WO2015119306A1 - 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015119306A1
WO2015119306A1 PCT/KR2014/000954 KR2014000954W WO2015119306A1 WO 2015119306 A1 WO2015119306 A1 WO 2015119306A1 KR 2014000954 W KR2014000954 W KR 2014000954W WO 2015119306 A1 WO2015119306 A1 WO 2015119306A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
separator
secondary battery
porous polymer
polymer substrate
Prior art date
Application number
PCT/KR2014/000954
Other languages
English (en)
French (fr)
Inventor
홍지준
고성태
허윤정
Original Assignee
주식회사 코캄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코캄 filed Critical 주식회사 코캄
Publication of WO2015119306A1 publication Critical patent/WO2015119306A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, having a shutdown function, having excellent shape stability at high temperature, excellent mechanical strength, and a gas adsorbent which absorbs gas.
  • a separator for lithium secondary batteries and a lithium secondary battery comprising the same.
  • the lithium secondary battery may include an organic electrolyte solution including lithium salt in an assembly including a positive electrode and a negative electrode having an active material capable of inserting and removing lithium ions on each current collector, and a porous separator that electrically insulates them between the positive and negative electrodes. It consists of a structure filled with a polymer electrolyte solution.
  • the lithium secondary battery may contain several ppm of water during its material or manufacturing process, which is charged and discharged as the lithium secondary battery is used, and reacts with the negative electrode and the electrolyte, and with the positive electrode and the electrolyte.
  • gas is formed inside the battery by reaction between the separator and the electrolyte solution. This not only causes a deterioration of battery life but also affects battery safety.
  • the technical problem to be solved by the present invention is to solve the conventional problems as described above, having a shutdown function, excellent in shape stability at high temperature, excellent mechanical strength, generated inside the lithium secondary battery It is to provide a separator for a lithium secondary battery that controls a gas to improve a long life cycle and safety.
  • the separator is provided to provide a lithium secondary battery having improved safety and stability without deterioration of electrochemical properties.
  • a porous polymer substrate In order to achieve the above technical problem, according to an aspect of the present invention, a porous polymer substrate; And a porous coating layer formed on at least one surface of the porous polymer substrate and resulting from the drying of the slurry including inorganic particles, a binder, a gas adsorbent, and a solvent.
  • the porous polymer substrate may be a polyolefin-based porous polymer substrate, and the polyolefin-based porous polymer substrate is any one selected from the group consisting of polyethylene, polypropylene, polybutene, polymethylpentene, and copolymers thereof. Or a mixture of two or more thereof.
  • the slurry may include 5 to 40 parts by weight of the inorganic particles, 5 to 20 parts by weight of the binder, 1 to 20 parts by weight of the gas adsorbent, and 54 to 89 parts by weight of the solvent, based on 100 parts by weight of the slurry. have.
  • the gas adsorbent may be silica gel, bentonite, or a mixture thereof.
  • the average particle diameter of the gas adsorbent may be 0.8 to 20 ⁇ m.
  • the specific surface area by the BET measuring method of the gas adsorbent may be 1 to 50 m 2 / g.
  • the inorganic particles may include any one selected from the group consisting of Al 2 O 3 , MgO, Mg (OH), and TiO 2 or a mixture of two or more thereof.
  • the average particle diameter of the inorganic particles may be 100 to 800 nm.
  • the binder is polyvinylidene fluoride-hexafluoropropylene (poly (vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), polyvinylidene fluoride (poly (vinylidene fluoride), PVdF), polytetra fluorine With polytetrafluoroethylene (PTFE), polymethylmethacrylate (PMMA), polyacrylonitrile (PAN), polyethylene (PE), and polypropylene (PP) It may include any one selected from the group consisting of or a mixture of two or more thereof.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • acetone acetone
  • ethanol ethanol
  • tetrahydrofuran THF
  • dimethyl acetamide dimethyl acetamide, DMAc
  • toluene can be any one selected from the group consisting of or a mixture of two or more thereof.
  • the thickness of the separator may be 10 to 50 ⁇ m, and the thickness of the porous coating layer may be 2 to 10 ⁇ m.
  • the porous coating layer containing the inorganic particles is formed on the surface of the porous polymer substrate, the heat shrinkage is suppressed at a high temperature due to the excellent heat resistance and mechanical strength, there is no change in shape due to the external penetration excellent safety
  • a lithium secondary battery can be manufactured.
  • a gas adsorbent in the porous coating layer, it is possible to provide a lithium secondary battery having a long life cycle by selectively absorbing moisture remaining in the material constituting the lithium secondary battery and gas that may be generated electrochemically or physically.
  • the supporting amount of the electrolyte is improved to facilitate the movement of ions, thereby making it possible to manufacture a lithium secondary battery having high output and long life cycle characteristics.
  • Figure 2 is a graph showing the ARC test results of the lithium secondary battery according to the Examples and Comparative Examples of the present invention.
  • the porous polymer substrate 10 may be a polyolefin-based porous polymer substrate having a thermoplastic, each having a predetermined melting point according to the specific material.
  • the polyolefin-based porous polymer substrate having a predetermined melting point of the present invention when the temperature inside the lithium secondary battery rises to the melting point, melting begins, resulting in loss of the porous structure in the porous polymer substrate, thereby blocking the movement of ions. Shutdown function can be achieved.
  • the melting point of the thermoplastic polyolefin-based porous polymer substrate according to the present invention is preferably 110 to 160 ° C.
  • the polyolefin-based porous polymer substrate may be any one selected from the group consisting of polyethylene, polypropylene, polybutene, polymethylpentene and copolymers thereof, or a mixture of two or more thereof, but is not limited thereto. It is not.
  • the polyolefin-based porous polymer substrate has a thickness of 10 to 30 ⁇ m, porosity of 30 to 80%, permeability of 100 to 300 sec / 100 ml, and breaking strength of 1,000 kgf / cm 2 in the vertical and horizontal directions. It is preferable that it is above.
  • the slurry based on 100 parts by weight of the slurry, 5 to 40 parts by weight of the inorganic particles 21, 5 to 20 parts by weight of the binder 22, 1 to 20 parts by weight of the gas adsorbent 23 and the It may include 54 to 89 parts by weight of the solvent.
  • the content of the inorganic particles 21 is less than the lower limit of the above-described numerical range, it is difficult to expect the improvement of the heat resistance and mechanical properties by the inorganic particles, and when the upper limit is exceeded, the adhesion to the porous polymer substrate is dropped and the detachment phenomenon occurs. May occur.
  • the content of the binder 22 is less than the lower limit of the above-described numerical range, the adhesion between the inorganic particles and the gas adsorbent and the porous polymer substrate is lowered, the detachment may occur, if the upper limit is exceeded, the viscosity of the slurry Increases and the dispersibility is lowered, which may lead to non-uniformity of the coating.
  • the content of the gas adsorbent 23 is less than the lower limit of the above-mentioned numerical range, the gas absorption capacity is small, the effect of the addition is not seen, and if the upper limit is exceeded, the amount of inorganic particles is relatively reduced. It is difficult to expect improvement in heat resistance and mechanical properties.
  • the content of the solvent is preferably in the numerical range, but is not limited thereto so long as dispersibility is secured during slurry production and viscosity control useful for coating is possible.
  • gas adsorbent 23 is not limited in any way of physical adsorption or chemical adsorption, and any gas adsorbent 23 can be used without limitation.
  • the gas adsorbent 23 may be mainly silica gel, bentonite or a mixture thereof.
  • the mixture it is classified into a gas adsorbent having a physical adsorption method and a chemical adsorption method according to the mixing ratio of silica gel and bentonite.
  • the silica gel is an adsorbent prepared by solidifying a colloidal solution of silicic acid, and is well known as a desiccant or absorbent. It is composed of SiO 2 , has a very large porosity, and has a very uniform distribution or size of pores. Silica gel is a granular amorphous particle with fine pores connected to each other and connected by a massive net, and is characterized by its excellent adsorption capacity according to the vast surface area.
  • the bentonite is clay made of montmorillonite-based expandable three-layer plate (Si-Al-Si), and is composed of Al 2 Si 4 (OH), which is a feldspar chemical formula.
  • Bentonite is bipolar due to the unbalance of charge generated in the Gibbsite layer, which is an intermediate layer.Bentonite has a positive polarity at each corner of the bentonite layer and a negative surface at the surface thereof. It has the adsorption performance. And, due to this bipolarity attracts more gas and moisture is to be adsorbed into the interlayer space.
  • the Gibbsite layer which is an intermediate layer of aluminum oxide
  • aluminum (Al) having 3+ valence is replaced with magnesium (Mg) having 2+ valence, and a form in which 1+ is insufficiently satisfied with Na is satisfied.
  • Sodium bentonite which is very good at absorbing gas and water, has the ability to absorb up to five times its weight.
  • even at a high temperature such properties do not change, and even if the temperature of the battery is increased due to internal or external factors, the gas absorption ability is exhibited without changing the characteristics, and thus the chain reaction of secondary ignition is suppressed.
  • the gas adsorbent used in the present invention may adsorb 733 ml / min of gas on the basis of an average particle diameter of 10 ⁇ m, and may be recycled since the gas adsorbed therein may be removed at a predetermined temperature or more.
  • the separator including the gas adsorption material and the lithium secondary battery including the same have a low gas generation rate even when left at a high temperature for a long time, and can significantly improve the self discharge rate. Furthermore, by absorbing the gas generated in the battery, the gas adsorbent may fundamentally block ignition factors that may occur in the battery, thereby improving safety of the lithium secondary battery.
  • the average particle diameter of the gas adsorbent 23 may be 0.8 to 20 ⁇ m, or 1 to 10 ⁇ m
  • the specific surface area by the BET measurement method is 1 to 50 m 2 / g, or 5 to 20 m 2 / g It may be, but the size of the pores and the shape of the pores is not limited.
  • dispersibility may not be secured when preparing a slurry for forming a porous coating layer, and the coating property of the slurry may be lowered, thereby sufficiently adsorbing gas. May not be exerted or electrochemical properties may be degraded.
  • the inorganic particles 21 is not particularly limited as long as it can minimize the decomposition reaction with the electrolyte as inorganic particles commonly used in the art, these inorganic particles exhibit a strong mechanical properties and excellent heat resistance at high temperatures Therefore, the thermal and mechanical properties of the separator can be improved.
  • the inorganic particles 21 may include any one selected from the group consisting of Al 2 O 3 , MgO, Mg (OH), and TiO 2 or a mixture of two or more thereof, but is not limited thereto. .
  • the average particle diameter of the said inorganic particle 21 In order to maintain an appropriate porosity, it is preferable to have an average particle diameter of 100-800 nm.
  • the dispersion of the slurry for forming the porous coating layer may be inferior, resulting in uneven coating, and the coating may penetrate between pores of the porous polymer substrate to prevent pores, thereby lowering battery performance.
  • the binder 22 may be used without limitation as long as it is a commonly used polymer binder.
  • Usable binders include polyvinylidene fluoride (poly (vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), polyvinylidene fluoride (poly (vinylidene fluoride), PVdF), polytetrafluoro Consists of ethylene (polytetrafluoroethylene, PTFE), polymethylmethacrylate (poly (methylmethacrylate), PMMA), polyacrylonitrile (PAN), polyethylene (PE, PE) and polypropylene (polyprofilene, PP) It may include any one selected from the group or a mixture of two or more thereof, but is not limited thereto.
  • the solvent may be used without limitation as long as it is a solvent having high solubility in the binder.
  • Solvents that can be used include N-methyl-2-pyrrolidone (NMP), acetone, ethanol, tetrahydrofuran (THF) and dimethyl acetamide It may include any one selected from the group consisting of acetamide, DMAc) and toluene or a mixture of two or more thereof, but is not limited thereto.
  • the thickness of the porous coating layer 20 of this invention is 2-10 micrometers.
  • the thickness is less than 2 ⁇ m, it is difficult to secure the uniformity and mechanical strength of the porous coating layer, and it is difficult to secure the safety due to the difficulty in inhibiting thermal deformation.
  • the thickness is larger than 10 ⁇ m, the contact force with the porous polymer substrate is reduced, and the inorganic material Since desorption of particles may occur, the desorbed inorganic particles act as a resistor, causing a decrease in the performance of the lithium secondary battery, and the thickness of the entire separator increases during high-rate charging and discharging due to a decrease in air permeability. Will cause degradation.
  • the method of coating the slurry for forming the porous coating layer on the surface of the porous polymer substrate is not particularly limited.
  • the method of coating the slurry on the porous polymer substrate may use a conventional coating method known in the art. For example, dip coating, die coating, roll coating, gravure coating, spray coating, comma coating, or a combination thereof may be selectively used. .
  • the porosity is preferably 30 to 70%, and the air permeability is preferably 150 to 400 sec / 100 ml for easy movement of ions.
  • the porosity may change due to the formation of the porous coating layer, it is most effective that the porous coating layer is formed without changing the properties of the porous polymer substrate.
  • the air permeability exceeds the upper limit of the numerical range, the output characteristics are lowered, so even if the porosity is large, even if the electrolyte supporting effect is excellent, the performance of the battery due to the increase in resistance occurs, it is applied for high output It is difficult to be.
  • the thickness of the separator 100 for lithium secondary batteries is preferably 10 to 50 ⁇ m. If the thickness is less than 10 ⁇ m, the function of the separator may not be fully exhibited, and the mechanical properties may deteriorate. If the thickness exceeds 50 ⁇ m, the characteristics of the battery may be deteriorated during high-rate charging and discharging due to an increase in resistance due to an increase in thickness. Increasing the overall thickness can lead to lower energy density.
  • the breaking strength of the lithium secondary battery separator 100 according to the present invention should not be reduced by 50% or more, more preferably 30% or more, compared to the breaking strength of the porous polymer substrate 10 itself.
  • the reason for considering the phenomenon of being lower than the breaking strength of the porous polymer substrate itself may be sufficiently caused by the tension applied to the separator during the coating of the slurry for forming the porous coating layer.
  • the breaking strength of the separator is less than 500 kgf / cm 2 , an unreacted portion inside the battery may be generated due to wrinkles during manufacture of the lithium secondary battery, thereby further deteriorating the safety of the lithium secondary battery.
  • the higher the breaking strength is preferable, so the present invention does not particularly limit the upper limit of the breaking strength.
  • a lithium secondary battery a positive electrode; cathode; A separator interposed between the positive electrode and the negative electrode; And an electrolyte solution, wherein the separator is a lithium secondary battery, characterized in that the separator for a lithium secondary battery according to the present invention described above.
  • the positive electrode and the negative electrode may be prepared according to a manufacturing method commonly used in the art, for example, by kneading each electrode active material, a binder, a high boiling point solvent and optionally a conductive material to the electrode active material slurry After the production process, the electrode active material slurry is directly coated on the electrode current collector, or the electrode active material slurry is coated on a separate support and dried, and then the film obtained by peeling from the support is laminated on the electrode current collector.
  • the support may be used as long as it can support the electrode active material layer, and specific examples may include a mylar film, a polyethylene terephthalate (PET) film, and the like.
  • the electrode thus prepared may be manufactured by drying under pressure and then heat treatment under vacuum at a temperature of about 80 ° C. to 130 ° C. for at least 2 hours.
  • the electrode active material may be a positive electrode active material or a negative electrode active material, and in the case of the positive electrode active material, a conventional positive electrode active material such as a lithium-containing transition metal oxide may be used.
  • the average particle diameter of the lithium-containing transition metal oxide is 6 to 16 ⁇ m, and the specific surface area by the BET measurement method may be 0.1 to 1 m 2 / g, but is not limited thereto.
  • a conventional negative electrode active material such as lithium metal, a carbon material and a metal compound or a mixture thereof in which lithium ions can be occluded and released can be used.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • mesophase pitch based carbon fiber mesophase graphite powder (MGP), meso-carbon microbeads, mesophase pitches, petroleum derived cokes, and coal based coke
  • High-temperature calcined carbon such as (coal tar derived cokes) is typical.
  • the metal compound may be Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, or the like.
