WO2015121954A1 - 細胞培養装置及び細胞培養システム - Google Patents

細胞培養装置及び細胞培養システム Download PDF

Info

Publication number
WO2015121954A1
WO2015121954A1 PCT/JP2014/053394 JP2014053394W WO2015121954A1 WO 2015121954 A1 WO2015121954 A1 WO 2015121954A1 JP 2014053394 W JP2014053394 W JP 2014053394W WO 2015121954 A1 WO2015121954 A1 WO 2015121954A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
sterilization
liquid
liquid feeding
unit
Prior art date
Application number
PCT/JP2014/053394
Other languages
English (en)
French (fr)
Inventor
貴之 野崎
広斌 周
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/053394 priority Critical patent/WO2015121954A1/ja
Publication of WO2015121954A1 publication Critical patent/WO2015121954A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/42Integrated assemblies, e.g. cassettes or cartridges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/50Means for positioning or orientating the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination

Definitions

  • the present invention relates to a cell culture apparatus that maintains the cleanliness of a liquid feeding part during a period of culturing cells or tissues by automatic operation.
  • Regenerative medicine that uses regenerated tissue produced from cells as a raw material to restore the function of organs and the like is expected as a radical treatment method for diseases for which there has been no conventional treatment method.
  • the subjects of treatment range from skin, cornea, esophagus, heart, bone, cartilage, etc., and their clinical applications are rapidly increasing.
  • the increase in production volume is limited by manual labor by workers, low productivity and high production costs hinder the spread of regenerative medicine, and culture that requires labor and cost especially during the production process Automation of work is required.
  • a sterilization gas introduction valve is provided on the outer wall of the space formed by closing the shielding plate door, and is provided outside the space.
  • a cell culture device is disclosed in which a sterilization gas is introduced from a sterilization gas generator through a sterilization gas introduction valve.
  • Patent Document 1 when sterilization processing such as filling of sterilization gas is performed on the entire space where various parts such as electronic parts and culture vessels are present, parts having electronic circuits such as a liquid feeding unit and a transport mechanism
  • the sterilization gas has an adverse effect on electrical control, and particularly when the sterilization treatment disclosed in Patent Document 1 is performed during the culture period, there is a problem that there is a risk of reducing the quality of the cells during the culture.
  • Patent Document 1 defines that the possibility of contamination by chemical substances, dust, bacteria, etc. mixed from outside the culture apparatus during culture is extremely low, and contamination by substances mixed from outside (herein, “exogenous” This is based on the premise of sterilizing contaminants mixed in when the light shielding plate door is opened and closed, for example, during container installation before culture.
  • a cell culturing apparatus for culturing cells in a housing, wherein a sterilization unit that forms a space for sterilizing a part of components arranged in the housing A cell culture device is provided.
  • the figure which shows the structure of a cell culture apparatus The figure which shows one Example of the base for culture
  • Diagram showing an example of sterilization process Diagram showing an example of sterilization process
  • the figure which shows the example of the moving mechanism of the sterilization part in a cell culture apparatus The figure which shows the example of a washing
  • the figure which shows the example of the cell culture apparatus which has the safety cabinet or the clean bench as a structure.
  • Refrigerator for storing an incubator 101 that is a housing that forms a space for culturing cells at a temperature of culture, for example, around 37 ° C., a culture medium bottle 102 containing a culture medium, and a culture supernatant bottle 103 for collecting culture supernatant 104, a gas supply unit 105, a control unit 106 for controlling the cell culture apparatus, and the like.
  • the incubator 101 has a plurality of culture containers 107 for culturing cells and a culture container part 111 including a holding part for holding the culture containers 107.
  • the cells in the culture vessel are observed by the observation unit 108 such as a microscope.
  • a flow path unit 109 having a solenoid valve, tube pump, etc. for controlling the liquid feed from each culture vessel to the culture medium, etc. is installed, and a liquid feed part comprising, for example, a liquid feed nozzle for supplying and discharging the culture medium etc. therein There are 110.
  • the sterilization part 113 is installed in the culture container part 111, for example.
  • Cell culture equipment is cell seeding by feeding the cell suspension to the culture vessel, culturing to maintain the temperature at 37 ° C while appropriately performing gas exchange, medium exchange for discharging the old medium and supplying new medium, using a microscope Conduct cell observation.
  • the steps performed by the cell culture device are in the order of cell seeding, medium exchange, culture, and microscopic observation, but it goes without saying that the configuration and steps of the device are not limited thereto.
  • the control unit 106 controls each component by an input from the control terminal.
  • the control of each configuration may be integrated by the control unit 106 or may be controlled independently for each configuration. The operation procedure of the apparatus will be described later.
  • the fixing unit 203 for fixing the culture vessel includes a culture vessel lid holding jig 203A, a culture vessel lid opening jig 203B, and a culture vessel position holding jig 203C.
  • FIG. 3 shows an example of the sterilization unit 113 of the cell culture apparatus.
  • Reference numeral 301 denotes a culture vessel
  • 302 denotes a rotary table
  • 303 denotes a fixing unit (holding member) for the culture vessel described above
  • 304 denotes a medium exchange unit
  • 305 denotes a pump.
  • a sterilization unit 306 forms a sterilization space.
  • the liquid feeding unit 110 is configured by forming the supply port 307 and the discharge port 308 in the culture medium exchange unit 304.
  • the portion where the supply port 307 and the discharge port 308 are formed has the shape of a nozzle in this embodiment, and at least a part of the liquid feeding portion in the sterilization unit 306, in particular, the tip of the nozzle having a high intrinsic contamination risk. The portion is easily accommodated.
  • the liquid feeding unit 110 is moved by the drive mechanism 309, and at least the supply port 307 and the discharge port 308 are accommodated in the sterilization space in the sterilization unit 306.
  • the sterilization space is preferably a closed space in order to isolate it from other components using culture vessels and electronic circuits. However, a certain degree of isolation is ensured so as not to affect other components. If it is, it may be a partly open space.
  • a hole formed in the sterilization unit 306 for accommodating the supply port 307 and the discharge port 308 is opened when the supply port 307 and the discharge port 308 are received in order to further improve the isolation from other components. It is good also as an open / close-type structure which closes during periods other than.
  • the liquid supply unit 110 may have at least the supply port 307 and the discharge port 308 accommodated in the sterilization unit 306, or the size of the sterilization unit 306 is larger than that of the present embodiment, and the entire liquid supply unit 110 is accommodated. You may be made to do. In the present embodiment, an example is shown in which at least the supply port 307 and the discharge port 308, which are one of the components having the highest intrinsic contamination risk, are accommodated in the sterilization unit 306.
  • the sterilization unit 306 for example, ultraviolet light irradiation by a UV lamp provided in the sterilization unit 306, or disinfection treatment by spraying with ethanol for disinfection or a mixture of peracetic acid and hydrogen peroxide is performed.
  • the method for disinfecting the liquid feeding section is not limited to this, and can be appropriately selected according to the type of liquid to be fed. Hereinafter, an example thereof will be specifically described with reference to FIG.
  • the wall surface of the sterilization unit 402 may be a material that does not have UV transparency, for example, stainless steel. That is, it is only necessary to avoid the influence on the cultured cells due to leakage of ultraviolet light. In this case, an open space may be provided as long as ultraviolet light does not leak from the sterilization unit 402.
  • reference numeral 403 denotes an incubator.
  • Reference numeral 404 denotes a liquid feeding nozzle having a nozzle shape for liquid feeding as described above as an example. The same applies to the subsequent drawings.
  • the spray mechanism 405 for the disinfecting ethanol or the mixture of peracetic acid and hydrogen peroxide is used as a sterilizing unit. Install in 406.
  • the spray mechanism 405 is connected to a supply mechanism 407 for ethanol for disinfection or a mixed solution of peracetic acid and hydrogen peroxide via a flow tube or the like, and supplies the spray mechanism 405 during spraying.
  • the wall surface of the sterilization unit 406 is desirably airtight when the liquid feeding nozzle 404 is accommodated.
  • the disinfecting ethanol or the mixed solution of peracetic acid and hydrogen peroxide is completely discharged from the entire sterilization unit 406 including the liquid feeding nozzle 404.
  • the inside of the sterilization unit 406 is vaporized by raising the temperature, and discharged from the discharge port of the liquid feeding nozzle.
  • the inside of the sterilization unit 406 is cleaned by spraying from the spray mechanism 405 using water or the like installed in the supply mechanism 407. Thereafter, the inside of the sterilization unit 406 is dried. The drying mechanism will be described later.
  • a generation mechanism 408 and a discharge mechanism 409 for hydrogen peroxide gas or ozone gas are provided. They are connected to the sterilization unit 410 via an air supply tube or the like.
  • the wall surface of the sterilization unit 410 is airtight when the liquid feeding nozzle 404 is accommodated.
  • the liquid supply nozzle 404 has an electromagnetic valve that controls the amount of air supplied at the end of the region where the sterilizing gas is filled, and limits the region where the sterilizing gas exists when the sterilizing gas is filled by operation.
  • the position of the solenoid valve on the supply port side may be a position where sterilization gas does not reach the culture medium.
  • the position of the solenoid valve on the discharge port side is set so that the sterilization gas does not reach the culture supernatant bottle 103 and is placed below so that the culture supernatant does not flow backward from the culture supernatant bottle 103. Or it is good also as a position where sterilization gas reaches including the culture supernatant bottle 103, and a position which also sterilizes the solution in the culture supernatant bottle 103.
  • the wall surface of the sterilization unit 410 is not only airtight but also resistant to sterilization gas. After sterilization, the sterilization gas is discharged to the discharge mechanism 409. The sterilization gas is invalidated and discharged out of the device in a safe state. After discharging, the inside of the sterilization unit 410 is dried as necessary. In particular, in the case of sterilization with hydrogen peroxide gas, it is desirable to perform drying because water molecules can be generated in the sterilization unit 410 due to decomposition of the hydrogen peroxide gas. The drying mechanism will be described later.
  • a high-temperature pressurization mechanism 411 is provided. They are connected to the sterilization unit 412 via a stainless steel air pipe or the like.
  • the wall surface of the sterilization unit 412 is airtight when the liquid feeding nozzle 404 is accommodated.
  • the liquid feed nozzle 404 has a solenoid valve at the end point of the region where the high temperature / high pressure steam is filled, and limits the region where the high temperature / high pressure steam exists by operation.
  • the position of the solenoid valve on the supply port side may be a position where high-temperature and high-pressure steam does not reach the medium.
  • the position of the solenoid valve on the outlet side is set so that the high temperature and high pressure steam does not reach the culture supernatant bottle 103 and is placed below so that the culture supernatant does not flow backward from the culture supernatant bottle 103. Or it is good also as a position where high temperature / high pressure water vapor
  • the wall surface of the sterilization unit 412 has not only airtightness but also resistance to high-temperature and high-pressure steam. Further, when the high-temperature and high-pressure steam treatment is performed, heat is conducted to the outside of the sterilization unit 412 to increase the temperature in the incubator.
  • the high-temperature and high-pressure steam is discharged and the temperature and pressure are lowered. Thereafter, the inside of the sterilization unit 412 is dried as necessary. The drying mechanism will be described later.
  • the liquid supply nozzle 404 has a solenoid valve at the end point of the region where heat reaches, and limits the region where the temperature becomes high by operation.
  • the position of the solenoid valve on the supply port side may be a position where heat does not reach the culture medium.
  • the position of the solenoid valve on the discharge port side is a position where heat does not reach the culture supernatant bottle 103.
  • the wall surface of the sterilization unit 412 has not only airtightness but also resistance to heat. Furthermore, it has heat insulation properties so as not to cause a temperature rise in the incubator. The temperature is lowered after sterilization by dry heat sterilization.
  • Table 1 shows the characteristics of each sterilization or disinfection method. Examples of selecting each cleaning method are given below. However, the comparative explanation of the characteristics listed here is merely a general example, and the comparison conditions vary depending on other configurations, environmental conditions, etc., and therefore the comparative characteristics listed here do not apply to all sterilization treatments.
  • the frequency of sterilization or disinfection includes, for example, every culture container, every culture container having the same culture conditions (for each lot), and every day of work.
  • the optimum method is selected in consideration of the necessity of cleaning and the characteristics of each cleaning method.
  • culture of a sample having a high biological contamination risk for example, production of an epidermal cell sheet using autologous cells can be mentioned. It is desirable to carry out cleaning each time the liquid is fed to one culture vessel. This is because there is a risk of biological contamination due to tissue-derived bacteria collected as a cell source. It is desirable to sterilize or disinfect each time you handle different culture vessels. In this case, sterilization or disinfection needs to be short. Moreover, it is so good that high cleanliness can be realized.
  • the second example includes culturing an exogenous cell that has been quality-inspected in advance for each of a plurality of culture vessels having the same culture conditions. For example, sterilization or disinfection is performed at the end of a whole day medium change in the culture process.
  • the need for short sterilization or disinfection is less than in the first case. Since the culture conditions are the same for all culture vessels, the cleanliness may be the same throughout the medium exchange process. In particular, when so-called allogeneic cells are used and the cleanliness has been confirmed by prior quality inspection, high cleanliness may not be realized. By reducing the probability of occurrence of biological contamination and reducing the frequency of cleaning from the first case, the time required for medium exchange including cleaning is also reduced. As a third example, there may be mentioned a case where the culture conditions are different for each culture vessel, in particular, the cell type being cultured is different. In this case, sterilization or disinfection is performed for each group of culture vessels having the same culture conditions every time medium exchange or the like is completed.
  • sterilization or disinfection Since the frequency of sterilization or disinfection is less than in the first case, sterilization or disinfection does not need to be performed in a short time.
  • the level of cleanliness needs to be determined by the nature of the cells being cultured. As an example, high cleanliness is required when using autologous cells that have a relatively higher intrinsic biological contamination risk than others. On the other hand, high cleanliness is not required in the case where non-human cells using cells that have been subjected to quality inspection in advance and have no biological contamination are used.
  • Disinfection or sterilization may be performed not only inside the sterilization unit but also outside the sterilization unit. In other words, it is implemented for the entire incubator.
  • the purpose of this operation is to clean the inside of the apparatus before automatically culturing the cells in the culture vessel, that is, before starting the culture.
  • a sterilization unit in this step, a sterilization unit in which a part of the sterilization unit is opened, for example, a liquid feeding nozzle is not accommodated.
  • the sterilization gas is fed in a state that does not have airtightness to fill the entire incubator, and after sterilization is completed, the sterilization gas is discharged from the discharge port of the liquid feed nozzle.
  • the sterilization unit has a function of spraying ethanol for disinfection, it is also used for disinfection in a state in which a part of the sterilization unit is opened, for example, the sterilization unit is not airtight and the sterilization unit is airtight Disinfection is performed by spraying ethanol or spraying a specific position in the incubator by a moving mechanism of the sterilization unit as described in FIG. And after completion
  • a mechanism capable of disinfecting or sterilizing the inside of the cell culture apparatus may be mounted and used independently of the sterilization unit.
  • the liquid feeding part particularly the supply port and the discharge port of the liquid feeding nozzle, which has one of the highest risk of endogenous contamination such as residual medium and biological contamination in a plurality of culture vessels. Can be sterilized during the culturing period without affecting other components using the culture vessel and the electronic circuit, and the intrinsic contamination risk can be suppressed.
  • the example in which the culture vessel portion 111 and other configurations shown in FIG. 1 are arranged in the same space in the incubator 101 which is a casing has been described.
  • a space isolated in the incubator 101 is used.
  • the culture container unit 111 may be configured, and a plurality of culture containers 107 and a sterilization unit 113 may be disposed outside the separate space outside the space of the culture container unit 111.
  • the internal factors generated by the components outside the culture container than in the case where the culture vessel is arranged in the incubator 101 For example, the number of times of sterilization and the time required for one sterilization treatment can be shortened, and the culture time can be shortened while ensuring the quality of the entire cell culture period. Become.
  • a necessary configuration may be appropriately arranged in the space formed by the culture vessel unit 111 depending on the quality condition of the apparatus, such as the observation unit 108 and the drive mechanism, and the arrangement relationship of the components. .
  • the disposition of the sterilization unit 113 in the housing as in the present embodiment can be performed without depending on the arrangement of the culture container or the liquid feeding means by the liquid feeding unit 110.
  • the configuration and operation of a typical apparatus will be described as an example.
  • FIG. 5 is a diagram showing an example of the configuration of the culture vessel portion 111, the culture vessel 107, the liquid feeding portion 110, etc. in FIG.
  • the culture vessel portion 111 that holds the culture vessel 501 is a rotary table 502 that rotates about the center as a rotation axis, and the culture vessel 501 is arranged in a circle around the rotation axis.
  • 503 is a lid opening bar
  • 504 is a slit
  • 505 is a supply port
  • 506 is a drainage port.
  • the lid opening bar 503 is configured to be movable up and down along the slit 504.
  • the rotary shaft is rotated by a table rotation motor installed on the rotary table 502, and the medium exchange unit 507 having the supply port 505 and the drainage port 506 provided in the rotary table 502 can pass through.
  • the lifting mechanism rail 509 on which the culture medium exchange unit 507 moves up and down is aligned with the notch 508.
  • the culture medium exchange unit 507 ascends along the lifting mechanism rail 509 to the top of the rotary table 502 that performs the culture medium exchange.
  • the turntable 502 rotates in the direction of the arrow with respect to the rotation axis, and the lid opening rod 503 is attached to the culture vessel of the culture vessel fixing unit 510 with respect to the culture vessel that has reached a predetermined position.
  • the culture vessel lid holding jig 510B integrated with the culture vessel lid opening jig 510A opens the culture vessel lid 501A along the lid opening rotation shaft 510C by generating a pressing force by contacting the lid opening jig 510A.
  • the present Example demonstrated the case where a rotary table moved, if the table in which a culture container is placed moves, it is not restricted to a rotary type.
  • the movement direction of the table may be appropriately determined depending on the arrangement of the culture vessel table, such as moving the culture vessel table arranged in a row in the direction of the arrangement axis.
  • the member that contacts the lid opening jig is not limited to a rod-shaped member such as the lid opening rod 503, and any member that has some form and gives a pressing force to the jig as an action mechanism may be used.
  • the method of giving the pressing force may not be by contact.
  • a magnet is installed in each of the jig and action mechanism to repel the magnetic force and apply a pressing force, or the culture vessel that reaches a predetermined position is detected by a sensor, and the culture vessel is automatically detected by the detected culture vessel jig It may be opened and closed.
  • FIGS. 6 (A) and 6 (B) show an enlarged perspective view and a side view of the culture container shown in FIG. 5 (B) in the opened state. That is, simultaneously with the opening operation of the culture vessel lid opening jig 510A shown in FIG. 6A, as shown in FIG. 6B, the culture vessel body 501B is lifted by the culture vessel tilting projection 601 and rotated. An inclination angle with the surface of the table 502 can be set. By this mechanism, the culture container body 501B can be tilted simultaneously with the opening of the lid 501A of the culture vessel 501 by the operation in which the culture vessel lid opening jig 510A and the lid opening rod 503 come into contact.
  • the supply port 307 and the discharge port 308 are formed so that the length of the discharge port 308 is longer. This is because the contamination between the supply port 307 and the discharge port 308 is eliminated by increasing the distance between the supply port 307 and the discharge port 308. Further, the discharge port 308 is disposed so as to be closer to the lower end side of the inclined container. Thereby, in the culture vessel inclined by the above-described mechanism, the discharge port 308 can be lowered to a location where the liquid has accumulated, and the discharge rate in the culture vessel can be increased. It is possible to reduce the risk of contact with the discharge port and the liquid to be discharged and causing contamination.
  • the culture container unit 111 has the multistage structure of the rotary table 502 described above, and the rotary table 502 is further inserted into the culture container unit 111 which is an isolated space.
  • the present embodiment can be applied to a culture vessel portion having no isolation space as in the first embodiment, and the culture vessel holding portion 111 is not a multi-stage but a single rotary table, and a plurality of them are arranged on a plane. Needless to say, this is applicable.
  • description of portions overlapping with those of the first embodiment, such as the culture container opening / closing means may be omitted.
  • 701 is a culture vessel and 702 is a rotary table.
  • the rotary table 702 is arranged in multiple stages in the height direction as shown in the figure.
  • Reference numeral 703 denotes a rotary shaft of a multistage structure table in which a plurality of rotary tables 702 are configured in multiple stages in the height direction.
  • a table rotation motor is attached to the rotation shaft of the multi-stage structure table.
  • Reference numeral 704 denotes a medium exchange unit including a supply port 505 and a discharge port 506, and 705 denotes a pump.
  • the medium exchange unit 704 is provided with a drive mechanism having a lifting motor for the medium exchange unit 704.
  • Reference numeral 706 denotes a lifting mechanism rail.
  • the medium exchange unit 704 moves up and down along the lift mechanism rail 706 by the rotation of the lift motor of the drive mechanism.
  • Reference numeral 707 denotes a notch of the rotary table
  • reference numeral 708 denotes a sterilization unit.
  • 709 is an incubator
  • 710 is a flow channel tube
  • 711 is a culture supernatant bottle
  • 712 is a medium bottle holding a medium
  • 713 is a weight sensor that measures the weight in the bottle.
  • a multi-stage table in which a large number of culture vessels are arranged, and a medium exchange unit 704 mounted on an elevating mechanism rail 706 are installed in an incubator 709, and an old medium in the culture vessel is used by using a pump 705 and a channel tube 710. Is discharged to the culture supernatant bottle 711, and a new medium is supplied from the medium bottle 712 to the culture container.
  • the discharge amount and the liquid supply amount are measured by the weight sensor 713 as the operation time of the pump or the
  • the medium exchange unit 704 is moved up and down by a drive mechanism, and exchanges the medium in the culture vessel arranged on the rotary table that performs medium exchange.
  • the timing of the medium exchange can be set as appropriate by the user. However, when the sterilization unit 708 is arranged on the installation surface as in this embodiment, for example, the medium exchange is performed in order from the upper stage side to the lower stage side. It is desirable to perform sterilization in the sterilization unit 708 after exchanging the medium of the culture container installed on the rotary table.
  • the liquid feeding unit 110 is moved by the drive mechanism 305 to a table holding a culture vessel for feeding liquid (ST1).
  • the liquid supply section is moved to the uppermost table (ST2).
  • ST3 the feeding of the culture vessel to be fed on the uppermost table.
  • ST4 the liquid feeding part is moved to the next stage, in other words, to the table having the culture container that is relatively far from the sterilizing part next (ST5). This is repeated, and when there is no culture container that needs liquid feeding, the liquid feeding part is moved to the space in the sterilization part (ST6), the liquid feeding part is sterilized (ST7), and the liquid feeding and sterilization steps are completed.
  • the above describes the operation when the liquid is fed to the culture container held on the rotary table of the present embodiment.
  • the culture containers that are relatively far from the sterilization unit Therefore, as long as liquid feeding is performed in the order of the culture containers at the close positions, the arrangement configuration of another culture container is also applicable.
  • the culture container closer to the distance than the culture container far from the sterilization unit 708 may be set so that the time to reach the sterilization unit 708 after the culture medium exchange is shortened by the above process. It is possible to minimize the time to reach the sterilization unit 708 after the end of processing, and to minimize the risk of contamination because the distance traveled in a state where the contaminated flow path is exposed is short. .
  • the first liquid is fed from the top of the rotary table in the figure to the third stage, and the second liquid of a different type from the first liquid is fed from the top to the fourth stage in the figure. It is assumed that the liquid is sent.
  • the timing for sterilizing the liquid feeding unit by the sterilization unit 708 is desirably performed after the sterilization treatment of the culture container included in the group A. This is because the contamination risk is highest when the type of the medium to be fed is changed, and there is a high risk that an unexpected change occurs and intrinsic contamination occurs.
  • Examples 1 and 2 an example in which one sterilization part is fixed is shown, but the number of sterilization parts is not limited to this, and may be movable.
  • the sterilization unit By making the sterilization unit movable, the distance between the sterilization unit and the configuration of the sterilization target, such as the liquid feeding unit, can be made closer. It can be shortened, and sterilization can be completed at high speed. Furthermore, since the moving distance of the liquid feeding part is short, it is possible to further reduce the intrinsic contamination risk.
  • a movable sterilization unit will be described with reference to FIGS.
  • the sterilization unit 801 and the liquid feeding unit 802 are driven in conjunction with each other.
  • the sterilization unit 801 is installed on the same drive rail as the drive rail 805 of the liquid feeding unit 802, and a drive mechanism such as a motor is installed.
  • the liquid feeding nozzle rotates in the same direction as the rotation by the rotating shaft of the table or in the opposite direction, and the liquid feeding nozzle is accommodated inside the sterilization unit driven in conjunction with the sterilization.
  • the driving mechanism may be used in combination with the driving mechanism of the liquid feeding unit as shown in FIG. Thereby, the apparatus can be miniaturized.
  • the sterilization unit 801 may be arranged by providing a drive mechanism or a drive rail different from that for the liquid feeding unit (not shown).
  • the two drive rails move so as to approach each other, and as a result, the liquid feeding unit 802 and the sterilization unit 803 move to adjacent positions. In this state, the liquid feeding unit 802 is accommodated in the sterilization unit 801 and sterilization is performed.
  • the liquid feeding unit 802 and the sterilizing unit 801 can be operated independently. This makes it possible to adjust the timing for feeding the liquid to the culture vessel and the timing for performing sterilization so that the time required for performing both is minimized.
  • the sterilization unit 801 moves to a position where the distance from the liquid feeding unit is short and stands by. Then, after the liquid feeding unit performs the liquid feeding process, either or both of the liquid feeding unit and the sterilizing unit 801 move so as to be accommodated in the space in the sterilizing unit 801.
  • Reference numeral 804 denotes a culture vessel. The same applies to the subsequent drawings.
  • FIG. 8B is an example in which a plurality of corresponding sterilization units 805 are arranged for each group of culture containers.
  • a sterilization unit 805 is arranged for each culture container group installed on each rotary table.
  • the liquid feeding unit moves to the nearest sterilization unit 805 to perform sterilization for each culture container group or for each type of liquid to be fed.
  • the plurality of sterilization units 805 may have different types of sterilization means for each culture container group.
  • a sterilization unit corresponding to each liquid is arranged, so there are a plurality of types of intrinsic contamination risks.
  • sterilization suitable for each contamination risk can be performed, and the intrinsic contamination risk can be reduced.
  • the liquid feeding unit 1002 is sterilized after washing in order to suppress the risk that the components of each solution remain due to precipitation or the like. This makes it possible to avoid the influence on the subsequent liquid feeding process.
  • sterilized water PBS (Phosphate Buffered Saline) solution, ethanol for disinfection, etc. are used for the cleaning solution. Considering the persistence after washing, sterilized water is preferable.
  • the cleaning liquid is installed at a position parallel to the medium bottle and the like, and the cleaning liquid can be fed at the time of cleaning by switching a solenoid valve or the like.
  • a cleaning jig 1003 for connecting the discharge port 1002B is installed in the sterilization unit 1001, and both parts are connected to the cleaning jig during cleaning.
  • the liquid feeding nozzle 1002 and the cleaning jig 1003 have airtightness so that the cleaning liquid does not leak to the outside.
  • the inside and outside of the both are cleaned by supplying and discharging the cleaning liquid to and from the liquid feeding nozzle 1002 and the cleaning jig 1003 in the same process as the normal medium exchange.
  • the inside and outside of the liquid feeding nozzle can be cleaned, while the portion of the liquid feeding nozzle that is not installed in the cleaning jig is not cleaned.
  • the wall surface of the sterilization unit may not have airtightness.
  • sterilization or disinfection is performed by the above-described cleaning method.
  • the drying process mentioned later is implemented as needed.
  • the cleaning jig 1003 in this figure has a J shape.
  • the lengths of the supply port 1002A and the discharge port 1002B are different from each other, and the shape is a “J” shape in order to connect two liquid feeding nozzles having different lengths in the shortest time.
  • the length from the insertion port where the supply nozzle of the supply port 1002A is inserted to the installation surface is longer than the length from the insertion port where the discharge nozzle of the discharge port 1002B is inserted to the installation surface. Is longer.
  • the lengths of the two liquid feeding nozzles are equal, they are U-shaped instead of J-shaped.
  • a separate jig may be provided so that the two insertion jigs do not communicate with each other. In that case, a route for supplying and discharging the cleaning liquid may be separately provided.
  • the configuration in which the cleaning liquid is supplied from the supply nozzle and the cleaning liquid is discharged from the discharge nozzle is the simplest than the case where the separate mechanisms are provided, and the number of necessary mechanisms can be reduced.
  • the shape of the cleaning jig 1003 may be changed in accordance with the length of the liquid feeding nozzle. Note that the cleaning jig 1003 can minimize the space to be cleaned by connecting the two liquid supply nozzles as short as possible, and as a result, shortening the cleaning time and reducing the amount of necessary cleaning liquid. Can be obtained.
  • the sterilization unit 1001 when the entire sterilization unit 1001 is washed, that is, not only inside the supply port / discharge port of the liquid feed nozzle, but also outside the liquid feed nozzle of the portion not accommodated in the cleaning jig, the same spraying mechanism as that used for the disinfecting ethanol or the mixture of peracetic acid and hydrogen peroxide described above with reference to FIG. 4B is used.
  • the spray mechanism When used for cleaning, the spray mechanism is connected to a supply mechanism for the cleaning liquid via a flow tube or the like, and supplies the spray mechanism to the spray mechanism during spraying.
  • the wall surface of the sterilization part is airtight when the liquid feeding nozzle is accommodated.
  • the cleaning liquid is sprayed into the liquid feed nozzle and the sterilization unit 1001 from the spray mechanism to wash both. After cleaning, sterilization or disinfection is performed by the method described above. Then, the drying process mentioned later is implemented as needed.
  • the shape of a washing jig may be provided according to the case of other sterilization methods, and the discharge nozzle and supply nozzle of different lengths may be provided.
  • a method of drying the liquid feeding unit 1102 in the sterilization unit 1101 will be described with reference to FIG.
  • the liquid feeding unit 1102 is dried, when liquid droplets are attached to the liquid feeding nozzle after sterilization, disinfection, or washing, if the cell seeding, medium exchange, etc. are performed without drying, the amount of liquid feeding in the liquid feeding process Since it affects the accuracy, it is implemented to avoid it.
  • the culture medium, the solution used for cleaning, etc. have adhered before drying, those components may remain
  • the filter 1103 For drying, clean air or the like taken from outside the apparatus through the filter 1103 is used. Immediately after being taken in, the drying efficiency is improved by heating with the heating wire 1104 installed in the same space as the filter 1103 and supplying air as warm air. A clean air intake port is installed at a position parallel to the medium bottle and the like, and air can be supplied during drying by switching a solenoid valve or the like.
  • the filter 1103 preferably has a performance of allowing only a substance of 0.22 ⁇ m or less to pass through, thereby ensuring the cleanliness of the air taken into the apparatus.
  • the clean air After the clean air is filled into the sterilization unit 1101 from the supply port of the liquid feeding nozzle, it passes through the discharge port and is discharged out of the apparatus through the filter 1106 of the culture supernatant bottle 1105.
  • a filter is installed at a position parallel to the culture supernatant bottle or the like, and air can be discharged during drying by switching a solenoid valve or the like.
  • FIG. 11 (B) When discharging from the filter of the culture supernatant bottle to the outside of the apparatus, as shown in FIG. 11 (B), the two channel tubes in the culture supernatant bottle are both in the gas phase, thereby The culture supernatant 1107 is not pushed out of the apparatus by air, and only air can be discharged out of the apparatus through the filter 1106.
  • the above-described cleaning jig for connecting the supply port and the discharge port A drying jig equivalent to the above may be installed in the sterilization unit 1101, and both may be connected during drying.
  • airtightness is set so that air does not leak out of the liquid feed nozzle and the drying jig.
  • the gas phase component in the incubator may change, which may affect cell culture.
  • both are dried by supplying and discharging air to and from the liquid feeding nozzle and the drying jig in the same process as normal medium exchange.
  • the wall surface of the sterilization part does not need to be airtight, but in particular when the air used for drying is heated, heat insulation is required. This is to avoid that the temperature is conducted to the outside of the sterilization unit 1101 by the drying process, and as a result, the cells cultured in the incubator are not affected.
  • you may provide heat insulation performance to a drying jig.
  • the sterilization unit 1101 when the entire sterilization unit 1101 is dried, that is, not only the inside and outside of the supply port / discharge port housed in the drying jig of the liquid feed nozzle, but also the outside of the liquid feed nozzle that has not been housed.
  • the entire sterilization unit 1101 when the inner wall of the sterilization unit 1101 is dried, the entire sterilization unit 1101 is filled with air for drying without using the above-described drying jig. At this time, the wall surface of the sterilization unit 1101 has airtightness and heat insulation when the liquid feeding nozzle is accommodated. After moving the liquid feed nozzle into the sterilization unit 1101, air is filled into the liquid feed nozzle and the sterilization unit 1101 from the supply port, and both are dried.
  • each component for example, the driving of the drive mechanism and the liquid feeding operation by the liquid feeding unit may be collectively controlled by the control unit 1204, or a mechanism for independently controlling each component may be incorporated.
  • the incubator 1201 is housed in a clean bench or safety cabinet 1202 and is combined with the cleaning maintenance function that the clean bench or safety cabinet 1202 has. By storing the device in the safety cabinet 1202, higher cleanliness can be maintained.
  • an operator performs manual operation in the incubator 1201, for example, installation of a flow path or removal of a culture vessel, it is performed with the door 1203 of the clean bench or safety cabinet 1202 opened. During the automatic culture, the door 1203 is closed, and the cleanliness around the incubator 1201 is also maintained by the cleaning maintenance function of the clean bench or the safety cabinet 1202.
  • a medium or the like used for automatic culture is stored in a refrigerator 1204 installed below a clean bench or safety cabinet 1202.
  • a control unit 1205 for controlling the apparatus during automatic culture is installed.
  • the above-described sterilization unit is accommodated in the incubator 1201. Moreover, it has a control mechanism as shown in FIG.
  • a control terminal 1301 such as a personal computer (PC) having a computer configuration including a central processing unit (CPU), a storage unit, an input / output interface unit, and the like includes an observation unit 1302 equipped with a CCD camera and the like for cell observation, and a lifting mechanism rail.
  • the lift motor 1303 of the attached observation unit 1302, the drive mechanism motor 1304 for driving the liquid feeding unit for exchanging the culture medium, the rotary table motor 1305 for driving the rotary table, and the liquid feeding unit are provided for supplying and discharging liquid, respectively.
  • a supply pump 1306 for urging, a discharge pump 1307, and a weight sensor 1308 for measuring the weight of the liquid inside the medium bottle or the like are respectively arranged.
  • Step S1 flow path installation> A flow path or the like used for culture is aseptically installed in advance in the flow path section 109 in the incubator 101.
  • the flow path is used once, in other words, when it is used only once, the cell bottle 112 containing the cell suspension, the medium bottle 102 containing the medium, the culture supernatant bottle 103 for collecting the culture supernatant, the washing liquid
  • a sterilized flow path composed of a cleaning bottle (not shown) and the like and a flow path tube connecting them is aseptically installed.
  • Step S2 Start> Start the cell culture device. An operator starts the operation by pressing the start switch of the operation unit in the control device. Confirm that the internal environment of the cell culture device is appropriate on the operation screen of the control unit display. For example, it is confirmed that the temperature of the incubator is 37 ° C. These numerical values are not limited, and for example, the temperature can be selected from the range of 0 ° C to 45 ° C.
  • Step S3 Disinfection or sterilization in the cell culture apparatus> Disinfect or sterilize the equipment.
  • the disinfection or sterilization here does not mean sterilization in the culturing process by the sterilization unit described above, but means that the sterilization unit is performed not only on the sterilization unit but also on the entire incubator ( This is hereinafter referred to as “pretreatment sterilization”).
  • pretreatment sterilization a mechanism capable of performing disinfection or sterilization may be separately mounted inside or outside the incubator 101 independently from the sterilization unit 113. Both exogenous contamination sterilization) and in-culture sterilization (endogenous contamination sterilization) may be performed.
  • the sterilization unit 113 has a function of filling a sterilization gas such as hydrogen peroxide gas
  • the sterilization unit 113 is in a state where a part of the sterilization unit is opened in this step, for example, the liquid supply nozzle is not accommodated.
  • the entire incubator is filled by supplying sterilization gas in a state without airtightness, and is discharged from the discharge port of the liquid supply nozzle after sterilization.
  • the sterilization unit 113 has a function of spraying ethanol for disinfection
  • the sterilization unit 113 that is also partially opened for example, does not contain a liquid feeding nozzle, has airtightness.
  • Disinfection is performed by spraying the disinfecting ethanol in a state where it is not present, or by spraying a specific position in the incubator by the moving mechanism of the sterilization unit as described in FIG. Then, after sterilization or disinfection is completed, drying or cleaning is performed.
  • the sterilization part of the present invention is not limited to the suppression of the risk of endogenous contamination, and can be used in combination with the elimination of the risk of exogenous contamination before the start of culture, thereby improving the overall efficiency of the sterilization process. Can do.
  • ⁇ Step S4 Installation of culture vessel> After disinfection or sterilization in the cell culture apparatus, the culture container is aseptically placed in the apparatus.
  • ⁇ Step S5 Schedule determination> An automatic culture schedule performed by the cell culture apparatus is determined.
  • Step S6 Cell seeding> After opening and closing the solenoid valve corresponding to the culture container in which the cells are seeded, a tube pump (not shown) is operated to suck the cell suspension from the cell bottle. The cell suspension is fed to the culture vessel 107 via the feed nozzle supply port.
  • an actuator is attached to the culture vessel portion 111 where the culture vessel 107 is installed and held, and after the seeding is completed for all the culture vessels, the actuator is actuated to tilt and swing the culture vessel base, and the cells in the culture vessel
  • the distribution may be made uniform.
  • ⁇ Step S7 Cleaning of liquid feeding nozzle> After cell seeding, a liquid feed nozzle is accommodated in the sterilization unit 113 for cleaning. According to the cleaning method, the above-described washing and drying are further performed. A moving mechanism may be provided in the sterilization unit 113 according to the frequency of cleaning, and the time required for cleaning may be shortened.
  • ⁇ Step S8 Culture> Immediately after cell seeding, the cells are cultured by controlling the temperature and gas composition in the incubator.
  • Step S9 Observation with a microscope> Cell images are acquired using a microscope installed in the cell culture apparatus. The light source of the microscope is appropriately illuminated, and the cells are focused and imaged. The acquired cell image is stored in a database in the control unit, viewed on the control terminal, and the operator appropriately confirms the state of the cell.
  • Step S10 Medium exchange> Medium exchange is performed once every few days during the culture period. Use media stored at 4 ° C. in the refrigerator. Preheat in the incubator. First, drain the old medium from the culture vessel. At this time, when the actuator is installed on the culture vessel base, the culture vessel is tilted to improve the discharge efficiency. After discharging, a new medium is immediately supplied into the culture vessel. The old medium is finally discharged into the culture supernatant bottle 103. If necessary, the culture supernatant in the culture supernatant bottle is collected, and the growth state of the cells is evaluated by medium component analysis.
  • the medium exchange (supply or discharge) step S12 may be repeated a plurality of times for each predetermined culture period, depending on the type of cells to be cultured.
  • ⁇ Step S12 Collection of tissue for examination> On the day before the scheduled date of transplantation, a part of the culture container being cultured is collected for examination. Open the cell culture device door and remove the culture vessel.
  • Step S13 Culture and medium exchange just before transplantation> Culture is performed by the same operation as in step S8. And just before implementing step S14, culture medium exchange by the same operation as step S10 is performed. After the medium exchange, especially when the medium exchange is performed a plurality of times by Step S14, the same liquid supply nozzle as Step S7 is cleaned every time the medium is exchanged.
  • ⁇ Step S14 Collection of transplanted tissue>
  • a biological sample is collected and used for regenerative medical treatment.
  • the culture vessel is removed from the incubator. Carry it into the safety cabinet as needed.
  • continuation or cancellation of the culture is selected.
  • cultivation it returns to step S8.
  • the process proceeds to step S16.
  • ⁇ Step S15 Accommodation in transport container and transport> The culture vessel culture container is accommodated in the transport container for short distance or long distance in the shipping room.
  • Step S16 Disinfection or sterilization in the cell culture device> Collect and discard the flow path used for automatic culture. Thereafter, disinfection or sterilization in the cell culture apparatus is performed by the same method as in step S3.
  • the configuration and operation for suppressing the intrinsic contamination risk in the apparatus have been described.
  • the configuration and operation are, for example, a factory for manufacturing cells efficiently (hereinafter referred to as a “cell culture factory”). It is also possible to apply as a cell culture system.
  • a cell culture factory a factory for manufacturing cells efficiently
  • FIG. 1 An example thereof will be described with reference to FIG. 1
  • FIG. 15 shows each section in the cell culture factory.
  • the role of each section and the processing order will be described.
  • movement in the automatic culture apparatus of the said Example is abbreviate
  • tissue or iPS induced pluripotent stem cell
  • raw material cells to be cultured are accommodated in the cell pretreatment section 1501.
  • the cells are processed into a form suitable for cultivation in the subsequent culture section.
  • the source cell is a biological sample such as skin or oral mucosa collected from a patient
  • the cell is processed into a single cell state or a state in which unnecessary cells are removed. This assumes autotransplantation and moves to the autoculture section 1502 after treatment.
  • the raw material cells are in a cryopreserved state that has been subjected to quality inspection in advance, thawing or the like is performed. This assumes an allogeneic transplant and moves to the allogeneic culture section 1503 after the treatment.
  • the tissue treated by the cell pretreatment section 1501 is a self-culturing section 1502 for culturing a regenerated tissue to be transplanted for a specific individual from which a raw material cell is collected, or a regeneration to be transplanted for a person other than the specific individual having the source tissue Any one of the other culture sections 1503 for culturing the tissue is transferred to the culture space of each culture section.
  • a plurality of units may be provided for each type of tissue to be cultured (each curtain, cartilage, myocardium, etc.).
  • the allogeneic culture section 1503 a large amount of cultured epidermis is produced using, for example, quality-evaluated epidermal cells as source cells.
  • pluripotent cells such as iPS cells
  • mass culture is performed while maintaining an undifferentiated state, induction of differentiation into an appropriate cell type, and then various regenerated tissues are produced in large quantities.
  • the regenerated tissues cultured in the autologous culture section 1502 and the autologous culture section 1503 are transferred to the quality inspection section 1504.
  • the regenerated tissue After the quality of each regenerated tissue is inspected, the regenerated tissue is packed in a cell transport container in the packing section 1505 and factory. In addition, the regenerated tissue cultured by the culture sections 1502 and 1503 is shipped to the freezing and thawing section 1506 for freezing and long-term storage before being transferred to the quality inspection section 1504. Good.
  • each culture section a culture space for culturing cells and tissues is formed, a culture container for holding cells, a liquid feeding mechanism for supplying and discharging liquid in the culture container, and a drive for driving the liquid feeding mechanism.
  • a mechanism, a holding mechanism having a holding part for holding the culture vessel, and the like are arranged (not shown). The operation of each mechanism is omitted because it overlaps with the operation of the liquid feeding unit, the drive mechanism, etc. described in the first to fifth embodiments.
  • control similarly to the control unit of the above-described embodiment, control may be performed by a control mechanism that controls the entire mechanism, or control may be performed independently for each mechanism.
  • FIG. 15 shows an example in which a sterilization zone 1506 is installed in an allogeneic culture section 1503.
  • a sterilization unit may be provided in each device for each regenerated tissue in the autoculture section 1502, or may be installed outside each device and used in common.
  • a culture container housing section similar to the culture container section in the enclosure (incubator) shown in Example 2 may be installed to form a space isolated from other spaces.
  • a cell culture system can be constructed based on the mechanism and operation procedure described in Examples 1 to 5.
  • Configuration 1 A cell culturing apparatus for culturing cells in a housing, wherein the cell has a sterilization unit that forms a space for sterilizing a part of the components disposed in the housing. It is a culture device.
  • Configuration 2 The cell culture apparatus according to Configuration 1, wherein the component in the enclosure is a liquid feeding unit that supplies or discharges liquid in a culture vessel installed in the enclosure.
  • Configuration 3 The cell culturing apparatus according to Configuration 2, wherein the sterilization unit sterilizes the liquid feeding unit during a period in which cells are cultured in the housing.
  • Configuration 4 The cell culture according to Configuration 2, wherein the housing has a culture container section that forms a space in which the culture container is installed, and the sterilization section is installed in the culture container section. Device.
  • Configuration 5 The cell according to Configuration 2, further comprising a driving mechanism for moving the liquid feeding section, wherein the driving mechanism moves at least a part of the liquid feeding section to a space in the sterilization section. It is a culture device.
  • the liquid feeding unit includes a supply nozzle for supplying a liquid into the culture vessel and a discharge nozzle for discharging the liquid in the culture vessel, and the liquid feeding unit is a length of the supply nozzle.
  • the discharge nozzle is formed so that the length of the discharge nozzle is longer than the first insertion port in which the supply nozzle is stored, and the second insertion port in which the discharge nozzle is stored.
  • the length of the jig from the installation surface of the jig to the first insertion port is longer than the length from the installation surface of the jig to the second insertion port.
  • the liquid feeding unit supplies either the first liquid or the second solution to each of the plurality of culture containers held inside the housing, and the sterilization unit is configured to supply the liquid feeding unit. However, after supplying the first liquid, before supplying the second liquid, the liquid feeding unit is sterilized.
  • Configuration 8 A cell culture system for culturing cells in a culture space, wherein a part of the mechanism formed in the culture space is sterilized by a sterilization mechanism in a sterilization zone formed in the culture space A cell culture system characterized by the above.
  • Configuration 9 The cell according to Configuration 8, wherein a part of the mechanism formed in the culture space is a liquid feeding mechanism for supplying or discharging a liquid in a culture vessel installed in the culture space. It is a culture system.
  • Configuration 10 The cell culture system according to Configuration 9, wherein the liquid feeding mechanism is sterilized by the sterilization mechanism during a period in which cells are cultured in the culture space.
  • the culture space includes a culture vessel storage portion that forms a space in which the culture vessel is stored in the culture space, and the sterilization area is installed in the culture vessel storage portion.
  • Cell culture system
  • Configuration 12 The cell culture according to Configuration 9, further comprising a driving mechanism for moving the liquid feeding mechanism, wherein at least a part of the liquid feeding section is accommodated in the sterilization zone by the driving mechanism.
  • the liquid feeding mechanism includes a supply nozzle that supplies a liquid into the culture container and a discharge nozzle that discharges the liquid in the culture container, and the liquid feeding mechanism is a length of the supply nozzle. Formed so that the length of the discharge nozzle is longer than the length,
  • the sterilization zone has a jig having a first insertion port in which the supply nozzle is accommodated and a second insertion port in which the discharge nozzle is accommodated, and the jig is an installation surface of the jig.
  • the cell culture system according to Configuration 12 wherein a length from the first insertion port to the first insertion port is longer than a length from the installation surface of the jig to the second insertion port. is there.
  • Configuration 14 The liquid feeding mechanism supplies either the first liquid or the second solution to each of the plurality of culture containers held in the culture space, and the sterilization mechanism causes the liquid feeding mechanism to supply the liquid feeding mechanism.
  • the cell culture system according to Configuration 10 wherein the liquid feeding mechanism is sterilized after the mechanism supplies the first liquid and before supplying the second liquid.
  • Configuration 15 A cell culture system for culturing cells carried into a culture space, a liquid feeding mechanism for supplying or discharging a liquid into a culture container holding cells, and a sterilization area for sterilizing the liquid feeding mechanism; Is a cell culture system formed in the culture space, wherein at least a part of the liquid feeding mechanism is accommodated in the sterilization zone during a cell culture period.
  • Control unit 1301 Control terminal 1302 ⁇ Observation unit 1303 ⁇ ⁇ Lifting motor 1304 ⁇ ⁇ ⁇ Drive mechanism motor 1305 ⁇ ⁇ ⁇ Rotary table Motor 1306 ... Supply pump 1307 ... Discharge pump 1308 ... Weight sensor 1501 ... Cell pretreatment section 1502 ... Autogenous culture section 1503 ... Autogenous culture section 1504 ... Quality inspection section 1505 ... Packing section 1506 ... Freezing / thawing section

Abstract

培養容器培養容器を用い細胞又は組織を培養する細胞培養装置において、送液部の清浄化を可能とする。 細胞培養装置の内部に送液部を収容可能な清浄化を可能とする空間を有する。

Description

細胞培養装置及び細胞培養システム
 本発明は、細胞又は組織を自動操作により培養する期間中、送液部の清浄性を維持する細胞培養装置に関する。
 細胞を原料とし製造した再生組織を用い、臓器等の機能を回復させる再生医療は、従来治療法のなかった疾病に対する根治療法として期待される。治療対象は皮膚、角膜、食道、心臓、骨、軟骨等と多岐に渡り、その臨床応用例も急増している。しかし、製造量の増加には作業者による手作業では限界があるため、低生産性と製造コスト高が再生医療の普及の妨げとなっており、製造工程の中で特に労力とコストを要する培養作業の自動化が求められている。
 細胞培養装置の例として、例えば特許文献1には、装置内部を滅菌させるべく、遮蔽板ドアを閉じることにより形成された空間の外壁に滅菌ガス導入弁を設け、当該空間の外部に設けられた滅菌ガス発生装置から、滅菌ガス導入弁を介して滅菌ガスを導入させる細胞培養装置について開示されている。
WO2004/011593
 特許文献1のように、電子部品や培養容器等の種々の部品が存在する空間内全体へ滅菌ガス充填等による滅菌処理を実施する場合、送液部、搬送機構等の電子回路を有する部品の電気的制御に対し滅菌ガスが悪影響を及ぼし、特に培養期間中に特許文献1に開示の滅菌処理を施す場合、培養中の細胞の品質を低下させるリスクが存在するという課題があった。
 また、特許文献1は培養中に培養装置外から混入した化学物質、塵埃、菌等による汚染発生の可能性は極めて低いと定義し、外部から混入した物質による汚染(ここでは総称として「外因性の汚染」という。)、例えば培養前の容器設置作業時等において、遮光板ドアの開閉時に混入した汚染物質を滅菌することを前提としている。
 しかしながら、培養中の密閉した筺体空間内であっても、筺体内部で生じる汚染(ここでは総称として「内因性の汚染」という。)が存在し得る。例えば、送液部や培養容器内の培地等の液体が培養中に筺体内に付着することによる汚染や、培養している生体試料自身が菌等を保持することによる汚染、複数種類の培地や試薬を用いることで予期せぬ化学反応等により発生した物質による汚染等による培養した細胞の品質低下が昨今の課題となっており、あくまで外因性の汚染のみを課題とする特許文献1に開示の構成ではこのような内因性の汚染を解消することができないという課題があった。
 上記課題を可決するための手段として、例えば細胞を筺体内で培養する細胞培養装置であって、前記筺体内に、前記筺体内に配置される部品の一部を滅菌する空間を形成する滅菌部を有することを特徴とする細胞培養装置を提供する。
 上記構成により、筺体内の他の構成部品に影響を与えることなく、内因性の汚染物質を滅菌することが可能となり、培養された細胞の品質を向上させることが可能となる。
細胞培養装置の構成を示す図。 細胞培養装置の培養用基部の一実施例を示す図。 細胞培養装置の滅菌部の一実施例を示す図。 滅菌部の例を示す図。 培養容器の開閉状態の例を示す図。 培養容器の開閉状態の例を示す図。 培養容器の拡大した開閉状態の例を示す図。 培養容器の拡大した開閉状態の例を示す図。 細胞培養装置の例を示す図。 滅菌処理工程の例を示す図 滅菌処理工程の例を示す図 滅菌部の移動機構の例を示す図。 細胞培養装置における滅菌部の移動機構の例を示す図。 洗浄機構の例を示す図。 乾燥機構の例を示す図。 安全キャビネット或いはクリーンベンチを構成として有した細胞培養装置の例を示す図。 制御構成の例を示す図。 本細胞培養装置を用い自動培養を実施する際のフローの例を示す図。 細胞工場の例を示す図。
 図1を用いて細胞培養装置の構成要素の例を説明する。培養時の温度である、例えば37℃前後にて細胞を培養する空間を形成する筺体であるインキュベータ101、培地の入った培地ボトル102及び培養上清を回収する培養上清ボトル103を保管する冷蔵庫104、気体供給部105、細胞培養装置を制御する制御部106等から成る。インキュベータ101内には細胞を培養する複数個の培養容器107、培養容器107を保持する保持部から成る培養容器部111を有する。培養容器内の細胞は顕微鏡等の観察部108により観察する。各培養容器から培地等への送液を制御する電磁弁、チューブポンプ等を有する流路部109が設置され、その中に培地等の供給及び排出を行う例えば送液ノズル等から成る送液部110がある。滅菌部113は例えば培養容器部111内に設置する。細胞培養装置は、培養容器への細胞懸濁液の送液による細胞播種、気体交換を適宜行いつつ温度を37℃に維持する培養、古い培地を排出し新しい培地を供給する培地交換、顕微鏡による細胞観察等を実施する。細胞培養装置の実施する工程を本例では細胞播種、培地交換、培養、顕微鏡観察の順としているが、装置の構成や工程はこれに限られるものではないことは言うまでもない。制御部106は、制御用端末からの入力によって各構成を制御する。各構成の制御は、制御部106により統合的に制御してもよいし、構成ごとに独立して制御してもよい。装置の動作手順については後述する。
  図2を用いて、培養容器の構成の一例を説明する。201は培養容器107の蓋、202は培養容器107の本体である。培養容器を固定する固定ユニット203は、培養容器蓋保持治具203A、培養容器蓋開け治具203B、培養容器位置保持治具203Cから成る。
 図3は、細胞培養装置の滅菌部113の例を示したものである。301は培養容器、302は回転テーブル、303は上述した培養容器の固定ユニット(保持部材)、304は培地交換ユニット、305はポンプである。306は滅菌空間を形成する滅菌部である。
 図3で示した例では、培地交換ユニット304に供給口307と排出口308が形成されることで送液部110が構成されている。供給口307と排出口308が形成される部分は、本実施例ではノズルの形状を有しており、滅菌部306に送液部の少なくとも一部、特に、内因性の汚染リスクが高いノズル先端部分が収容され易い構成としている。培養期間中、送液部により培地交換が開始、または終了すると、駆動機構309により送液部110が移動し、少なくとも供給口307と排出口308とが滅菌部306内の滅菌空間へと収容される。
 滅菌空間は、培養容器や電子回路を用いた他の構成部品と隔離するべく、閉鎖空間となっていることが望ましいが、他の構成部品に影響を及ぼさない程度の一定の隔離性が担保されるのであれば、一部が開放した空間であってもよい。
 供給口307と排出口308を収容するため滅菌部306に形成された穴は、他の構成部品との隔離性をより高めるべく、供給口307と排出口308が収容される際に開き、それ以外の期間は閉じるような開閉式の構成としてもよい。
 送液部110は、少なくとも供給口307と排出口308が滅菌部306に収容されていてもよいし、滅菌部306の大きさを本実施例よりも大きく形成し、送液部110全体が収容されるようにしてもよい。本実施例では、最も内因性の汚染リスクの高い構成の一つである供給口307と排出口308とが少なくとも滅菌部306に収容される例について示している。
 また、本実施例では他の構成に比べて内因性の汚染が生じやすい送液部110を滅菌する例について説明したが、例えば培養容器保持部111や観察部108等、他の構成部品を滅菌する対象として、筺体内の部品のどれか一部が滅菌部306内へ収容される構成として、内因性の汚染を滅菌してもよい。その場合、滅菌部306が固定式であれば、各構成部品にも駆動機構を設けて滅菌部306まで移動させてもよいし、一方、滅菌部306が可動式であれば、各構成部品を滅菌部306の滅菌空間内へ収容可能な位置へ、滅菌部306を移動させてもよい。可動式の滅菌部306については、実施例3等で後述する。
 滅菌部306では、例として滅菌部306内に設けられたUVランプによる紫外光照射や、消毒用エタノール、または過酢酸及び過酸化水素の混合液の噴霧による消毒処理を行う。送液部の消毒処理方法はこれに限るものではなく、送液する液体の種類等に合わせて、適宜選択可能である。以下、その一例について図4を用い具体的に説明する。
 図4(A)に示したUVランプ401の紫外光照射による消毒の場合、滅菌部402の壁面はUV透過性を有さない素材であれば良く、例えばステンレスが挙げられる。つまり紫外光の漏出による培養している細胞への影響が生じる事を回避できればよい。またこの場合、滅菌部402から紫外光が漏出しない限りにおいて開放された空間を有していても構わない。尚、本図において403はインキュベータである。404は上述したように送液用のノズル形状を有した送液ノズルを一例として示している。以降の図でも同様である。
 図4(B)に示した消毒用エタノール、または過酢酸及び過酸化水素の混合液の噴霧による消毒の場合、消毒用エタノール、または過酢酸及び過酸化水素の混合液に対する噴霧機構405を滅菌部406内に設置する。噴霧機構405は消毒用エタノールまたは過酢酸及び過酸化水素の混合液に対する供給機構407と、流路チューブ等を介し連結しており、噴霧時に噴霧機構405へ供給する。滅菌部406の壁面は送液ノズル404の収容時において気密性を有していることが望ましい。これにより噴霧した消毒用エタノールまたは過酢酸及び過酸化水素の混合液が、滅菌部406の外側かつインキュベータの内側の領域に噴霧されることを回避できるからである。つまり培養中の細胞への影響を回避できる。噴霧後は送液ノズル404を含む滅菌部406全体から消毒用エタノールまたは過酢酸及び過酸化水素の混合液を完全に排出する。例えば滅菌部406内を昇温することで気化させ、送液ノズルの排出口から排出する。または噴霧機構405から、供給機構407に設置した水等を用いて噴霧し、滅菌部406内を洗浄する。その後、滅菌部406内を乾燥させる。乾燥機構については後述する。
 図4(C)に示した過酸化水素ガスまたはオゾンガス等の滅菌ガスの充填による滅菌の場合、過酸化水素ガスまたはオゾンガス等の発生機構408及び排出機構409を有する。それらは送気チューブ等を介し滅菌部410と連結している。滅菌部410の壁面は送液ノズル404の収容時において気密性を有している。さらに送液ノズル404は、滅菌ガスを充填させる領域の端点に送気量を制御する電磁弁を有し、稼動により滅菌ガス充填時に滅菌ガスが存在する領域を限定する。供給口側の電磁弁の位置は、培地に滅菌ガスが達しない位置であれば良い。排出口側の電磁弁の位置は、培養上清ボトル103に滅菌ガスが達しない位置とし、かつ培養上清ボトル103から培養上清が逆流しないよう下方に設置する。または、培養上清ボトル103を含め滅菌ガスが達する位置とし、培養上清ボトル103内の溶液も滅菌する位置としてもよい。滅菌部410の壁面は気密性だけでなく、滅菌ガスに対する耐性も有する。滅菌後は、滅菌ガスを排出機構409へ排出する。滅菌ガスを無効化し安全な状態で装置外へ排出する。排出後、必要に応じ滅菌部410内を乾燥させる。特に過酸化水素ガスによる滅菌の場合、過酸化水素ガスの分解により水分子が滅菌部410内に発生しうるため、乾燥の実施が望ましい。乾燥機構については後述する。
 図4(D)に示した高温高圧水蒸気による滅菌の場合、高温加圧機構411を有する。それらはステンレス製の送気管等を介し滅菌部412と連結している。滅菌部412の壁面は送液ノズル404の収容時において気密性を有している。さらに送液ノズル404は、高温高圧水蒸気を充填させる領域の端点に電磁弁を有し、作動により高温高圧水蒸気の存在する領域を限定する。供給口側の電磁弁の位置は、培地に高温高圧水蒸気が達しない位置であれば良い。排出口側の電磁弁の位置は、培養上清ボトル103に高温高圧水蒸気が達しない位置とし、かつ培養上清ボトル103から培養上清が逆流しないよう下方に設置する。または、培養上清ボトル103を含め高温高圧水蒸気が達する位置とし、培養上清ボトル103内の溶液も滅菌する位置としてもよい。滅菌部412の壁面は気密性だけでなく、高温高圧水蒸気に対する耐性を有し、さらに、高温高圧水蒸気処理を実施している際に滅菌部412外へ熱が伝導することでインキュベータ内の温度上昇が生じないよう断熱性を有する必要がある。高温高圧水蒸気による滅菌後は、高温高圧水蒸気を排出し温度及び圧力を下げる。その後、必要に応じ滅菌部412内を乾燥させる。乾燥機構については後述する。
 図では示していないが、乾熱滅菌処理による滅菌の場合、滅菌部412内の温度を上昇させる電熱線を有する。滅菌部312の壁面は送液ノズル404の収容時において気密性を有している。さらに送液ノズル404は、熱が到達する領域の端点に電磁弁を有し、稼動により高温となる領域を限定する。供給口側の電磁弁の位置は、培地に熱が達しない位置であれば良い。排出口側の電磁弁の位置は、培養上清ボトル103に熱が達しない位置とする。または、培養上清ボトル103を含め熱が達する位置とし、培養上清ボトル103内の溶液も滅菌する位置としてもよい。滅菌部412の壁面は気密性だけでなく、熱に対する耐性も有する。さらにインキュベータ内の温度上昇が生じないよう、断熱性も有する。乾熱滅菌処理による滅菌後は温度を下げる。
 滅菌部に対する清浄化方法の選択について説明する。表1はそれぞれの滅菌または消毒の方法に関し、夫々の特性を示したものである。以下に各清浄化方法の選択する場合の事例を挙げる。ただし、ここで挙げる特性の比較説明はあくまで一般的な一例であり、他の構成や環境条件等によって比較条件は変動するため、ここで挙げる比較特性が全ての滅菌処理に当てはまるものではない。
Figure JPOXMLDOC01-appb-T000001
 滅菌または消毒の頻度は、例として培養容器1枚毎、培養条件を同一とする培養容器毎(ロット毎)、1日の作業終了時毎がある。清浄化の必要性と、清浄化方法毎の特性を考慮し最適な方法を選択する。
 1例目として、生物学的汚染リスクの高い試料の培養、例えば自家細胞を用いた表皮細胞シートの製造が挙げられる。1個の培養容器への送液が終わる度に清浄化を実施することが望ましい。細胞ソースとして採取した組織由来の細菌等が原因となり、生物学的汚染が生じる危険性を有するためである。異なる培養容器を取り扱う度に滅菌または消毒をすることが望ましい。この場合、滅菌または消毒は短時間である必要がある。また、高い清浄性を実現できる程に良い。2例目は、培養条件を同一とする複数の培養容器毎で事前に品質検査を実施した他家由来細胞の培養が挙げられる。例えば培養工程の中のある1日の全培地交換が終わる度に滅菌または消毒を実施する。滅菌または消毒が短時間である必要性は1例目より下がる。培養条件が全培養容器で同一であるため、培地交換過程を通じ清浄性も同一で良い。また、特にいわゆる他家細胞の使用であり、かつ事前の品質検査により清浄性を確認済みの場合、高い清浄性は実現できなくとも良い。生物学的汚染の発生確率を低下させると同時に、清浄化の頻度を1例目より低くすることで、清浄化を含めた培地交換に要する時間も低くする効果がある。3例目として、培養容器毎に培養条件が異なる、特に培養している細胞種が異なる場合が挙げられる。この場合、同一の培養条件を有する培養容器の群に対し培地交換等が終了する度に滅菌または消毒を実施する。1例目に比べ滅菌または消毒の頻度が少ないため、滅菌または消毒が短時間である必要ない。清浄性の高低については、培養している細胞の性質により決定する必要がある。例として、内因的な生物学的汚染リスクが他例より相対的に高い、自家由来細胞を用いる場合は、高い清浄性が必要となる。一方、事前に品質検査を実施し生物学的汚染を有さない細胞を使用する他家細胞を用いる場合は、高い清浄性を必要としない。
 消毒或いは滅菌は、滅菌部内のみならず、滅菌部の外側も含め実施しても良い。つまりインキュベータ内全体を対象として実施する。この操作は培養容器において細胞を自動培養する前、すなわち培養開始前の装置内の清浄化を目的とする。具体的には、例えば過酸化水素ガス等の滅菌ガスを充填する機能を滅菌部が有する場合、本ステップでは滅菌部の一部を開放した状態、例えば送液ノズルを収容していない、滅菌部が気密性を有していない状態で滅菌ガスを送気することでインキュベータ内全体に充填し、滅菌終了後は送液ノズルの排出口より排出する。或いは、例えば消毒用エタノールを噴霧する機能を滅菌部が有する場合、同じく滅菌部の一部を開放した状態、例えば送液ノズルを収容していない、滅菌部が気密性を有した状態で消毒用エタノールを噴霧したり、後述する図8において説明したように滅菌部が有する移動機構によりインキュベータ内の特定の位置に対し噴霧したりすることで消毒を行う。そして滅菌或いは消毒終了後は、後述する乾燥或いは洗浄を行う。尚、細胞培養装置内に対する消毒或いは滅菌を実施可能な機構を、滅菌部とは独立に搭載し使用しても良い。
 以上に述べた各特性に基づいて、培養する細胞の種類や装置の品質条件に合わせて。適宜滅菌部による滅菌処理方法を選択することが可能である。
 本実施例の構成により、培地の残留や、複数の培養容器における生物学的汚染といった内因性の汚染リスクの最も高い構成の一つである送液部、特に送液ノズルの供給口と排出口とを、培養容器や電子回路を用いた他の構成部品へ影響を及ぼすことなく、培養期間中に滅菌することができ、内因性の汚染リスクの抑制が可能となる。
 また、本実施例では図1に示す培養容器部111と他の構成とを、筺体であるインキュベータ101内の同一空間内に配置した例について説明したが、例えばインキュベータ101内に隔離された空間を培養容器部111が構成し、当該培養容器部111の空間外部に、複数の培養容器107及び滅菌部113を当該別空間外に配置してもよい。このようにインキュベータ101内の培養容器と、滅菌部113以外の他の構成部品とを空間的に分離することにより、インキュベータ101内に配置した場合よりも、培養容器部外の構成部品によって生じる内因性の汚染リスクが低減するため、例えば滅菌回数や1回の滅菌処理に要する時間を短縮させることが可能となり、細胞培養期間全体としても、品質を担保しつつ培養時間を短縮する事が可能となる。
 尚、上記培養容器部111によって形成される空間内には、観察部108や駆動機構等、装置の品質条件や構成部品の配置関係によって、必要な構成を適宜配置してもよいことは言うまでもない。
 本実施例のように滅菌部113を筺体内に配置することは、培養容器の配置や送液部110による送液手段に寄らず実施することが可能であるが、以降の実施例では、具体的な装置の構成や動作について、一例として説明する。
 図5は、図1における培養容器部111、培養容器107、送液部110等の構成の一例を示した図である。
 図5(A)において、培養容器501を保持する培養容器部111は、中心を回転軸として回転する回転テーブル502であり、培養容器501が回転軸の周囲に円状に配置されている。503は蓋開け棒、504はスリット、505は供給口、506は排液口である。蓋開け棒503はスリット504に沿って上下移動が可能となるよう構成される。
  培地交換時は、まず回転テーブル502に設置されたテーブル回転用モータで回転軸を回転させ、回転テーブル502に設けられた、供給口505、排液口506を有する培地交換ユニット507が通過可能な切り欠き508に、培地交換ユニット507が昇降する昇降機構レール509を合わせる。培地交換ユニット507は、培地交換を実施する回転テーブル502の上部まで昇降機構レール509に沿って上昇する。
  次に、図5(B)に示すように、回転テーブル502が回転軸を基準に矢印方向に回転し、所定位置に到達した培養容器に対し蓋開け棒503が、培養容器固定ユニット510の培養容器蓋開け治具510Aに接触し押力を発生させることにより、培養容器蓋開け治具510Aと一体化された培養容器蓋保持治具510Bが、培養容器蓋501Aを蓋開け回転軸510Cに沿って開ける。尚、本実施例では、回転テーブルが移動する場合について説明したが、培養容器が置かれたテーブルが移動するものであれば、回転式のものに限るものではない。例えば、一列に配置された培養容器のテーブルを配列軸方向に移動させる等、培養容器テーブルの配置の仕方によって、テーブルの移動方向を適宜決定すればよい。
 また、蓋開け治具に接触する部材は蓋開け棒503のような棒状のものに限られたものではなく、何らかの形態を有し作用機構として治具に押力を与えるものであればよい。押力を与える方法は、接触によるものでなくてもよい。例えば治具と作用機構の夫々に磁石を設置し、磁力を反発させ押力を与えたり、センサによって所定位置に到達した培養容器を検知し、検知された培養容器の治具によって培養容器を自動開閉させたりしてもよい。
  図6(A),図6(B)は、図5(B)で示した培養容器の蓋開け状態における拡大斜視図と側面図を示している。すなわち、図6(A)に示した培養容器蓋開け治具510Aの蓋開けの動作と同時に、図6(B)に示すように、培養容器の本体501Bは培養容器傾斜用突起601により持ち上げられ、回転テーブル502の表面との傾斜角度をつけられる。この機構により、培養容器蓋開け治具510Aと蓋開け棒503とが接触する動作により、培養容器501の蓋501Aが開くと同時に培養容器本体501Bを傾斜させることができる。
 供給口307と排出口308は、排出口308の方の長さが長くなるよう形成されている。供給口307と排出口308の距離を離すことで、供給口307と排出口308間のコンタミネーションを排除するためである。さらに、排出口308の方が傾斜した容器の下方端側に近くなるよう配置されている。これにより、前述の機構により傾斜された培養容器において、排出口308をより液体の溜まった箇所に降下させ、培養容器内の排出率を高めることができると同時に、排出の際等に、供給口が排出口や排出される液体と接触しコンタミネーションを生じさせるリスクを低減させることが可能となる。
 図7を用いて、培養容器部111を上述した回転テーブル502の多段階構造とし、さらに回転テーブル502を隔離された空間である培養容器部111に挿入した場合について説明する。尚、本実施例は実施例1のような隔離空間のない培養容器部でも適用可能であるし、培養容器保持部111は多段ではなく1つの回転テーブルであっても、平面上に複数配列しても適用可能であることは言うまでもない。また、培養容器の開閉手段等、実施例1と重複する部分の説明については省略する場合がある。
 701は培養容器、702は回転テーブルである。回転テーブル702は、図に示すように高さ方向に多段階に配置されている。703は複数の回転テーブル702が高さ方向に多段階に構成された多段構造テーブルの回転軸である。本図には示していないが、多段構造テーブルの回転軸にはテーブル回転用モータが取り付けられている。704は供給口505と排出口506とを具備する培地交換ユニット、705はポンプである。本図には示していないが、培地交換ユニット704には、培地交換ユニット704の昇降モータを有する駆動機構が設置されている。706は昇降機構レールである。駆動機構の昇降モータの回転により培地交換ユニット704が昇降機構レール706に沿い上昇・降下する。707は回転テーブルの切り欠き、708は滅菌部である。709はインキュベータ、710は流路チューブ、711は培養上清ボトル、712は培地を保持する培地ボトル、713はボトル内の重量を計測する重量センサである。本装置は多数の培養容器が配置された多段構造テーブルと、昇降機構レール706に搭載する培地交換ユニット704をインキュベータ709内に設置し、ポンプ705と流路チューブ710を用い培養容器内の古い培地を培養上清ボトル711へ排出後、培地ボトル712から新しい培地を培養容器へ供給する。排出量と送液量は、ポンプの稼働時間、或いは、重量変化として重量センサ713により計測する。
 培地交換ユニット704は、駆動機構により昇降し、培地交換を行う回転テーブルに配置されている培養容器内の培地を交換する。
 培地交換のタイミングはユーザによって適宜設定可能であるが、本実施例のように滅菌部708が設置面上に配置されている場合、例えば培地交換を上段側から下段側へと順に行い、最下段の回転テーブルに設置された培養容器の培地交換を行った後に滅菌部708にて滅菌処理を行うことが望ましい。
 一例を図7(B)にて説明する。まず、送液部110が、駆動機構305によって、送液を行う培養容器が保持されたテーブルに移動する(ST1)。例えば、最上段に送液を行う培養容器がある場合は、最上段のテーブルに送液部を移動させる(ST2)。ただし、必ずしも最上段テーブルに移動する必要はなく、要は送液を行う培養容器のうち、滅菌部からの距離が相対的に遠い培養容器に移動する構成とすればよい。その後、最上段テーブル上の送液対象の培養容器の送液を開始する(ST3)。送液終了後(ST4)、次段、言いかえれば、相対的に次に滅菌部から遠い位置にある培養容器を有するテーブルに、送液部を移動させる(ST5)。これを繰り返し、送液が必要な培養容器が無くなると、送液部を滅菌部内の空間に移動させ(ST6)、送液部の滅菌を行い(ST7)、送液及び滅菌工程を終了する。
 以上は、本実施例の回転テーブルに保持された培養容器に送液する場合の動作について説明したが、送液対象となる複数の培養容器において、相対的に滅菌部から遠い位置にある培養容器から、近い位置にある培養容器の順に送液を行うのであれば、別の培養容器の配置構成であっても適用可能である。言いかえれば、滅菌部708からの距離が遠い培養容器よりも、距離が近い培養容器の方が培地交換後に、滅菌部708へ到達する時間が短くなるように設定すればよい
 上記工程により、滅菌処理終了後から滅菌部708への到達時間を最も短くすることが可能となり、かつ汚染された流路部が露出した状態で移動させる距離が短いため汚染リスクを最低限とすることが可能となる。
 次に、もし培養容器ごとに異なる液体を送液する場合には、後述する洗浄処理、乾燥処理と共に、滅菌部による滅菌処理の実施が望ましい。例えば、図中の回転テーブルの上から3段目迄に第1の液体を送液し、図中の上から4段目以降にに、第1の液体とは異なる種類の第2の液体を送液すると仮定する。すると、滅菌部708により送液部を滅菌するタイミングは、A群に含まれる培養容器の滅菌処理の実施後に行うことが望ましい。送液する培地等の種類が変更となるタイミングが最もコンタミリスクが高く、また、想定外の変化が生じ内因性の汚染が発生するリスクが高いためである。
 以下、複数種類の液体を送液する一例を図7(C)を用いて説明する。尚、ST1からST3迄は図7(B)でした説明と重複するため省略する。
 送液対象の培養容器に送液が完了する(ST3完了)と、他に送液が必要な培養容器があるか否かを判定し、あると判定された場合、次に送液する液体の種類に変更があるか否かを判定する。液体が変更無しであれば、ST2,3の順に同様の動作を送液する培養容器が無くなるまで繰り返す。もし異なる液体を送液する場合には、送液部を滅菌部の滅菌空間に移動させ(ST4)、滅菌処理を行ってから(ST5)、ST2以降の動作を行う。
 上記は本実施例における回転テーブルに培養容器を設置した例を用いて説明したが、要は第1の液体が送液された後、第2の液体が送液される前に、滅菌処理を行えばよい。また、本例では2種類の液体を用いる場合を想定して説明したが、培養容器に送液する液体の種類は、何種類かを問わず、液体の種類が変更となるタイミングで滅菌処理を複数回行えばよいことは言うまでもない。また、上記説明した複数種類の液体を送液する工程を、図7(B)を用いて説明した上記送液工程と組み合わせればより内因性汚染リスクを軽減できることは言うまでもない。
 実施例1及び2では、1つの滅菌部が固定された状態での実施例を示したが、滅菌部の数はこれに限られるものではなく、また、可動式なものとしてもよい。滅菌部を可動式とすることにより、送液部等の滅菌対象の構成と滅菌部との距離をより近くすることが可能となるため、滅菌部内の空間へ滅菌対象物を収容する時間をより短縮する事が可能とができ、高速に滅菌処理を完了することが可能となる。さらに、送液部の移動距離が短いため、内因性の汚染リスクをより低減することが可能となる。本実施例では、図8、図9を用い可動式の滅菌部について説明する。
 図8(A)及び図9は、滅菌部801と送液部802とが連動して駆動する例である。滅菌部801は、送液部802の駆動レール805と同一の駆動レールに設置されており、モータ等の駆動機構を設置する。滅菌時は、送液ノズルがテーブルの回転軸による回転と同じ方向、または逆方向に回転し、連動して駆動した滅菌部の内部へ送液ノズルを収容し、滅菌を実施する。駆動機構は、図9のように送液部の駆動機構と併用させてもよい。これにより、装置の小型化が可能となる。
 あるいは、送液部用とは別の駆動機構や駆動レールを設けて滅菌部801を配置してもよい(図示しない)。別々の駆動レールの場合、例えば、滅菌時、2本の駆動レールが近接するように移動し、結果として送液部802及び滅菌部803が隣り合う位置に移動する。その状態で滅菌部801内に送液部802を収容し、滅菌を実施する。2本の駆動レールを有することで送液部802と滅菌部801を独立に稼動することが可能である。これにより、培養容器へ送液するタイミングと、滅菌を実施するタイミングを調整し、両者の実施に要する時間が最短となるよう調整することが可能となる。
 滅菌部801は、送液部に対し距離が近い位置に移動し待機する。そして、送液部が送液処理を行った後、滅菌部801内の空間へ収容されるように、送液部、または滅菌部801の何れか、または両方が移動する。
 滅菌部801が稼働することで、送液部と常に近い距離を保つことができるため、移動時間のロスがなく迅速に滅菌処理を行うことが可能となる。さらに、汚染された送液部がインキュベータ803内の空間を移動する距離が短くなるため、内因性の汚染リスクを軽減させることが可能となる。尚、804は培養容器を示す。以降の図においても同様である。
 図8(B)は、一群の培養容器ごとに、対応する滅菌部805を複数配置する例である。例えば、実施例2の多段型の回転テーブルであれば、各回転テーブルに設置された培養容器群ごとに滅菌部805を配置する。送液部は、培養容器群ごと、あるいは送液する液体の種類ごとに滅菌処理を行うべく、最も近くに配置されている滅菌部805へと移動する。この構成により、移動時間のロスがなく迅速に滅菌処理を行うことが可能となる。さらに、汚染された送液部がインキュベータ803内の空間を移動する距離が短くなるため、内因性の汚染リスクを軽減させることが可能となる。
 また、複数の滅菌部805は、培養容器群ごとに、異なる種類の滅菌処理手段を有していてもよい。これにより、例えば培養容器群ごとに送液する液体の種類が異なる場合であっても、各液体に対応した滅菌部を配置することになるため、内因性の汚染リスクの種類が複数であっても、各汚染リスクに合った滅菌処理を施すことができ、より内因性の汚染リスクを低減させることが可能となる。
 図10を用い、滅菌部1001において送液部1002を洗浄する場合の一例について説明する。培地等の送液後に洗浄を施さず滅菌処理を実施すると各溶液の成分が析出等により残留するリスクを抑制するため、送液部1002を洗浄後により滅菌処理する。これによりその後の送液過程への影響を回避することが可能となる。
 まず、洗浄液には滅菌水、PBS(Phosphate Buffered Saline)溶液、消毒用エタノール等を用いる。洗浄後の残留性を考慮すると滅菌水が好ましい。洗浄液は培地ボトル等と並行した位置に設置し、電磁弁等の切り替えにより洗浄時における洗浄液の送液を可能とする。
 図10(A)が示すように、滅菌部1001内で送液部1002のみを洗浄する場合、つまり送液ノズルの供給口1002A・排出口1002Bの内部及び外部を洗浄する場合、供給口1002Aと排出口1002Bを連結する洗浄治具1003を滅菌部1001内に設置し、洗浄時は両部品を洗浄治具へ連結する。この時、送液ノズル1002及び洗浄治具1003の外部へ洗浄液が漏出しないよう、気密性を有する。その状態で、通常の培地交換と同過程により送液ノズル1002及び洗浄治具1003への洗浄液の供給・排出を行うことで両者の内部及び外部を洗浄する。ここまでの機能により、送液ノズルの内部及び外部の洗浄が可能となり、一方、送液ノズルにおいて洗浄治具内に設置されなかった部分は洗浄されない。この機能のみを搭載する場合については、滅菌部の壁面に気密性を有していなくともよい。洗浄後は前述した清浄化方法により滅菌または消毒を実施する。その後、後述する乾燥工程を必要に応じ実施する。本図における洗浄治具1003はJ型の形状を有している。これは、本実施例では供給口1002Aと排出口1002Bの長さが異なっており、長さが異なる2本の送液ノズルを最短で連結するために“J”型の形状となっている。言いかえれば、洗浄治具1002Bにおける、排出口1002Bの排出ノズルが挿入される挿入口から設置面までの長さよりも、供給口1002Aの供給ノズルが挿入される挿入口から設置面までの長さの方が長い。他の実施例として2本の送液ノズルの長さが等しい場合はJ型ではなくU型となる。また、別々の治具を設けて、2つの挿入治具間が連絡しないように構成してもよく、その場合は洗浄液の供給及び排出するルートを別途設けてもよい。但し、別々に設けるより、供給ノズルから洗浄液を供給し、排出ノズルから洗浄液を排出する構成が最も単純であり必要な機構を少なくできる。洗浄治具1003はさらに、送液ノズルの長さに合わせ、形状を変更してもよい。尚、洗浄治具1003は2本の送液ノズルを最短に結ぶことで、洗浄対象となる空間を最も小さくすることができ、よって結果として洗浄時間の短縮、必要な洗浄液の量の削減といった効果を得ることが可能となる。
 滅菌部1001内において、滅菌部1001全体を洗浄する場合、つまり送液ノズルの供給口・排出口の内側だけでなく、洗浄治具内に収容されていない部分の送液ノズルの外側や、滅菌部1001の内側(内壁)等を洗浄する場合、図4(B)にて前述した消毒用エタノールまたは過酢酸及び過酸化水素の混合液に対する噴霧機構と同等のものを使用する。洗浄に使用する場合の噴霧機構は、洗浄液に対する供給機構と流路チューブ等を介し連結しており、噴霧時に噴霧機構へ供給する。また滅菌部の壁面は送液ノズルの収容時において気密性を有している。送液ノズルを滅菌部1001内へ移動後、噴霧機構より洗浄液を送液ノズル及び滅菌部1001内へ噴霧し両者を洗浄する。洗浄後は前述した方法により滅菌または消毒を実施する。その後、後述する乾燥工程を必要に応じ実施する。
 尚、本実施例では例えば滅菌の前に洗浄する例を説明したが、洗浄治具の形状は、他の滅菌方法の場合に合わせ具備してもよく、長さの異なる排出ノズル、供給ノズルの形状に合わせた治具の形状とすることで、滅菌したい部分を局所的に滅菌する事が可能となるため、効率的な滅菌が可能となる。
 図11を用い滅菌部1101における送液部1102の乾燥方法について説明する。送液部1102の乾燥は、滅菌または消毒や洗浄後の送液ノズルに液滴が付着している場合、乾燥を施さずに細胞播種、培地交換等を実施すると、送液過程の送液量精度に影響が生じるため、それを回避するため実施する。尚、乾燥前に培地や清浄化に使用した溶液等が付着している場合、それらの成分が析出等により残留する可能性があり、その後の送液工程に影響を及ぼす可能性がある。よって乾燥工程前には洗浄等によりそれらの溶液が付着していない状態としてから実施する。
 乾燥にはフィルタ1103を介し装置外から取り込んだ清浄な空気等を使用する。取り込んだ直後に、フィルタ1103と同空間内に設置した電熱線1104により加温し、温風として送気した方が乾燥効率は向上する。清浄な空気の取り込み口は、培地ボトル等と並行した位置に設置し、電磁弁等の切り替えにより乾燥時は空気の送気を可能とする。フィルタ1103は例えば0.22μm以下の物質のみを通過させる性能を有したものが好ましく、これにより装置内に取り込んだ空気の清浄性を確保する。清浄な空気を送液ノズルの供給口から滅菌部1101内へ充填後、排出口を通過し培養上清ボトル1105のフィルタ1106より装置外へ排出する。または、本図では示していないが、培養上清ボトル等と並行した位置にフィルタを設置し、電磁弁等の切り替えにより乾燥時に空気の排出を可能とする。培養上清ボトルのフィルタより装置外へ排出する場合、図11(B)に示すように培養上清ボトル内の2本の流路チューブは共に気相内にあり、これにより培養上清ボトル内の培養上清1107が空気により装置外へ押し出されることはなく、空気のみをフィルタ1106を通じ装置外へ排出可能とする。
 乾燥時、滅菌部1101内で送液ノズルのみを乾燥する場合、つまり送液ノズルの供給口・排出口の内側及び外部のみを乾燥する場合、前述した供給口と排出口を連結する洗浄治具と同等の乾燥治具を滅菌部1101内に設置し、乾燥時は両者を連結してもよい。この時、送液ノズル及び乾燥治具の外部へ空気が漏出しないよう気密性を有するようにする。気密性を有することで、乾燥時に送気された空気のインキュベータ内への漏出を回避し、結果としてインキュベータ内の二酸化炭素濃度を保つことができる。尚、気密性を有さない場合、インキュベータ内の気相成分が変化し、細胞の培養に影響が生じうる。乾燥治具を用いた状態で、通常の培地交換と同過程により送液ノズル及び乾燥治具への空気の供給・排出を行うことで両者を乾燥する。この機能に限っては、滅菌部の壁面に気密性は必要ないが、特に乾燥に使用する空気を加温する場合は断熱性を必要とする。乾燥工程により滅菌部1101外へ温度が伝導し、結果としてインキュベータ内で培養している細胞へ影響が生じることを回避するためである。尚、乾燥治具に断熱性能を付与しても良い。
 滅菌部1101内において、滅菌部1101全体を乾燥する場合、つまり送液ノズルの乾燥治具内に収容された供給口・排出口の内側及び外側だけでなく、収容されなかった送液ノズルの外部や、滅菌部1101の内壁等を乾燥する場合、前述した乾燥治具は用いずに、滅菌部1101内全体へ乾燥のための空気を充填する。この時、滅菌部1101の壁面は送液ノズルの収容時において気密性及び断熱性を有している。送液ノズルを滅菌部1101内へ移動後、供給口より空気を送液ノズル及び滅菌部1101内へ充填し、両者を乾燥する。
 以上に説明した構成、及び図1、図12、図13にて説明する構成を用いた、本細胞培養装置の一連の動作について、図14のフローチャートを用い一例を説明する。尚、各構成の動作、例えば駆動機構の駆動や送液部による送液動作は、制御部1204によって一括制御されてもよいし、各構成ごとに独立制御する機構を内蔵していてもよい。
 装置動作の説明前に、まず図12を用い本装置の機構を説明する。インキュベータ1201をクリーンベンチまたは安全キャビネット1202内に収容し、クリーンベンチまたは安全キャビネット1202が有する清浄化維持機能を組み合わせる。安全キャビネット1202内に装置を収容する事により、より高い清浄性を維持可能となる。インキュベータ1201で作業者が手作業による操作、例えば流路設置や培養容器取り出し等を実施する場合、クリーンベンチまたは安全キャビネット1202の扉1203を開けた状態で実施する。自動培養中は扉1203を閉じた状態とし、クリーンベンチまたは安全キャビネット1202が有する清浄化維持機能によりインキュベータ1201の周囲の清浄性も維持する。本例では自動培養に使用する培地等は、クリーンベンチまたは安全キャビネット1202の下方に設置した冷蔵庫1204内に収容する。冷蔵庫の隣には、自動培養時に装置を制御する制御部1205を設置する。インキュベータ1201内には前述の滅菌部が収容されている。また図13が示すような制御機構を有する。
 中央処理部(CPU)や記憶部、入出力インタフェース部等を備えるコンピュータ構成のパーソナルコンピュータ(PC)などの制御端末1301は、細胞観察を行うCCDカメラ等を具備した観察部1302、昇降機構レールに付設された観察部1302の昇降モータ1303、培地交換を行う送液部を駆動させる駆動機構モータ1304、回転テーブルを駆動させる回転テーブルモータ1305、送液部に具備され、液体の供給、排出を夫々促す供給ポンプ1306、排出ポンプ1307、培地ボトル等の内部の液体の重量を測定する重量センサ1308に、夫々配置されている。
 以上の機能を有する滅菌部を含む細胞培養装置により再生組織を製造し移植に使用する一連の手順を図4に示したステップを基に説明する。
<ステップS1:流路設置>
 事前に培養に使用する流路等をインキュベータ101内の流路部109に無菌的に設置する。流路は単回使用、言い換えれば使い捨てでの使用とする場合、細胞懸濁液の入った細胞ボトル112、培地の入った培地ボトル102、培養上清を回収する培養上清ボトル103、洗浄液の入った洗浄ボトル(図示しない)等と、それらをつなぐ流路チューブから成る滅菌済の流路を無菌的に設置する。送液部110が具備する送液ノズル等を含む流路を単回使用ではなく複数回使用とする場合、事前に送液ノズル等を含む流路チューブを滅菌する。この場合の滅菌方法はステップS3にて後述する。これらにより培養工程に対し生物学的汚染等の支障が生じないようにする。
<ステップS2:スタート>
 細胞培養装置を起動させる。作業者が制御装置にある操作部のスタートスイッチを押し起動する。制御部のディスプレイの操作画面にて細胞培養装置の内部環境が適切であることを確認する。例えばインキュベータの温度が37℃であることを確認する。これらの数値は限定的なものでなく、例えば温度は0℃から45℃の範囲より選択可能である。
<ステップS3:細胞培養装置内の消毒或いは滅菌>
 装置内に対し消毒或いは滅菌を実施する。ここでの消毒或いは滅菌は、前述の滅菌部による培養工程中での滅菌の意味ではなく、培養開始前に、滅菌部に限定せずインキュベータ内全体を対象とし実施するものを意味している(以下、これを「前処理滅菌」と言う)。前言処理滅菌の方法として、消毒或いは滅菌を実施可能な機構を、滅菌部113とは独立にインキュベータ101の内側或いは外側に別途搭載し使用しても良いが、滅菌部113により、前処理滅菌(外因性の汚染の滅菌)と、培養中の滅菌(内因性の汚染の滅菌)の両方を行ってもよい。前処理例えば過酸化水素ガス等の滅菌ガスを充填する機能を滅菌部113が有する場合、本ステップでは滅菌部の一部を開放した状態、例えば送液ノズルを収容していない、滅菌部113が気密性を有していない状態で滅菌ガスを送気することによりインキュベータ内全体に充填し、滅菌終了後は送液ノズルの排出口より排出する。或いは、例えば消毒用エタノールを噴霧する機能を滅菌部113が有する場合、同じく滅菌部113の一部を開放した状態、例えば送液ノズルを収容していない、滅菌部113が気密性を有していない状態で消毒用エタノールを噴霧したり、図8において説明したように滅菌部が有する移動機構によりインキュベータ内の特定の位置に対し噴霧したりすることで消毒を行う。そして滅菌或いは消毒終了後は、乾燥或いは洗浄を行う。このように、本発明の滅菌部は内因性の汚染リスクの抑制のみに留まらず、培養開始前の外因性汚染リスク排除と併用して用いることも可能であり、滅菌処理全体の効率を高めることができる。
<ステップS4:培養容器培養容器の設置>
 細胞培養装置内の消毒或いは滅菌を実施後、培養容器を無菌的に装置内に設置する。
<ステップS5:スケジュール決定>
 細胞培養装置の実施する自動培養スケジュールを決定する。細胞播種、培地交換、培養上清回収、ガス交換、顕微鏡観察、検査用組織回収、移植用組織回収等の操作を行う日時、液量等の条件を、制御部106に制御させるべく、制御用培養端末より入力する。
<ステップS6:細胞播種>
 細胞を播種する培養容器と対応する電磁弁を開閉後、チューブポンプ(図示しない)を作動させ細胞ボトルより細胞懸濁液を吸引する。細胞懸濁液を培養容器107まで送液ノズルの供給口を介し送液する。必要に応じ、培養容器107を設置して保持させる培養容器部111にアクチュエータを取り付け、全培養容器に対し播種終了後にアクチュエータを作動させ培養容器ベースへ傾きを与え揺動し、培養容器内の細胞分布を一様化してもよい。
<ステップS7:送液ノズルの清浄化>
 細胞播種後、滅菌部113内に送液ノズルを収容し清浄化を行う。清浄化の方法に応じ、上述した洗浄、乾燥をさらに実施する。清浄化の実施頻度に応じ滅菌部113に移動機構を設け、清浄化に必要な時間を短縮させても良い。
<ステップS8:培養>
 細胞播種直後、インキュベータ内の温度及び気体組成を制御することで細胞の培養を行う。供給する気体は例としてCO2濃度5%を含む空気を用いることが望ましい。温度は例として37℃とする。装置内の空気はファンにより常に攪拌し、温度分布が一様となるようにする。尚、本例では示していないが、装置にパーティクルカウンタや生菌数計測装置を取り付け清浄度のモニタリングを実施することにより、製造安全性の向上が可能である。
<ステップS9:顕微鏡による観察>
 細胞培養装置内に設置した顕微鏡を用い細胞画像を取得する。顕微鏡の光源を適宜発光させ、細胞に焦点を合わせ撮像する。取得した細胞画像は制御部内のデータベースに保存し、制御用端末上で閲覧し細胞の状態を作業者が適宜確認する。また自動細胞撮影時以外は、作業者が必要に応じ顕微鏡を手作業で操作し、細胞の観察、撮影を行う。
<ステップS10:培地交換>
 培地交換は培養期間中、数日に一度の頻度で実施する。冷蔵庫内で4℃にて保管されている培地を使用する。インキュベータ内で事前に予熱する。最初に培養容器から古い培地を排出する。この時、培養容器ベースにアクチュエータを設置している場合は、培養容器を傾け排出効率を向上させる。排出後、速やかに新しい培地を培養容器内へ供給する。古い培地は最終的に培養上清ボトル103へ排出する。必要に応じ培養上清ボトル内の培養上清を回収し、培地成分分析により細胞の生育状態を評価する。培地交換(供給または排出)のステップS12は、培養する細胞の種類等にもよるが、所定の培養期間ごとに複数回繰り返し行ってもよい。
<ステップS11:送液ノズルの清浄化>
 培地交換(供給または排出)後、ステップS7と同じく滅菌部103内に送液ノズルを収容し清浄化を行う。清浄化の方法に応じ洗浄、乾燥をさらに実施する。清浄化の実施頻度に応じ滅菌部に対し移動機構を設け、清浄化に必要な時間を短縮させても良い。
<ステップS12:検査用組織の回収>
 移植予定日の前日、培養中の培養容器の一部を検査用に回収する。細胞培養装置の扉を開け培養容器を取り出す。取り外した培養容器は、装置とは別の安全キャビネット又はCPC外へ搬送し、速やかに検査を実施する。例えば生体試料の細胞数、生存率、特定タンパク質の発現等を評価する。
<ステップS13:移植直前の培養及び培地交換>
 ステップS8と同じ操作による培養を行う。そしてステップS14を実施する直前に、ステップS10と同じ操作による培地交換を行う。培地交換後は、特にステップS14までに複数回の培地交換を実施する場合、培地交換の度にステップS7と同じ送液ノズルの清浄化を行う。
<ステップS14:移植用組織の回収>
 ステップS12による評価の結果、移植に適した状態と判定した場合、生体試料を回収し再生医療治療に用いる。S12同様、培養容器培養容器をインキュベータから取り出す。必要に応じ安全キャビネット内へ運び処理を行う。ステップS12による評価の結果、移植に適していない状態と判定した場合、培養の継続或いは中止を選択する。培養を継続する場合はステップS8に戻る。培養を中止する場合はステップS16へ進む。
<ステップS15:輸送容器への収容及び輸送>
 出荷室にて短距離用又は長距離用の輸送容器内へ培養容器培養容器を収容する。蓄熱材、気密容器、包装等を用いることで輸送中の全行程にわたり温度、圧力、衝撃等の影響を回避し、製造時と同等の清浄性を維持する。輸送容器をCPC外へ運び出し、手術室まで必要に応じ車両、鉄道、航空機、手運び等の手段により輸送する。
<ステップS16:細胞培養装置内の消毒或いは滅菌>
 自動培養に使用した流路等を回収し廃棄する。その後、ステップS3と同じ方法により細胞培養装置内の消毒或いは滅菌を実施する。
 以上の実施例では、装置内で内因性の汚染リスクを抑制する構成及び動作について説明したが、当該構成や動作は、例えば細胞を大量かつ効率的に製造する工場(以下「細胞培養工場」とする。)内において、細胞培養システムとして適用することも可能である。以下、その一例について図15を用いて説明する。
 図15は、細胞培養工場内の各セクションを示したものである。以下、各セクションの役割と処理順序について説明する。尚、上記実施例の自動培養装置内の動作と同様の部分については省略する。本実施例では、組織やiPS(induced pluripotent stem cell)細胞を用いた実施例について説明するが、使用する細胞種はこれに限るものではないことは言うまでもない。
 まず、培養対象となる原料細胞が、細胞前処理セクション1501に収容される。細胞前処理セクション1501では、続く工程である培養セクションでの培養に適した形態へと処理する。具体的には、原料細胞が患者から採取した皮膚、口腔粘膜といった生体試料の場合、単一細胞状態や不要な細胞を除去した状態へと処理を施す。これは自家移植を想定しており、処理後は自家培養セクション1502へ移動する。原料細胞があらかじめ品質検査のなされた凍結保存状態である場合、融解等を行う。これは他家移植を想定しており、処理後は他家培養セクション1503へ移動する。
 細胞前処理セクション1501によって処理された組織は、原料細胞を採取した特定個人用に移植する再生組織を培養する自家培養セクション1502、または、原料組織を有する特定個人以外の他人用に移植される再生組織を培養する他家用培養セクション1503の何れか移送され、各培養セクションの培養空間へ搬入される。
 自家培養セクション1502では、図15のように、培養する組織の種類(各幕、軟骨、心筋等)ごとに、複数のユニットを設けてもよい。他家培養セクション1503では、例えば原料細胞として品質評価済みの表皮細胞を用い大量に培養表皮を製造する。或いは、原材料としてiPS細胞等の多分化能を有した細胞を用いる場合、未分化状態を維持したまま大量培養し、適切な細胞種へ分化誘導し、その後に各種の再生組織を大量に製造する。 自家培養セクション1502、他家培養セクション1503の夫々で培養された再生組織は、品質検査セクション1504に移送され、各再生組織の品質を検査した後、梱包セクション1505にて細胞輸送容器に梱包し工場外へ出荷する尚、培養セクション1502,1503によって培養された再生組織は、品質検査セクション1504に移送される前に、凍結し長期的な保存を行う凍結・解凍セクション1506への移送を介してもよい。
 各培養セクションには、細胞や組織を培養する培養空間が形成されており、細胞を保持する培養容器、培養容器内に液体を供給、排出する送液機構、送液機構を駆動させる駆動する駆動機構、培養容器を保持する保持部を有する保持機構等が配置されている(図示しない)。各機構の動作については、実施例1~5にて示した送液部、駆動機構等の動作と重複するため省略する。制御機構においても、上記実施例の制御部と同様、機構全体を統括する制御機構によって制御してもよいし、機構ごとに独立して制御を行ってもよい。
 培養空間内には、実施例1~5にて説明した滅菌部に対応する、滅菌区域が設定されており、当該滅菌区域内に、実施例1にて説明したUVランプや洗浄手段等のような滅菌機構(図示しない)が設置されている。図15には一例として、他家培養セクション1503に滅菌区域1506を設置した例を示している。自家培養セクション1502の各再生組織用の各装置内それぞれに滅菌部を設けてもよいし、各装置外に設置し共用で使用してもよい。
 培養空間内には、実施例2にて示した筺体(インキュベータ)内の培養容器部と同様の、培養容器収容部を設置し、他の空間から隔離した空間を形成してもよい。
 以上の構成を用いて、例えば細胞培養工場等の培養空間を有する施設において、実施例1~5にて説明した機構及び動作手順に基づいて、細胞培養システムを構築することが可能となる。
 以上に説明してきた実施例1~6にてしてきた本願発明の構成について、あくまで一例を示すと以下のようになる。
 構成1:細胞を筺体内で培養する細胞培養装置であって、前記筺体内に、前記筺体内に配置される部品の一部を滅菌する空間を形成する滅菌部を有することを特徴とする細胞培養装置である。
 構成2:前記筺体内の部品は、前記筺体内に設置された培養容器内の液体を供給または排出する送液部であることを特徴とする構成1記載の細胞培養装置である。
 構成3:前記滅菌部は、前記筺体内で細胞が培養される期間中に、前記送液部を滅菌することを特徴とする構成2記載の細胞培養装置えある。
 構成4:前記筺体内に、前記培養容器が設置される空間を形成する培養容器部を有し、前記滅菌部は、前記培養容器部内に設置されることを特徴とする構成2記載の細胞培養装置である。
 構成5:前記送液部を移動させる駆動機構をさらに有し、前記駆動機構は、前記送液部の少なくとも一部を、前記滅菌部内の空間に移動させることを特徴とする構成2記載の細胞培養装置である。
 構成6:前記送液部は、前記培養容器内に液体を供給する供給ノズルと、前記培養容器内の液体を排出する排出ノズルと、を有し、前記送液部は、前記供給ノズルの長さよりも前記排出ノズルの長さの方が長くなるように形成され、前記滅菌部の内部に、前記供給ノズルが収容される第1挿入口と、前記排出ノズルが収容される第2挿入口とを有する治具を有し、前記治具は、当該治具の設置面から第1挿入口までの長さの方が、前記治具の設置面から前記第2挿入口までの長さよりも長くなるように形成されることを特徴とする構成5記載の細胞培養装置である。
 構成7:前記送液部は、前記筺体内部に保持された複数の前記培養容器の夫々に、第1の液体または第2の溶液の何れかを供給し、前記滅菌部は、前記送液部が、前記第1の液体を供給した後、前記第2の液体を供給する前に、前記送液部を滅菌することを特徴とする構成3記載の細胞培養装置である。
 構成8:細胞を培養空間内で培養させる細胞培養システムであって、前記培養空間内に形成された滅菌区域内の滅菌機構によって、前記培養空間内に形成される機構の一部を滅菌させることを特徴とする細胞培養システムである。
 構成9:前記培養空間内に形成される機構の一部は、前記培養空間内に設置された培養容器内の液体を供給または排出する送液機構であることを特徴とする構成8記載の細胞培養システムである。
 構成10:前記培養空間内で細胞が培養される期間中に、前記送液機構を前記滅菌機構によって滅菌させることを特徴とする構成9記載の細胞培養システムである。
 構成11:前記培養空間内に、前記培養容器が収容される空間を形成する培養容器収容部を有し、前記滅菌区域は、前記培養容器収容部内に設置されることを特徴とする構成9記載の細胞培養システムである。
 構成12:前記送液機構を移動させる駆動機構をさらに有し、前記駆動機構によって、前記送液部の少なくとも一部を、前記滅菌区域内に収容させることを特徴とする構成9記載の細胞培養システムである。
 構成13:前記送液機構は、前記培養容器内に液体を供給する供給ノズルと、前記培養容器内の液体を排出する排出ノズルと、を有し、前記送液機構は、前記供給ノズルの長さよりも前記排出ノズルの長さの方が長くなるように形成され、
前記滅菌区域内に、前記供給ノズルが収容される第1挿入口と、前記排出ノズルが収容される第2挿入口とを有する治具を有し、前記治具は、当該治具の設置面から第1挿入口までの長さの方が、前記治具の設置面から前記第2挿入口までの長さよりも長くなるように形成されることを特徴とする構成12記載の細胞培養システムである。
 構成14:前記送液機構は、前記培養空間内部に保持された複数の前記培養容器の夫々に、第1の液体または第2の溶液の何れかを供給し、前記滅菌機構によって、前記送液機構が前記第1の液体を供給した後、且つ前記第2の液体を供給する前に、前記送液機構を滅菌させることを特徴とする構成10記載の細胞培養システムである。
 構成15:培養空間内に搬入された細胞を培養する細胞培養システムであって、細胞を保持する培養容器内に液体を供給または排出する送液機構と、前記送液機構を滅菌する滅菌区域とが、前記培養空間内に形成され、細胞培養期間中に、前記送液機構の少なくとも一部を前記滅菌区域内に収容させることを特徴とする細胞培養システムである。
101、403.803.1201・・・インキュベータ
102・・・培地ボトル
103、1105・・・培養上清ボトル
104,1204・・・冷蔵庫
105・・・気体供給部
106・・・制御部
107,501、701,804・・・培養容器
108・・・観察部
109・・・流路部
110,802,1002,1102・・・送液部
111・・・培養容器部
201・・・培養容器の蓋
202・・・培養容器本体
203・・・培養容器固定ユニット
301・・・培養容器
302・・・回転テーブル
303・・・固定ユニット
304・・・培地交換ユニット
305・・・ポンプ
306,402,406,410、412,708,801、805、1001,1101・・・滅菌部
307,505・・・供給口
308,506・・・排出口
401・・・UVランプ
404・・・液体ノズル
405・・・噴霧機構
407・・・供給機構
408・・・ガス発生機構
409・・・ガス排出機構
411・・・高温加圧機構
502,702,703・・・回転テーブル
503・・・蓋開け棒
504・・・スリット
507、705・・・培地交換ユニット
508、707・・・切り欠き
509、706・・・昇降機構レール
510・・・培養容器蓋開け治具
601・・・培養容器傾斜用突起
705・・・ポンプ
1003・・・洗浄治具
1103、1106・・・フィルタ
1104・・・電熱線
1202・・・安全キャビネット
1203・・・扉
1205・・・制御部
1301・・・制御端末
1302・・・観察部
1303・・・昇降モータ
1304・・・駆動機構モータ
1305・・・回転テーブルモータ
1306・・・供給ポンプ
1307・・・排出ポンプ
1308・・・重量センサ
1501・・・細胞前処理セクション
1502・・・自家培養セクション
1503・・・他家培養セクション
1504・・・品質検査セクション
1505・・・梱包セクション
1506・・・凍結・解凍セクション

Claims (15)

  1. 細胞を筺体内で培養する細胞培養装置であって、
    前記筺体内に、前記筺体内に配置される部品の一部を滅菌する空間を形成する滅菌部を有することを特徴とする細胞培養装置。
  2. 前記筺体内の部品は、前記筺体内に設置された培養容器内の液体を供給または排出する送液部であることを特徴とする請求項1記載の細胞培養装置。
  3. 前記滅菌部は、前記筺体内で細胞が培養される期間中に、前記送液部を滅菌することを特徴とする請求項2記載の細胞培養装置。
  4. 前記筺体内に、前記培養容器が設置される空間を形成する培養容器部を有し、
    前記滅菌部は、前記培養容器部内に設置されることを特徴とする請求項2記載の細胞培養装置。
  5. 前記送液部を移動させる駆動機構をさらに有し、
    前記駆動機構は、前記送液部の少なくとも一部を、前記滅菌部内の空間に移動させることを特徴とする請求項2記載の細胞培養装置。
  6. 前記送液部は、前記培養容器内に液体を供給する供給ノズルと、前記培養容器内の液体を排出する排出ノズルと、を有し、
    前記送液部は、前記供給ノズルの長さよりも前記排出ノズルの長さの方が長くなるように形成され、
    前記滅菌部の内部に、前記供給ノズルが収容される第1挿入口と、前記排出ノズルが収容される第2挿入口とを有する治具を有し、
    前記治具は、当該治具の設置面から第1挿入口までの長さの方が、前記治具の設置面から前記第2挿入口までの長さよりも長くなるように形成されることを特徴とする請求項5記載の細胞培養装置。
  7. 前記送液部は、
    前記筺体内部に保持された複数の前記培養容器の夫々に、第1の液体または第2の溶液の何れかを供給し、
    前記滅菌部は、
    前記送液部が、前記第1の液体を供給した後、前記第2の液体を供給する前に、前記送液部を滅菌することを特徴とする請求項3記載の細胞培養装置。
  8. 細胞を培養空間内で培養させる細胞培養システムであって、
    前記培養空間内に形成された滅菌区域内の滅菌機構によって、前記培養空間内に形成される機構の一部を滅菌させることを特徴とする細胞培養システム。
  9. 前記培養空間内に形成される機構の一部は、前記培養空間内に設置された培養容器内の液体を供給または排出する送液機構であることを特徴とする請求項8記載の細胞培養システム。
  10. 前記培養空間内で細胞が培養される期間中に、前記送液機構を前記滅菌機構によって滅菌させることを特徴とする請求項9記載の細胞培養システム。
  11. 前記培養空間内に、前記培養容器が収容される空間を形成する培養容器収容部を有し、
    前記滅菌区域は、前記培養容器収容部内に設置されることを特徴とする請求項9記載の細胞培養システム。
  12. 前記送液機構を移動させる駆動機構をさらに有し、
    前記駆動機構によって、前記送液部の少なくとも一部を、前記滅菌区域内に収容させることを特徴とする請求項9記載の細胞培養システム。
  13. 前記送液機構は、前記培養容器内に液体を供給する供給ノズルと、前記培養容器内の液体を排出する排出ノズルと、を有し、
    前記送液機構は、前記供給ノズルの長さよりも前記排出ノズルの長さの方が長くなるように形成され、
    前記滅菌区域内に、前記供給ノズルが収容される第1挿入口と、前記排出ノズルが収容される第2挿入口とを有する治具を有し、
    前記治具は、当該治具の設置面から第1挿入口までの長さの方が、前記治具の設置面から前記第2挿入口までの長さよりも長くなるように形成されることを特徴とする請求項12記載の細胞培養システム。
  14. 前記送液機構は、
    前記培養空間内部に保持された複数の前記培養容器の夫々に、第1の液体または第2の溶液の何れかを供給し、
    前記滅菌機構によって、前記送液機構が前記第1の液体を供給した後、且つ前記第2の液体を供給する前に、前記送液機構を滅菌させることを特徴とする請求項10記載の細胞培養システム。
  15. 培養空間内に搬入された細胞を培養する細胞培養システムであって、
    細胞を保持する培養容器内に液体を供給または排出する送液機構と、前記送液機構を滅菌する滅菌区域とが、前記培養空間内に形成され、
    細胞培養期間中に、前記送液機構の少なくとも一部を前記滅菌区域内に収容させることを特徴とする細胞培養システム。
PCT/JP2014/053394 2014-02-14 2014-02-14 細胞培養装置及び細胞培養システム WO2015121954A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053394 WO2015121954A1 (ja) 2014-02-14 2014-02-14 細胞培養装置及び細胞培養システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053394 WO2015121954A1 (ja) 2014-02-14 2014-02-14 細胞培養装置及び細胞培養システム

Publications (1)

Publication Number Publication Date
WO2015121954A1 true WO2015121954A1 (ja) 2015-08-20

Family

ID=53799721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053394 WO2015121954A1 (ja) 2014-02-14 2014-02-14 細胞培養装置及び細胞培養システム

Country Status (1)

Country Link
WO (1) WO2015121954A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231412A (zh) * 2021-12-07 2022-03-25 华中科技大学同济医学院附属协和医院 一种细胞培养板专用暗盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011593A1 (ja) * 2002-07-31 2004-02-05 Japan Science And Technology Agency 生体由来の細胞または組織の自動培養装置
JP2008054690A (ja) * 2007-10-11 2008-03-13 Kawasaki Heavy Ind Ltd 自動細胞培養装置及びその使用方法
WO2011093218A1 (ja) * 2010-01-26 2011-08-04 株式会社日立プラントテクノロジー 発光測定装置の配管洗浄方法、発光測定装置の配管洗浄機構
WO2012141055A1 (ja) * 2011-04-13 2012-10-18 株式会社日立製作所 細胞培養装置、及び搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011593A1 (ja) * 2002-07-31 2004-02-05 Japan Science And Technology Agency 生体由来の細胞または組織の自動培養装置
JP2008054690A (ja) * 2007-10-11 2008-03-13 Kawasaki Heavy Ind Ltd 自動細胞培養装置及びその使用方法
WO2011093218A1 (ja) * 2010-01-26 2011-08-04 株式会社日立プラントテクノロジー 発光測定装置の配管洗浄方法、発光測定装置の配管洗浄機構
WO2012141055A1 (ja) * 2011-04-13 2012-10-18 株式会社日立製作所 細胞培養装置、及び搬送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231412A (zh) * 2021-12-07 2022-03-25 华中科技大学同济医学院附属协和医院 一种细胞培养板专用暗盒

Similar Documents

Publication Publication Date Title
JP5722329B2 (ja) 自動培養装置
JP6022674B2 (ja) 細胞培養装置、及び培養容器
JP4632806B2 (ja) 細胞培養施設
JP4550101B2 (ja) 自動細胞培養装置及びその使用方法
JP5982492B2 (ja) 生体試料用包装容器及びそれを用いた生体試料の輸送方法
JP4300863B2 (ja) 無菌システムとその使用方法
WO2016157322A1 (ja) 閉鎖系培養容器、輸送方法、及び自動培養装置
JP2006115798A (ja) オートクレーブ滅菌を利用した自動細胞培養装置及びその使用方法
KR20190078527A (ko) 세정, 소독, 멸균, 또는 이들의 조합을 위한 프로세스 및 장치
US8323582B2 (en) Quantitative liquid injection device of plasma sterilizer
WO2015121954A1 (ja) 細胞培養装置及び細胞培養システム
JP5886455B2 (ja) 自動培養装置
JP2010530251A (ja) 再使用可能な医療品を機械的処理するための方法
JP5421203B2 (ja) 細胞培養施設
WO2016203598A1 (ja) 培養設備
CN111001018A (zh) 一种组织检验消毒处理装置
JP2006021027A (ja) 長尺細管の低温プラズマ殺菌方法及び殺菌装置
CN113058049A (zh) 一种院感用消毒装置及消毒方法
WO2018070447A1 (ja) 培養容器連結装置、培養システムおよびニードルの洗浄方法
JP2016208866A (ja) 自動培養装置
CN105766455A (zh) 一种无菌节能的植物育苗实验装置
JP5983222B2 (ja) 細胞培養方法及び装置
CN116585496A (zh) 一种医疗用具消毒存放设备
US20210062134A1 (en) Cell treatment system
CN209790435U (zh) 一种转盘式消毒柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP