WO2015125608A1 - ブロア - Google Patents

ブロア Download PDF

Info

Publication number
WO2015125608A1
WO2015125608A1 PCT/JP2015/053168 JP2015053168W WO2015125608A1 WO 2015125608 A1 WO2015125608 A1 WO 2015125608A1 JP 2015053168 W JP2015053168 W JP 2015053168W WO 2015125608 A1 WO2015125608 A1 WO 2015125608A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower chamber
blower
diaphragm
vibration
chamber
Prior art date
Application number
PCT/JP2015/053168
Other languages
English (en)
French (fr)
Inventor
田中伸拓
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016504024A priority Critical patent/JP6237877B2/ja
Priority to CN201580009321.0A priority patent/CN106062364B/zh
Priority to DE112015000889.6T priority patent/DE112015000889B4/de
Publication of WO2015125608A1 publication Critical patent/WO2015125608A1/ja
Priority to US15/231,831 priority patent/US9976547B2/en
Priority to US15/959,734 priority patent/US10233918B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type

Definitions

  • the present invention relates to a blower that transports gas.
  • Patent Document 1 discloses a piezoelectric drive pump.
  • This pump includes a piezoelectric disk, a disk to which the piezoelectric disk is bonded, and a main body that forms a cavity together with the disk.
  • the main body is formed with an inflow port through which a fluid flows in and an outflow port through which the fluid flows out.
  • the inflow port is provided between the central axis of the cavity and the outer periphery of the cavity.
  • the outlet is provided on the central axis of the cavity.
  • the inlet is provided in the node of pressure oscillation of the cavity. Therefore, the inlet pressure is always constant. Therefore, even if the pump of patent document 1 is provided with an inflow port between the central axis and outer periphery of a cavity, it can suppress that a discharge pressure and a discharge flow rate fall.
  • the pump of Patent Document 1 has a problem that the flow rate of the fluid cannot be sufficiently obtained when the diameter of the inlet is small.
  • the diameter of the inlet is small, dust or the like may be clogged in the inlet.
  • An object of the present invention is to provide a blower that can prevent the discharge pressure and the discharge flow rate from being lowered even if a large opening is provided to ensure a sufficient flow rate.
  • the blower of the present invention has the following configuration in order to solve the above problems.
  • the blower of the present invention includes an actuator and a housing.
  • the actuator includes a diaphragm and a driving body.
  • the diaphragm has a first main surface and a second main surface.
  • the driving body is provided on at least one main surface of the first main surface and the second main surface of the diaphragm. Further, the driving body causes the diaphragm to bend and vibrate concentrically.
  • the housing constitutes the first blower chamber sandwiched with the actuator from the thickness direction of the diaphragm.
  • the housing also has a first vent hole that communicates the center of the first blower chamber with the outside of the first blower chamber.
  • At least one of the diaphragm and the housing has an opening that allows the outer periphery of the first blower chamber to communicate with the outside of the first blower chamber.
  • the diaphragm and the housing are formed such that the first blower chamber has the shortest distance a.
  • the driver vibrates the diaphragm at the resonance frequency f.
  • the resonance frequency f of the diaphragm is determined by the thickness of the diaphragm, the material of the diaphragm, and the like.
  • the blower having this configuration has a high discharge pressure and a high discharge flow rate. Can be realized.
  • the pressure on the outer periphery of the first blower chamber is always constant.
  • the pressure on the outer periphery of the first blower chamber is always atmospheric pressure.
  • the blower having this configuration can prevent the discharge pressure and the discharge flow rate from being lowered even if a large opening is provided to ensure a sufficient flow rate.
  • the blower with this configuration can prevent the dust from being clogged by the large opening. That is, the blower having this configuration can prevent the discharge pressure and the discharge flow rate from being reduced by dust or the like.
  • the shortest distance a and the resonance frequency f satisfy the relationship of 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ).
  • a first valve for preventing a gas from flowing from the outside to the inside of the first blower chamber is provided in the first ventilation hole of the housing.
  • the blower having this configuration can prevent the gas from flowing from the outside of the first blower chamber to the inside through the first vent hole. Therefore, the blower having this configuration can realize a high discharge pressure and a high discharge flow rate.
  • the number of zero crossing points of vibration displacement of the diaphragm may coincide with the number of zero crossing points of pressure change in the first blower chamber.
  • each point of the diaphragm corresponding to the center axis of the first blower chamber to the outer periphery of the first blower chamber is displaced by vibration.
  • the pressure at each point of the first blower chamber changes due to the vibration of the diaphragm from the central axis of the first blower chamber to the outer periphery of the first blower chamber.
  • each point of the diaphragm when the diaphragm vibrates, the displacement distribution of each point of the diaphragm becomes close to the pressure change distribution of each point of the first blower chamber. That is, at the time of vibration of the diaphragm, each point of the diaphragm is displaced according to the pressure change at each point of the first blower chamber.
  • the blower having this configuration can transmit the vibration energy of the diaphragm to the gas in the first blower chamber with almost no loss. Therefore, the blower having this configuration can realize a high discharge pressure and a high discharge flow rate.
  • the vibration plate is sandwiched from the thickness direction of the vibration plate together with the housing, the vibration portion constituting the first blower chamber, the frame portion surrounding the vibration portion and joined to the housing, the vibration portion and the frame portion, And a plurality of connecting portions that elastically support the vibrating portion with respect to the frame portion.
  • the vibration part is elastically supported with respect to the frame part by a plurality of connecting parts, and the bending vibration of the vibration part is hardly hindered. For this reason, in the blower of this invention, the loss accompanying the bending vibration of a vibration part decreases.
  • the opening is formed in a region of the diaphragm located between the outermost node and the frame portion among the vibration nodes of the diaphragm.
  • the vibration part Since the vibration part is elastically supported flexibly with respect to the frame part by a plurality of connecting parts, the end of the vibration part on the frame part side also vibrates freely.
  • the opening since the opening is formed in the region, the outermost node of the vibration nodes of the diaphragm constitutes the outer periphery of the first blower chamber. That is, the shortest distance a from the central axis of the first blower chamber to the outer periphery of the first blower chamber is defined by the opening.
  • the blower having this configuration can prevent the discharge pressure and the discharge flow rate from being lowered even when the diaphragm has a vibrating part, a frame part, and a connecting part.
  • the opening is formed in a region of the casing opposite to the region of the diaphragm located between the outermost node and the frame portion among the vibration nodes of the diaphragm.
  • the vibration part Since the vibration part is elastically supported flexibly with respect to the frame part by a plurality of connecting parts, the end of the vibration part on the frame part side also vibrates freely.
  • the opening since the opening is formed in the region, the outermost node of the vibration nodes of the diaphragm constitutes the outer periphery of the first blower chamber. That is, the shortest distance a from the central axis of the first blower chamber to the outer periphery of the first blower chamber is defined by the opening.
  • the blower having this configuration can prevent the discharge pressure and the discharge flow rate from being lowered even when the diaphragm has a vibrating part, a frame part, and a connecting part.
  • the driving body is preferably a piezoelectric body.
  • the housing has a first movable portion that faces the second main surface of the diaphragm and that vibrates and vibrates along with the bending vibration of the diaphragm.
  • the blower of the present invention can further increase the discharge pressure and the discharge flow rate.
  • the housing includes a second ventilation hole that is sandwiched from the thickness direction of the diaphragm together with the actuator, and has a second ventilation hole that communicates the center of the second blower chamber with the outside of the second blower chamber,
  • the diaphragm has an opening that communicates the outer periphery of the first blower chamber with the outer periphery of the second blower chamber,
  • the shortest distance from the central axis of the second blower chamber to the outer periphery of the second blower chamber is preferably a.
  • the diaphragm and the housing are formed such that both the first blower chamber and the second blower chamber have the shortest distance a.
  • the driver vibrates the diaphragm at the resonance frequency f.
  • the blower having this configuration discharges the gas in the first blower chamber to the outside of the housing through the first ventilation hole, and the gas in the second blower chamber through the second ventilation hole. To discharge outside the housing.
  • the outermost node among the vibration nodes of the diaphragm is the pressure vibration node of the first blower chamber and the pressure vibration of the second blower chamber.
  • a pressure resonance occurs in accordance with this section.
  • the outermost of the vibration nodes of the diaphragm The node substantially coincides with the pressure vibration node of the first blower chamber and the pressure vibration node of the second blower chamber.
  • the blower having this configuration includes the first vent hole and the second A high discharge pressure and a high discharge flow rate can be realized from both of the vent holes.
  • a second valve for preventing gas from flowing from the outside to the inside of the second blower chamber is provided in the second ventilation hole of the housing.
  • the blower having this configuration can realize a high discharge pressure and a high discharge flow rate.
  • the number of zero crossing points of vibration displacement of the diaphragm may coincide with the number of zero crossing points of pressure change in the second blower chamber.
  • each point of the diaphragm corresponding to the center axis of the second blower chamber to the outer periphery of the second blower chamber is displaced by vibration.
  • the pressure at each point of the second blower chamber changes due to the vibration of the diaphragm from the central axis of the second blower chamber to the outer periphery of the second blower chamber.
  • each point of the diaphragm when the diaphragm vibrates, the displacement distribution of each point of the diaphragm becomes close to the pressure change distribution of each point of the second blower chamber. That is, at the time of vibration of the diaphragm, each point of the diaphragm is displaced according to the pressure change at each point of the second blower chamber.
  • the blower having this configuration can transmit the vibration energy of the diaphragm to the gas in the second blower chamber with almost no loss. Therefore, the blower having this configuration can realize a high discharge pressure and a high discharge flow rate.
  • u (r) J 0 (k 0 r / a) where r is the distance from the central axis of the second blower chamber. It is expressed by a formula.
  • the casing has a third ventilation hole that communicates at least one outer periphery of the first blower chamber and the second blower chamber with the outside of the casing.
  • the housing has a second movable portion that faces the first main surface of the diaphragm and that vibrates and vibrates along with the bending vibration of the diaphragm.
  • the blower of the present invention can further increase the discharge pressure and the discharge flow rate.
  • FIG. 1 is an external perspective view of a piezoelectric blower 100 according to a first embodiment of the present invention. It is an external appearance perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • FIG. 2 is a cross-sectional view of the piezoelectric blower 100 taken along the line SS when the piezoelectric blower 100 shown in FIG. 1 is operated at a primary mode frequency (fundamental wave).
  • FIG. 2 is a diagram showing the relationship between the pressure change at each point in the blower chamber 31 and the displacement at each point of the diaphragm 41 in the piezoelectric blower 100 shown in FIG. 1.
  • FIG. 1 is an external perspective view of a piezoelectric blower 100 according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • FIG. 2 is
  • FIG. 2 is a diagram showing a relationship between radius a ⁇ resonance frequency f and pressure amplitude in the piezoelectric blower 100 shown in FIG. 1. It is a top view of piezoelectric blower 200 concerning a 2nd embodiment of the present invention. It is a reverse view of the piezoelectric blower 200 shown in FIG.
  • FIG. 8 is a cross-sectional view taken along line TT of the piezoelectric blower 200 shown in FIG. 7.
  • FIG. 8 is a cross-sectional view taken along the line TT of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 7 is operated at a third-order mode frequency (third harmonic wave).
  • FIG. 8 is a diagram showing the relationship between the pressure change at each point in the blower chamber 31 and the displacement at each point of the diaphragm 41 in the piezoelectric blower 200 shown in FIG. 7.
  • FIG. 8 is a diagram showing a relationship between radius a ⁇ resonance frequency f and pressure amplitude in the piezoelectric blower 200 shown in FIG. 7.
  • FIG. 14 is an external perspective view of the piezoelectric blower 300 shown in FIG. 13.
  • FIG. 14 is a cross-sectional view of the piezoelectric blower 200 shown in FIG. FIG.
  • FIG. 14 is a cross-sectional view of the piezoelectric blower 300 taken along the line UU when the piezoelectric blower 300 shown in FIG. 13 is operated at a primary mode frequency (fundamental wave). It is an external appearance perspective view of the piezoelectric blower 400 which concerns on 4th Embodiment of this invention.
  • FIG. 18 is a cross-sectional view of the piezoelectric blower 400 when the piezoelectric blower 400 shown in FIG. 17 is operated at a primary mode frequency (fundamental wave). It is a top view of the housing
  • FIG. 1 is an external perspective view of the piezoelectric blower 100 according to the first embodiment of the present invention.
  • FIG. 2 is an external perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • the piezoelectric blower 100 includes a valve 80, a casing 17, a diaphragm 41, and a piezoelectric element 42 in order from the top, and has a structure in which these are stacked in order.
  • the piezoelectric element 42 corresponds to the “driving body” of the present invention.
  • the diaphragm 41 has a disc shape and is made of, for example, stainless steel (SUS).
  • the thickness of the diaphragm 41 is, for example, 0.6 mm.
  • the diameter of the vent hole 24 is, for example, 0.6 mm.
  • the diaphragm 41 has a first main surface 40A and a second main surface 40B.
  • the second main surface 40B of the diaphragm 41 is joined to the tip of the housing 17. Accordingly, the diaphragm 41 is sandwiched from the thickness direction of the diaphragm 41 together with the housing 17 to form a cylindrical blower chamber 31.
  • the diaphragm 41 and the housing 17 are formed so that the blower chamber 31 has a radius a.
  • the radius a of the blower chamber 31 is 6.1 mm.
  • the diaphragm 41 has an opening 62 that allows the outer periphery of the blower chamber 31 to communicate with the outside of the blower chamber 31.
  • the shape of the opening 62 is a sector having an arc 62A, as shown in FIG.
  • the opening 62 is formed over substantially the entire circumference of the diaphragm 41 so as to surround the blower chamber 31.
  • the diaphragm 41 includes an outer peripheral portion 34, a plurality of beam portions 35, and a vibrating portion 36.
  • the outer peripheral portion 34 has an annular shape.
  • the vibration part 36 has a disk shape.
  • the vibrating portion 36 is disposed in the opening of the outer peripheral portion 34 with a gap between the vibrating portion 36 and the outer peripheral portion 34.
  • the plurality of beam portions 35 are provided in a gap between the outer peripheral portion 34 and the vibrating portion 36, and connect the vibrating portion 36 and the outer peripheral portion 34.
  • the vibration part 36 is supported hollowly via the beam part 35 and is movable up and down in the thickness direction.
  • the blower chamber 31 is a space inside the openings 62 (more precisely, a space inside the ring formed by connecting all the openings 62 when the second main surface 40B of the diaphragm 41 is viewed from the front. ). Therefore, the region on the inner side of the opening 62 in the second main surface 40B of the vibration plate 41 (more precisely, the ventilation hole 24 side of the vibrating portion 36 inside the ring formed by connecting all the openings 62) ) Constitutes the bottom surface of the blower chamber 31.
  • the vibration plate 41 is formed by punching a metal plate, for example.
  • the piezoelectric element 42 has a disc shape and is made of, for example, lead zirconate titanate ceramic. Electrodes are formed on both main surfaces of the piezoelectric element 42.
  • the piezoelectric element 42 is bonded to the first main surface 40A on the opposite side to the blower chamber 31 of the diaphragm 41, and expands and contracts according to the applied AC voltage.
  • the joined body of the piezoelectric element 42 and the diaphragm 41 constitutes the piezoelectric actuator 50.
  • the housing 17 is formed in a U-shaped cross section with an opening at the bottom.
  • the tip of the housing 17 is joined to the diaphragm 41.
  • the casing 17 is made of, for example, metal.
  • the housing 17 includes a disc-shaped top plate portion 18 facing the second main surface 40B of the vibration plate 41, and an annular side wall portion 19 connected to the top plate portion 18. A part of the top plate portion 18 constitutes the top surface of the blower chamber 31.
  • blower chamber 31 corresponds to the “first blower chamber” of the present invention.
  • top plate portion 18 corresponds to the “first movable portion” of the present invention.
  • the top plate 18 has a columnar vent 24 that allows the center of the blower chamber 31 to communicate with the outside of the blower chamber 31.
  • the central portion of the blower chamber 31 is a portion overlapping the piezoelectric element 42 when the first main surface 40A of the diaphragm 41 is viewed from the front.
  • the top plate portion 18 is provided with a valve 80 for preventing gas from flowing from the outside of the blower chamber 31 to the inside through the vent hole 24.
  • vent hole 24 corresponds to the “first vent hole” of the present invention.
  • valve 80 corresponds to the “first valve” of the present invention.
  • FIGS. 4A and 4B are cross-sectional views of the SS line of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated at the resonance frequency (fundamental wave) of the primary mode.
  • 4A is a view when the volume of the blower chamber 31 is increased most
  • FIG. 4B is a view when the volume of the blower chamber 31 is decreased most.
  • the arrows in the figure indicate the flow of air.
  • FIG. 5 shows the pressure at each point of the blower chamber 31 applied from the central axis C of the blower chamber 31 to the outer periphery of the blower chamber 31 at the moment when the piezoelectric blower 100 shown in FIG. 1 is in the state shown in FIG.
  • FIG. 4 is a diagram showing the relationship between the change and the displacement of each point of the diaphragm 41 constituting the center axis C of the blower chamber 31 to the outer periphery of the blower chamber 31.
  • FIG. 5 is a diagram obtained by simulation.
  • FIG. 6 is a diagram showing the relationship between radius a ⁇ resonance frequency f and pressure amplitude in the piezoelectric blower 100 shown in FIG.
  • FIG. 6 is a diagram in which the pressure amplitude is obtained by changing radius a ⁇ resonance frequency f by simulation.
  • the dotted lines in FIG. 6 indicate the lower limit, upper limit, and maximum value of a range that satisfies the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ). ing.
  • the lower limit is 104 m / s
  • the upper limit is 156 m / s
  • the maximum is 130 m / s.
  • an alternate long and short dash line in FIG. 6 indicates a lower limit and an upper limit of a range satisfying the relationship of 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ). ing.
  • the lower limit is 117 m / s, and the upper limit is 143 m / s.
  • the pressure amplitude shown in FIG. 6 is normalized by the vibration speed at the center of the piezoelectric element 42. Since the failure limit of the piezoelectric element 42 is the upper limit, the pressure amplitude when the vibration speed is 1 m / s is graphed in the measurement shown in FIG.
  • the top plate 18 is moved in the primary mode with the bending vibration of the vibration plate 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 31 accompanying the bending vibration of the vibration plate 41. Bend and vibrate concentrically.
  • the resonance frequency f of the diaphragm 41 is 21 kHz.
  • the resonance frequency f of the diaphragm 41 is determined by the thickness of the diaphragm 41, the material of the diaphragm 41, and the like.
  • the sound velocity c of air is 340 m / s. k 0 is 2.40.
  • the first type Bessel function J 0 (x) is expressed by the following mathematical formula.
  • the piezoelectric blower 100 since the top plate portion 18 vibrates with the vibration of the vibration plate 41, the vibration amplitude can be substantially increased. Thereby, the piezoelectric blower 100 of this embodiment can increase discharge pressure and discharge flow rate.
  • each point of the diaphragm 41 constituting from the central axis C of the blower chamber 31 to the outer periphery of the blower chamber 31 is displaced by vibration. Then, as indicated by the solid line in FIG. 5, the pressure at each point of the blower chamber 31 changes due to the vibration of the diaphragm 41 from the central axis C of the blower chamber 31 to the outer periphery of the blower chamber 31.
  • the number of zero crossings of vibration displacement of the diaphragm 41 is zero.
  • the number of zero crossings of the pressure change is also zero. Therefore, the number of zero crossings of the vibration displacement of the diaphragm 41 matches the number of zero crossings of the pressure change in the blower chamber 31.
  • the vibration node F of the diaphragm 41 coincides with the pressure vibration node of the blower chamber 31, and pressure resonance occurs. Further, even when the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ) is satisfied, the vibration node F of the vibration plate 41 has a blower chamber. It almost coincides with 31 pressure vibration nodes.
  • the piezoelectric blower 100 is used for sucking a liquid having a high viscosity such as a runny nose or sputum.
  • the vibration speed of the piezoelectric element needs to be 2 m / s or less. Since suction of a runny nose and sputum requires a pressure of 20 kPa or more, the piezoelectric blower 100 needs a pressure amplitude of 10 kPa / (m / s) or more. As shown in FIG. 6, the pressure amplitude becomes maximum when af is 130 m / s.
  • a pressure amplitude of 20 kPa / (m / s) or more is obtained. Even at 104 m / s and 156 m / s, which are shifted by ⁇ 20% from 130 m / s, a pressure amplitude of 10 kPa / (m / s) or more can be obtained.
  • the piezoelectric blower 100 has high viscosity such as runny nose and sputum It is possible to realize a high discharge pressure and a high discharge flow rate that can be used for an application for sucking a liquid.
  • the piezoelectric blower 100 has an extremely high discharge pressure and an extremely high discharge. Flow rate can be realized.
  • the piezoelectric blower 100 since the outer periphery of the blower chamber 31 becomes a node of pressure vibration of the blower chamber 31, the outer peripheral pressure of the blower chamber 31 is always atmospheric pressure. Therefore, even if the outer periphery of the blower chamber 31 communicates with the outside of the blower chamber 31 through the opening 62 larger than the vent hole 24 of Patent Document 1, the piezoelectric blower 100 can prevent the discharge pressure and the discharge flow rate from being lowered. .
  • the piezoelectric blower 100 can prevent the discharge pressure and the discharge flow rate from being lowered even if the large opening 62 is provided in order to ensure a sufficient flow rate.
  • the piezoelectric blower 100 can prevent the opening 62 from being clogged with dust or the like by the large opening 62. That is, the piezoelectric blower 100 can prevent the discharge pressure and the discharge flow rate from being reduced by dust or the like.
  • the piezoelectric blower 100 can prevent the air from flowing from the outside of the blower chamber 31 to the inside through the vent hole 24 by the valve 80. Therefore, the piezoelectric blower 100 can realize a high discharge pressure and a high discharge flow rate.
  • each point of the vibration plate 41 is displaced according to the pressure change at each point of the blower chamber 31.
  • the piezoelectric blower 100 can transmit the vibration energy of the diaphragm 41 to the air in the blower chamber 31 with almost no loss. Therefore, the piezoelectric blower 100 can realize a high discharge pressure and a high discharge flow rate.
  • FIG. 7 is a plan view of the piezoelectric blower 200 according to the second embodiment of the present invention.
  • FIG. 8 is a rear view of the piezoelectric blower 200 shown in FIG.
  • FIG. 9 is a sectional view taken along line TT of the piezoelectric blower 200 shown in FIG.
  • the piezoelectric blower 200 includes a valve 280, a casing 217, a diaphragm 241 and a piezoelectric element 42 in order from the top, and has a structure in which these are stacked in order.
  • the piezoelectric element 42 corresponds to the “driving body” of the present invention.
  • the diaphragm 241 has a disk shape and is made of, for example, stainless steel (SUS).
  • the thickness of the diaphragm 241 is 0.5 mm, for example.
  • the diaphragm 241 has a first main surface 240A and a second main surface 240B.
  • the second main surface 240B of the diaphragm 241 is joined to the tip of the housing 217. Thereby, the diaphragm 241 is sandwiched from the thickness direction of the diaphragm 241 together with the casing 217 to form a cylindrical blower chamber 231.
  • the diaphragm 241 and the housing 217 are formed so that the blower chamber 231 has a radius a.
  • the radius a of the blower chamber 231 is 11 mm.
  • the vibration plate 241 surrounds the vibration portion 263 and the vibration portion 263, connects the frame portion 261 joined to the housing 217, the vibration portion 263 and the frame portion 261, and the vibration portion 263 with respect to the frame portion 261. And three connecting portions 262 that elastically support each other.
  • the vibrating section 263 constitutes a blower chamber 231 with the casing 217 sandwiched from the thickness direction of the diaphragm 241. For this reason, one main surface of the region of the vibrating portion 263 facing the top plate portion 218 constitutes the bottom surface of the blower chamber 231.
  • the diaphragm 241 is formed, for example, by punching a metal plate.
  • the vibration part 263 is elastically supported flexibly by the three connection parts 262 with respect to the frame part 261, and the bending vibration of the vibration part 263 is hardly hindered.
  • the piezoelectric element 42 has a disc shape and is made of, for example, lead zirconate titanate ceramic. Electrodes are formed on both main surfaces of the piezoelectric element 42.
  • the piezoelectric element 42 is bonded to the first main surface 240A of the diaphragm 241 opposite to the blower chamber 231 and expands and contracts according to the applied AC voltage.
  • the joined body of the piezoelectric element 42 and the diaphragm 241 constitutes a piezoelectric actuator 250.
  • the housing 217 is formed in a U-shaped cross section with an opening at the bottom.
  • the front end of the housing 217 is joined to the frame portion 261 of the diaphragm 241.
  • the housing 217 is made of, for example, metal.
  • the housing 217 includes a top plate portion 218 facing the second main surface 240B of the diaphragm 241 and an annular side wall portion 219 connected to the top plate portion 218.
  • the top plate portion 218 is a disc-shaped rigid body.
  • the top plate portion 218 constitutes the top surface of the blower chamber 231.
  • the top plate portion 218 includes a thick top portion 229 and a thin top portion 228 located on the inner peripheral side of the thick top portion 229.
  • the top plate portion 218 has a vent hole 224 in the thin top portion 228 that allows the central portion of the blower chamber 231 to communicate with the outside of the blower chamber 231.
  • the thickness of the thick part 229 is, for example, 0.5 mm
  • the thickness of the thin part 228 is, for example, 0.05 mm.
  • the diameter of the air hole 224 is, for example, 0.6 mm.
  • the central portion of the blower chamber 231 is a portion overlapping the piezoelectric element 42 when the first main surface 240A of the diaphragm 241 is viewed from the front.
  • the top plate portion 218 is provided with a valve 280 that prevents gas from flowing from the outside of the blower chamber 231 to the inside through the vent hole 224.
  • a cavity 225 that is a part of the blower chamber 231 and communicates with the vent hole 224 is formed on the vibrating plate 263 side of the top plate portion 218.
  • the cavity 225 has a cylindrical shape.
  • the diameter of the cavity 225 is, for example, 3.0 mm, and the thickness of the cavity 225 is, for example, 0.45 mm.
  • the top plate portion 218 has an opening 214 that allows the outer periphery of the blower chamber 231 to communicate with the outside of the blower chamber 231.
  • the opening 214 is formed in a facing region of the housing 217 facing a region of the diaphragm 241 located between the outermost node F2 and the frame portion 261 among the vibration nodes of the diaphragm 241.
  • the opening 214 is formed over substantially the entire circumference of the top plate 218 so as to surround the blower chamber 231.
  • the blower chamber 231 corresponds to the “first blower chamber” of the present invention.
  • the top plate 218 corresponds to the “first movable part” of the present invention.
  • the vent hole 224 corresponds to the “first vent hole” of the present invention.
  • the valve 280 corresponds to the “first valve” of the present invention.
  • FIG. 10A and 10B are cross-sectional views taken along the line TT of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 7 is operated at a third-order mode frequency (third harmonic wave).
  • FIG. 10A is a diagram when the volume of the blower chamber 231 is increased most
  • FIG. 10B is a diagram when the volume of the blower chamber 231 is decreased most.
  • the arrows in the figure indicate the flow of air.
  • FIG. 11 shows the pressure at each point of the blower chamber 231 applied from the central axis C of the blower chamber 231 to the outer periphery of the blower chamber 231 at the moment when the piezoelectric blower 200 shown in FIG. 7 is in the state shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the change and the displacement of each point of the diaphragm 241 constituting the center axis C of the blower chamber 231 to the outer periphery of the blower chamber 231.
  • FIG. 11 is a diagram obtained by simulation.
  • FIG. 12 is a diagram showing the relationship between radius a ⁇ resonance frequency f and pressure amplitude in the piezoelectric blower 200 shown in FIG.
  • FIG. 12 is a diagram in which the pressure amplitude is obtained by changing radius a ⁇ resonance frequency f by simulation.
  • the dotted lines in FIG. 12 indicate the lower limit, upper limit, and maximum value of a range satisfying the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ ⁇ ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ). ing.
  • the lower limit value is 240 m / s
  • the upper limit value is 360 m / s
  • the maximum value is 300 m / s.
  • an alternate long and short dash line in FIG. 12 indicates a lower limit and an upper limit of a range satisfying the relationship of 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ). ing.
  • the lower limit is 270 m / s
  • the upper limit is 330 m / s.
  • the pressure amplitude shown in FIG. 12 is normalized by the vibration speed of the central portion of the piezoelectric element 42. Since the failure limit of the piezoelectric element 42 is the upper limit, the pressure amplitude when the vibration speed is 1 m / s is graphed in the measurement shown in FIG.
  • the diaphragm 241 is bent and deformed, and the volume of the blower chamber 231 changes periodically.
  • each point of the diaphragm 241 constituting the center axis C of the blower chamber 231 to the outer periphery of the blower chamber 231 is displaced by vibration. . 11, the pressure at each point of the blower chamber 231 changes due to the vibration of the diaphragm 241 from the central axis C of the blower chamber 231 to the outer periphery of the blower chamber 231.
  • the number of zero crossings of the vibration displacement of the diaphragm 241 is one.
  • the number of zero crossings of the pressure change of 231 is also one. Therefore, the number of zero crossings of the vibration displacement of the diaphragm 241 matches the number of zero crossings of the pressure change in the blower chamber 231.
  • the outermost node F of the vibration nodes of the diaphragm 241 coincides with the pressure vibration node of the blower chamber 231, and the pressure resonance is Arise. Furthermore, even when the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ) is satisfied, the outermost of the vibration nodes of the diaphragm 241 The node F substantially coincides with the pressure vibration node of the blower chamber 231.
  • the piezoelectric blower 200 is used for sucking a liquid having a high viscosity such as a runny nose or sputum.
  • the vibration speed of the piezoelectric element needs to be 2 m / s or less. Since suction of a runny nose and sputum requires a pressure of 20 kPa or more, the piezoelectric blower 200 needs a pressure amplitude of 10 kPa / (m / s) or more. As shown in FIG. 12, the pressure amplitude becomes maximum when af is 300 m / s.
  • a pressure amplitude of 20 kPa / (m / s) or more is obtained. Even at 240 m / s and 360 m / s, which are shifted by ⁇ 20% from 300 m / s, a pressure amplitude of 10 kPa / (m / s) or more can be obtained.
  • the piezoelectric blower 200 has high viscosity such as runny nose and sputum It is possible to realize a high discharge pressure and a high discharge flow rate that can be used for an application for sucking a liquid.
  • the piezoelectric blower 200 has an extremely high discharge pressure and an extremely high discharge. Flow rate can be realized.
  • the piezoelectric blower 200 the outer periphery of the blower chamber 231 becomes a node of pressure vibration of the blower chamber 231, and therefore the outer peripheral pressure of the blower chamber 231 is always atmospheric pressure. Therefore, even if the outer periphery of the blower chamber 231 communicates with the outside of the blower chamber 231 through the opening 214 larger than the vent hole 224 of Patent Document 1, the piezoelectric blower 200 can prevent the discharge pressure and the discharge flow rate from decreasing. .
  • the piezoelectric blower 200 can prevent the discharge pressure and the discharge flow rate from being lowered even if the large opening 214 is provided to ensure a sufficient flow rate.
  • the piezoelectric blower 200 can prevent the opening 214 from being clogged with dust and the like by the large opening 214. That is, the piezoelectric blower 200 can prevent the discharge pressure and the discharge flow rate from being reduced by dust or the like.
  • the piezoelectric blower 200 can prevent the air from flowing from the outside of the blower chamber 231 to the inside through the vent hole 224 by the valve 280. Therefore, the piezoelectric blower 200 can realize a high discharge pressure and a high discharge flow rate.
  • each point of the diaphragm 241 is close to the pressure change distribution of each point of the blower chamber 231. That is, when the diaphragm 241 vibrates, each point of the diaphragm 241 is displaced in accordance with the pressure change of each point of the blower chamber 231.
  • the piezoelectric blower 200 can transmit the vibration energy of the diaphragm 241 to the air in the blower chamber 231 with almost no loss. Therefore, the piezoelectric blower 200 can realize a high discharge pressure and a high discharge flow rate.
  • the vibration part 263 is elastically supported by the three connection parts 262 with respect to the frame part 261, and the bending vibration of the vibration part 263 is hardly hindered. For this reason, in the piezoelectric blower 200, the loss accompanying the bending vibration of the vibration part 263 decreases.
  • the vibrating portion 263 is elastically supported flexibly with respect to the frame portion 261 by a plurality of connecting portions 262, the end 264 of the vibrating portion 263 on the frame portion 261 side also freely vibrates (FIGS. 10A and 10B). )reference).
  • the outermost node F2 of the vibration nodes of the diaphragm 241 constitutes the outer periphery of the blower chamber 231. That is, the radius a from the central axis C of the blower chamber 231 to the outer periphery of the blower chamber 231 is defined by the opening 214.
  • the blower 200 having this configuration can prevent the discharge pressure and the discharge flow rate from being lowered even when the vibration plate 241 has the vibration part 263, the frame part 261, and the connection part 262.
  • FIG. 13 is an external perspective view of a piezoelectric blower 300 according to a third embodiment of the present invention.
  • FIG. 14 is an external perspective view of the piezoelectric blower 300 shown in FIG.
  • FIG. 15 is a cross-sectional view taken along the line UU of the piezoelectric blower 200 shown in FIG.
  • the piezoelectric blower 300 is different from the piezoelectric blower 100 in that it does not include the valve 80 but includes a housing 317.
  • the piezoelectric blower 300 includes a housing 17, a vibration plate 41, a piezoelectric element 42, and a housing 317 in order from the top, and has a structure in which these are stacked in order. Since the other configuration is the same as that of the piezoelectric blower 100, description thereof is omitted.
  • the housing 317 is formed in a U-shaped cross section with an upper opening.
  • the front end of the housing 317 is joined to the first main surface 40 ⁇ / b> A of the diaphragm 41.
  • the housing 317 is made of metal, for example.
  • the casing 317 constitutes a cylindrical blower chamber 331 sandwiched with the actuator 50 from the thickness direction of the diaphragm 41.
  • the diaphragm 41 and the housing 317 are formed so that the blower chamber 331 has a radius a. That is, the blower chamber 331 has the same radius a as the blower chamber 31.
  • the opening 62 of the diaphragm 41 causes the outer periphery of the blower chamber 31 to communicate with the outer periphery of the blower chamber 331.
  • the opening 62 is formed over substantially the entire circumference of the diaphragm 41 so as to surround the blower chamber 331. Therefore, a region inside the opening 62 on the surface of the actuator 50 on the vent 324 side (more precisely, the side of the vibrating portion 36 on the vent 324 side of the ring formed by connecting all the openings 62) ) Constitutes the bottom surface of the blower chamber 331.
  • the housing 317 includes a disk-shaped top plate portion 318 facing the first main surface 40A of the vibration plate 41, and an annular side wall portion 319 connected to the top plate portion 318. A part of the top plate portion 318 constitutes the top surface of the blower chamber 331.
  • the housing 17 and the housing 317 constitute the “housing” of the present invention.
  • the blower chamber 31 corresponds to the “first blower chamber” of the present invention, and the blower chamber 331 corresponds to the “second blower chamber” of the present invention.
  • the top plate portion 18 corresponds to the “first movable portion” of the present invention, and the top plate portion 318 corresponds to the “second movable portion” of the present invention.
  • the top plate portion 318 has a columnar vent 324 that communicates the center of the blower chamber 331 with the outside of the housing 317.
  • the central portion of the blower chamber 331 is a portion overlapping the piezoelectric element 42 when the first main surface 40A of the vibration plate 41 is viewed from the front.
  • the diameter of the vent hole 324 is 0.6 mm, for example.
  • vent hole 324 corresponds to the “second vent hole” of the present invention.
  • FIG. 16 is a cross-sectional view of the piezoelectric blower 300 taken along the line U-U when the piezoelectric blower 300 shown in FIG. 13 is operated at the primary mode frequency (fundamental wave).
  • FIG. 16A is a diagram when the volume of the blower chamber 31 is increased most and the volume of the blower chamber 331 is decreased most
  • FIG. 16B is the diagram where the volume of the blower chamber 31 is decreased most. It is a figure when the volume of the chamber 331 increases most.
  • the arrows in the figure indicate the flow of air.
  • the relationship between the radius a ⁇ resonance frequency f and the pressure amplitude in the blower chamber 331 of the piezoelectric blower 300 is substantially the same as the relationship between the radius a ⁇ resonance frequency f and the pressure amplitude in the blower chamber 31. That is, the relationship between the radius a ⁇ resonance frequency f and the pressure amplitude in the blower chamber 331 of the piezoelectric blower 300 is shown in FIG.
  • the top plate 18 is moved in the primary mode with the bending vibration of the vibration plate 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 31 accompanying the bending vibration of the vibration plate 41. Bend and vibrate concentrically.
  • the top plate 318 is also concentric in the primary mode with the bending vibration of the vibration plate 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 331 accompanying the bending vibration of the vibration plate 41. Bends and vibrates.
  • the top plate 18 is bent to the opposite side of the piezoelectric element 42, and the volume of the blower chamber 31 is increased. Furthermore, the top plate portion 318 is bent toward the piezoelectric element 42, and the volume of the blower chamber 331 is reduced.
  • the top plate portion 18 is bent toward the piezoelectric element 42, and the volume of the blower chamber 31 is reduced. Furthermore, the top plate portion 318 is bent to the opposite side to the piezoelectric element 42, and the volume of the blower chamber 331 increases.
  • the piezoelectric blower 300 discharges the air in the blower chamber 31 to the outside of the housing 17 through the vent hole 24 and the air in the blower chamber 331 through the vent hole 324. Then, the liquid is discharged to the outside of the housing 17.
  • the top plate portions 18 and 318 vibrate with the vibration of the vibration plate 41, so that the vibration amplitude can be substantially increased.
  • the piezoelectric blower 300 of this embodiment can increase discharge pressure and discharge flow rate.
  • each point of the vibration plate 41 constituting from the central axis C of the blower chambers 31 and 331 to the outer periphery of the blower chambers 31 and 331 is vibration. Is displaced by. Then, as indicated by the solid line in FIG. 5, the pressure at each point of the blower chamber 31 changes due to the vibration of the diaphragm 41 from the central axis C of the blower chamber 31 to the outer periphery of the blower chamber 31. From the central axis C of the blower chamber 331 to the outer periphery of the blower chamber 331, the pressure at each point in the blower chamber 331 also changes due to vibration of the diaphragm 41.
  • the number of zero crossings of vibration displacement of the diaphragm 41 is zero.
  • the number of zero crossings of pressure change is also zero, and the number of zero crossings of pressure change in the blower chamber 331 is also zero.
  • the number of zero crossing points of vibration displacement of the diaphragm 41 is equal to the number of zero crossing points of pressure change in the blower chamber 31 and the number of zero crossing points of pressure change in the blower chamber 331.
  • the displacement distribution at each point of the diaphragm 41 is close to the pressure change distribution at each point in the blower chamber 31 and the pressure change distribution at each point in the blower chamber 331. Distribution.
  • the volume of the blower chamber 31 increases when the volume of the blower chamber 331 decreases, and the volume of the blower chamber 331 increases when the volume of the blower chamber 31 decreases. To do. That is, the volume of the blower chamber 31 and the volume of the blower chamber 331 change in opposite phases.
  • the air around the blower chamber 31 and the air around the blower chamber 331 move through the opening 62 when the actuator 50 is driven. Therefore, the pressure at the outer periphery of the blower chamber 31 and the pressure at the outer periphery of the blower chamber 331 cancel each other through the opening 62 when the actuator 50 is driven, and are always atmospheric pressure (node).
  • the vibration node F of the diaphragm 41 matches the pressure vibration node of the blower chamber 31 and the pressure vibration node of the blower chamber 331, and the pressure Resonance occurs. Further, even when the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ) is satisfied, the vibration node F of the vibration plate 41 has a blower chamber. The pressure vibration node 31 and the pressure vibration node of the blower chamber 331 substantially coincide with each other.
  • the relationship between the radius a of the blower chamber 31 and the resonance frequency f of the diaphragm 41 is 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ).
  • the radius a of the blower chamber 331 and the resonance frequency f of the diaphragm 41 satisfy the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ).
  • filling the piezoelectric blower 300 can implement
  • the piezoelectric blower 300 can realize a discharge flow rate almost twice as high as the discharge flow rate of the piezoelectric blower 101 discharged from one vent hole 24 without increasing power consumption.
  • the relationship between the radius a of the blower chamber 31 and the resonance frequency f of the diaphragm 41 is 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ).
  • the radius a of the blower chamber 331 and the resonance frequency f of the diaphragm 41 satisfy the relationship of 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ).
  • filling the piezoelectric blower 300 can implement
  • the piezoelectric blower 300 can shield the ultrasonic wave irradiated from the piezoelectric element 42 by the housing 317.
  • the piezoelectric blower 100 when an obstacle (for example, a flat plate) is placed near the opening 62 when the actuator 50 is driven, the pressure on the outer periphery of the blower chamber 31 does not become atmospheric pressure, and the discharge pressure and the discharge flow rate decrease. To do.
  • an obstacle for example, a flat plate
  • the opening 62 is protected by the housing 317. Therefore, in the piezoelectric blower 300, even when an obstacle is placed near the opening 62 when the actuator 50 is driven, the pressure on the outer periphery of the blower chamber 31 and the pressure on the outer periphery of the blower chamber 331 are the same when the actuator 50 is driven. The atmospheric pressure can always be maintained via the part 62. Therefore, the piezoelectric blower 300 can prevent the discharge pressure and the discharge flow rate from decreasing.
  • the displacement distribution at each point of the diaphragm 41 is close to the pressure change distribution at each point in the blower chamber 31 and the pressure change distribution at each point in the blower chamber 331. That is, when the diaphragm 41 vibrates, each point of the diaphragm 41 is displaced in accordance with the pressure change at each point in the blower chamber 31 and the pressure change at each point in the blower chamber 331.
  • the piezoelectric blower 300 can transmit the vibration energy of the diaphragm 41 to the air in the blower chambers 31 and 331 with almost no loss. Therefore, the piezoelectric blower 300 can realize a high discharge pressure and a high discharge flow rate.
  • FIG. 17 is an external perspective view of the piezoelectric blower 400 according to the fourth embodiment of the present invention.
  • the piezoelectric blower 400 is different from the piezoelectric blower 300 in that the piezoelectric blower 400 includes a housing 417 provided with a ventilation hole 424 and a valve 80 and a housing 427 provided with a ventilation hole 425 and a valve 480. Since the other configuration is the same as that of the piezoelectric blower 300, description thereof is omitted.
  • the housing 417 has a top plate portion 418 provided with a vent hole 424 at a portion facing the opening 62, and the valve 17 is provided in the vent hole 24. Is different. Other configurations of the housing 417 are the same as those of the housing 17 shown in FIG.
  • the housing 427 includes a top plate portion 428 provided with a vent hole 425 at a portion facing the opening 62, and a valve 480 is provided in the vent hole 324. Is different. Other configurations of the housing 427 are the same as those of the housing 317 illustrated in FIG.
  • each of the vent hole 424 and the vent hole 425 corresponds to the “third vent hole” of the present invention.
  • the valve 80 corresponds to the “first valve” of the present invention
  • the valve 480 corresponds to the “second valve” of the present invention.
  • FIG. 18 is a cross-sectional view of the piezoelectric blower 400 when the piezoelectric blower 400 shown in FIG. 17 is operated at a primary mode frequency (fundamental wave).
  • FIG. 18A is a diagram when the volume of the blower chamber 31 is increased most and the volume of the blower chamber 331 is decreased most
  • FIG. 18B is a diagram where the volume of the blower chamber 31 is decreased most. It is a figure when the volume of the chamber 331 increases most.
  • the arrows in the figure indicate the flow of air.
  • the top plate portion 418 is moved in the primary mode along with the bending vibration of the vibration plate 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 31 accompanying the bending vibration of the vibration plate 41. Bend and vibrate concentrically.
  • the top plate portion 428 is also concentric in the primary mode with the bending vibration of the vibration plate 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 331 accompanying the bending vibration of the vibration plate 41. Bends and vibrates.
  • the radius a of the blower chamber 31 and the resonance frequency f of the diaphragm 41 are 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c). / (2 ⁇ ) is satisfied. Further, the radius a of the blower chamber 331 and the resonance frequency f of the diaphragm 41 have a relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ). Fulfill.
  • the resonance frequency f is 21 kHz.
  • the sound velocity c of air is 340 m / s. k 0 is 2.40.
  • the top plate portion 418 is bent toward the opposite side of the piezoelectric element 42, and the volume of the blower chamber 31 is increased. Furthermore, the top plate portion 428 is bent toward the piezoelectric element 42, and the volume of the blower chamber 331 is reduced.
  • the valve 80 is closed, and the air outside the piezoelectric blower 400 and the air in the blower chamber 331 are sucked into the blower chamber 31 through the opening 62.
  • the valve 480 is opened, and the air in the central portion of the blower chamber 331 is discharged to the outside of the housing 427 through the vent hole 324.
  • the top plate portion 418 is bent toward the piezoelectric element 42 and the volume of the blower chamber 31 is reduced. Furthermore, the top plate portion 428 is bent to the opposite side to the piezoelectric element 42, and the volume of the blower chamber 331 is increased.
  • the valve 80 is opened, and the air in the central portion of the blower chamber 31 is discharged to the outside of the housing 417 through the vent hole 24.
  • the valve 480 is closed, and the air outside the piezoelectric blower 400 and the air in the blower chamber 31 are sucked into the blower chamber 331 through the opening 62. .
  • the piezoelectric blower 400 discharges the air in the blower chamber 31 to the outside of the housing 417 through the vent hole 24 and the air in the blower chamber 331 through the vent hole 324. To the outside of the housing 427.
  • the top plate portions 418 and 428 vibrate with the vibration of the vibration plate 41, so that the vibration amplitude can be substantially increased.
  • the piezoelectric blower 400 of this embodiment can increase discharge pressure and discharge flow rate.
  • the volume of the blower chamber 31 increases when the volume of the blower chamber 331 decreases, and the volume of the blower chamber 331 increases when the volume of the blower chamber 31 decreases. To do. That is, the volume of the blower chamber 31 and the volume of the blower chamber 331 change in opposite phases.
  • the air around the blower chamber 31 and the air around the blower chamber 331 move through the opening 62 when the actuator 50 is driven. Therefore, the pressure at the outer periphery of the blower chamber 31 and the pressure at the outer periphery of the blower chamber 331 cancel each other through the opening 62 when the actuator 50 is driven, and are always atmospheric pressure (node).
  • the vibration node F of the diaphragm 41 matches the pressure vibration node of the blower chamber 31 and the pressure vibration node of the blower chamber 331, and the pressure Resonance occurs. Further, even when the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ) is satisfied, the vibration node F of the vibration plate 41 has a blower chamber. The pressure vibration node 31 and the pressure vibration node of the blower chamber 331 substantially coincide with each other.
  • the relationship between the radius a of the blower chamber 31 and the resonance frequency f of the diaphragm 41 is 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ).
  • the radius a of the blower chamber 331 and the resonance frequency f of the diaphragm 41 satisfy the relationship of 0.8 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.2 ⁇ (k 0 c) / (2 ⁇ ).
  • filling the piezoelectric blower 400 can implement
  • the piezoelectric blower 400 can realize a discharge flow rate almost twice the discharge flow rate of the piezoelectric blower 101 discharged from one vent hole 24 without increasing the power consumption.
  • the relationship between the radius a of the blower chamber 31 and the resonance frequency f of the diaphragm 41 is 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ).
  • the radius a of the blower chamber 331 and the resonance frequency f of the diaphragm 41 satisfy the relationship of 0.9 ⁇ (k 0 c) / (2 ⁇ ) ⁇ af ⁇ 1.1 ⁇ (k 0 c) / (2 ⁇ ).
  • filling the piezoelectric blower 400 can implement
  • the piezoelectric blower 400 can also shield the ultrasonic wave irradiated from the piezoelectric element 42 by the housing 427.
  • the opening 62 is protected by the housing 427. For this reason, in the piezoelectric blower 400, even when an obstacle is placed near the opening 62 when the actuator 50 is driven, the pressure on the outer periphery of the blower chamber 31 and the pressure on the outer periphery of the blower chamber 331 are the same when the actuator 50 is driven. The atmospheric pressure can always be maintained via the part 62. Therefore, the piezoelectric blower 400 can also prevent the discharge pressure and the discharge flow rate from decreasing.
  • the piezoelectric blower 400 is provided with a valve 80, a valve 480, a vent hole 424, and a vent hole 425. Therefore, as shown in FIGS. 18A and 18B, air is not sucked from the outside of the piezoelectric blower 400 into the blower chambers 31 and 331 via the vent holes 24 and 324. That is, unlike the piezoelectric blower 300 shown in FIGS. 16A and 16B, the piezoelectric blower 400 does not generate an airflow in the reverse direction via the vent holes 24 and 324. Therefore, the piezoelectric blower 400 can make the air flow in one direction.
  • the displacement distribution of each point of the diaphragm 41 is the pressure at each point of the blower chamber 31. It is close to the change distribution and the pressure change distribution at each point of the blower chamber 331. That is, when the diaphragm 41 vibrates, each point of the diaphragm 41 is displaced in accordance with the pressure change at each point in the blower chamber 31 and the pressure change at each point in the blower chamber 331.
  • the piezoelectric blower 400 can transmit the vibration energy of the diaphragm 41 to the air in the blower chambers 31 and 331 with almost no loss. Therefore, the piezoelectric blower 400 can realize a high discharge pressure and a high discharge flow rate.
  • air is used as the fluid, but the present invention is not limited to this. It can be applied even if the fluid is a gas other than air.
  • the diaphragms 41 and 241 are made of SUS.
  • the present invention is not limited to this.
  • the piezoelectric element 42 is provided as a drive source for the blower, but the present invention is not limited to this.
  • it may be configured as a blower that performs a pumping operation by electromagnetic drive.
  • the piezoelectric element 42 is made of lead zirconate titanate ceramic, but is not limited thereto.
  • it may be composed of a lead-free piezoelectric ceramic material such as potassium sodium niobate and alkali niobate ceramics.
  • a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this.
  • a bimorph type piezoelectric vibrator in which the piezoelectric elements 42 are attached to both surfaces of the vibration plate 41 may be used.
  • the disk-shaped piezoelectric element 42, the disk-shaped diaphragm 41, and the disk-shaped top plates 18, 318, 418, and 428 are used, but the present invention is not limited to this.
  • these shapes may be rectangular or polygonal.
  • the top plate portions 18, 318, 418, and 428 bend and vibrate concentrically with the bending vibration of the diaphragm 41.
  • the present invention is not limited to this. At the time of implementation, only the vibration plate 41 is flexibly vibrated, and the top plate portions 18, 318, 418, and 428 may not be flexibly vibrated with the flexural vibration of the vibration plate 41.
  • K 0 was used condition of 2.40,5.52, not limited to this.
  • the piezoelectric element 42 is joined to the first main surface 40A on the opposite side of the blower chamber 31 of the diaphragm 41, but the present invention is not limited to this.
  • the piezoelectric element 42 may be bonded to the second main surface 40B of the diaphragm 41 on the blower chamber 31 side, or the two piezoelectric elements 42 may be the first main surface 40A of the diaphragm 41. And it may be joined to the second main surface 40B.
  • the housing 17 constitutes a first blower chamber sandwiched from the thickness direction of the vibration plate 41 together with a piezoelectric actuator composed of at least one piezoelectric element 42 and the vibration plate 41.
  • the piezoelectric element 42 is joined to the first main surface 240A on the opposite side of the blower chamber 231 of the diaphragm 241, but the present invention is not limited to this.
  • the piezoelectric element 42 may be bonded to the second main surface 240B of the diaphragm 241 on the blower chamber 231 side, or the two piezoelectric elements 42 may be joined to the first main surface 240A of the diaphragm 241. And you may join to the 2nd main surface 240B.
  • the casing 217 constitutes a first blower chamber sandwiched from the thickness direction of the diaphragm 241 together with the piezoelectric actuator composed of at least one piezoelectric element 42 and the diaphragm 41.
  • the piezoelectric element 42 is joined to the first main surface 40A on the blower chamber 331 side of the vibration plate 41, but is not limited thereto.
  • the piezoelectric element 42 may be bonded to the second main surface 40B of the diaphragm 41 on the blower chamber 31 side, or the two piezoelectric elements 42 may be the first main surface 40A of the diaphragm 41. And it may be joined to the second main surface 40B.
  • the casings 17 and 317 constitute a first blower chamber and a second blower chamber sandwiched from the thickness direction of the vibration plate 41 together with a piezoelectric actuator composed of at least one piezoelectric element 42 and the vibration plate 41. .
  • the vibration plate of the piezoelectric blower is bent and vibrated at the frequency of the primary mode and the tertiary mode.
  • the present invention is not limited to this.
  • the diaphragm may be bent and vibrated in an odd-order vibration mode that is a third-order mode or more that forms a plurality of vibration antinodes.
  • the shape of the blower chambers 31, 231, 331 is a cylindrical shape, it is not restricted to this.
  • the shape of the blower chamber may be a regular prism shape. In this case, the shortest distance a from the central axis of the blower chamber to the outer periphery of the blower chamber is used instead of the radius a of the blower chamber.
  • the top plate portion 18 of the housing 17 is provided with one circular vent hole 24, and the top plate portion 218 of the housing 217 is also provided with one circular vent hole 224.
  • the top plate portion 318 of the housing 317 is also provided with one circular vent hole 324, but is not limited thereto.
  • a plurality of ventilation holes 524 to 724 may be provided as shown in FIGS. 19 to 21, and for example, the ventilation holes 624 to 824 shown in FIGS. 20 to 22 are not circular. May be.
  • valves 80 and 280 are provided in the vent holes 24 and 224, but the present invention is not limited to this. In implementation, it is not always necessary to provide a valve.
  • the valve When the valve is not provided, when the diaphragms 41 and 241 are bent toward the piezoelectric element 42 as shown in FIGS. Airflow is generated. Therefore, from the vent holes 24, 224, a large wind speed discharge flow and suction flow alternately occur, that is, a strong reciprocating flow can be obtained. Such a strong reciprocating flow can be used, for example, for cooling a heat-generating component.
  • the opening 62 is provided in the diaphragm 41 and the opening 214 is provided in the top plate 218.
  • the present invention is not limited to this. In implementation, the opening may be provided in the side wall of the housing.
  • the opening 214 is a housing facing the region of the diaphragm 241 located between the outermost node F2 and the frame part 261 among the vibration nodes of the diaphragm 241.
  • the opening 214 may be formed in a region of the vibration plate 241 located between the outermost node F2 and the frame portion 261 among the vibration nodes of the vibration plate 241.

Abstract

 圧電ブロア(100)は、弁(80)、筐体(17)、振動板(41)、及び圧電素子(42)を備えている。振動板(41)は、筐体(17)とともに振動板(41)の厚み方向から挟んで円柱形状のブロア室(31)を構成する。また、振動板(41)および筐体(17)は、ブロア室(31)が半径(a)となるよう形成されている。圧電素子(42)は、振動板(41)を共振周波数(f)で同心円状に屈曲振動させる。ブロア室(31)の半径(a)と振動板(41)の共振周波数(f)とは、ブロア室(31)を通過する空気の音速を(c)とし、第1種ベッセル関数J(k)=0の関係を満たす値を(k)としたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。

Description

ブロア
 本発明は、気体の輸送を行うブロアに関するものである。
 従来から、気体の輸送を行うブロアが各種知られている。例えば特許文献1には、圧電駆動のポンプが開示されている。
 このポンプは、圧電ディスクと、圧電ディスクが接合された円盤と、円盤とともに空洞を構成する本体と、を備えている。この本体には、流体が流入する流入口と、流体が流出する流出口とが形成されている。流入口は、空洞の中心軸と空洞の外周との間に設けられている。流出口は、空洞の中心軸に設けられている。
 ここで、流入口は、空洞の圧力振動の節に設けられている。そのため、流入口の圧力は常に一定である。よって、特許文献1のポンプは、空洞の中心軸と外周の間に流入口が設けられていても、吐出圧力や吐出流量が低下することを抑制できる。
特許4795428号公報
 しかしながら、特許文献1のポンプでは、流入口の径が小さい場合、流体の流量が十分に得られないという問題がある。また、流入口の径が小さい場合、粉塵等が流入口に詰まる可能性がある。
 一方、流入口の径が大きい場合、流入口の範囲が空洞の圧力振動の節から遠く離れた箇所まで広がることになり、流入口の圧力が常に一定せず、変化してしまう。そのため、特許文献1のポンプでは、流入口の径が大きい場合、吐出圧力や吐出流量が低下するという問題がある。
 本発明は、十分な流量を確保するために大きな開口部を設けても、吐出圧力や吐出流量が低下することを防止できるブロアを提供することを目的とする。
 本発明のブロアは、前記課題を解決するために以下の構成を備えている。
 本発明のブロアは、アクチュエータと、筐体と、を備えている。アクチュエータは、振動板と、駆動体と、を有する。振動板は、第1主面と第2主面とを有する。駆動体は、振動板の第1主面および第2主面の少なくとも一方の主面に設けられている。また、駆動体は、振動板を同心円状に屈曲振動させる。
 筐体は、アクチュエータとともに振動板の厚み方向から挟んで第1ブロア室を構成する。また、筐体は、第1ブロア室の中央を第1ブロア室の外部と連通させる第1通気孔を有する。
 振動板および筐体の少なくとも一方は、第1ブロア室の外周を第1ブロア室の外部と連通させる開口部を有する。
 第1ブロア室の中心軸から第1ブロア室の外周までの最短距離aと振動板の共振周波数fとは、第1ブロア室を通過する気体の音速をcとし、第1種ベッセル関数J(k)=0の関係を満たす値をkとしたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。
 この構成において、振動板および筐体は、第1ブロア室が最短距離aとなるよう形成されている。駆動体は、振動板を共振周波数fで振動させる。振動板の共振周波数fは、振動板の厚み、振動板の材料などによって定まる。
 ここで、af=(kc)/(2π)である場合、振動板の振動の節の内、最も外側の節が、第1ブロア室の圧力振動の節と一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板の振動の節の内、最も外側の節が、第1ブロア室の圧力振動の節とほぼ一致する。
 そのため、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、この構成のブロアは、高い吐出圧力および高い吐出流量を実現できる。
 また、この構成では、第1ブロア室の外周が第1ブロア室の圧力振動の節となるため、第1ブロア室の外周の圧力は常に一定となる。例えば、気体として空気を使用する場合、第1ブロア室の外周の圧力は常に大気圧となる。
 そのため、第1ブロア室の外周が特許文献1の第1通気孔より大きな開口部によって第1ブロア室の外部と連通していても、この構成のブロアは、吐出圧力や吐出流量が低下することを防止できる。
 したがって、この構成のブロアは、十分な流量を確保するために大きな開口部を設けても、吐出圧力や吐出流量が低下することを防止できる。
 また、この構成のブロアは、大きな開口部によって、粉塵等が開口部に詰まることを防止できる。すなわち、この構成のブロアは、吐出圧力や吐出流量が粉塵等によって低下することを防止できる。
 なお、最短距離aと共振周波数fとが0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たすことが、さらに好ましい。
 また、筐体の第1通気孔には、第1ブロア室の外部から内部へ気体が流れることを防ぐ第1の弁が設けられていることが好ましい。
 この構成のブロアは、第1ブロア室の外部から第1通気孔を介して内部へ気体が流れることを弁によって防ぐことができる。そのため、この構成のブロアは、高い吐出圧力および高い吐出流量を実現できる。
 また、第1ブロア室の中心軸から第1ブロア室の外周までの範囲において、振動板の振動変位のゼロ交差点の個数は、第1ブロア室の圧力変化のゼロ交差点の個数と一致することが好ましい。ここで、第1ブロア室の中心軸から第1ブロア室の外周までに対応する振動板の各点は、振動によって変位する。また、第1ブロア室の中心軸から第1ブロア室の外周にかけて、第1ブロア室の各点の圧力は、振動板の振動によって変化する。
 この構成では、振動板の振動時において、振動板の各点の変位分布が、第1ブロア室の各点の圧力変化分布に近い分布となる。すなわち、振動板の振動時において、振動板の各点は、第1ブロア室の各点の圧力変化に合わせて、変位する。
 よって、この構成のブロアは、振動板の振動エネルギーを殆ど損なうことなく、第1ブロア室の気体に伝えることができる。したがって、この構成のブロアは、高い吐出圧力および高い吐出流量を実現できる。
 なお、第1ブロア室の各点の圧力変化分布u(r)は、第1ブロア室の中心軸からの距離をrとしたとき、u(r)=J(kr/a)の式で表される。
 また、振動板は、筐体とともに振動板の厚み方向から挟んで第1ブロア室を構成する振動部と、振動部の周囲を囲み、筐体に接合する枠部と、振動部と枠部とを連結し、枠部に対して振動部を弾性支持する複数の連結部と、を有することが好ましい。
 この構成では、振動部は複数の連結部で枠部に対して柔軟に弾性支持されており、振動部の屈曲振動は殆ど妨げられない。このため、本発明のブロアでは、振動部の屈曲振動に伴う損失が少なくなる。
 また、開口部は、振動板の振動の節の内、最も外側の節と枠部との間に位置する振動板の領域に形成されていることが好ましい。
 振動部は複数の連結部で枠部に対して柔軟に弾性支持されているため、振動部の枠部側の端も自由振動する。この構成では、開口部が前記領域に形成されているため、振動板の振動の節の内、最も外側の節が、第1ブロア室の外周を構成する。すなわち、第1ブロア室の中心軸から第1ブロア室の外周までの最短距離aは、開口部によって規定される。
 したがって、この構成のブロアは、振動板が振動部と枠部と連結部とを有する態様であっても、吐出圧力や吐出流量が低下することを防止できる。
 また、開口部は、振動板の振動の節の内、最も外側の節と枠部との間に位置する振動板の領域と対向する筐体の領域に形成されていることが好ましい。
 振動部は複数の連結部で枠部に対して柔軟に弾性支持されているため、振動部の枠部側の端も自由振動する。この構成では、開口部が前記領域に形成されているため、振動板の振動の節の内、最も外側の節が、第1ブロア室の外周を構成する。すなわち、第1ブロア室の中心軸から第1ブロア室の外周までの最短距離aは、開口部によって規定される。
 したがって、この構成のブロアは、振動板が振動部と枠部と連結部とを有する態様であっても、吐出圧力や吐出流量が低下することを防止できる。
 また、駆動体は、圧電体であることが好ましい。
 また、筐体は、振動板の第2主面に対向し、振動板の屈曲振動に伴って屈曲振動する第1可動部を有することが好ましい。
 この構成では、振動板の振動に伴い第1可動部が振動するため、実質的に振動振幅を増すことができる。これにより、本発明のブロアは、吐出圧力と吐出流量をさらに増加させることができる。
 また、筐体は、アクチュエータとともに振動板の厚み方向から挟んで第2ブロア室を構成し、第2ブロア室の中央を第2ブロア室の外部と連通させる第2通気孔を有し、
 振動板は、第1ブロア室の外周を第2ブロア室の外周と連通させる開口部を有し、
 第2ブロア室の中心軸から第2ブロア室の外周までの最短距離は、aである、ことが好ましい。
 この構成では、振動板および筐体は、第1ブロア室および第2ブロア室の両方が最短距離aとなるよう形成されている。駆動体は、振動板を共振周波数fで振動させる。
 そして、この構成のブロアは、アクチュエータの駆動時、第1ブロア室の気体を、第1通気孔を介して筐体の外部へ吐出し、第2ブロア室の気体を、第2通気孔を介して筐体の外部へ吐出する。
 この構成では、第1ブロア室の外周の気体と第2ブロア室の外周の気体とは振動板の振動時、開口部を介して移動する。よって、第1ブロア室の外周の圧力と第2ブロア室の外周の圧力とは振動板の振動時、開口部を介して相殺され、常に大気圧(節)となる。
 ここで、af=(kc)/(2π)である場合、振動板の振動の節の内、最も外側の節が、第1ブロア室の圧力振動の節と第2ブロア室の圧力振動の節とに一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板の振動の節の内、最も外側の節が、第1ブロア室の圧力振動の節と第2ブロア室の圧力振動の節とにほぼ一致する。
 そのため、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、この構成のブロアは、第1通気孔及び第2通気孔の両方から、高い吐出圧力および高い吐出流量を実現できる。
 また、筐体の第2通気孔には、第2ブロア室の外部から内部へ気体が流れることを防ぐ第2の弁が設けられていることが好ましい。
 この構成では、第2ブロア室の外部から第2通気孔を介して内部へ気体が流れることを弁によって防ぐことができる。そのため、この構成のブロアは、高い吐出圧力および高い吐出流量を実現できる。
 また、第2ブロア室の中心軸から第2ブロア室の外周までの範囲において、振動板の振動変位のゼロ交差点の個数は、第2ブロア室の圧力変化のゼロ交差点の個数と一致することが好ましい。ここで、第2ブロア室の中心軸から第2ブロア室の外周までに対応する振動板の各点は、振動によって変位する。また、第2ブロア室の中心軸から第2ブロア室の外周にかけて、第2ブロア室の各点の圧力は、振動板の振動によって変化する。
 この構成では、振動板の振動時において、振動板の各点の変位分布が、第2ブロア室の各点の圧力変化分布に近い分布となる。すなわち、振動板の振動時において、振動板の各点は、第2ブロア室の各点の圧力変化に合わせて、変位する。
 よって、この構成のブロアは、振動板の振動エネルギーを殆ど損なうことなく、第2ブロア室の気体に伝えることができる。したがって、この構成のブロアは、高い吐出圧力および高い吐出流量を実現できる。
 なお、第2ブロア室の各点の圧力変化分布u(r)は、第2ブロア室の中心軸からの距離をrとしたとき、u(r)=J(kr/a)の式で表される。
 また、筐体は、第1ブロア室および第2ブロア室の少なくとも一方の外周を筐体の外部と連通させる第3通気孔を有することが好ましい。
 この構成では振動板の振動時、筐体外部の気体が、第3通気孔を介して、第1ブロア室および第2ブロア室の少なくとも一方へ流入する。
 また、筐体は、振動板の第1主面に対向し、振動板の屈曲振動に伴って屈曲振動する第2可動部を有することが好ましい。
 この構成では、振動板の振動に伴い第2可動部が振動するため、実質的に振動振幅を増すことができる。これにより、本発明のブロアは、吐出圧力と吐出流量をさらに増加させることができる。
 この発明によれば、十分な流量を確保するために大きな開口部を設けても、吐出圧力や吐出流量が低下することを防止できる。
本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。 図1に示す圧電ブロア100の外観斜視図である。 図1に示す圧電ブロア100のS-S線の断面図である。 図1に示す圧電ブロア100を1次モードの周波数(基本波)で動作させた時における圧電ブロア100のS-S線の断面図である。 図1に示す圧電ブロア100における、ブロア室31の各点の圧力変化と振動板41の各点の変位との関係を示す図である。 図1に示す圧電ブロア100における、半径a×共振周波数fと、圧力振幅との関係を示す図である。 本発明の第2実施形態に係る圧電ブロア200の平面図である。 図7に示す圧電ブロア200の裏面図である。 図7に示す圧電ブロア200のT-T線の断面図である。 図7に示す圧電ブロア200を3次モードの周波数(基本波の3倍波)で動作させた時における圧電ブロア200のT-T線の断面図である。 図7に示す圧電ブロア200における、ブロア室31の各点の圧力変化と振動板41の各点の変位との関係を示す図である。 図7に示す圧電ブロア200における、半径a×共振周波数fと、圧力振幅との関係を示す図である。 本発明の第3実施形態に係る圧電ブロア300の外観斜視図である。 図13に示す圧電ブロア300の外観斜視図である。 図13に示す圧電ブロア200のU-U線の断面図である。 図13に示す圧電ブロア300を1次モードの周波数(基本波)で動作させた時における圧電ブロア300のU-U線の断面図である。 本発明の第4実施形態に係る圧電ブロア400の外観斜視図である。 図17に示す圧電ブロア400を1次モードの周波数(基本波)で動作させた時における圧電ブロア400の断面図である。 図1に示す筐体17の第1変形例に係る筐体517の平面図である。 図1に示す筐体17の第2変形例に係る筐体617の平面図である。 図1に示す筐体17の第3変形例に係る筐体717の平面図である。 図1に示す筐体17の第4変形例に係る筐体817の平面図である。
《本発明の第1実施形態》
 以下、本発明の第1実施形態に係る圧電ブロア100について説明する。
 図1は、本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。図2は、図1に示す圧電ブロア100の外観斜視図である。図3は、図1に示す圧電ブロア100のS-S線の断面図である。
 圧電ブロア100は、上から順に、弁80、筐体17、振動板41、及び圧電素子42を備え、それらが順に積層された構造を有している。
 なお、この実施形態では、圧電素子42が本発明の「駆動体」に相当する。
 振動板41は、円板状であり、例えばステンレススチール(SUS)から構成されている。振動板41の厚みは例えば、0.6mmである。通気孔24の直径は例えば、0.6mmである。振動板41は、第1主面40Aと第2主面40Bとを有する。
 振動板41の第2主面40Bは、筐体17の先端に接合している。これにより、振動板41は、筐体17とともに振動板41の厚み方向から挟んで円柱形状のブロア室31を構成する。また、振動板41および筐体17は、ブロア室31が半径aとなるよう形成されている。例えば本実施形態においてブロア室31の半径aは、6.1mmである。
 さらに、振動板41は、ブロア室31の外周をブロア室31の外部と連通させる開口部62を有する。開口部62の形状は、図2に示すように、弧62Aを有する扇形である。開口部62は、ブロア室31を囲むよう、振動板41のほぼ全周にわたって形成されている。これにより、振動板41は、外周部34と、複数の梁部35と、振動部36と、を備えている。外周部34は円環状である。振動部36は円板状である。振動部36は、外周部34の開口内に、外周部34との間に隙間を空けた状態で配置されている。複数の梁部35は、外周部34と振動部36との間の隙間に設けられ、振動部36と外周部34との間を連結している。
 したがって、振動部36は、梁部35を介して中空に支持されており、厚み方向に上下動自在となっている。
 ブロア室31は、振動板41の第2主面40Bを正面視して、開口部62より内側の空間(より正確には、全ての開口部62を結んで構成される円環より内側の空間)を指す。そのため、振動板41の第2主面40Bにおける開口部62より内側の領域(より正確には、全ての開口部62を結んで構成される円環より内側にある振動部36の通気孔24側の主面)は、ブロア室31の底面を構成する。振動板41は例えば、金属板に対して打ち抜き加工を施すことにより形成される。
 圧電素子42は、円板形状であり、例えばチタン酸ジルコン酸鉛系セラミックスから構成されている。圧電素子42の両主面には、電極が形成されている。圧電素子42は、振動板41のブロア室31とは逆側の第1主面40Aに接合されており、印加された交流電圧に応じて伸縮する。圧電素子42及び振動板41の接合体は、圧電アクチュエータ50を構成する。
 筐体17は、下方が開口した断面コ字状に形成されている。筐体17の先端は、振動板41に接合している。筐体17は、例えば金属から構成されている。
 筐体17は、振動板41の第2主面40Bに対向する円板状の天板部18と、天板部18に接続する円環状の側壁部19と、を有する。天板部18の一部は、ブロア室31の天面を構成する。
 なお、この実施形態では、ブロア室31が本発明の「第1ブロア室」に相当する。また、天板部18が本発明の「第1可動部」に相当する。
 天板部18は、ブロア室31の中央部をブロア室31の外部と連通させる円柱状の通気孔24を有する。ブロア室31の中央部とは、振動板41の第1主面40Aを正面視して圧電素子42と重なる部分である。天板部18には、ブロア室31の外部から通気孔24を介して内部へ気体が流れることを防ぐ弁80が設けられている。
 なお、この実施形態では、通気孔24が本発明の「第1通気孔」に相当する。また、弁80が本発明の「第1の弁」に相当する。
 以下、圧電ブロア100の動作時における空気の流れについて説明する。
 図4(A)(B)は、図1に示す圧電ブロア100を1次モードの共振周波数(基本波)で動作させた時における圧電ブロア100のS-S線の断面図である。図4(A)は、ブロア室31の容積が最も増大したときの図であり、図4(B)は、ブロア室31の容積が最も減少したときの図である。ここで、図中の矢印は、空気の流れを示している。
 また、図5は、図1に示す圧電ブロア100が図4(B)に示す状態にある瞬間の、ブロア室31の中心軸Cからブロア室31の外周にかけるブロア室31の各点の圧力変化と、ブロア室31の中心軸Cからブロア室31の外周までを構成する振動板41の各点の変位と、の関係を示す図である。図5は、シミュレーションによって求めた図である。
 ここで、図5において、ブロア室31の各点の圧力変化と振動板41の各点の変位とは、ブロア室31の中心軸C上にある振動板41の中心の変位で規格化された値で示されている。なお、図5に示す、ブロア室31の各点の圧力変化分布u(r)については、後に説明する。
 また、図6は、図1に示す圧電ブロア100における、半径a×共振周波数fと、圧力振幅との関係を示す図である。図6は、シミュレーションによって、半径a×共振周波数fを変化させて圧力振幅を求めた図である。図6の点線は、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす範囲の下限と上限、及び最大値を示している。下限値は104m/sであり、上限値は156m/sであり、最大値は130m/sである。
 同様に、図6の一点鎖線は、0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす範囲の下限と上限を示している。下限値は117m/sであり、上限値は143m/sである。
 なお、図6に示す圧力振幅は、圧電素子42中央部の振動速度で規格化している。圧電素子42の破損限界が上限となるため、図6に示す測定では振動速度=1m/sの時の圧力振幅をグラフ化している。
 図3に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が圧電素子42の両主面の電極に印加されると、圧電素子42は、伸縮し、振動板41を1次モードの共振周波数fで同心円状に屈曲振動させる。
 同時に、天板部18は、振動板41の屈曲振動に伴うブロア室31の圧力変動により、振動板41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
 これにより、図4(A)(B)に示すように、振動板41及び天板部18が屈曲変形してブロア室31の体積が周期的に変化する。
 なお、ブロア室31の半径aと振動板41の共振周波数fとは、ブロア室31を通過する空気の音速をcとし、第1種ベッセル関数J(k)=0の関係を満たす値をkとしたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。
 本実施形態において例えば、振動板41の共振周波数fは、21kHzである。振動板41の共振周波数fは、振動板41の厚み、振動板41の材料などによって定まる。空気の音速cは、340m/sである。kは、2.40である。第1種ベッセル関数J(x)は、以下の数式で示される。
Figure JPOXMLDOC01-appb-M000001
 また、ブロア室31の各点の圧力変化分布u(r)は、ブロア室31の中心軸Cからの距離をrとしたとき、u(r)=J(kr/a)の式で表される。
 図4(A)に示すように、振動板41が圧電素子42側へ屈曲すると、天板部18も圧電素子42とは逆側へ屈曲し、ブロア室31の容積が増大する。このとき、ブロア室31の中央部の圧力が低下して弁80が閉じるため、通気孔24部では空気の出入りは生じない。これに伴い、圧電ブロア100の外部の空気が開口部62を介してブロア室31内に吸引される。
 図4(B)に示すように、振動板41がブロア室31側へ屈曲すると、天板部18も圧電素子42側へ屈曲し、ブロア室31の容積が減少する。このとき、ブロア室31の中央部の圧力が増加して弁80が開くため、ブロア室31内の空気が通気孔24から吐出される。
 以上のように、圧電ブロア100では、振動板41の振動に伴い天板部18が振動するため、実質的に振動振幅を増すことができる。これにより、本実施形態の圧電ブロア100は、吐出圧力と吐出流量を増加させることができる。
 また、図4(A)(B)及び図5の点線に示すように、ブロア室31の中心軸Cからブロア室31の外周までを構成する振動板41の各点は、振動によって変位する。そして、図5の実線に示すように、ブロア室31の中心軸Cからブロア室31の外周にかけて、ブロア室31の各点の圧力は、振動板41の振動によって変化する。
 図5の点線と実線に示すように、ブロア室31の中心軸Cからブロア室31の外周までの範囲において、振動板41の振動変位のゼロ交差点の個数は0個であり、ブロア室31の圧力変化のゼロ交差点の個数も0個である。そのため、振動板41の振動変位のゼロ交差点の個数は、ブロア室31の圧力変化のゼロ交差点の個数と一致している。
 よって、圧電ブロア100では、振動板41の振動時において、振動板41の各点の変位分布が、ブロア室31の各点の圧力変化分布に近い分布となっている。
 ここで、af=(kc)/(2π)である場合、振動板41の振動の節Fが、ブロア室31の圧力振動の節と一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板41の振動の節Fが、ブロア室31の圧力振動の節とほぼ一致する。
 圧電ブロア100は、例えば鼻水や痰などの粘度の高い液体を吸引する用途に使用される。長期駆動に伴う圧電素子の破損を防ぐためには、圧電素子の振動速度は2m/s以下とする必要がある。鼻水や痰の吸引には20kPa以上の圧力が必要なため、圧電ブロア100には、10kPa/(m/s)以上の圧力振幅が必要である。図6に示すように、圧力振幅は、afが130m/sであるときに最大となる。130m/sから±10%ずれた117m/s及び143m/sては、圧力振幅は、20kPa/(m/s)以上得られる。130m/sから±20%ずれた104m/s及び156m/sでも、圧力振幅は、10kPa/(m/s)以上得られる。
 そのため、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、圧電ブロア100は、鼻水や痰などの粘度の高い液体を吸引する用途に使用することが可能な、高い吐出圧力および高い吐出流量を実現できる。
 さらに、0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす場合、圧電ブロア100は、極めて高い吐出圧力及び極めて高い吐出流量を実現できる。
 また、圧電ブロア100では、ブロア室31の外周がブロア室31の圧力振動の節となるため、ブロア室31の外周の圧力は常に大気圧となる。そのため、ブロア室31の外周が特許文献1の通気孔24より大きな開口部62によってブロア室31の外部と連通していても、圧電ブロア100は、吐出圧力や吐出流量が低下することを防止できる。
 したがって、圧電ブロア100は、十分な流量を確保するために大きな開口部62を設けても、吐出圧力や吐出流量が低下することを防止できる。
 また、圧電ブロア100は、大きな開口部62によって、粉塵等が開口部62に詰まることを防止できる。すなわち、圧電ブロア100は、吐出圧力や吐出流量が粉塵等によって低下することを防止できる。
 また、圧電ブロア100は、ブロア室31の外部から通気孔24を介して内部へ空気が流れることを弁80によって防ぐことができる。そのため、圧電ブロア100は、高い吐出圧力および高い吐出流量を実現できる。
 また、圧電ブロア100では、振動板41の振動時において、振動板41の各点の変位分布は、ブロア室31の各点の圧力変化分布に近い。すなわち、振動板41の振動時において、振動板41の各点は、ブロア室31の各点の圧力変化に合わせて、変位している。
 そのため、圧電ブロア100は、振動板41の振動エネルギーを殆ど損なうことなく、ブロア室31の空気に伝えることができる。したがって、圧電ブロア100は、高い吐出圧力および高い吐出流量を実現できる。
《本発明の第2実施形態》
 以下、本発明の第2実施形態に係る圧電ブロア200について説明する。
 図7は、本発明の第2実施形態に係る圧電ブロア200の平面図である。図8は、図7に示す圧電ブロア200の裏面図である。図9は、図7に示す圧電ブロア200のT-T線の断面図である。
 圧電ブロア200は、上から順に、弁280、筐体217、振動板241、及び圧電素子42を備え、それらが順に積層された構造を有している。
 なお、この実施形態では、圧電素子42が本発明の「駆動体」に相当する。
 振動板241は、円板状であり、例えばステンレススチール(SUS)から構成されている。振動板241の厚みは例えば、0.5mmである。振動板241は、第1主面240Aと第2主面240Bとを有する。
 振動板241の第2主面240Bは、筐体217の先端に接合している。これにより、振動板241は、筐体217とともに振動板241の厚み方向から挟んで円柱形状のブロア室231を構成する。また、振動板241および筐体217は、ブロア室231が半径aとなるよう形成されている。例えば本実施形態においてブロア室231の半径aは、11mmである。
 振動板241は、振動部263と、振動部263の周囲を囲み、筐体217に接合する枠部261と、振動部263と枠部261とを連結し、枠部261に対して振動部263を弾性支持する3つの連結部262と、を有する。
 振動部263は、筐体217とともに振動板241の厚み方向から挟んでブロア室231を構成する。そのため、天板部218に対向する振動部263の領域の一方主面は、ブロア室231の底面を構成する。振動板241は例えば、金属板に対して打ち抜き加工を施すことにより形成される。
 圧電ブロア200では、振動部263は3つの連結部262で枠部261に対して柔軟に弾性支持されており、振動部263の屈曲振動は殆ど妨げられない。
 圧電素子42は、円板形状であり、例えばチタン酸ジルコン酸鉛系セラミックスから構成されている。圧電素子42の両主面には、電極が形成されている。圧電素子42は、振動板241のブロア室231とは逆側の第1主面240Aに接合されており、印加された交流電圧に応じて伸縮する。圧電素子42及び振動板241の接合体は、圧電アクチュエータ250を構成する。
 筐体217は、下方が開口した断面コ字状に形成されている。筐体217の先端は、振動板241の枠部261に接合している。筐体217は、例えば金属から構成されている。
 筐体217は、振動板241の第2主面240Bに対向する天板部218と、天板部218に接続する円環状の側壁部219と、を有する。
 天板部218は、円板状の剛体である。天板部218は、ブロア室231の天面を構成する。天板部218は、厚天部229と、厚天部229の内周側に位置する薄天部228と、を有する。天板部218は、ブロア室231の中央部をブロア室231の外部と連通させる通気孔224を薄天部228に有する。厚天部229の厚みは例えば、0.5mmであり、薄天部228の厚みは例えば、0.05mmである。通気孔224の直径は例えば、0.6mmである。
 ブロア室231の中央部とは、振動板241の第1主面240Aを正面視して圧電素子42と重なる部分である。天板部218には、ブロア室231の外部から通気孔224を介して内部へ気体が流れることを防ぐ弁280が設けられている。
 また、天板部218の振動部263側には、ブロア室231の一部であり、通気孔224と連通するキャビティ225が形成されている。キャビティ225は、円柱形状である。キャビティ225の直径は例えば、3.0mmであり、キャビティ225の厚みは例えば、0.45mmである。
 さらに、天板部218は、ブロア室231の外周をブロア室231の外部と連通させる開口部214を有する。開口部214は、振動板241の振動の節の内、最も外側の節F2と枠部261との間に位置する振動板241の領域と対向する筐体217の対向領域に形成されている。開口部214は、ブロア室231を囲むよう、天板部218のほぼ全周にわたって形成されている。
 なお、この実施形態では、ブロア室231が本発明の「第1ブロア室」に相当する。また、天板部218が本発明の「第1可動部」に相当する。また、通気孔224が本発明の「第1通気孔」に相当する。また、弁280が本発明の「第1の弁」に相当する。
 以下、圧電ブロア200の動作時における空気の流れについて説明する。
 図10(A)(B)は、図7に示す圧電ブロア200を3次モードの周波数(基本波の3倍波)で動作させた時における圧電ブロア200のT-T線の断面図である。図10(A)は、ブロア室231の容積が最も増大したときの図であり、図10(B)は、ブロア室231の容積が最も減少したときの図である。ここで、図中の矢印は、空気の流れを示している。
 また、図11は、図7に示す圧電ブロア200が図10(B)に示す状態にある瞬間の、ブロア室231の中心軸Cからブロア室231の外周にかけるブロア室231の各点の圧力変化と、ブロア室231の中心軸Cからブロア室231の外周までを構成する振動板241の各点の変位と、の関係を示す図である。図11は、シミュレーションによって求めた図である。
 ここで、図11において、ブロア室231の各点の圧力変化と振動板241の各点の変位とは、ブロア室231の中心軸C上にある振動板241の中心の変位で規格化された値で示されている。
 また、図12は、図7に示す圧電ブロア200における、半径a×共振周波数fと、圧力振幅との関係を示す図である。図12は、シミュレーションによって、半径a×共振周波数fを変化させて圧力振幅を求めた図である。図12の点線は、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす範囲の下限と上限、及び最大値を示している。下限値は240m/sであり、上限値は360m/sであり、最大値は300m/sである。
 同様に、図12の一点鎖線は、0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす範囲の下限と上限を示している。下限値は270m/sであり、上限値は330m/sである。
 なお、図12に示す圧力振幅は、圧電素子42中心部の振動速度で規格化している。圧電素子42の破損限界が上限となるため、図12に示す測定では振動速度=1m/sの時の圧力振幅をグラフ化している。
 図9に示す状態において、3次モードの共振周波数(基本波)の交流駆動電圧が圧電素子42の両主面の電極に印加されると、圧電素子42は、伸縮し、振動板241を3次モードの共振周波数fで同心円状に屈曲振動させる。ただし、振動板241は連結部262によって柔軟に支持されているため、振動板241の屈曲振動が枠部261や天板部218に伝わることはない。従って、天板部218は屈曲振動しない。
 これにより、図10(A)(B)に示すように、振動板241が屈曲変形してブロア室231の体積が周期的に変化する。
 なお、ブロア室231の半径aと振動板241の共振周波数fとは、ブロア室231を通過する空気の音速をcとし、第1種ベッセル関数J(k)=0の関係を満たす値をkとしたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。本実施形態において例えば、共振周波数fは、29kHzである。kは、5.52である。
 また、ブロア室231の各点の圧力変化分布u(r)は、ブロア室231の中心軸Cからの距離をrとしたとき、u(r)=J(kr/a)の式で表される。
 図10(A)に示すように、振動板241が圧電素子42側へ屈曲すると、ブロア室231の中央部の容積が増大し、中央部より外周に位置する外周部の容積が減少する。このとき、ブロア室231の中央部の圧力が低下して弁280が閉じるため、空気の出入りは生じない。
 次に、図10(B)に示すように、振動板241がブロア室231側へ屈曲すると、ブロア室231の中央部の容積が減少し、外周部の容積が増大する。このとき、ブロア室231の中央部の圧力が増加して弁280が開くため、ブロア室231内の空気が通気孔224から吐出される。
 ここで、図10(A)(B)及び図11の点線に示すように、ブロア室231の中心軸Cからブロア室231の外周までを構成する振動板241の各点は、振動によって変位する。そして、図11の実線に示すように、ブロア室231の中心軸Cからブロア室231の外周にかけて、ブロア室231の各点の圧力は、振動板241の振動によって変化する。
 また、図11の点線と実線に示すように、ブロア室231の中心軸Cからブロア室231の外周までの範囲において、振動板241の振動変位のゼロ交差点の個数は1個であり、ブロア室231の圧力変化のゼロ交差点の個数も1個である。そのため、振動板241の振動変位のゼロ交差点の個数は、ブロア室231の圧力変化のゼロ交差点の個数と一致している。
 よって、圧電ブロア200では、振動板241の振動時において、振動板241の各点の変位分布が、ブロア室231の各点の圧力変化分布に近い分布となっている。
 ここで、af=(kc)/(2π)である場合、振動板241の振動の節の内、最も外側の節Fが、ブロア室231の圧力振動の節と一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板241の振動の節の内、最も外側の節Fが、ブロア室231の圧力振動の節とほぼ一致する。
 圧電ブロア200は、例えば鼻水や痰などの粘度の高い液体を吸引する用途に使用される。長期駆動に伴う圧電素子の破損を防ぐためには、圧電素子の振動速度は2m/s以下とする必要がある。鼻水や痰の吸引には20kPa以上の圧力が必要なため、圧電ブロア200には、10kPa/(m/s)以上の圧力振幅が必要である。図12に示すように、圧力振幅は、afが300m/sであるときに最大となる。300m/sから±10%ずれた270m/s及び330m/sては、圧力振幅は、20kPa/(m/s)以上得られる。300m/sから±20%ずれた240m/s及び360m/sでも、圧力振幅は、10kPa/(m/s)以上得られる。
 そのため、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、圧電ブロア200は、鼻水や痰などの粘度の高い液体を吸引する用途に使用することが可能な、高い吐出圧力および高い吐出流量を実現できる。
 さらに、0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす場合、圧電ブロア200は、極めて高い吐出圧力及び極めて高い吐出流量を実現できる。
 また、圧電ブロア200では、ブロア室231の外周がブロア室231の圧力振動の節となるため、ブロア室231の外周の圧力は常に大気圧となる。そのため、ブロア室231の外周が特許文献1の通気孔224より大きな開口部214によってブロア室231の外部と連通していても、圧電ブロア200は、吐出圧力や吐出流量が低下することを防止できる。
 したがって、圧電ブロア200は、十分な流量を確保するために大きな開口部214を設けても、吐出圧力や吐出流量が低下することを防止できる。
 また、圧電ブロア200は、大きな開口部214によって、粉塵等が開口部214に詰まることを防止できる。すなわち、圧電ブロア200は、吐出圧力や吐出流量が粉塵等によって低下することを防止できる。
 また、圧電ブロア200は、ブロア室231の外部から通気孔224を介して内部へ空気が流れることを弁280によって防ぐことができる。そのため、圧電ブロア200は、高い吐出圧力および高い吐出流量を実現できる。
 また、圧電ブロア200では、振動板241の振動時において、振動板241の各点の変位分布が、ブロア室231の各点の圧力変化分布に近い。すなわち、振動板241の振動時において、振動板241の各点は、ブロア室231の各点の圧力変化に合わせて、変位している。
 そのため、圧電ブロア200は、振動板241の振動エネルギーを殆ど損なうことなく、ブロア室231の空気に伝えることができる。したがって、圧電ブロア200は、高い吐出圧力および高い吐出流量を実現できる。
 また、圧電ブロア200では、振動部263は3つの連結部262で枠部261に対して柔軟に弾性支持されており、振動部263の屈曲振動は殆ど妨げられない。このため、圧電ブロア200では、振動部263の屈曲振動に伴う損失が少なくなる。
 ただし、振動部263は複数の連結部262で枠部261に対して柔軟に弾性支持されているため、振動部263の枠部261側の端264も自由振動する(図10(A)(B)参照)。
 圧電ブロア200では、開口部214が前述の対向領域に形成されているため、振動板241の振動の節の内、最も外側の節F2が、ブロア室231の外周を構成する。すなわち、ブロア室231の中心軸Cからブロア室231の外周までの半径aは、開口部214によって規定される。
 したがって、この構成のブロア200は、振動板241が振動部263と枠部261と連結部262とを有する態様であっても、吐出圧力や吐出流量が低下することを防止できる。
 従って、第2実施形態の圧電ブロア200によれば、前記第1実施形態の圧電ブロア100と同様の効果を奏する。
 《本発明の第3実施形態》
 以下、本発明の第3実施形態に係る圧電ブロア300について説明する。
 図13は、本発明の第3実施形態に係る圧電ブロア300の外観斜視図である。図14は、図13に示す圧電ブロア300の外観斜視図である。図15は、図13に示す圧電ブロア200のU-U線の断面図である。
 圧電ブロア300は、弁80を備えず、筐体317を備える点で、圧電ブロア100と相違する。圧電ブロア300は、上から順に、筐体17、振動板41、圧電素子42、及び筐体317を備え、それらが順に積層された構造を有している。その他の構成については圧電ブロア100と同じであるため、説明を省略する。
 筐体317は、上方が開口した断面コ字状に形成されている。筐体317の先端は、振動板41の第1主面40Aに接合している。筐体317は、例えば金属から構成されている。
 これにより、筐体317は、アクチュエータ50とともに振動板41の厚み方向から挟んで円柱形状のブロア室331を構成する。また、振動板41および筐体317は、ブロア室331が半径aとなるよう形成されている。すなわち、ブロア室331は、ブロア室31と同じ半径aを有している。
 本実施形態において振動板41の開口部62は、ブロア室31の外周をブロア室331の外周と連通させる。開口部62は、ブロア室331を囲むよう、振動板41のほぼ全周にわたって形成されている。そのため、アクチュエータ50の通気孔324側の面における開口部62より内側の領域(より正確には、全ての開口部62を結んで構成される円環より内側にある振動部36の通気孔324側の主面)は、ブロア室331の底面を構成する。
 筐体317は、振動板41の第1主面40Aに対向する円板状の天板部318と、天板部318に接続する円環状の側壁部319と、を有する。天板部318の一部は、ブロア室331の天面を構成する。
 なお、この実施形態では、筐体17及び筐体317が本発明の「筐体」を構成する。また、ブロア室31が本発明の「第1ブロア室」に相当し、ブロア室331が本発明の「第2ブロア室」に相当する。また、天板部18が本発明の「第1可動部」に相当し、天板部318が本発明の「第2可動部」に相当する。
 天板部318は、ブロア室331の中央部を筐体317の外部と連通させる円柱状の通気孔324を有する。ブロア室331の中央部とは、振動板41の第1主面40Aを正面視して圧電素子42と重なる部分である。通気孔324の直径は例えば、0.6mmである。
 なお、この実施形態では、通気孔324が本発明の「第2通気孔」に相当する。
 以下、圧電ブロア300の動作時における空気の流れについて説明する。
 図16は、図13に示す圧電ブロア300を1次モードの周波数(基本波)で動作させた時における圧電ブロア300のU-U線の断面図である。図16(A)は、ブロア室31の容積が最も増大し、ブロア室331の容積が最も減少したときの図であり、図16(B)は、ブロア室31の容積が最も減少し、ブロア室331の容積が最も増大したときの図である。ここで、図中の矢印は、空気の流れを示している。
 なお、図13に示す圧電ブロア300が図16(B)に示す状態にある瞬間の、ブロア室31の中心軸Cからブロア室31の外周にかけるブロア室31の各点の圧力変化は、図1に示す圧電ブロア100が図4(B)に示す状態にある瞬間の、ブロア室31の中心軸Cからブロア室31の外周にかけるブロア室31の各点の圧力変化(図5参照)にほぼ等しい。
 また、図13に示す圧電ブロア300が図16(A)に示す状態にある瞬間の、ブロア室331の中心軸Cからブロア室331の外周にかけるブロア室331の各点の圧力変化は、図1に示す圧電ブロア100が図4(B)に示す状態にある瞬間の、ブロア室31の中心軸Cからブロア室31の外周にかけるブロア室31の各点の圧力変化(図5参照)にほぼ等しい。即ち、図13に示す圧電ブロア300が図16(A)に示す状態にある瞬間の、ブロア室331の中心軸Cからブロア室331の外周にかけるブロア室331の各点の圧力変化分布u(r)は、図5の実線で示される。
 また、圧電ブロア300のブロア室331における、半径a×共振周波数fと、圧力振幅との関係は、ブロア室31における、半径a×共振周波数fと、圧力振幅との関係とほぼ同じである。すなわち、圧電ブロア300のブロア室331における、半径a×共振周波数fと、圧力振幅との関係は、図6で示される。
 図15に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が圧電素子42の両主面の電極に印加されると、圧電素子42は、伸縮し、振動板41を1次モードの共振周波数fで同心円状に屈曲振動させる。
 同時に、天板部18は、振動板41の屈曲振動に伴うブロア室31の圧力変動により、振動板41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
 天板部318も、振動板41の屈曲振動に伴うブロア室331の圧力変動により、振動板41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
 これにより、図16(A)(B)に示すように、ブロア室31、331の体積が周期的に変化する。
 なお、ブロア室31の半径aと振動板41の共振周波数fとは、ブロア室31を通過する空気の音速をcとし、第1種ベッセル関数J(k)=0の関係を満たす値をkとしたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。さらに、ブロア室331の半径aと振動板41の共振周波数fとも、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。本実施形態において例えば、共振周波数fは、21kHzである。空気の音速cは、340m/sである。kは、2.40である。
 また、ブロア室31の各点の圧力変化分布u(r)は、ブロア室31の中心軸Cからの距離をrとしたとき、u(r)=J(kr/a)の式で表される。ブロア室331の各点の圧力変化分布u(r)も、u(r)=J(kr/a)の式で表される。
 図16(A)に示すように、振動板41が圧電素子42側へ屈曲すると、天板部18は圧電素子42とは逆側へ屈曲し、ブロア室31の容積が増大する。さらに、天板部318は圧電素子42側へ屈曲し、ブロア室331の容積が減少する。
 このとき、ブロア室31の中央部の圧力が低下するため、筐体17の外部の空気が通気孔24を介してブロア室31内に吸引され、ブロア室331の空気が開口部62を介してブロア室31内に吸引される。また、このとき、ブロア室331の中央部の圧力が増加するため、ブロア室331の中央部の空気が、通気孔324を介して筐体317の外部へ吐出される。
 図16(B)に示すように、振動板41がブロア室31側へ屈曲すると、天板部18は圧電素子42側へ屈曲し、ブロア室31の容積が減少する。さらに、天板部318は圧電素子42とは逆側へ屈曲し、ブロア室331の容積が増大する。
 このとき、ブロア室31の中央部の圧力が増加するため、ブロア室31の中央部の空気が、通気孔24を介して筐体17の外部へ吐出される。また、このとき、ブロア室331の中央部の圧力が低下するため、筐体317の外部の空気が通気孔324を介してブロア室331内に吸引され、ブロア室31の空気が開口部62を介してブロア室331内に吸引される。
 以上のように、圧電ブロア300は、アクチュエータ50の駆動時、ブロア室31の空気を、通気孔24を介して筐体17の外部へ吐出し、ブロア室331の空気を、通気孔324を介して筐体17の外部へ吐出する。
 また、圧電ブロア300では、振動板41の振動に伴い天板部18、318が振動するため、実質的に振動振幅を増すことができる。これにより、本実施形態の圧電ブロア300は、吐出圧力と吐出流量を増加させることができる。
 また、図16(A)(B)及び図5の点線に示すように、ブロア室31、331の中心軸Cからブロア室31、331の外周までを構成する振動板41の各点は、振動によって変位する。そして、図5の実線に示すように、ブロア室31の中心軸Cからブロア室31の外周にかけて、ブロア室31の各点の圧力は、振動板41の振動によって変化する。ブロア室331の中心軸Cからブロア室331の外周にかけて、ブロア室331の各点の圧力も、振動板41の振動によって変化する。
 図5の点線と実線に示すように、ブロア室31の中心軸Cからブロア室31の外周までの範囲において、振動板41の振動変位のゼロ交差点の個数は0個であり、ブロア室31の圧力変化のゼロ交差点の個数も0個であり、ブロア室331の圧力変化のゼロ交差点の個数も0個である。
 そのため、振動板41の振動変位のゼロ交差点の個数は、ブロア室31の圧力変化のゼロ交差点の個数とブロア室331の圧力変化のゼロ交差点の個数とに一致している。
 よって、圧電ブロア300では、振動板41の振動時において、振動板41の各点の変位分布が、ブロア室31の各点の圧力変化分布とブロア室331の各点の圧力変化分布とに近い分布となっている。
 ここで、図16(A)(B)に示すように、ブロア室331の容積が減少した時にブロア室31の容積が増大し、ブロア室31の容積が減少した時にブロア室331の容積が増大する。すなわち、ブロア室31の容積とブロア室331の容積とは、逆位相で変化する。
 そのため、ブロア室31の外周の空気とブロア室331の外周の空気とはアクチュエータ50の駆動時、開口部62を介して移動する。よって、ブロア室31の外周の圧力とブロア室331の外周の圧力とはアクチュエータ50の駆動時、開口部62を介して相殺され、常に大気圧(節)となる。
 そして、af=(kc)/(2π)である場合、振動板41の振動の節Fが、ブロア室31の圧力振動の節とブロア室331の圧力振動の節とに一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板41の振動の節Fが、ブロア室31の圧力振動の節とブロア室331の圧力振動の節とに、ほぼ一致する。
 そのため、ブロア室31の半径aと振動板41の共振周波数fとが0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たし、ブロア室331の半径aと振動板41の共振周波数fとが0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、圧電ブロア300は、通気孔24及び通気孔324の両方から、高い吐出圧力および高い吐出流量を実現できる。
 よって、圧電ブロア300は、消費電力を増加させることなく、1つの通気孔24から吐出する圧電ブロア101の吐出流量のほぼ二倍の吐出流量を実現できる。さらに、ブロア室31の半径aと振動板41の共振周波数fとが0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たし、ブロア室331の半径aと振動板41の共振周波数fとが0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす場合、圧電ブロア300は、極めて高い吐出圧力及び極めて高い吐出流量を実現できる。
 また、圧電ブロア300は、圧電素子42から照射される超音波を筐体317によって遮蔽できる。
 また、圧電ブロア100ではアクチュエータ50の駆動時、開口部62の近くに障害物(例えば平板)が置かれると、ブロア室31の外周の圧力が大気圧とならず、吐出圧力および吐出流量が低下する。
 これに対して、圧電ブロア300では、筐体317によって開口部62が保護されている。そのため、圧電ブロア300ではアクチュエータ50の駆動時、開口部62の近くに障害物が置かれても、ブロア室31の外周の圧力とブロア室331の外周の圧力とはアクチュエータ50の駆動時、開口部62を介して常に大気圧を維持できる。よって、圧電ブロア300では吐出圧力および吐出流量の低下を防止できる。
 また、圧電ブロア300では、振動板41の振動時において、振動板41の各点の変位分布は、ブロア室31の各点の圧力変化分布とブロア室331の各点の圧力変化分布とに近い。すなわち、振動板41の振動時において、振動板41の各点は、ブロア室31の各点の圧力変化とブロア室331の各点の圧力変化とに合わせて、変位している。
 そのため、圧電ブロア300は、振動板41の振動エネルギーを殆ど損なうことなく、ブロア室31、331の空気に伝えることができる。したがって、圧電ブロア300は、高い吐出圧力および高い吐出流量を実現できる。
 《本発明の第4実施形態》
 以下、本発明の第4実施形態に係る圧電ブロア400について説明する。
 図17は、本発明の第4実施形態に係る圧電ブロア400の外観斜視図である。
 圧電ブロア400は、通気孔424及び弁80が設けられた筐体417と通気孔425及び弁480が設けられた筐体427とを備える点で、圧電ブロア300と相違する。その他の構成については圧電ブロア300と同じであるため、説明を省略する。
 筐体417は、開口部62と対向する部分に通気孔424が設けられた天板部418を有し、通気孔24に弁80が設けられている点で、図15に示す筐体17と相違する。その他の筐体417の構成については、図15に示す筐体17と同じであるため、説明を省略する。
 筐体427は、開口部62と対向する部分に通気孔425が設けられた天板部428を有し、通気孔324に弁480が設けられている点で、図15に示す筐体317と相違する。その他の筐体427の構成については、図15に示す筐体317と同じであるため、説明を省略する。
 なお、この実施形態では、通気孔424及び通気孔425のそれぞれが本発明の「第3通気孔」に相当する。また、弁80が本発明の「第1の弁」に相当し、弁480が本発明の「第2の弁」に相当する。
 以下、圧電ブロア400の動作時における空気の流れについて説明する。
 図18は、図17に示す圧電ブロア400を1次モードの周波数(基本波)で動作させた時における圧電ブロア400の断面図である。図18(A)は、ブロア室31の容積が最も増大し、ブロア室331の容積が最も減少したときの図であり、図18(B)は、ブロア室31の容積が最も減少し、ブロア室331の容積が最も増大したときの図である。ここで、図中の矢印は、空気の流れを示している。
 図17に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が圧電素子42の両主面の電極に印加されると、圧電素子42は、伸縮し、振動板41を1次モードの共振周波数fで同心円状に屈曲振動させる。
 同時に、天板部418は、振動板41の屈曲振動に伴うブロア室31の圧力変動により、振動板41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
 天板部428も、振動板41の屈曲振動に伴うブロア室331の圧力変動により、振動板41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
 これにより、図18(A)(B)に示すように、ブロア室31、331の体積が周期的に変化する。
 なお、本実施形態においても、ブロア室31の半径aと振動板41の共振周波数fとは、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。さらに、ブロア室331の半径aと振動板41の共振周波数fとも、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす。例えば本実施形態においても、共振周波数fは、21kHzである。空気の音速cは、340m/sである。kは、2.40である。
 また、ブロア室31の各点の圧力変化分布u(r)は、ブロア室31の中心軸Cからの距離をrとしたとき、u(r)=J(kr/a)の式で表される。ブロア室331の各点の圧力変化分布u(r)も、u(r)=J(kr/a)の式で表される。
 図18(A)に示すように、振動板41が圧電素子42側へ屈曲すると、天板部418は圧電素子42とは逆側へ屈曲し、ブロア室31の容積が増大する。さらに、天板部428は圧電素子42側へ屈曲し、ブロア室331の容積が減少する。
 このとき、ブロア室31の中央部の圧力が低下するため、弁80が閉じ、圧電ブロア400外部の空気とブロア室331の空気が開口部62を介してブロア室31内に吸引される。また、このとき、ブロア室331の中央部の圧力が増加するため、弁480が開き、ブロア室331の中央部の空気が通気孔324を介して筐体427の外部へ吐出される。
 図18(B)に示すように、振動板41がブロア室31側へ屈曲すると、天板部418は圧電素子42側へ屈曲し、ブロア室31の容積が減少する。さらに、天板部428は圧電素子42とは逆側へ屈曲し、ブロア室331の容積が増大する。
 このとき、ブロア室31の中央部の圧力が増加するため、弁80が開き、ブロア室31の中央部の空気が通気孔24を介して筐体417の外部へ吐出される。また、このとき、ブロア室331の中央部の圧力が低下するため、弁480が閉じ、圧電ブロア400外部の空気とブロア室31の空気が開口部62を介してブロア室331内に吸引される。
 以上のように、圧電ブロア400は、アクチュエータ50の駆動時、ブロア室31の空気を、通気孔24を介して筐体417の外部へ吐出し、ブロア室331の空気を、通気孔324を介して筐体427の外部へ吐出する。
 また、圧電ブロア400では、振動板41の振動に伴い天板部418、428が振動するため、実質的に振動振幅を増すことができる。これにより、本実施形態の圧電ブロア400は、吐出圧力と吐出流量を増加させることができる。
 ここで、図18(A)(B)に示すように、ブロア室331の容積が減少した時にブロア室31の容積が増大し、ブロア室31の容積が減少した時にブロア室331の容積が増大する。すなわち、ブロア室31の容積とブロア室331の容積とは、逆位相で変化する。
 そのため、ブロア室31の外周の空気とブロア室331の外周の空気とはアクチュエータ50の駆動時、開口部62を介して移動する。よって、ブロア室31の外周の圧力とブロア室331の外周の圧力とはアクチュエータ50の駆動時、開口部62を介して相殺され、常に大気圧(節)となる。
 そして、af=(kc)/(2π)である場合、振動板41の振動の節Fが、ブロア室31の圧力振動の節とブロア室331の圧力振動の節とに一致し、圧力共振が生じる。さらに、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合でも、振動板41の振動の節Fが、ブロア室31の圧力振動の節とブロア室331の圧力振動の節とに、ほぼ一致する。
 そのため、ブロア室31の半径aと振動板41の共振周波数fとが0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たし、ブロア室331の半径aと振動板41の共振周波数fとが0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす場合、圧電ブロア400は、通気孔24及び通気孔324の両方から、高い吐出圧力および高い吐出流量を実現できる。
 よって、圧電ブロア400は、消費電力を増加させることなく、1つの通気孔24から吐出する圧電ブロア101の吐出流量のほぼ二倍の吐出流量を実現できる。
 さらに、ブロア室31の半径aと振動板41の共振周波数fとが0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たし、ブロア室331の半径aと振動板41の共振周波数fとが0.9×(kc)/(2π)≦af≦1.1×(kc)/(2π)の関係を満たす場合、圧電ブロア400は、極めて高い吐出圧力及び極めて高い吐出流量を実現できる。
 また、圧電ブロア400も、圧電素子42から照射される超音波を筐体427によって遮蔽できる。
 また、圧電ブロア400でも、筐体427によって開口部62が保護されている。そのため、圧電ブロア400ではアクチュエータ50の駆動時、開口部62の近くに障害物が置かれても、ブロア室31の外周の圧力とブロア室331の外周の圧力とはアクチュエータ50の駆動時、開口部62を介して常に大気圧を維持できる。よって、圧電ブロア400でも吐出圧力および吐出流量の低下を防止できる。
 また、圧電ブロア400では、弁80、弁480、通気孔424、及び通気孔425が設けられている。そのため、図18(A)(B)に示すように、圧電ブロア400の外部から通気孔24、324を介してブロア室31、331へ空気が吸入されない。すなわち、圧電ブロア400では、図16(A)(B)に示す圧電ブロア300と異なり、通気孔24、324を介した逆方向の気流が生じない。よって、圧電ブロア400は、空気の流れを一方向にすることができる。
 また、圧電ブロア400では、図18(A)(B)及び図5に示すように、振動板41の振動時において、振動板41の各点の変位分布は、ブロア室31の各点の圧力変化分布とブロア室331の各点の圧力変化分布とに近い。すなわち、振動板41の振動時において、振動板41の各点は、ブロア室31の各点の圧力変化とブロア室331の各点の圧力変化とに合わせて、変位している。
 そのため、圧電ブロア400は、振動板41の振動エネルギーを殆ど損なうことなく、ブロア室31、331の空気に伝えることができる。したがって、圧電ブロア400は、高い吐出圧力および高い吐出流量を実現できる。
《その他の実施形態》
 前記実施形態では流体として空気を用いているが、これに限るものではない。当該流体が、空気以外の気体であっても適用できる。
 また、前記実施形態では、振動板41、241はSUSから構成されているが、これに限るものではない。例えば、アルミニウム、チタン、マグネシウム、銅などの他の材料から構成してもよい。
 また、前記実施形態ではブロアの駆動源として圧電素子42を設けたが、これに限るものではない。例えば、電磁駆動でポンピング動作を行うブロアとして構成されていても構わない。
 また、前記実施形態では、圧電素子42はチタン酸ジルコン酸鉛系セラミックスから構成されているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などから構成してもよい。
 また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板41の両面に圧電素子42を貼着したバイモルフ型の圧電振動子を使用してもよい。
 また、前記実施形態では円板状の圧電素子42、円板状の振動板41及び円板状の天板部18、318、418、428を用いたが、これに限るものではない。例えば、これらの形状が矩形や多角形であってもよい。
 また、前記実施形態では、天板部18、318、418、428が、振動板41の屈曲振動に伴って同心円状に屈曲振動するが、これに限るものではない。実施の際は、振動板41のみが屈曲振動し、天板部18、318、418、428が、振動板41の屈曲振動に伴って屈曲振動しなくても良い。
 また、前記実施形態では、kが2.40、5.52の条件を用いたが、これに限るものではない。8.65、11.79、14.93など、kは、J(k)=0の関係を満たす値であれば良い。
 また、前記第1実施形態では、圧電素子42は、振動板41のブロア室31とは逆側の第1主面40Aに接合されているが、これに限るものではない。実施の際は、例えば、圧電素子42が振動板41のブロア室31側の第2主面40Bに接合されていてもよいし、2枚の圧電素子42が振動板41の第1主面40A及び第2主面40Bに接合されていてもよい。この場合、筐体17は、少なくとも1枚の圧電素子42及び振動板41から構成される圧電アクチュエータとともに、振動板41の厚み方向から挟んで第1ブロア室を構成する。
 同様に、前記第2実施形態では、圧電素子42は、振動板241のブロア室231とは逆側の第1主面240Aに接合されているが、これに限るものではない。実施の際は、例えば、圧電素子42が振動板241のブロア室231側の第2主面240Bに接合されていてもよいし、2枚の圧電素子42が振動板241の第1主面240A及び第2主面240Bに接合されていてもよい。この場合、筐体217は、少なくとも1枚の圧電素子42及び振動板41から構成される圧電アクチュエータとともに、振動板241の厚み方向から挟んで第1ブロア室を構成する。
 同様に、前記第3実施形態と前記第4実施形態では、圧電素子42は、振動板41のブロア室331側の第1主面40Aに接合されているが、これに限るものではない。実施の際は、例えば、圧電素子42が振動板41のブロア室31側の第2主面40Bに接合されていてもよいし、2枚の圧電素子42が振動板41の第1主面40A及び第2主面40Bに接合されていてもよい。この場合、筐体17、317は、少なくとも1枚の圧電素子42及び振動板41から構成される圧電アクチュエータとともに、振動板41の厚み方向から挟んで第1ブロア室および第2ブロア室を構成する。
 また、前記実施形態では、1次モード及び3次モードの周波数で圧電ブロアの振動板を屈曲振動させたが、これに限るものではない。実施の際は、複数の振動の腹を形成する、3次モード以上の奇数次の振動モードで振動板を屈曲振動させても良い。
 また、前記実施形態では、ブロア室31、231、331の形状が円柱形状であるが、これに限るものではない。実施の際は、ブロア室の形状が正角柱形状であっても良い。この場合、ブロア室の半径aの代わりに、ブロア室の中心軸からブロア室の外周までの最短距離aを使用する。
 また、前記実施形態では、筐体17の天板部18において、1つの円形の通気孔24が設けられており、筐体217の天板部218においても、1つの円形の通気孔224が設けられており、筐体317の天板部318においても、1つの円形の通気孔324が設けられているが、これに限るものではない。実施の際は、例えば図19~図21に示すように複数の通気孔524~724が設けられていてもよく、例えば図20~図22に示す通気孔624~824のように、円形でなくてもよい。
 また、前記実施形態では、弁80、280が通気孔24、224に設けられているが、これに限るものではない。実施の際は、必ずしも弁を設けなくても構わない。弁を設けない場合、図4(A)、図10(A)のように振動板41、241が圧電素子42側へ屈曲した時、図4(B)、図10(B)と逆方向の気流が生じる。従って、通気孔24、224からは、大きな風速の吐出流と吸入流が交互に生じる、つまり、強い往復流を得ることができる。このような強い往復流は、例えば、発熱部品の冷却に用いることができる。
 また、前記実施形態では、開口部62が振動板41に設けられていたり、開口部214が天板部218に設けられていたりするが、これに限るものではない。実施の際は、開口部が筐体の側壁部に設けられていてもよい。
 また、前記第2の実施形態において、開口部214は、振動板241の振動の節の内、最も外側の節F2と枠部261との間に位置する振動板241の領域と対向する筐体217の領域に形成されているが(図9参照)、これに限るものではない。実施の際は、開口部214は、振動板241の振動の節の内、最も外側の節F2と枠部261との間に位置する振動板241の領域に形成されていてもよい。
 最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
C…中心軸
F、F1、F2…節
17…筐体
18…天板部
19…側壁部
24…通気孔
31…ブロア室
34…外周部
35…梁部
36…振動部
40A…第1主面
40B…第2主面
41…振動板
42…圧電素子
50…圧電アクチュエータ
62…開口部
80…弁
100…圧電ブロア
200…圧電ブロア
214…開口部
217…筐体
218…天板部
219…側壁部
224…通気孔
225…キャビティ
228…薄天部
229…厚天部
231…ブロア室
240A…第1主面
240B…第2主面
241…振動板
250…圧電アクチュエータ
261…枠部
262…連結部
263…振動部
264…端
280…弁
300…圧電ブロア
317…筐体
318…天板部
319…側壁部
324…通気孔
331…ブロア室
400…圧電ブロア
417…筐体
418…天板部
424、425…通気孔
427…筐体
428…天板部
480…弁
517…筐体
524…通気孔
617…筐体
624…通気孔
717…筐体
724…通気孔
817…筐体
824…通気孔

Claims (13)

  1.  第1主面と第2主面とを有する振動板と、前記振動板の前記第1主面および前記第2主面の少なくとも一方の主面に設けられ、前記振動板を同心円状に屈曲振動させる駆動体と、を有するアクチュエータと、
     前記アクチュエータとともに前記振動板の厚み方向から挟んで第1ブロア室を構成し、前記第1ブロア室の中央を前記第1ブロア室の外部と連通させる第1通気孔を有する筐体と、を備え、
     前記振動板および前記筐体の少なくとも一方は、前記第1ブロア室の外周を前記第1ブロア室の外部と連通させる開口部を有し、
     前記第1ブロア室の中心軸から前記第1ブロア室の外周までの最短距離aと前記振動板の共振周波数fとは、前記第1ブロア室を通過する気体の音速をcとし、第1種ベッセル関数J(k)=0の関係を満たす値をkとしたとき、0.8×(kc)/(2π)≦af≦1.2×(kc)/(2π)の関係を満たす、ブロア。
  2.  前記筐体の前記第1通気孔には、前記第1ブロア室の外部から内部へ前記気体が流れることを防ぐ第1の弁が設けられている、請求項1に記載のブロア。
  3.  前記第1ブロア室の中心軸から前記第1ブロア室の外周までに対応する前記振動板の各点は、振動によって変位し、
     前記第1ブロア室の中心軸から前記第1ブロア室の外周にかけて、前記第1ブロア室の各点の圧力は、前記振動板の振動によって変化し、
     前記第1ブロア室の中心軸から前記第1ブロア室の外周までの範囲において、前記振動板の振動変位のゼロ交差点の個数は、前記第1ブロア室の圧力変化のゼロ交差点の個数と一致する、請求項1又は2に記載のブロア。
  4.  前記振動板は、前記筐体とともに前記振動板の厚み方向から挟んで前記第1ブロア室を構成する振動部と、前記振動部の周囲を囲み、前記筐体に接合する枠部と、前記振動部と前記枠部とを連結し、前記枠部に対して前記振動部を弾性支持する複数の連結部と、を有する、請求項1から3のいずれか1項に記載のブロア。
  5.  前記開口部は、前記振動板の振動の節の内、最も外側の節と前記枠部との間に位置する前記振動板の領域に形成されている、請求項4に記載のブロア。
  6.  前記開口部は、前記振動板の振動の節の内、最も外側の節と前記枠部との間に位置する前記振動板の領域と対向する前記筐体の領域に形成されている、請求項4に記載のブロア。
  7.  前記駆動体は、圧電体である、請求項1から6のいずれか1項に記載のブロア。
  8.  前記筐体は、前記振動板の前記第2主面に対向し、前記振動板の屈曲振動に伴って屈曲振動する第1可動部を有する、請求項1から7のいずれか1項に記載のブロア。
  9.  前記筐体は、前記アクチュエータとともに前記振動板の厚み方向から挟んで第2ブロア室を構成し、前記第2ブロア室の中央を前記第2ブロア室の外部と連通させる第2通気孔を有し、
     前記振動板は、前記第1ブロア室の外周を前記第2ブロア室の外周と連通させる前記開口部を有し、
     前記第2ブロア室の中心軸から前記第2ブロア室の外周までの最短距離は、前記aである、請求項1から8のいずれか1項に記載のブロア。
  10.  前記筐体の前記第2通気孔には、前記第2ブロア室の外部から内部へ前記気体が流れることを防ぐ第2の弁が設けられている、請求項9に記載のブロア。
  11.  前記第2ブロア室の中心軸から前記第2ブロア室の外周までに対応する前記振動板の各点は、振動によって変位し、
     前記第2ブロア室の中心軸から前記第2ブロア室の外周にかけて、前記第2ブロア室の各点の圧力は、前記振動板の振動によって変化し、
     前記第2ブロア室の中心軸から前記第2ブロア室の外周までの範囲において、前記振動板の振動変位のゼロ交差点の個数は、前記第2ブロア室の圧力変化のゼロ交差点の個数と一致する、請求項9又は10に記載のブロア。
  12.  前記筐体は、前記第1ブロア室および前記第2ブロア室の少なくとも一方の外周を前記筐体の外部と連通させる第3通気孔を有する、請求項9から11のいずれか1項に記載のブロア。
  13.  前記筐体は、前記振動板の前記第1主面に対向し、前記振動板の屈曲振動に伴って屈曲振動する第2可動部を有する、請求項9から12のいずれか1項に記載のブロア。
PCT/JP2015/053168 2014-02-21 2015-02-05 ブロア WO2015125608A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016504024A JP6237877B2 (ja) 2014-02-21 2015-02-05 ブロア
CN201580009321.0A CN106062364B (zh) 2014-02-21 2015-02-05 鼓风机
DE112015000889.6T DE112015000889B4 (de) 2014-02-21 2015-02-05 Gebläse
US15/231,831 US9976547B2 (en) 2014-02-21 2016-08-09 Piezoelectric blower
US15/959,734 US10233918B2 (en) 2014-02-21 2018-04-23 Blower

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014031542 2014-02-21
JP2014-031542 2014-02-21
JP2014-092603 2014-04-28
JP2014092603 2014-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/231,831 Continuation US9976547B2 (en) 2014-02-21 2016-08-09 Piezoelectric blower

Publications (1)

Publication Number Publication Date
WO2015125608A1 true WO2015125608A1 (ja) 2015-08-27

Family

ID=53878119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053168 WO2015125608A1 (ja) 2014-02-21 2015-02-05 ブロア

Country Status (5)

Country Link
US (2) US9976547B2 (ja)
JP (2) JP6237877B2 (ja)
CN (2) CN108317093B (ja)
DE (1) DE112015000889B4 (ja)
WO (1) WO2015125608A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073739A1 (ja) * 2017-10-10 2019-04-18 株式会社村田製作所 ポンプ、流体制御装置
JPWO2019159448A1 (ja) * 2018-02-13 2020-12-03 株式会社村田製作所 流体制御装置及び医療機器
JP7004502B2 (ja) 2016-01-29 2022-01-21 研能科技股▲ふん▼有限公司 小型流体制御装置
JP7028558B2 (ja) 2016-01-29 2022-03-02 研能科技股▲ふん▼有限公司 小型流体制御装置
US11300115B2 (en) 2017-12-26 2022-04-12 Murata Manufacturing Co., Ltd. Pump and fluid control device
US11795934B2 (en) 2017-12-22 2023-10-24 Murata Manufacturing Co., Ltd. Piezoelectric pump with an upper and lower vibrating body

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613367B (zh) 2016-09-05 2018-02-01 研能科技股份有限公司 流體控制裝置
TWI625468B (zh) 2016-09-05 2018-06-01 研能科技股份有限公司 流體控制裝置
TWI602995B (zh) * 2016-09-05 2017-10-21 研能科技股份有限公司 流體控制裝置
TWI683059B (zh) 2017-08-31 2020-01-21 研能科技股份有限公司 氣體輸送裝置
CN109424521B (zh) * 2017-08-31 2021-02-23 研能科技股份有限公司 气体输送装置
TWI653394B (zh) * 2017-09-29 2019-03-11 研能科技股份有限公司 流體系統
CN109899327B (zh) * 2017-12-07 2021-09-21 昆山纬绩资通有限公司 气流产生装置
WO2019138676A1 (ja) * 2018-01-10 2019-07-18 株式会社村田製作所 ポンプおよび流体制御装置
CN108457847A (zh) * 2018-04-27 2018-08-28 天津中世恒业科技有限公司 一种微型泵装置
CN112204255B (zh) * 2018-05-29 2022-08-30 株式会社村田制作所 流体控制装置
GB2575829B (en) * 2018-07-24 2020-11-25 Ttp Ventus Ltd Fluid pump assembly
US10943850B2 (en) 2018-08-10 2021-03-09 Frore Systems Inc. Piezoelectric MEMS-based active cooling for heat dissipation in compute devices
US11464140B2 (en) 2019-12-06 2022-10-04 Frore Systems Inc. Centrally anchored MEMS-based active cooling systems
US10487817B1 (en) * 2018-11-02 2019-11-26 Baoxiang Shan Methods for creating an undulating structure
CN111749874B (zh) * 2019-03-29 2023-08-08 研能科技股份有限公司 微机电泵
TWI695934B (zh) 2019-03-29 2020-06-11 研能科技股份有限公司 微機電泵浦
EP4030055A4 (en) * 2019-09-11 2023-10-04 Kyocera Corporation PIEZOELECTRIC PUMP AND PUMP UNIT
KR20220082053A (ko) 2019-10-30 2022-06-16 프로리 시스템스 인코포레이티드 Mems 기반 기류 시스템
TWI747076B (zh) * 2019-11-08 2021-11-21 研能科技股份有限公司 行動裝置散熱組件
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US11510341B2 (en) 2019-12-06 2022-11-22 Frore Systems Inc. Engineered actuators usable in MEMs active cooling devices
US20210183739A1 (en) * 2019-12-17 2021-06-17 Frore Systems Inc. Airflow control in active cooling systems
US11956921B1 (en) * 2020-08-28 2024-04-09 Frore Systems Inc. Support structure designs for MEMS-based active cooling
US11765863B2 (en) 2020-10-02 2023-09-19 Frore Systems Inc. Active heat sink
TWI785646B (zh) * 2021-06-11 2022-12-01 研能科技股份有限公司 致動器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180161A (ja) * 2007-01-25 2008-08-07 Star Micronics Co Ltd ダイヤフラムポンプ
JP2008537057A (ja) * 2005-04-22 2008-09-11 ザ テクノロジー パートナーシップ ピーエルシー ポンプ
JP2012528980A (ja) * 2009-06-03 2012-11-15 ザ テクノロジー パートナーシップ ピーエルシー 流体ディスクポンプ
JP2013100746A (ja) * 2011-11-08 2013-05-23 Murata Mfg Co Ltd 流体制御装置
US20130236338A1 (en) * 2012-03-07 2013-09-12 Kci Licensing, Inc. Disc pump with advanced actuator

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195987U (ja) * 1984-06-08 1985-12-27 株式会社三鈴エリー 圧電体振動子ポンプ
US6071088A (en) * 1997-04-15 2000-06-06 Face International Corp. Piezoelectrically actuated piston pump
US6074178A (en) * 1997-04-15 2000-06-13 Face International Corp. Piezoelectrically actuated peristaltic pump
US6042345A (en) * 1997-04-15 2000-03-28 Face International Corporation Piezoelectrically actuated fluid pumps
DE102007050407A1 (de) * 2007-10-22 2009-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pumpe, Pumpenanordnung und Pumpenmodul
GB0804739D0 (en) * 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
EP3073114B1 (en) * 2008-06-03 2018-07-25 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
JP5110159B2 (ja) * 2008-06-05 2012-12-26 株式会社村田製作所 圧電マイクロブロア
CN102459899B (zh) * 2009-06-03 2016-05-11 Kci医疗资源有限公司 具有盘形腔的泵
US8297947B2 (en) * 2009-06-03 2012-10-30 The Technology Partnership Plc Fluid disc pump
JP5654827B2 (ja) * 2010-10-06 2015-01-14 学校法人慶應義塾 ポンプ装置及びそれを用いた内視鏡装置
EP2758666B1 (en) * 2011-09-21 2020-07-22 KCI Licensing, Inc. Dual-cavity pump
GB201202346D0 (en) 2012-02-10 2012-03-28 The Technology Partnership Plc Disc pump with advanced actuator
CN104364526B (zh) * 2012-06-11 2016-08-24 株式会社村田制作所 鼓风机
WO2014024608A1 (ja) * 2012-08-10 2014-02-13 株式会社村田製作所 ブロア
GB201322103D0 (en) * 2013-12-13 2014-01-29 The Technology Partnership Plc Fluid pump
JP5850208B1 (ja) * 2014-02-21 2016-02-03 株式会社村田製作所 流体制御装置およびポンプ
CN106460828B (zh) * 2014-05-20 2018-09-04 株式会社村田制作所 鼓风机
US9951767B2 (en) * 2014-05-22 2018-04-24 General Electric Company Vibrational fluid mover active controller
GB2542527B (en) * 2014-07-16 2020-08-26 Murata Manufacturing Co Fluid control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537057A (ja) * 2005-04-22 2008-09-11 ザ テクノロジー パートナーシップ ピーエルシー ポンプ
JP2008180161A (ja) * 2007-01-25 2008-08-07 Star Micronics Co Ltd ダイヤフラムポンプ
JP2012528980A (ja) * 2009-06-03 2012-11-15 ザ テクノロジー パートナーシップ ピーエルシー 流体ディスクポンプ
JP2013100746A (ja) * 2011-11-08 2013-05-23 Murata Mfg Co Ltd 流体制御装置
US20130236338A1 (en) * 2012-03-07 2013-09-12 Kci Licensing, Inc. Disc pump with advanced actuator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004502B2 (ja) 2016-01-29 2022-01-21 研能科技股▲ふん▼有限公司 小型流体制御装置
JP7028558B2 (ja) 2016-01-29 2022-03-02 研能科技股▲ふん▼有限公司 小型流体制御装置
WO2019073739A1 (ja) * 2017-10-10 2019-04-18 株式会社村田製作所 ポンプ、流体制御装置
GB2579954A (en) * 2017-10-10 2020-07-08 Murata Manufacturing Co Pump and fluid control device
GB2579954B (en) * 2017-10-10 2022-08-10 Murata Manufacturing Co Pump and fluid control apparatus
US11566615B2 (en) 2017-10-10 2023-01-31 Murata Manufacturing Co., Ltd. Pump and fluid control apparatus
US11795934B2 (en) 2017-12-22 2023-10-24 Murata Manufacturing Co., Ltd. Piezoelectric pump with an upper and lower vibrating body
US11300115B2 (en) 2017-12-26 2022-04-12 Murata Manufacturing Co., Ltd. Pump and fluid control device
JPWO2019159448A1 (ja) * 2018-02-13 2020-12-03 株式会社村田製作所 流体制御装置及び医療機器
US11725646B2 (en) 2018-02-13 2023-08-15 Murata Manufacturing Co., Ltd. Fluid control device

Also Published As

Publication number Publication date
CN108317093A (zh) 2018-07-24
CN106062364A (zh) 2016-10-26
JP2018025197A (ja) 2018-02-15
US20160348666A1 (en) 2016-12-01
US10233918B2 (en) 2019-03-19
JPWO2015125608A1 (ja) 2017-03-30
JP6414625B2 (ja) 2018-10-31
US9976547B2 (en) 2018-05-22
CN106062364B (zh) 2018-03-13
DE112015000889T5 (de) 2016-11-03
DE112015000889B4 (de) 2023-04-20
CN108317093B (zh) 2019-12-10
US20180306178A1 (en) 2018-10-25
JP6237877B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6414625B2 (ja) ブロア
JP6065160B2 (ja) ブロア
JP6528849B2 (ja) ブロア
JP6061054B2 (ja) ブロア
JP6617821B2 (ja) 流体制御装置
JP6103151B2 (ja) 気体制御装置
JP6572619B2 (ja) ブロア
JP6575634B2 (ja) ブロア
JP6319517B2 (ja) ポンプ
WO2018021514A1 (ja) バルブ、気体制御装置
JP6332461B2 (ja) ブロア
JP6380075B2 (ja) ブロア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000889

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752582

Country of ref document: EP

Kind code of ref document: A1