  • the compound containing 1 or more types of metal elements, and mixtures thereof are mentioned. These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the average particle diameter of the lithium metal, the carbon material, and the metal compound is 5 to 30 ⁇ m, and the specific surface area by the BET measurement method may be 0.5 to 50 m 2 / g, but is not limited thereto.
  • polyvinylidene fluoride-hexafluoropropylene poly (vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP
  • polyvinylidene fluoride poly (vinylidene fluoride), PVdF
  • polymethyl It may include any one selected from the group consisting of methacrylate (poly (methylmethacrylate), PMMA) and polyacrylonitrile (PAN), or a mixture of two or more thereof, but is not limited thereto. no.
  • carbon black or acetylene black may be used as the conductive material
  • acetone or N-methyl-2-pyrrolidone may be used as the high boiling point solvent
  • the electrode current collector may be any metal as long as it is a highly conductive metal and a metal to which the slurry of the electrode active material can easily adhere, and is not reactive in the voltage range of the battery.
  • the positive electrode current collector is a foil prepared by aluminum, nickel or a combination thereof
  • non-limiting examples of the negative electrode current collector are copper, gold, nickel or a copper alloy or these Foil produced by the combination of the above.
  • the electrode current collector may be used by stacking substrates made of the materials.
  • the electrolyte included in the electrolyte may be a lithium salt, and those conventionally used in a lithium secondary battery electrolyte may be used without limitation.
  • organic solvent included in the electrolyte those conventionally used in the electrolyte for lithium secondary batteries may be used without limitation.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in electrolytes well.
  • Dimethyl carbonate and diethyl When a low viscosity, low dielectric constant linear carbonate, such as carbonate, is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolyte may optionally further include an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • the battery case used in the lithium secondary battery according to an aspect of the present invention can be used that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, a cylindrical using a can, Square, pouch or coin type may be used.
  • the slurry was mixed by mixing 25% by weight of Al 2 O 3 as inorganic particles, 15% by weight of Epsiguard TM (Kurita Water Ind. Ltd.) as a gas adsorbent, 5% by weight of polyvinylidene fluoride (PVDF) and 55% by weight of acetone as a solvent. Prepared. The slurry thus prepared was coated on both sides of a polyethylene (PE) porous polymer substrate (thickness 16 ⁇ m, porosity 47%, transmittance 150.2 sec / 100 ml, W. Scope).
  • PE polyethylene
  • the speed of the slip belt is about 10 m / hr
  • the drying temperature was used a roller coating method of 80 °C, was applied so that the thickness of one surface of the porous coating layer is about 3 ⁇ m, to prepare a separator having a total thickness of 23 ⁇ m. .
  • the positive electrode and the negative electrode were made of LiNi (1-xy) Mn x Co y O 2 (GE), and mesophase graphite powder (MGP, China Steel Chemical Corporation) as the negative electrode active material. Was prepared.
  • the lithium secondary battery was manufactured to have a thickness of 120 mm, a width of 216 mm, and a length of 216 mm, and a design capacity of 46 Ah.
  • the slurry was mixed by mixing 35% by weight of Al 2 O 3 as inorganic particles, 5% by weight of Epsiguard TM (Kurita Water Ind. Ltd.) as a gas adsorbent, 5% by weight of polyvinylidene fluoride (PVDF) and 55% by weight of acetone as a solvent.
  • Epsiguard TM Kelta Water Ind. Ltd.
  • PVDF polyvinylidene fluoride
  • acetone acetone
  • a lithium secondary battery was manufactured in the same manner as in Example 1 except that only a polyethylene (PE) porous polymer substrate was used.
  • PE polyethylene
  • Table 1 shows various physical properties of the separator prepared according to the above Examples and Comparative Examples.
  • overcharge characteristic test An overcharge characteristic test, a nail penetration test, and a thermal shock test of lithium secondary batteries according to Examples and Comparative Examples were performed.
  • the overcharge characteristic test the voltage behavior and surface temperature of the lithium secondary battery according to the overcharge were measured by charging up to 10 V with a current density of 46 A (1.0 C).
  • the nail was penetrated at a rate of 80 mm / sec, the voltage behavior and surface temperature of the cell were measured.
  • the thermal shock test the battery was placed in an oven at 25 ⁇ 2 ° C., the temperature was increased by 5 ° C. per minute, and the temperature was measured at 60 ° C. for 60 minutes. .
  • the properties of the cell measured according to the test are listed in Table 3 below.
  • the difference in safety is a result of the respective characteristics, but in the case of the overcharge test, there is no big difference depending on the content of the inorganic particles or the gas adsorbent.
  • the battery according to Comparative Example 1 there is a marked difference, which may be considered to be affected by the safety depending on whether the separator having the heat resistance is secured, that is, the porous coating layer is formed.
  • the gas adsorbent content is relatively higher than the content of inorganic particles, it can be seen that it shows a greater effect on safety. This is judged to be an effect exhibited by the physically generated gas component absorbed by the gas adsorbent.
  • the gas component generated in the battery is changed by the voltage section and the temperature difference, and the gas adsorbent used in the present invention is considered to absorb the gas component generated by the influence of physical or temperature well.
  • ARC test is a test to measure the exothermic behavior according to the internal reaction of the battery by continuously injecting heat from the outside, the internal reaction according to the thermal behavior of the battery prepared according to the above Examples and Comparative Examples is the presence or absence of addition of gas adsorbent And there is a marked difference depending on the amount added.
  • Example 1 which contains a large amount of gas adsorbent, it does not appear to exhibit an internal exothermic reaction until the battery ignites. This generates gas inside the battery when heat is injected from the outside.
  • Example 2 in which less than Example 1 was added, showed a reaction at a lower temperature than Example 1, which likewise absorbs the gas generated inside the battery when heat is injected from the outside, It can be regarded as a phenomenon caused by the absence of any more absorbable sites. From these test results, it can be judged that the gas adsorbent added in the present invention has the ability to absorb the gas generated inside the battery. have.
  • the cells according to Examples and Comparative Examples were left in an oven at 45 ⁇ 2 ° C. for 1 month, and then the thickness, remaining capacity, and voltage change of the cells were measured.
  • the decomposition reaction of the electrolyte may occur more actively by activating the reaction between the electrolyte, the electrode, and the separator.
  • the gas absorber is added, the remaining capacity and voltage retention are excellent and the thickness change rate is also excellent.
  • the gas adsorbent absorbs the gas generated by each decomposition reaction, thereby suppressing swelling caused by the gas. It is judged to have an effect on the voltage retention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 다공성 고분자 기재; 및 상기 다공성 고분자 기재의 적어도 일면에 형성되되, 무기물 입자, 바인더, 가스 흡착재 및 용매를 포함하는 슬러리의 건조 결과물인 다공성 코팅층;을 포함하는 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지
본 발명은 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 자세하게는 셧다운 기능을 지니면서, 고온에서 형상 안정성이 우수하고, 기계적 강도가 우수하며, 가스를 흡수하는 가스 흡착재를 포함하는 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 각각의 집전체에 리튬 이온의 탈삽입이 가능한 활물질이 도포되어 있는 양극과 음극 및 상기 양극과 음극 사이에 이들을 전기적으로 절연시키는 다공성 세퍼레이터가 개재된 조립체에 리튬염을 포함한 유기 전해액 또는 폴리머 전해액이 충전되어 있는 구조로 이루어져 있다.
리튬 이차전지는, 그 재료 또는 제조공정 중에 수 ppm의 수분을 포함할 수 있는데, 이러한 수분은 리튬 이차전지가 사용됨에 따라 충방전이 이루어지면서, 음극과 전해액과의 반응, 양극과 전해액과의 반응 또는 세퍼레이터와 전해액과의 반응 등에 의해 전지 내부에 가스를 형성시킨다. 이는 전지의 수명열화를 야기시킬 뿐만 아니라 전지의 안전성에도 영향을 미치게 된다.
최근 들어 리튬 이차전지가 대용량화되면서, 상기 문제점은 더욱 크게 부각되고 있으며, 이를 제어하기 위한 방안으로 리튬 이차전지의 조립과정 중 가스제거 공정을 더 추가하거나, 또는 전지에 주입되는 전해액에 가스 발생 억제재를 첨가하고 있다.
이처럼, 통상적으로 알려진 기술들은 소형의 리튬 이차전지를 제작하는 과정에서는 전지의 성능에 영향을 주지 않으면서, 큰 어려움 없이 적용할 수 있다. 그러나, 최근 리튬 이차전지의 대형화 또는 구조의 다양화를 고려하면, 공정의 용이성과 성능의 개선이 동시에 요구되어야 하는데, 상기 통상적인 기술들을 적용하기에는 어려움이 따른다.
본 발명이 해결하고자 하는 기술적 과제는, 상기와 같은 종래의 문제점을 해결하기 위한 것으로서, 셧다운 기능을 지니면서, 고온에서 형상 안정성이 우수하고, 기계적 강도가 우수하며, 리튬 이차전지의 내부에서 발생하는 가스를 제어하여 장수명 사이클 및 안전성을 향상시키는 리튬 이차전지용 세퍼레이터를 제공하는 것이다.
그리고, 상기 세퍼레이터를 구비하여, 전기화학적 특성의 열화 없이 안전성과 안정성이 향상된 리튬 이차전지를 제공하는 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면에 따르면, 다공성 고분자 기재; 및 상기 다공성 고분자 기재의 적어도 일면에 형성되되, 무기물 입자, 바인더, 가스 흡착재 및 용매를 포함하는 슬러리의 건조 결과물인 다공성 코팅층;을 포함하는 리튬 이차전지용 세퍼레이터가 제공된다.
여기서, 상기 다공성 고분자 기재는, 폴리올레핀계 다공성 고분자 기재일 수 있고, 상기 폴리올레핀계 다공성 고분자 기재는, 폴리 에틸렌, 폴리 프로필렌, 폴리부텐, 폴리메틸펜텐 및 이들의 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 슬러리는, 상기 슬러리 100 중량부를 기준으로, 상기 무기물 입자 5 내지 40 중량부, 상기 바인더 5 내지 20 중량부, 상기 가스 흡착재 1 내지 20 중량부 및 상기 용매 54 내지 89 중량부를 포함할 수 있다.
한편, 상기 가스 흡착재는, 실리카겔, 벤토나이트 또는 이들의 혼합물일 수 있다.
그리고, 상기 가스 흡착재의 평균 입경은, 0.8 내지 20 ㎛일 수 있다.
그리고, 상기 가스 흡착재의 BET 측정법에 의한 비표면적은, 1 내지 50 m2/g일 수 있다.
한편, 상기 무기물 입자는, Al2O3, MgO, Mg(OH) 및 TiO2로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 무기물 입자의 평균 입경은, 100 내지 800 nm일 수 있다.
그리고, 상기 바인더는, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (poly(vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), 폴리비닐리덴 플루오라이드 (poly(vinylidene fluoride), PVdF), 폴리테트라 플루오로에틸렌 (polytetrafluoroethylene, PTFE), 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA), 폴리아크릴로니트릴 (poly(acrylonitrile), PAN), 폴리에틸렌 (polyethylene, PE) 및 폴리프로필렌 (polyprofilene, PP)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 용매는, N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 아세톤 (acetone), 에탄올 (ethanol), 테트라 하이드로퓨란 (tetrahydrofuran, THF), 디메틸 아세트아미드 (dimethyl acetamide, DMAc) 및 톨루엔 (Toluene)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 상기 세퍼레이터의 두께는, 10 내지 50 ㎛일 수 있고, 상기 다공성 코팅층의 두께는, 2 내지 10 ㎛일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서, 상기 세퍼레이터는 전술한 본 발명에 따른 리튬 이차전지용 세퍼레이터인 것을 특징으로 하는 리튬 이차전지가 제공된다.
본 발명의 일 실시예에 따르면, 무기물 입자를 포함하는 다공성 코팅층이 다공성 고분자 기재의 표면에 형성됨으로써 우수한 내열성 및 기계적 강도로 인해 고온에서 열수축이 억제되며, 외부 관통에 따른 형상 변화가 없어 안전성이 우수한 리튬 이차전지를 제조할 수 있다.
그리고, 상기 다공성 코팅층에 가스 흡착재가 포함됨으로써 리튬 이차전지를 구성하는 물질에 잔존하는 수분, 및 전기화학적 또는 물리적으로 발생할 수 있는 가스를 선택적으로 흡수함으로써 장수명 사이클의 리튬 이차전지를 제공할 수 있다.
또한 다량의 기공을 형성하고 있어, 전해액의 담지량을 향상시켜 이온의 이동을 용이하게 함으로써 고출력과 장수명 사이클 특성이 확보된 리튬 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 리튬 이차전지용 세퍼레이터 표면의 SEM 사진과 세퍼레이터의 단면을 모식적으로 나타낸 도면이다.
도 2는 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 ARC 시험결과를 나타낸 그래프이다.
[부호의 설명]
10: 다공성 고분자 기재
20: 다공성 코팅층
21: 무기물 입자
22: 바인더
23: 가스 흡착재
100: 리튬 이차전지용 세퍼레이터
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 리튬 이차전지용 세퍼레이터 표면의 SEM 사진과 세퍼레이터의 단면을 모식적으로 나타낸 도면이다. 도 1을 참조하면, 본 발명의 일 측면에 따른 리튬 이차전지용 세퍼레이터(100)는, 다공성 고분자 기재(10); 및 상기 다공성 고분자 기재(10)의 적어도 일면에 형성되되, 무기물 입자(21), 바인더(22), 가스 흡착재(23) 및 용매를 포함하는 슬러리의 건조 결과물인 다공성 코팅층(20);을 포함한다.
이때, 상기 다공성 고분자 기재(10)는, 열가소성을 갖는 폴리올레핀계 다공성 고분자 기재일 수 있으며, 구체적인 재료에 따라 각각 소정의 융점을 갖는다. 본 발명의 소정 융점을 갖는 폴리올레핀계 다공성 고분자 기재는 리튬 이차전지 내부의 온도가 상승하여 융점에 이르게 되면, 용융이 시작되어 다공성 고분자 기재 내의 다공성 구조를 상실하게 되고, 그에 따라 이온의 이동을 차단하는 셧다운 기능을 발휘할 수 있다. 이러한 셧다운 기능을 발휘하기 위해 본 발명에 따른 열가소성의 폴리올레핀계 다공성 고분자 기재의 융점은 110 내지 160 ℃인 것이 바람직하다.
이때, 상기 폴리올레핀계 다공성 고분자 기재는, 폴리 에틸렌, 폴리 프로필렌, 폴리부텐, 폴리메틸펜텐 및 이들의 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으나, 이에만 한정되는 것은 아니다. 상기 폴리올레핀계 다공성 고분자 기재의 두께는, 10 내지 30 ㎛, 기공도는, 30 내지 80 %, 투기도는, 100 내지 300 sec/100 ml, 파단강도는, 수직과 수평방향으로 1,000 kgf/cm2 이상인 것이 바람직하다.
한편, 상기 슬러리는, 상기 슬러리 100 중량부를 기준으로, 상기 무기물 입자(21) 5 내지 40 중량부, 상기 바인더(22) 5 내지 20 중량부, 상기 가스 흡착재(23) 1 내지 20 중량부 및 상기 용매 54 내지 89 중량부를 포함하는 것일 수 있다.
이때, 상기 무기물 입자(21)의 함량이 전술한 수치범위의 하한치 미만이면, 무기물 입자에 의한 내열성 및 기계적 특성 향상을 기대하기 어렵고, 상한치를 초과하면, 다공성 고분자 기재와의 접착력이 떨어져 탈리 현상이 발생할 수 있다.
그리고, 상기 바인더(22)의 함량이 전술한 수치범위의 하한치 미만이면, 무기물 입자 및 가스 흡착재와 다공성 고분자 기재와의 접착력이 저하되어, 탈리 현상이 발생할 수 있고, 상한치를 초과하면, 슬러리의 점도가 증가하여 분산성이 저하되고, 이로 인해 코팅의 불균일을 초래할 수 있다.
또한, 상기 가스 흡착재(23)의 함량이 전술한 수치범위의 하한치 미만이면, 가스 흡수능력이 작아져서 첨가에 따른 효과를 볼 수 없고, 상한치를 초과하면, 비교적으로 무기물 입자의 양이 감소하기 때문에 내열성 및 기계적 특성 향상을 기대하기 어렵다.
그리고, 상기 용매의 함량은, 상기 수치범위인 것이 바람직하나, 슬러리 제조시 분산성이 확보되고, 코팅에 유용한 점도조절이 가능하기만 하면, 이에 한정되지는 않는다.
한편, 상기 가스 흡착재(23)는, 물리적 흡착 또는 화학적 흡착 중 어느 방식으로 흡착을 하는지는 제한되지 않고, 가스 흡수 능력을 지닌 것이라면 제한되지 않고 사용될 수 있다.
여기서, 상기 가스 흡착재(23)는, 주로 실리카겔, 벤토나이트 또는 이들의 혼합물일 수 있다. 특히, 상기 혼합물인 경우, 실리카겔과 벤토나이트의 혼합 비율에 따라 물리적 흡착방법과 화학적 흡착방법을 가진 가스 흡착재로 구분하게 된다.
상기 실리카겔은 규산의 콜로이드 용액을 응고시켜 제조한 흡착재로서, 방습제 또는 흡수제로 잘 알려져 있다. SiO2의 조성으로 이루어져 있고, 기공도가 매우 큰 다공질 구조이며, 기공의 분포 또는 크기가 매우 균일하다. 실리카겔은 미세한 구멍들이 서로 연결되어 방대한 그물로 연결된 과립형 비결정상 입자이며, 광대한 표면적에 따른 흡착능력이 매우 뛰어나다는 것이 특징이다.
상기 벤토나이트는 몬모릴로 나이트계의 팽창성 3층판(Si-Al-Si)으로 이루어진 점토이며, 납석 화학구조식인 Al2Si4(OH)의 조성으로 이루어져 있다. 벤토나이트는 중간층인 깁사이트(Gibbsite)층에서 발생하는 전하의 불균형으로 인해, 벤토나이트 각층의 모서리는 양성(+), 표면은 음성(-)이 존재하는 양극성을 나타내며, 이러한 양극성으로 인해 수분 및 가스의 흡착성능을 갖게 된다. 그리고, 이러한 양극성으로 인해 더더욱 많은 가스 및 수분을 끌어당기게 되어 층간의 공간으로 흡착되게 한다.
한편, 산화알루미늄(Aluminum oxide) 중간층인 깁사이트(Gibbsite)층에서 3+가인 알루미늄(Al)이 2+가인 마그네슘(Mg)으로 대체되고, 1+가 만큼의 부족한 전하를 Na로 만족시킨 형태가 나트륨 벤토나이트인데, 이러한 나트륨 벤토나이트는 가스 및 수분 흡수성이 매우 우수하여, 무게의 5배까지 흡수할 수 있는 능력이 있다. 그리고, 화학적으로 활성을 일으키지 않기 때문에 원재료에 화학적 영향을 미치지 않는 특성이 있어, 리튬 이차전지의 전기화학적 특성에 영향을 미치지 않는다. 또한 높은 온도에서도 이러한 성질은 변하지 않아 내부적 또는 외부적인 요인에 의해 전지의 온도가 상승할지라도, 특성 변화 없이 가스 흡수 능력을 발휘하게 되어, 2차 발화의 연쇄 반응을 억제할 수 있는 특성을 지닌다. 본 발명에서 사용된 가스 흡착재는 평균 입경이 10 ㎛인 것을 기준으로 733 ml/min의 가스를 흡착할 수 있으며, 일정 온도 이상에서 내부에 흡착된 가스를 제거할 수도 있어 재활용이 가능하다.
그 결과, 본 발명의 일 실시예에 따른 가스 흡착재를 포함하는 세퍼레이터 및 이를 포함하는 리튬 이차전지는 고온에서 장기간 방치하더라도 가스 발생률이 낮으며, 자가 방전율도 현저히 향상시킬 수 있다. 나아가, 가스 흡착재가 전지 내부에서 발생된 가스를 흡수함으로써 전지 내부에서 발생할 수 있는 발화요인을 원천적으로 차단하여, 리튬 이차전지의 안전성을 향상시킬 수 있다.
또한, 상기 가스 흡착재(23)의 평균 입경은 0.8 내지 20 ㎛, 또는 1 내지 10 ㎛일 수 있고, BET 측정법에 의한 비표면적은, 1 내지 50 m2/g, 또는 5 내지 20 m2/g일 수 있으나, 기공의 크기와 기공의 형태는 제한되지 않는다. 상기 평균 입경 및 비표면적의 범위를 벗어나는 가스 흡착재가 사용될 경우, 다공성 코팅층 형성용 슬러리 제조시 분산성이 확보되지 않을 수 있고, 상기 슬러리의 코팅성이 저하될 수 있으며, 이에 따라 가스 흡착 능력이 충분히 발휘되지 않거나, 전기화학적 특성이 저하될 수 있다.
한편, 상기 무기물 입자(21)는, 당 업계에서 통상적으로 사용되는 무기물 입자로서 전해액과의 분해 반응을 최소화할 수 있으면 특별히 제한되지는 않으며, 이러한 무기물 입자들은 강한 기계적 특성 및 고온에서 우수한 내열성을 보이기 때문에 세퍼레이터의 열적, 기계적 특성을 향상시킬 수 있다.
이때, 상기 무기물 입자(21)는, Al2O3, MgO, Mg(OH) 및 TiO2로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으나, 이에만 한정되는 아니다.
그리고, 상기 무기물 입자(21)의 평균 입경을 한정하는 것은 아니나, 적절한 기공율을 유지하기 위해서는, 100 내지 800 nm 범위의 평균 입경을 갖는 것이 바람직하다. 100 nm 미만인 경우, 다공성 코팅층 형성용 슬러리의 분산성이 떨어져 불균일한 코팅을 초래할 수 있고, 코팅시 다공성 고분자 기재의 기공 사이로 침투하여 기공을 막아 전지의 성능을 저하시킬 수 있다.
그리고, 상기 바인더(22)는, 통상적으로 사용되는 고분자 바인더라면 제한 없이 사용될 수 있다. 사용 가능한 바인더는, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (poly(vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), 폴리비닐리덴 플루오라이드 (poly(vinylidene fluoride), PVdF), 폴리테트라 플루오로에틸렌 (polytetrafluoroethylene, PTFE), 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA), 폴리아크릴로니트릴 (poly(acrylonitrile), PAN), 폴리에틸렌 (polyethylene, PE) 및 폴리프로필렌 (polyprofilene, PP)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으나, 이에만 한정되는 것은 아니다.
그리고, 상기 용매는, 상기 바인더에 대해 용해도가 높은 용매라면 제한 없이 사용될 수 있다. 사용 가능한 용매는, N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 아세톤 (acetone), 에탄올 (ethanol), 테트라 하이드로퓨란 (tetrahydrofuran, THF), 디메틸 아세트아미드 (dimethyl acetamide, DMAc) 및 톨루엔 (Toluene)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으나, 이에만 한정되는 것은 아니다.
한편, 본 발명의 다공성 코팅층(20)의 두께는, 2 내지 10 ㎛인 것이 바람직하다. 두께가 2 ㎛ 미만이면, 다공성 코팅층의 균일성 및 기계적 강도를 확보하기 어렵고, 열 변형억제에 어려움이 있어 안전성을 확보하기 어려우며, 10 ㎛를 초과하면, 다공성 고분자 기재와의 접촉력이 저하돼, 무기물 입자의 탈리 현상이 발생할 수 있으므로, 탈리된 무기물 입자가 저항체로 작용하여 리튬 이차전지의 성능 저하를 유발하게 되며, 통기도의 저하로 인해 고율 충·방전시 전체 세퍼레이터의 두께가 증가하게 되므로, 에너지 밀도 저하를 초래하게 된다.
그리고, 본 발명에 있어서, 다공성 고분자 기재의 표면에 다공성 코팅층 형성용 슬러리를 코팅하는 방법은 특별히 제한되지 않는다. 상기 슬러리를 다공성 고분자 기재에 코팅하는 방법은 당 업계에서 알려진 통상적인 코팅 방법을 사용할 수 있다. 예를 들면 딥(dip) 코팅, 다이(die) 코팅, 롤(roll) 코팅, 그라비아(gravure) 코팅, 스프레이(spray) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등을 선택적으로 이용할 수 있다.
본 발명의 리튬 이차전지용 세퍼레이터(100)는, 이온의 용이한 이동을 위해 기공도는 30 내지 70 %인 것이 바람직하고, 투기도는 150 내지 400 sec/100 ml인 것이 바람직하다. 다공성 코팅층의 형성으로 인해, 기공도가 변화될 수는 있지만, 다공성 고분자 기재의 특성 변화 없이 다공성 코팅층이 형성되는 것이 가장 효과적이다. 이때, 상기 투기도가 상기 수치범위의 상한치를 초과하게 되면, 출력 특성이 저하되므로, 기공도가 커서 전해액 담지 효과가 우수할지라도, 저항 증가로 인한 전지의 성능 저하가 발생되므로, 고출력용으로 적용되기는 어려움이 있다.
그리고, 상기 리튬 이차전지용 세퍼레이터(100)의 두께는, 10 내지 50 ㎛인 것이 바람직하다. 두께가 10 ㎛ 미만이면 세퍼레이터의 기능이 충분히 발휘되지 못하고, 기계적 특성의 열화가 발생할 수 있으며, 50 ㎛를 초과하면, 두께 증가로 인한 저항 증가로 고율 충·방전시 전지의 특성이 열화될 수 있으며, 전체적인 두께 증가로 인해 에너지 밀도 저하를 초래할 수 있다.
또한, 본 발명에 따른 리튬 이차전지용 세퍼레이터(100)의 파단강도는, 다공성 고분자 기재(10) 자체의 파단강도에 비해 50 % 이상 감소해서는 아니 되고, 보다 바람직하게는 30 % 이상 감소해서는 아니 된다. 기계적 특성이 우수한 무기물 입자가 코팅됨에도 불구하고, 다공성 고분자 기재 자체의 파단강도보다 감소되는 현상을 고려하는 이유는, 다공성 코팅층 형성용 슬러리의 코팅과정에서 세퍼레이터에 가해지는 장력으로 인해 충분히 발생할 수 있는데, 상기 세퍼레이터의 파단강도가 500 kgf/cm2 미만이 되면, 리튬 이차전지의 제조시 주름 발생으로 인해 전지 내부의 미 반응부가 발생하게 되고, 이로 인해 리튬 이차전지의 안전성을 더욱 악화시킬 수 있다. 한편, 파단강도는 높을수록 바람직하므로 본 발명에서는 파단강도의 상한에 대해 특별히 제한하지 않는다.
한편, 본 발명의 다른 측면에 따른 리튬 이차전지는, 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서, 상기 세퍼레이터는 전술한 본 발명에 따른 리튬 이차전지용 세퍼레이터인 것을 특징으로 하는 리튬 이차전지가 제공된다.
이때, 상기 양극 및 음극은, 당 분야에서 통상적으로 사용되는 제조방법에 따라 제조될 수 있고, 예를 들면, 각각의 전극 활물질, 바인더, 고비점 용제 및 선택적으로 도전재를 이용해 혼련하여 전극 활물질 슬러리로 제조한 후, 이 전극 활물질 슬러리를 전극 집전체상에 직접 코팅하는 방법이나, 또는 전극 활물질 슬러리를 별도의 지지체 상부에 코팅하고 건조한 다음, 상기 지지체로부터 박리하여 얻어진 필름을 전극 집전체상에 라미네이션하는 방법이 있다. 여기서, 상기 지지체는, 전극 활물질층을 지지할 수 있는 것이라면 모두 사용이 가능하며, 구체적인 예로는 마일라 필름, 폴리에틸렌테레프탈레이트(PET) 필름 등이 사용될 수 있다. 이와 같이 제조된 전극은, 건조, 가압 성형한 후, 80℃ 내지 130℃ 정도의 온도로 2 시간 이상 진공 하에서 가열 처리함으로써 제조될 수 있다.
여기서, 상기 전극 활물질은, 양극 활물질 또는 음극 활물질일 수 있는데, 양극 활물질인 경우에는 리튬 함유 전이금속 산화물과 같은 통상의 양극 활물질이 사용될 수 있다.
이때, 상기 리튬 함유 전이금속 산화물은, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, 및 LiMn2-zCozO4(0<z<2)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으나, 이에만 한정되는 것은 아니다. 그리고 이러한 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
그리고, 상기 리튬 함유 전이금속 산화물의 평균 입경은 6 내지 16 ㎛이고, BET 측정법에 의한 비표면적은, 0.1 내지 1 m 2/g일 수 있으나, 이에만 한정하는 것은 아니다.
그리고, 음극 활물질의 경우에는, 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재 및 금속 화합물 또는 이들의 혼합물과 같은 통상의 음극 활물질이 사용될 수 있다.
이때, 상기 탄소재로는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 메조페이스 흑연 분말(mesophase graphite powder(MGP)), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches), 석유계 코크스(petroleum derived cokes), 및 석탄계 코크스(coal tar derived cokes) 등의 고온 소성탄소가 대표적이다.
그리고, 상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등의 금속 원소를 1종 이상 함유하는 화합물 및 이들의 혼합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
그리고, 상기 리튬 금속, 탄소재 및 금속 화합물의 평균 입경은 5 내지 30 ㎛이고, BET 측정법에 의한 비표면적은, 0.5 내지 50 m2/g일 수 있으나, 이에만 한정하는 것은 아니다.
그리고, 상기 바인더로는, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (poly(vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), 폴리비닐리덴 플루오라이드 (poly(vinylidene fluoride), PVdF), 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA) 및 폴리아크릴로니트릴 (poly(acrylonitrile), PAN)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으나, 이에만 한정하는 것은 아니다.
그리고, 상기 도전재로는, 카본블랙 또는 아세틸렌 블랙이 사용될 수 있고, 상기 고비점 용제로는 아세톤 또는 N-메틸-2-피롤리돈이 대표적으로 사용될 수 있다.
한편, 상기 전극 집전체는 전도성이 높은 금속으로, 상기 전극 활물질의 슬러리가 용이하게 접착할 수 있는 금속이면서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용될 수 있다. 구체적으로 양극용 전극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극용 전극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 전극 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
또한, 상기 전해액에 포함되는 전해질은 리튬염으로서, 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온은, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
그리고, 상기 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
그리고, 상기 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 선택적으로 더 포함할 수 있다.
그리고, 본 발명의 일 측면에 따른 리튬 이차전지에서 사용되는 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 사용될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
1. 실시예 1
(1) 리튬 이차전지용 세퍼레이터의 제조
무기물 입자로서 Al2O3 25중량%, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 15중량%, 바인더로서 PVdF(polyvinylidene fluoride) 5중량%, 용매로서 아세톤 55중량%를 혼합하여 슬러리를 제조하였다. 이렇게 제조된 슬러리를 폴리에틸렌(PE) 다공성 고분자 기재(두께 16 ㎛, 기공도 47 %, 투과도 150.2 sec/100 ml, 더블유스코프社)의 양면에 코팅하였다. 이때 슬립벨트의 속도는 약 10 m/hr, 건조 온도는 80℃인 롤러코팅 방법을 사용하였으며, 다공성 코팅층 일면의 두께가 약 3 ㎛가 되도록 도포하여, 총 23 ㎛의 두께를 가진 세퍼레이터를 제조하였다.
(2) 리튬 이차전지의 제조
양극 활물질로는 LiNi(1-x-y)MnxCoyO2(지에스이엠社)을, 음극 활물질로는 메조페이스 흑연 분말(mesophase graphite powder(MGP), China Steel Chemical Corporation)을 사용하여 양극 및 음극을 제조하였다.
상기 양극과 음극 사이에 상기 세퍼레이터를 개재시킨 후, 알루미늄 외장재를 적용하여 리튬 이차전지를 제조하였다. 상기 리튬 이차전지의 규격은 두께 120㎜, 폭 216㎜ 및 길이 216㎜가 되도록 제작하였고, 설계 용량은 46 Ah가 되도록 제조하였다.
2. 실시예 2
무기물 입자로서 Al2O3 35중량%, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 5중량%, 바인더로서 PVdF(polyvinylidene fluoride) 5중량%, 용매로서 아세톤 55중량%를 혼합하여 슬러리를 제조하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 세퍼레이터 및 리튬 이차전지를 제조하였다.
3. 비교예 1
세퍼레이터로서, 폴리에틸렌(PE) 다공성 고분자 기재만을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
4. 세퍼레이터의 물리적 특성
상기 실시예 및 비교예에 따라 제조된 세퍼레이터의 각종 물리적 특성에 대해 하기 표 1에 나타내었다.
표 1
Thickness[㎛] Air permeability[sec/100 ml] Porosity[%] Break Strength[kgf/cm2] Heat Shrinkage(@150℃/1hr)[%] basic weight[g/m2]
MD TD MD TD
실시예 1 23 237.3 55.9 1,722 1,809 4.63 6.15 13.3
실시예 2 23 243.4 53.2 1,863 1,910 2.78 4.37 13.1
비교예 1 22 225.0 46.0 1,602 1,269 75.9 72.2 10.8
상기 실시예와 비교예에 따라 제조된 세퍼레이터의 기본적인 물성에서는 큰 차이가 없지만, 가스 흡착재와 무기물 입자를 포함하는 다공성 코팅층이 형성됨에 따라 열적 특성에서는 우수한 특성을 보여준다. 다만, 다공성 코팅층의 형성으로 인해, 실시예가 비교예보다 무게가 더 증가되었음을 확인할 수 있다.
5. 리튬 이차전지의 전기화학적 특성
상기 실시예 및 비교예에 따라 제조된 전지들에 대해서, 충·방전 사이클 장치를 이용하여, 전류 밀도 9.2 A(0.2 C), 4.2 V의 CC-CV(Constant current-Constant voltage)로 충전 후, 10 분의 휴지기간을 갖고, 3.0 V까지 23 A(0.5 C)로 방전시켰다. 이에 따른 각각의 초기 비용량, 초기효율, 10 C 방전 효율 및 DOD 50%에서의 출력 특성에 대해 하기 표 2에 나타내었다.
표 2
비용량[mAh/g] 초기 효율[%] 10 C 방전 효율[%] Peak Power (@DOD50%)[W]
실시예 1 145.2 82.2 95.5 2,483
실시예 2 145.7 83.1 95.8 2,312
비교예 1 146.2 82.9 96.2 2,562
상기 표 2에서 알 수 있는 바와 같이, 실시예와 비교예의 초기 효율 및 비용량에는 큰 차이가 없는 것으로 보아, 다공성 코팅층의 형성에 의하더라도 리튬 이차전지의 전기화학적 특성에 영향이 없다고 판단된다.
상기 실시예 및 비교예에 따라 제조된 전지들의 고율 방전시험은 충·방전 사이클 장치를 이용하여 전류 밀도 20 A(0.5 C), 4.2 V의 CC-CV(Constant current-Constant voltage)로 충전 후, 10 분의 휴지기간을 갖고, 2.7 V까지 460 A(10.0 C)로 방전시켰다. 출력 특성시험은 기본 전류를 13.8 A(0.3 C)로 인가하고 피크(peak) 전류를 230 A(5 C)로 인가하면서 DOD 구간별 출력 특성을 관찰하였다.
상기 시험에 따라 측정된 전지의 고율 방전특성은, 0.5 C 방전을 기준으로 하였을 때, 실시예와 비교예 1이 유사한 고율 방전특성을 나타내었음을 확인할 수 있었으며, 피크 파워(peak power)시험에서는 다공성 코팅층의 유무에 따른 출력값이 다소 차이는 있었지만, 비교적 큰 저항으로 작용하지는 않았다고 판단할 수 있다. 비교예 1보다 실시예의 피크 파워 값이 저하되는 이유는, 가스 흡착재의 존재보다는 무기물 입자의 함량에 기인한다고 볼 수 있으며, 실시예 2보다 실시예 1의 출력값이 더 높은 이유도 무기물 입자의 함량에 따른 차이인 것으로 해석된다.
6. 리튬 이차전지의 안전성 시험
실시예 및 비교예에 따른 리튬 이차전지의 과충전 특성시험, 못 관통시험 및 열충격 시험을 수행하였다. 과충전 특성시험과 관련하여, 46 A(1.0 C)의 전류 밀도로 10 V까지 충전하여 과충전에 따른 리튬 이차전지의 전압 거동 및 표면 온도를 측정하였으며, 못 관통시험과 관련하여, 직경이 3 Φ인 못을 80 mm/sec의 속도로 관통하였을 때, 전지의 전압 거동 및 표면 온도를 측정하였다. 그리고 열충격 시험과 관련하여, 25±2 ℃의 오븐 안에 전지를 넣어두고, 분당 5 ℃씩 온도를 상승시켜, 150±2 ℃에서 60분 동안 방치시켰을 때, 전지의 전압 거동 및 표면 온도를 측정하였다. 상기 시험에 따라 측정된 전지의 특성을 하기 표 3에 기재하였다.
표 3
과충전[10.0 V] 못 관통[SOC95%] 열충격[130 ℃/1hr]
실시예 1 A A A
실시예 2 A B B
비교예 1 D D D
(A: 변화 없음, B: 연기발생, C: 발화, D: 폭발)
실시예 1과 2에 따른 전지에서 안전성이 다소 차이를 보이는 것은 각각의 특성에 따른 결과이지만, 과충전 시험의 경우에는 무기물 입자 또는 가스 흡착재의 함량에 따라 큰 차이를 보이고 있지 않다. 다만 비교예 1에 따른 전지의 경우에는 확연한 차이를 보이는데, 내열성이 확보된 세퍼레이터 즉, 다공성 코팅층이 형성되었는지 여부에 따라 안전성에 영향을 받는 것으로 볼 수 있다.
못 관통 및 열충격 시험의 경우 무기물 입자의 함량보다는 가스 흡착재의 함량이 비교적 더 많을 때, 안전성에서 더 큰 효과를 나타내는 것을 확인할 수 있다. 이는 물리적으로 발생된 가스 성분이 가스 흡착재에 흡수됨으로써 나타난 효과인 것으로 판단된다. 기본적으로 전지에서 발생되는 가스 성분은 전압 구간 및 온도 차이에 의해 달라지며, 본 발명에서 사용된 가스 흡착재는 물리적 또는 온도의 영향으로 발생된 가스 성분을 잘 흡수 하는 것으로 판단된다.
한편, 실시예와 비교예에 따른 전지를, 소형 사이즈(두께 50 ㎜, 폭 34 ㎜, 길이 59 ㎜, 설계 용량 0.6 Ah)로 제작하여, ARC 시험을 수행한 결과를 도 2에 나타내었다. ARC 시험은 외부에서 계속적으로 열을 주입하여, 전지의 내부 반응에 따른 발열 거동을 측정하는 시험인데, 상기 실시예와 비교예에 따라 제조된 전지의 열 거동에 따른 내부 반응은 가스 흡착재의 첨가 유무 및 첨가량에 따라 확연한 차이를 보이고 있다.
일단 가스 흡착재의 함량이 많은 실시예 1을 보면, 전지의 발화 이전까지 내부 발열반응을 보이지 않는 것으로 나타난다. 이는 외부에서 열을 주입하였을 때 전지의 내부에서 가스를 생성하게 되는데, 실시예 1에서는 가스 흡착재가 상기 가스를 충분히 흡수한다는 것을 알 수 있다. 실시예 1보다 적은 양이 첨가된 실시예 2를 보면, 실시예 1보다 더 낮은 온도에서 반응을 보이고 있는데, 이는 마찬가지로 외부에서 열을 주입하였을 때 전지의 내부에서 생성되는 가스를 충분히 흡수한 후, 더 이상 흡수할 수 있는 사이트(site)가 없기 때문에 나타나는 현상으로 볼 수 있으며, 이러한 시험 결과를 보면, 본 발명에서 첨가된 가스 흡착재는 전지의 내부에서 생성되는 가스를 흡수하는 능력이 있다고 판단할 수 있다.
7. 리튬 이차전지의 고온 저장시험
실시예 및 비교예에 따른 전지를 45±2 ℃의 오븐에서, 1 개월 동안 방치시킨 후, 전지의 두께, 잔존 용량 및 전압변화를 측정하였으며, 이를 표 4에 기재하였다.
표 4
잔존 용량 (%) 전압 변화 (mV) 두께 변화율 (%)
실시예 1 92.5 -58 0.0
실시예 2 91.0 -64 0.0
비교예 1 89.8 -99 1.2
본 시험은, 전지의 저장 온도가 다소 높기 때문에, 전해액과 전극 및 세퍼레이터와의 반응을 활성화시켜 줌으로써 전해액의 분해반응이 더 활발히 일어날 수 있다. 상기 실시예 및 비교예에 따라 제조된 전지의 고온 방치에 따른 용량 및 두께 변화율의 측정 결과 가스 흡수재가 첨가되면 잔존 용량 및 전압 유지율이 더 우수하고, 두께 변화율도 우수하다는 것을 확인할 수 있다. 상기 가스 흡착재가 전해액과 전극 또는 세퍼레이터와의 분해 반응을 억제한다기 보다는 각각의 분해 반응에 의해 발생하는 가스를 흡수함으로써 가스에 의한 스웰링(swelling)현상을 억제할 수 있으며, 이로 인해 용량 유지율이나 전압 유지율에 효과를 주는 것으로 판단된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 다공성 고분자 기재; 및
    상기 다공성 고분자 기재의 적어도 일면에 형성되되, 무기물 입자, 바인더, 가스 흡착재 및 용매를 포함하는 슬러리의 건조 결과물인 다공성 코팅층;을 포함하는 리튬 이차전지용 세퍼레이터.
  2. 제1항에 있어서,
    상기 다공성 고분자 기재는, 폴리올레핀계 다공성 고분자 기재인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  3. 제2항에 있어서,
    상기 폴리올레핀계 다공성 고분자 기재는, 폴리 에틸렌, 폴리 프로필렌, 폴리부텐, 폴리메틸펜텐 및 이들의 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  4. 제1항에 있어서,
    상기 슬러리는, 상기 슬러리 100 중량부를 기준으로, 상기 무기물 입자 5 내지 40 중량부, 상기 바인더 5 내지 20 중량부, 상기 가스 흡착재 1 내지 20 중량부 및 상기 용매 54 내지 89 중량부를 포함하는 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  5. 제1항에 있어서,
    상기 가스 흡착재는, 실리카겔, 벤토나이트 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  6. 제1항에 있어서,
    상기 가스 흡착재의 평균 입경은, 0.8 내지 20 ㎛인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  7. 제1항에 있어서,
    상기 가스 흡착재의 BET 측정법에 의한 비표면적은, 1 내지 50 m2/g인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  8. 제1항에 있어서,
    상기 무기물 입자는, Al2O3, MgO, Mg(OH) 및 TiO2로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  9. 제1항에 있어서,
    상기 무기물 입자의 평균 입경은, 100 내지 800 nm인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  10. 제1항에 있어서,
    상기 바인더는, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (poly(vinylidene fluoride-co-hexafluoropropylene), PVdF-HFP), 폴리비닐리덴 플루오라이드 (poly(vinylidene fluoride), PVdF), 폴리테트라 플루오로에틸렌 (polytetrafluoroethylene, PTFE), 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA), 폴리아크릴로니트릴 (poly(acrylonitrile), PAN), 폴리에틸렌 (polyethylene, PE) 및 폴리프로필렌 (polyprofilene, PP)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  11. 제1항에 있어서,
    상기 용매는, N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 아세톤 (acetone), 에탄올 (ethanol), 테트라 하이드로퓨란 (tetrahydrofuran, THF), 디메틸 아세트아미드 (dimethyl acetamide, DMAc) 및 톨루엔 (Toluene)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  12. 제1항에 있어서,
    상기 세퍼레이터의 두께는, 10 내지 50 ㎛인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  13. 제1항에 있어서,
    상기 다공성 코팅층의 두께는, 2 내지 10 ㎛인 것을 특징으로 하는 리튬 이차전지용 세퍼레이터.
  14. 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서,
    상기 세퍼레이터는 제1항 내지 제13항 중 어느 한 항에 따른 리튬 이차전지용 세퍼레이터인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/000954 2014-02-04 2014-02-04 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지 WO2015119306A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140012687A KR20150091897A (ko) 2014-02-04 2014-02-04 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지
KR10-2014-0012687 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119306A1 true WO2015119306A1 (ko) 2015-08-13

Family

ID=53778100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000954 WO2015119306A1 (ko) 2014-02-04 2014-02-04 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR20150091897A (ko)
WO (1) WO2015119306A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054152A (zh) * 2020-09-30 2020-12-08 中航锂电技术研究院有限公司 隔膜和电池
CN112436236A (zh) * 2019-08-09 2021-03-02 大众汽车股份公司 用于制造电池组电池的层系统的方法
EP4238643A1 (en) * 2022-03-04 2023-09-06 SK On Co., Ltd. Manufacturing method of absorber, absorber, and lithium secondary battery including absorber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005870B1 (ko) * 2016-01-15 2019-07-31 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR102340949B1 (ko) * 2016-12-26 2021-12-17 주식회사 엘지에너지솔루션 리튬인산철이 양극 활물질로 적용된 리튬 이차전지의 양극 내의 수분 제거방법
KR20200135178A (ko) * 2019-05-23 2020-12-02 주식회사 엘지화학 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20220126047A (ko) 2021-03-08 2022-09-15 에스케이온 주식회사 이차전지용 다공성 복합 분리막 및 이를 포함하는 리튬 이차전지.
CN114759311B (zh) * 2022-06-13 2022-09-09 浙江金羽新能源科技有限公司 一种复合隔膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146963A (ja) * 2006-12-08 2008-06-26 Sony Corp 非水電解質二次電池用セパレータ、非水電解質二次電池及び電池パック
JP2011049079A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 二次電池
US20110210954A1 (en) * 2010-03-01 2011-09-01 Apple Inc. Integrated frame battery cell
KR20130052406A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
JP2013191524A (ja) * 2012-03-15 2013-09-26 Toshiba Corp 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146963A (ja) * 2006-12-08 2008-06-26 Sony Corp 非水電解質二次電池用セパレータ、非水電解質二次電池及び電池パック
JP2011049079A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 二次電池
US20110210954A1 (en) * 2010-03-01 2011-09-01 Apple Inc. Integrated frame battery cell
KR20130052406A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
JP2013191524A (ja) * 2012-03-15 2013-09-26 Toshiba Corp 非水電解質二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436236A (zh) * 2019-08-09 2021-03-02 大众汽车股份公司 用于制造电池组电池的层系统的方法
CN112436236B (zh) * 2019-08-09 2023-02-28 大众汽车股份公司 用于制造电池组电池的层系统的方法
CN112054152A (zh) * 2020-09-30 2020-12-08 中航锂电技术研究院有限公司 隔膜和电池
EP4238643A1 (en) * 2022-03-04 2023-09-06 SK On Co., Ltd. Manufacturing method of absorber, absorber, and lithium secondary battery including absorber

Also Published As

Publication number Publication date
KR20150091897A (ko) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2015119306A1 (ko) 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2017171409A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CA2574628C (en) Lithium secondary batteries with enhanced safety and performance
WO2015034257A1 (ko) 고용량 리튬 이차전지용 양극 첨가제
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2011062422A2 (ko) 리튬 이차전지용 음극 합제 및 이를 사용한 리튬 이차전지
WO2019112390A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2012165758A1 (ko) 리튬 이차전지
WO2014119960A1 (ko) 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2012044133A2 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2015060697A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
KR20130060987A (ko) 안전성과 안정성이 향상된 리튬 이차 전지
WO2011005054A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2011059251A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 구비하는 리튬 이차전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022010121A1 (ko) 급속충전 성능이 향상된 음극 및 리튬 이차전지
WO2015047045A1 (ko) 리튬 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881720

Country of ref document: EP

Kind code of ref document: A1