱交換器40の全伝熱面積A1が算出されるようにしてもよい。
 例えば、14馬力相当の空気調和装置100は、10馬力相当の空気調和装置に対し、約1.4倍の圧縮機10の押しのけ量が必要になる。よって、補助熱交換器40に流入させる冷媒流量Gr2は、約16.8(kg/h)(=10馬力相当のGr2である12(kg/h)×1.4)になる。補助熱交換器40の出入口の冷媒のエンタルピは10馬力相当の空気調和装置100の場合とほぼ同等とすると、式(2)より、補助熱交換器40での熱交換量Q1は約996(W)になり、式(3)より、熱通過率kと、対数平均温度差ΔTmも10馬力相当の空気調和装置100の場合とほぼ同等とみなせるため、必要とされる補助熱交換器40の全伝熱面積A1は、10馬力相当の空気調和装置の補助熱交換器40の全伝熱面積A1の約1.4倍である3.217(m2)になる。また、熱源側熱交換器12の必要とされる全伝熱面積A2に関しても、圧縮機10の押しのけ量の変化(合計冷媒流量Gr(kg/h)の変化)のみにより、冷房、暖房能力(馬力)が変化すると考えると、熱源側熱交換器12の必要とされる全伝熱面積A2も、10馬力相当の空気調和装置の約1.4倍必要と考えることができる。すなわち、空気調和装置100の馬力によらず、熱源側熱交換器12の必要とされる全伝熱面積A2と補助熱交換器40の必要とされる全伝熱面積A1の和に対する、補助熱交換器40の全伝熱面積A1の比率A1/(A1+A2)は約1.62%以上になる。
 熱源側熱交換器12の一部を補助熱交換器40として使用する場合、例えば、室外機1の高さ方向の制約等が生じ、熱源側熱交換器12の段数を増加させることができない状況がある。この場合に熱源側熱交換器12の一部である補助熱交換器40を過大にすると、熱源側熱交換器12の全伝熱面積A1が減少し、熱源側熱交換器12の性能が低下する。
 図4は、空気調和装置100の熱源側熱交換器12の全伝熱面積A2と補助熱交換器40の全伝熱面積A1の和に対する熱源側熱交換器12の伝熱面積比と、空気調和装置100の性能の大きさを表す指標の1つであるCOPとの関係を示すグラフである。図4に示すように、COPの低下率を約1.5%以内に抑えるとすると、全伝熱面積の和A1+A2に対する熱源側熱交換器12の全伝熱面積A2の比率A2/(A1+A2)は約95%になる。したがって、補助熱交換器40の全伝熱面積A1の比率A1/(A1+A2)は5%以内になり、全伝熱面積の和A1+A2に対する補助熱交換器40の全伝熱面積A1の比率A1/(A1+A2)が約5%以内の大きさとする方が望ましい。ただし、補助熱交換器40が熱源側熱交換器12の一部ではなく独立して設置されている場合、比率A1/(A1+A2)を約5%以内にする必要はなく、A1/(A1+A2)が約1.62%以上であればよい。
実施の形態2.
 図5は、本発明の実施の形態2に係る空気調和装置の回路構成の一例を示す冷媒回路図であり、図5を参照して空気調和装置200について説明する。なお、図5において、図1の空気調和装置100と同一の構成を有する部位には同一の符号を付してその説明を省略する。
 図5の空気調和装置200は、熱源機である1台の室外機201と、複数台の室内機2a~2dと、室外機201と室内機2a~2dとの間に開閉装置を備えた中継装置3を有している。室外機201と中継装置3とは、冷媒が流通する主管5により接続され、中継装置3と複数の室内機2a~2dとは、冷媒が流通する枝管6により接続されている。そして、室外機1で生成された冷熱あるいは温熱は、中継装置3を介して各室内機2a~2dに流通されるようになっている。
 室外機201と中継装置3とは2本の主管5を用いて接続されており、中継装置3と各室内機2とは2本の枝管6を用いて接続されている。このように、2本の配管を用いて室外機201と中継装置3及び室内機2a~2dと中継装置3とをそれぞれ接続することにより、施工が容易になっている。
[室外機201]
 室外機201は、実施の形態1と同様、圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12と、補助熱交換器40と、流量調整器42と、バイパス配管41と、アキュムレーター19とが冷媒配管4で接続され、送風機であるファン16と共に搭載されている。
 さらに、室外機201は、第1接続配管4a、第2接続配管4b、逆止弁等からなる第1逆流防止装置13a~13dを有している。第1逆流防止装置13aは、全暖房運転モード時と暖房主体運転モード時に、第1接続配管4aから熱源側熱交換器12に、高温・高圧のガス冷媒が逆流することを防止するものである。第1逆流防止装置13bは、全冷房運転モード時と冷房主体運転モード時に、第1接続配管4aからアキュムレーター19に、高圧の液もしくは気液二相状態の冷媒が逆流することを防止するものである。第1逆流防止装置13cは、全冷房運転モード時と冷房主体運転モード時に、第1接続配管4aからアキュムレーター19に、高圧の液もしくは、気液二相状態の冷媒が逆流することを防止するものである。第1逆流防止装置13dは、全暖房運転モード時と暖房主体運転モード時に、圧縮機10の吐出側の流路から第2接続配管4bに、高温・高圧のガス冷媒が逆流することを防止するものである。
 このように、第1接続配管4a、第2接続配管4b及び第1逆流防止装置13a~13dを設けることにより、室内機2の要求する運転に関わらず、中継装置3に流入させる冷媒の流れを一定方向にすることができる。なお、第1逆流防止装置13a~13dが逆止弁からなる場合について例示しているが、冷媒の逆流を防止できればその構成を問わず、開閉装置や全閉機能を有する絞り装置であってもよい。
[室内機2a~2d]
 複数の室内機2a~2dは、例えば同一の構成を有するものであって、それぞれ負荷側熱交換器26a~26dと、負荷側絞り装置25a~25dを備えている。負荷側熱交換器26a~26dは、枝管6と、中継装置3と、主管5を介して室外機201に接続されており、図示省略のファン等の送風機から供給される空気と冷媒の間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成するものである。負荷側絞り装置25a~25dは、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、冷媒を減圧して膨張させる減圧弁や膨張弁としての機能を有している。負荷側絞り装置25a~25dは、全冷房運転モード時の冷媒の流れにおいて負荷側熱交換器26a~26dの上流側に設けられている。
 また、室内機2には、それぞれ負荷側熱交換器26に流入する冷媒の温度を検出する入口側温度センサー31a~31dと、負荷側熱交換器26から流出した冷媒の温度を検出する出口側温度センサー32a~32dが設けられている。なお、入口側温度センサー31a~31d及び出口側温度センサー32a~32dは、例えばサーミスター等からなっており、検出した負荷側熱交換器26a~26dの入口側温度及び出口側温度は制御装置60に送られる。
 なお、図5において、4台の室内機2が中継装置3及び冷媒配管4を介して室外機201に接続されている場合について例示しているが、室内機2の接続台数を4台に限定するものではなく、2台以上接続されていればよい。
[中継装置3]
 中継装置3は、気液分離器14と、冷媒間熱交換器50と、第3絞り装置15と、第4絞り装置27と、複数の第1開閉装置23a~23dと、複数の第2開閉装置24a~24dと、逆止弁等の逆流防止装置である複数の第2逆流防止装置21a~21dと、逆止弁等の逆流防止装置である複数の第3逆流防止装置22a~22dとを有している。
 気液分離器14は、冷房負荷が大きい冷房暖房混在運転モード時において、室外機201で生成された高圧の気液二相状態の冷媒を、液とガスに分離し、液は紙面上の下側の配管に流入させて、室内機2に冷熱を供給し、ガスは紙面上の上側の配管に流入させて、室内機2に温熱を供給するものである。気液分離器14は、中継装置3の入口に設置されている。
 冷媒間熱交換器50は、例えば二重管式熱交換器やプレート式熱交換器等で構成され、全冷房運転モード時、冷房主体運転モード時、暖房主体運転モード時に、冷熱負荷が発生している室内機2の負荷側絞り装置25に供給する液もしくは気液二相状態の冷媒の過冷却度を十分に確保するために、高圧もしくは中圧冷媒と低圧冷媒とを熱交換させるものである。冷媒間熱交換器50の高圧もしくは中圧状態の冷媒の流路は、第3絞り装置15と第2逆流防止装置21a~21dとの間に接続されている。低圧状態の冷媒の流路は、一端が第2逆流防止装置21a~21dと、冷媒間熱交換器50の高圧もしくは中圧状態の冷媒の流路の出口側との間に接続され、他端が第4絞り装置27と冷媒間熱交換器50とを介して、中継装置3の出口側の低圧配管に導通されている。
 第3絞り装置15は、減圧弁や開閉弁としての機能を有し、液冷媒を減圧させて所定の圧力に調整し、もしくは液冷媒の流路を開閉するものである。第3絞り装置15は、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、気液分離器14から液冷媒が流出する配管上に設けられている。
 第4絞り装置27は、減圧弁や開閉弁としての機能を有し、全暖房運転モードにおいて、冷媒流路を開閉するものであり、暖房主体運転モードにおいて、室内側負荷に応じ、バイパス液流量を調整するものである。そして、第4絞り装置27は、全冷運転モード時、冷房主体運転モード時、暖房主体運転モード時に、冷媒間熱交換器50に冷媒を流出し、冷熱負荷が発生している室内機2の負荷側絞り装置25に供給する冷媒の過冷却度を調整するものである。第4絞り装置27は、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、冷媒間熱交換器50の低圧状態の冷媒の入口側の流路に設置されている。
 複数の第1開閉装置23a~23dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第1開閉装置23a~23dは、例えば電磁弁等で構成されており、それぞれ各室内機2a~2dに供給される高温・高圧のガス冷媒の流路を開閉するものである。第1開閉装置23a~23dは、それぞれ気液分離器14のガス側配管に接続されている。なお、第1開閉装置23a~23dは流路の開閉を行えればよく、全閉機能を有する絞り装置であってもよい。
 複数の第2開閉装置24a~24dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第2開閉装置24a~24dは、例えば電磁弁等で構成されており、室内機2a~2dから流出した低圧・低温のガス冷媒の流路を開閉するものである。第2開閉装置24a~24dは、中継装置3の出口側に導通する低圧配管に接続されている。また、第2開閉装置24a~24dは流路の開閉を行えればよく、全閉機能を有する絞り装置であってもよい。
