WO2015120570A1 - 太阳能蒸压设备 - Google Patents

太阳能蒸压设备 Download PDF

Info

Publication number
WO2015120570A1
WO2015120570A1 PCT/CN2014/071954 CN2014071954W WO2015120570A1 WO 2015120570 A1 WO2015120570 A1 WO 2015120570A1 CN 2014071954 W CN2014071954 W CN 2014071954W WO 2015120570 A1 WO2015120570 A1 WO 2015120570A1
Authority
WO
WIPO (PCT)
Prior art keywords
autoclave
water tank
solar
steam
equipment according
Prior art date
Application number
PCT/CN2014/071954
Other languages
English (en)
French (fr)
Inventor
刘凯
Original Assignee
刘凯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘凯 filed Critical 刘凯
Priority to EP14818842.8A priority Critical patent/EP2929931B1/en
Priority to AU2014284257A priority patent/AU2014284257B2/en
Priority to PCT/CN2014/071954 priority patent/WO2015120570A1/zh
Priority to JP2015561919A priority patent/JP6078894B2/ja
Priority to CN201480001501.XA priority patent/CN105120996B/zh
Priority to US14/414,634 priority patent/US9579820B2/en
Publication of WO2015120570A1 publication Critical patent/WO2015120570A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention relates to an autoclave device, in particular to a novel solar autoclave device. Background technique
  • Autoclaved equipment is widely used, such as: autoclaved concrete blocks, coal ash bricks, microporous calcium silicate boards, new lightweight wall materials, thermal insulation asbestos board, high-strength gypsum and other building materials. It is also widely used in rubber products, wood drying and anti-corrosion treatment, heavy metal smelting, high-pressure processing of chemical fiber products, cable vulcanization, and chemical and pharmaceutical, aerospace industry, thermal insulation materials, textiles, military and other projects that require pressure steaming.
  • the autoclave equipment is mainly composed of an autoclave, a steam supply device and a safety control device.
  • the gas-filled concrete block is placed in an autoclave, and the steam supply device supplies high-temperature, high-pressure steam to the autoclave, and the gas-filled concrete block is placed in the autoclave.
  • the hydrothermal reaction of CaO-Si0 2 -H 2 0 is completed, and autoclaving is completed.
  • the way in which the steam supply device provides high temperature and high pressure steam is mainly the boiler cooking method, that is, the steam is supplied to the autoclave by heating the water to obtain the expanded steam. Since the process of water expansion and pressurization requires a large amount of energy, the steam supply device of the existing autoclave equipment consumes a large amount of energy during the work.
  • the technical problem to be solved by the present invention is to solve the problem that the autoclave device cannot provide high temperature and high pressure steam by using solar energy.
  • the technical solution adopted by the present invention is to provide a new type of solar autoclave device, including an autoclave and a steam supply device, wherein the steam supply device is a solar heating device, including:
  • each of the vacuum tubes is respectively inserted with a tubular water tank, the tubular water tank has a straight tubular shape with a lower end closed at the upper end, and an upper end of the tubular water tank protrudes from the vacuum tube, and Sealing between an outer surface of an upper end of the tubular water tank and an inner wall of an upper end of the vacuum tube;
  • a connecting pipe an upper end of the tubular water tank is respectively connected to the connecting pipe, an inlet of the connecting pipe is connected to a condensed water discharge port of the autoclave, and an outlet of the connecting pipe is connected to the steam by a compressor Steam inlet of the autoclave.
  • the plurality of vacuum tubes are arranged in a row.
  • the plurality of vacuum tubes are arranged in a plurality of rows, arranged in an array, and the connecting pipes connected to the tubular water tanks in each row are connected end to end in series or in a mesh structure.
  • the vacuum tube is disposed vertically or obliquely.
  • a reversing weir is provided at the inlet of the compressor, and the first inlet of the reversing weir is connected to the outlet of the connecting pipe through a first pipe, and the second inlet of the reversing weir Take the atmosphere.
  • the outlet of the compressor is connected to the steam inlet of the autoclave through a second line, and the second line is provided with a first flow control port.
  • the condensed water discharge port is connected to a water tank through a third pipe, and the bottom of the water tank is provided with a drain pipe, and the inlet of the pipe is connected to the upper portion of the water tank through a fourth pipe.
  • the autoclave is provided with a safety weir for controlling the highest pressure in the autoclave.
  • the solar heating device is decompressed using a compressor to obtain steam, and is pumped into the autoclave to condense and release heat, thereby providing corresponding temperature and pressure, thereby heating the solar energy.
  • the device can be applied to the autoclave device; in addition, the solar heating device adopts a tubular water tank respectively inserted in a plurality of vacuum tubes for collecting heat, and the water in each tubular water tank is heated and does not flow away, only through the upper portion thereof The port exchanges heat with the water in the connecting pipe to ensure the normal operation of the solar autoclave.
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 2 is a schematic view showing the structure of a steam supply device in the present invention. detailed description
  • the novel solar autoclave apparatus comprises an autoclave 10 and a steam supply device 20.
  • the autoclave 10 is used for autoclaving and curing a material such as aerated concrete block
  • the steam supply device 20 is for supplying high temperature and high pressure steam to the autoclave 10.
  • the steam supply device 20 is a solar heating device.
  • the solar heating apparatus includes a plurality of vacuum tubes 21 which are vertically disposed and fixedly disposed outside, and the number of the vacuum tubes 21 is normally set according to actual needs.
  • a tubular water tank 22 is inserted into each of the vacuum tubes 21, and the tubular water tank 22 has a straight tubular shape with a lower end closed and an open upper end.
  • the upper end of the tubular water tank 22 protrudes from the vacuum tube 21, and the outer surface of the upper end of the tubular water tank 22 and the vacuum tube 21 are The upper end inner wall is sealed, the plurality of vacuum tubes 21 are arranged in a row, or arranged in a plurality of rows, and the upper ends of each row of the tubular water tanks 22 are respectively connected by a connecting pipe 23 to form a parallel connection structure, and are connected with each row of the tubular water tank 22.
  • the connecting pipes 23 are connected end to end in series or in a mesh structure, and finally form a connecting pipe having an inlet and an outlet.
  • the tubular water tank 22 is made of stainless steel, copper or alloy material. After the tubular water tank 22 is inserted into the vacuum tube 21, the outer surface is adjacent to the inner wall of the vacuum tube 21, the vacuum tube 21 and the tubular tube A solar selective absorbing coating is provided on at least one of the water tanks 22 to absorb solar energy and convert it into heat to heat the water within the tubular water tank 22. If the solar tube 21 and the tubular water tank 22 are provided with a solar selective absorbing coating, the utilization of solar energy can be further increased.
  • the inlet of the connecting pipe 23 is connected to the condensate discharge port of the autoclave 10, and the outlet of the connecting pipe 23 is connected to the steam inlet of the autoclave 10 through the compressor 30.
  • a reversing weir 31 is provided at the inlet of the compressor 30, and the first inlet of the reversing weir 31 is connected to the outlet of the connecting pipe 23 through the first pipe 32, and the second inlet of the reversing weir 31 is connected to the atmosphere.
  • the outlet of the compressor 30 is connected to the steam inlet of the autoclave 10 via a second line 33, and the second line 33 is provided with a first flow control port 34.
  • the condensate drain port of the autoclave 10 is connected to a water tank 40 through a third line 41, and a drain pipe is provided at the bottom of the water tank 40, and the inlet of the connecting pipe 23 is connected to the upper portion of the water tank 40 through the fourth line 42.
  • the autoclave 10 is provided with a safety crucible 10 for controlling the highest pressure in the autoclave 10.
  • the present invention is further provided with a water supply pipe 45 to supplement the lost water consumed during operation of the apparatus, and the water supply pipe 45 may be disposed on the connecting pipe 23 or the water tank 40.
  • the vacuum tube 21 absorbs solar energy to heat the water in the tubular water tank 22, and the compressor 30 operates to make the inside of the steam supply device a negative pressure, so that the hot water in the connection pipe 23 quickly becomes steam and is pumped into the autoclave 10.
  • the steam participates in the reaction in the autoclave 10, condenses and releases heat, and autoclaves and cures the materials such as the aerated concrete block, and the condensed water containing heat is recirculated through the connecting pipe 23 to continue to participate in the cycle, and continues to release the heat. Since the condensed water carries a large amount of heat, the energy required to generate steam again is small, and the energy utilization rate is high.
  • the solar heating device operates in a different manner from the conventional solar heating mode.
  • the conventional solar heating method generally employs a U-shaped tube, and the water flows and heats in the U-shaped tube.
  • the water does not flow in the tubular water tank 22. Therefore, it will be heated continuously.
  • the inside of the solar heating device is negative pressure, its heat is absorbed during the evaporation of water, and is taken in the form of steam. It is taken and pumped into the autoclave 10 to condense and release heat.
  • the present invention provides a complete protection control device, specifically:
  • the autoclave 10 is further provided with a decompression crucible 13 which automatically opens when the pressure inside the autoclave 10 unexpectedly increases, and discharges the steam in the autoclave 10 to ensure the safety of the autoclave 10. run.
  • the decompression crucible 13 is also controlled by the control unit.
  • the control unit issues control.
  • the signal is opened, and the decompression crucible 13 is opened, and the gas vapor in the autoclave 10 is discharged to achieve the purpose of lowering the temperature and pressure in the autoclave 10, and the safe operation of the autoclave 10 is further ensured.
  • the technical solution provided by the present invention solves the prior art in comparison with the prior art solution.
  • the present invention creatively opens up a precedent for utilizing the environment inside the heat pump system, and uses the inside of the autoclave as a condensation section of the heat pump system to obtain the temperature and pressure required for the autoclave in the environment of the heat pump system.
  • the working fluid water/water vapor
  • the working fluid in the internal environment of the heat pump system is in direct contact with the affected substance (product), transferring heat or chemical reaction, and the efficiency is greatly improved.
  • the present invention proposes a method of obtaining steam and applying it in the field of autoclaving.
  • the existing boiler cooking method is to provide steam and pressure to the autoclave by heating the water to obtain expanded steam, which consumes a large amount of energy.
  • the present invention uses a compressor to decompress a low temperature water source to obtain steam, pump it into an autoclave, condense and release heat to obtain a corresponding temperature and pressure, and use solar energy to supply the required steam and pressure to the autoclave system. , thus saving energy.
  • the existing autoclave method consumes fossil energy directly or indirectly, causing a large amount of pollution.
  • the solution provided by the present invention utilizes solar thermal energy without causing any pollution during operation.
  • the present invention is not limited to the above-described preferred embodiments, and any one skilled in the art should be aware of the structural changes made in the light of the present invention. Any technical solutions having the same or similar to the present invention fall within the protection scope of the present invention.

Abstract

一种太阳能蒸压设备,包括蒸压釜(10)和蒸汽提供装置(20),所述蒸汽提供装置(20)为太阳能加热装置,包括固定设置于室外的多个真空管(21)和连接管(23),每个真空管内分别插装有一个管状水箱(22),所述管状水箱(22)呈下端封闭上端敞口的直管状,所述管状水箱(22)的上端伸出所述真空管(21)并与所述连接管(23)连通,所述连接管(23)的入口与所述蒸压釜(10)的冷凝水排放口连接,所述连接管(23)的出口通过压缩机(30)连接至所述蒸压釜的蒸汽输入口。上述蒸压设备中使用压缩机对太阳能加热装置进行减压而获得蒸汽,并泵入蒸压釜,为其提供相应的温度和压力,从而使太阳能加热装置得以在蒸压设备上应用。

Description

太阳能蒸压设备
技术领域
本发明涉及蒸压设备, 具体涉及新型太阳能蒸压设备。 背景技术
蒸压设备用途十分广泛, 如: 气加混凝土砌块、 煤灰砖、 微孔硅酸钙 板、 新型轻质墙体材料、 保温石棉板、 高强度石膏等建筑材料的蒸压养护。 同时还广泛应用于橡胶制品、 木材干燥和防腐处理、 重金属冶炼、 化纤产 品高压处理、 电缆硫化以及化工、 医药、 航空航天工业、 保温材料、 纺工、 军工等需要压力蒸养的项目中。
蒸压设备主要由蒸压釜、蒸汽提供装置和安全控制装置等几部分组成。 以加气混凝土砌块的蒸压养护为例, 将气气加混凝土砌块置于蒸压釜内, 由蒸汽提供装置向蒸压釜提供高温、 高压蒸汽, 气加混凝土砌块在蒸压釜 内完成 CaO— Si02—H20的水热反应, 完成蒸压养护。 如今, 蒸汽提供装置 提供高温、 高压蒸汽的方式主要采用的是锅炉蒸煮法, 即通过加热水获得 膨胀的水蒸汽给蒸压釜提供蒸汽和压力。 由于, 水膨胀增压的过程需要消 耗大量能源, 因此, 现有蒸压设备的蒸汽提供装置在工作过程中耗能巨大。
众所周知, 如今, 能源危机已经成为困扰世界经济发展的一个重要难 题。 太阳能等清洁可再生能源是解决能源危机的重要途径。 但是, 由于太 阳能设备实现水的膨胀增压效率很低, 因此, 无法在蒸压设备上应用。 发明内容
本发明所要解决的技术问题是解决蒸压设备无法利用太阳能提供高 温、 高压蒸汽的问题。 为了解决上述技术问题, 本发明所采用的技术方案是提供一种新型太 阳能蒸压设备, 包括蒸压釜和蒸汽提供装置, 所述蒸汽提供装置为太阳能 加热装置, 包括:
固定设置于室外的多个真空管, 每个所述真空管内分别插装有一个管 状水箱, 所述管状水箱呈下端封闭上端敞口的直管状, 所述管状水箱的上 端伸出所述真空管, 且所述管状水箱的上端外表面与所述真空管的上端内 壁之间密封;
连接管, 所述管状水箱的上端分别与所述连接管连通, 所述连接管的 入口与所述蒸压釜的冷凝水排放口连接, 所述连接管的出口通过压缩机连 接至所述蒸压釜的蒸汽输入口。
在上述方案中, 所述多个真空管设置成一排。
在上述方案中, 所述多个真空管设置成多排, 呈阵列式布置, 每排所 述管状水箱连接的连接管依次首尾相接成串联结构或连接成网状结构。
在上述方案中, 所述真空管竖直或倾斜设置。
在上述热水器中, 所述压缩机的入口处设有一个换向闽, 所述换向闽 的第一入口通过第一管路连接所述连接管的出口, 所述换向闽的第二入口 接大气。
在上述方案中, 所述压缩机的出口通过第二管路连接所述蒸压釜的蒸 汽输入口, 所述第二管路上设有第一流量控制闽。
在上述方案中, 所述冷凝水排放口通过第三管路连接到一个水槽, 所 述水槽的底部设有排污管, 所述连接管的入口通过第四管路连接到所述水 槽的上部。
在上述方案中, 所述蒸压釜上设有安全闽, 用于控制所述蒸压釜内的 最高压力。
本发明, 使用压缩机对太阳能加热装置进行减压而获得蒸汽, 并泵入 蒸压釜, 冷凝释放热量, 为其提供相应的温度和压力, 从而使太阳能加热 装置得以在蒸压设备上应用; 另外, 太阳能加热装置采用了分别插装在多 个真空管内的管状水箱进行集热,每个管状水箱内的水被加热后并不流走, 仅通过其上端口处与连接管内的水进行热交换, 保证了太阳能蒸压设备的 正常工作。 附图说明
图 1为本发明的结构示意图;
图 2为本发明中蒸汽提供装置的结构示意图。 具体实施方式
下面结合说明书附图和具体实施方式对本发明作出详细的说明。
如图 1所示, 本发明提供的新型太阳能蒸压设备包括蒸压釜 10和蒸汽 提供装置 20。蒸压釜 10用于对加气混凝土砌块等材料进行蒸压养护,蒸汽 提供装置 20用于向蒸压釜 10提供高温、 高压蒸汽。 其中, 蒸汽提供装置 20采用的是太阳能加热装置。
如图 2所示,太阳能加热装置包括多个真空管 21,真空管 21竖直设置, 固定设置于室外, 真空管 21的数量通常情况下根据实际需求设置。
每个真空管 21内分别插装有一个管状水箱 22, 管状水箱 22呈下端封 闭、 上端敞口的直管状, 管状水箱 22 的上端伸出真空管 21, 且管状水箱 22的上端外表面与真空管 21的上端内壁之间密封, 多个真空管 21设置成 一排, 或者呈多排阵列式布置, 每一排管状水箱 22的上端分别通过一根连 接管 23连通组成并联连接结构,与每排管状水箱 22连接的连接管 23依次 首尾相接成串联结构或连接成网状结构, 最终形成一个具有一个入口和一 个出口的连接总管。
本实施例中, 管状水箱 22由不锈钢、铜或合金材质制成。 管状水箱 22 插入到真空管 21内之后, 外表面靠近真空管 21的内壁, 真空管 21和管状 水箱 22的至少二者之一上设有太阳能选择性吸收涂层,从而吸收太阳光能 并转化为热能对管状水箱 22内的水的加热。 如果真空管 21和管状水箱 22 上均设有太阳能选择性吸收涂层,则可以进一歩地增加对太阳光能的利用。
再参见图 1,连接管 23的入口与蒸压釜 10的冷凝水排放口连接,连接 管 23的出口通过压缩机 30连接至蒸压釜 10的蒸汽输入口。
压缩机 30的入口处设有一个换向闽 31, 换向闽 31的第一入口通过第 一管路 32连接连接管 23的出口, 换向闽 31的第二入口接大气。
压缩机 30的出口通过第二管路 33连接蒸压釜 10的蒸汽输入口, 第二 管路 33上设有第一流量控制闽 34。
蒸压釜 10的冷凝水排放口通过第三管路 41连接到一个水槽 40, 水槽 40的底部设有排污管, 连接管 23 的入口通过第四管路 42连接到水槽 40 的上部。
蒸压釜 10上设有安全闽 13, 用于控制蒸压釜 10内的最高压力。
本发明还设有补水管 45, 以补充设备运行中消耗散失的水份, 补水管 45可以设置在连接管 23或水槽 40上。
本发明工作过程如下:
真空管 21吸收太阳能将管状水箱 22内的水加热, 压缩机 30工作, 使 蒸汽提供装置内部成为负压,于是连接管 23内的热水很快变为蒸汽并被泵 入蒸压釜 10内, 蒸汽在蒸压釜 10内参与反应, 冷凝释放热量, 对加气混 凝土砌块等材料进行蒸压养护,含热量的冷凝水经连接管 23回流继续参与 循环, 继续释放热热量。 由于冷凝水中携带有大量的热量, 因此, 再次生 成蒸汽所需要的能量较小, 能源利用率高。
本发明中, 太阳能加热装置的工作方式不同于传统太阳加热方式, 传 统太阳能加热方式通常采用的是 U形管, 水在 U形管内流动加热, 而本发 明中, 水在管状水箱 22内不流动, 因此会被不断加热, 同时, 由于太阳能 加热装置内部为负压, 其热量在水蒸发过程中被吸收, 以蒸汽的形式被带 走, 并被泵入蒸压釜 10内, 冷凝释放热量。
另外, 本发明提供了完备的保护控制装置, 具体地说:
( 1 ) 当蒸压釜 10内部的温度低于设定值时, 换向闽 31切换到与蒸汽 提供装置 20连通, 于是连接管 23内的蒸汽源源不断地进入蒸压釜 10, 使 蒸压釜 10内的温度不断升高;
( 2 ) 当蒸压釜 10内部的温度高于设定值时, 换向闽 31切换到与大气 连通, 于是压缩机 30向蒸压釜 10输入空气而不再输入蒸汽, 于是蒸压釜 10内的温度不再升高。
( 3 ) 当蒸压釜 10内部的压力低于设定值时, 将流量控制闽 34的开度 加大, 增加蒸压釜 10的进气量, 从而提高蒸压釜 10内的压力;
(4) 当蒸压釜 10内部的压力高于设定值时, 将流量控制闽 34的开度 减少, 减少蒸压釜 10的进气量, 从而降低蒸压釜 10内的压力。
上述换向闽 31和流量控制闽 34通过控制单元自动控制, §Ρ: 温度传 感器 11和压力传感器 12不断将蒸压釜 10内部的温度和压力传输给控制单 元,控制单元根据蒸压釜 10内部的温度和压力输出相应的控制信号给换向 闽 31和流量控制闽 34。
蒸压釜 10上还设有减压闽 13, 当蒸压釜 10内部的压力意外瞬间增大 时, 减压闽 13自动打开, 排出蒸压釜 10内的蒸汽以保证蒸压釜 10的安全 运行。
另外, 减压闽 13还通过控制单元控制, 当蒸压釜 10内的温度或压力 在一段时间 (例如 2分钟, 用户可以根据实际需要设定) 内一直超过设定 值时, 控制单元发出控制信号, 打开减压闽 13, 排出蒸压釜 10内的气体蒸 汽, 达到降低蒸压釜 10内的温度和压力的目的, 进一歩保证蒸压釜 10的 安全运行。
本发明提供的技术方案, 同现有技术方案相比, 解决了现有技术中的 ( 1 )本发明, 创造性地开启了利用热泵系统内环境的先河, 将蒸压釜 内部作为热泵系统的冷凝段, 在热泵系统内环境中获得蒸压釜所需要的温 度与压力。 在这个过程中, 热泵系统内部环境中的工质 (水 /水蒸汽) 与受 作用物质 (产品) 直接接触, 传递热量或发生化学反应, 效率大大提高。
( 2 )本发明提出了获得蒸汽并在蒸压领域中应用的方法。 现有的锅炉 蒸煮方法是通过加热水获得膨胀的水蒸汽给蒸压釜提供蒸汽与压力, 该膨 胀增压的过程消耗大量能源。 而本发明使用压缩机对低温水源减压获得蒸 汽, 并将其泵入蒸压釜, 冷凝释放热量, 以获得相应的温度和压力, 利用 太阳能便可对蒸压系统提供所需要的蒸汽和压力, 从而节约了能源。
( 3 )传统的锅炉蒸压法为了给蒸压釜提高压力需要消耗大量化石燃料 或电力, 而本发明提供的方案, 在循环供热的同时获得相应的压力, 无需 额外做功。
( 4) 管状水箱内的水基本不流动, 加之真空管始终对其进行加热, 同 时真空管相当于效果相当好的保温容器, 减少了热量的损耗。
( 5 )现有的蒸压方法直接或间接消耗化石能源, 造成大量污染。 而本 发明提供的方案, 利用太阳热能, 在运行过程中不会造成任何污染。 本发明不局限于上述最佳实施方式, 任何人应该得知在本发明的启示 下作出的结构变化, 凡是与本发明具有相同或相近的技术方案, 均落入本 发明的保护范围之内。

Claims

权 利 要 求 书
1、 新型太阳能蒸压设备, 包括蒸压釜和蒸汽提供装置, 其特征在于, 所述蒸汽提供装置为太阳能加热装置, 包括:
固定设置于室外的多个真空管, 每个所述真空管内分别插装有一个管 状水箱, 所述管状水箱呈下端封闭上端敞口的直管状, 所述管状水箱的上 端伸出所述真空管, 且所述管状水箱的上端外表面与所述真空管的上端内 壁之间密封;
连接管, 所述管状水箱的上端分别与所述连接管连通, 所述连接管的 入口与所述蒸压釜的冷凝水排放口连接, 所述连接管的出口通过压缩机连 接至所述蒸压釜的蒸汽输入口。
2、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述多个 真空管设置成一排。
3、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述多个 真空管设置成多排, 呈阵列式布置, 每排所述管状水箱连接的连接管依次 首尾相接成串联结构或连接成网状结构。
4、如权利要求 1至 3任一项所述的新型太阳能蒸压设备,其特征在于, 所述真空管竖直或倾斜设置。
5、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述压缩 机的入口处设有一个换向闽, 所述换向闽的第一入口通过第一管路连接所 述连接管的出口, 所述换向闽的第二入口接大气。
6、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述压缩 机的出口通过第二管路连接所述蒸压釜的蒸汽输入口, 所述第二管路上设 有第一流量控制闽。
7、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述冷凝 水排放口通过第三管路连接到一个水槽, 所述水槽的底部设有排污管, 所 述连接管的入口通过第四管路连接到所述水槽的上部。
8、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 所述蒸压 釜上设有安全闽, 用于控制所述蒸压釜内的最高压力。
9、 如权利要求 1所述的新型太阳能蒸压设备, 其特征在于, 还包括补 水管, 用于向所述管状水箱补水。
PCT/CN2014/071954 2014-02-11 2014-02-11 太阳能蒸压设备 WO2015120570A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14818842.8A EP2929931B1 (en) 2014-02-11 2014-02-11 Solar-powered autoclave device
AU2014284257A AU2014284257B2 (en) 2014-02-11 2014-02-11 Novel solar autoclave equipment
PCT/CN2014/071954 WO2015120570A1 (zh) 2014-02-11 2014-02-11 太阳能蒸压设备
JP2015561919A JP6078894B2 (ja) 2014-02-11 2014-02-11 新型太陽エネルギー蒸気圧力設備
CN201480001501.XA CN105120996B (zh) 2014-02-11 2014-02-11 太阳能蒸压设备
US14/414,634 US9579820B2 (en) 2014-02-11 2014-11-02 Solar autoclave equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071954 WO2015120570A1 (zh) 2014-02-11 2014-02-11 太阳能蒸压设备

Publications (1)

Publication Number Publication Date
WO2015120570A1 true WO2015120570A1 (zh) 2015-08-20

Family

ID=53799481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071954 WO2015120570A1 (zh) 2014-02-11 2014-02-11 太阳能蒸压设备

Country Status (6)

Country Link
US (1) US9579820B2 (zh)
EP (1) EP2929931B1 (zh)
JP (1) JP6078894B2 (zh)
CN (1) CN105120996B (zh)
AU (1) AU2014284257B2 (zh)
WO (1) WO2015120570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152957A1 (zh) * 2017-02-07 2018-08-30 南通市恒达机械制造有限公司 新式太阳能砖坯增湿户外蒸养机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014284257B2 (en) * 2014-02-11 2019-01-17 Kai Liu Novel solar autoclave equipment
CN106863570B (zh) * 2017-03-31 2019-01-01 徐州工程学院 一种用于驱动蒸压釜釜门开关的驱动装置
CN108972854B (zh) * 2018-08-06 2020-06-26 湖南三一快而居住宅工业有限公司 混凝土预制件养护及预制系统
CN111688010A (zh) * 2020-07-08 2020-09-22 湖北兴葆科技有限责任公司 一种混凝土电杆蒸汽养护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252484A2 (de) * 1986-07-07 1988-01-13 Klaus Dr. Scharmer Medizinischer Sterilisator
CN200986178Y (zh) * 2006-10-25 2007-12-05 宋斌 增压式蒸汽回收器
CN202403418U (zh) * 2012-01-09 2012-08-29 陕西亿丰绿色建筑材料有限公司 太阳能养护窑
TW201237162A (en) * 2011-03-15 2012-09-16 Univ Nat Formosa Solid state fermentation bioreactor with automatic producing modules having energy saving and multiple function
CN202927806U (zh) * 2011-08-10 2013-05-08 李泽明 一种太阳能快速升温装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979704A (en) * 1930-08-05 1934-11-06 United States Gypsum Co Method of producing high strength calcined gypsum
JPS6317355A (ja) * 1986-06-17 1988-01-25 Agency Of Ind Science & Technol 太陽・空気熱集熱器
AU637078B2 (en) * 1988-11-18 1993-05-20 Usg Enterprises Inc. Composite material and method of producing
US5041333A (en) * 1989-02-24 1991-08-20 The Celotex Corporation Gypsum board comprising a mineral case
TW239091B (zh) * 1992-04-10 1995-01-21 Eiwa Corp
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
JPH08285379A (ja) * 1995-04-18 1996-11-01 Shiroki Corp 太陽熱利用給湯装置、暖房装置、及び集熱装置
US5676128A (en) * 1995-07-10 1997-10-14 Sun It Enterprises Solar device for cooking or sterilizing and method or use thereof
CN2232916Y (zh) * 1995-09-05 1996-08-14 张青山 太阳能真空管海水淡化装置
US5915811A (en) * 1996-09-30 1999-06-29 The Board Of Trustees Of The University Of Arkansas Solar drying process and apparatus
AUPO705697A0 (en) * 1997-05-28 1997-06-19 Australian Rural Dehydration Enterprise Pty Ltd Dehydration plant
DE10235542A1 (de) * 2002-08-03 2004-07-22 Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg Verfahren zur kontinuierlichen Messung, Erfassung und Regelung des Stützdrucks sowie Vorrichtung zur Durchführung des Verfahrens
JP3886045B2 (ja) * 2002-11-06 2007-02-28 学校法人慶應義塾 高効率低温集熱パネルとその熱輸送システム
JP3696224B2 (ja) * 2003-03-19 2005-09-14 株式会社グリーンセイジュ 乾燥システム
FR2883788B1 (fr) * 2005-04-04 2011-08-19 Edmond Pierre Picard Procede de traitement thermique de bois, installation pour la mise en oeuvre du procede, et du bois traite thermiquement
US7610692B2 (en) * 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
DE102007024188B3 (de) * 2007-05-24 2008-04-10 Grenzebach Bsh Gmbh Verfahren zur Herstellung von Alpha-Calciumsulfat-Halbhydrat aus Calciumsulfat-Dihydrat und zugehörige Vorrichtung
US8266819B2 (en) * 2009-01-07 2012-09-18 Pratt & Whitney Rocketdyne, Inc. Air drying system for concentrated solar power generation systems
WO2010141416A1 (en) * 2009-06-01 2010-12-09 The Procter & Gamble Company Fabric refreshing cabinet device comprising a passive heat management system
FR2953005B1 (fr) * 2009-11-23 2011-12-09 Degremont Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d'epuration
CN102121566B (zh) * 2010-01-11 2014-06-25 李林 水蒸汽使用前的处理方法及其设备
JP2012127577A (ja) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd 太陽熱集熱装置およびその集熱量調整方法
WO2012168355A1 (en) * 2011-06-08 2012-12-13 Antecy B.V. Direct photoconversion of carbon dioxide to liquid products
CA2839659A1 (en) * 2011-06-17 2012-12-20 Pacific Edge Holdings Pty Ltd A process for drying material and dryer for use in the process
US8869420B1 (en) * 2012-11-19 2014-10-28 Mousa Mohammad Nazhad Energy-efficient process and apparatus for drying feedstock
AU2014284257B2 (en) * 2014-02-11 2019-01-17 Kai Liu Novel solar autoclave equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252484A2 (de) * 1986-07-07 1988-01-13 Klaus Dr. Scharmer Medizinischer Sterilisator
CN200986178Y (zh) * 2006-10-25 2007-12-05 宋斌 增压式蒸汽回收器
TW201237162A (en) * 2011-03-15 2012-09-16 Univ Nat Formosa Solid state fermentation bioreactor with automatic producing modules having energy saving and multiple function
CN202927806U (zh) * 2011-08-10 2013-05-08 李泽明 一种太阳能快速升温装置
CN202403418U (zh) * 2012-01-09 2012-08-29 陕西亿丰绿色建筑材料有限公司 太阳能养护窑

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2929931A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152957A1 (zh) * 2017-02-07 2018-08-30 南通市恒达机械制造有限公司 新式太阳能砖坯增湿户外蒸养机

Also Published As

Publication number Publication date
AU2014284257B2 (en) 2019-01-17
CN105120996B (zh) 2017-10-13
US9579820B2 (en) 2017-02-28
EP2929931A4 (en) 2016-11-16
US20160271832A1 (en) 2016-09-22
AU2014284257A1 (en) 2015-08-27
JP2016513234A (ja) 2016-05-12
JP6078894B2 (ja) 2017-02-15
EP2929931B1 (en) 2017-09-13
CN105120996A (zh) 2015-12-02
EP2929931A1 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
EP2921272A1 (en) Pump-type autoclave system and steam and pressure supply method thereof
WO2015120570A1 (zh) 太阳能蒸压设备
CN204172177U (zh) 一种用于蒸压釜的节能循环系统
CN204395913U (zh) 一种蒸压釜余热回收系统
CN206514353U (zh) 一种节能环保的炊暖常压热水锅炉
CN216845119U (zh) 一种电锅炉用余热利用装置
CN215823005U (zh) 一种循环导热的环保砖生产用蒸压釜
CN202521951U (zh) 带翅片管的烘干热泵
CN209851229U (zh) 一种灰砂砖和加气混凝砌块的蒸压静养系统
CN208946388U (zh) 一种能循环利用热能的高效节能型蒸压釜
CN204345600U (zh) 新型超导管锅炉
CN205718505U (zh) 提升蒸汽品质的装置
CN204268447U (zh) 一种火力发电装置
CN213363287U (zh) 一种烘干室的余热利用装置
CN216347945U (zh) 一种电锅炉蒸汽余热回收利用装置
CN219318641U (zh) 一种具有余热利用功能的新型锅炉系统
CN206593083U (zh) 一种抽背机组排汽节能装置
CN212081211U (zh) 一种锅炉取样热能回收利用系统
CN202902450U (zh) 一种免真空超导暖气片
CN212057232U (zh) 一种蒸压砂加气砌块砖蒸压釜尾气余热利用装置
CN207230510U (zh) 一种蒸压釜余热利用系统
CN205957474U (zh) 一种锅炉余热回收系统
CN202630709U (zh) 硅钢生产线使用的热空气余热回收利用装置
CN206113716U (zh) 一种高温氧气加热器
CN206144614U (zh) 一种火力发电厂汽轮机排汽热量回收装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014284257

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2014818842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014818842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14414634

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015561919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE