WO2015119418A1 - 이미지센서 및 이의 제조방법 - Google Patents

이미지센서 및 이의 제조방법 Download PDF

Info

Publication number
WO2015119418A1
WO2015119418A1 PCT/KR2015/001125 KR2015001125W WO2015119418A1 WO 2015119418 A1 WO2015119418 A1 WO 2015119418A1 KR 2015001125 W KR2015001125 W KR 2015001125W WO 2015119418 A1 WO2015119418 A1 WO 2015119418A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor layer
oxide semiconductor
layer
image sensor
Prior art date
Application number
PCT/KR2015/001125
Other languages
English (en)
French (fr)
Inventor
전승익
김명호
장한빈
최덕균
최명재
Original Assignee
주식회사 레이언스
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이언스, 한양대학교 산학협력단 filed Critical 주식회사 레이언스
Publication of WO2015119418A1 publication Critical patent/WO2015119418A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements

Definitions

  • the present invention relates to an image sensor, and more particularly, to an image sensor including a thin film transistor using an oxide semiconductor and a method of manufacturing the same.
  • Digital image sensors may be classified into CCD, CMOS, TFT, and the like.
  • the TFT method uses a TFT substrate and has an advantage of manufacturing an image sensor in a large area.
  • a thin film transistor and a photodiode are formed in pixels arranged in a matrix form.
  • amorphous silicon is used as the semiconductor layer of the thin film transistor.
  • amorphous silicon has poor electrical characteristics such as mobility compared to crystalline silicon.
  • Oxide semiconductors have advantages that are several times to tens of times greater than amorphous silicon and have excellent off current characteristics.
  • the conventional image sensor using an oxide semiconductor forms a photodiode after forming an oxide semiconductor layer, and is damaged by a process gas, especially hydrogen (H 2 ) gas, which is generated during the photodiode formation, and also in an etching process.
  • a process gas especially hydrogen (H 2 ) gas, which is generated during the photodiode formation, and also in an etching process.
  • the channel region of the oxide semiconductor layer exposed between the source electrode and the drain electrode is damaged by the etching gas, resulting in a problem of deterioration of electrical characteristics.
  • the present invention has a problem to provide a way to improve the electrical properties by preventing damage to the oxide semiconductor.
  • the present invention provides a source electrode and a drain electrode; An oxide semiconductor layer in contact with the source electrode and the drain electrode; A gate insulating film formed on the oxide semiconductor layer; A gate electrode formed on the gate insulating film; It provides an image sensor including a photodiode connected to the drain electrode.
  • the oxide semiconductor layer may be formed above or below the source electrode and the drain electrode.
  • the photodiode includes: a first electrode extending from the drain electrode; A semiconductor layer formed on the first electrode; It may include a second electrode formed on the semiconductor layer.
  • the semiconductor layer may include an n + layer, an i layer, and a p + layer sequentially disposed on the first electrode.
  • a read wiring connected to the source electrode through the first contact hole and a bias electrode connected to the second electrode through the second contact hole on the passivation layer, and the gate insulating layer includes the first contact hole It may include a hole. It may include an oxide film formed on the surface of the oxide semiconductor layer.
  • the present invention comprises the steps of forming a source electrode and a drain electrode; Forming an oxide semiconductor layer in contact with the source electrode and the drain electrode; N 2 O plasma treatment of the oxide semiconductor layer; Forming an oxide film on a surface of the oxide semiconductor layer; Forming a gate insulating film on the oxide semiconductor layer; Forming a gate electrode on the gate insulating film; It provides an image sensor manufacturing method comprising the step of forming a photodiode connected with the drain electrode.
  • the oxide thin film transistor using the oxide semiconductor layer is configured in a top gate method. According to such a configuration, the penetration of hydrogen gas generated during the formation of the photodiode into the oxide semiconductor can be structurally blocked. Therefore, damage to the oxide semiconductor due to penetration into the hydrogen gas at the time of forming the photodiode is prevented, thereby improving electrical characteristics.
  • an oxide film can be formed on the surface of the oxide semiconductor layer.
  • the oxide semiconductor layer can be effectively protected by the oxide film.
  • the electrical properties can be improved.
  • N 2 O plasma treatment may be performed on the oxide semiconductor layer before forming the oxide film. Through the N 2 O plasma treatment, defects in the oxide semiconductor layer can be eliminated, and electrical properties of the oxide semiconductor layer can be improved.
  • the gate electrode functions as a black matrix to prevent external light from being incident on the oxide semiconductor layer. Therefore, it is not necessary to provide a separate black matrix.
  • FIG. 1 is a view schematically showing an imaging apparatus using an image sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a pixel of an image sensor according to an embodiment of the present invention
  • 3A to 3D are cross-sectional views illustrating a method of manufacturing an image sensor according to an embodiment of the present invention.
  • Figure 1 is a view schematically showing an image device using an image sensor according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view schematically showing a pixel of the image sensor according to an embodiment of the present invention.
  • the light generator 110 generates light for image capturing and corresponds to a configuration of irradiating the light onto a subject. For example, when X-ray imaging is performed, the light generator 110 generates X-rays to irradiate the light.
  • the light irradiated as described above passes through the object 150 and is incident on the image sensor 200.
  • the image sensor 200 includes a plurality of pixels P arranged in a matrix form.
  • Each pixel P has a photodiode PD that converts incident light into an electrical signal, and is electrically connected to the photodiode PD and performs an on / off switching operation according to a scan signal to read an electrical signal.
  • a thin film transistor T output to 271 is configured.
  • the image sensor 200 having such a function will be described in more detail with reference to FIG. 2.
  • a thin film transistor T and a photodiode PD are formed in each pixel P of the image sensor 200.
  • the region where the thin film transistor T is formed is referred to as a first region A1 and the region where the photodiode PD is formed is referred to as a second region A2.
  • Source and drain electrodes 221 and 222 spaced apart from each other are formed in the first region A1 on the substrate 210.
  • the source and drain electrodes 221 and 222 may be formed in a single layer structure or a multilayer structure. For example, it may be formed of a triple layer structure of molybdenum (Mo) / aluminum (Al) / molybdenum (Mo).
  • the drain electrode 222 may extend to the second region A2.
  • the portion extending to the second region A2 functions as the first electrode 225 of the photodiode PD.
  • the photodiode PD may be electrically connected to the thin film transistor T through the first electrode 225.
  • an oxide semiconductor layer 230 configured to overlap and contact the source and drain electrodes 221 and 222 on both sides is formed. Is formed.
  • the oxide semiconductor layer 230 region between the source and drain electrodes 221 and 222 functions as a channel region.
  • the oxide semiconductor layer 230 may include, for example, one of indium gallium zinc oxide (IGZO), zinc tin oxide (ZTO), and zinc indium oxide (ZIO), but is not limited thereto.
  • IGZO indium gallium zinc oxide
  • ZTO zinc tin oxide
  • ZIO zinc indium oxide
  • a buffer layer may be formed on the substrate 210 before the source and drain electrodes 221 and 222 are formed. Such a buffer layer may function to prevent the oxide semiconductor layer 230 from being damaged by impurities flowing out of the substrate 210.
  • the oxide semiconductor layer 230 may be formed first, and then the source and drain electrodes 221 and 222 may be formed.
  • the N 2 O plasma treatment may be performed on the above-described oxide semiconductor layer 230. Accordingly, defects of the oxide semiconductor layer 230 may be removed to improve film quality.
  • the gate insulating layer 235 may be formed on the oxide semiconductor layer 230.
  • the gate insulating layer 235 may be made of, for example, SiO 2 or SiNx as an inorganic insulating material.
  • the gate insulating film 235 is preferably configured not to be formed in the region where the photodiode PD is formed.
  • an O 2 annealing process may be performed on the oxide semiconductor layer 230 before the gate insulating layer 235 is formed, and thus an oxide film 233 may be formed on the top surface of the oxide semiconductor layer 230. .
  • the oxide film 233 may function to protect the oxide semiconductor layer 230 in the process of forming the gate insulating film 235.
  • the gate insulating film 235 is formed of SiNx, a large amount of H 2 is generated as compared with the case of using SiO 2 , which causes excessive damage to the oxide semiconductor layer 230. Therefore, by forming the oxide film 233 on the surface of the oxide semiconductor layer 230, it is possible to prevent the penetration of H 2 to improve the electrical characteristics of the oxide semiconductor layer 230.
  • the gate electrode 240 may be formed on the gate insulating layer 235 to correspond to the oxide semiconductor layer 230.
  • the gate electrode 220 may be formed in a single layer structure or a multilayer structure. For example, it may be formed in a double layer structure of molybdenum (Mo) / aluminum (Al).
  • the source and drain electrodes 221 and 222, the oxide semiconductor layer 230, and the gate electrode 240 formed in the first region A1 are formed of a top gate thin film transistor ( T).
  • the semiconductor layer 250 may be formed on the first electrode 225, and the second electrode 255 may be formed on the semiconductor layer 250.
  • one of the first electrode 225 and the second electrode 255 serves as a cathode and the other serves as an anode.
  • the first electrode 225 functions as a cathode and the second electrode 255 functions as an anode is taken as an example.
  • the second electrode 255 may be formed of a material having a higher work function than the first electrode 225.
  • the transparent conductive material indium-tin-oxide (ITO) or IZO ( It may be made of one of indium-zinc-oxide (ITZO) or indium-tin-zinc-oxide (ITZO).
  • the photodiode PD for example, a PIN type photodiode may be used, but is not limited thereto.
  • the semiconductor layer 250 may include an n + layer 251, an i layer 252, and a p + layer 253.
  • the protective layer 260 may be formed on the substrate 210 on which the photodiode PD is formed.
  • the protective layer 260 may be formed substantially over the entire surface of the substrate 210.
  • the protective layer 260 may be made of, for example, an inorganic insulating material such as SiO 2 or SiNx.
  • a first contact hole 261 exposing the source electrode 221 and a second contact hole 262 exposing the second electrode 255 are formed together with the gate insulating layer 235. Can be.
  • the read wiring 271 and the bias electrode 272 may be formed on the passivation layer 260.
  • the read wiring 271 is connected to the source electrode 241 through the first contact hole 261.
  • the bias electrode 272 is connected to the second electrode 255 through the second contact hole 262 to apply a bias voltage to the second electrode 255.
  • the readout wiring 271 and the bias electrode 272 may be formed in a single layer structure or a multilayer structure. For example, it may be formed of a triple layer structure of molybdenum (Mo) / aluminum (Al) / molybdenum (Mo).
  • the oxide thin film transistor T using the oxide semiconductor layer 230 is configured in a top gate manner. That is, the oxide semiconductor layer 230 is positioned at the bottom in the thin film transistor T, and a plurality of laminated films are formed thereon. According to such a configuration, the penetration of hydrogen gas generated when the photodiode (PD) is formed into the oxide semiconductor can be structurally blocked. Therefore, damage to the oxide semiconductor due to penetration into the hydrogen gas at the time of forming the photodiode PD is prevented, thereby improving electrical characteristics.
  • an oxide film 233 may be formed on the surface of the oxide semiconductor layer 230.
  • the oxide semiconductor layer 230 may be effectively protected by the oxide film 233.
  • the gate insulating film 235 is formed of SiNx, a large amount of H 2 is generated as compared with the case of using SiO 2 , which causes excessive damage to the oxide semiconductor layer 230. Therefore, by forming the oxide film 233 on the surface of the oxide semiconductor layer 230, by preventing the penetration of H 2 to improve the damage of the oxide semiconductor layer 230, the electrical characteristics can be improved.
  • an N 2 O plasma treatment may be performed on the oxide semiconductor layer 230.
  • the defects of the oxide semiconductor layer 230 can be removed, so that the electrical characteristics of the oxide semiconductor layer 230 can be improved.
  • the gate electrode 240 functions as a black matrix to prevent external light from being incident on the oxide semiconductor layer 230. Therefore, it is not necessary to provide a separate black matrix.
  • 3A to 3D are cross-sectional views illustrating a method of manufacturing an image sensor according to an exemplary embodiment of the present invention.
  • a metal material is deposited on a substrate 210 and a mask process is performed to form source and drain electrodes 221 and 222 in the first region A1.
  • the mask process is a process of forming a thin film pattern, and means a series of processes including a photoresist deposition process, an exposure process, a developing process, an etching process, a photoresist strip process, and the like.
  • the drain electrode 222 is formed to extend to the second region A2 of the pixel P on which the photodiode PD is to be formed.
  • the portion formed in the second region A2 corresponds to the first electrode 225.
  • an oxide semiconductor layer is deposited on the substrate 210 on which the source and drain electrodes 221 and 222 are formed, and a mask process is performed to form the oxide semiconductor layer 230 in the first region A1.
  • an N 2 O plasma treatment is performed on the substrate 210 on which the oxide semiconductor layer 230 is formed. Accordingly, the oxide semiconductor layer 230 may be treated with N 2 O plasma to remove defects and to improve film quality.
  • an O 2 annealing process is performed on the substrate 210 on which the oxide semiconductor layer 230 is formed.
  • an oxide film 233 is formed on the surface of the oxide semiconductor layer 230.
  • the O 2 annealing treatment may be performed, for example, at a temperature of about 300 ° C. for about 1 hour, but is not limited thereto.
  • one of the aforementioned N 2 O plasma treatment and O 2 annealing treatment may be performed, or both of these treatments may not be performed.
  • a gate insulating film 235 is formed on the substrate 210 on which the oxide semiconductor layer 230 is formed.
  • a metal material is deposited on the gate insulating layer 235 and a mask process is performed to form the gate electrode 240 in the first region A1.
  • the semiconductor layer 250 and the second electrode 255 are formed on the first electrode 225.
  • n + material, i material, p + material is deposited sequentially, a transparent conductive material is deposited on the p + material layer, and then a mask process is performed, n + layer 251, i layer 252 ) and a semiconductor layer 250 composed of a p + layer 253 and a second electrode 255.
  • a transparent conductive material may be deposited and a mask process may be performed to form the second electrode 255.
  • an inorganic insulating material is deposited on the substrate 210 on which the second electrode 255 is formed to form a passivation layer 260, and a mask process is performed on the passivation layer 260 to form first and second contact holes 261. , 262).
  • the gate insulating layer 235 along with the protective layer 260 is also etched together.
  • a metal material is deposited on the passivation layer 260 and a mask process is performed to form the read wirings and the bias electrodes 271 and 272.
  • the read wiring 271 is connected to the source electrode 221 through the first contact hole 261, and the bias electrode 272 is connected to the second electrode 255 of the photodiode PD through the second contact hole 262. ).

Abstract

본 발명은 산화물반도체의 손상을 방지하여 전기적 특성을 향상시킬 수 있는 방안을 제공하는 데 과제가 있다. 본 발명은 소스전극 및 드레인전극과; 상기 소스전극 및 드레인전극과 접촉하는 산화물반도체층과; 상기 산화물반도체층 상에 형성된 게이트절연막과; 상기 게이트절연막 상에 형성된 게이트전극과; 상기 드레인전극과 연결되는 포토다이오드를 포함하는 이미지센서를 제공한다.

Description

이미지센서 및 이의 제조방법
본 발명은 이미지센서에 관한 것이며, 보다 상세하게는, 산화물반도체를 사용한 박막트랜지스터를 포함한 이미지센서 및 그 제조방법에 대한 것이다.
기존에는, 의료나 공업용 X선 촬영에서 필름과 스크린을 이용한 방식이 사용되었다. 이와 같은 경우에는, 촬영된 필름의 현상 및 보관상의 문제 등에 기인하여 비용 및 시간 측면에서 비효율적이었다.
이를 개선하기 위해, 디지털 방식의 이미지센서가 현재 널리 사용되고 있다. 디지털방식의 이미지센서는, CCD 방식, CMOS 방식, TFT 방식 등으로 분류될 수 있다.
여기서, TFT 방식은 TFT 기판을 이용하는 것으로서, 이미지센서를 대면적으로 제조할 수 있는 장점이 있다. 이와 같은 TFT 방식 이미지센서에는, 매트릭스 형태로 배치된 화소에 박막트랜지스터 및 포토다이오드가 구성된다.
일반적으로, 박막트랜지스터의 반도체층으로서 비정질 실리콘이 사용된다. 그런데, 비정질 실리콘은 결정질 실리콘에 비해 이동도 등의 전기적 특성이 좋지 않다.
이를 개선하기 위해, 최근에 산화물반도체를 사용하는 것이 제안되었다. 산화물반도체는 비정질 실리콘에 비해 이동도 특성이 수배 내지 십 수배 더 크고 오프 전류(off current) 특성 등이 우수한 장점을 갖는다.
종래의 산화물반도체를 사용한 이미지센서는, 산화물반도체층을 형성한 후 포토다이오드를 형성하게 되는데, 포토다이오드 형성시 발생되는 공정가스 특히 수소(H2) 가스에 의해 손상을 받게 되며, 또한 식각 공정에서 소스전극 및 드레인전극 사이로 노출된 산화물반도체층의 채널영역이 식각 가스에 의해 손상되어, 전기적 특성이 저하되는 문제가 발생하게 된다.
본 발명은 산화물반도체의 손상을 방지하여 전기적 특성을 향상시킬 수 있는 방안을 제공하는 데 과제가 있다.
전술한 바와 같은 과제를 달성하기 위해, 본 발명은 소스전극 및 드레인전극과; 상기 소스전극 및 드레인전극과 접촉하는 산화물반도체층과; 상기 산화물반도체층 상에 형성된 게이트절연막과; 상기 게이트절연막 상에 형성된 게이트전극과; 상기 드레인전극과 연결되는 포토다이오드를 포함하는 이미지센서를 제공한다.
여기서, 상기 산화물반도체층은 상기 소스전극 및 드레인전극 상부나 하부에 구성될 수 있다. 상기 포토다이오드는, 상기 드레인전극으로부터 연장된 제1전극과; 상기 제1전극 상에 형성된 반도체층과; 상기 반도체층 상에 형성된 제2전극을 포함할 수 있다. 상기 반도체층은, 상기 제1전극 상에 순차적으로 위치하는 n+층과, i층과, p+층을 포함할 수 있다. 상기 게이트전극과 포토다이오드 상에, 상기 소스전극을 노출하는 제1콘택홀과, 상기 제2전극을 노출하는 제2콘택홀을 포함하는 보호막과; 상기 보호막 상에, 상기 제1콘택홀을 통해 상기 소스전극과 연결되는 독출배선과, 상기 제2콘택홀을 통해 상기 제2전극과 연결되는 바이어스전극을 포함하고, 상기 게이트절연막은 상기 제1콘택홀을 포함할 수 있다. 상기 산화물반도체층의 표면에 형성된 산화막을 포함할 수 있다.
다른 측면에서, 본 발명은 소스전극 및 드레인전극을 형성하는 단계와; 상기 소스전극 및 드레인전극과 접촉하는 산화물반도체층을 형성하는 단계와; 상기 산화물반도체층을 N2O 플라즈마 처리하는 단계와; 상기 산화물반도체층 표면에 산화막을 형성하는 단계와; 상기 산화물반도체층 상에 게이트절연막을 형성하는 단계와; 상기 게이트절연막 상에 게이트전극을 형성하는 단계와; 상기 드레인전극과 연결되는 포토다이오드를 형성하는 단계를 포함하는 이미지센서 제조방법을 제공한다.
본 발명에 따르면, 산화물반도체층을 사용한 산화물 박막트랜지스터는 탑게이트 방식으로 구성된다. 이와 같은 구성에 따라, 포토다이오드 형성시 발생되는 수소 가스가 산화물반도체로 침투하는 것이 구조적으로 차단될 수 있게 된다. 따라서, 포토다이오드 형성시 수소 가스로 침투로 인한 산화물반도체의 손상이 방지되어, 전기적 특성이 향상될 수 있게 된다.
또한, 위와 같이 구조적으로 수소 가스 침투가 방지됨으로써, 보텀 게이트(bottom gate) 방식에서 요구되는 식각방지막이 형성될 필요가 없어, 제조공정 및 제조비용이 절감될 수 있게 된다.
또한, 산화물반도체층의 표면에 산화막을 형성할 수 있는데, 이와 같은 경우에 산화막에 의해 산화물반도체층을 효과적으로 보호할 수 있게 된다. 특히, SiNx로 게이트절연막을 형성하는 경우에, 발생하는 많은 양의 H2의 침투를 방지하여 산화물반도체층의 손상을 개선함으로써, 전기적 특성이 향상될 수 있게 된다.
또한, 산화막 형성 전에, 산화물반도체층에 대해 N2O 플라즈마 처리가 수행될 수 있다. 이와 같은 N2O 플라즈마 처리를 통해, 산화물반도체층의 결함이 제거될 수 있게 되어, 산화물반도체층의 전기적 특성이 개선될 수 있게 된다.
또한, 탑 게이트 방식의 박막트랜지스터를 구성함에 따라, 게이트전극은 블랙매트릭스로서 기능하여 산화물반도체층에 외부광이 입사되는 것이 방지될 수 있게 된다. 따라서, 별도의 블랙매트릭스를 구비하지 않아도 된다.
도 1은 본 발명의 실시예에 따른 이미지센서를 사용한 영상장치를 개략적으로 도시한 도면.
도 2는 본 발명의 실시예에 따른 이미지센서의 화소를 개략적으로 도시한 단면도.
도 3a 내지 3d는 본 발명의 실시예에 따른 이미지센서 제조방법을 도시한 단면도.
이하, 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 이미지센서를 사용한 영상장치를 개략적으로 도시한 도면이고, 도 2는 본 발명의 실시예에 따른 이미지센서의 화소를 개략적으로 도시한 단면도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 영상장치(100)는, 광발생기(110)와, 이미지센서(200)를 포함할 수 있다.
광발생기(110)는 영상촬영을 위해 광을 발생시키고, 이를 피검체에 조사하는 구성에 해당된다. 예를 들면, X선 영상촬영을 수행하는 경우에, 광발생기(110)는 X선을 발생시켜 조사하게 된다.
이와 같이 조사된 광은 피검체(150)를 통과하여 이미지센서(200)에 입사된다. 이미지센서(200)는 매트릭스 형태로 배치된 다수의 화소(P)를 포함한다.
각 화소(P)에는, 입사된 광을 전기적신호로 변환하는 포토다이오드(PD)와, 포토다이오드(PD)와 전기적으로 연결되며 스캔신호에 따라 온/오프 스위칭동작을 하여 전기적신호를 독출배선(271)에 출력하는 박막트랜지스터(T)가 구성된다.
이와 같은 기능을 하는 이미지센서(200)에 대해 도 2를 더욱 참조하여 보다 상세하게 설명한다.
도 2를 참조하면, 이미지센서(200)의 각 화소(P)에는 박막트랜지스터(T)와 포토다이오드(PD)가 형성된다. 설명의 편의를 위해, 박막트랜지스터(T)가 형성된 영역을 제1영역(A1), 포토다이오드(PD)가 형성된 영역을 제2영역(A2)이라고 한다.
기판(210) 상의 제1영역(A1)에는 서로 이격된 소스전극 및 드레인전극(221, 222)이 형성되어 있다. 소스전극 및 드레인전극(221, 222)은 단일층 구조나 다중층 구조로 형성될 수 있다. 일예로, 몰리브덴(Mo)/알루미늄(Al)/몰리브덴(Mo)의 삼중층 구조로 형성될 수 있다.
드레인전극(222)은 제2영역(A2)으로 연장될 수 있다. 이와 같이 제2영역(A2)으로 연장되어 형성된 부분은 포토다이오드(PD)의 제1전극(225)으로서 기능한다. 이처럼, 제1전극(225)을 통해 포토다이오드(PD)는 박막트랜지스터(T)와 전기적으로 연결될 수 있다.
소스전극 및 드레인전극(221, 222)이 형성된 기판(210) 상의 제1영역(A1)에는, 양측에서 소스전극 및 드레인전극(221, 222)과 중첩하여 접촉하도록 구성된 산화물반도체층(230)이 형성된다. 소스전극 및 드레인전극(221, 222) 사이의 산화물반도체층(230) 영역은 채널영역으로서 기능을 하게 된다.
산화물반도체층(230)은, 예를 들면, IGZO(Indium Gallium Zinc Oxide), ZTO(Zinc Tin Oxide), ZIO(Zinc Indium Oxide) 중 하나로 이루어질 수 있는데, 이에 한정되지는 않는다.
한편, 소스전극 및 드레인전극(221, 222) 형성전에, 기판(210) 상에 버퍼층이 형성될 수 있다. 이와 같은 버퍼층은 기판(210)으로부터 유출되는 불순물에 의해 산화물반도체층(230)이 손상되는 것을 방지하는 기능을 할 수 있다.
그리고, 전술한 구성과 다르게, 산화물반도체층(230)이 먼저 형성되고, 그 후에 소스전극 및 드레인전극(221, 222)이 형성되도록 구성될 수 있다.
전술한 산화물반도체층(230)에 대해 N2O 플라즈마 처리가 수행될 수 있는데, 이에 따라 산화물반도체층(230)의 결함이 제거되어 막질 특성이 향상될 수 있다.
산화물반도체층(230) 상에는 게이트절연막(235)이 형성될 수 있다. 게이트절연막(235)은 무기절연물질로서, 예를 들면, SiO2나 SiNx로 이루어질 수 있다. 이와 같은 게이트절연막(235)은 포토다이오드(PD)가 형성되는 영역에는 형성되지 않도록 구성되는 것이 바람직하다.
한편, 게이트절연막(235) 형성 전에 산화물반도체층(230)에 대해 O2 어닐링(annealing) 공정이 수행될 수 있으며, 이에 따라 산화물반도체층(230)의 상면에는 산화막(233)이 형성될 수 있다.
이와 같은 산화막(233)은 게이트절연막(235) 형성과정에서 산화물반도체층(230)을 보호하는 기능을 할 수 있게 된다. 특히, SiNx로 게이트절연막(235)을 형성하는 경우에, SiO2를 사용하는 경우에 비해, 많은 양의 H2가 발생하게 되고, 이는 산화물반도체층(230)에 과도한 손상을 가하게 된다. 따라서, 산화막(233)을 산화물반도체층(230)의 표면에 형성함으로써, H2의 침투를 방지하여 산화물반도체층(230)의 전기적 특성을 개선할 수 있게 된다.
게이트절연막(235) 상에는 산화물반도체층(230)에 대응하여 게이트전극(240)을 형성할 수 있다. 게이트전극(220)은 단일층 구조나 다중층 구조로 형성될 수 있다. 일예로, 몰리브덴(Mo)/알루미늄(Al)의 이중층 구조로 형성될 수 있다.
전술한 바와 같이, 제1영역(A1)에 구성된 소스전극 및 드레인전극(221, 222)과, 산화물반도체층(230)과, 게이트전극(240)은 탑 게이트(top gate) 방식의 박막트랜지스터(T)를 구성하게 된다.
제1전극(225) 상에는 반도체층(250)이 형성되며, 반도체층(250) 상에는 제2전극(255)이 형성될 수 있다.
여기서, 제1전극(225)와 제2전극(255) 중 하나는 캐소드(cathode)로 기능하고 나머지 하나는 애노드(anode)로 기능하게 된다. 설명의 편의를 위해, 제1전극(225)은 캐소드로 기능하고, 제2전극(255)은 애노드로 기능하는 경우를 예로 든다.
이와 같은 경우에, 제2전극(255)은 제1전극(225)에 비해 높은 일함수를 갖는 물질로 이루어질 수 있는데, 예를 들면, 투명도전성물질로서 ITO(indium-tin-oxide), IZO(indium-zinc-oxide), ITZO(indium-tin-zinc-oxide) 중 하나로 이루어질 수 있다.
포토다이오드(PD)로서, 예를 들면, PIN 타입 포토다이오드가 사용될 수 있는데, 이에 한정되지는 않는다. PIN 타입 포토다이오드가 사용되는 경우에, 반도체층(250)은 n+층(251), i층(252), p+층(253)을 포함할 수 있다.
포토다이오드(PD)가 형성된 기판(210) 상에 보호층(260)이 형성될 수 있다. 이와 같은 보호층(260)은 실질적으로 기판(210) 전면에 걸쳐 형성될 수 있다. 보호층(260)은, 예를 들면, SiO2나 SiNx 등의 무기절연물질로 이루어질 수 있다.
보호층(260)에는, 게이트절연막(235)과 함께 소스전극(221)을 노출하는 제1콘택홀(261)과, 제2전극(255)을 노출하는 제2콘택홀(262)이 형성될 수 있다.
보호층(260) 상에는 독출배선(271)과 바이어스전극(272)이 형성될 수 있다. 독출배선(271)은 제1콘택홀(261)을 통해 소스전극(241)과 연결된다. 바이어스전극(272)은 제2콘택홀(262)을 통해 제2전극(255)과 연결되어, 제2전극(255)에 바이어스전압을 인가할 수 있게 된다.
독출배선(271)과 바이어스전극(272)은 단일층 구조나 다중층 구조로 형성될 수 있다. 일예로, 몰리브덴(Mo)/알루미늄(Al)/몰리브덴(Mo)의 삼중층 구조로 형성될 수 있다.
전술한 바와 같이, 본 발명의 실시예에 따르면, 산화물반도체층(230)을 사용한 산화물 박막트랜지스터(T)는 탑게이트 방식으로 구성된다. 즉, 산화물반도체층(230)은 박막트랜지스터(T) 내에서 하부에 위치하여 그 상부에 여러 적층막이 구성된다. 이와 같은 구성에 따라, 포토다이오드(PD) 형성시 발생되는 수소 가스가 산화물반도체로 침투하는 것이 구조적으로 차단될 수 있게 된다. 따라서, 포토다이오드(PD) 형성시 수소 가스로 침투로 인한 산화물반도체의 손상이 방지되어, 전기적 특성이 향상될 수 있게 된다.
또한, 위와 같이 구조적으로 수소 가스 침투가 방지됨으로써, 보텀 게이트(bottom gate) 방식에서 요구되는 식각방지막이 형성될 필요가 없어, 제조공정 및 제조비용이 절감될 수 있게 된다.
또한, 산화물반도체층(230)의 표면에 산화막(233)을 형성할 수 있는데, 이와 같은 경우에 산화막(233)에 의해 산화물반도체층(230)을 효과적으로 보호할 수 있게 된다. 특히, SiNx로 게이트절연막(235)을 형성하는 경우에, SiO2를 사용하는 경우에 비해, 많은 양의 H2가 발생하게 되고, 이는 산화물반도체층(230)에 과도한 손상을 가하게 된다. 따라서, 산화막(233)을 산화물반도체층(230)의 표면에 형성함으로써, H2의 침투를 방지하여 산화물반도체층(230)의 손상을 개선함으로써, 전기적 특성이 향상될 수 있게 된다.
또한, 산화막(233) 형성 전에, 산화물반도체층(230)에 대해 N2O 플라즈마 처리가 수행될 수 있다. 이와 같은 N2O 플라즈마 처리를 통해, 산화물반도체층(230)의 결함이 제거될 수 있게 되어, 산화물반도체층(230)의 전기적 특성이 개선될 수 있게 된다.
또한, 탑 게이트 방식의 박막트랜지스터를 구성함에 따라, 게이트전극(240)은 블랙매트릭스로서 기능하여 산화물반도체층(230)에 외부광이 입사되는 것이 방지될 수 있게 된다. 따라서, 별도의 블랙매트릭스를 구비하지 않아도 된다.
이하, 도 3을 참조하여 본 발명의 실시예에 따른 이미지센서 제조방법에 대해 설명한다.
도 3a 내지 3d는 본 발명의 실시예에 따른 이미지센서 제조방법을 도시한 단면도이다.
먼저, 도 3a를 참조하면, 기판(210) 상에 금속물질을 증착하고 마스크공정을 진행하여, 제1영역(A1)에 소스전극 및 드레인전극(221, 222)을 형성한다. 여기서, 마스크공정은 박막 패턴을 형성하는 공정으로서, 포토레지스트 증착 공정, 노광 공정, 현상 공정, 식각 공정, 포토레지스트 스트립 공정 등을 포함하는 일련의 공정을 의미한다.
한편, 드레인전극(222)은 포토다이오드(PD)가 형성될 화소(P)의 제2영역(A2)으로 연장되도록 형성된다. 이와 같이 제2영역(A2)에 형성된 부분은 제1전극(225)에 해당된다.
다음으로, 소스전극 및 드레인전극(221, 222)이 형성된 기판(210) 상에 산화물반도체를 증착하고 마스크공정을 진행하여 제1영역(A1)에 산화물반도체층(230)을 형성한다.
다음으로, 도 3b를 참조하면, 산화물반도체층(230)이 형성된 기판(210)에 대해 N2O 플라즈마 처리를 수행하게 된다. 이에 따라, 산화물반도체층(230)은 N2O 플라즈마 처리되어 결함이 제거되고 막질 특성이 향상될 수 있게 된다.
다음으로, 도 3c를 참조하면, 산화물반도체층(230)이 형성된 기판(210)에 대해 O2 어닐링 처리가 수행된다. O2 어닐링 처리를 통해, 산화물반도체층(230)의 표면에는 산화막(233)이 형성된다.
여기서, O2 어닐링 처리는, 예를 들면, 대략 300℃의 온도에서 1시간 정도 진행될 수 있는데, 이에 한정되지는 않는다.
한편, 경우에 따라, 전술한 N2O 플라즈마 처리와 O2 어닐링 처리 중 하나가 수행되거나, 이들 처리 모두 수행되지 않을 수도 있다.
다음으로, 산화물반도체층(230)이 형성된 기판(210) 상에 게이트절연막(235)을 형성한다. 다음으로, 게이트절연막(235) 상부에, 금속물질을 증착하고 마스크공정을 진행하여 제1영역(A1)에 게이트전극(240)을 형성한다.
다음으로, 제1전극(225) 상에 반도체층(250)과 제2전극(255)을 형성한다. 이와 관련하여 예를 들면, n+물질, i물질, p+물질을 순차적으로 증착하고, p+ 물질층 상부에 투명도전성물질을 증착한 후, 마스크 공정을 진행하여, n+층(251), i층(252), p+층(253)으로 구성되는 반도체층(250)과, 제2전극(255)을 형성한다.
한편, 다른 예로서, 반도체층(250)을 형성한 후, 투명도전성물질을 증착하고 마스크공정을 진행하여 제2전극(255)을 형성할 수도 있다.
다음으로, 제2전극(255)이 형성된 기판(210) 상에 무기절연물질을 증착하여 보호막(260)을 형성하고, 보호막(260)에 대해 마스크공정을 진행하여 제1 및 2콘택홀(261, 262)을 형성한다. 여기서, 제1콘택홀(261) 형성시, 보호막(260)과 함께 그 하부의 게이트절연막(235) 또한 함께 식각된다.
다음으로, 보호막(260) 상에 금속물질을 증착하고 마스크공정을 진행하여, 독출배선 및 바이어스전극(271, 272)을 형성한다.
독출배선(271)은 제1콘택홀(261)을 통해 소스전극(221)과 연결되고, 바이어스전극(272)은 제2콘택홀(262)를 통해 포토다이오드(PD)의 제2전극(255)과 연결된다.
전술한 바와 같은 공정들을 통해, 본 발명의 실시예에 따른 이미지센서를 제조할 수 있다.

Claims (7)

  1. 소스전극 및 드레인전극과;
    상기 소스전극 및 드레인전극과 접촉하는 산화물반도체층과;
    상기 산화물반도체층 상에 형성된 게이트절연막과;
    상기 게이트절연막 상에 형성된 게이트전극과;
    상기 드레인전극과 연결되는 포토다이오드
    를 포함하는 이미지센서.
  2. 제 1 항에 있어서, 상기 산화물반도체층은 상기 소스전극 및 드레인전극 상부나 하부에 구성된 이미지센서.
  3. 제 1 항에 있어서, 상기 포토다이오드는, 상기 드레인전극으로부터 연장된 제1전극과; 상기 제1전극 상에 형성된 반도체층과; 상기 반도체층 상에 형성된 제2전극을 포함하는 이미지센서.
  4. 제 3 항에 있어서, 상기 반도체층은, 상기 제1전극 상에 순차적으로 위치하는 n+층과, i층과, p+층을 포함하는 이미지센서.
  5. 제 1 항에 있어서, 상기 게이트전극과 포토다이오드 상에, 상기 소스전극을 노출하는 제1콘택홀과, 상기 제2전극을 노출하는 제2콘택홀을 포함하는 보호막과;
    상기 보호막 상에, 상기 제1콘택홀을 통해 상기 소스전극과 연결되는 독출배선과, 상기 제2콘택홀을 통해 상기 제2전극과 연결되는 바이어스전극을 포함하고,
    상기 게이트절연막은 상기 제1콘택홀을 포함하는 이미지센서.
  6. 제 1 항에 있어서, 상기 산화물반도체층의 표면에 형성된 산화막을 포함하는 이미지센서.
  7. 소스전극 및 드레인전극을 형성하는 단계와;
    상기 소스전극 및 드레인전극과 접촉하는 산화물반도체층을 형성하는 단계와;
    상기 산화물반도체층을 N2O 플라즈마 처리하는 단계와;
    상기 산화물반도체층 표면에 산화막을 형성하는 단계와;
    상기 산화물반도체층 상에 게이트절연막을 형성하는 단계와;
    상기 게이트절연막 상에 게이트전극을 형성하는 단계와;
    상기 드레인전극과 연결되는 포토다이오드를 형성하는 단계
    를 포함하는 이미지센서 제조방법.
PCT/KR2015/001125 2014-02-04 2015-02-04 이미지센서 및 이의 제조방법 WO2015119418A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140012695A KR20150091900A (ko) 2014-02-04 2014-02-04 이미지센서 및 이의 제조방법
KR10-2014-0012695 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119418A1 true WO2015119418A1 (ko) 2015-08-13

Family

ID=53778173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001125 WO2015119418A1 (ko) 2014-02-04 2015-02-04 이미지센서 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20150091900A (ko)
WO (1) WO2015119418A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972973B1 (ko) * 2009-07-20 2010-07-30 실리콘 디스플레이 (주) 엑스레이용 이미지 센서 및 그의 제조 방법
KR20110111111A (ko) * 2010-04-02 2011-10-10 삼성전자주식회사 광민감성 소자를 이용한 이미지 센서 및 그 동작 방법
KR20120026005A (ko) * 2010-09-08 2012-03-16 후지필름 가부시키가이샤 박막 트랜지스터 및 그 제조 방법, 그리고 그 박막 트랜지스터를 구비한 장치
KR20120093947A (ko) * 2009-11-06 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
KR20130007596A (ko) * 2010-03-08 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972973B1 (ko) * 2009-07-20 2010-07-30 실리콘 디스플레이 (주) 엑스레이용 이미지 센서 및 그의 제조 방법
KR20120093947A (ko) * 2009-11-06 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
KR20130007596A (ko) * 2010-03-08 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조방법
KR20110111111A (ko) * 2010-04-02 2011-10-10 삼성전자주식회사 광민감성 소자를 이용한 이미지 센서 및 그 동작 방법
KR20120026005A (ko) * 2010-09-08 2012-03-16 후지필름 가부시키가이샤 박막 트랜지스터 및 그 제조 방법, 그리고 그 박막 트랜지스터를 구비한 장치

Also Published As

Publication number Publication date
KR20150091900A (ko) 2015-08-12

Similar Documents

Publication Publication Date Title
US6225212B1 (en) Corrosion resistant imager
KR100630880B1 (ko) 엑스레이 영상 감지소자 및 그 제조방법
US11961850B2 (en) Display substrate, manufacturing method thereof, and display device
CN105161519B (zh) 薄膜晶体管及制作方法、阵列基板及制作方法和显示装置
WO2018176829A1 (en) Thin film transistor and display substrate, fabrication method thereof, and display device
WO2014112705A1 (en) Image sensor for x-ray and method of manufacturing the same
TWI491032B (zh) 主動矩陣式影像感測面板及裝置
CN103367379A (zh) 放射线检测装置及其制造方法和放射线成像系统
CN103474474A (zh) Tft及其制作方法、阵列基板及其制作方法、x射线探测器
CN109727920A (zh) Tft基板的制作方法及tft基板
KR20030053564A (ko) 엑스레이 디텍터의 제조방법
KR101498635B1 (ko) 이미지센서 및 이의 제조방법
KR20160114767A (ko) 이미지센서 및 이의 제조방법
WO2016078112A1 (zh) 薄膜晶体管基板的制作方法及制造设备
WO2009134078A1 (ko) 박막트랜지스터 및 그의 제조방법
US10090368B2 (en) Array substrate and manufacturing method thereof, and display apparatus
CN210403734U (zh) 一种显示基板、显示装置
WO2015119418A1 (ko) 이미지센서 및 이의 제조방법
WO2020004747A1 (en) Method of manufacturing organic light-emitting display device
CN106952823A (zh) 金属氧化物半导体薄膜晶体管的制作方法
WO2016043485A1 (ko) 박막 트랜지스터 및 그 제조 방법
JP4458750B2 (ja) 放射線撮像装置、その駆動方法及びその製造方法
CN101131966B (zh) 像素结构的制作方法
KR100872470B1 (ko) 어레이 기판 및 이의 제조 방법
KR100642088B1 (ko) 엑스레이 영상 감지소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746271

Country of ref document: EP

Kind code of ref document: A1