 複数の第2逆流防止装置21a~21dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第2逆流防止装置21a~21dは、冷房運転を実施している室内機2a~2dに高圧液冷媒を流入させるものであって、第3絞り装置15の出口側の配管に接続されている。これにより、冷房主体運転モード時と暖房主体運転モード時に、暖房運転を実施している室内機2の負荷側絞り装置25から流出した、過冷却度が十分に確保できていない中温・中圧の液もしくは気液二相状態の冷媒が、冷房運転を実施している室内機2の負荷側絞り装置25に流入することを防ぐことができる。また、第2逆流防止装置21a~21dは、逆止弁であるかのように図示しているが、冷媒の逆流を防止できればどんなものでもよく、開閉装置や全閉機能を有する絞り装置であってもよい。
 複数の第3逆流防止装置22a~22dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第3逆流防止装置22a~22dは、冷房運転を実施している室内機2に高圧液冷媒を流入させるものであり、第3絞り装置15の出口配管に接続されている。第3逆流防止装置22a~22dは、冷房主体運転モード時と暖房主体運転モード時に、第3絞り装置15から流出した過冷却度が十分に確保できていない中温・中圧の液もしくは気液二相状態の冷媒が、冷房運転を実施している室内機2の負荷側絞り装置25に流入することを防止している。また、第3逆流防止装置22a~22dは、逆止弁であるかのように図示しているが、冷媒の逆流を防止できればどんなものでもよく、開閉装置や全閉機能を有する絞り装置であってもよい。
 また、中継装置3において、第3絞り装置15の入口側には入口側圧力センサー33が設けられており、第3絞り装置15の出口側には出口側圧力センサー34が設けられている。入口側圧力センサー33は、高圧冷媒の圧力を検出するものであり、出口側圧力センサー34は、冷房主体運転モード時、第3絞り装置15出口の液冷媒の中間圧力を検出するものである。
 さらに中継装置3には、冷媒間熱交換器50を流出した高圧もしくは中圧状態の冷媒の温度を検出する温度センサー51が設けられている。温度センサー51は、冷媒間熱交換器50の高圧もしくは中圧状態の冷媒の流路の出口側の配管に設けられており、サーミスター等で構成するとよい。
 図5の空気調和装置200においても、制御装置60は、各種センサーでの検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、流量調整器42の開度、負荷側絞り装置25の開度、第1開閉装置23a~23d、第2開閉装置24a~24d、第4絞り装置27、第3絞り装置15の開閉等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置60は、ユニット毎に設けてもよく、室外機201または中継装置3に設けてもよい。
 空気調和装置200が実行する各運転モードについて説明する。この空気調和装置200は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置200は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置200が実行する運転モードには、冷房運転モードとして駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モードがあり、暖房運転モードとして室内機2の全てが暖房運転を実行する全暖房運転モード及び暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて説明する。
[全冷房運転モード]
 図6は、空気調和装置200の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。図6では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。なお、図6では、負荷側熱交換器26a及び負荷側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。また、図6に示す全冷房運転モードの場合、制御装置60は、室外機201の冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように切り替える。
 まず、低温・低圧の冷媒が圧縮機10により圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧液冷媒になる。熱源側熱交換器12から流出した高圧液冷媒は、第1逆流防止装置13aを通って、室外機201から流出し、主管5を通って中継装置3に流入する。
 中継装置3に流入した高圧液冷媒は、気液分離器14及び第3絞り装置15を経由し、冷媒間熱交換器50において十分に過冷却される。その後、過冷却された高圧冷媒の大部分は第2逆流防止装置21a、21b及び枝管6を経由し、負荷側絞り装置25で膨張させられ、低温・低圧の気液二相状態の冷媒になる。高圧冷媒の残りの一部は第4絞り装置27で膨張させられ、低温・低圧の気液二相状態の冷媒になる。そして、低温・低圧の気液二相状態の冷媒は、冷媒間熱交換器50において高圧液冷媒と熱交換することにより、低温・低圧のガス冷媒になり、中継装置3の出口側の低圧配管に流入する。この際、第4絞り装置27は、出口側圧力センサー34で検出された圧力を飽和温度に換算した値と、温度センサー51で検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 負荷側絞り装置25a、25bを流出した大部分の低温・低圧の気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26a、26bにそれぞれ流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温・低圧のガス冷媒になる。この際、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32aで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、負荷側絞り装置25bは、入口側温度センサー31bで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
 負荷側熱交換器26a、26bからそれぞれ流出したガス冷媒は、枝管6及び第2開閉装置24を経由して、冷媒間熱交換器50を流出したガス冷媒と合流し、中継装置3から流出し、主管5を通って再び室外機201へ流入する。室外機201に流入した冷媒は、第1逆流防止装置13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 なお、冷熱負荷がない負荷側熱交換器26c及び負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cと、負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26c又は負荷側熱交換器26dから冷熱負荷の発生があった場合には、負荷側絞り装置25c又は負荷側絞り装置25dが開放して冷媒が循環する。この際、負荷側絞り装置25c又は負荷側絞り装置25dの開度は、上述した負荷側絞り装置25a又は負荷側絞り装置25bと同様に、入口側温度センサー31と、出口側温度センサー32で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
[冷房主体運転モード]
 図7は、空気調和装置200の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。図7では、負荷側熱交換器26aで冷熱負荷が発生し、負荷側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒の循環する配管を示しており、冷媒の流れ方向を実線矢印で示している。図7に示す冷房主体運転モードの場合、室外機201では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。
 まず、低温・低圧の冷媒が圧縮機10により圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら気液二相状態の冷媒になる。熱源側熱交換器12から流出した冷媒は、第1逆流防止装置13a及び主管5を通り中継装置3に流入する。
 中継装置3に流入した気液二相状態の冷媒は、気液分離器14で高圧ガス冷媒と高圧液冷媒に分離される。この高圧ガス冷媒は、第1開閉装置23b及び枝管6を経由した後に、凝縮器として作用する負荷側熱交換器26bに流入し、室内空気に放熱することにより、室内空間を暖房しながら液冷媒になる。この際、負荷側絞り装置25bは、入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25bで膨張させられて、枝管6及び第3逆流防止装置22bを経由する。
 その後、冷媒は、気液分離器14で分離された後に第3絞り装置15において中間圧まで膨張させられた中間圧液冷媒と、第3逆流防止装置22bを通ってきた液冷媒とが合流する。この際、第3絞り装置15は、入口側圧力センサー33で検出された圧力と、出口側圧力センサー34で検出された圧力との圧力差が所定の圧力差(例えば0.3MPaなど)になるように開度が制御される。
 合流した液冷媒は、冷媒間熱交換器50において、十分に過冷却された後に、大部分は第2逆流防止装置21a及び枝管6を経由した後に、負荷側絞り装置25aで膨張させられ、低温・低圧の気液二相状態の冷媒になる。液冷媒の残りの一部は第4絞り装置27で膨張させられ、低温・低圧の気液二相状態の冷媒になる。この際、第4絞り装置27は、出口側圧力センサー34で検出された圧力を飽和温度に換算した値と、温度センサー51で検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。その後、低温・低圧の気液二相状態の冷媒は、冷媒間熱交換器50において中圧液冷媒と熱交換することにより、低温・低圧のガス冷媒になり、中継装置3の出口側の低圧配管に流入する。
 一方、気液分離器14において分離された高圧液冷媒は、冷媒間熱交換器50及び第2逆流防止装置21aを介して室内機2aに流入する。室内機2aの負荷側絞り装置25aで膨張させられた大部分の気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26aに流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温・低圧のガス冷媒になる。この際、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。負荷側熱交換器26aから流出したガス冷媒は、枝管6、第2開閉装置24aを経由して、冷媒間熱交換器50を流出した残りの一部のガス冷媒と合流した後に中継装置3から流出し、主管5を通って再び室外機201へ流入する。室外機201に流入した冷媒は、第1逆流防止装置13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 なお、熱負荷がない負荷側熱交換器26c及び負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25c及び負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26c又は負荷側熱交換器26dから冷熱負荷があった場合には、負荷側絞り装置25c又は負荷側絞り装置25dが開放して冷媒が循環する。この際、負荷側絞り装置25c又は負荷側絞り装置25dの開度は、上述した負荷側絞り装置25a又は負荷側絞り装置25bと同様に、入口側温度センサー31と、出口側温度センサー32で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
[全暖房運転モード]
 図8は、空気調和装置200の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図8では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。図8では、負荷側熱交換器26a及び負荷側熱交換器26bでのみ冷熱負荷が発生している場合を例に全暖房運転モードについて説明する。また、図8に示す全暖房運転モードの場合、室外機201では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由させずに中継装置3へ流入するように切り替える。
 まず、低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11、第1逆流防止装置13bを通り、室外機201から流出する。室外機201から流出した高温・高圧のガス冷媒は、主管5を通って中継装置3に流入する。
 中継装置3に流入した高温・高圧のガス冷媒は、気液分離器14、第1開閉装置23a、23b及び枝管6を経由した後に、凝縮器として作用する負荷側熱交換器26a及び負荷側熱交換器26bのそれぞれに流入する。負荷側熱交換器26a及び負荷側熱交換器26bに流入した冷媒は室内空気に放熱することにより、室内空間を暖房しながら液冷媒になる。負荷側熱交換器26a及び負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25a、25bでそれぞれ膨張させられて、枝管6、第3逆流防止装置22a、22b、冷媒間熱交換器50、開状態に制御された第4絞り装置27及び主管5を通って再び室外機201へ流入する。この際、負荷側絞り装置25aは、入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31aで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、負荷側絞り装置25bは、入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 室外機201に流入した冷媒は、第1逆流防止装置13cを通り、熱源側熱交換器12において室外空気から吸熱しながら、低温・低圧のガス冷媒になり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 なお、熱負荷がない負荷側熱交換器26c及び負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25c及び負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26c又は負荷側熱交換器26dから冷熱負荷があった場合には、負荷側絞り装置25c又は負荷側絞り装置25dが開放して冷媒が循環する。この際、負荷側絞り装置25c又は負荷側絞り装置25dの開度は、上述した負荷側絞り装置25a又は負荷側絞り装置25bと同様に、入口側温度センサー31と、出口側温度センサー32で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
[暖房主体運転モード]
 図9は、空気調和装置200の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。なお、図9では、太線で表された配管が冷媒の循環する配管を示しており、冷媒の流れ方向を実線矢印で示している。図9では、負荷側熱交換器26aで冷熱負荷が発生し、負荷側熱交換器26bで温熱負荷が発生している場合を例に暖房主体運転モードについて説明する。図9に示す暖房主体運転モードの場合、室外機201では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに中継装置3へ流入させるように切り替える。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11、第1逆流防止装置13bを通り、室外機201から流出する。室外機201から流出した高温・高圧のガス冷媒は、主管5を通って中継装置3に流入する。
 中継装置3に流入した高温・高圧のガス冷媒は、気液分離器14、第3絞り装置15、第1開閉装置23b及び枝管6を経由した後に、凝縮器として作用する負荷側熱交換器26bに流入する。負荷側熱交換器26bに流入した冷媒は室内空気に放熱することにより、室内空間を暖房しながら液冷媒になる。負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25bで膨張させられて、枝管6及び第3逆流防止装置22bを経由して、冷媒間熱交換器50において十分に過冷却される。その後、大部分は第2逆流防止装置21a及び枝管6を経由した後に、負荷側絞り装置25aで膨張させられ、低温・低圧の気液二相状態の冷媒になる。液冷媒の残りの一部はバイパスとしても使用する第4絞り装置27で膨張させられ、低温・低圧の気液二相の冷媒になり、冷媒間熱交換器50において、液冷媒と熱交換することにより、低温・低圧のガスもしくは気液二相状態の冷媒になり、中継装置3の出口側の低圧配管に流入する。
 負荷側絞り装置25aで膨張させられた大部分の気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26aに流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温・中圧の気液二相状態の冷媒になる。負荷側熱交換器26aから流出した気液二相状態の冷媒は、枝管6及び第2開閉装置24aを経由して、冷媒間熱交換器50を流出した残りの一部の冷媒と合流し、中継装置3から流出し、主管5を通って再び室外機201へ流入する。室外機201に流入した冷媒は、第1逆流防止装置13cを通って、低温・低圧の気液二相状態の冷媒になり、熱源側熱交換器12で室外空気から吸熱しながら、低温・低圧のガス冷媒になり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、負荷側絞り装置25bは、入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。一方、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 また、第4絞り装置27は、出口側圧力センサー34で検出された圧力を飽和温度に換算した値と、温度センサー51で検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。例えば第4絞り装置27は、入口側圧力センサー33で検出された圧力と出口側圧力センサー34で検出された圧力との圧力差が所定の圧力差(例えば0.3MPaなど)になるように開度が制御される。
 なお、熱負荷がない負荷側熱交換器26c及び負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cと、負荷側絞り装置25dは閉になっている。そして、負荷側熱交換器26cや負荷側熱交換器26dから熱負荷の発生があった場合には、負荷側絞り装置25cや、負荷側絞り装置25dを開放して、冷媒を循環させればよい。
 図5~図9に示す空気調和装置200であっても、図1~図4に示す空気調和装置100と同様、冷房運転モード時及び暖房運転モード時において、圧縮機10が吐出した高圧のガス冷媒を過冷却することにより、流量調整器42を介して圧縮機10の吸引部へ冷媒のインジェクションが行われる。これにより、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保することができる。また、圧縮機10の吐出温度の過昇を抑制することにより、圧縮機10を増速することが可能になり、暖房能力を確保でき、ユーザーの快適性を低減させてしまうことを抑制できる。
 また、空気調和装置200においても、必要とされる補助熱交換器40の室外機201が設置されている環境の空気と接触する面積である全伝熱面積A1(m2)の算出方法及びサイズは、実施の形態1と同様である。
 なお、空気調和装置200において、補助熱交換器40の入口側に、開閉装置もしくは流路の開閉を行える全閉機能を有する絞り装置等の第一流路開閉装置を設けてもよい。そして、圧縮機10の吐出温度の過昇抑制が必要無い場合などに、制御装置60は第一流路開閉装置及び開閉装置47を閉状態になるようにし、流量調整器42を全閉とならないわずかな開度に制御してもよい。これにより、バイパス配管41及び補助熱交換器40に冷媒が寝込むことを抑制できるため、圧縮機10の吐出温度の過昇抑制が必要となった時に、液冷媒が過剰に流量調整器42から圧縮機10の吸入部に流入することを防げ、過剰な液バックによる圧縮機10の破損を防ぐことができる。
実施の形態3.
 図10は、実施の形態3に係る空気調和装置の全暖房運転モード時の冷媒の流れを示す冷媒回路図である。なお、この実施の形態3では上述した実施の形態2との相違点を中心に説明するものとし、実施の形態2と同一部分には、同一符号を付している。図10の空気調和装置300が図5~図9の空気調和装置200と異なる点は、室外機301の構成である。
 空気調和装置300の室外機301は、バイパス配管41の一端が、第1逆流防止装置13aと主管5の間の冷媒配管4に接続されている。
 そして、全冷房運転モード時と冷房主体運転モード時に、圧縮機10の吐出冷媒の温度上昇を抑制する際、熱源側熱交換器12を流出した高圧の液冷媒の一部を、バイパス配管41とを介して、補助熱交換器40に流入させるようになっている。このように、補助熱交換器40でファン16から供給される室外空気に放熱しながら高圧の過冷却液となった冷媒を、流量調整器42を介して圧縮機10の吸入部に流入させることにより、圧縮機10の吐出冷媒の温度を低下させることができる。
 一方、全暖房運転モード時と暖房主体運転モード時に、圧縮機10の吐出冷媒の温度上昇を抑制する際は、圧縮機10から吐出し第1逆流防止装置13bを流出した高圧のガス冷媒の一部が、バイパス配管41を介して補助熱交換器40に流入するようになっている。
 空気調和装置300によれば、必要とされる補助熱交換器40の室外機1が設置されている環境の空気と接触する面積である全伝熱面積A1(m2)の小型化が可能となる。すなわち、全冷房運転モード時と冷房主体運転モード時に、圧縮機10から吐出され、熱源側熱交換器12で冷却された高圧・低温の冷媒を補助熱交換器40にて過冷却するため、補助熱交換器40で必要とする熱交換量が少なくてよいため、補助熱交換器40の伝熱面積も小さくてよい。補助熱交換器40の伝熱面積の算出方法は、実施の形態1と同様であるが、補助熱交換器40における冷媒の温度変化を考慮する必要がある。
 具体的には、対数平均温度差をΔTm(Kまたは℃)、補助熱交換器40の伝熱管内に流入する冷媒の温度をTr1(Kまたは℃)、流出する冷媒の温度をTr2(Kまたは℃)、補助熱交換器40に流入する空気温度をT1(Kまたは℃)、流出する空気の温度をT2(Kまたは℃)とすると、式(4)を式(5)に置き換えることで算出することができる。
Figure JPOXMLDOC01-appb-M000005
 たとえば、熱源側熱交換器12で冷却される冷媒の飽和温度が54℃であり、熱源側熱交換器12にて54℃の飽和液になるまで冷却されるとする。すると、54℃の飽和液のエンタルピh3は約307(kJ/kg)となる。また、54℃の飽和液が補助熱交換器40にて約43℃の空気と熱交換を行い、十分に過冷却するために、54℃の飽和液と補助熱交換器40の出口側の液冷媒の温度差である過冷却度を約5℃ほど確保するとする。この場合、補助熱交換器40の出口のエンタルピh2は冷媒の飽和温度が54℃から算出される圧力と、補助熱交換器40の出口の液冷媒の温度から決まり、約296(kJ/kg)となる。アキュムレーター19から圧縮機10の吸入部に流入する冷媒のエンタルピh1は、圧縮機10の吸入部の飽和ガス温度を約0℃とすると、約515(kJ/kg)となる。
 よって、式(1)より圧縮機10の断熱効率を0.6とし、熱源側熱交換器12内の冷媒の飽和温度である54℃の圧力まで冷媒を圧縮する場合に、圧縮機10の吐出温度を吐出温度しきい値(例えば115℃)以下にするために必要となる冷媒流量Gr2は約12(kg/h)となり、補助熱交換器40で必要となる熱交換量Q1は式(2)より、約40(W)となる。
 そして、補助熱交換器40の伝熱管内に流入する冷媒の温度Tr1は約54(℃)、流出する冷媒の温度Tr2は49(℃)、補助熱交換器40に流入する空気温度T1は43(℃)であり、流出する空気の温度T2は補助熱交換器40における熱交換量Q1が約40(W)と小さいため、ほぼ変化しないとみて、流入する空気温度から1℃程度上昇するとして、44(℃)とする。この場合、式(4)より対数平均温度差は、約7.83(℃)となり、管外側基準の熱通過率kを、多くの冷房運転モードの試験結果より得られている液冷却器の値である約25(W/(m2・K))とすると、式(3)より必要とされる補助熱交換器40の全伝熱面積A1は約0.204(m2)となる。
 また、R32冷媒を10馬力相当の空気調和装置100の冷媒として使用する際、熱源側熱交換器12で必要とされる全伝熱面積A2は約141(m2)程度であり、補助熱交換器40を熱源側熱交換器12の一部としてみた場合、熱源側熱交換器12の必要とされる全伝熱面積A2と補助熱交換器40の必要とされる全伝熱面積A1の和に対する、補助熱交換器40の全伝熱面積A1の比率A1/(A1+A2)(=0.204/141.644)は約0.144%以上となる。
 図10に示す空気調和装置300であっても、図5~図9に示す空気調和装置200と同様、冷房運転モード時及び暖房運転モード時において、補助熱交換器40及び流量調整器42を介して圧縮機10の吸引部へ冷媒のインジェクションが行われる。これにより、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保することができる。また、圧縮機10の吐出温度の過昇を抑制することにより、圧縮機10を増速することが可能になり、暖房能力を確保でき、ユーザーの快適性を低減させてしまうことを抑制できる。
 図10に示す空気調和装置300において、全冷房運転モード時と冷房主体運転モード時に、圧縮機10の吐出冷媒の温度上昇を抑制する際、熱源側熱交換器12を流出した高圧の液冷媒の一部を、バイパス配管41とを介して、補助熱交換器40に流入させるため、必要とされる補助熱交換器40が小型化ができる。そのため、熱源側熱交換器の伝熱面積を大型化することができるため、性能を向上することができる。
 なお、空気調和装置300において、補助熱交換器40の入口側に、開閉装置もしくは流路の開閉を行える全閉機能を有する絞り装置等からなる第一流路開閉装置を設けても良い。そして、圧縮機10の吐出温度の過昇抑制が必要無い場合などに、制御装置60において第一流路開閉装置と開閉装置47が閉状態に制御され、流量調整器42が全閉とならないわずかな開度に制御されることで、バイパス配管41と補助熱交換器40とに冷媒が寝込むことを抑制でき、圧縮機10の吐出温度の過昇抑制が必要となった時に、流量調整器42から過剰に液冷媒が圧縮機10の吸入部に流入することを防げ、過剰な液バックによる圧縮機10の破損を防ぐことができる。
実施の形態4.
 図11は、実施の形態4に係る空気調和装置の全冷房運転モード時の冷媒の流れを示す冷媒回路図である。なお、この実施の形態4では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一部分には、同一符号を付している。図11に示す空気調和装置400は、室外機401の構成が空気調和装置100と異なっている。
 すなわち、空気調和装置400の室外機401において、バイパス配管41の一端が、第1分岐配管48と、第2分岐配管49に二分岐されている。第1分岐配管48の一端が、熱源側熱交換器12と負荷側絞り装置25との間の冷媒配管4に接続され、第1分岐配管48の他端は、逆流防止装置13gを介して第2分岐配管49と合流し、バイパス配管41に接続されている。第2分岐配管49は、一端が圧縮機10の吐出側の流路と冷媒流路切替装置11との間の冷媒配管4に接続され、他端は、開閉装置47を介して第1分岐配管48と合流し、バイパス配管41に接続されている。なお、開閉装置47は流路の開閉を行えればよく、全閉機能を有する絞り装置でも構わない。
 逆流防止装置13gは、暖房運転モード時に、補助熱交換器40に高圧のガス冷媒を流入させる際、圧縮機10から吐出された高圧のガス冷媒が、負荷側熱交換器26から流出した高圧の液もしくは気液二相状態の冷媒の流路である冷媒配管4に逆流することを防ぐものである。
 空気調和装置400では、暖房運転モード時に、圧縮機10の吐出冷媒の温度上昇を抑制する際、圧縮機10から吐出された高圧のガス冷媒の一部を、第2分岐配管49と、開に制御された開閉装置47と、バイパス配管41を介して、補助熱交換器40に流入させる。そして、補助熱交換器40でファン16から供給される室外空気に放熱しながら高圧の過冷却液になった冷媒が、流量調整器42を介して圧縮機10の吸入部に流入する。これにより、圧縮機10の吐出冷媒の温度を低下させることができる。
 一方、冷房運転モード時は、開閉装置47は閉に制御され、圧縮機10の吐出冷媒の温度上昇を抑制する際、熱源側熱交換器12から流出した高圧の液冷媒の一部を、第1分岐配管48と、バイパス配管41を介して、補助熱交換器40に流入させる。そして、補助熱交換器40でファン16から供給される室外空気に放熱しながら高圧の過冷却液になった冷媒が、流量調整器42を介して圧縮機10の吸入部に流入する。これにより、圧縮機10の吐出冷媒の温度を低下させることができる。なお、逆流防止装置13gは、逆止弁であるかのように図示しているが、冷媒の逆流を防止できればどんなものでもよく、開閉装置や全閉機能を有する絞り装置でも構わない。また、開閉装置47は流路の開閉を行えればよく、全閉機能を有する絞り装置でも構わない。
 また、空気調和装置400には、逆流防止装置13gを設けているが、逆流防止装置13gの代わりに、開閉装置もしくは流路の開閉を行える全閉機能を有する絞り装置等からなる第1分岐配管開閉装置を設けてもよい。そして、圧縮機10の吐出温度の過昇抑制が必要無い場合などに、第1分岐配管開閉装置と開閉装置47とが閉状態になるように制御し、流量調整器42を全閉とならないわずかな開度となるように制御する。これにより、バイパス配管41と補助熱交換器40とに冷媒が寝込むことを抑制できる。よって、圧縮機10の吐出温度の過昇抑制が必要となった時に、流量調整器42から過剰に液冷媒が圧縮機10の吸入部に流入することを防げ、過剰な液バックによる圧縮機10の破損を防ぐことができる。
 このように、図11に示す空気調和装置400であっても、圧縮機10の吸引部へ冷媒のインジェクションが行われることにより、特殊な構造の圧縮機を使用せず安価な圧縮機を使用した場合であっても、システムの信頼性を確保することができる。また、圧縮機10の吐出温度の過昇を抑制することにより、圧縮機10を増速することが可能になり、暖房能力を確保でき、ユーザーの快適性を低減させてしまうことを抑制できる。
 図11に示す空気調和装置400において、冷房運転モード時に、圧縮機10の吐出冷媒の温度上昇を抑制する際、熱源側熱交換器12を流出した高圧の液冷媒の一部を、バイパス配管41とを介して、補助熱交換器40に流入させるため、必要とされる補助熱交換器40の小型化ができる。そのため、熱源側熱交換器の伝熱面積を大型化することができるため、性能を向上することができる。
 また、空気調和装置400においても、必要とされる補助熱交換器40の室外機201が設置されている環境の空気と接触する面積である全伝熱面積A1(m2)の算出方法及びサイズは、実施の形態1と同様である。
実施の形態5.
 図12は、本発明の実施の形態5に係る空気調和装置の回路構成の一例を示す冷媒回路図である。なお、この実施の形態5では上述した実施の形態2との相違点を中心に説明するものとし、実施の形態2と同一部分には、同一符号を付している。図12に示す空気調和装置500は、中継装置503の構成が空気調和装置200と異なっている。
 すなわち、空気調和装置500において、室外機501と中継装置503の間において、第1の冷媒(以降は冷媒と表記)が流通される1次側サイクルが形成され、中継装置503と室内機2a~2dの間において、第2の冷媒(以降はブラインと表記)が流通される2次側サイクルが形成され、中継装置503に設置された第1中間熱交換器71a及び第2中間熱交換器71bにおいて1次側サイクルと2次側サイクルの熱交換が行われている。ブラインとしては、水や不凍液、防食材を添加した水等を用いればよい。
[室内機2a~2d]
 複数の室内機2a~2dは、例えば同一の構成を有するものであって、それぞれ負荷側熱交換器26a~26dを備えている。負荷側熱交換器26a~26dは、枝管6を介して中継装置503に接続されており、図示省略のファン等の送風機から供給される空気と冷媒の間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[中継装置503]
 中継装置503は、冷媒間熱交換器50と、第3絞り装置15と、第4絞り装置27と、第1流量制御装置70aと、第2流量制御装置70bと、第1中間熱交換器71aと、第2中間熱交換器71bと、第1流路切替装置72aと、第2流路切替装置72bと、第1ポンプ73aと、第2ポンプ73bと、複数の第1流路切替装置74a~74dと、複数の第2流路切替装置75a~75dと、複数の負荷流量調整装置76a~76dとを有している。第1流量制御装置70a及び第2流量制御装置70bは、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、冷媒を減圧して膨張させる減圧弁や膨張弁としての機能を有している。
 第1流量制御装置70a及び第2流量制御装置70bは、全冷房運転モード時の冷媒の流れにおいて一次側サイクルの第1中間熱交換器71a及び第2中間熱交換器71bの上流側に設けられている。第1中間熱交換器71a及び第2中間熱交換器71bは、例えば二重管式熱交換器やプレート式熱交換器等で構成され、1次側サイクルの冷媒と2次側サイクルの冷媒とを熱交換するためのものである。運転している室内機がすべて冷房の場合には両方とも蒸発器として、すべて暖房の場合には両方とも凝縮器として、冷房と暖房が混在している場合には片方の中間熱交換器が凝縮器として、他方の中間熱交換器が蒸発器として動作する。
 第1流路切替装置72a及び第2流路切替装置72bは、例えば四方弁等からなっており、全冷房運転モード時、冷房主体運転モード時、全暖房運転モード時、暖房主体運転モード時における冷媒流路を切り替えるものである。なお、全冷房運転モードとは第1中間熱交換器71a及び第2中間熱交換器71bがいずれも蒸発器として、冷房主体運転モード時及び暖房主体運転モードとは第1中間熱交換器71aが蒸発器、第2中間熱交換器71bが凝縮器として、全暖房運転モードとは第1中間熱交換器71a及び第2中間熱交換器71bがいずれも凝縮器として作用する場合である。第1流路切替装置72a及び第2流路切替装置72bは、全冷房運転モード時の冷媒の流れにおいて一次側サイクルの第1中間熱交換器71a及び第2中間熱交換器71bの下流側に設けられている。
 第1ポンプ73a及び第2ポンプ73bは、例えばインバータ式の遠心ポンプ等からなっており、ブラインを吸入し昇圧した状態にするものである。第1ポンプ73a及び第2ポンプ73bは、二次側サイクルの第1中間熱交換器71a及び第2中間熱交換器71bの上流側に設けられている。
 複数の第1流路切替装置74a~74dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第1流路切替装置74a~74dは、例えば二方弁等で構成されており、それぞれ各室内機2a~2dの流入側の接続先を第1中間熱交換器71aからの流路と第2中間熱交換器71bからの流路とを切り替えるものである。第1流路切替装置74a~74dは、二次側サイクルの第1中間熱交換器71a及び第2中間熱交換器71bの下流側に設けられている。
 複数の第2流路切替装置75a~75dは、複数の室内機2a~2d毎にそれぞれ設置台数に応じた個数分(ここでは4つ)設けられている。複数の第2流路切替装置75a~75dは、例えば二方弁等で構成されており、それぞれ各室内機2a~2dの流出側の接続先を第1ポンプ73aへの流路と第2ポンプ73bへの流路とを切り替えるものである。第2流路切替装置75a~75dは、二次側サイクルの第1ポンプ73a及び第2ポンプ73bの上流側に設けられている。
 複数の負荷流量調整装置76a~76dは、例えば電子式膨張弁等の開度が可変に制御可能なものからなっており、各室内機に流入するブラインの流量を調整する減圧弁としての機能を有している。負荷流量調整装置76a~76dは、全冷房運転モード時の冷媒の流れにおいて二次側サイクルの第2流路切替装置75a~75dの上流側に設けられている。また、中継装置503において、冷媒間熱交換器50の低圧側の入口には入口温度センサー81が設けられており、冷媒間熱交換器50の低圧側の出口には出口温度センサー82が設けられており、サーミスター等で構成するとよい。
 さらに中継装置503には、第1中間熱交換器71a及び第2中間熱交換器71bの一次側サイクルの入口には入口温度センサー83a~83bが設けられており、一次側サイクルの出口には出口温度センサー84a~84bが設けられており、サーミスター等で構成するとよい。
 中継装置503には、第1中間熱交換器71a及び第2中間熱交換器71bの二次側サイクルの出口には室内機入口温度センサー85a~85bが設けられており、複数の負荷流量調整装置76a~76dの入口には室内機出口温度センサー86a~86dが設けられており、サーミスター等で構成するとよい。中継装置503において、第2中間熱交換器71bの出口側には出口圧力センサー87が設けられている。出口圧力センサー87は、高圧冷媒の圧力を検出するものである。
[全冷房運転モード]
 全冷房運転モードでは、一次側サイクルは、中継装置503に流入した高圧液冷媒は、第3絞り装置15を経由し、冷媒間熱交換器50において十分に過冷却される。その後、過冷却された高圧冷媒の大部分は第1流量制御装置70a及び第2流量制御装置70bで膨張させられ、低温・低圧の気液二相状態の冷媒になる。高圧冷媒の残りの一部は第4絞り装置27で膨張させられ、低温・低圧の気液二相状態の冷媒になる。そして、低温・低圧の気液二相状態の冷媒は、冷媒間熱交換器50において高圧液冷媒と熱交換することにより、低温・低圧のガス冷媒になり、中継装置503の出口側の低圧配管に流入する。この際、第4絞り装置27は、入口温度センサー81で検出された温度と、出口温度センサー82で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 第1流量制御装置70a及び第2流量制御装置70bを流出した大部分の低温・低圧の気液二相状態の冷媒は、蒸発器として作用する第1中間熱交換器71a及び第2中間熱交換器71bにそれぞれ流入し、ブラインを冷却しながら、低温・低圧のガス冷媒になる。この際、第1流量制御装置70a及び第2流量制御装置70bは、入口温度センサー83a~83bで検出された温度と出口温度センサー84a~84bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 第1中間熱交換器71a及び第2中間熱交換器71bからそれぞれ流出したガス冷媒は、第1流路切替装置72a及び第2流路切替装置72bを経由して、冷媒間熱交換器50を流出したガス冷媒と合流し、中継装置503から流出し、主管5を通って再び室外機501へ流入する。室外機501に流入した冷媒は、第1逆流防止装置13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 二次側サイクルについては、第1ポンプ73a及び第2ポンプ73bにて昇圧されたブラインは、第1中間熱交換器71a及び第2中間熱交換器71bに流入する。第1中間熱交換器71a及び第2中間熱交換器71bにて低温となったブラインは、第1中間熱交換器71a及び第2中間熱交換器71bの双方もしくはどちらか一方に連通した状態に設定された第1流路切替装置74a~74dを通過し、負荷側熱交換器26a~26dへと流入する。このブラインは負荷側熱交換器26a~26dで室内の空気を冷却し、冷房を行う。冷房の際にブラインは室内の空気により加熱され、負荷流量調整装置76a~76d及び第2流路切替装置75a~75dを通り、中継装置503内の第1ポンプ73a及び第2ポンプ73bへと戻る。この際、負荷流量調整装置76a~76d及び第1ポンプ73a及び第2ポンプ73bは、室内機入口温度センサー85a~85bで検出された温度と室内機出口温度センサー86a~86bで検出された温度との差が一定になるように開度及び電圧が制御される。
[冷房主体運転モード、暖房主体モード]
 中継装置503に流入した気液二相状態の冷媒は、高圧ガス冷媒と高圧液冷媒に分離される。この高圧ガス冷媒は、第2流路切替装置72bを経由した後に、凝縮器として作用する第2中間熱交換器71bに流入し、ブラインを加熱しながら液冷媒になる。この際、第2流量制御装置70bは、出口圧力センサー87で検出された圧力を飽和温度に換算した値と、入口温度センサー83bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。第2中間熱交換器71bから流出した液冷媒は、第2流量制御装置70bで膨張させられる。
 その後、冷媒は、中継装置503入口で分離された後に第3絞り装置15において中間圧まで膨張させられた中間圧液冷媒と、第2流量制御装置70bを通ってきた液冷媒とが合流する。
 合流した液冷媒は、大部分は第1流量制御装置70aで膨張させられ、低温・低圧の気液二相状態の冷媒になる。液冷媒の残りの一部は第4絞り装置27で膨張させられ、低温・低圧の気液二相状態の冷媒になる。この際、第4絞り装置27は、入口温度センサー81で検出された温度と、出口温度センサー82で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。その後、低温・低圧の気液二相状態の冷媒は、冷媒間熱交換器50において高圧液冷媒と熱交換することにより、低温・低圧のガス冷媒になり、中継装置503の出口側の低圧配管に流入する。
 一方、第1流量制御装置70aで膨張させられた大部分の気液二相状態の冷媒は、蒸発器として作用する第1中間熱交換器71aに流入し、ブラインを冷却しながら、低温・低圧のガス冷媒になる。この際、第1流量制御装置70aは、入口温度センサー83aで検出された温度と出口温度センサー84aで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。第1中間熱交換器71aから流出したガス冷媒は、第1流路切替装置72aを経由して、冷媒間熱交換器50を流出した残りの一部のガス冷媒と合流した後に中継装置503から流出し、主管5を通って再び室外機201へ流入する。室外機501に流入した冷媒は、第1逆流防止装置13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 二次側サイクルは、以下室内機2a及び2bが冷房運転、室内機2c及び2dが暖房運転をしている場合の説明を行う。冷房をしている室内機については、第1ポンプ73aにて昇圧されたブラインは、第1中間熱交換器71aに流入する。第1中間熱交換器71aにて低温となったブラインは、第1中間熱交換器71aに連通した状態に設定された第1流路切替装置74a~74bを通過し、負荷側熱交換器26a~26bへと流入する。このブラインは負荷側熱交換器26a~26bで室内の空気を冷却し、冷房を行う。冷房の際にブラインは室内の空気により加熱され、負荷流量調整装置76a~76b及び第2流路切替装置75a~75bを通り、中継装置503内の第1ポンプ73aへと戻る。この際、負荷流量調整装置76a~76b及び第1ポンプ73aは、室内機入口温度センサー85aで検出された温度と室内機出口温度センサー86a~86bで検出された温度との差が一定になるように開度及び電圧が制御される。
 暖房をしている室内機については、第2ポンプ73bにて昇圧されたブラインは、第2中間熱交換器71bに流入する。第2中間熱交換器71bにて高温となったブラインは、第2中間熱交換器71bに連通した状態に設定された第1流路切替装置74c~74dを通過し、負荷側熱交換器26c~26dへと流入する。このブラインは負荷側熱交換器26c~26dで室内の空気を加熱し、暖房を行う。暖房の際にブラインは室内の空気により冷却され、負荷流量調整装置76c~76d及び複数の第2流路切替装置75c~75dを通り、中継装置503内の第2ポンプ73bへと戻る。この際、負荷流量調整装置76d及び第2ポンプ73bは、室内機入口温度センサー85bで検出された温度と室内機出口温度センサー86c~86dで検出された温度との差が一定になるように開度が制御される。
[全暖房運転モード]
 この場合は、中継装置503に流入した高温・高圧のガス冷媒は、第1流路切替装置72a及び第2流路切替装置72bを経由した後に、凝縮器として作用する第1中間熱交換器71a及び第2中間熱交換器71bのそれぞれに流入する。第1中間熱交換器71a及び第2中間熱交換器71bに流入した冷媒はブラインを加熱しながら液冷媒になる。第1中間熱交換器71a及び第2中間熱交換器71bから流出した液冷媒は、第1流量制御装置70a及び第2流量制御装置70bでそれぞれ膨張させられて、開状態に制御された第4絞り装置27及び主管5を通って再び室外機201へ流入する。この際、負荷側絞り装置25aは、出口圧力センサー87で検出された圧力を飽和温度に換算した値と、入口温度センサー83a~83bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 二次側サイクルについては、第1ポンプ73a及び第2ポンプ73bにて昇圧されたブラインは、第1中間熱交換器71a及び第2中間熱交換器71bに流入する。第1中間熱交換器71a及び第2中間熱交換器71bにて高温となったブラインは、第1中間熱交換器71a及び第2中間熱交換器71bの双方もしくはどちらか一方に連通した状態に設定された第1流路切替装置74a~74dを通過し、負荷側熱交換器26a~26dへと流入する。このブラインは負荷側熱交換器26a~26dで室内の空気を加熱し、暖房を行う。暖房の際にブラインは室内の空気により冷却され、負荷流量調整装置76a~76d及び第2流路切替装置75a~75dを通り、中継装置503内の第1ポンプ73a及び第2ポンプ73bへと戻る。この際、負荷流量調整装置76a~76d及び第1ポンプ73a及び第2ポンプ73bは、室内機入口温度センサー85a~85bで検出された温度と室内機出口温度センサー86a~86bで検出された温度との差が一定になるように開度及び電圧が制御される。
 本発明の実施の形態は、上記実施の形態1~5に限定されず、種々の変更を行うことができる。例えば冷房運転モード及び暖房運転モードにおいて、吐出温度しきい値が115℃である場合について例示しているが、圧縮機10の吐出温度の限界値に応じて設定されるものであればよい。例えば圧縮機10の吐出温度の限界値が120℃の場合、吐出温度がこれを超えないように圧縮機10の動作が制御装置60により制御されている。具体的には、吐出温度が110℃を超えた場合、制御装置60は圧縮機10の周波数を低くして減速させるように制御する。したがって、上述したインジェクションを行って圧縮機10の吐出温度を下げる場合、圧縮機10の周波数を低くする温度しきい値である110℃よりも少し低い温度である100℃から110℃の間の温度(例えば105℃等)に設定することが好ましい。例えば、吐出温度が110℃で圧縮機10の周波数を低くしない場合には、インジェクションを行って下げる吐出温度しきい値が100℃から120℃の間(例えば115℃等)に設定されるようにすればよい。
 さらに、冷媒として例えばR32冷媒等のように、R32冷媒以外には、R32冷媒と、地球温暖化係数が小さく化学式がCF3CF=CH2で表されるテトラフルオロプロペン系冷媒であるHFO1234yf、HFO1234ze等との混合冷媒(非共沸混合冷媒)を使用してもよい。特に、冷媒としてR32を使用した場合、R410Aを使用した場合に対して、同一運転状態において、吐出温度が約20℃上昇する。このため、吐出温度を低下させる必要があり、本発明によるインジェクションの効果が大きい。吐出温度が高くなる冷媒を使用する場合に効果が特に大きくなる。
 また、R32冷媒とHFO1234yfとの混合冷媒においては、R32の質量比率が62%(62wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、本発明によるインジェクションにより、吐出温度を低下させるようにする効果が大きい。また、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%(43wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、上述した空気調和装置100~500におけるインジェクションによる吐出温度を低下させる効果が大きい。また、混合冷媒における冷媒種はこれに限るものではなく、その他の冷媒成分を少量含んだ混合冷媒であっても、吐出温度には大きな影響がなく、同様の効果を奏する。また、例えば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒等においても使用でき、吐出温度がR410Aよりも高くなる冷媒であれば、どんな冷媒であっても吐出温度を低下させる必要があり、同様の効果がある。
 さらに、上記実施の形態1~5の冷媒として、CO2(R744)等の高圧側が超臨界で動作する冷媒を使用し、吐出温度を低下させる必要がある場合にも、本実施の形態の冷媒回路構成とすることにより、吐出温度を低下させることができる。
 上記実施の形態1~5において、補助熱交換器40と熱源側熱交換器12とは、一体的に構成されている場合について例示しているが、補助熱交換器40が独立して、配置されたものであってもよい。これに限らず上側に補助熱交換器40を配置してもよい。また、補助熱交換器40がフィンの下側に形成されており、熱源側熱交換器12が伝熱フィンの上側に形成されている場合について例示しているが、補助熱交換器40が上側に形成されており、熱源側熱交換器12が下側に形成されていてもよい。
 上述の実施の形態2、3の冷暖同時運転可能な空気調和装置の配管接続としては、室外機201と中継装置3の間を、2本の主管5を使用して接続した例を示しているが、これに限らず、種々の公知の手法を用いることができる。例えば、室外機1と中継装置3との間が3本の主管5を使用して接続された冷暖同時運転を実施する空気調和装置においても、上述の実施の形態2と同様に圧縮機10から吐出する高圧・高温のガス冷媒の温度の過上昇を抑制できる。
 本実施の形態1~5の圧縮機10は、低圧シェル型の圧縮機を使用する場合を例に説明したが、例えば高圧シェル型の圧縮機を使用しても同様の効果を奏する。
 また、圧縮機10の中間圧部に冷媒を流入させる構造を有さない圧縮機を使用した場合を例に説明しているが、圧縮機の中間圧部に冷媒を流入させるインジェクションポートを備えた構造の圧縮機にも適用することができる。
 また、一般的に、熱源側熱交換器12及び負荷側熱交換器26a~26dには、送風によって冷媒の凝縮又は蒸発を促進させる送風機が取り付けられていることが多いが、これに限るものではない。例えば負荷側熱交換器26a~26dとして、放射を利用したパネルヒータのようなものも用いることができる。また、熱源側熱交換器12としては、水、不凍液等の液体により熱交換する水冷式のタイプの熱交換器を用いることができる。冷媒の放熱又は吸熱が行えるものであればどんなものでも用いることができる。水冷式のタイプの熱交換器を用いる場合は、例えば、補助熱交換器40として、プレート式熱交換器を用いればよい。
 さらに、室外機1と室内機2と、または室外機1と中継装置3と室内機2の間を配管接続して冷媒を循環させる直膨式空気調和装置、及び室外機1と室内機2との間に中継装置3を接続し、中継装置3内にプレート式熱交換器等の冷媒と水、ブライン等の熱媒体を熱交換させる熱交換器を負荷側熱交換器26a、26bとして備え、室内機2a~2d側には熱交換器28a~28dを備えた間接式空気調和装置を例として説明を行ったが、これに限るものではない。室外機内のみで冷媒を循環させ、室外機、中継装置及び室内機の間で水、ブライン等の熱媒体を循環させて、室外機において冷媒と熱媒体との熱交換を行って空気調和を行う空気調和装置についても適用することができる。
 1、201、301、401、501 室外機、2、2a~2d 室内機、3、503 中継装置、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 主管、6 枝管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13a~13d 第1逆流防止装置、13g 逆流防止装置、14 気液分離器、15 第3絞り装置、16 ファン、19 アキュムレーター、21a~21d 第2逆流防止装置、22a~22d 第3逆流防止装置、23a~23d 第1開閉装置、24a~24d 第2開閉装置、25、25a~25d 負荷側絞り装置、26、26a~26d 負荷側熱交換器、27 第4絞り装置、28a 熱交換器、31、31a~31d 入口側温度センサー、32、32a~32d 出口側温度センサー、33 入口側圧力センサー、34 出口側圧力センサー、40 補助熱交換器、41 バイパス配管、42 流量調整器、43 吐出温度センサー、44 冷凍機油温度センサー、45、低圧検出センサー、46 外気温度センサー、47 開閉装置、48 第1分岐配管、49 第2分岐配管、50 冷媒間熱交換器、51 温度センサー、60 制御装置、70a 第1流量制御装置、70b 第2流量制御装置、71a 第1中間熱交換器、71b 第2中間熱交換器、72a 第1流路切替装置、72b 第2流路切替装置、73a 第1ポンプ、73b 第2ポンプ、74a~74d 第1流路切替装置、75a~75d 第2流路切替装置、76a~76d 負荷流量調整装置、81 入口温度センサー、82 出口温度センサー、83a~83b 入口温度センサー、84a~84b 出口温度センサー、85a~85b 室内機入口温度センサー、86a~86d 室内機出口温度センサー、87 出口側圧力センサー、100、200、300、400、500 空気調和装置、A1 全伝熱面積、A2 全伝熱面積、B 間、Gr 合計冷媒流量、Gr2 冷媒流量、Q1 熱交換量、T1、T2 温度、h、h1、h2、h3 エンタルピ、k 熱通過率、ΔTm 対数平均温度差。

Claims (15)

  1.  圧縮機と、冷媒流路切替装置と、熱源側熱交換器と、負荷側絞り装置と、負荷側熱交換器とを冷媒配管で接続した冷凍サイクルを備え、前記冷凍サイクルに冷媒が循環する空気調和装置であって、
     一端が前記圧縮機の吐出側に接続され、前記圧縮機から流出した冷媒が流れるバイパス配管と、
     前記バイパス配管の他端と前記圧縮機の吸入部とに接続され、前記バイパス配管を流れる冷媒を冷却して前記圧縮機の吸入部に供給する補助熱交換器と、
     前記補助熱交換器の冷媒の流出側に設けられており、前記補助熱交換器から前記圧縮機の吸入部に流入される冷媒の流量を調整する流量調整器と
     を備えた空気調和装置。
  2.  前記圧縮機から吐出される冷媒の吐出温度を検出する吐出温度センサーと、
     前記吐出温度センサーにより検出された吐出温度に基づいて、前記流量調整器の開度を制御する制御装置と をさらに備え、
     前記制御装置は、前記吐出温度センサーにより検出された吐出温度が吐出温度しきい値よりも高くなった場合、吐出温度が前記吐出温度しきい値以下になるように前記流量調整器の開度を調整するものである請求項1に記載の空気調和装置。
  3.  前記吐出温度しきい値の設定可能な上限値は、115℃である請求項2に記載の空気調和装置。
  4.  前記熱源側熱交換器と前記補助熱交換器とは、それぞれ冷媒流路が異なる伝熱管が共通の伝熱フィンに取り付けられて構成されたものであり、
     前記熱源側熱交換器の周囲の空気は前記熱源側熱交換器と前記補助熱交換器との双方に流通するものであり、
     前記補助熱交換器は、伝熱面積が前記熱源側熱交換器の伝熱面積よりも小さくなるように形成されている請求項1~3のいずれか1項に記載の空気調和装置。
  5.  前記補助熱交換器は、前記流量調整器に液状態の冷媒を流入させるために、流入する冷媒を冷却し液化するのに必要な伝熱面積を有するように形成されている請求項4に記載の空気調和装置。
  6.  前記補助熱交換器における空気に接する面積がA1であり、前記熱源側熱交換器における空気に接する前記熱源側熱交換器の面積がA2であるときに、A1/(A1+A2)が1.62%以上であって5%以内になる請求項4又は5に記載の空気調和装置。
  7.  前記バイパス配管は、一端が前記負荷側絞り装置と前記熱源側熱交換器との間に接続され、他端が前記補助熱交換器の流入側に接続された第1分岐配管と、一端が前記バイパス配管に接続されており、他端が前記圧縮機の吐出側に接続された第2分岐配管とに接続されたものであり、
     前記第2分岐配管には、前記バイパス配管へ流入する冷媒の流量を調整する開閉装置が設けられている請求項1~6のいずれか1項に記載の空気調和装置。
  8.  前記第1分岐配管には、逆流を防止するための逆流防止装置が設けられている請求項7に記載の空気調和装置。
  9.  前記熱源側熱交換器が蒸発器として作用する場合、前記第2分岐配管から前記バイパス配管へ前記圧縮機から吐出された冷媒の一部が流入するように前記開閉装置を制御し、前記熱源側熱交換器が凝縮器もしくはガスクーラとして作用する場合、前記開閉装置を閉状態に制御する制御装置をさらに備えた請求項7又は8に記載の空気調和装置。
  10.  前記圧縮機と、前記冷媒流路切替装置と、前記熱源側熱交換器とは、室外機に設置されたものであり、
     前記負荷側絞り装置及び負荷側熱交換器は、室内機に設置されたものであり、
     前記室外機と前記室内機とは、中継装置を介して冷媒が循環するように接続されたものである請求項1~9のいずれか1項に記載の空気調和装置。
  11.  前記熱源側熱交換器の出口側の流路と、前記中継装置の入口側の流路との間に接続された第一逆流防止装置と、
     前記中継装置の出口側の流路と、前記冷媒流路切替装置との間に接続された第二逆流防止装置と、
     前記第二逆流防止装置と前記冷媒流路切替装置との間の配管と、前記第一逆流防止装置と前記中継装置の入口との間の配管を接続する第三逆流防止装置と、
     前記中継装置の出口と前記第二逆流防止装置との間の配管と、前記第一逆流防止装置と前記熱源側熱交換器との間の配管を接続する第四逆流防止装置と、
     前記補助熱交換器の一端は、前記第一逆流防止装置と前記中継装置の入口との間に接続された請求項10に記載の空気調和装置。
  12.  前記補助熱交換器における空気に接する面積がA1であり、前記熱源側熱交換器における空気に接する前記熱源側熱交換器の面積がA2であるときに、A1/(A1+A2)が0.14%以上であって5%以内になる請求項7~11のいずれか1項に記載の空気調和装置。
  13.  前記圧縮機は、低圧シェル構造の圧縮機からなる請求項1~12のいずれか1項に記載の空気調和装置。
  14.  前記圧縮機のシェル内の冷凍機油温度または前記圧縮機のシェル外表面温度を検出する冷凍機油温度検出センサーと、
     前記圧縮機の吸入側に設けられ、冷媒の低圧圧力を検出する低圧検出センサーと、
     前記冷凍機油温度検出センサーにより検出された冷凍機油温度と前記低圧検出センサーが検出する低圧圧力より演算される蒸発温度との温度差である冷凍機油過熱度に基づいて、前記流量調整器の開度を制御する制御装置と
     をさらに備え、
     前記制御装置は、冷凍機油過熱度が冷凍機油過熱度しきい値よりも低くなった場合、冷凍機油過熱度が前記冷凍機油過熱度しきい値以上になるように前記流量調整器の開度を調整するものである請求項13に記載の空気調和装置。
  15.  前記冷凍機油過熱度しきい値の設定可能な下限値は、10℃である請求項14に記載の空気調和装置。
PCT/JP2015/054175 2014-02-18 2015-02-16 空気調和装置 WO2015125743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015536695A JP5847366B1 (ja) 2014-02-18 2015-02-16 空気調和装置
CN201580009157.3A CN106030219B (zh) 2014-02-18 2015-02-16 空气调节装置
EP15752562.7A EP3109567B1 (en) 2014-02-18 2015-02-16 Air-conditioning device
US15/117,103 US10208987B2 (en) 2014-02-18 2015-02-16 Heat pump with an auxiliary heat exchanger for compressor discharge temperature control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-028782 2014-02-18
JP2014028782 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125743A1 true WO2015125743A1 (ja) 2015-08-27

Family

ID=53878246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054175 WO2015125743A1 (ja) 2014-02-18 2015-02-16 空気調和装置

Country Status (5)

Country Link
US (1) US10208987B2 (ja)
EP (1) EP3109567B1 (ja)
JP (1) JP5847366B1 (ja)
CN (1) CN106030219B (ja)
WO (1) WO2015125743A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031907A (ko) * 2018-09-17 2020-03-25 현대자동차주식회사 차량용 ce 모듈
WO2021234955A1 (ja) * 2020-05-22 2021-11-25 三菱電機株式会社 熱交換器及び空気調和機

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097439A1 (ja) * 2012-12-20 2014-06-26 三菱電機株式会社 空気調和装置
US10024591B2 (en) * 2014-05-15 2018-07-17 Lennox Industries Inc. Sensor failure error handling
JP6598882B2 (ja) * 2016-01-27 2019-10-30 三菱電機株式会社 冷凍サイクル装置
CN206001759U (zh) * 2016-08-23 2017-03-08 广东美的暖通设备有限公司 用于多联机空调的切换装置及具有其的多联机空调
KR20190002878A (ko) * 2017-06-30 2019-01-09 현대자동차주식회사 차량용 ce 모듈
JP2019020080A (ja) * 2017-07-20 2019-02-07 三菱重工サーマルシステムズ株式会社 空気調和装置及びその運転方法
KR102406126B1 (ko) * 2017-08-09 2022-06-07 현대자동차 주식회사 차량용 ce 모듈
CN109539401B (zh) * 2018-11-13 2023-09-12 珠海格力电器股份有限公司 一种空调及控制方法
KR20200114031A (ko) 2019-03-27 2020-10-07 엘지전자 주식회사 공기조화 장치
KR20210109844A (ko) * 2020-02-28 2021-09-07 엘지전자 주식회사 공기 조화 장치 및 그의 물 충전 방법
CN114353359B (zh) * 2021-12-20 2023-11-24 青岛海尔空调电子有限公司 空调回油控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341740A (ja) * 1993-05-28 1994-12-13 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機の運転方法
JPH11294886A (ja) * 1998-04-14 1999-10-29 Hitachi Ltd 蓄熱槽を備えた空気調和装置
JP2003262418A (ja) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp 冷凍空調装置
JP2009228979A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
JP2012067967A (ja) * 2010-09-24 2012-04-05 Panasonic Corp 冷凍サイクル装置及び温水暖房装置
WO2013069351A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 空気調和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232529A (en) * 1978-08-01 1980-11-11 Babbitt Frederick J Energy conservation refrigeration unit
JPH07280378A (ja) 1994-04-08 1995-10-27 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
US6185949B1 (en) * 1997-09-15 2001-02-13 Mad Tech, L.L.C. Digital control valve for refrigeration system
BE1013150A3 (nl) * 1999-11-24 2001-10-02 Atlas Copco Airpower Nv Inrichting en werkwijze voor het koeldrogen.
JP3680261B2 (ja) 2000-05-22 2005-08-10 ダイキン工業株式会社 空気調和機の冷媒回路
US7421853B2 (en) * 2004-01-23 2008-09-09 York International Corporation Enhanced manual start/stop sequencing controls for a stream turbine powered chiller unit
JP3864989B1 (ja) * 2005-07-29 2007-01-10 ダイキン工業株式会社 冷凍装置
JP4169057B2 (ja) * 2006-07-24 2008-10-22 ダイキン工業株式会社 空気調和装置
JP4812606B2 (ja) * 2006-11-30 2011-11-09 三菱電機株式会社 空気調和装置
JP5169295B2 (ja) * 2007-03-27 2013-03-27 ダイキン工業株式会社 冷凍装置
US8160827B2 (en) * 2007-11-02 2012-04-17 Emerson Climate Technologies, Inc. Compressor sensor module
JP2011089736A (ja) 2009-10-26 2011-05-06 Hitachi Appliances Inc 冷凍サイクル装置,空気調和機
EP2339265B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP5240392B2 (ja) * 2011-09-30 2013-07-17 ダイキン工業株式会社 冷凍装置
EP2863147B1 (en) * 2012-04-27 2021-10-06 Mitsubishi Electric Corporation Air conditioning device
JP5962201B2 (ja) * 2012-05-21 2016-08-03 ダイキン工業株式会社 空調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341740A (ja) * 1993-05-28 1994-12-13 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機の運転方法
JPH11294886A (ja) * 1998-04-14 1999-10-29 Hitachi Ltd 蓄熱槽を備えた空気調和装置
JP2003262418A (ja) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp 冷凍空調装置
JP2009228979A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
JP2012067967A (ja) * 2010-09-24 2012-04-05 Panasonic Corp 冷凍サイクル装置及び温水暖房装置
WO2013069351A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109567A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031907A (ko) * 2018-09-17 2020-03-25 현대자동차주식회사 차량용 ce 모듈
KR102633859B1 (ko) 2018-09-17 2024-02-05 현대자동차 주식회사 차량용 ce 모듈
WO2021234955A1 (ja) * 2020-05-22 2021-11-25 三菱電機株式会社 熱交換器及び空気調和機

Also Published As

Publication number Publication date
JPWO2015125743A1 (ja) 2017-03-30
JP5847366B1 (ja) 2016-01-20
CN106030219A (zh) 2016-10-12
US10208987B2 (en) 2019-02-19
EP3109567B1 (en) 2022-05-18
EP3109567A1 (en) 2016-12-28
EP3109567A4 (en) 2017-10-25
US20170167761A1 (en) 2017-06-15
CN106030219B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP5847366B1 (ja) 空気調和装置
JP5984914B2 (ja) 空気調和装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
US10845095B2 (en) Air-conditioning apparatus
JP6038382B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
EP2416093A1 (en) Combined system of air conditioning device and hot-water supply device
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
WO2014141374A1 (ja) 空気調和装置
JP6328270B2 (ja) 空気調和装置
WO2014141373A1 (ja) 空気調和装置
WO2011089652A1 (ja) 空調給湯複合システム
JP5908183B1 (ja) 空気調和装置
US20230057478A1 (en) Refrigeration cycle apparatus
JP6120943B2 (ja) 空気調和装置
JP6479181B2 (ja) 空気調和装置
JP6880213B2 (ja) 空気調和装置
WO2017010007A1 (ja) 空気調和装置
JP6758506B2 (ja) 空気調和装置
WO2015029223A1 (ja) 空気調和装置
JP2009293887A (ja) 冷凍装置
JP7241880B2 (ja) 空気調和装置
JP2017161164A (ja) 空調給湯システム
WO2017138243A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015536695

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117103

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015752562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752562

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE