WO2015122556A1 - 다중 주파수 네트워크에서 단말간 직접 통신 기법 - Google Patents

다중 주파수 네트워크에서 단말간 직접 통신 기법 Download PDF

Info

Publication number
WO2015122556A1
WO2015122556A1 PCT/KR2014/001500 KR2014001500W WO2015122556A1 WO 2015122556 A1 WO2015122556 A1 WO 2015122556A1 KR 2014001500 W KR2014001500 W KR 2014001500W WO 2015122556 A1 WO2015122556 A1 WO 2015122556A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
terminal
base station
direct communication
wireless network
Prior art date
Application number
PCT/KR2014/001500
Other languages
English (en)
French (fr)
Inventor
반태원
정방철
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Publication of WO2015122556A1 publication Critical patent/WO2015122556A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the following embodiments relate to a communication technique in which terminals directly communicate without passing through a base station, and more particularly, to a technique for selecting a frequency band for direct communication.
  • the amount of data that can be transmitted using the wireless network is proportional to the frequency assigned to the base station. Therefore, when the amount of data transmission increases, the bandwidth of the base station is increased by adding a new frequency band to the base station.
  • CA Carrier Aggregation
  • An object of the following embodiments is to perform direct communication between a first terminal and a second terminal while minimizing an interference signal with respect to a base station to which the first terminal is connected.
  • An object of the following embodiment is to perform direct communication between terminals using a frequency band not used by a base station.
  • an apparatus for setting a frequency band for direct communication between a first terminal and a second terminal the frequency band allocated to a first wireless network including a first base station to which the first terminal is connected
  • An idle frequency determiner for determining a first radio network idle frequency band not used by the first base station, a frequency band overlapping among a frequency band available to the first terminal and a frequency band available to the second terminal.
  • a terminal common frequency determiner for determining a terminal common frequency band and a direct communication frequency band determiner for determining a frequency band where the common frequency band and the first wireless network idle frequency band overlap as a direct communication frequency band;
  • the communication frequency band is the first terminal and the second terminal
  • a set of frequency bands to be used for direct communication apparatus is provided.
  • the idle frequency determiner determines a second wireless network idle frequency band not used by the second base station among the frequency bands allocated to the second wireless network including the second base station connected to the second terminal
  • the direct communication frequency band determiner may determine a frequency band where the common frequency band, the first wireless network idle frequency band, and the second wireless network idle frequency band overlap as a direct communication frequency band.
  • the first base station transmits a request for information about a frequency band available to the first terminal to the first terminal, and the first base station transmits to a frequency band available to the first terminal from the first terminal. It may further include a receiving unit for receiving information about.
  • the transmitter may transmit the information on the determined direct communication frequency band to the first terminal.
  • a frequency band setting method for direct communication between a first terminal and a second terminal the frequency band allocated to a first wireless network including a first base station to which the first terminal is connected Determining a first wireless network idle frequency band that is not used by the first base station, wherein a frequency band that overlaps among a frequency band available to the first terminal and a frequency band available to the second terminal is used. Determining a band, and determining a frequency band where the common frequency band and the first wireless network idle frequency band overlap as a direct communication frequency band,
  • the direct communication frequency band is provided for a communication method used for direct communication between the first terminal and the second terminal.
  • the method may further include determining a second wireless network idle frequency band not used by the second base station among frequency bands allocated to the second wireless network including the second base station to which the second terminal is connected.
  • determining a second wireless network idle frequency band not used by the second base station among frequency bands allocated to the second wireless network including the second base station to which the second terminal is connected may further include determining a second wireless network idle frequency band not used by the second base station among frequency bands allocated to the second wireless network including the second base station to which the second terminal is connected.
  • a frequency band in which the common frequency band, the first wireless network idle frequency band, and the second wireless network idle frequency band overlap may be determined as the direct communication frequency band.
  • the method may further include receiving information, and the determining of the direct communication frequency band may be determined by the first base station.
  • the method may further include transmitting information on the determined direct communication frequency band to the first terminal.
  • the first terminal and the second terminal can perform a direct communication while removing the interference signal to the base station to which the first terminal is connected.
  • 1 illustrates a concept of transmitting data using a plurality of frequency bands.
  • FIG. 2 is a diagram for generating an interference signal when performing direct communication between terminals.
  • 3 and 4 illustrate embodiments of determining a frequency band in order to perform direct communication between a first terminal and a second terminal.
  • FIG. 5 is a diagram illustrating an embodiment in which a base station receives information on a frequency band that can be used by a terminal.
  • Fig. 6 is a block diagram showing the structure of a frequency band setting apparatus according to an exemplary embodiment.
  • Fig. 7 is a flowchart illustrating step by step a communication method according to an exemplary embodiment.
  • 1 illustrates a concept of transmitting data using a plurality of frequency bands.
  • the base station 110 may transmit data using the first frequency band f1 and the second frequency band f2.
  • the first terminal 130 supports only the first frequency band f1
  • the second terminal 120 supports only the second frequency band f2.
  • data may be transmitted at a rate proportional to the frequency bands f1 and f2.
  • the third terminal 140 supporting the carrier aggregation CA may transmit data using both the first frequency band f1 and the second frequency band f2. Therefore, the third terminal 140 may transmit data at a higher speed than the first terminal 130 and the second terminal 120.
  • terminals supporting a carrier aggregation (CA) function have been increasing.
  • the frequency bands used by each country and operators are diversified. According to this trend, the frequency band supported by the base station 110 and the frequency band supported by the terminal 140 may not match. Since terminals supporting the carrier aggregation function generally support more frequency bands, there are many cases in which the frequency band supported by the terminal 140 is wider than the frequency band supported by the base station 110. Accordingly, the terminal 140 may perform communication using an additional frequency band in addition to the frequency band supported by the base station 110.
  • FIG. 2 is a diagram for generating an interference signal when performing direct communication between terminals.
  • two terminals 230 and 240 located in the coverage 210 of the first base station 220 perform direct communication.
  • the two terminals 230 and 240 may perform direct communication by selecting an uplink (UL) frequency band among frequency bands allocated to the base stations 220 and 270.
  • UL uplink
  • the uplink frequency band is a frequency band used by each of the terminals 230, 240, 250, and 280 to transmit data to the base stations 230 and 270. Therefore, when the two terminals 230 and 240 perform direct communication using the uplink frequency band, an interference signal due to the direct communication between the two terminals 230 and 270 is transmitted to the base station 220. In addition, data transmitted from another terminal 280 to the base station 270 serves as an interference signal to the terminal 230. That is, when the two terminals 230 and 240 perform direct communication using the uplink frequency bands used by the base stations 220 and 270, not only the interference signal is transmitted to the two terminals 230 and 240, but also the base station. An interference signal is also transmitted to 220 to greatly reduce communication performance.
  • the two terminals can directly communicate by selecting the downlink frequency band.
  • the interference scenario is somewhat changed, it is the same that the communication performance is greatly reduced by transmitting the interference signal to the neighboring base stations 220 and 270 or the neighboring terminals 250 and 280.
  • the two terminals 230 and 240 perform direct communication using the frequency bands used by the adjacent base stations 220 and 270, the two terminals 230 and 240 and the base stations 220 and 270 and the other terminal 250 are used. 280, strong interference signal is generated between the communication performance is greatly reduced.
  • the frequency band should be carefully determined so as not to transmit strong interference signals to other terminals 250 and 280 or other base stations 220 and 270.
  • FIG. 3 is a diagram illustrating an embodiment of determining a frequency band to perform direct communication between a first terminal and a second terminal.
  • a frequency band that overlaps among a frequency band available to the first terminal 310 and a frequency band available to the second terminal 320 may be determined as a frequency band for direct communication.
  • the frequency band that can be used by the first terminal 310 The frequency band that can be used by the second terminal 320 If, the frequency band used by the first terminal 310 and the second terminal 320 for direct communication is Can be determined.
  • the 3B illustrates a state in which the first terminal 340 is connected to the base station 330 and the second terminal 350 is not connected to the base station. Only the first terminal 340 is located in the coverage 331 of the base station 330. Therefore, the data exchanged between the first terminal 340 and the second terminal 350 act as an interference signal to the base station 330 or another terminal.
  • the frequency band used by the first terminal 340 and the second terminal 350 to transmit and receive data is set differently from the frequency band used by the base station 330, thereby transferring the information to the base station 330 or another terminal. The influence of the transmitted interference signal can be minimized.
  • the frequency band that can be used by the first terminal 340 For example, the frequency band that can be used by the first terminal 340 , The frequency band that can be used by the second terminal 350 Frequency band assigned to the entire wireless network Band used by the base station 330 If so, the frequency band used by the first terminal 340 and the second terminal 350 for direct communication is Can be determined.
  • 3C illustrates a state in which both the first terminal 371 and the second terminal 372 are connected to the base station 360. Both the first terminal 371 and the second terminal 372 are located within the coverage 361 of the base station 360.
  • the data exchanged between the first terminal 371 and the second terminal 372 acts as an interference signal to the base station 360 or another terminal.
  • the frequency band used by the first terminal 371 and the second terminal 372 to transmit and receive data is set differently from the frequency band used by the base station 360, thereby transferring the information to the base station 360 or another terminal.
  • the influence of the transmitted interference signal can be minimized.
  • the frequency band that can be used by the first terminal 371 For example, the frequency band that can be used by the first terminal 371 , The frequency band that can be used by the second terminal 372 Frequency band assigned to the entire wireless network Frequency band allocated to the base station 360 In this case, the frequency band used by the first terminal 371 and the second terminal 372 for direct communication is Can be determined.
  • 3D illustrates a state in which the first terminal 390 is connected to the first base station 380, and the second terminal 391 is connected to the second base station 382.
  • the first terminal 390 is located within the coverage 381 of the first base station 380 and the second terminal 391 is located within the coverage 383 of the second base station 382.
  • the first base station 380 and the second base station 382 are both included in the same wireless network.
  • a frequency band used by the first base station 380 and the second base station 382 uses a frequency band used by the first terminal 390 and the second terminal 391 to exchange data.
  • the frequency band available to the first terminal 390 For example, the frequency band available to the first terminal 390 , The frequency band that can be used by the second terminal 391 Frequency band assigned to the entire wireless network Frequency band allocated to the first base station 380 , The frequency band allocated to the second base station 382 In this case, the frequency band used by the first terminal 390 and the second terminal 391 for direct communication is Can be determined.
  • FIG. 4 is a diagram illustrating another embodiment in which a frequency band is determined to perform direct communication between a first terminal and a second terminal.
  • FIG. 4 illustrates a state in which the first terminal 450 is connected to the first base station 410 and the second terminal 460 is connected to the second base station 430.
  • the first terminal 450 and the second terminal 460 are located in an area where the coverage 420 of the first base station 410 and the coverage 440 of the second terminal 430 overlap each other.
  • the first base station 380 and the second base station 382 are included in different wireless networks.
  • a frequency band used by the first base station 410 and a frequency used by the second base station 430 in a frequency band used by the first terminal 450 and the second terminal 460 to exchange data By setting the band differently, it is possible to minimize the influence of the interference signal transmitted to each base station (410, 430) or another terminal.
  • the frequency band that can be used by the first terminal 450 The frequency band available to the second terminal 460 And a frequency band allocated to the first wireless network including the first base station 410 Frequency band allocated to the first base station 410
  • the frequency band allocated to the second wireless network including the second base station 430 Frequency band allocated to the second base station 430 If, the frequency band used by the first terminal 410 and the second terminal 430 for direct communication is Can be determined.
  • FIG. 5 is a diagram illustrating an embodiment in which a base station receives information on a frequency band that can be used by a terminal.
  • the base station 520 may include a frequency band setting device according to the present invention.
  • the base station 520 needs to know the frequency band used by the terminal 510 to determine the direct communication frequency band used by the terminal 510 and other terminals for direct communication.
  • the base station 520 requests the terminal 510 for information on a frequency band available to the terminal 510. If the wireless network including the base station 520 is in accordance with the 3GPP LTE standard, the base station 520 may request information on the frequency band available to the terminal 510 using the 'UECapabilityEnquiry' message.
  • the base station 520 receives information about the frequency band available to the terminal 510 from the terminal 510. If the wireless network including the base station 520 is compliant with the 3GPP LTE standard, the base station 520 may receive information on the frequency band available to the terminal 510 from the terminal 510 using the 'UECapabilityInformation' message. have.
  • Fig. 6 is a block diagram showing the structure of a frequency band setting apparatus according to an exemplary embodiment.
  • the frequency band setting apparatus 600 includes an idle frequency determiner 610, a terminal common frequency determiner 620, a direct communication frequency band determiner 630, a receiver 640, and a transmitter 650. ).
  • a first terminal 681 connects to a first base station 670, and the first base station 670 is included in the first wireless network.
  • the idle frequency determiner 610 determines a first wireless network idle frequency band not used by the first base station 670 among frequency bands allocated to the first wireless network.
  • the terminal common frequency determiner 620 may determine, as a terminal common frequency band, an overlapping frequency band among a frequency band usable by the first terminal 681 and a frequency band usable by the second terminal 682.
  • the first terminal 681 may use the first frequency band and the second frequency band, but the second terminal 682 may use the first frequency band and the third frequency band.
  • the terminal common frequency determiner 620 may determine the first frequency band, which is an overlapping frequency band, as the terminal common frequency band.
  • the direct communication frequency band determiner 630 determines a frequency band that overlaps between the terminal common frequency band and the first wireless network idle frequency band as the direct communication frequency band.
  • the direct communication frequency band is a frequency band used by the first terminal 681 and the second terminal 682 for direct communication, and is a frequency band not used by the first base station 670. Therefore, when the first terminal 681 and the second terminal 682 performs direct communication using the direct communication frequency band, the first base station 670 does not receive the interference signal, the first base station 670 Communication performance is maintained.
  • the second terminal 682 is connected to the second base station 690, the second base station 690 may be included in the second wireless network.
  • the frequency band setting apparatus 600 may determine the direct communication frequency band in consideration of the frequency band allocated to the second base station 690.
  • the idle frequency determiner 610 may determine a second wireless network idle frequency band not used by the second base station 690 among the frequency bands assigned to the second wireless network.
  • the direct communication frequency band determiner 630 determines a frequency band where the terminal common frequency band, the first wireless network idle frequency band, and the second wireless network idle frequency band overlap with the direct communication frequency band.
  • the direct communication frequency band is a frequency band which neither the first base station 670 nor the second base station 690 uses. Therefore, when the first terminal 681 and the second terminal 682 performs direct communication using the direct communication frequency band, the first base station 670 and the second base station 690 do not receive the interference signal.
  • the frequency band setting device 600 may be implemented to be included in the base station 670.
  • the frequency band setting device 600 may be implemented to be included in the terminal 681.
  • the frequency band setting device 600 When the frequency band setting device 600 is implemented as a separate device from the base station 670, the frequency band setting device 600 is connected to the first terminal 681 from the first terminal 681 via the base station 670. Can receive information about available frequency bands. Alternatively, when the frequency band setting device 600 is included in the base station 670, the frequency band setting device 600 directly receives information on the frequency band available to the first terminal 681 from the first terminal 681. Can be received.
  • the transmitter 650 may request information about a frequency band available to the first terminal 681 to the first terminal 681.
  • the information on the frequency band available to the first terminal 681 may be transmitted to the first terminal 681 using the 'UECapabilityEnquiry' message of the LTE system.
  • the first terminal 681 may transmit information on a frequency band available to the first terminal 681.
  • the receiver 640 may receive information about a frequency band available to the first terminal 681 from the first terminal 681. According to one side, the information on the frequency band available to the first terminal 681 may be received from the first terminal 681 using the 'UECapabilityInformation' message of the LTE system.
  • the transmitter 650 may transmit the information on the direct communication frequency band determined by the direct communication frequency band determiner 630 to the first terminal 681.
  • Fig. 7 is a flowchart illustrating step by step a communication method according to an exemplary embodiment.
  • the frequency band setting apparatus determines, among the frequency bands assigned to the first wireless network, a first wireless network idle frequency band that is not used by the first base station.
  • the apparatus for setting a frequency band determines, from among frequency bands allocated to the second wireless network, a second wireless network idle frequency band not used by the second base station.
  • the frequency band setting apparatus may request information about a frequency band available to the first terminal from the first terminal.
  • the frequency band setting apparatus may receive information on a frequency band available to the first terminal from the first terminal.
  • the apparatus for setting a frequency band determines, as a terminal common frequency band, an overlapping frequency band among a frequency band available to the first terminal and a frequency band available to the second terminal.
  • the apparatus for setting a frequency band may directly determine a communication frequency band by using information on a frequency band available to the first terminal.
  • the frequency band setting apparatus may determine a frequency band where the first wireless network idle frequency band and the terminal common frequency band overlap as a direct communication frequency band.
  • the frequency band setting apparatus may determine the direct communication frequency band in consideration of the frequency band allocated to the second base station to which the second terminal is connected.
  • the frequency band setting apparatus may determine a frequency band in which the terminal common frequency band, the first wireless network idle frequency band, and the second wireless network idle frequency band overlap, as a direct communication frequency band. .
  • the frequency band setting device may transmit information on the determined direct communication frequency band to the first terminal.
  • the direct communication frequency band is used for direct communication between the first terminal and the second terminal.
  • the direct communication frequency band does not overlap the frequency band allocated to the first base station or the second base station. Therefore, even when the first terminal and the second terminal communicate directly, the influence of the interference signal from the first terminal or the second terminal on the first base station or the second base station is minimized.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • the first terminal and the second terminal can perform a direct communication while removing the interference signal to the base station to which the first terminal is connected.
  • direct communication between terminals may be performed using a frequency band not used by the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

단말기간 직접 통신을 위하여 주파수 대역을 설정하는 주파수 대역 설정 장치 및 설정된 주파수 대역을 이용하여 통신을 수행하는 통신 방법이 개시된다. 개시된 주파수 대역 설정 장치는 무선 네트워크에 할당된 주파수 대역 중에서, 단말기가 접속한 기지국이 사용하는 않는 주파수 대역을 유휴 주파수 대역으로 결정하고, 유휴 주파수 대역 중에서 두 단말기가 모두 사용할 수 있는 주파수 대역을 직접 통신 주파수 대역으로 결정한다. 두 단말기는 직접 통신 주파수 대역을 이용하여 데이터를 전송할 수 있다.

Description

다중 주파수 네트워크에서 단말간 직접 통신 기법
하기의 실시예들은 단말기들이 기지국을 경유하지 않고 직접적으로 통신하는 통신 기법에 관한 것으로서, 구체적으로는 직접적으로 통신하기 위한 주파수 대역을 선택하는 기술에 관한 것이다.
스마트폰의 보급이 확대됨에 따라서, 무선 네트워크를 이용하여 데이터를 전송하는 경우가 많아 지고 있다. 무선 네트워크를 이용하여 전송 가능한 데이터의 양은 기지국에 할당된 주파수에 비례한다. 따라서, 데이터의 전송량이 많아지면 기지국에 새로운 주파수 대역을 추가하여 해당 기지국의 대역폭을 증가시킨다.
또한, 캐리어 어그리게이션(CA, Carrier Aggregation)과 같이, 복수의 주파수 대역을 결합하여 데이터를 전송할 수 있도록 하는 신기술이 도입되고 있다. 따라서, 단말기들은 여러 개의 주파수를 이용하여 데이터를 전송할 수 있도록 진화하고 있다.
한편, 기지국을 경유하지 않고, 단말기들이 서로 직접 통신하여 데이터를 교환하는 통신 방법이 개발되고 있다. 기지국을 경유하지 않으면, 기지국의 주파수 자원을 사용하지 않으므로, 기지국의 데이터 전송 현황 등을 고려할 필요가 없으며, 단말기가 이용할 수 있는 모든 주파수 대역을 이용하여 다른 단말기로 데이터를 전송할 수 있으므로, 고속의 데이터 전송이 가능하다.
그러나, 단말기간의 데이터 전송은 주변의 다른 단말기 또는 기지국에 강한 간섭 신호를 발생시킬 수 있으므로, 단말기간의 직접 통신을 위한 주파수 대역 설정은 무선 네트워크의 성능을 유지하기 위한 중요한 기술적 이슈로 부각되고 있다.
하기의 실시예들의 목적은 제1 단말기가 접속하는 기지국에 대하여 간섭신호를 최소화 하면서 제1 단말기와 제2 단말기가 직접 통신을 수행하는 것이다.
하기의 실시예의 목적은, 기지국이 사용하지 않는 주파수 대역을 이용하여 단말기간 직접 통신을 수행하는 것이다.
예시적 실시예에 따르면, 제1 단말기와 제2 단말기의 직접 통신을 위한 주파수 대역을 설정 하는 장치에 있어서, 상기 제1 단말기가 접속한 제1 기지국이 포함된 제1 무선 네트워크에 할당된 주파수 대역 중에서 상기 제1 기지국에 의해 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정하는 유휴 주파수 결정부, 상기 제1 단말기가 이용 가능한 주파수 대역 및 상기 제2 단말기가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정하는 단말기 공통 주파수 결정부 및 상기 공통 주파수 대역과 상기 제1 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 직접 통신 주파수 대역 결정부를 포함하고, 상기 직접 통신 주파수 대역은 상기 제1 단말기와 상기 제2 단말기의 직접 통신을 위해 사용되는 주파수 대역 설정 장치가 제공된다.
여기서, 상기 유휴 주파수 결정부는 상기 제2 단말기가 접속한 제2 기지국이 포함된 제2 무선 네트워크에 할당된 주파수 대역 중에서 상기 제2 기지국에 의해 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정하고, 상기 직접 통신 주파수 대역 결정부는 상기 공통 주파수 대역, 상기 제1 무선 네트워크 유휴 주파수 대역, 상기 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정할 수 있다.
그리고, 상기 제1 기지국이 상기 제1 단말기로 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 요청하는 전송부 및 상기 제1 기지국이 상기 제1 단말기로부터 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 수신하는 수신부를 더 포함할 수 있다.
또한, 상기 전송부는 상기 결정된 직접 통신 주파수 대역에 대한 정보를 상기 제1 단말기로 전송할 수 있다.
또 다른 예시적 실시예에 따르면, 제1 단말기와 제2 단말기의 직접 통신을 위한 주파수 대역 설정 방법에 있어서, 상기 제1 단말기가 접속한 제1 기지국이 포함된 제1 무선 네트워크에 할당된 주파수 대역 중에서 상기 제1 기지국에 의해 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정하는 단계, 상기 제1 단말기가 이용 가능한 주파수 대역 및 상기 제2 단말기가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정하는 단계, 상기 공통 주파수 대역과 상기 제1 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 단계를 포함하고,
상기 직접 통신 주파수 대역은 상기 제1 단말기와 상기 제2 단말기의 직접 통신을 위해 사용되는 통신 방법이 제공된다.
여기서, 상기 제2 단말기가 접속한 제2 기지국이 포함된 제2 무선 네트워크에 할당된 주파수 대역 중에서 상기 제2 기지국에 의해 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정하는 단계를 더 포함하고, 상기 직접 통신 주파수 대역으로 결정하는 단계는 상기 공통 주파수 대역, 상기 제1 무선 네트워크 유휴 주파수 대역, 상기 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정할 수 있다.
그리고, 상기 제1 기지국이 상기 제1 단말기로 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 요청하는 단계 및 상기 제1 기지국이 상기 제1 단말기로부터 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 수신하는 단계를 더 포함하고, 상기 직접 통신 주파수 대역으로 결정하는 단계는 상기 제1 기지국이 결정할 수 있다.
또한, 상기 결정된 직접 통신 주파수 대역에 대한 정보를 상기 제1 단말기로 전송하는 단계를 더 포함할 수 있다.
하기의 실시예에 따르면, 제1 단말기가 접속하는 기지국에 대하여 간섭신호를 제거 하면서 제1 단말기와 제2 단말기가 직접 통신을 수행할 수 있다.
하기의 실시예에 따르면, 기지국이 사용하지 않는 주파수 대역을 이용하여 단말기간 직접 통신을 수행할 수 있다.
도 1은 복수의 주파수 대역을 이용하여 데이터를 전송하는 개념을 도시한 도면이다.
도 2는 단말기간 직접 통신을 수행하는 경우에, 간섭 신호를 생성하는 것을 도시한 도면이다.
도 3 및 도 4는 제1 단말기와 제2 단말기간 직접 통신을 수행하기 위하여 주파수 대역을 결정하는 실시예를 도시한 도면이다.
도 5는 단말기가 사용할 수 있는 주파수 대역에 대한 정보를 기지국이 수신하는 실시예를 도시한 도면이다.
도 6은 예시적 실시예에 따른 주파수 대역 설정 장치의 구조를 도시한 블록도이다.
도 7은 예시적 실시예에 따른 통신 방법을 단계별로 설명한 순서도이다.
이하, 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 복수의 주파수 대역을 이용하여 데이터를 전송하는 개념을 도시한 도면이다.
기지국(110)은 제1 주파수 대역(f1) 및 제2 주파수 대역(f2)를 이용하여 데이터를 전송할 수 있다. 제1 단말기(130)는 제1 주파수 대역(f1)만을 지원하고, 제2 단말기(120)는 제2 주파수 대역(f2)만을 지원한다. 제1 단말기(130)와 제2 단말기(120)의 경우, 해당 주파수 대역(f1, f2)에 비례하는 속도로 데이터를 전송할 수 있다.
캐리어 어그리게이션(CA)을 지원하는 제3 단말기(140)는 제1 주파수 대역(f1) 및 제2 주파수 대역(f2)을 모두 이용하여 데이터를 전송할 수 있다. 따라서, 제3 단말기(140)는 제1 단말기(130) 및 제2 단말기(120) 보다 빠른 속도로 데이터를 전송할 수 있다.
최근에는 캐리어 어그리게이션(CA) 기능을 지원하는 단말기들이 증가하고 있다. 또한, 4세대 이동통신 시스템에서는 각 국가와 사업자들이 사용하는 주파수 대역이 다양화되고 있다. 이러한 추세에 따라서, 기지국(110)이 지원하는 주파수 대역과 단말기(140)가 지원하는 주파수 대역이 일치하지 않을 수 있다. 캐리어 어그리게이션 기능을 지원하는 단말기들은 보다 많은 주파수 대역을 지원하는 것이 일반적이므로, 기지국(110)이 지원하는 주파수 대역 보다 단말기(140)가 지원하는 주파수 대역이 넓은 경우가 많다. 따라서, 단말기(140)는 기지국(110)이 지원하는 주파수 대역 이외에도 추가적인 주파수 대역을 이용하여 통신을 수행할 수 있다.
도 2는 단말기간 직접 통신을 수행하는 경우에, 간섭 신호를 생성하는 것을 도시한 도면이다.
캐리어 어그리게이션 기능과는 별개로, 단말기간 직접 통신을 이용하여 데이터를 전송하는 통신 기법이 제안되고 있다.
도 2에서는 제1 기지국(220)의 커버리지(210)내에 위치한 두 단말기(230, 240)가 직접 통신을 수행한다. 두 단말기(230, 240)는 기지국(220, 270)에 할당된 주파수 대역 중에서 업 링크(UL) 주파수 대역을 선택하여 직접 통신을 수행할 수 있다.
업 링크 주파수 대역은 각 단말기(230, 240, 250, 280)들이 기지국(230, 270)으로 데이터를 전송하기 위하여 사용하는 주파수 대역이다. 따라서, 두 단말기(230, 240)가 업 링크 주파수 대역을 이용하여 직접 통신을 수행하는 경우, 두 단말기(230, 270)간의 직접 통신으로 인한 간섭 신호가 기지국(220)으로 전송된다. 또한, 다른 단말기(280)가 기지국(270)으로 전송하는 데이터가 단말기(230)에 간섭 신호로 작용한다. 즉, 두 단말기(230, 240)가 기지국(220, 270)이 사용하는 업 링크 주파수 대역을 이용하여 직접 통신을 수행하는 경우, 두 단말기(230, 240)로 간섭 신호가 전송될 뿐만 아니라, 기지국(220)으로도 간섭 신호가 전송되어 통신 성능이 크게 감소한다.
일측에 따르면, 두 단말기(230, 240)는 다운 링크 주파수 대역을 선택하여 직접 통신을 수행할 수 있다. 이 경우는 간섭 시나리오가 다소 변경되나, 이웃한 기지국(220, 270) 또는 이웃한 단말기(250, 280)로 간섭 신호를 전송하여 통신 성능이 크게 감소하는 것은 동일하다.
즉, 두 단말기(230, 240)가 인접한 기지국(220, 270)이 이용하는 주파수 대역을 이용하여 직접 통신을 수행하는 경우, 두 단말기(230, 240)와 기지국(220, 270), 다른 단말기(250, 280)들 사이에 강한 간섭 신호가 발생하여 통신 성능이 크게 감소한다.
따라서, 단말기간 직접 통신을 수행하는 경우에는 다른 단말기(250, 280) 또는 다른 기지국(220, 270)으로 강한 간섭 신호를 전송하지 않도록 주파수 대역을 신중히 결정해야 한다.
도 3은 제1 단말기와 제2 단말기간 직접 통신을 수행하기 위하여 주파수 대역을 결정하는 실시예를 도시한 도면이다.
도 3의 (a)는 제1 단말기(310) 및 제2 단말기(320)가 모두 기지국에 접속하지 않은 상태를 나타낸다. 이 경우, 제1 단말기(310)가 이용할 수 있는 주파수 대역과 제2 단말기(320)가 이용할 수 있는 주파수 대역 중에서 중첩되는 주파수 대역을 직접 통신을 위한 주파수 대역으로 결정할 수 있다.
예를 들어, 제1 단말기(310)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000001
, 제2 단말기(320)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000002
라고 한다면, 제1 단말기(310) 및 제2 단말기(320)가 직접 통신을 위하여 사용하는 주파수 대역은
Figure PCTKR2014001500-appb-I000003
로 결정할 수 있다.
도 3의 (b)는 제1 단말기(340)가 기지국(330)에 접속하고, 제2 단말기(350)는 기지국에 접속하지 않은 상태를 나타낸다. 제1 단말기(340)만이 기지국(330)의 커버리지(331) 내에 위치한다. 따라서, 제1 단말기(340)와 제2 단말기(350)가 주고 받는 데이터는 기지국(330) 또는 다른 단말기에 간섭 신호로 작용한다. 이 경우에, 제1 단말기(340)와 제2 단말기(350)가 데이터를 주고 받기 위하여 사용하는 주파수 대역을 기지국(330)이 사용하는 주파수 대역과 다르게 설정함으로써, 기지국(330) 또는 다른 단말기로 전송되는 간섭 신호의 영향을 최소화할 수 있다.
예를 들어, 제1 단말기(340)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000004
, 제2 단말기(350)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000005
라고 하고, 전체 무선 네트워크에 할당된 주파수 대역
Figure PCTKR2014001500-appb-I000006
중에서 기지국(330)이 사용하는 대역을
Figure PCTKR2014001500-appb-I000007
라고 한다면, 제1 단말기(340) 및 제2 단말기(350)가 직접 통신을 위하여 사용하는 주파수 대역은
Figure PCTKR2014001500-appb-I000008
로 결정할 수 있다.
도 3의 (c)는 제1 단말기(371) 및 제2 단말기(372)가 모두 기지국(360)에 접속한 상태를 나타낸다. 제1 단말기(371) 및 제2 단말기(372)가 모두 기지국(360)의 커버리지(361) 내에 위치한다. 제1 단말기(371)와 제2 단말기(372)가 주고 받는 데이터는 기지국(360) 또는 다른 단말기에 간섭 신호로 작용한다. 이 경우에, 제1 단말기(371)와 제2 단말기(372)가 데이터를 주고 받기 위하여 사용하는 주파수 대역을 기지국(360)이 사용하는 주파수 대역과 다르게 설정함으로써, 기지국(360) 또는 다른 단말기로 전송되는 간섭 신호의 영향을 최소화할 수 있다.
예를 들어, 제1 단말기(371)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000009
, 제2 단말기(372)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000010
라고 하고, 전체 무선 네트워크에 할당된 주파수 대역
Figure PCTKR2014001500-appb-I000011
중에서 기지국(360)에 할당된 주파수 대역을
Figure PCTKR2014001500-appb-I000012
라고 한다면, 제1 단말기(371) 및 제2 단말기(372)가 직접 통신을 위하여 사용하는 주파수 대역은
Figure PCTKR2014001500-appb-I000013
로 결정할 수 있다.
도 3의 (d)는 제1 단말기(390)가 제1 기지국(380)에 접속하고, 제2 단말기(391)는 제2 기지국(382)에 접속한 상태를 나타낸다. 제1 단말기(390)는 제1 기지국(380)의 커버리지(381) 내에, 제2 단말기(391)는 제2 기지국(382)의 커버리지(383) 내에 위치한다. 여기서, 제1 기지국(380)과 제2 기지국(382)는 모두 동일한 무선 네트워크에 포함된다.
도 3의 (d)에서, 제1 단말기(390)와 제2 단말기(391)가 데이터를 주고 받기 위하여 사용하는 주파수 대역을 제1 기지국(380) 및 제2 기지국(382)이 사용하는 주파수 대역과 다르게 설정함으로써, 각 기지국(380, 382) 또는 다른 단말기로 전송되는 간섭 신호의 영향을 최소화할 수 있다.
예를 들어, 제1 단말기(390)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000014
, 제2 단말기(391)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000015
라고 하고, 전체 무선 네트워크에 할당된 주파수 대역
Figure PCTKR2014001500-appb-I000016
중에서 제1 기지국(380)에 할당된 주파수 대역을
Figure PCTKR2014001500-appb-I000017
, 제2 기지국(382)에 할당된 주파수 대역을
Figure PCTKR2014001500-appb-I000018
라고 한다면, 제1 단말기(390) 및 제2 단말기(391)가 직접 통신을 위하여 사용하는 주파수 대역은
Figure PCTKR2014001500-appb-I000019
로 결정할 수 있다.
도 4는 제1 단말기와 제2 단말기간 직접 통신을 수행하기 위하여 주파수 대역을 결정하는 또 다른 실시예를 도시한 도면이다.
도 4는 제1 단말기(450)가 제1 기지국(410)에 접속하고, 제2 단말기(460)는 제2 기지국(430)에 접속한 상태를 나타낸다. 제1 단말기(450) 및 제2 단말기(460)는 제1 기지국(410)의 커버리지(420)와 제2 단말기(430)의 커버리지(440)가 겹치는 영역 내에 위치한다. 여기서, 제1 기지국(380)과 제2 기지국(382)은 상이한 무선 네트워크에 포함된다.
도 4에서, 제1 단말기(450)와 제2 단말기(460)가 데이터를 주고 받기 위하여 사용하는 주파수 대역을 제1 기지국(410)이 사용하는 주파수 대역 및 제2 기지국(430)이 사용하는 주파수 대역과 다르게 설정함으로써, 각 기지국(410, 430) 또는 다른 단말기로 전송되는 간섭 신호의 영향을 최소화할 수 있다.
예를 들어, 제1 단말기(450)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000020
, 제2 단말기(460)가 이용할 수 있는 주파수 대역을
Figure PCTKR2014001500-appb-I000021
라고 하고, 제1 기지국(410)이 포함된 제1 무선 네트워크에 할당된 주파수 대역
Figure PCTKR2014001500-appb-I000022
중에서 제1 기지국(410)에 할당된 주파수 대역을
Figure PCTKR2014001500-appb-I000023
라고 하며, 제2 기지국(430)이 포함된 제2 무선 네트워크에 할당된 주파수 대역
Figure PCTKR2014001500-appb-I000024
중에서 제2 기지국(430)에 할당된 주파수 대역을
Figure PCTKR2014001500-appb-I000025
라고 한다면, 제1 단말기(410) 및 제2 단말기(430)가 직접 통신을 위하여 사용하는 주파수 대역은
Figure PCTKR2014001500-appb-I000026
로 결정할 수 있다.
도 5는 단말기가 사용할 수 있는 주파수 대역에 대한 정보를 기지국이 수신하는 실시예를 도시한 도면이다.
일측에 따르면, 기지국(520)은 본 발명에 따른 주파수 대역 설정 장치를 포함할 수 있다. 이 경우에, 기지국(520)은 단말기(510)가 사용하는 주파수 대역을 알아야만 단말기(510)와 다른 단말기가 직접 통신을 위해 사용하는 직접 통신 주파수 대역을 결정할 수 있다.
단계(530)에서, 기지국(520)은 단말기(510)로 단말기(510)가 이용 가능한 주파수 대역에 대한 정보를 요청한다. 기지국(520)이 포함된 무선 네트워크가 3GPP LTE 표준을 따른다면, 기지국(520)은 'UECapabilityEnquiry' 메시지를 이용하여 단말기(510)가 이용 가능한 주파수 대역에 대한 정보를 요청할 수 있다.
단계(540)에서, 기지국(520)은 단말기(510)로부터 단말기(510)가 이용 가능한 주파수 대역에 대한 정보를 수신한다. 기지국(520)이 포함된 무선 네트워크가 3GPP LTE 표준을 따른다면, 기지국(520)은 'UECapabilityInformation' 메시지를 이용하여 단말기(510)로부터 단말기(510)가 이용 가능한 주파수 대역에 대한 정보를 수신할 수 있다.
도 6은 예시적 실시예에 따른 주파수 대역 설정 장치의 구조를 도시한 블록도이다. 예시적 실시예에 따른 주파수 대역 설정 장치(600)는 유휴 주파수 결정부(610), 단말기 공통 주파수 결정부(620), 직접 통신 주파수 대역 결정부(630), 수신부(640) 및 전송부(650)를 포함한다.
도 6에서, 제1 단말기(681)는 제1 기지국(670)에 접속하고, 제1 기지국(670)은 제1 무선 네트워크에 포함된다.
유휴 주파수 결정부(610)는 제1 무선 네트워크에 할당된 주파수 대역들 중에서, 제1 기지국(670)에 의해서 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정한다.
단말기 공통 주파수 결정부(620)는 제1 단말기(681)가 이용 가능한 주파수 대역 및 제2 단말기(682)가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정할 수 있다. 예를 들어, 제1 단말기(681)는 제1 주파수 대역 및 제2 주파수 대역을 이용할 수 있으나, 제2 단말기(682)는 제1 주파수 대역 및 제3 주파수 대역을 이용할 수 있다. 이 경우에, 단말기 공통 주파수 결정부(620)는 중첩되는 주파수 대역인 제1 주파수 대역을 단말기 공통 주파수 대역으로 결정할 수 있다.
직접 통신 주파수 대역 결정부(630)는 단말기 공통 주파수 대역과 제1 무선 네트워크 유휴 주파수 대역 중에서 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정한다. 직접 통신 주파수 대역은 제1 단말기(681)와 제2 단말기(682)가 직접 통신을 위해 사용되는 주파수 대역으로서, 제1 기지국(670)이 사용하지 않는 주파수 대역이다. 따라서, 제1 단말기(681)와 제2 단말기(682)가 직접 통신 주파수 대역을 이용하여 직접 통신을 수행하면, 제1 기지국(670)은 간섭 신호를 수신하지 않고, 제1 기지국(670)의 통신 성능은 유지된다.
일측에 따르면, 제2 단말기(682)는 제2 기지국(690)에 접속하고, 제2 기지국(690)은 제2 무선 네트워크에 포함될 수 있다. 이 경우, 주파수 대역 설정 장치(600)는 제2 기지국(690)에 할당된 주파수 대역을 고려하여 직접 통신 주파수 대역을 결정할 수 있다.
일측에 따르면, 유휴 주파수 결정부(610)는 제2 무선 네트워크에 할당된 주파수 대역들 중에서, 제2 기지국(690)에 의해서 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정할 수 있다.
그리고, 직접 통신 주파수 대역 결정부(630)는 단말기 공통 주파수 대역, 제1 무선 네트워크 유휴 주파수 대역, 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정한다. 이 경우, 직접 통신 주파수 대역은 제1 기지국(670) 및 제2 기지국(690)이 모두 사용하지 않는 주파수 대역이다. 따라서, 제1 단말기(681)와 제2 단말기(682)가 직접 통신 주파수 대역을 이용하여 직접 통신을 수행하면, 제1 기지국(670) 및 제2 기지국(690)은 간섭 신호를 수신하지 않는다.
도 6에서는 기지국(670)과 주파수 대역 설정 장치(600)가 별개의 장치인 실시예가 도시 되었으나, 다른 실시예에 따르면, 주파수 대역 설정 장치(600)는 기지국(670)에 포함되도록 구현될 수도 있다. 또 다른 실시예에 따르면, 주파수 대역 설정 장치(600)는 단말기(681)에 포함되도록 구현될 수도 있다.
주파수 대역 설정 장치(600)가 기지국(670)과 별개의 장치로 구현된 경우에, 주파수 대역 설정 장치(600)는 기지국(670)을 경유하여 제1 단말기(681)로부터 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보를 수신할 수 있다. 또는, 주파수 대역 설정 장치(600)가 기지국(670)에 포함된 경우, 주파수 대역 설정 장치(600)는 제1 단말기(681)로부터 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보를 직접 수신할 수 있다.
예를 들어, 전송부(650)는 제1 단말기(681)로 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보를 요청할 수 있다. 일측에 따르면, 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보는 LTE 시스템의 'UECapabilityEnquiry' 메시지를 이용하여 제1 단말기(681)로 전송될 수 있다.
제1 단말기(681)는 요청에 응답하여, 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보를 전송할 수 있다.
수신부(640)는 제1 단말기(681)로부터 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보를 수신할 수 있다. 일측에 따르면, 제1 단말기(681)가 이용 가능한 주파수 대역에 대한 정보는 LTE 시스템의 'UECapabilityInformation' 메시지를 이용하여 제1 단말기(681)로부터 수신될 수 있다.
이 경우에, 전송부(650)는 직접 통신 주파수 대역 결정부(630)가 결정한 직접 통신 주파수 대역에 대한 정보를 제1 단말기(681)로 전송할 수 있다.
도 7은 예시적 실시예에 따른 통신 방법을 단계별로 설명한 순서도이다.
단계(710)에서, 주파수 대역 설정 장치는 제1 무선 네트워크에 할당된 주파수 대역들 중에서, 제1 기지국에 의해서 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정한다.
단계(720)에서, 주파수 대역 설정 장치는 제2 무선 네트워크에 할당된 주파수 대역들 중에서, 제2 기지국에 의해서 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정한다.
단계(730)에서, 주파수 대역 설정 장치는 제1 단말기로 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 요청할 수 있다.
단계(740)에서, 주파수 대역 설정 장치는 제1 단말기로부터 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 수신할 수 있다.
단계(750)에서, 주파수 대역 설정 장치는 제1 단말기가 이용 가능한 주파수 대역 및 제2 단말기가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정한다.
단계(760)에서, 주파수 대역 설정 장치는 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 이용하여 직접 통신 주파수 대역을 결정할 수 있다. 일측에 따르면, 주파수 대역 설정 장치는 제1 무선 네트워크 유휴 주파수 대역과 단말기 공통 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정할 수 있다.
일측에 따르면, 제1 단말기뿐만 아니라, 제2 단말기도 무선 네트워크에 연결될 수 있다. 이 경우에, 주파수 대역 설정 장치는 제2 단말기가 접속한 제2 기지국에 할당된 주파수 대역을 고려하여 직접 통신 주파수 대역을 결정할 수 있다.
제2 단말기가 무선 네트워크에 연결된 경우에, 주파수 대역 설정 장치는 단말기 공통 주파수 대역, 제1 무선 네트워크 유휴 주파수 대역 및 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정할 수 있다.
일측에 따르면, 주파수 대역 설정 장치는 결정된 직접 통신 주파수 대역에 대한 정보를 제1 단말기로 전송할 수 있다. 직접 통신 주파수 대역은 제1 단말기와 제2 단말기 간의 직접 통신을 위해 사용된다.
도 7에 도시된 실시예에 따르면, 직접 통신 주파수 대역은 제1 기지국 또는 제2 기지국에 할당된 주파수 대역과 중첩되지 않는다. 따라서, 제1 단말기와 제2 단말기가 직접 통신하는 경우에도, 제1 단말기 또는 제2 단말기로부터의 간섭 신호가 제1 기지국 또는 제2 기지국에 미치는 영향이 최소화된다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
 
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
(부호의 설명)
110: 기지국
120, 130, 140: 단말기
상기의 실시예에 따르면, 제1 단말기가 접속하는 기지국에 대하여 간섭신호를 제거 하면서 제1 단말기와 제2 단말기가 직접 통신을 수행할 수 있다.
상기의 실시예에 따르면, 기지국이 사용하지 않는 주파수 대역을 이용하여 단말기간 직접 통신을 수행할 수 있다.

Claims (9)

  1. 제1 단말기와 제2 단말기의 직접 통신을 위한 주파수 대역을 설정 하는 장치에 있어서,
    상기 제1 단말기가 접속한 제1 기지국이 포함된 제1 무선 네트워크에 할당된 주파수 대역 중에서 상기 제1 기지국에 의해 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정하는 유휴 주파수 결정부;
    상기 제1 단말기가 이용 가능한 주파수 대역 및 상기 제2 단말기가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정하는 단말기 공통 주파수 결정부; 및
    상기 단말기 공통 주파수 대역과 상기 제1 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 직접 통신 주파수 대역 결정부
    를 포함하고,
    상기 직접 통신 주파수 대역은 상기 제1 단말기와 상기 제2 단말기의 직접 통신을 위해 사용되는 주파수 대역 설정 장치.
  2. 제1항에 있어서,
    상기 유휴 주파수 결정부는 상기 제2 단말기가 접속한 제2 기지국이 포함된 제2 무선 네트워크에 할당된 주파수 대역 중에서 상기 제2 기지국에 의해 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정하고,
    상기 직접 통신 주파수 대역 결정부는 상기 단말기 공통 주파수 대역, 상기 제1 무선 네트워크 유휴 주파수 대역, 상기 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 주파수 대역 설정 장치.
  3. 제1항에 있어서,
    상기 제1 단말기로 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 요청하는 전송부; 및
    상기 제1 단말기로부터 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 수신하는 수신부
    를 더 포함하는 주파수 대역 설정 장치.
  4. 제3항에 있어서,
    상기 전송부는 상기 결정된 직접 통신 주파수 대역에 대한 정보를 상기 제1 단말기로 전송하는 주파수 대역 설정 장치.
  5. 제1 단말기와 제2 단말기의 직접 통신을 위한 주파수 대역 설정 방법에 있어서,
    상기 제1 단말기가 접속한 제1 기지국이 포함된 제1 무선 네트워크에 할당된 주파수 대역 중에서 상기 제1 기지국에 의해 사용되지 않는 제1 무선 네트워크 유휴 주파수 대역을 결정하는 단계;
    상기 제1 단말기가 이용 가능한 주파수 대역 및 상기 제2 단말기가 이용 가능한 주파수 대역 중에서 중첩되는 주파수 대역을 단말기 공통 주파수 대역으로 결정하는 단계; 및
    상기 단말기 공통 주파수 대역과 상기 제1 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 단계
    를 포함하고,
    상기 직접 통신 주파수 대역은 상기 제1 단말기와 상기 제2 단말기의 직접 통신을 위해 사용되는 통신 방법.
  6. 제5항에 있어서,
    상기 제2 단말기가 접속한 제2 기지국이 포함된 제2 무선 네트워크에 할당된 주파수 대역 중에서 상기 제2 기지국에 의해 사용되지 않는 제2 무선 네트워크 유휴 주파수 대역을 결정하는 단계;
    를 더 포함하고,
    상기 직접 통신 주파수 대역으로 결정하는 단계는 상기 단말기 공통 주파수 대역, 상기 제1 무선 네트워크 유휴 주파수 대역, 상기 제2 무선 네트워크 유휴 주파수 대역이 중첩되는 주파수 대역을 직접 통신 주파수 대역으로 결정하는 통신 방법.
  7. 제5항에 있어서,
    상기 제1 단말기로 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 요청하는 단계; 및
    상기 제1 단말기로부터 상기 제1 단말기가 이용 가능한 주파수 대역에 대한 정보를 수신하는 단계
    를 더 포함하고,
    상기 직접 통신 주파수 대역으로 결정하는 단계는 상기 제1 기지국이 결정하는 통신 방법.
  8. 제7항에 있어서,
    상기 결정된 직접 통신 주파수 대역에 대한 정보를 상기 제1 단말기로 전송하는 단계
    를 더 포함하는 통신 방법.
  9. 제5항 내지 제8항 중에서 어느 하나의 항의 방법을 실행시키기 위한 프로그램이 기록된 컴퓨터 판독 가능한 기록 매체.
PCT/KR2014/001500 2014-02-13 2014-02-25 다중 주파수 네트워크에서 단말간 직접 통신 기법 WO2015122556A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0016471 2014-02-13
KR1020140016471A KR101553221B1 (ko) 2014-02-13 2014-02-13 다중 주파수 네트워크에서 단말간 직접 통신 기법

Publications (1)

Publication Number Publication Date
WO2015122556A1 true WO2015122556A1 (ko) 2015-08-20

Family

ID=53800286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001500 WO2015122556A1 (ko) 2014-02-13 2014-02-25 다중 주파수 네트워크에서 단말간 직접 통신 기법

Country Status (2)

Country Link
KR (1) KR101553221B1 (ko)
WO (1) WO2015122556A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929979A (zh) * 2021-03-24 2021-06-08 深圳洲斯移动物联网技术有限公司 一种通信频率选择方法、装置以及计算机存储介质
EP4102904A1 (en) * 2017-05-10 2022-12-14 QUALCOMM Incorporated Cellular vehicle-to-everything design principles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074255A (ko) * 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 통신 및 단말 릴레잉 방법
KR20130018144A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 디바이스 간 직접 통신 서비스를 지원하기 위한 장치 및 방법
KR20130048709A (ko) * 2011-11-02 2013-05-10 한국전자통신연구원 단말 간 직접 연결 통신의 무선 자원 운용 방법
KR20130065373A (ko) * 2011-12-09 2013-06-19 한국전자통신연구원 D2d 그룹 통신 방법 및 이를 이용하는 단말 장치
KR20140006282A (ko) * 2012-07-02 2014-01-16 한국전자통신연구원 매크로 셀 및 적어도 하나의 펨토 셀을 포함하는 무선 통신 시스템에서 무선 자원 할당 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074255A (ko) * 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 통신 및 단말 릴레잉 방법
KR20130018144A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 디바이스 간 직접 통신 서비스를 지원하기 위한 장치 및 방법
KR20130048709A (ko) * 2011-11-02 2013-05-10 한국전자통신연구원 단말 간 직접 연결 통신의 무선 자원 운용 방법
KR20130065373A (ko) * 2011-12-09 2013-06-19 한국전자통신연구원 D2d 그룹 통신 방법 및 이를 이용하는 단말 장치
KR20140006282A (ko) * 2012-07-02 2014-01-16 한국전자통신연구원 매크로 셀 및 적어도 하나의 펨토 셀을 포함하는 무선 통신 시스템에서 무선 자원 할당 방법 및 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102904A1 (en) * 2017-05-10 2022-12-14 QUALCOMM Incorporated Cellular vehicle-to-everything design principles
CN112929979A (zh) * 2021-03-24 2021-06-08 深圳洲斯移动物联网技术有限公司 一种通信频率选择方法、装置以及计算机存储介质
CN112929979B (zh) * 2021-03-24 2023-09-26 深圳洲斯移动物联网技术有限公司 一种通信频率选择方法、装置以及计算机存储介质

Also Published As

Publication number Publication date
KR20150095313A (ko) 2015-08-21
KR101553221B1 (ko) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2017074131A1 (en) Method and apparatus for sidelink communication in wireless communication system
WO2019221533A1 (ko) V2x 시스템에서 dmrs 정보 설정 방법 및 장치
WO2021006473A1 (ko) 사이드링크 통신에서 자원 할당 방법
WO2012118258A1 (en) Communication method of terminals and access point for uplink mu-mimo channel access
WO2015016446A1 (en) Radio transceiver for virtual full duplex communication using unused resources
WO2013042934A2 (en) Method and system for implementing mobile relay
WO2015037924A1 (ko) 무선 통신 시스템의 단말에서 전송 신호 전력 제어 방법 및 장치
WO2021034124A1 (ko) 통신 시스템에서 사이드링크 자원의 예약을 위한 방법 및 장치
WO2013137690A1 (en) Method and system for handling uplink resource request in wireless communication system
WO2015080495A1 (ko) 무선통신 시스템에서 어플리케이션 인지 qos 차별화된 단말 대 단말 간 통신 방법 및 장치
WO2021034045A1 (ko) 통신 시스템에서 사이드링크 제어 정보의 송수신을 위한 방법 및 장치
WO2013022166A1 (ko) 상향 링크 신호 처리 방법, 하향 링크 신호 처리 방법 및 이를 수행하는 무선 유닛
WO2015020394A1 (ko) 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치
WO2022092972A1 (ko) 사이드링크에서 인터-ue 조정 정보에 기초한 통신 방법
WO2021085943A1 (ko) 통신 시스템에서 사이드링크 자원의 할당을 위한 방법 및 장치
WO2022098022A1 (ko) 사이드링크 통신에서 sci의 전송 방법 및 장치
WO2014054909A1 (ko) 이동통신 시스템에서 컨텐츠 제공 방법 및 장치
WO2014106999A1 (en) Apparatus and method for supporting mobility of mobile station in wireless communication system
WO2021029530A1 (ko) 사이드링크 통신에서 비주기적 데이터 전송을 위한 방법 및 장치
WO2015122556A1 (ko) 다중 주파수 네트워크에서 단말간 직접 통신 기법
WO2015072713A1 (ko) 부분 네트워크 환경에서 단말 대 단말 통신을 위한 방법 및 장치
WO2023014047A1 (ko) 사이드링크 통신에서 인터-ue 조정 정보의 요청 및 전송을 위한 방법 및 장치
WO2022255751A1 (ko) 통신 시스템에서 적응적 보안 적용을 위한 방법 및 장치
WO2022235018A1 (ko) 사이드링크 통신에서 인터-ue 조정 정보 기반의 자원 할당을 위한 방법 및 장치
WO2021141306A1 (ko) 사이드링크 통신을 위한 참조 신호의 송수신을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882707

Country of ref document: EP

Kind code of ref document: A1