WO2015120739A1 - 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗 - Google Patents

具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗 Download PDF

Info

Publication number
WO2015120739A1
WO2015120739A1 PCT/CN2014/093898 CN2014093898W WO2015120739A1 WO 2015120739 A1 WO2015120739 A1 WO 2015120739A1 CN 2014093898 W CN2014093898 W CN 2014093898W WO 2015120739 A1 WO2015120739 A1 WO 2015120739A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
rings
sub
modulation
basic
Prior art date
Application number
PCT/CN2014/093898
Other languages
English (en)
French (fr)
Inventor
谭久彬
陆振刚
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US15/118,820 priority Critical patent/US9686892B2/en
Publication of WO2015120739A1 publication Critical patent/WO2015120739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/121Antistatic or EM shielding layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the invention belongs to the field of electromagnetic shielding of optical transparent parts, in particular to a multi-period master-slave circular array electromagnetic shielding light window with concentric rings.
  • the requirements for electromagnetic shielding windows for aerospace equipment, advanced optical instruments, communication equipment, medical diagnostic instruments and security facilities are increasing, mainly requiring optical windows.
  • superior wide-band electromagnetic shielding capability it also has extremely high light transmittance, and the smaller the impact on optical imaging, observation and detection, the better.
  • the light window of an aircraft in the field of aerospace equipment must be highly isolated from electromagnetic signals inside and outside the cabin.
  • the electromagnetic shielding of the light window should be reduced as much as possible to its transparency, especially as much as possible. It does not affect the optical detection or optical imaging functions; similarly, the optical window of advanced optical instruments must have the highest possible transmittance and the lowest possible imaging quality for high quality detection and measurement while preventing The influence of electromagnetic interference on the internal photodetector components of the instrument; for the secret construction facilities of party and government organs, military command sites, and important scientific research units, it is necessary to carry out electromagnetic shielding design to prevent indoor lighting of the window glass of the house to prevent indoor lighting.
  • the electromagnetic shielding of such a light window mainly adopts a transparent conductive film, a metal-induced transmission type multilayer film structure, a band-stop type frequency selective surface, and a metal grid having a millimeter-millimeter period.
  • the transparent conductive film is a transparent metal oxide film with indium tin oxide as the main material, which is often used in the transparent region of visible light, but can not take into account the wide light transmission band, although it has a wide microwave shielding band but shielding ability. Not strong.
  • the metal-induced transmission type multilayer film structure adopts a multi-layer thin metal film and dielectric film composite structure to realize shielding of electromagnetic waves, and has strong shielding ability for low-frequency microwaves, and the light-transmitting areas are mainly visible light and ultraviolet light, but the light transmittance is not high.
  • the frequency selective surface adopts a periodic resonant unit structure to realize the band pass or band stop filter function.
  • a metal grid with a millimeter-millimeter period can achieve a stronger low-frequency broadband electromagnetic beam because its period is much smaller than the interference electromagnetic wavelength. Shielding; and the metal grid period is much larger than the optical wavelength, which can ensure the optical transmittance of the optical band. Therefore, the millimeter-millimeter period metal grid has good transparent conductive performance, can meet the requirements of optical window for high transmittance and wide frequency band electromagnetic shielding, and has been widely used in the field of optical window electromagnetic shielding technology:
  • Patent 03135313.5 An electromagnetic shielding observation window is combined with a single or multiple metal wire mesh and a semiconductor-like quantum well structure into an electromagnetic shielding structure, which can achieve a shielding efficiency of more than 50 dB within 10 GHz.
  • the light transmittance is over 50%.
  • Patent 93242068.0 "Electromagnetic shielding glass” sandwiches a conductive metal mesh between two layers of glass, and is bonded to a metal window frame by a conductive transparent film on the outside of the glass to form an electromagnetic shielding structure, which has a certain lighting property.
  • Patent 94231862.5 No Moire Stripe Electromagnetic Shielding Observation Window is placed in parallel by two layers of different metal meshes, and they have a certain angle between the warp or weft to overcome the moire phenomenon and achieve a clearer view. .
  • Patent 02157954.7 High-screen effect anti-information leakage glass
  • Patent 200610084149.8 Electrical wave shielding film and its manufacturing method describes a highly transparent electromagnetic shielding film formed by a photolithography process having a metal mesh pattern, the main purpose of which is to reduce metal consumption and overcome metal Environmental contamination problems caused by the use of cured adhesive between the layer and the film substrate.
  • Patent 201010239355.8 "An electromagnetically shielded conformal optical window with a warp and weft grid structure" describes a conformal shape with a warp and weft metal grid structure realized by metal grid technology and conformal optical window technology
  • the electromagnetic shielding optical window mainly solves the structural design problem of the conformal optical window metal grid and improves the electromagnetic shielding performance of the conformal optical window.
  • Patent 200610010066.4 Electrically shielded optical window with annular metal grid structure describes a metal grid unit with a toroidal shape for electromagnetic shielding of an optical window; compared to a single layer of square metal mesh The grid, light transmittance and shielding ability are improved, and the stray light caused by high-order diffraction is also homogenized.
  • Patent 200810063988.0 "An electromagnetically shielded optical window having a double-layered lattice metal grid structure" describes a grid of metal grids or wire meshes having the same structural parameters placed in parallel on an optical window or a transparent substrate.
  • the electromagnetic shielding optical window composed of the side greatly improves the electromagnetic shielding efficiency without lowering the light transmittance.
  • Patent 200810063987.6 An electromagnetically shielded optical window with a double-layered annular metal grid structure describes an electromagnetically shielded optical window constructed by two layers of metal grids mounted on both sides of an optical window to solve high penetration The problem of both light rate and strong electromagnetic shielding efficiency cannot be considered at the same time.
  • the above various schemes can realize a better electromagnetic shielding effect and a certain light transmittance by using a metal grid (or a metal mesh) as a core component of the shielding.
  • a metal grid or wire mesh
  • the use of a metal grid (or wire mesh) as an electromagnetic shielding structure is inevitably affected by the diffraction of the grid in the optical band. Since the period of the metal grid is on the order of millimeters or sub-millimeters, in order to achieve higher light transmittance, the width of the metal lines is generally on the order of micrometers and submicrometers, and such structural parameters have a very strong diffraction effect in the optical band. Most of the incident light is transmitted by the metal mesh, and the transmitted portion contains zero-order diffracted light and higher-order diffracted light.
  • the zero-order diffracted light is useful information for imaging and observation, and the higher-order diffracted light constitutes stray light. , interference with imaging and detection. Therefore, the proportion of the zero-order diffracted light should be increased as much as possible.
  • the higher-order diffracted light is inevitable, the higher-order diffracted light distribution is made as uniform as possible, and the stray light formed is relatively uniform. Background or noise.
  • the metal grid is mainly a traditional grid grid structure, such as the structure mainly adopted in the above patents 1-6 (the structure of patent 7 is a kind of square structure due to processing on a curved surface), and the grid grid structure is transparent.
  • the structure of patent 7 is a kind of square structure due to processing on a curved surface
  • the grid grid structure is transparent.
  • the advanced secondary diffraction energy of the grid grid is mainly concentrated on two axes perpendicular to each other, which has certain image quality. The impact is difficult to apply even in high imaging quality requirements. Changing the diffraction characteristics of the grid generally requires changing its structural characteristics.
  • both patents 200810063988.0 and 200810063987.6 are constructed by placing double-layer metal grids parallel to the transparent substrate or substrate on both sides of the light window.
  • the two metal grids have the same unit shape and structural parameters, and the two-layer grid is optimized. The spacing can be achieved without significantly reducing the light transmittance while greatly improving the electromagnetic shielding efficiency.
  • the object of the present invention is to overcome the deficiencies of the prior art optical shielding electromagnetic shielding technical solutions, in particular to the existing single-layer square grid, single-layer ring grid, double-layer grid and ring grid.
  • a multi-period master-slave circular array electromagnetic shielding window with concentric rings is developed to achieve high-order sub-diffraction depth equalization and extremely low imaging quality. the goal of.
  • the technical solution adopted by the invention is: a multi-period master-slave circular array electromagnetic shielding light window with concentric rings, and the metal mesh in the electromagnetic shielding optical window is made of a metal ring of the same diameter as a basic ring by two-dimensional
  • the orthogonal arrangement of the closely arranged arrangement constitutes a basic structure of the two-dimensional grid and is loaded on the surface of the transparent window of the light window, and adjacent basic rings are circumscribed and connected, each of the basic rings has a concentric sub-ring pair of metal, and The outer ring of the pair of concentric rings is connected as a sub-ring to the basic ring, and the sub-ring has a secondary sub-ring connected to the inner ring of the sub-ring, the concentric ring pair and the inner ring
  • the connected secondary sub-rings together form a subunit, and the adjacent subunits have a filling ring and are connected to the subrings of the two subunits, and are simultaneously connected to the basic ring in which the subunits are located
  • the basic ring, the subunits in the basic ring and the filling ring together form a basic unit of the two-dimensional metal grid structure; there is a pair of concentric modulation rings between the basic units, and the outer circle of the concentric modulation ring pair Ring as a modulation ring and adjacent
  • Each of the two-dimensional orthogonal basic rings are circumscribed and connected, and each modulation ring has a modulation sub-ring connected with the inner ring of the ring, and the concentric modulation ring forms a modulation basic unit together with each modulation sub-ring therein;
  • the basic ring, the concentric sub-ring pair, the secondary sub-ring, the filling ring, the concentric modulation ring pair, and the modulation sub-ring have diameters of the order of millimeters and sub-millimeters, said basic ring, Concentric ring pair, secondary sub-ring, filled ring, same
  • the width of the metal line of the heart-modulating ring pair and the modulation sub-ring is on the
  • the above-mentioned multi-period master-slave circular array electromagnetic shielding light window with concentric rings wherein the number of sub-rings in each basic unit is greater than or equal to two, and the diameters are the same or different, adjacent sub-rings
  • the angle between the center of the circle and the center line of the basic ring is an arbitrary angle.
  • the sub-rings in different basic units are equal or non-equal diameter rings, the number is the same or different;
  • the number of sub-rings is greater than or equal to 2, and the diameters are the same or different.
  • the angle formed by the center of the adjacent secondary sub-ring and the center line of the sub-ring is an arbitrary angle, and the number of sub-units is different.
  • the order ring is an equal diameter or a non-equal diameter ring, the number is the same or different; the number of modulation sub-rings in each modulation basic unit is greater than or equal to 2, and the diameter is the same or different, adjacent modulation sub-rings
  • the angle between the center of the circle and the center line of the modulation ring is an arbitrary angle.
  • the modulation sub-rings in the different modulation basic units are equal or non-equal diameter rings, and the numbers are the same or different.
  • the ratio of the inner and outer diameters of the concentric sub-ring pairs is in the range of 0.2-0.8, and the ratio of the inner and outer diameters of the concentric modulation ring pair is In the range of 0.2-0.8, the inner and outer ring diameters of the concentric sub-ring pairs of different subunits are the same or different, and the inner and outer ring diameter ratios of the concentric modulation ring pairs of different modulation basic units are the same or different;
  • the sub-rings are circumscribed or intersected, and the adjacent sub-rings in the sub-unit are tangentially connected or intersected, and the secondary sub-rings are connected or intersected with the inner ring of the concentric ring pair in the sub-unit.
  • the above-mentioned multi-period master-slave circular array electromagnetic shielding light window having concentric rings the basic unit neutron ring has the same diameter, and the center circle of the adjacent sub-rings The angle formed by the basic ring center line is equal; the diameter of the secondary sub-rings in the subunit is the same, and the angle formed by the center of the adjacent secondary subring and the center line of the subring is equal; The diameters of the modulation sub-rings in the modulation basic unit are the same, and the angle formed by the center of the adjacent modulation sub-ring and the center line of the modulation ring is equal.
  • the above-mentioned multi-period master-slave circular array electromagnetic shielding optical window with concentric rings has the same number of sub-rings and equal diameters in different basic units; different sub-units The number of secondary sub-rings is the same and the diameter is equal; the number of modulation sub-rings in different modulation basic units is the same and the diameter is equal.
  • Dimensional orthogonal arrangement of closely arranged arrangements together form a two-dimensional metal grid.
  • the multi-period master-slave circular array electromagnetic shielding light window having concentric rings has different relative positions of the secondary sub-rings in different sub-units in the one basic unit. And is copied by a subunit and arranged in a basic circle, wherein any one of the subunits rotates around a center of its subcircle in a two-dimensional plane with respect to other subunits in the same basic ring; in the same row
  • the relative positions of the subunits in the adjacent basic unit are different, and the relative positions of the modulation sub-rings in the adjacent modulation basic unit are different, and are copied by a basic unit and a modulation basic unit, and then arranged in a two-dimensional orthogonal arrangement.
  • any one of the basic units is rotated at a certain angle with respect to its adjacent basic unit in a two-dimensional plane about its own substantially circular center of the circle, and any one of the modulated basic units is in a two-dimensional plane with respect to its adjacent modulated basic unit.
  • the inner circumference of the ring of the modulation ring is rotated by a certain angle.
  • the above-described multi-cycle master-slave circular array electromagnetic shielding light window having concentric rings the same basic unit in the same row rotates at the same angle with respect to the adjacent basic unit, the same The arbitrary modulation base unit in the row is the same angle of rotation relative to the adjacent modulation base unit.
  • the modulation sub-ring and the connecting metal are composed of an alloy having good electrical conductivity, and the alloy thickness is greater than 100 nm.
  • the metal grid in the electromagnetic shielding window is composed of a metal ring of the same diameter as a basic ring arranged in a two-dimensional orthogonal arrangement to form a basic structure of the two-dimensional grid and loaded on the surface of the transparent window of the light window, and adjacent
  • the basic ring is circumscribed, and the innovation of the present invention is that each basic ring has a concentric sub-ring pair of metal, and the outer ring of the concentric sub-ring pair serves as a sub-ring and the basic ring inscribed Connected, the sub-ring has a secondary sub-ring connected inwardly with the sub-ring, the concentric sub-ring forms a sub-unit together with a secondary sub-ring connected to the inner cut, and has a sub-unit between adjacent sub-units
  • a filling ring is circumscribed to the sub-rings of the two sub-units, and at the same time is in-line connected with the basic ring where the sub-unit is located, and the basic ring, the sub-units in the basic
  • the basic ring in the metal grid and the outer ring and the inner ring of the pair of concentrically modulated rings are arranged in a two-dimensional orthogonal distribution as a basic arrangement to overcome the high-order diffracted energy concentration of the traditional grid metal grid.
  • a concentric sub-ring pair is added to the basic ring to form a basic unit
  • a modulation sub-ring is added to the concentric modulation ring pair to form a modulation basic unit because in the concentric sub-ring pair and the modulation basic unit in each basic unit
  • the difference in the number, diameter and position of the modulation sub-rings makes the structure loose and disarray, so the higher-order diffraction energy is lower, and the higher-order diffraction distribution is more uniform, avoiding the appearance of a traditional grid metal grid.
  • the higher order diffracted energy is concentrated; at the same time, when the transmittance is the same, it is necessary to further increase the diameters of the basic ring and the modulation ring, thereby reducing the higher order diffracted energy of each array as a whole;
  • the sub-ring array structure and the modulation sub-ring array structure produce high-order sub-diffraction with the probability of superposition of the higher order diffraction of the basic ring array structure and the modulation ring array structure, and the number, diameter, and position of the sub-rings are optimized.
  • the higher-order secondary diffractions with higher energy do not overlap, thereby homogenizing the higher-order diffracted energy distribution, which is the present invention. It is a grid homogenization second reason advanced order diffraction energy distribution.
  • the high-order diffracted energy of itself is relatively low and the higher order diffraction
  • the distribution is relatively uniform; at the same time, by changing the ratio of the inner and outer rings of each concentric ring pair, the maximum relative intensity of the higher diffraction order can be effectively adjusted to homogenize the higher order diffracted energy distribution of the metal grid array structure as a whole. This is the metal grid homogenization of the present invention.
  • the third reason for the higher order diffracted energy distribution since the diameters of the inner rings are relatively small and the spacing is relatively large, the high-order diffracted energy of itself is relatively low and the higher order diffraction The distribution is relatively uniform; at the same time, by changing the ratio of the inner and outer rings of each concentric ring pair, the maximum relative intensity of the higher diffraction order can be effectively adjusted to homogenize the higher order diffracted energy distribution of the metal grid array structure as a whole. This is the metal grid homogenization of the present invention.
  • the third reason for the higher order diffracted energy distribution since the
  • a sub-sub-ring is added to the concentric sub-ring pair to form a sub-unit, and a filling ring is introduced between the sub-units, and the basic ring, the sub-unit and the filling ring are reconstituted into the basic unit, and when the transmittance is the same, Compared with the structure with only the basic ring and the concentric ring pair, it is necessary to further increase the diameter of the basic ring and the concentric sub-ring pair in the basic unit, thereby reducing the higher order diffracted energy of each array as a whole; The probability of superposition of the higher order diffraction of the secondary sub-rings and other ring array structures is very low, especially after the optimization of the structure and parameters, the higher-order secondary diffractions with higher energy do not overlap, thereby homogenizing the higher order diffracted energy distribution. This is the fourth reason why the metal grid of the present invention homogenizes the higher order diffracted energy distribution.
  • Each subunit can be rotated by a certain angle around the center of its sub-ring, each basic unit can be rotated by a certain angle around the center of its basic ring, and each modulation basic unit can be used to modulate the ring.
  • the center of the circle rotates at a certain angle without changing the aperture ratio of the metal grid and thus does not affect the light transmittance.
  • the energy distribution of the higher order diffraction order can be further modulated to better homogenize the higher order diffracted energy distribution. The fifth reason why the metal grid is homogenized to the higher order diffracted energy distribution.
  • the metal grid structure of the present invention can achieve depth homogenization of the higher order diffracted energy distribution of the grid, which is the most prominent effect of the present invention.
  • a concentric sub-ring pair is added to the basic ring structure, a secondary sub-ring is added to the concentric ring pair, a filling ring is introduced between the sub-rings, and a modulator is added to the concentric modulation ring pair.
  • the ring effectively improves the uniformity of the metal ring grid structure, and the subunit rotates at a certain angle around the center of the sub-ring, and the basic unit rotates a certain angle around the center of the basic ring.
  • the modulation basic unit rotates a certain angle around the center of the modulation ring, it does not change the uniformity of the metal grid structure, and effectively modulates the energy distribution of the higher-order diffraction order, and does not substantially affect the electromagnetic shielding effect.
  • the electromagnetic shielding effect can be improved even in certain preferred embodiments.
  • Figure 1 is a schematic cross-sectional view showing a preferred structure of a multi-cycle master-slave circular array electromagnetic shielding shutter having concentric rings.
  • FIG. 2 is a schematic diagram showing the distribution of a basic ring and a concentric modulation ring pair of a multi-period master-slave circular array electromagnetic shielding window with concentric rings.
  • FIG. 3 is a schematic diagram of a typical subunit of a multi-cycle master-slave circular array electromagnetic shielding window with concentric rings.
  • FIG. 4 is a schematic diagram of a typical basic unit of a multi-cycle master-slave circular array electromagnetic shielding light window having concentric rings.
  • Fig. 5 is a schematic view showing the circumscribed connection mode of the two rings.
  • Figure 6 is a schematic view showing the in-line connection of the two rings.
  • Figure 7 is a schematic illustration of a rotation of the subunits of the present invention relative to other subunits within the basic ring.
  • Fig. 8 is a schematic view showing a rotation mode of a basic unit of the present invention with respect to an adjacent basic unit.
  • Fig. 9 is a schematic view showing the structure of an existing grid.
  • Fig. 10 is a schematic diagram showing the higher order diffraction of the existing grid grid and its relative intensity distribution.
  • Figure 11 is a schematic view showing the structure of an existing ring grid.
  • Fig. 12 is a schematic diagram showing the higher order diffraction of the existing ring grid and its relative intensity distribution.
  • Figure 13 is a schematic view showing the structure of a metal grid of a preferred embodiment A of the present invention.
  • Figure 14 is a schematic diagram showing the higher order diffraction of the metal grid and its relative intensity distribution in a preferred embodiment A of the present invention.
  • Figure 15 is a comparison of the maximum relative intensity of the higher order diffraction of the three grid structures.
  • the part number in the figure shows: 1. bonding layer 2. protective layer 3. antireflection film 4. transparent substrate 5. metal grid 6. basic ring 7. sub-ring 8. secondary sub-ring 9. filling Ring 10. Modulation ring 11. Modulator ring 12. Connection metal
  • Multi-period master-slave circular array electromagnetic shielding light window with concentric rings metal grid 5 in electromagnetic shielding window is arranged in two-dimensional orthogonal arrangement by metal rings of the same diameter as basic ring 6 Forming a basic structure of the two-dimensional grid and loading on the surface of the transparent window of the light window, and adjacent basic rings 6 are tangentially connected, each of the basic rings 6 has a concentric sub-ring pair of metal, and the concentric sub-ring The outer ring of the pair is inscribed as a sub-ring 7 inwardly with the basic ring 6.
  • the sub-ring 7 has a secondary sub-ring 8 in end-to-end communication with the sub-ring 7, the concentric sub-ring pair
  • the secondary sub-rings 8 connected in series form a sub-unit, and a sub-unit has a filling ring 9 and a sub-ring 7 in the two sub-units, and at the same time, a basic circle with the sub-unit
  • the ring 6 is internally connected, and the basic ring 6 and the sub-units in the basic ring 6 and the filling ring 9 together form a basic unit of the two-dimensional metal grid structure; there is a concentric modulation ring pair between the basic units, and the Concentrically modulating the outer ring of the ring pair as a modulation ring 10 and adjacent four two-dimensional orthogonal
  • the circular rings 6 are all tangentially connected, and each of the modulation rings 10 has a modulation sub-ring 11 in communication with the ring, and the concentric modulation ring forms a modulation basic unit together with the modulation sub-
  • the multi-period master-slave circular array electromagnetic shielding light window with concentric rings of the present invention has a metal ring of the same diameter as a basic ring 6 arranged in a two-dimensional orthogonal arrangement and closely arranged to form a basic structure of the grid. And loading on the surface of the transparent window of the light window, and the adjacent basic ring 6 is tangentially connected, and there is a pair of concentric modulation rings between the basic units, and the outer ring of the concentric modulation ring pair is used as the modulation ring 10 and The adjacent four two-dimensional orthogonal basic rings 6 are all externally connected, and the distribution of the basic ring 6 and the concentric modulation ring pair is as shown in FIG.
  • the center of the two-dimensional orthogonal basic ring 6, the points E, F, G, H are the centers of four modulation rings 10 that are circumscribed to the same basic ring 6, and the quadrilateral ABCD and the quadrilateral EFGH are square.
  • the arrangement ensures that all of the basic ring 6 and the concentric modulation ring pair are arranged in a two-dimensional orthogonal distribution to form the metal grid 5.
  • Multi-period master-slave circular array electromagnetic shielding light window with concentric rings of the present invention said basic ring 6, concentric sub-ring pair, secondary sub-ring 8, filling ring 9, concentric modulation
  • the pair of rings and the diameter of the modulation sub-ring 11 are of the order of millimeters and sub-millimeters, said basic ring 6, concentric sub-ring pair, secondary sub-ring 8, filling ring 9, concentric modulation ring pair
  • the width of the metal lines of the modulation sub-ring 11 is on the order of micrometers and submicrometers to ensure high transmittance and good electromagnetic shielding effect.
  • each ring portion and the connecting metal are made of a metal having good electrical conductivity, such as a pure metal such as gold, silver, copper, aluminum, or a metal alloy, and the metal thickness is greater than 100 nm.
  • the multi-period master-slave ring array electromagnetic shielding light window with concentric rings of the present invention the number of sub-rings in each basic unit is greater than or equal to two, and the diameters are the same or different, adjacent sub-rings 7
  • the angle between the center of the circle and the center line of the basic ring 6 is an arbitrary angle.
  • the sub-rings 7 in different basic units are equal or non-equal diameter rings, the number is the same or different; each subunit The number of the secondary sub-rings is greater than or equal to two, and the diameters are the same or different.
  • the angle between the center of the adjacent secondary sub-rings 8 and the center line of the sub-ring 7 is an arbitrary angle, which is different.
  • the secondary sub-rings 8 in the subunits are equal or non-equal diameter rings, the number of which is the same or different; the number of the modulation sub-rings 11 in each modulation basic unit is greater than or equal to 2, and the diameters are the same or different.
  • the angle formed by the center of the adjacent modulation sub-ring 11 and the center line of the modulation ring 10 is an arbitrary angle, and the modulation sub-ring 11 in the different modulation basic unit is an equal diameter or a non-equal diameter ring.
  • the number is the same or different; outside the adjacent sub-ring 7 in the basic unit Connected or intersected, the adjacent secondary sub-rings 8 in the subunit are tangentially connected or intersected, and the secondary sub-rings 8 are connected or intersected with the inner ring of the concentric annular pair in the subunit, and the modulation is basically
  • the adjacent modulation sub-rings 11 in the unit are tangentially connected or intersected, and the modulation sub-ring 11 is tangentially connected or intersected with the inner ring of the pair of concentric rings in the modulation basic unit, and the tangent connection includes the outer cut Connected or intrinsically connected.
  • FIG. 3 shows a schematic structural view of a subunit composed of a sub-ring 7 and a secondary sub-ring 8.
  • the secondary sub-rings 8 of the subunit have the same diameter, and the center of the adjacent sub-rings 8 The angle formed by the center line of the sub-ring 7 is equal.
  • Figure 3 (a) (b) is a sub-unit ring 8 of the same diameter in the sub-unit circumscribed and intersects with the inner ring of the concentric sub-ring pair;
  • Figure 3 (c) (d) is a sub-unit
  • the secondary sub-rings 8 of the same diameter are joined at the same time and simultaneously intersect the inner ring of the pair of concentric sub-rings.
  • the modulation basic unit is similar in structure to the sub-unit, and the relationship between the modulation ring 10 and the modulation sub-ring 11 can also be expressed using the structure in FIG.
  • Multi-period master-slave circular array electromagnetic shielding light window with concentric rings metal grid 5 in electromagnetic shielding window is arranged in two-dimensional orthogonal arrangement by metal rings of the same diameter as basic ring 6 Forming a basic structure of the two-dimensional grid, and the adjacent basic rings 6 are tangentially connected, each of the basic rings 6 has a metal concentric sub-ring pair, and the outer ring of the concentric sub-ring pair serves as a sub-ring 7 is in in-line communication with the basic ring 6 , and the sub-ring 7 has a secondary sub-ring 8 in end communication with the sub-ring 7 , and the concentric sub-ring has a secondary sub-ring connected to the inner ring 8 co-assembling sub-units, having a filling ring 9 between adjacent sub-units and circumscribing the sub-rings 7 of the two sub-units, and simultaneously communicating with the basic ring 6 where the sub-units are located, the basic ring 6.
  • Each subunit in the basic ring 6 and the filling ring 9 together form a multi-cycle master-slave ring structure with concentric rings, which constitutes a basic unit of a two-dimensional grid array structure, and several typical structures of the basic unit.
  • each sub-ring 7 in the basic unit is circumscribed, wherein FIG. 4(a)(b) is a sub- The number of the rings 7 is 4, and the secondary sub-rings 8 of the same diameter in the subunit are tangentially connected, and simultaneously intersect the inner ring of the concentric subring pair; FIG. 4(c)(d) is a sub The number of rings is five, and the secondary sub-rings 8 of the same diameter in the subunits are joined at the same time and simultaneously intersect the inner ring of the pair of concentric subrings.
  • Figure 5 and Figure 6 respectively show the circumscribed or inscribed communication of the two rings.
  • the wires are overlapped or arranged (such as covered) to ensure reliable electrical connection between the metal ring tangent points to ensure the tangent metal rings.
  • the connection is electrically connected.
  • 5(a)(b)(c) respectively show a schematic diagram of the seamlessly overlapping structure of the two rings when circumscribed:
  • FIG. 5(a) shows the general case where the two rings are seamlessly overlapped, that is, two circles.
  • the center-to-center distance of the ring is smaller than the center-to-center distance when the two rings are circumscribed, and is greater than the difference between the center-to-center distance of the two rings and the width of the two ring lines.
  • Figure 5(b) is a seamlessly overlapping one.
  • FIG. 5(c) is another special case of seamless overlap.
  • the center distance of the two rings is equal to the center distance and the two centers when the two rings are externally cut.
  • the difference between the sum of the widths of the circular lines, that is, the inner contours of the two circular lines, and the outer contour of the two circular lines is cut out, and in Fig. 5(d), since the two rings are externally cut, it is necessary to ensure that the metal ring is reliably connected between the tangent points. Connected metal.
  • Fig. 6(a)(b) respectively show a schematic diagram of the seamlessly overlapping structure of the two rings when the inner cutting is connected: Fig.
  • FIG. 6(a) shows the general case where the two rings seamlessly overlap when the inner cutting is continuous, that is, two
  • the center distance of the ring is greater than the center distance of the two rings when inscribed, and is smaller than the sum of the center distance of the two rings and the width of the larger ring line.
  • Figure 6(b) shows the two in-line connection.
  • the center distance of the two rings is equal to the sum of the center distance of the two rings and the width of the larger ring line, that is, the outer contour of the two ring lines.
  • Figure 6(c) shows the diameter The outer contour of the smaller ring line is inscribed with the inner contour of the larger ring line.
  • FIG. 6(c) show a preferred metal connection at the tangent point.
  • the connecting metal 12 covered at the tangent point is rectangular, and the side length of the rectangle is larger than the width of the metal ring line.
  • a typical scheme is that the basic unit neutron ring 7 has the same diameter, the center of the adjacent sub-ring 7 and the center of the basic ring 6
  • the angle formed by the wires is equal;
  • the diameters of the secondary sub-rings 8 in the subunit are the same, and the angles formed by the centers of the adjacent secondary sub-rings 8 and the center lines of the sub-rings 7 are equal;
  • the diameters of the modulation sub-rings 11 in the basic unit are the same, and the angle formed by the center of the adjacent modulation sub-ring 11 and the center line of the modulation ring 10 is equal.
  • the number of sub-rings 7 in different basic units is the same and the diameter is equal; the number of secondary sub-rings in different sub-units is the same, the diameter is equal; different modulation basic units The number of modulation sub-rings 11 is the same and the diameters are equal.
  • the secondary sub-rings 8 in different subunits have the same relative position, and are copied by one subunit and arranged in the basic ring 6; the relative positions of the subunits in different basic units are the same.
  • the modulation sub-rings 11 in different modulation basic units have the same relative position, and are copied from one basic unit and one modulation basic unit, and then arranged in an orthogonal arrangement to form a two-dimensional metal grid.
  • the secondary sub-rings 8 in different subunits within one basic unit of the metal grid array of the present invention are relatively The positions are different, and are copied by a sub-unit and arranged in the basic ring 6, wherein any one of the sub-units rotates around the center of the sub-ring 7 in a two-dimensional plane with respect to other sub-units in the same basic ring 6.
  • the arrangement of the closely arranged rows constitutes a two-dimensional grid array, wherein any one of the basic units rotates at a certain angle around the center of the basic ring 6 of itself in a two-dimensional plane with respect to its adjacent basic unit, and any one of the modulation basic units is adjacent to the adjacent unit
  • the modulation basic unit rotates around a center of the self-modulating ring 10 in a two-dimensional plane, and any basic unit in the same row is relatively adjacent.
  • FIG. 7 is a schematic diagram showing a rotation mode of a subunit relative to other subunits in the same basic ring
  • FIG. 8 is a schematic diagram showing a rotation mode of a basic unit relative to an adjacent basic unit, wherein the basic unit of the metal grid is selected as FIG. 4 ( The structure of b), the rotation angle of the subunit is 18°, and each basic unit in the same row is rotated by 22.5° with respect to the adjacent basic unit.
  • FIG. 9 and 10 are respectively a schematic view of a square grid structure and a high-order sub-diffraction and a relative intensity distribution thereof of the US Pat. No. 4,871,220
  • FIG. 11 and FIG. 12 are respectively schematic diagrams of the existing ring grid structure of the patent 200610010066.4
  • FIG. 13 and FIG. 14 are respectively a schematic diagram of a metal grid structure of the preferred scheme A of the present invention, and a schematic diagram of its higher-order diffraction and its relative intensity distribution, and the metal grid in the preferred scheme A
  • the structure of Fig. 4(b) is selected as the basic unit
  • Fig. 3(a) is selected as the modulation basic unit, and is rotated by the rotation mode shown in Fig. 7 and Fig.
  • the higher order diffracted energy distribution of the above three structures and the maximum relative intensity of the higher order diffraction are theoretically calculated.
  • the transmittance of the structure is the same (both 95.4%), and the relative intensity of the zero order is 91%, that is, the ratio of useful information for imaging is the same.
  • the metal mesh structure in the preferred scheme A has a significantly lower relative intensity of the highest order diffracting compared with the square grid and the ring grid, and the number of high-order diffraction spots is significantly increased in the same inspection interval, thereby avoiding the higher order.
  • FIG. 15 is the specific numerical value of the maximum relative intensity of the higher order diffraction of the above three structures, and it can be seen that the higher order of the lattice metal grid structure
  • the maximum relative intensity of diffraction is significantly higher than that of other structures.
  • the maximum relative intensity of the higher order diffraction of the metal mesh structure corresponding to the preferred scheme A of the present invention has been significantly reduced from 0.0259% (the advanced secondary diffraction of the existing ring structure)
  • the maximum relative intensity) decreased to 0.0036%, which was reduced by 86%, and the homogenization effect of the higher order diffraction was obvious.
  • the metal mesh structure of the present invention has a remarkable effect on homogenizing the higher-order diffracted energy distribution, and is not only superior to the existing square metal grid structure of the US Pat. No. 4,871,220, but also superior to the existing circle of the patent 200610010066.4. Ring metal grid structure.
  • the composition of the invention makes the mesh relatively relatively average, and in particular, the metal mesh structure given in the preferred scheme has better light transmittance and shielding performance while deepening the higher order diffracted energy distribution.
  • the contradiction problem of light transmittance and shielding efficiency can be improved, and at the same time, since the single layer structure of the present invention is used to homogenize the higher order diffracted energy distribution, the existing double layer can be solved.
  • the problem of higher order diffracted energy distribution cannot be further homogenized due to the limitation of the single-layer grid structure.
  • the metal grid in the multi-period master-slave ring array electromagnetic shielding window with concentric rings of the present invention can be processed by the following processing method: the mask is formed by direct beam writing, and the transparent window of the light window After the sheet is cleaned, chrome or titanium is used as a bonding layer, which is coated with a metal film, then coated with a photoresist, photolithographically processed using a mask, and finally subjected to dry or wet etching to obtain a paste. Grid pattern. It is also possible to omit the mask fabrication process and directly use the laser direct writing method to fabricate the metal grid pattern of the multi-cycle master-slave nested ring array with concentric rings. Other microelectronic processing processes or binary optical component fabrication processes, etc., can also be used to fabricate the metal grid structure of the present invention.
  • the transparent substrate 4 according to the present invention is determined by practical applications, and may be ordinary glass, quartz glass, infrared material, transparent resin material, etc., and the ring metal structures of the present invention are subjected to a suitable processing process according to the transparent substrate 4.
  • the process completely covers the transparent substrate 4, and can achieve a reliable electrical connection or sealing with the window frame or the like to ensure an excellent electromagnetic shielding function.
  • the surface of the transparent substrate 4 with the grid structure of the present invention may be coated with an anti-reflection film to increase the light transmission capability, or a protective layer may be plated on the surface of the mesh layer to prevent the metal structure from being corroded in the air for a long time. Oxidation reduces the shielding ability and also prevents the grid layer from being scratched, worn or otherwise damaged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗属于电磁屏蔽技术领域,由基本圆环、同心子圆环对、次级子圆环、填充圆环、同心调制圆环对以及调制子圆环构成具有同心圆环的多周期主从嵌套阵列的金属网栅;其中,基本圆环与同心调制圆环对均构成二维正交阵列,同心调制圆环对的外圆环与基本圆环外切连通,基本圆环内有同心子圆环对和填充圆环,同心子圆环对内有次级子圆环,同心调制圆环对内有调制子圆环。在圆环相切连通的连接处,通过线条交叠或覆盖保证金属环切点间可靠电联接的金属,确保所有圆环相互导电。本发明的金属网栅结构可显著降低网栅高级衍射光强分布的不均匀性,使衍射造成的杂散光分布更加均匀,对成像影响更小。

Description

具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗 技术领域
本发明属于光学透明件电磁屏蔽领域,特别涉及一种具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗。
背景技术
随着电磁波应用频谱的展宽和强度的增加,对航天航空装备、先进光学仪器、通讯设备、医疗诊断仪器和保密设施等领域应用的电磁屏蔽光窗的要求越来越高,主要是要求光窗具有超强的宽波段电磁屏蔽能力的同时,还具有极高的透光率,对光学成像、观测、探测的影响越小越好。比如,航天航空装备领域中飞行器的光窗,必须高品质的实现舱内外的电磁信号隔离,一方面屏蔽外部电磁干扰和有害电磁信号,以免造成舱内电子设备失效,一方面防止舱内电子设备工作时电磁信号透出光窗造成电磁泄漏,但光窗的透光性是其必备的功能,对光窗进行电磁屏蔽应尽可能的减小对其透明性的影响,特别是尽可能的不影响光学探测或光学成像功能;与此类似,先进光学仪器的光窗也要有尽可能高的透光率和尽可能低的成像质量影响,以实现高品质的探测和测量,同时要防止电磁干扰对仪器内部光电探测器件的影响;对于党政机关、军事指挥场所、重要科研单位的保密建筑设施,需要对其房屋的窗玻璃在保证采光性的同时,进行电磁屏蔽设计,以防止室内电脑等电子设备工作时重要信息以电磁辐射形式向窗外传播造成泄密;医疗用电磁隔离室光窗要保证室内的电磁波绝大部分被屏蔽而防止室外操作人员长期被电磁波辐射而损害健康,等等。目前这类光窗的电磁屏蔽主要采用透明导电薄膜、金属诱导透射型多层膜结构、带阻型频率选择表面和具有毫米亚毫米周期的金属网栅等。
透明导电薄膜是一种以氧化铟锡为主要材料的透明金属氧化物薄膜,常应用于可见光波段透明的场合,但是不能兼顾较宽的透光波段,虽具有较宽的微波屏蔽波段但屏蔽能力不强。金属诱导透射型多层膜结构采用多层薄金属膜与介质膜复合结构来实现对电磁波的屏蔽,对低频微波屏蔽能力较强,透光区域主要为可见光和紫外光,但透光率不高。频率选择表面采用周期性谐振单元结构实现带通或带阻滤波器功能,由于其金属覆盖率较高,能够很好地反射工作频带以外的干扰电磁波,但是光学透光率较低,降低了光学探测的成像质量,给光学图像处理、模式识别、目标搜索和跟踪带来了困难。综上所述,同时满足光窗的宽波段高透光率和宽频段电磁屏蔽两个要求,上述各技术方案均存在明显不足。相比而言,具有毫米亚毫米周期的金属网栅,由于其周期比干扰电磁波长小得多,可以实现较强的低频宽波段电磁 屏蔽;而金属网栅周期又远大于光学波长,可以保证光学波段的透光率。因此,毫米亚毫米周期的金属网栅具有良好的透明导电性能,可满足光窗对高透光率和宽频段电磁屏蔽的要求,在光窗电磁屏蔽技术领域得到了广泛的应用:
1.专利03135313.5“一种电磁屏蔽观察窗”用单重或多重金属丝网以及类半导体量子阱结构组合成电磁屏蔽结构,可实现10GHz以内超过50dB的屏蔽效率,该结构在可见光高透射区域的透光率达到50%以上。
2.专利93242068.0“电磁屏蔽玻璃”在两层玻璃之间夹导电金属网,在玻璃外侧用导电透明膜使之粘合在金属窗框上以构成电磁屏蔽结构,该结构有一定的采光性。
3.专利94231862.5“无莫尔条纹电磁屏蔽观察窗”采用由两层数目不同的金属网平行放置,且它们经线或者纬线有一定的夹角,以达到克服莫尔条纹现象,实现更清晰的视野。
4.专利02157954.7“高屏效防信息泄漏玻璃”在金属丝网两侧各有一层聚碳酸脂胶片,胶片外侧各贴附一层玻璃,最后热压而成电磁屏蔽结构,该结构在透光率达到60%的情况下,具有较强的屏蔽效率。
5.专利200610084149.8“电磁波屏蔽薄膜及其制造方法”描述了一种由光刻工艺形成的具有金属网状图案的高透明电磁屏蔽薄膜,该发明的主要目的在于减少金属耗用量和克服在金属层和薄膜基材之间使用固化胶造成的环境污染问题。
6.美国专利US4871220“Short wavelength pass filter having a metal mesh on a semiconducting substrate”描述了一种具有正方形结构的金属网栅,用于实现光窗的抗电磁干扰性能。
7.专利201010239355.8“一种具有经纬形网栅结构的电磁屏蔽共形光学窗”描述了一种通过金属网栅技术和共形光学窗技术实现的一种具有经纬形金属网栅结构的共形电磁屏蔽光学窗,主要解决共形光学窗金属网栅的结构设计问题,提高共形光学窗的电磁屏蔽性能。
8.专利200610010066.4“具有圆环金属网栅结构的电磁屏蔽光学窗”描述了一种具有圆环外形的金属网栅单元,用于实现光学窗的电磁屏蔽功能;相比单层方格金属网栅,透光率和屏蔽能力得到了提高,高级次衍射造成的杂散光也得到了一定的均化。
9.专利200810063988.0“一种具有双层方格金属网栅结构的电磁屏蔽光学窗”描述了一种由结构参数相同的方格金属网栅或金属丝网平行放置于光学窗或透明衬底两侧构成的电磁屏蔽光学窗,在不降低透光率的同时,大幅度提高了电磁屏蔽效率。
10.专利200810063987.6“一种具有双层圆环金属网栅结构的电磁屏蔽光学窗”描述了一种由两层圆环金属网栅加载于光学窗两侧构成的电磁屏蔽光学窗,解决高透光率和强电磁屏蔽效率不能同时兼顾的问题。
11.美国Battelle研究院Jennifer I.Halman等人开发的基于圆环单元的毂-辐条型结构和多圆环交叠结构的感性金属网栅(Jennifer I.Halman等,“Predicted and measured transmission and diffraction by a metallic mesh coating”.Proc.SPIE,2009,7302:73020Y-1-73020Y-8),并认为由于圆环的作用,该结构可使得网栅高级次衍射分布均化,实现低旁瓣,对成像有利。
12.美国Exotic Electro-Optics公司的Ian B.Murray、美国亚利桑那大学的Victor Densmore和Vaibhav Bora等人共同报道了对毂-辐条型结构和多圆环交叠结构的感性网栅引入了参数随机分布设计后对衍射特性的影响(Ian B.Murray,Victor Densmore,Vaibhav Bora等人,“Numerical comparision of grid pattern diffraction effects through measurement and modeling with OptiScan software”,Proc.SPIE,2011,8016:80160U-1-80160U-15),指出各圆环间距和直径在一定范围内随机取值,有利于提高高级次衍射分布的均匀性。
上述各方案由于采用金属网栅(或金属丝网)作为屏蔽的核心器件,可以实现较好的电磁屏蔽效果和一定的透光率。但采用金属网栅(或金属丝网)作为电磁屏蔽结构,就不可避免的受到网栅在光学波段衍射的影响。由于金属网栅的周期在毫米或者亚毫米量级,为实现较高的透光率,其金属线条宽度一般在微米和亚微米量级,这样的结构参数在光学波段具有非常强的衍射效应。入射光绝大部分能量被金属网栅透射,透射部分包含零级衍射光和高级次衍射光,通常,零级次衍射光是用于成像和观测的有用信息,高级次衍射光则构成杂散光,对成像和探测产生干扰。因此,应尽可能的提高零级次衍射光所占的比重,同时,在高级次衍射光不可避免出现的前提下,尽可能使高级次衍射光分布比较均匀,其形成的杂散光成为比较均匀的背景或者噪声。
目前金属网栅主要为传统方格网栅结构,如上述专利1-6所主要采用的结构(专利7的结构由于加工在曲面之上,是一种类方格结构),方格网栅结构透光能力与屏蔽能力存在固有的矛盾,难以同时兼顾高透光率和强电磁屏蔽效率,特别是方格网栅的高级次衍射能量主要集中在互相垂直的两轴上,对成像质量有一定的影响,甚至在高成像质量要求的场合难以应用。改变网栅衍射特性一般需要改变其结构特征,上述专利200610010066.4“具有圆环金属网栅结构的电磁屏蔽光学窗”提出用金属圆环构建成圆环金属网栅,改善了方格金属网栅高级次衍射能量集中分布的缺点,并可以缓解其透光能力与屏蔽能力的矛盾。上述文献11和12中,Jennifer I.Halman等人和Ian B.Murray等人,也都提出了基于圆环单元的金属网栅结构来提 高高级次衍射分布的均匀性,但Jennifer I.Halman等人的研究也是单周期圆环排列结构,且排列方向确定,其对调节高级次衍射的作用与专利200610010066.4提出的结构相当,而Ian B.Murray等人的研究虽然更进一步,提出随机交叠圆环结构,令圆环直径和间距在一定范围内随机分布取值,实现进一步提高高级次衍射分布均匀性,但圆环直径和间距的随机分布改变了网孔分布的均匀性,将损害电磁屏蔽效率。
随着电磁环境的日益复杂,对电磁屏蔽光窗的透光能力和电磁屏蔽能力的要求在不断提高,尤其是在航空航天装备领域和先进光学仪器领域,已经要求光窗达到95%甚至更高的透光率的同时,还具有极低的成像质量影响,在低于20GHz的微波频率范围实现30dB以上的屏蔽效率,这使得现有的技术难以实现。专利200810063988.0和专利200810063987.6均采用了双层金属网栅平行放置于光窗透明基片或衬底的两侧构成,两层金属网栅具有相同的单元外形和结构参数,通过优化两层网栅的间距,实现不降低透光率的同时,大幅度提高了电磁屏蔽效率。但这种双层网栅结构高级次衍射杂散光分布仍然与透光率相同的单层网栅相当,不完全满足未来航空航天装备和先进光学仪器等领域对低成像质量影响的要求。
发明内容
本发明的目的在于克服上述已有的光窗电磁屏蔽技术方案的不足,特别是针对现有单层方格金属网栅、单层圆环网栅、双层方格和圆环网栅存在高级次衍射造成的杂散光分布相对集中的问题,研发一种具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,达到实现高级次衍射的深度均化和极低的成像质量影响的目的。
本发明采用的技术方案是:具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,电磁屏蔽光窗中的金属网栅由相同直径的金属圆环作为基本圆环按二维正交排列密接排布构成二维网栅的基本结构并加载于光窗透明基片表面,且相邻基本圆环外切连通,每个基本圆环内具有金属的同心子圆环对,且同心子圆环对的外圆环作为子圆环与该基本圆环内切连通,子圆环内具有与该子圆环内切连通的次级子圆环,该同心子圆环对与其内切连通的次级子圆环共同组成子单元,相邻子单元之间具有一个填充圆环与两子单元中的子圆环外切连通,且同时与子单元所在的基本圆环内切连通,基本圆环、基本圆环内各子单元与填充圆环共同组成二维金属网栅结构的基本单元;基本单元之间存在一个同心调制圆环对,且该同心调制圆环对的外圆环作为调制圆环与相邻四个二维正交基本圆环均外切连通,每个调制圆环具有与该圆环内切连通的调制子圆环,同心调制圆环对与其内各调制子圆环共同组成调制基本单元;所述的基本圆环、同心子圆环对、次级子圆环、填充圆环、同心调制圆环对以及调制子圆环的直径为毫米和亚毫米量级,所述的基本圆环、同心子圆环对、次级子圆环、填充圆环、同 心调制圆环对以及调制子圆环的金属线条宽度为微米和亚微米量级;所述的外切连通包括:①两圆环外切且外切切点处设置将两圆环连通的连接金属,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属;所述的内切连通包括:①两圆环内切且内切切点处设置将两圆环连通的连接金属,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属。
上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的每个基本单元内子圆环个数大于或等于2个,且直径相同或不同,相邻子圆环的圆心和所在基本圆环的圆心连线所组成的夹角为任意角度,不同基本单元中的子圆环为等直径或非等直径圆环,个数相同或不同;每个子单元内次级子圆环个数大于或等于2个,且直径相同或不同,相邻次级子圆环的圆心和所在子圆环的圆心连线所组成的夹角为任意角度,不同子单元中的次级子圆环为等直径或非等直径圆环,个数相同或不同;每个调制基本单元内调制子圆环个数大于或等于2个,且直径相同或不同,相邻调制子圆环的圆心和所在调制圆环的圆心连线所组成的夹角为任意角度,不同调制基本单元中的调制子圆环为等直径或非等直径圆环,个数相同或不同。
上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的同心子圆环对的内外直径比值在0.2-0.8范围内,同心调制圆环对的内外直径比值在0.2-0.8范围内,不同子单元的同心子圆环对的内外圆环直径比相同或不同,不同调制基本单元的同心调制圆环对的内外圆环直径比相同或不同;基本单元内相邻子圆环外切连通或相交,子单元内的相邻次级子圆环外切连通或相交,次级子圆环与所在子单元内的同心圆环对的内圆环相切连通或相交;调制基本单元内相邻调制子圆环外切连通或相交,调制子圆环与所在调制基本单元内的同心圆环对的内圆环相切连通或相交;所述的相切连通包括外切连通或内切连通。
作为一种优选的结构方式,上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的基本单元中子圆环的直径相同,相邻子圆环的圆心和基本圆环圆心连线所组成的夹角相等;子单元中次级子圆环的直径相同,相邻次级子圆环的圆心和所在子圆环的圆心连线所组成的夹角相等;调制基本单元中调制子圆环的直径相同,相邻调制子圆环的圆心和所在调制圆环的圆心连线所组成的夹角相等。
作为一种优选的结构方式,上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的不同基本单元中的子圆环个数相同,直径相等;不同子单元中的次级子圆环个数相同,直径相等;不同调制基本单元中的调制子圆环的个数相同,直径相等。
作为一种优选的结构方式,上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的不同子单元中的次级子圆环相对位置相同,并由一个子单元复制后排列在基本圆环内;不同基本单元中的子单元相对位置相同,不同调制基本单元中的调制子圆环相对位置相同,并由一个基本单元和一个调制基本单元复制后分别按二维正交排列密接排布共同构成二维金属网栅。
作为一种优选的结构方式,上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的一个基本单元内的不同子单元中的次级子圆环相对位置不同,并由一个子单元复制后排列在基本圆环内,其中任意一个子单元相对于在同一基本圆环内的其他子单元在二维平面内绕自身子圆环圆心旋转一定角度;同一行中,相邻基本单元中的子单元相对位置不同,相邻调制基本单元中的调制子圆环相对位置不同,并由一个基本单元和一个调制基本单元复制后按二维正交排列密接排布构成二维金属网栅,其中任意一个基本单元相对于其相邻基本单元在二维平面内绕自身基本圆环圆心旋转一定角度,任意一个调制基本单元相对于其相邻调制基本单元在二维平面内绕自身调制圆环圆心旋转一定角度。
作为一种优选的结构方式,上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的同一行中的任意基本单元相对相邻基本单元旋转的角度相同,同一行中的任意调制基本单元相对相邻调制基本单元旋转的角度相同。
上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的基本圆环、同心子圆环对、次级子圆环、填充圆环、同心调制圆环对、调制子圆环以及连接金属由导电性能良好的合金构成,且合金厚度大于100nm。
上述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的粘接层用铬或者钛材料构成。
本发明的创新性和良好效果是:
电磁屏蔽光窗中的金属网栅由相同直径的金属圆环作为基本圆环按二维正交排列密接排布构成二维网栅的基本结构并加载于光窗透明基片表面,且相邻基本圆环外切连通,本发明的创新性在于:每个基本圆环内具有金属的同心子圆环对,且同心子圆环对的外圆环作为子圆环与该基本圆环内切连通,子圆环内具有与该子圆环内切连通的次级子圆环,该同心子圆环对与其内切连通的次级子圆环共同组成子单元,相邻子单元之间具有一个填充圆环与两子单元中的子圆环外切连通,且同时与子单元所在的基本圆环内切连通,基本圆环、基本圆环内各子单元与填充圆环共同组成二维金属网栅结构的基本单元;基本单元之间存在一个同心 调制圆环对,且该同心调制圆环对的外圆环作为调制圆环与相邻四个二维正交基本圆环均外切连通,每个调制圆环具有与该圆环内切连通的调制子圆环,同心调制圆环对与其内各调制子圆环共同组成调制基本单元;所述的基本圆环、同心子圆环对、次级子圆环、填充圆环、同心调制圆环对以及调制子圆环的直径为毫米和亚毫米量级,所述的基本圆环、同心子圆环对、次级子圆环、填充圆环、同心调制圆环对以及调制子圆环的金属线条宽度为微米和亚微米量级;所述的外切连通包括:①两圆环外切且外切切点处设置将两圆环连通的连接金属,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属;所述的内切连通包括:①两圆环内切且内切切点处设置将两圆环连通的连接金属,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属。本发明的创新性产生的良好效果主要集中于均化金属网栅的高级次衍射能量分布,具体如下:
金属网栅中的基本圆环与同心调制圆环对的外圆环与内圆环均以二维正交分布为基本排列方式很好地克服传统方格金属网栅存在的高级次衍射能量集中分布的缺点,具有良好的均化高级次衍射能量分布的特性,而且以一组同心调制圆环对与四个基本圆环外切连通的连接方式组成金属圆环阵列,在保证透光率相同时,与仅有单一直径圆环阵列的结构相比,需要增加各圆环的直径,各圆环阵列的高级次衍射能量均降低,达到均化高级次衍射能量分布的目的,这是本发明金属网栅均化高级次衍射能量分布的原因之一;
在基本圆环中加入同心子圆环对组成基本单元,在同心调制圆环对中加入调制子圆环组成调制基本单元,因为在每个基本单元中的同心子圆环对和调制基本单元中的调制子圆环个数、直径和位置关系的不同,使其结构疏松,排布杂散,因此高级次衍射能量比较低,而且高级次衍射分布较均匀,避免出现像传统方格金属网栅存在的高级次衍射能量集中分布的情况;同时,在保证透光率相同时,需要进一步增加基本圆环和调制圆环的直径,从整体上降低了各阵列的高级次衍射能量;又因为同心子圆环阵列结构、调制子圆环阵列结构产生的高级次衍射与基本圆环阵列结构和调制圆环阵列结构的高级次衍射发生叠加的概率很低,优化子圆环数量、直径、和位置等参数后,它们能量较高的高级次衍射不发生叠加,从而均化了高级次衍射能量分布,这是本发明金属网栅均化高级次衍射能量分布的原因之二。
对于同心子圆环对中的内圆环阵列和同心调制圆环对的内圆环阵列,因为各内圆环的直径相对较小且间隔比较大,本身高级次衍射能量比较低而且高级次衍射分布较均匀;同时,通过改变各同心圆环对的内外圆环直径比,可以有效对高级衍射级次的最大相对强度进行优化调节,从而均化金属网栅阵列结构整体的高级次衍射能量分布,这是本发明金属网栅均化 高级次衍射能量分布的原因之三。
在同心子圆环对中加入次级子圆环组成子单元,在子单元之间引入填充圆环,基本圆环、子单元以及填充圆环重新组成基本单元,在保证透光率相同时,与仅有基本圆环和同心子圆环对的结构相比,需要进一步增加基本单元中基本圆环和同心子圆环对的直径,从整体上降低了各阵列的高级次衍射能量;又因为次级子圆环和其它圆环阵列结构的高级次衍射发生叠加的概率很低,尤其是优化结构和参数后它们能量较高的高级次衍射不发生叠加,从而均化了高级次衍射能量分布,这是本发明金属网栅均化高级次衍射能量分布的原因之四。
每个子单元都可以以其子圆环的圆心为中心旋转一定角度,每个基本单元都可以以其基本圆环的圆心为中心旋转一定角度,每个调制基本单元都可以以其调制圆环的圆心为中心旋转一定角度,不改变金属网栅的孔径比进而不影响透光率,但可对高级次衍射级能量分布进一步进行调制,能够更好地均化高级次衍射能量分布,这是本发明金属网栅均化高级次衍射能量分布的原因之五。
综上,本发明的金属网栅结构可实现网栅高级次衍射能量分布的深度均化,这是本发明的最突出效果。另外,在基本圆环结构中加入同心子圆环对,在同心子圆环对中加入次级子圆环,在子圆环之间引入填充圆环,在同心调制圆环对中加入调制子圆环,均有效地改善了金属圆环网栅结构的均匀性,且子单元以其子圆环的圆心为中心旋转一定角度,基本单元以其基本圆环的圆心为中心旋转一定角度时,调制基本单元以其调制圆环的圆心为中心旋转一定角度时,也不会改变金属网栅结构的均匀性,在对高级次衍射级能量分布进行有效调制的同时,基本不影响电磁屏蔽效果,甚至在某些优选方案中可以提高电磁屏蔽效果。
附图说明
图1是具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗的一种优选结构剖面示意图。
图2是具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗的基本圆环与同心调制圆环对分布示意图。
图3是具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗的典型子单元示意图。
图4是具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗的典型基本单元示意图。
图5是两圆环外切连通方式示意图。
图6是两圆环内切连通方式示意图。
图7是本发明的子单元相对所在基本圆环内的其他子单元一种旋转方式示意图。
图8是本发明的基本单元相对相邻基本单元一种旋转方式示意图。
图9是已有方格网栅结构示意图。
图10是已有方格网栅高级次衍射及其相对强度分布示意图。
图11是已有圆环网栅结构示意图。
图12是已有圆环网栅高级次衍射及其相对强度分布示意图。
图13是本发明中优选方案A的金属网栅结构示意图。
图14是本发明中优选方案A的金属网栅高级次衍射及其相对强度分布示意图。
图15是三种网栅结构高级次衍射最大相对强度对比图。
图中件号说明:1.粘接层 2.保护层 3.增透膜 4.透明基片 5.金属网栅 6.基本圆环 7.子圆环 8.次级子圆环 9.填充圆环 10.调制圆环 11.调制子圆环 12.连接金属
具体实施方式
下面参照附图和优选实施例对本发明进一步的描述:
具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,电磁屏蔽光窗中的金属网栅5由相同直径的金属圆环作为基本圆环6按二维正交排列密接排布构成二维网栅的基本结构并加载于光窗透明基片表面,且相邻基本圆环6外切连通,每个基本圆环6内具有金属的同心子圆环对,且同心子圆环对的外圆环作为子圆环7与该基本圆环6内切连通,子圆环7内具有与该子圆环7内切连通的次级子圆环8,该同心子圆环对与其内切连通的次级子圆环8共同组成子单元,相邻子单元之间具有一个填充圆环9与两子单元中的子圆环7外切连通,且同时与子单元所在的基本圆环6内切连通,基本圆环6、基本圆环6内各子单元与填充圆环9共同组成二维金属网栅结构的基本单元;基本单元之间存在一个同心调制圆环对,且该同心调制圆环对的外圆环作为调制圆环10与相邻四个二维正交基本圆环6均外切连通,每个调制圆环10具有与该圆环内切连通的调制子圆环11,同心调制圆环对与其内各调制子圆环11共同组成调制基本单元;所述的基本圆环6、同心子圆环对、次级子圆环8、填充圆环9、同心调制圆环对以及调制子圆环11的直径为毫米和亚毫米量级,所述的基本圆环6、同心子圆环对、次级子圆环8、填充圆环9、同心调制圆环对以及调制子圆环11的金属线条宽度为微米和亚微米量级;所述的外切连通包括:①两圆环外切且外切切点处设置将两圆环连通的连接 金属12,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属12;所述的内切连通包括:①两圆环内切且内切切点处设置将两圆环连通的连接金属12,②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属12。
本发明的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,由相同直径的金属圆环作为基本圆环6按二维正交分布排列密接排布构成网栅的基本结构并加载于光窗透明基片表面,且相邻基本圆环6外切连通,基本单元之间存在一个同心调制圆环对,且该同心调制圆环对的外圆环作为调制圆环10与相邻四个二维正交基本圆环6均外切连通,基本圆环6与同心调制圆环对的分布如图2所示,图2中点A,B,C,D四个相邻二维正交基本圆环6的圆心,点E,F,G,H为四个与同一基本圆环6外切连通的调制圆环10的圆心,四边形ABCD与四边形EFGH均为正方形,这样的排布方式确保所有的基本圆环6与同心调制圆环对是按照二维正交分布密接排布构成金属网栅5。
本发明的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,所述的基本圆环6、同心子圆环对、次级子圆环8、填充圆环9、同心调制圆环对以及调制子圆环11的直径为毫米和亚毫米量级,所述的基本圆环6、同心子圆环对、次级子圆环8、填充圆环9、同心调制圆环对以及调制子圆环11的金属线条宽度为微米和亚微米量级,以保证高透光率和良好的电磁屏蔽效果。此外,各圆环部分和连接金属由导电性能良好的金属构成,如金、银、铜、铝等纯金属及金属合金,且金属厚度大于100nm。
本发明的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,每个基本单元内子圆环7个数大于或等于2个,且直径相同或不同,相邻子圆环7的圆心和所在基本圆环6的圆心连线所组成的夹角为任意角度,不同基本单元中的子圆环7为等直径或非等直径圆环,个数相同或不同;每个子单元内次级子圆环8个数大于或等于2个,且直径相同或不同,相邻次级子圆环8的圆心和所在子圆环7的圆心连线所组成的夹角为任意角度,不同子单元中的次级子圆环8为等直径或非等直径圆环,个数相同或不同;每个调制基本单元内调制子圆环11个数大于或等于2个,且直径相同或不同,相邻调制子圆环11的圆心和所在调制圆环10的圆心连线所组成的夹角为任意角度,不同调制基本单元中的调制子圆环11为等直径或非等直径圆环,个数相同或不同;基本单元内相邻子圆环7外切连通或相交,子单元内的相邻次级子圆环8外切连通或相交,次级子圆环8与所在子单元内的同心圆环对的内圆环相切连通或相交,调制基本单元内相邻调制子圆环11外切连通或相交,调制子圆环11与所在调制基本单元内的同心圆环对的内圆环相切连通或相交,所述的相切连通包括外切连通或内切连通。 图3表示由子圆环7与次级子圆环8组成的子单元优选结构示意图,图3中,子单元中次级子圆环8的直径相同,相邻次级子圆环8的圆心和所在子圆环7的圆心连线所组成的夹角相等。图3(a)(b)为子单元中相同直径的次级子圆环8外切连通,且同时与同心子圆环对的内圆环相交;图3(c)(d)为子单元中相同直径的次级子圆环8相交连接,且同时与同心子圆环对的内圆环相交。调制基本单元与子单元的结构相似,也可以使用图3中的结构表示调制圆环10与调制子圆环11的关系。
具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,电磁屏蔽光窗中的金属网栅5由相同直径的金属圆环作为基本圆环6按二维正交排列密接排布构成二维网栅的基本结构,且相邻基本圆环6外切连通,每个基本圆环6内具有金属的同心子圆环对,且同心子圆环对的外圆环作为子圆环7与该基本圆环6内切连通,子圆环7内具有与该子圆环7内切连通的次级子圆环8,该同心子圆环对与其内切连通的次级子圆环8共同组成子单元,相邻子单元之间具有一个填充圆环9与两子单元中的子圆环7外切连通,且同时与子单元所在的基本圆环6内切连通,基本圆环6、基本圆环6内各子单元与填充圆环9共同组成具有同心圆环的多周期主从嵌套圆环结构,构成二维网栅阵列结构的基本单元,基本单元的几种典型结构如图4,基本单元中各子圆环7均为外切连通,其中图4(a)(b)为子圆环7的个数为4,且子单元中相同直径的次级子圆环8外切连通,且同时与同心子圆环对的内圆环相交;图4(c)(d)为子圆环个数为5,且子单元中相同直径的次级子圆环8相交连接,且同时与同心子圆环对的内圆环相交。
图5,图6分别表示两圆环外切连通或内切连通,通过线条交叠或设置(如覆盖)保证金属环切点间可靠电联接的金属,以确保相切的金属圆环之间密接连通导电。其中,图5(a)(b)(c)分别表示在外切连通时两圆环呈无缝交叠结构示意图:图5(a)为两圆环无缝交叠的一般情况,即两圆环的圆心距小于两圆环外切时的圆心距,且大于两圆环外切时的圆心距与两圆环线条宽度之和的差值,图5(b)为无缝交叠的一种特殊情况,两圆环线条的内外轮廓相互外切,图5(c)为无缝交叠的另一种特殊情况,两圆环的圆心距等于两圆环外切时的圆心距与两圆环线条宽度之和的差值,即两圆环线条的内轮廓外切,而图5(d)中由于两圆环外切,因此需要在切点处设置保证金属环切点间可靠电联接的金属。图6(a)(b)分别表示在内切连通时两圆环呈无缝交叠结构示意图:图6(a)表示在内切连通时两圆环无缝交叠的一般情况,即两圆环的圆心距大于两圆环内切时的圆心距,且小于两圆环内切时的圆心距与直径较大圆环线条宽度的和,图6(b)表示在内切连通时两圆环无缝交叠的一种特殊情况,两圆环的圆心距等于两圆环内切时的圆心距与直径较大圆环线条宽度的和,即两圆环线条的外轮廓内切,而图6(c)表示直径 较小圆环线条的外轮廓与直径较大圆环线条的内轮廓内切,此时需要在切点处设置保证金属环切点间可靠电联接的金属。此外,如果两圆环无缝交叠时两金属圆环的交叠面积较小,不足以确保两金属圆环之间有可靠的电联接,也需要在切点处设置保证金属圆环切点间可靠电联接的金属,以确保实现金属环的外切连通或内切连通。而图5(d)和图6(c)所示是一种优选的切点处金属连接方式,切点处覆盖的连接金属12为矩形,矩形的边长大于金属环线条宽度,矩形覆盖切点连接处时要使矩形的一条边完全落在一个金属环线条内,而其对边要完全落在相切的另一个金属环线条内。依据不同的加工方法和工艺水平,圆环切点处也可以采用其它形式的连接金属,只要能够使相切的两金属环具有可靠的电联接即可。
本发明中,为达到均化高级次衍射造成的杂散光的目的,一种典型的方案是,基本单元中子圆环7的直径相同,相邻子圆环7的圆心和基本圆环6圆心连线所组成的夹角相等;子单元中次级子圆环8的直径相同,相邻次级子圆环8的圆心和所在子圆环7的圆心连线所组成的夹角相等;调制基本单元中调制子圆环11的直径相同,相邻调制子圆环11的圆心和所在调制圆环10的圆心连线所组成的夹角相等。在上述方案基础上,作为一种优选方案,不同基本单元中的子圆环7个数相同,直径相等;不同子单元中的次级子圆环8个数相同,直径相等;不同调制基本单元中的调制子圆环11的个数相同,直径相等。作为这种优选方案的一个特例,不同子单元中的次级子圆环8相对位置相同,并由一个子单元复制后排列在基本圆环6内;不同基本单元中的子单元相对位置相同,不同调制基本单元中的调制子圆环11相对位置相同,并由一个基本单元和一个调制基本单元复制后分别按正交排列密接排布共同构成二维金属网栅。为了实现良好的均化高级次衍射造成的杂散光效果,作为这种优选方案的另一个特例,本发明中金属网栅阵列的一个基本单元内的不同子单元中的次级子圆环8相对位置不同,并由一个子单元复制后排列在基本圆环6内,其中任意一个子单元相对于在同一基本圆环6内的其他子单元在二维平面内绕自身子圆环7圆心旋转一定角度;同一行中,相邻基本单元中的子单元相对位置不同,相邻调制基本单元中的调制子圆环11相对位置不同,并由一个基本单元和一个调制基本单元复制后按二维正交排列密接排布构成二维网栅阵列,其中任意一个基本单元相对于其相邻基本单元在二维平面内绕自身基本圆环6圆心旋转一定角度,任意一个调制基本单元相对于其相邻调制基本单元在二维平面内绕自身调制圆环10圆心旋转一定角度,同一行中的任意基本单元相对相邻基本单元旋转的角度相同,同一行中的任意调制基本单元相对相邻调制基本单元旋转的角度相同。例如,图7表示子单元相对同一基本圆环内的其他子单元一种旋转方式示意图,图8表示基本单元相对相邻基本单元一种旋转方式示意图,其中金属网栅的基本单元选用图4(b)的结构,子单元的旋转角度为18°,同一行中每个基本单元相对相邻基本单元依次旋转了22.5°角。
图9和图10分别为美国专利US4871220已有的方格网栅结构示意图和其高级次衍射及其相对强度分布示意图,图11和图12分别为专利200610010066.4已有的圆环网栅结构示意图和其高级次衍射及其相对强度分布示意图;图13和图14分别为本发明中优选方案A的金属网栅结构示意图和其高级次衍射及其相对强度分布示意图,优选方案A中的金属网栅选用图4(b)的结构作为基本单元,选用图3(a)作为调制基本单元,并且采用图7、图8所示的旋转方式进行旋转,子单元之间的旋转角度为18°,同一行中每个基本单元相对相邻基本单元依次旋转了22.5°角,同一行中每个调制基本单元相对相邻调制基本单元依次旋转了22.5°角。
为了说明本发明在均化高级次衍射能量分布作用中的优越性,基于标量衍射理论,对上述三种结构的高级次衍射能量分布情况以及高级次衍射最大相对强度进行理论计算,计算时使各结构的透光率相同(均为95.4%),其零级相对强度均为91%,即成像有用信息比例相同。优选方案A中的金属网栅结构与方格、圆环网栅相比,最高级次衍射相对强度明显降低,且在相同考察区间内高级次衍射斑的个数明显增加,因而避免了高级次衍射能量集中在少数衍射级次上的问题,使高级次衍射能量分布更加均匀;图15是上述三种结构的高级次衍射最大相对强度的具体数值,可见,方格金属网栅结构的高级次衍射最大相对强度相对于其他结构明显偏高,本发明的优选方案A所对应的金属网栅结构的高级次衍射最大相对强度已经明显降低,从0.0259%(已有的圆环结构的高级次衍射最大相对强度)下降到0.0036%,降低了86%,高级次衍射的均化效果明显。综上所述,本发明的金属网栅结构对均化高级次衍射能量分布的效果十分显著,不仅优于美国专利US4871220已有的方格金属网栅结构,也优于专利200610010066.4已有的圆环金属网栅结构。
本发明的组成方式,使得网孔相对比较平均,尤其是优选方案中给出的金属网栅结构,在深度均化高级次衍射能量分布的同时,仍具有较好的透光性和屏蔽性能,当用于构造双层金属网栅结构时,可改善透光率和屏蔽效率的矛盾问题,与此同时,由于本发明单层结构深度均化高级次衍射能量分布,又可以解决已有双层金属网栅结构中由于单层网栅结构的限制而不能进一步均化高级次衍射能量分布的问题。
本发明的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗中的金属网栅可以采用如下的加工方法加工制作:由电子束直写等方式制作掩模,光窗透明基片进行清洗后镀铬或者钛作为粘接层,其上镀金属薄膜,然后涂覆光刻胶,利用已加工好的掩模进行光刻,最后进行干法或者湿法刻蚀,去胶后得到网栅图案。也可以省去掩模制作环节,而直接采用激光直写的办法来制作具有同心圆环的多周期主从嵌套圆环阵列的金属网栅图案。其它的微电子加工工艺流程或二元光学元件制作流程等也可以用来制作本发明的金属网栅结构。
本发明所涉及的透明基片4由实际应用场合决定,可以是普通玻璃、石英玻璃、红外材料、透明树脂材料等,本发明的各圆环金属结构要根据透明基片4采取合适的加工工艺流程使之完全覆盖于透明基片4之上,并且能够和窗框等实现可靠的电联接或密封以保证优良的电磁屏蔽功能。实际应用中,附有本发明网栅结构的透明基片4表面可以镀增透膜来增加透光能力,也可以在网栅层表面镀保护层以防止金属结构长期放置于空气中遭到腐蚀或氧化而降低屏蔽能力,也防止网栅层遭到划伤、磨损或其它破坏。

Claims (10)

  1. 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,电磁屏蔽光窗中的金属网栅(5)由相同直径的金属圆环作为基本圆环(6)按二维正交排列密接排布构成二维网栅的基本结构并加载于光窗透明基片表面,且相邻基本圆环(6)外切连通,其特征在于:每个基本圆环(6)内具有金属的同心子圆环对,且同心子圆环对的外圆环作为子圆环(7)与该基本圆环(6)内切连通,子圆环(7)内具有与该子圆环(7)内切连通的次级子圆环(8),该同心子圆环对与其内切连通的次级子圆环(8)共同组成子单元,相邻子单元之间具有一个填充圆环(9)与两子单元中的子圆环(7)外切连通,且同时与子单元所在的基本圆环(6)内切连通,基本圆环(6)、基本圆环(6)内各子单元与填充圆环(9)共同组成二维金属网栅结构的基本单元;基本单元之间存在一个同心调制圆环对,且该同心调制圆环对的外圆环作为调制圆环(10)与相邻四个二维正交基本圆环(6)均外切连通,每个调制圆环(10)具有与该圆环内切连通的调制子圆环(11),同心调制圆环对与其内各调制子圆环(11)共同组成调制基本单元;所述的基本圆环(6)、同心子圆环对、次级子圆环(8)、填充圆环(9)、同心调制圆环对以及调制子圆环(11)的直径为毫米和亚毫米量级,所述的基本圆环(6)、同心子圆环对、次级子圆环(8)、填充圆环(9)、同心调制圆环对以及调制子圆环(11)的金属线条宽度为微米和亚微米量级;所述的外切连通包括:①两圆环外切且外切切点处设置将两圆环连通的连接金属(12),②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属(12);所述的内切连通包括:①两圆环内切且内切切点处设置将两圆环连通的连接金属(12),②两圆环在连接处线条呈无缝交叠结构,③两圆环在连接处线条呈无缝交叠结构的同时,在交叠处设置将两圆环连通的连接金属(12)。
  2. 根据权利要求1所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:每个基本单元内子圆环(7)个数大于或等于2个,且直径相同或不同,相邻子圆环(7)的圆心和所在基本圆环(6)的圆心连线所组成的夹角为任意角度,不同基本单元中的子圆环(7)为等直径或非等直径圆环,个数相同或不同;每个子单元内次级子圆环(8)个数大于或等于2个,且直径相同或不同,相邻次级子圆环(8)的圆心和所在子圆环(7)的圆心连线所组成的夹角为任意角度,不同子单元中的次级子圆环(8)为等直径或非等直径圆环,个数相同或不同;每个调制基本单元内调制子圆环(11)个数大于或等于2个,且直径相同或不同,相邻调制子圆环(11)的圆心和所在调制圆环(10)的圆心连线所组成的夹角为任意角度,不同调制基本单元中的调制子圆环(11)为等直径或非等直径圆环,个数相同或不同。
  3. 根据权利要求1或2所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特 征在于:同心子圆环对的内外直径比值在0.2-0.8范围内,同心调制圆环对的内外直径比值在0.2-0.8范围内,不同子单元的同心子圆环对的内外圆环直径比相同或不同,不同调制基本单元的同心调制圆环对的内外圆环直径比相同或不同;基本单元内相邻子圆环(7)外切连通或相交,子单元内的相邻次级子圆环(8)外切连通或相交,次级子圆环(8)与所在子单元内的同心圆环对的内圆环相切连通或相交;调制基本单元内相邻调制子圆环(11)外切连通或相交,调制子圆环(11)与所在调制基本单元内的同心圆环对的内圆环相切连通或相交;所述的相切连通包括外切连通或内切连通。
  4. 根据权利要求2所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:基本单元中子圆环(7)的直径相同,相邻子圆环(7)的圆心和基本圆环(6)圆心连线所组成的夹角相等;子单元中次级子圆环(8)的直径相同,相邻次级子圆环(8)的圆心和所在子圆环(7)的圆心连线所组成的夹角相等;调制基本单元中调制子圆环(11)的直径相同,相邻调制子圆环(11)的圆心和所在调制圆环(10)的圆心连线所组成的夹角相等。
  5. 根据权利要求4所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:不同基本单元中的子圆环(7)个数相同,直径相等;不同子单元中的次级子圆环(8)个数相同,直径相等;不同调制基本单元中的调制子圆环(11)的个数相同,直径相等。
  6. 根据权利要求5所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:不同子单元中的次级子圆环(8)相对位置相同,并由一个子单元复制后排列在基本圆环(6)内;不同基本单元中的子单元相对位置相同,不同调制基本单元中的调制子圆环(11)相对位置相同,并由一个基本单元和一个调制基本单元复制后分别按二维正交排列密接排布共同构成二维金属网栅。
  7. 根据权利要求5所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:一个基本单元内的不同子单元中的次级子圆环(8)相对位置不同,并由一个子单元复制后排列在基本圆环(6)内,其中任意一个子单元相对于在同一基本圆环(6)内的其他子单元在二维平面内绕自身子圆环(7)圆心旋转一定角度;同一行中,相邻基本单元中的子单元相对位置不同,相邻调制基本单元中的调制子圆环(11)相对位置不同,并由一个基本单元和一个调制基本单元复制后按二维正交排列密接排布构成二维金属网栅,其中任意一个基本单元相对于其相邻基本单元在二维平面内绕自身基本圆环(6)圆心旋转一定角度,任意一个调制基本单元相对于其相邻调制基本单元在二维平面内绕自身调制圆环(10)圆心旋转一定角度。
  8. 根据权利要求7所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:同一行中的任意基本单元相对相邻基本单元旋转的角度相同,同一行中的任意调制基本单元相对相邻调制基本单元旋转的角度相同。
  9. 根据权利要求1所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:所述的基本圆环(6)、同心子圆环对、次级子圆环(8)、填充圆环(9)、同心调制圆环对、调制子圆环(11)以及连接金属(12)由导电性能良好的合金构成,且合金厚度大于100nm。
  10. 根据权利要求1所述的具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗,其特征在于:粘接层(1)用铬或者钛材料构成。
PCT/CN2014/093898 2014-02-14 2014-12-16 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗 WO2015120739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/118,820 US9686892B2 (en) 2014-02-14 2014-12-16 Multi-period master-slave nested ring array electromagnetic shielding optical window having concentric rings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410051497.X 2014-02-14
CN201410051497.XA CN103763897B (zh) 2014-02-14 2014-02-14 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗

Publications (1)

Publication Number Publication Date
WO2015120739A1 true WO2015120739A1 (zh) 2015-08-20

Family

ID=50531030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093898 WO2015120739A1 (zh) 2014-02-14 2014-12-16 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗

Country Status (3)

Country Link
US (1) US9686892B2 (zh)
CN (1) CN103763897B (zh)
WO (1) WO2015120739A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668391B2 (en) 2014-02-14 2017-05-30 Harbin Institute Of Technology Electromagnetic shielding optical window based on array of rings and sub-rings having triangular and orthogonal mixed distribution
US9686892B2 (en) 2014-02-14 2017-06-20 Harbin Institute Of Technology Multi-period master-slave nested ring array electromagnetic shielding optical window having concentric rings

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834040B (zh) * 2015-05-21 2017-07-28 哈尔滨工业大学 一种金属网栅频率选择表面结构及制作方法
CN106413365B (zh) * 2015-07-28 2020-08-25 哈尔滨工业大学 基于石墨烯与双层金属网栅层叠结构的强电磁屏蔽光窗
CN106413363B (zh) * 2015-07-28 2021-03-26 哈尔滨工业大学 具有石墨烯夹层和双外吸收层的双层网栅强电磁屏蔽光窗
CN106413361B (zh) * 2015-07-28 2021-02-05 哈尔滨工业大学 具有双石墨烯吸收层和双层金属网栅结构的电磁屏蔽光窗
CN106385791B (zh) * 2015-07-28 2020-04-28 哈尔滨工业大学 石墨烯网栅和双层金属网栅复合层叠结构的强电磁屏蔽光窗
CN106413364B (zh) * 2015-07-28 2021-03-26 哈尔滨工业大学 石墨烯与透明导电薄膜双向吸波透明电磁屏蔽器件
CN106659099B (zh) * 2015-07-28 2020-04-14 哈尔滨工业大学 石墨烯网栅与双层金属网栅透明电磁屏蔽器件
CN106413362B (zh) * 2015-07-28 2020-04-14 哈尔滨工业大学 石墨烯网栅与透明导电薄膜双向吸波透明电磁屏蔽器件
CN106413358A (zh) * 2015-07-28 2017-02-15 哈尔滨工业大学 基于石墨烯/透明导电薄膜复合结构的电磁屏蔽光窗
CN106413357B (zh) * 2015-07-28 2020-04-14 哈尔滨工业大学 基于石墨烯网栅与透明导电薄膜层叠结构的电磁屏蔽光窗
CN106714533B (zh) * 2015-07-28 2021-03-26 哈尔滨工业大学 具有石墨烯与双层金属网栅的透明双向吸波电磁屏蔽器件
CN106413359B (zh) * 2015-07-28 2020-04-14 哈尔滨工业大学 多层石墨烯网栅/金属网栅层叠结构的双向吸波强电磁屏蔽光窗
US11155366B2 (en) 2017-07-21 2021-10-26 The Aerospace Corporation Interlocking, reconfigurable, reconstitutable, reformable cell-based system with nested ring structures
US11643225B2 (en) 2017-07-21 2023-05-09 The Aerospace Corporation Interlocking, reconfigurable, reconstitutable, reformable cell-based space system
CN108207106A (zh) * 2017-12-21 2018-06-26 哈尔滨工业大学 基于随机重叠圆网栅毫米波/光学多模探测电磁屏蔽结构
CN112292014B (zh) * 2020-10-19 2022-07-12 哈尔滨工业大学 基于相变材料和石墨烯的微波透射通带可调高透光光窗

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200231A (zh) * 1996-08-30 1998-11-25 鹿岛建设株式会社 具有电磁屏蔽性能的窗玻璃
CN1889822A (zh) * 2006-05-22 2007-01-03 哈尔滨工业大学 具有圆环金属网栅结构的电磁屏蔽光学窗

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772760A (en) * 1987-04-28 1988-09-20 Ppg Industries, Inc. Nonorthogonal EMP shielding elements
US4871220A (en) 1988-06-15 1989-10-03 Litton Systems, Inc. Short wavelength pass filter having a metal mesh on a semiconducting substrate
US5017419A (en) * 1989-04-13 1991-05-21 Chomerics, Inc. Non-moire shielded window
CN2203342Y (zh) 1993-10-19 1995-07-12 北京达成机电公司 电磁屏蔽玻璃
CN2233113Y (zh) 1994-12-30 1996-08-14 郭焰 无莫尔条纹电磁屏蔽观察窗
US6599681B2 (en) * 2001-07-13 2003-07-29 Shielding Express Electromagnetic filter for display screens
CN1482853A (zh) 2002-12-23 2004-03-17 北京安方电磁屏蔽技术开发中心 高屏效防信息泄露玻璃
CN1522107A (zh) 2003-01-31 2004-08-18 同济大学 一种电磁屏蔽观察窗
KR20070114289A (ko) * 2005-02-18 2007-11-30 미츠비시 덴센 고교 가부시키가이샤 전파차폐체
CN1870881A (zh) 2006-05-25 2006-11-29 七二国际股份有限公司 电磁波屏蔽薄膜及其制造方法
CN101683022B (zh) * 2007-05-09 2012-07-04 东丽株式会社 导电性基板、等离子显示器用电磁波屏蔽基板以及导电性基板的制造方法
CN100556266C (zh) 2008-02-04 2009-10-28 哈尔滨工业大学 一种具有双层圆环金属网栅结构的电磁屏蔽光学窗
CN100553423C (zh) 2008-02-04 2009-10-21 哈尔滨工业大学 一种具有双层方格金属网栅结构的电磁屏蔽光学窗
US8361540B2 (en) * 2008-12-16 2013-01-29 Lockheed Martin Corporation Randomized circular grids for low-scatter EM shielding of a sensor window
US20110297436A1 (en) * 2009-03-02 2011-12-08 Toray Industries, Inc. Net-like metal fine particle multilayer film and method for producing same
CN101917837B (zh) 2010-07-28 2011-11-16 哈尔滨工业大学 一种具有经纬形网栅结构的电磁屏蔽共形光学窗
CN103340026B (zh) * 2011-02-02 2016-12-21 3M创新有限公司 具有暗化的导体迹线的图案化基材
US9861019B2 (en) * 2012-12-06 2018-01-02 Goodrich Corporation Deterministic EMI grid layout for controlling optical diffraction
CN103763897B (zh) 2014-02-14 2015-06-17 哈尔滨工业大学 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200231A (zh) * 1996-08-30 1998-11-25 鹿岛建设株式会社 具有电磁屏蔽性能的窗玻璃
CN1889822A (zh) * 2006-05-22 2007-01-03 哈尔滨工业大学 具有圆环金属网栅结构的电磁屏蔽光学窗

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668391B2 (en) 2014-02-14 2017-05-30 Harbin Institute Of Technology Electromagnetic shielding optical window based on array of rings and sub-rings having triangular and orthogonal mixed distribution
US9686892B2 (en) 2014-02-14 2017-06-20 Harbin Institute Of Technology Multi-period master-slave nested ring array electromagnetic shielding optical window having concentric rings

Also Published As

Publication number Publication date
US20170055381A1 (en) 2017-02-23
CN103763897B (zh) 2015-06-17
US9686892B2 (en) 2017-06-20
CN103763897A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2015120739A1 (zh) 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗
WO2015120738A1 (zh) 基于三角及正交混合分布圆环及子圆环阵列的电磁屏蔽光窗
CN100556266C (zh) 一种具有双层圆环金属网栅结构的电磁屏蔽光学窗
CN103813702A (zh) 双层交错正交相切圆环及内切子圆环阵列电磁屏蔽光窗
CN107765450A (zh) 基于超材料的宽带太赫兹线极化波非对称传输器件
CN103813701B (zh) 双层三角及正交混合分布圆环及子圆环阵列电磁屏蔽光窗
CN103763896B (zh) 双层交错多周期金属圆环嵌套阵列的电磁屏蔽光窗
CN103763908B (zh) 基于多周期金属圆环嵌套阵列的电磁屏蔽光窗
CN103874404B (zh) 具有内切子圆环的交叉三角分布金属圆环阵列电磁屏蔽光窗
CN103763907B (zh) 基于二维正交分布相切圆环及内切子圆环阵列电磁屏蔽光窗
CN103763903B (zh) 具有内切子圆环的同心圆环二维正交分布阵列电磁屏蔽光窗
CN103763901B (zh) 基于三角分布相切圆环及内切子圆环阵列的电磁屏蔽光窗
CN103763900A (zh) 具有外切连接圆环的正交圆环及子圆环阵列电磁屏蔽光窗
CN103763906B (zh) 外切圆环连接具有子圆环的三角分布圆环阵列电磁屏蔽光窗
CN103763902B (zh) 基于四外切正交圆环及子圆环单元的电磁屏蔽光窗
CN103763898B (zh) 基于多周期主从嵌套圆环正交阵列的电磁屏蔽光窗
CN103763904B (zh) 具有内切子圆环的同心圆环三角分布阵列电磁屏蔽光窗
CN110348100B (zh) 一种基于随机分布圆环的金属网栅结构及其设计方法
CN103763909B (zh) 具有同心圆环簇及内切子圆环阵列的电磁屏蔽光窗
CN103763905B (zh) 具有三周期外切圆环及内切子圆环阵列的电磁屏蔽光窗
CN103813700B (zh) 基于多周期金属圆环二维正交嵌套阵列的电磁屏蔽光窗
CN103763899A (zh) 具有两组外切圆环和子圆环的正交圆环阵列电磁屏蔽光窗
CN113056182B (zh) 一种基于石墨烯和透明介质与超薄掺杂金属的透明完美微波吸波器
CN117858483A (zh) 一种基于螺旋线排布圆环网栅的球罩式电磁屏蔽光窗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882574

Country of ref document: EP

Kind code of ref document: A1