WO2015119272A1 - Ion-exchange membrane for redox battery, complex, and redox battery - Google Patents

Ion-exchange membrane for redox battery, complex, and redox battery Download PDF

Info

Publication number
WO2015119272A1
WO2015119272A1 PCT/JP2015/053519 JP2015053519W WO2015119272A1 WO 2015119272 A1 WO2015119272 A1 WO 2015119272A1 JP 2015053519 W JP2015053519 W JP 2015053519W WO 2015119272 A1 WO2015119272 A1 WO 2015119272A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
ion exchange
exchange membrane
polybenzimidazole
Prior art date
Application number
PCT/JP2015/053519
Other languages
French (fr)
Japanese (ja)
Inventor
良平 岩原
真佐子 吉岡
西本 晃
小林 真申
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2015561076A priority Critical patent/JP6447520B2/en
Publication of WO2015119272A1 publication Critical patent/WO2015119272A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is useful for redox batteries or redox flow batteries, and is particularly composed of a polybenzimidazole useful for vanadium-based redox flow batteries, or a composition containing polybenzimidazole and a polymer having an acidic ionic group.
  • the present invention relates to an ion exchange membrane.
  • the redox flow battery is excellent in charge / discharge cycle resistance and safety, and is optimal for a large-sized secondary battery.
  • a redox flow battery is generally a battery that obtains energy by causing a redox reaction of vanadium in a vanadium sulfate solution by circulation of a pump.
  • a cation exchange membrane or an anion exchange membrane is used in order to maintain the ion balance between both electrodes.
  • anion exchange membrane Selemion APS manufactured by Asahi Glass Co., Ltd. is used.
  • an anion exchange membrane needs to pass ions having a large ion radius such as sulfate anion, there is a problem that resistance is high.
  • the ion exchange membrane In addition to ion conductivity, the ion exchange membrane must have properties such as prevention of permeation of the electrolyte and mechanical strength.
  • examples of such an ion exchange membrane include a membrane containing a perfluorocarbon sulfonic acid polymer introduced with a sulfonic acid group represented by Nafion (registered trademark) manufactured by DuPont of the United States, and a neoceptor manufactured by Tokuyama.
  • Nafion registered trademark
  • a membrane containing a crosslinked polystyrene sulfonate is used.
  • a membrane containing a perfluorocarbon sulfonic acid polymer such as Nafion has advantages of excellent chemical durability, high proton conductivity, and low cell resistance.
  • Nafion also has a problem of poor ion permeation selectivity.
  • vanadium ions are also allowed to pass during charging / discharging, so that the amount of active material in the electrolytic solution is reduced and the charging / discharging cycle is significantly deteriorated.
  • a membrane containing a polystyrene sulfonate cross-linked product such as neoceptor has advantages such as low cost, low vanadium ion permeability, and excellent ion permeation selectivity.
  • advantages such as low cost, low vanadium ion permeability, and excellent ion permeation selectivity.
  • the strength of the membrane is insufficient, there is a problem that measures such as fiber reinforcement must be taken.
  • chemical durability and heat resistance such as sulfonic acid groups being eliminated during hydrolysis and heat generation.
  • pentavalent vanadium is generated on the positive electrode side during charging.
  • This pentavalent vanadium has a very strong oxidizing power, so that it significantly deteriorates the ion exchange membrane.
  • hydrocarbon ion exchange membranes have excellent initial energy efficiency, but have poor oxidation resistance and low resistance to pentavalent vanadium.
  • the perfluorocarbon sulfonic acid polymer such as Nafion described above has excellent resistance to pentavalent vanadium, but has poor ion permeation selectivity and tends to have low initial energy efficiency. Thus, it has been extremely difficult to achieve both initial energy efficiency and oxidation resistance.
  • Patent Documents 1 to 3 a sulfonic acid group is introduced into an aromatic polymer to improve mechanical strength and heat resistance.
  • ion exchange membranes prepared by these methods dissolve when the ion exchange membrane is immersed in pentavalent vanadium for a long period of time, and the oxidation resistance is insufficient for use as a vanadium-based redox battery. It was.
  • Patent Documents 4 to 6 propose a method in which an ion exchange resin is combined with a porous base material that is a reinforcing material to compensate for deterioration due to pentavalent vanadium with the reinforcing material.
  • these methods cannot suppress deterioration of the polymer itself and can maintain the shape as a diaphragm, but when used over a long period of time, deterioration of the initial characteristics due to a decrease in strength or ion exchange resin is inevitable. .
  • an object of the present invention is to provide an ion exchange membrane for a redox battery that is excellent in oxidation resistance and excellent in initial energy efficiency.
  • the inventors of the present invention have intensively studied to achieve the above-mentioned object.
  • the present invention has been completed by finding that an ion exchange membrane comprising a composition containing a functional group is excellent in oxidation resistance and high in energy efficiency.
  • An ion exchange membrane for a redox battery comprising polybenzimidazole containing a constituent represented by the following general formula (1).
  • R 1 represents a tetravalent aromatic unit capable of forming an imidazole ring
  • R 2 represents a divalent aromatic group
  • X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof
  • m represents an integer of 1 to 4.
  • n shows the copolymerization ratio of General formula (2), and satisfy
  • R 2 represents a divalent aromatic group
  • X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof
  • m represents 1 To an integer of 4 to 4, wherein Z is at least one selected from the group consisting of O, SO 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , and OPhO (where Ph represents an aromatic group). It represents the above.
  • An ion exchange membrane for a redox battery comprising 10 to 100% by mass of the polybenzimidazole according to any one of the above items 1 and 2. 4).
  • Polybenzimidazole (A) containing the structural component represented by the general formula (1), and at least one acidic ion selected from a sulfonic acid group, a phosphonic acid group, a carboxyl group, or a metal salt thereof, or an ammonium salt It comprises a composition containing a polymer (B1) having a functional group and not containing the structure of formula (1), wherein the ion exchange capacity of (B1) is 1.5 mmeq / g or more.
  • the ion exchange membrane for redox batteries of 1 or 2. 5.
  • Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) It consists of a composition containing the aromatic hydrocarbon polymer (B2) which has at least 1 or more types of acidic ionic groups chosen from a salt and ammonium salt, Any one of Claim 1, 2, 4 characterized by the above-mentioned.
  • a composition comprising a polymer (B4) having at least one acidic ionic group selected from a salt and an ammonium salt, wherein the polymer (B4) has a repeating unit having 12 or more carbon atoms,
  • the ion exchange membrane for redox batteries according to any one of 2 and 4.
  • Ar represents a divalent aromatic group
  • Y represents a sulfonyl group or a carbonyl group
  • Z represents an O atom, an S atom, or a direct bond
  • X represents H or a monovalent cation species.
  • Z represents either an O atom or an S atom
  • Ar ′ represents a divalent aromatic group
  • composition according to any one of 4 to 8 comprising the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4).
  • 10. 9 The composition according to any one of 4 to 8, comprising the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4).
  • the ion exchange membrane for a redox battery according to any one of 1 to 10 which is an ion exchange membrane for a redox flow battery.
  • 12 The ion exchange membrane for redox battery according to any one of 1 to 11, which is used for a redox battery using vanadium ions as an active material of the battery.
  • 13. An ion exchange membrane / electrode composite for a redox battery comprising the ion exchange membrane according to any one of 1 to 12 above and an electrode.
  • 14 13.
  • 15. 14 A redox battery comprising the ion exchange membrane / electrode composite as described in 13 above.
  • an ion exchange membrane containing a polymer having an ionic group introduced into the polybenzimidazole of the present invention and an ion exchange membrane comprising a polymer having an ionic group introduced into the polybenzimidazole and a composition containing an acidic ionic group, It is possible to provide a material exhibiting outstanding performance as an ion exchange membrane for a redox battery, which is excellent not only in initial energy efficiency but also in heat resistance, workability and oxidation resistance.
  • the present invention provides a polymer material useful as an ion exchange membrane for a redox battery, which is excellent not only in initial energy efficiency but also in heat resistance, workability and oxidation resistance. That is, an ion exchange membrane containing a polymer in which polybenzimidazole having excellent oxidation resistance is used as a main chain skeleton and an ionic group such as a sulfonic acid group or a phosphonic acid group is introduced into the main chain skeleton is used. More preferably, an ion exchange membrane made of a composition containing a polymer having an ionic group introduced into the polybenzimidazole and a polymer having an acidic ionic group is used.
  • an ion exchange membrane having high ion permeation selectivity, low resistance, and high durability is provided. be able to.
  • the ion exchange membrane for a redox battery of the present invention contains polybenzimidazole (A) including a component containing an acidic ionic group of the general formula (1).
  • R 1 represents a tetravalent aromatic unit capable of forming an imidazole ring
  • R 2 represents a divalent aromatic group
  • R 1 and R 2 are both monocyclic aromatic rings
  • It may be a conjugate of an aromatic ring, may have a condensed ring or a heterocyclic ring, and may have a stable substituent such as an alkyl group or an aromatic group.
  • X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof
  • m represents an integer of 1 to 4.
  • the method for synthesizing the acidic group-containing polybenzimidazole (A) of the present invention containing the structure represented by the above formula (1) is not particularly limited, but aromatic tetramines capable of forming an imidazole ring in the compound by a conventional method. And one or more compounds selected from the group consisting of derivatives thereof and one or more compounds selected from the group consisting of aromatic dicarboxylic acids and derivatives thereof. At that time, by using dicarboxylic acids containing sulfonic acid groups or phosphonic acid groups or salts thereof in the dicarboxylic acids to be used, sulfonic acid groups or phosphonic acid groups are introduced into the resulting polybenzimidazole. be able to.
  • Dicarboxylic acids containing a sulfonic acid group or a phosphonic acid group can be used alone or in combination of two or more.
  • a sulfonic acid group-containing dicarboxylic acid and a phosphonic acid group-containing dicarboxylic acid can be used simultaneously. It is also possible to use it.
  • tri or tetracarboxylic acid can also be used.
  • a benzimidazole-based binding unit that is a constituent element of the polybenzimidazole (A) used in the ion exchange membrane of the present invention, an aromatic dicarboxylic acid binding unit having a sulfonic acid group and / or a phosphonic acid group, a sulfone
  • the aromatic dicarboxylic acid bonding unit having no acid group or phosphonic acid group and other bonding units are preferably bonded by random polymerization and / or alternating polymerization.
  • these polymerization formats are not limited to one type, and two or more polymerization types may coexist in the same compound.
  • the constituent of the general formula (1) includes constituents represented by the following general formulas (2) and (3).
  • n shows the copolymerization ratio of General formula (2), and satisfy
  • R 2 represents a divalent aromatic group
  • X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof
  • m represents 1 To an integer from 4 to Z, and at least one selected from the group consisting of O, SO 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , and OPhO (where Ph represents an aromatic group). It represents the above.
  • the amount of the acidic ionic group to be introduced is preferably 20 mol% or more, and more preferably 40 mol% or more with respect to the imidazole unit. That is, when there is one acidic ionic group introduced into R 2 , n is preferably 40 or more, and more preferably 80 or more. When the acidic ionic group introduced into R 2 is 2 or more, n is preferably 20 or more, and more preferably 40 or more. Furthermore, Z is preferably SO 2 or C (CF 3 ) 2 in view of oxidation resistance and solubility in organic solvents. For the oxidation resistance, it is better to lower the electron density in the polymer skeleton.
  • SO 2 or C (CF 3 ) 2 which is an electron withdrawing group is preferable.
  • Z is SO 2 or C (CF 3 ) 2 because it can be dissolved in an organic solvent such as N-methyl 2-pyrrolidone or dimethyl sulfoxide and the processing becomes easy.
  • the ion exchange membrane for a redox battery of the present invention contains a polyimidazole (A) having the above general formula (1) as a constituent component, but a structural unit other than that represented by the above general formula (1) (for example, sulfone). A structural unit that does not contain an acid group-containing component) may be included.
  • the structural unit other than that represented by the general formula (1) is preferably 60 parts by mass or less when the polyimidazole (A) represented by the general formula (1) is 100 parts by mass. By setting it to 60 parts by mass or less, the characteristics of the ion exchange membrane for a redox battery of the present invention can be utilized.
  • aromatic tetramines that give the sulfonic acid group-containing polybenzimidazole (A) containing the structural component represented by the general formula (1) and constitute R 1 are not particularly limited.
  • aromatic tetramines that give the sulfonic acid group-containing polybenzimidazole (A) containing the structural component represented by the general formula (1) and constitute R 1 are not particularly limited.
  • 1,2,4,5-tetraaminobenzene 3,3′-diaminobenzidine, 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4,4′-tetraamino Diphenylthioether, 3,3 ′, 4,4′-tetraaminodiphenylsulfone, 2,2-bis (3,4-diaminophenyl) propane, bis (3,4-diaminophenyl) methane, 2,2-bis ( 3,4-diaminophenyl) hexafluoroprop
  • 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4,4 ′ which can form a binding unit represented by general formula (2) or general formula (3).
  • Polybenzimidazole obtained from benzene and derivatives thereof can be used in aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, hexamethylphosphonamide and the like. It is particularly preferable from the viewpoint of ease of workability of the ion exchange membrane.
  • aromatic tetramine derivatives include salts with acids such as hydrochloric acid, sulfuric acid and phosphoric acid. These compounds may be used alone or in combination. Furthermore, these compounds may contain known antioxidants such as tin (II) chloride and phosphorous acid compounds as necessary.
  • Examples of the ionic group (X) in the ionic group-containing dicarboxylic acid that gives the structure of the above formula (1) include a sulfonic acid group, a phosphonic acid group, a hydroxyl group, and a carboxyl group. Of these, sulfonic acid groups and phosphonic acid groups having a high degree of proton dissociation are preferred. By using a sulfonic acid group or a phosphonic acid group, the ion conductivity is increased and a low resistance ion exchange membrane can be obtained. Further, in the present invention, since the ionic group (X) is bonded to the polymer main chain, there is an advantage that an acid immersion treatment after forming the polymer into a film is not particularly required.
  • the ionic group-containing dicarboxylic acid that gives the structure of the above formula (1) can be selected from those containing 1 to 4 ionic groups in the aromatic dicarboxylic acid.
  • the derivatives include alkali metal salts such as sodium and potassium, ammonium salts, and alkyl ammonium salts.
  • the structure of the sulfonic acid group-containing dicarboxylic acid or phosphonic acid group-containing dicarboxylic acid is not particularly limited thereto.
  • M in the above formula (1) is selected from an integer of 1 to 4. If m is 5 or more, the water resistance of the polymer tends to decrease, such being undesirable.
  • These compounds may be used alone or in combination. Furthermore, these compounds may contain known antioxidants such as tin (II) chloride and phosphorous acid compounds as necessary.
  • the ionic group-containing dicarboxylic acids can be introduced not only by themselves but also as R 2 in the form of copolymerization with dicarboxylic acids not containing ionic groups.
  • dicarboxylic acids that can be used with ionic group-containing dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, biphenyl dicarboxylic acid, terphenyl dicarboxylic acid, 2,2-bis (4 -Carboxyphenyl) General dicarboxylic acids reported as polyester raw materials such as hexafluoropropane can be used, and are not limited to those exemplified here.
  • dicarboxylic acids those having no electron donating property such as an ether bond are preferable in order to improve oxidation resistance.
  • derivatives such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenylsulfone dicarboxylic acid and the like.
  • the ion conductivity is improved by introducing an acidic ionic group, a low-resistance ion exchange membrane is obtained.
  • the content of the aromatic dicarboxylic acid having a sulfonic acid group or phosphonic acid group is less than 20 mol%, the ionic conductivity and acid-base interaction of the polybenzimidazole compound of the present invention are reduced, and the resistance is high. Durability tends to decrease.
  • the ion exchange membrane for redox of the present invention is one of the preferred embodiments containing 10 to 100% by mass of polyimide benzoxazole (A).
  • a preferred embodiment of the present invention is a redox ion comprising a composition containing a polyimide benzoxazole (A) containing the component represented by the formula (1) and a second polymer (B) having an acidic ionic group. It is an ion exchange membrane for a battery.
  • the 2nd polymer (B) which has an acidic ionic group is a polymer which does not contain the structure of said (1) Formula. All of the polymers (B1) to (B4) described below show preferred modes of the polymer (B).
  • the content thereof that is, the total content of the polymers (B1) to (B4)
  • the content thereof is preferably 80% by weight or less, more preferably 60% by weight or less and 10% by weight or more based on the composition. .
  • the total amount of both is preferably 10 to 100% by mass.
  • Examples of the second polymer (B) having an acidic ionic group include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12.
  • Acrylate resins such as polymethyl methacrylate, polymethacrylic acid esters, polymethyl acrylate, polyacrylic acid esters, polyacrylic acid resins, polymethacrylic acid resins, polyethylene, polypropylene, polystyrene and diene polymers
  • Aromatic hydrocarbon polymers such as polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzoxazole, polybenzthiazole, and fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride
  • polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, and polybenzthiazole Preferably exemplified. A polymer obtained by sulfonating these polymers is more preferable.
  • sulfonated polymers such as polyarylate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, and polyimide.
  • polyarylate polyphenylene sulfide
  • polyphenylene oxide polyphenylene oxide
  • polysulfone polyethersulfone
  • polyetheretherketone polyetherimide
  • polyimide polyetherimide
  • polyimide polyimide
  • the polymer (B1) which is a preferred embodiment of the polymer (B) has an ion exchange capacity of 1.5 mmeq / g or more, and more preferably 2.0 mmeq / g or more.
  • ion exchange capacity 1.5 mmeq / g or more, and more preferably 2.0 mmeq / g or more.
  • membrane increases, and resistance falls as a result. If it is 1.5 mmeq / g or less, the amount of acidic ionic groups in the film is insufficient and the resistance increases, which is not preferable.
  • the ion exchange capacity is increased with a normal hydrocarbon-based polymer, although the resistance is lowered, the ion permeation selectivity is lowered, and further, the aquatic resistance is greatly lowered such as dissolution in water.
  • the polymer (B2) which is a preferred embodiment of the polymer (B), is an aromatic hydrocarbon polymer that does not contain the structure of the formula (1).
  • the tensile strength in the film forming direction is 50 MPa. It is preferable that it is the polymer which is the above.
  • the polymer (B2) having an acidic ionic group is mixed with the acidic ionic group-containing polyimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B2).
  • the said effect can be expressed by mixing the polymer (B2) which has an acidic ionic group similarly.
  • the polymer (B2) having acidic ionic group is preliminarily amined.
  • a salt solution or the like finally becomes a uniform solution, which requires a complicated manufacturing process that requires acid treatment after film formation.
  • polymer (B2) having an acidic ionic group examples include polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, and polybenzimidazole.
  • Aromatic hydrocarbon polymers such as polybenzoxazole and polybenzthiazole are preferably used because of their excellent heat resistance and mechanical strength, and polymers containing ionic groups as described above are used. More preferably, it is a sulfonated polymer or composition.
  • sulfonated polymers such as polyarylate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone. These polymers are preferably used because they exhibit excellent current efficiency and low resistance as ion exchange membranes.
  • the polymer (B3) which is a preferred embodiment of the polymer (B) is a polymer not containing the structure of the formula (1), and a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group or these in the repeating unit. At least one or more acidic ionic groups selected from metal salts and ammonium salts.
  • the polymer (B3) having an acidic ionic group is mixed with the acidic ionic group-containing polyimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B3).
  • the interaction between the mixed different polymers is strengthened, and as a result, high ion permeation selectivity, low resistance, and high durability can be expressed.
  • the said effect can be expressed by mixing the polymer (B3) which has an acidic ionic group similarly.
  • the polymer (B3) having an acidic ionic group is previously converted to an amine salt or the like. In many cases, the solution finally becomes a uniform solution, which requires a complicated manufacturing process that requires acid treatment after film formation.
  • polymer (B3) having an acidic ionic group examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12, poly Acrylate resins such as methyl methacrylate, polymethacrylates, polymethyl acrylate, polyacrylates, polyacrylic resins, polymethacrylic resins, polyethylene, polypropylene, various polyolefins including polystyrene and diene polymers, Cellulose resins such as polyurethane resin, cellulose acetate, ethyl cellulose, polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, Aromatic hydrocarbon polymers such as resulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, polybenzthiazole
  • acrylate resins such as polymethyl methacrylate, polymethacrylates, polymethyl acrylate, polyacrylates, polyacrylic resins, polymethacrylic resins, polyethylene, polypropylene, polystyrene and diene polymers
  • Polymers such as various polyolefins, including polyurethane resins, cellulose resins such as cellulose acetate and ethyl cellulose are preferably used from the viewpoint of ease of processing such as solubility in organic solvents, and these sulfonated polymers or compositions are used. More preferably. More preferred are sulfonated polymers such as polyethylene, polypropylene, polystyrene and diene polymers.
  • polystyrene sulfonated polymers are preferably used because they do not have an electron donating group such as an ether bond and can improve oxidation resistance.
  • polystyrene sulfonated polymers are preferably used because of their high ion exchange capacity and low resistance.
  • the polymer (B4) which is a preferred embodiment of the polymer (B) does not contain the structure of the above formula (1), and is composed of a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, or a metal salt or ammonium salt thereof. It is a polymer having at least one selected acidic ionic group and having a repeating unit having 12 or more carbon atoms. By having a repeating unit having 12 or more carbon atoms, an appropriate strength can be obtained as an ion exchange membrane.
  • Examples of the second polymer (B4) having an acidic ionic group include polyesters such as polybutylene terephthalate and polyethylene naphthalate, polyamides such as nylon 6,6, nylon 6,10, and nylon 12, and polymethacrylates. , Acrylate resins such as polyacrylic acid esters, polyacrylic acid resins, polymethacrylic acid resins, various polyolefins including polystyrene and diene polymers, polyurethane resins, cellulose acetates such as cellulose acetate, ethyl cellulose, Polyarylate, aramid, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, Aromatic hydrocarbon-based polymers such as Li benzthiazole, epoxy resins, phenolic resins, novolak resins, as long as the polymer obtained by introducing an ionic group such as the
  • aromatic hydrocarbons such as polyarylate, aramid, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, and polybenzthiazole.
  • Polymers are preferably used because of their excellent heat resistance and mechanical strength, and are more preferably sulfonated polymers. More preferred is a polymer obtained by sulfonating a polymer such as polyarylate, polysulfone, polyethersulfone, polyetheretherketone or polystyrene. These polymers are preferably used because they exhibit excellent current efficiency and low resistance as ion exchange membranes.
  • the second polymer (B) having an acidic ionic group contained in the composition of the present invention is a polymer not containing the structure of the formula (1), and the content thereof is 100 parts by mass of the composition. Is preferably 80 parts by mass or less, more preferably 60 parts by mass or less and 10 parts by mass or more. By setting it as the range, high ion permeation selectivity, low resistance, and high durability can be expressed. If the amount is 80 parts by mass or more based on the composition, the characteristics of the second polymer (B) having an acidic ionic group may become too large to exhibit all the above performance. On the other hand, if it is 10 parts by mass or less, all of the above performance may not be exhibited.
  • the polymer (B1) or (B2) preferably contains constituents represented by the following general formulas (4) and (5).
  • Ar represents a divalent aromatic group
  • Y represents a sulfone group or a carbonyl group
  • Z represents an O atom, an S atom, or a direct bond
  • X represents H or a monovalent cation species.
  • Z represents either an O atom or an S atom
  • Ar ′ represents a divalent aromatic group
  • polymers other than (A) and (B) can be used in the composition of the present invention.
  • polymers other than (A) and (B) can be used in the composition of the present invention.
  • polymers other than (A) and (B) can be used in the composition of the present invention.
  • styrene-butadiene rubber ethylene-propylene rubber, ethylene-propylene-diene rubber, nitrile rubber, etc.
  • a rubber component may be added, or a crosslinking component may be introduced to improve mechanical strength and chemical resistance.
  • a method for synthesizing a polybenzimidazole compound having an acid group is not particularly limited. F. Wolfe, Encyclopedia of Polymer Science and Engineering, 2nd Ed. , Vol. 11, p. 601 (1988), and can be synthesized by dehydration and cyclopolymerization using polyphosphoric acid as a solvent. Further, polymerization by a similar mechanism using a mixed solvent system of methanesulfonic acid / phosphorus pentoxide instead of polyphosphoric acid can be applied. In order to synthesize a polybenzimidazole compound having high thermal stability, polymerization using polyphosphoric acid that is commonly used is preferred.
  • the polybenzimidazole (A) used for the ion exchange membrane of the present invention for example, a precursor polymer having a polyamide structure or the like in a reaction in a suitable organic solvent or mixed raw material monomer melt is used.
  • a method of synthesizing and then converting to the target polybenzimidazole structure by a cyclization reaction by appropriate heat treatment or the like can also be used.
  • the molecular weight of the polybenzimidazole (A) containing an acidic ionic group of the present invention is not particularly limited, but is preferably 1,000 or more, more preferably 3,000 or more.
  • the molecular weight is preferably 1,000,000 or less, more preferably 200,000 or less.
  • the molecular weight is less than 1,000, it may be difficult to obtain a molded product having good properties from the polybenzimidazole compound due to a decrease in viscosity.
  • the molecular weight exceeds 1,000,000, it may be difficult to mold the polybenzimidazole compound due to an increase in viscosity.
  • the molecular weight of the polybenzimidazole compound containing an acidic ionic group can be evaluated substantially by the logarithmic viscosity when measured in concentrated sulfuric acid.
  • the logarithmic viscosity is preferably 0.25 or more, and more preferably 0.40 or more.
  • the logarithmic viscosity is preferably 10 or less, more preferably 8 or less.
  • the acidic ionic group preferably has a sulfonic acid group and / or a phosphonic acid group.
  • the reaction time for synthesizing the polybenzimidazole (A) containing an acidic ionic group of the present invention cannot be specified unconditionally because there is an optimum reaction time depending on the combination of individual raw material monomers.
  • a reaction that takes a long time as described above in a system containing a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group and / or a phosphonic acid group, the thermal stability of the obtained polybenzimidazole compound is low.
  • the reaction time is preferably 48 hours or less, and more preferably 24 hours or less.
  • the reaction temperature when synthesizing the polybenzimidazole (A) containing the acidic ionic group of the present invention cannot be defined unconditionally because there is an optimum reaction temperature depending on the combination of individual raw material monomers, but it has been reported in the past.
  • a reaction involving a high temperature as described above in a system including a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group and / or a phosphonic acid group, the sulfonic acid group and / or the resulting polybenzimidazole compound is obtained. In some cases, it becomes impossible to control the amount of phosphonic acid groups introduced.
  • reaction temperature it is preferable to lower the reaction temperature within a range where the effects of the present invention can be obtained.
  • the reaction temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the ion exchange membrane of the present invention can be used as necessary, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, and an antifoaming agent.
  • various additives such as a dispersant and a polymerization inhibitor may be contained.
  • the ion exchange membrane for a redox battery of the present invention can be formed into a membrane by any method such as extrusion, rolling or casting. Among these, it is preferable to mold from a solution dissolved in an appropriate solvent.
  • the solvent include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and hexamethylphosphonamide, and strong acid such as phosphoric acid and sulfuric acid.
  • a suitable solvent can be selected from alcohols such as methanol, ethanol and the like, but is not limited thereto. A plurality of these solvents may be used as a mixture within a possible range.
  • aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and hexamethylphosphonamide are easy to process, This is preferable because acid resistance is not necessary.
  • the compound solid concentration in the solution is preferably in the range of 0.1 to 50% by mass. If the compound concentration in the solution is less than 0.1% by mass, it tends to be difficult to obtain a good molded product, and if it exceeds 50% by mass, the workability tends to deteriorate.
  • a method of obtaining a molded body from a solution can be performed using a conventionally known method.
  • the film can be obtained by removing the solvent by heating, drying under reduced pressure, or immersing in a compound non-solvent that can be mixed with the solvent that dissolves the compound.
  • the solvent is an organic solvent
  • the solvent is preferably distilled off by heating or drying under reduced pressure.
  • the sulfonic acid group in the molded article thus obtained may contain a salt form with a cationic species, but it can be converted to a free sulfonic acid group by acid treatment as necessary. You can also.
  • the most preferable method for forming an ion exchange membrane from the ionic group-containing polybenzimidazole (A) of the present invention or a composition thereof is casting from a solution, and the solvent is removed from the cast solution as described above.
  • an ion exchange membrane for a redox battery can be obtained.
  • a solvent using an organic polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, or a strong acid solution or an alcohol solvent may be used depending on the case. .
  • the removal of the solvent is preferably by drying in view of the uniformity of the ion exchange membrane for vanadium redox batteries.
  • the viscosity of the solution is high, when the substrate or the solution is heated and cast at a high temperature, the viscosity of the solution is lowered and the casting can be easily performed.
  • the thickness of the solution at the time of casting is not particularly limited, but is preferably 10 to 1000 ⁇ m. More preferably, it is 50 to 500 ⁇ m.
  • the thickness of the solution is less than 10 ⁇ m, the form as an ion exchange membrane for a redox battery tends not to be maintained, and if it is thicker than 1000 ⁇ m, a non-uniform ion exchange membrane tends to be easily formed.
  • a method for controlling the cast thickness of the solution a known method can be used.
  • the thickness can be controlled with the amount and concentration of the solution with a constant thickness using an applicator, a doctor blade, or the like, and with a cast area constant using a glass petri dish or the like.
  • the cast solution can obtain a more uniform film by adjusting the solvent removal rate.
  • the evaporation rate can be reduced by lowering the temperature in the first stage.
  • the coagulation rate of the compound can be adjusted by leaving the solution in air or an inert gas for an appropriate time.
  • the ion exchange membrane for a redox battery of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, the thickness is preferably 5 to 200 ⁇ m, more preferably 5 to 50 ⁇ m, and most preferably 5 to 20 ⁇ m. If the thickness of the ion exchange membrane for redox batteries is less than 5 ⁇ m, the handling of the ion exchange membrane becomes difficult, and a short circuit or the like tends to occur when a vanadium redox battery is produced. However, the energy efficiency of the redox battery tends to decrease.
  • the sulfonic acid groups in the membrane may include those in the form of metal salts, but free by appropriate acid treatment. It can also be converted to sulfonic acid. In this case, it is also effective to immerse the membrane in an aqueous solution of sulfuric acid, hydrochloric acid, etc. with or without heating.
  • the ion conductivity of the ion exchange membrane is preferably 1.0 ⁇ 10 ⁇ 3 S / cm or more.
  • a redox flow battery using the ion exchange membrane tends to provide good output, and less than 1.0 ⁇ 10 ⁇ 3 S / cm. In some cases, the output of the redox battery tends to decrease.
  • the 3% weight reduction temperature of the ion exchange membrane of the present invention is preferably 300 ° C to 500 ° C. When the temperature is 300 ° C. or lower, durability may be insufficient when the temperature is increased.
  • the redox battery in the present invention is a battery that charges and discharges by an oxidation-reduction reaction of active materials having different valences (for example, vanadium), and includes a redox flow battery described later.
  • a vanadium-based redox battery is a preferred embodiment of the present invention.
  • the ion exchange membrane is used as a diaphragm for adjusting the ion balance in the positive electrode and the negative electrode and preventing mixing of vanadium having different valences.
  • the ion exchange membrane for a vanadium redox battery of the present invention may be used in a redox flow battery in which an aqueous electrolyte is charged and discharged by circulating a pump, or vanadium hydrate is used as a carbon electrode instead of an aqueous electrolyte. It may be used as a redox battery impregnated with.
  • a redox flow battery that charges and discharges aqueous electrolyte solution by circulating a pump has a diaphragm disposed between a pair of current collector plates facing each other with a gap interposed therebetween, for example.
  • An electrode material is sandwiched between at least one of the diaphragms, and the electrode material includes an electrolytic cell having a structure including an electrolytic solution made of an aqueous solution containing an active material.
  • Examples of the aqueous electrolyte used in the redox battery and redox flow battery of the present invention include iron-chromium, titanium-manganese-chromium, chromium-chromium, iron-titanium, in addition to the vanadium electrolyte as described above.
  • the vanadium electrolyte is preferable.
  • the carbon electrode material assembly of the present invention uses a vanadium-based electrolyte having a viscosity of 0.005 Pa ⁇ s or more at 25 ° C. or a vanadium-based electrolyte containing 1.5 mol / l or more of vanadium ions. Useful for redox flow batteries.
  • Solution viscosity The polymer powder was dissolved in methanesulfonic acid at a concentration of 0.5 g / dl, the viscosity was measured using a Ubbelohde viscometer in a constant temperature bath at 30 ° C., and the logarithmic viscosity ln [ta / tb] / c ) (Ta is the number of seconds that the sample solution falls, tb is the number of seconds that the solvent is dropped, and c is the polymer concentration).
  • TGA thermogravimetry meter
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flow direction) and 1 cm in the width direction is formed, and charging and discharging are repeated at a constant current density, current efficiency, cell resistance, energy efficiency, voltage efficiency was calculated as follows.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. It was.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • E is a cell open circuit voltage of 1.432 V (measured value) when the charging rate is 50%
  • I is a current value of 1.260 A in constant current charge / discharge.
  • Equation 5 Energy efficiency: ⁇ E Using the current efficiency ⁇ I and the voltage efficiency ⁇ V described above, the energy efficiency ⁇ E is obtained by Equation 5.
  • NMR measurement The polymer was dissolved in a solvent, and 1 H-NMR was measured at room temperature using UNITY-500 manufactured by VARIAN. Heavy dimethyl sulfoxide was used as the solvent. From the peak area value derived from the structural formula (2) and the peak area value derived from the structural formula (3), the molar ratio of the constituent components was calculated, and the value of n was calculated.
  • Oxidation resistance test The membrane was immersed in an electrolytic solution composed of 4.0 mol / l sulfuric acid containing 0.9 mol / l of pentavalent vanadium ions and incubated at 70 ° C. for 24 hours. About the film
  • ⁇ I is the current efficiency loss
  • ⁇ II is the current efficiency before the immersion test
  • ⁇ I2 is the current efficiency after the immersion test.
  • polymer 1 The obtained polymer was referred to as polymer 1 and the structural formula is shown below.
  • Example 1 1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 200 ⁇ m, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 15 ⁇ m. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 453 ° C.
  • Example 2 1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 150 ⁇ m, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 10 ⁇ m.
  • Example 3 1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 300 ⁇ m, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 20 ⁇ m.
  • polymer 8 After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.10. The structural formula of the obtained polymer is shown below. The resulting polymer is referred to as polymer 8.
  • polymer 9 The resulting polymer is referred to as polymer 9.
  • the NMP solution of the polymer obtained in Comparative Example 2 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 ⁇ m was prepared.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • the 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 380 ° C.
  • the NMP solution of the polymer obtained in Comparative Example 3 was cast on a glass plate on a hot plate by adjusting the thickness, and after NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 ⁇ m was prepared.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • the 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 384 ° C.
  • the NMP solution of the polymer obtained in Comparative Example 4 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water overnight or longer. A film having an average thickness of 30 ⁇ m was prepared.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • the 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 393 ° C.
  • the NMP solution of the polymer obtained in Comparative Example 5 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 ⁇ m was prepared.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • the 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 354 ° C.
  • the ion exchange membranes produced in Examples 1 to 3 and Comparative Examples 1 to 5 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG.
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, charge and discharge were repeated at a constant current density, and the ion exchange membrane performance was tested.
  • the current value at the time of charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 .
  • the upper limit voltage during charging was 1.6 V
  • the lower limit voltage during discharging was 1.0 V.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • the ion exchange membranes comprising the ionic group-containing polybenzimidazoles of Examples 1 to 3 exhibited a low resistance and a very high current efficiency, resulting in a high energy efficiency. Furthermore, although the film thickness was thinner than the other comparative examples, the film shape was maintained even after the oxidation resistance test, and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane made of ionic group-containing polybenzimidazole has high energy efficiency and very good oxidation resistance.
  • the ion exchange membrane made of polybenzimidazole containing no ionic group (Comparative Example 1) was very high in resistance and inferior in energy efficiency. Furthermore, the oxidation resistance was insufficient. From this result, it is considered that the effect of introducing the acidic ionic group is expressed.
  • Comparative Examples 2 to 5 sulfonic acid groups are introduced into conventional aromatic polymers. Although these initial energy efficiencies are equivalent to those of Examples 1 to 3, the film was fragmented or dissolved in the oxidation resistance test, and none of the films could maintain the film shape.
  • the perfluoro-type ion exchange membrane as in Comparative Example 6 although the oxidation resistance was excellent, the initial energy efficiency was low because the current efficiency was low. Further, in the commercially available ion exchange membrane (Comparative Example 7), the same results as in Comparative Examples 2 to 5 were obtained.
  • S-DCDPS 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt
  • DCBN 2,6-dichlorobenzonitrile
  • thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 393 ° C.
  • the logarithmic viscosity of Polymer 3 was 1.33 dl / g.
  • the IEC determined by titration was 2.41 meq / g.
  • thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 389 ° C.
  • the logarithmic viscosity of polymer 4 was 1.54 dl / g.
  • the IEC determined by titration was 2.61 meq / g.
  • S-DCDPS 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt
  • DCBN 4.6-dichlorobenzonitrile
  • the logarithmic viscosity of the polymer was 1.43 dl / g.
  • the polymer structural formula is shown below. The following polymer is referred to as Polymer 5.
  • the thermogravimetric 3% weight loss temperature of this polymer was 388 ° C.
  • the logarithmic viscosity of polymer 5 was 1.35 dl / g.
  • the IEC determined by titration was 1.39 meq / g.
  • Example 7 The membrane after casting was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component, and Example 6 A film was obtained in the same manner. The thickness of the obtained film was 17 ⁇ m.
  • Comparative Example 9 A film was obtained in the same manner as in Comparative Example 8 except that only the solution D was used. The thickness of the obtained film was 30 ⁇ m.
  • the following polymer is referred to as Polymer 6.
  • the ion exchange membranes produced in Examples 4 to 10 and Comparative Examples 8 to 10 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG.
  • a small cell having an electrode area of 16 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1.6 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance.
  • the current value at the time of charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 .
  • the upper limit voltage during charging was 1.6 V
  • the lower limit voltage during discharging was 1.0 V.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • ions comprising a mixture of the ionic group-containing polybenzimidazoles of Examples 4 to 10 and a polymer containing acidic ionic groups having an ion exchange capacity of 1.5 mmeq / g or more.
  • the exchange membrane exhibited a low resistance and very high current efficiency, resulting in high energy efficiency.
  • Examples 4, 6, and 7 can achieve both a very low resistance value and high current efficiency.
  • Comparative Example 11 is a film made of polybenzimidazole and polymer 2 that do not contain an acidic ionic group. This was very high in resistance, and the effects as in Examples 4 to 10 were not exhibited. This shows that introduction of an acidic ionic group into polybenzimidazole is advantageous in terms of energy efficiency. Further, in the perfluoro-based ion exchange membrane as in Comparative Example 12, the initial energy efficiency was low because the current efficiency was low. Further, the resistance was also high in the commercially available ion exchange membrane (Comparative Example 13).
  • Example 11 10 g of polyetheretherketone was placed in a container containing 100 mL of 97% concentrated sulfuric acid and stirred at 40 ° C. for 3 hours or longer, and further stirred at 80 ° C. for 3 hours or longer to react. After completion of the reaction, the solution was allowed to cool and then poured into a container containing ice water. The remaining acid was removed until the pH test paper was neutral and the sulfonated polymer was recovered. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. This sulfonated polyether ketone is referred to as polymer 7.
  • the NMP solution of the polymer 1 and the NMP solution of the sulfonated polyetheretherketone (polymer 7) obtained by the above method were mixed so that the weight ratio of the polymer was 6: 4. At this time, lithium chloride was added and mixed so as to be 20% by weight to 30% by weight with respect to the polymer weight.
  • This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 ⁇ m depending on the solution concentration, NMP was distilled off until it became a film, and then immersed in water overnight or longer. The thickness of the obtained film was 15 ⁇ m.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • the ion exchange membrane produced in Example 11 was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG.
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance.
  • the current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 .
  • the upper limit voltage during charging was 1.7 V
  • the lower limit voltage during discharging was 1.0 V.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • the ion exchange membrane comprising the polybenzimidazole (A) and the acidic ionic group-containing polymer (B) in Example 11 has a low resistance, and is a membrane even after the oxidation resistance test. The shape was maintained and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane comprising the ionic group-containing polybenzimidazole (A) and the acidic ionic group-containing polymer (B) has very excellent initial characteristics and oxidation resistance. . On the other hand, the commercially available ion exchange membrane as in Comparative Example 14 also showed high resistance.
  • Example 12 A poly (4-styrenesulfonic acid) solution (Mw: 75000, 18 wt% aqueous solution) manufactured by Sigma-Aldrich was dried to remove water, and the resulting solid poly (4-styrenesulfonic acid) was converted into NMP. Dissolved to prepare a 20 wt% to 25 wt% solution.
  • the NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 6: 4.
  • lithium chloride was added and mixed so as to be 20% by weight to 30% by weight with respect to the polymer weight.
  • This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 to 250 ⁇ m depending on the concentration of the solution, NMP was distilled off until a film was formed, and then immersed in water overnight or longer.
  • the thickness of the obtained film was 10 to 25 ⁇ m.
  • the obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • Example 13 In Example 12, the same procedure as in Example 12 was performed, except that the NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 7: 3. It was.
  • Example 14 In Example 12, the same procedure as in Example 12 was performed, except that the NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 8: 2. It was.
  • the ion exchange membranes produced in Examples 12 to 14 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG.
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance.
  • the current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 .
  • the upper limit voltage during charging was 1.7 V
  • the lower limit voltage during discharging was 1.0 V.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • the ion exchange membranes comprising the polybenzimidazole (A) of Examples 12 to 14 and the acidic ionic group-containing polymer (B) have low resistance, and after the oxidation resistance test However, the film shape was maintained and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane comprising the ionic group-containing polybenzimidazole (A) and the acidic ionic group-containing polymer (B) has very excellent initial characteristics and oxidation resistance. .
  • the polybenzimidazole of the polymer (A) and the sulfonic acid of the polymer (B) form a strong interaction, so that even when a water-soluble polymer is used as in the example, it is eluted. It is thought that it functions as a low resistance component.
  • the polymer (B) is superior in oxidation resistance to the conventional hydrocarbon ion exchange membrane by using a polymer having no electron donating group.
  • the resistance of the commercially available ion exchange membrane as in Comparative Example 15 was also high.
  • Example 15 The NMP solution of polymer 1 and the NMP solution of polymer 5 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 ⁇ m, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 ⁇ m. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • dilute sulfuric acid concentrated sulfuric acid 6 ml, water 300 ml
  • Example 16 The NMP solution of polymer 1 and the NMP solution of polymer 2 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 ⁇ m, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 ⁇ m. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • dilute sulfuric acid concentrated sulfuric acid 6 ml, water 300 ml
  • Example 17 The NMP solution of polymer 1 and the NMP solution of polymer 4 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 ⁇ m, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 ⁇ m. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • dilute sulfuric acid concentrated sulfuric acid 6 ml, water 300 ml
  • Comparative Example 17 The solution of polymer 6 described in Comparative Example 16 and the solution of polymer 5 described in Example 15 were mixed so that the weight ratio of the polymer was 4: 6. This mixed polymer solution was cast on a glass plate on a hot plate with the thickness adjusted, NMP was distilled off until it became a film, and then immersed in water overnight to adjust the film with an average thickness of 15 ⁇ m. did. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • dilute sulfuric acid concentrated sulfuric acid 6 ml, water 300 ml
  • Comparative Example 19 The film obtained in Comparative Example 18 was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
  • dilute sulfuric acid concentrated sulfuric acid 6 ml, water 300 ml
  • the ion exchange membranes produced in Examples 15 to 17 and Comparative Examples 16 to 21 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG.
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance.
  • the current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 .
  • the upper limit voltage during charging was 1.6 V
  • the lower limit voltage during discharging was 1.0 V.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • the oxidation resistance test was performed using the ion exchange membranes produced in Examples 15 to 17 and Comparative Examples 16 to 21, and the results are shown in Table 1.
  • the same measurement was performed using Nafion 115CS manufactured by DuPont of the United States, and Selemion CSO and Selemion CMV manufactured by Asahi Glass (Comparative Examples 22 to 24).
  • the ion exchange membranes comprising the ionic group-containing polybenzimidazole (A) and the polymer (B) in Examples 15 to 17 are thinner than the other comparative examples. Nevertheless, the film shape was maintained even after the oxidation resistance test, and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane made of ionic group-containing polybenzimidazole had very excellent oxidation resistance.
  • the ion exchange membrane made of polybenzimidazole containing no ionic group had insufficient oxidation resistance. Furthermore, even the ion exchange membrane (Comparative Example 17) made of a polybenzimidazole containing no ionic group and a polymer containing an acidic ionic group had insufficient oxidation resistance. From this result, it is considered that the effect of introducing an ionic group into polybenzimidazole is expressed. In Comparative Examples 18 to 21, sulfonic acid groups are introduced into conventional aromatic polymers. In these oxidation resistance tests, the film was dissolved or fragmented, and none of the films could maintain the film shape.
  • the perfluorocarbon sulfonic acid ion exchange membrane as in Comparative Example 22 is excellent in oxidation resistance, but the initial energy efficiency is 85.5% because of low current efficiency. It was low compared to 88.5%. Further, in the commercially available ion exchange membranes (Comparative Examples 23 and 24), the same results as in Comparative Examples 16 to 21 were obtained.
  • a redox battery exhibiting long life, low cell resistance, excellent voltage efficiency and energy efficiency is provided. be able to.

Abstract

[Problem] To provide an ion-exchange membrane for a redox battery that has excellent resistance to oxidation and that is highly energy efficient. [Solution] An ion-exchange membrane for a vanadium redox battery, the membrane characterized by containing a polybenzimidazole that includes a structural component that is represented by general formula (1). In formula (1), R1 represents a tetravalent aromatic unit that can form an imidazole ring, and R2 represents a bivalent aromatic group. X represents one or more ionic group selected from a sulfonic acid group and a metal salt thereof, a phosphonic acid group and a metal salt thereof, a hydroxyl group and a metal salt thereof, a carboxyl group and a metal salt thereof, and an ammonium salt; and m represents an integer from 1 to 4.

Description

レドックス電池用イオン交換膜、複合体、及びレドックス電池Ion exchange membrane for redox battery, composite, and redox battery
 本発明は、レドックス電池、またはレドックスフロー電池に有用であり、特にバナジウム系レドックスフロー電池に有用なポリベンズイミダゾールよりなる、あるいはポリベンゾイミダゾールと酸性イオン性基を有するポリマーを含有する組成物からなるイオン交換膜に関するものである。 The present invention is useful for redox batteries or redox flow batteries, and is particularly composed of a polybenzimidazole useful for vanadium-based redox flow batteries, or a composition containing polybenzimidazole and a polymer having an acidic ionic group. The present invention relates to an ion exchange membrane.
近年、エネルギー効率や環境性に優れた新しい二次電池が注目を集めている。特に、太陽光や風力などの自然エネルギーを貯蔵するため、大型の二次電池が強く求められている。中でも、レドックスフロー電池は充放電サイクル耐性や安全性に優れるため、大型の二次電池に最適である。 In recent years, new secondary batteries excellent in energy efficiency and environmental performance have attracted attention. In particular, in order to store natural energy such as sunlight and wind power, a large secondary battery is strongly demanded. Among these, the redox flow battery is excellent in charge / discharge cycle resistance and safety, and is optimal for a large-sized secondary battery.
 レドックスフロー電池は一般的に、ポンプの循環によって、硫酸バナジウム溶液中のバナジウムの酸化還元反応を起こし、エネルギーを得る電池である。このレドックスフロー電池は、両極間のイオンバランスを保つためにカチオン交換膜またはアニオン交換膜が用いられている。 A redox flow battery is generally a battery that obtains energy by causing a redox reaction of vanadium in a vanadium sulfate solution by circulation of a pump. In this redox flow battery, a cation exchange membrane or an anion exchange membrane is used in order to maintain the ion balance between both electrodes.
アニオン交換膜には旭ガラス社製のセレミオンAPSが用いられている。しかしながら、アニオン交換膜は硫酸アニオンなどイオン半径の大きいイオンを通す必要があるため、抵抗が高いなどの問題点がある。 As anion exchange membrane, Selemion APS manufactured by Asahi Glass Co., Ltd. is used. However, since an anion exchange membrane needs to pass ions having a large ion radius such as sulfate anion, there is a problem that resistance is high.
 イオン交換膜には、イオン伝導性以外にも、電解液の透過防止や機械的強度などの特性が必要である。このようなイオン交換膜としては、例えば米国デュポン社製ナフィオン(登録商標)に代表されるようなスルホン酸基を導入したパーフルオロカーボンスルホン酸ポリマーを含む膜や、トクヤマ社製ネオセプタに代表されるようなポリスチレンスルホン酸架橋体を含む膜が用いられている。 In addition to ion conductivity, the ion exchange membrane must have properties such as prevention of permeation of the electrolyte and mechanical strength. Examples of such an ion exchange membrane include a membrane containing a perfluorocarbon sulfonic acid polymer introduced with a sulfonic acid group represented by Nafion (registered trademark) manufactured by DuPont of the United States, and a neoceptor manufactured by Tokuyama. A membrane containing a crosslinked polystyrene sulfonate is used.
ナフィオンなどのパーフルオロカーボンスルホン酸ポリマーを含む膜は化学耐久性に優れ、プロトン伝導性が高く、セル抵抗を低くできる長所を有している。しかしながら、ナフィオンはイオン透過選択性に乏しいという問題点もある。具体的には、充放電中にバナジウムイオンも通してしまうため、電解液中の活物質量が減少し、充放電サイクルが著しく悪化してしまう。また、高コスト、廃棄時の環境負荷が大きいという問題点もある。 A membrane containing a perfluorocarbon sulfonic acid polymer such as Nafion has advantages of excellent chemical durability, high proton conductivity, and low cell resistance. However, Nafion also has a problem of poor ion permeation selectivity. Specifically, vanadium ions are also allowed to pass during charging / discharging, so that the amount of active material in the electrolytic solution is reduced and the charging / discharging cycle is significantly deteriorated. In addition, there are problems of high cost and large environmental load at the time of disposal.
 一方、ネオセプタなどのポリスチレンスルホン酸架橋体を含む膜は低コストで、バナジウムイオンを通しにくく、イオン透過選択性に優れるなどの長所を有している。しかしながら、膜の強度が不十分であるため、繊維補強などの対策を講じなければならない問題点がある。さらに、加水分解や発熱時にスルホン酸基が脱離してしまうなど、化学耐久性や耐熱性にも課題を抱えている。 On the other hand, a membrane containing a polystyrene sulfonate cross-linked product such as neoceptor has advantages such as low cost, low vanadium ion permeability, and excellent ion permeation selectivity. However, since the strength of the membrane is insufficient, there is a problem that measures such as fiber reinforcement must be taken. Furthermore, there are problems in chemical durability and heat resistance, such as sulfonic acid groups being eliminated during hydrolysis and heat generation.
 バナジウム系のレドックス電池において、充電時に正極側で5価バナジウムが生成する。この5価バナジウムは非常に酸化力が強いため、イオン交換膜を著しく劣化させてしまう。一般的に、炭化水素系のイオン交換膜は初期エネルギー効率に優れるものの、耐酸化性に乏しく、5価バナジウムに対する耐性が低い問題点がある。一方、前述のナフィオンなどのパーフルオロカーボンスルホン酸ポリマーは5価バナジウムに対する耐性は非常に優れるものの、イオン透過選択性に乏しく、初期エネルギー効率が低い傾向にある。このように、初期エネルギー効率と耐酸化性を両立することは極めて困難であった。 In a vanadium redox battery, pentavalent vanadium is generated on the positive electrode side during charging. This pentavalent vanadium has a very strong oxidizing power, so that it significantly deteriorates the ion exchange membrane. In general, hydrocarbon ion exchange membranes have excellent initial energy efficiency, but have poor oxidation resistance and low resistance to pentavalent vanadium. On the other hand, the perfluorocarbon sulfonic acid polymer such as Nafion described above has excellent resistance to pentavalent vanadium, but has poor ion permeation selectivity and tends to have low initial energy efficiency. Thus, it has been extremely difficult to achieve both initial energy efficiency and oxidation resistance.
 そこで、初期特性と耐酸化性を両立させるための手法がいくつか提案されている。例えば、特許文献1~3では芳香族ポリマーにスルホン酸基を導入し、機械強度と耐熱性を向上している。しかしながら、これらの手法で作製したイオン交換膜であっても、5価バナジウムにイオン交換膜を長期間浸漬すると溶解してしまい、バナジウム系のレドックス電池として用いるには耐酸化性が不十分であった。 Therefore, several methods for achieving both initial characteristics and oxidation resistance have been proposed. For example, in Patent Documents 1 to 3, a sulfonic acid group is introduced into an aromatic polymer to improve mechanical strength and heat resistance. However, even ion exchange membranes prepared by these methods dissolve when the ion exchange membrane is immersed in pentavalent vanadium for a long period of time, and the oxidation resistance is insufficient for use as a vanadium-based redox battery. It was.
また、特許文献4~6では、イオン交換樹脂を補強材である多孔質基材と複合化し、5価バナジウムによる劣化を補強材で補う手法が提案されている。しかしながら、これらの手法ではポリマー自身の劣化は抑制できておらず、隔膜としての形態は保てるものの、長期に渡って使用した場合は強度低下やイオン交換樹脂の欠損による初期特性の低下が避けられない。 Patent Documents 4 to 6 propose a method in which an ion exchange resin is combined with a porous base material that is a reinforcing material to compensate for deterioration due to pentavalent vanadium with the reinforcing material. However, these methods cannot suppress deterioration of the polymer itself and can maintain the shape as a diaphragm, but when used over a long period of time, deterioration of the initial characteristics due to a decrease in strength or ion exchange resin is inevitable. .
特許第3928611号公報Japanese Patent No. 3928611 特表2004-509224号公報JP-T-2004-509224 特開2006-137792号公報JP 2006-137772 A 特許第3729296号公報Japanese Patent No. 3729296 特開平6-271688号公報JP-A-6-271688 特開平11-335473号公報JP 11-335473 A
 そこで、本発明の目的は、かかる事情に鑑み、耐酸化性に優れると共に、初期エネルギー効率に優れるレドックス電池用イオン交換膜を提供することにある。 Therefore, in view of such circumstances, an object of the present invention is to provide an ion exchange membrane for a redox battery that is excellent in oxidation resistance and excellent in initial energy efficiency.
 本発明者らは、上記目的を達成すべく鋭意研究したところ、ポリベンズイミダゾールにイオン性基を導入したポリマーを含有するイオン交換膜、およびポリベンズイミダゾールにイオン性基を導入したポリマーと酸性イオン性基を含有する組成物からなるイオン交換膜が耐酸化性に優れ、高エネルギー効率であることを見出して本発明を完成するに至った。 The inventors of the present invention have intensively studied to achieve the above-mentioned object. The present invention has been completed by finding that an ion exchange membrane comprising a composition containing a functional group is excellent in oxidation resistance and high in energy efficiency.
1.下記の一般式(1)で表される構成成分を含むポリベンズイミダゾールを含有することを特徴とする、レドックス電池用イオン交換膜。 1. An ion exchange membrane for a redox battery comprising polybenzimidazole containing a constituent represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
ただし、Rはイミダゾール環を形成できる4価の芳香族ユニットを、Rは2価の芳香族基を表す。Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基、及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を表す。
Figure JPOXMLDOC01-appb-C000006
However, R 1 represents a tetravalent aromatic unit capable of forming an imidazole ring, and R 2 represents a divalent aromatic group. X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents an integer of 1 to 4.
2.前記一般式(1)の構成成分が、下記一般式(2)及び下記一般式(3)で示される構成成分を含むことを特徴とする、1に記載のレドックス電池用イオン交換膜。 2. 2. The ion exchange membrane for redox battery according to 1, wherein the constituent of the general formula (1) includes constituents represented by the following general formula (2) and the following general formula (3).
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
ただし、nは一般式(2)の共重合比を示し、20≦n≦100の式を満たす。Rは2価の芳香族基を表し、Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を、ZはO、SO、C(CH、C(CF、及びOPhO(但しPhは芳香族基を表す)からなる群より選択されてなる少なくとも1種以上を表す。
Figure JPOXMLDOC01-appb-C000008

However, n shows the copolymerization ratio of General formula (2), and satisfy | fills the formula of 20 <= n <= 100. R 2 represents a divalent aromatic group, X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents 1 To an integer of 4 to 4, wherein Z is at least one selected from the group consisting of O, SO 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , and OPhO (where Ph represents an aromatic group). It represents the above.
3.前記1~2のいずれかに記載のポリベンズイミダゾールを10~100質量%含むことを特徴とするレドックス電池用イオン交換膜。
4.前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、スルホン酸基、ホスホン酸基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも1種以上の酸性イオン性基を有し、かつ式(1)の構造を含まないポリマー(B1)を含有する組成物からなり、該(B1)のイオン交換容量が1.5mmeq/g以上であることを特徴とする、1又は2に記載のレドックス電池用イオン交換膜。
5.前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を有する芳香族炭化水素系ポリマー(B2)を含有する組成物からなることを特徴とする請求項1、2、4のいずれか1項に記載のレドックス電池用イオン交換膜。
3. An ion exchange membrane for a redox battery comprising 10 to 100% by mass of the polybenzimidazole according to any one of the above items 1 and 2.
4). Polybenzimidazole (A) containing the structural component represented by the general formula (1), and at least one acidic ion selected from a sulfonic acid group, a phosphonic acid group, a carboxyl group, or a metal salt thereof, or an ammonium salt It comprises a composition containing a polymer (B1) having a functional group and not containing the structure of formula (1), wherein the ion exchange capacity of (B1) is 1.5 mmeq / g or more. The ion exchange membrane for redox batteries of 1 or 2.
5. Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) It consists of a composition containing the aromatic hydrocarbon polymer (B2) which has at least 1 or more types of acidic ionic groups chosen from a salt and ammonium salt, Any one of Claim 1, 2, 4 characterized by the above-mentioned. The ion exchange membrane for redox batteries described in 1.
6.前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を、1個以上含有する繰り返し単位を有するポリマー(B3)とを含有する組成物からなることを特徴とする1、2、4のいずれかに記載のレドックス電池用イオン交換膜。
7.前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を有するポリマー(B4)を含有する組成物からなり、ポリマー(B4)が炭素数12以上の繰り返し単位を有することを特徴とする1、2、4のいずれかに記載のレドックス電池用イオン交換膜。
6). Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) Any one of 1, 2, 4 comprising a polymer (B3) having a repeating unit containing at least one acidic ionic group selected from a salt and an ammonium salt. An ion exchange membrane for a redox battery according to claim 1.
7). Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) 1. A composition comprising a polymer (B4) having at least one acidic ionic group selected from a salt and an ammonium salt, wherein the polymer (B4) has a repeating unit having 12 or more carbon atoms, The ion exchange membrane for redox batteries according to any one of 2 and 4.
8.前記組成物において、ポリマー(B1)又はポリマー(B2)が、下記一般式(4)及び(5)で示される構成成分を含むことを特徴とする、4又は5のいずれかに記載のレドックス電池用イオン交換膜。 8). 6. The redox battery according to any one of 4 and 5, wherein in the composition, the polymer (B1) or the polymer (B2) contains a component represented by the following general formulas (4) and (5): Ion exchange membrane.
Figure JPOXMLDOC01-appb-C000009
ただし、Arは2価の芳香族基を、Yはスルホニル基またはカルボニル基を、ZはO原子、S原子、直接結合のいずれかを、XはHまたは1価のカチオン種を示す。
Figure JPOXMLDOC01-appb-C000009
Here, Ar represents a divalent aromatic group, Y represents a sulfonyl group or a carbonyl group, Z represents an O atom, an S atom, or a direct bond, and X represents H or a monovalent cation species.
Figure JPOXMLDOC01-appb-C000010
ただし、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
Figure JPOXMLDOC01-appb-C000010
However, Z represents either an O atom or an S atom, and Ar ′ represents a divalent aromatic group.
9.前記4~8のいずれかに記載の組成物において、前記ポリベンズイミダゾール(A)を含有するとともに、前記ポリマー(B1)~ポリマー(B4)からなる群より選ばれる少なくとも1種以上のポリマーを含有し、該ポリマー(B1)~ポリマー(B4)の合計含有量が該組成物の10~80質量%であることを特徴とする4~8のいずれかに記載のレドックス電池用イオン交換膜。
10.前記4~8のいずれかに記載の組成物において、前記ポリベンズイミダゾール(A)を含有するとともに、前記ポリマー(B1)~ポリマー(B4)からなる群より選ばれる少なくとも1種以上のポリマーを含有し、該ポリマー(A)と該ポリマー(B1)~ポリマー(B4)の合計含有量が該組成物の10~100質量%であることを特徴とする4~8のいずれかに記載のレドックス電池用イオン交換膜。
9. 9. The composition according to any one of 4 to 8, comprising the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4). The ion exchange membrane for a redox battery according to any one of 4 to 8, wherein the total content of the polymer (B1) to the polymer (B4) is 10 to 80% by mass of the composition.
10. 9. The composition according to any one of 4 to 8, comprising the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4). The redox battery according to any one of 4 to 8, wherein the total content of the polymer (A) and the polymers (B1) to (B4) is 10 to 100% by mass of the composition Ion exchange membrane.
11.レドックスフロー電池用イオン交換膜であることを特徴とする、1~10のいずれかに記載のレドックス電池用イオン交換膜。
12.電池の活物質としてバナジウムイオンを用いるレドックス電池に用いられることを特徴とする、1~11のいずれかに記載のレドックス電池用イオン交換膜。
13.前記1~12のいずれかに記載のイオン交換膜と電極とを含有することを特徴とするレドックス電池用イオン交換膜/電極複合体。
14.前記1~12のいずれかに記載のイオン交換膜を含有することを特徴とするレドックス電池。
15.前記13に記載のイオン交換膜/電極複合体を含有することを特徴とするレドックス電池。
11. 11. The ion exchange membrane for a redox battery according to any one of 1 to 10, which is an ion exchange membrane for a redox flow battery.
12 The ion exchange membrane for redox battery according to any one of 1 to 11, which is used for a redox battery using vanadium ions as an active material of the battery.
13. 13. An ion exchange membrane / electrode composite for a redox battery comprising the ion exchange membrane according to any one of 1 to 12 above and an electrode.
14 13. A redox battery comprising the ion exchange membrane according to any one of 1 to 12 above.
15. 14. A redox battery comprising the ion exchange membrane / electrode composite as described in 13 above.
 本発明のポリベンズイミダゾールにイオン性基を導入したポリマーを含有したイオン交換膜、及びポリベンズイミダゾールにイオン性基を導入したポリマーと酸性イオン性基を含有する組成物からなるイオン交換膜により、初期エネルギー効率だけでなく、耐熱性、加工性および耐酸化性に優れた、レドックス電池用イオン交換膜として際立った性能を示す材料を提供することができる。 By an ion exchange membrane containing a polymer having an ionic group introduced into the polybenzimidazole of the present invention, and an ion exchange membrane comprising a polymer having an ionic group introduced into the polybenzimidazole and a composition containing an acidic ionic group, It is possible to provide a material exhibiting outstanding performance as an ion exchange membrane for a redox battery, which is excellent not only in initial energy efficiency but also in heat resistance, workability and oxidation resistance.
バナジウム系レドックスフロー電池の概略図を示す。The schematic of a vanadium type redox flow battery is shown.
 以下、本発明を詳細に説明する。本発明は、初期エネルギー効率だけでなく、耐熱性、加工性および耐酸化性に優れた、レドックス電池用イオン交換膜として有用な高分子材料を提供するものである。すなわち、耐酸化性に優れたポリベンズイミダゾールを主鎖骨格とし、これにスルホン酸基やホスホン酸基などのイオン性基を導入したポリマーを含有するイオン交換膜を用いる。より好適には、該ポリベンズイミダゾールにイオン性基を導入したポリマーと酸性イオン性基を有するポリマーを含有する組成物からなるイオン交換膜を用いる。イミダゾールと酸性イオン性基による分子内の酸塩基相互作用により、極めて強固なポリマー構造をとることができ、結果として、高イオン透過選択性と低抵抗、高耐久性を示すイオン交換膜を提供することができる。 Hereinafter, the present invention will be described in detail. The present invention provides a polymer material useful as an ion exchange membrane for a redox battery, which is excellent not only in initial energy efficiency but also in heat resistance, workability and oxidation resistance. That is, an ion exchange membrane containing a polymer in which polybenzimidazole having excellent oxidation resistance is used as a main chain skeleton and an ionic group such as a sulfonic acid group or a phosphonic acid group is introduced into the main chain skeleton is used. More preferably, an ion exchange membrane made of a composition containing a polymer having an ionic group introduced into the polybenzimidazole and a polymer having an acidic ionic group is used. Due to intramolecular acid-base interaction between imidazole and acidic ionic groups, an extremely strong polymer structure can be obtained. As a result, an ion exchange membrane having high ion permeation selectivity, low resistance, and high durability is provided. be able to.
 すなわち、本発明のレドックス電池用イオン交換膜は、一般式(1)の酸性イオン性基を含有する成分を含むポリベンズイミダゾール(A)を含有する。 That is, the ion exchange membrane for a redox battery of the present invention contains polybenzimidazole (A) including a component containing an acidic ionic group of the general formula (1).
Figure JPOXMLDOC01-appb-C000011

 だし、Rはイミダゾール環を形成できる4価の芳香族ユニットを、Rは2価の芳香族基を表し、R及びRはいずれも芳香環の単環であっても、複数の芳香環の結合体でもよく、縮合環や複素環を有していても良く、これらにアルキル基や芳香族基など安定な置換基を有していても良い。Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基、及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を表す。
Figure JPOXMLDOC01-appb-C000011

However, R 1 represents a tetravalent aromatic unit capable of forming an imidazole ring, R 2 represents a divalent aromatic group, and R 1 and R 2 are both monocyclic aromatic rings, It may be a conjugate of an aromatic ring, may have a condensed ring or a heterocyclic ring, and may have a stable substituent such as an alkyl group or an aromatic group. X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents an integer of 1 to 4.
 上記の式(1)で示す構造を含む本発明の酸性基含有ポリベンズイミダゾール(A)を合成する方法は特には限定されないが、常法により化合物中のイミダゾール環を形成し得る芳香族テトラミン類およびそれらの誘導体よりなる群から選ばれる一種以上の化合物と、芳香族ジカルボン酸類およびその誘導体よりなる群から選ばれる一種以上の化合物との反応により合成することができる。その際、使用するジカルボン酸類の中にスルホン酸基やホスホン酸基、またはそれらの塩を含有するジカルボン酸類を使用することで、得られるポリベンズイミダゾール中にスルホン酸基やホスホン酸基を導入することができる。スルホン酸基やホスホン酸基を含むジカルボン酸類はそれぞれ単独種で使用することができ、2種以上組み合わせて使用することも出来るが、例えばスルホン酸基含有ジカルボン酸とホスホン酸基含有ジカルボン酸を同時に使用することも可能である。また、カルボキシル基を用いる場合は、トリあるいはテトラカルボン酸を用いることもできる。 The method for synthesizing the acidic group-containing polybenzimidazole (A) of the present invention containing the structure represented by the above formula (1) is not particularly limited, but aromatic tetramines capable of forming an imidazole ring in the compound by a conventional method. And one or more compounds selected from the group consisting of derivatives thereof and one or more compounds selected from the group consisting of aromatic dicarboxylic acids and derivatives thereof. At that time, by using dicarboxylic acids containing sulfonic acid groups or phosphonic acid groups or salts thereof in the dicarboxylic acids to be used, sulfonic acid groups or phosphonic acid groups are introduced into the resulting polybenzimidazole. be able to. Dicarboxylic acids containing a sulfonic acid group or a phosphonic acid group can be used alone or in combination of two or more. For example, a sulfonic acid group-containing dicarboxylic acid and a phosphonic acid group-containing dicarboxylic acid can be used simultaneously. It is also possible to use it. Moreover, when using a carboxyl group, tri or tetracarboxylic acid can also be used.
ここで、本発明のイオン交換膜に用いられるポリベンズイミダゾール(A)の構成要素であるベンズイミダゾール系結合ユニットや、スルホン酸基および/またはホスホン酸基を有する芳香族ジカルボン酸結合ユニットや、スルホン酸基もホスホン酸基も有さない芳香族ジカルボン酸結合ユニットや、その他の結合ユニットは、ランダム重合および/または交互的重合により結合していることが好ましい。また、これらの重合形式は一種に限られず、二種以上の重合形式が同一の化合物中で並存していてもよい。 Here, a benzimidazole-based binding unit that is a constituent element of the polybenzimidazole (A) used in the ion exchange membrane of the present invention, an aromatic dicarboxylic acid binding unit having a sulfonic acid group and / or a phosphonic acid group, a sulfone The aromatic dicarboxylic acid bonding unit having no acid group or phosphonic acid group and other bonding units are preferably bonded by random polymerization and / or alternating polymerization. Moreover, these polymerization formats are not limited to one type, and two or more polymerization types may coexist in the same compound.
本発明のレドックス電池用イオン交換膜は、前記一般式(1)の構成成分が下記一般式(2)及び(3)で示される構成成分を含むことが好ましい。 In the ion exchange membrane for a redox battery of the present invention, it is preferable that the constituent of the general formula (1) includes constituents represented by the following general formulas (2) and (3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013

ただし、nは一般式(2)の共重合比を示し、20≦n≦100の式を満たす。Rは2価の芳香族基を表し、Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を、ZはO、SO、C(CH、C(CF、及びOPhO(但しPhは芳香族基を表す)からなる群より選択されてなる少なく1種以上を表す。
Figure JPOXMLDOC01-appb-C000013

However, n shows the copolymerization ratio of General formula (2), and satisfy | fills the formula of 20 <= n <= 100. R 2 represents a divalent aromatic group, X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents 1 To an integer from 4 to Z, and at least one selected from the group consisting of O, SO 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , and OPhO (where Ph represents an aromatic group). It represents the above.
 導入する酸性イオン性基量は、イミダゾールユニットに対して、20mol%以上であることが好ましく、40mol%以上であることがより好ましい。つまり、Rに導入された酸性イオン性基が1つである場合、nは40以上であることが好ましく、また80以上であることがより好ましい。Rに導入された酸性イオン性基が2以上である場合、nは20以上であることが好ましく、また40以上であることがより好ましい。
 さらに、Zは耐酸化性及び有機溶媒に対する溶解性を考慮すると、SOまたはC(CFであることが好ましい。耐酸化性はポリマー骨格中の電子密度を下げる方が良く、そのためには電子求引性基であるSOまたはC(CFであることが好ましい。一般的に、ポリイミダゾールに酸性イオン性基を導入すると、分子内の酸/塩基相互作用により有機溶媒への溶解性が低下する。そこで、ZがSOまたはC(CFであれば、N-メチル2-ピロリドンやジメチルスルホキシドなどの有機溶媒に溶解させることができ、加工が容易となるため好ましい。
The amount of the acidic ionic group to be introduced is preferably 20 mol% or more, and more preferably 40 mol% or more with respect to the imidazole unit. That is, when there is one acidic ionic group introduced into R 2 , n is preferably 40 or more, and more preferably 80 or more. When the acidic ionic group introduced into R 2 is 2 or more, n is preferably 20 or more, and more preferably 40 or more.
Furthermore, Z is preferably SO 2 or C (CF 3 ) 2 in view of oxidation resistance and solubility in organic solvents. For the oxidation resistance, it is better to lower the electron density in the polymer skeleton. To that end, SO 2 or C (CF 3 ) 2 which is an electron withdrawing group is preferable. In general, when an acidic ionic group is introduced into polyimidazole, the solubility in an organic solvent decreases due to an acid / base interaction in the molecule. Therefore, it is preferable that Z is SO 2 or C (CF 3 ) 2 because it can be dissolved in an organic solvent such as N-methyl 2-pyrrolidone or dimethyl sulfoxide and the processing becomes easy.
 また、本発明のレドックス電池用イオン交換膜においては上記一般式(1)を構成成分とするポリイミダゾール(A)を含有するが、上記一般式(1)で示される以外の構造単位(例えばスルホン酸基含有成分を含有しない構造単位)が含まれていてもかまわない。このとき、上記一般式(1)で示される以外の構造単位は上記一般式(1)で示されるポリイミダゾール(A)を100質量部としたとき60質量部以下であることが好ましい。60質量部以下とすることにより、本発明のレドックス電池用イオン交換膜の特性を活かすことができる。 The ion exchange membrane for a redox battery of the present invention contains a polyimidazole (A) having the above general formula (1) as a constituent component, but a structural unit other than that represented by the above general formula (1) (for example, sulfone). A structural unit that does not contain an acid group-containing component) may be included. At this time, the structural unit other than that represented by the general formula (1) is preferably 60 parts by mass or less when the polyimidazole (A) represented by the general formula (1) is 100 parts by mass. By setting it to 60 parts by mass or less, the characteristics of the ion exchange membrane for a redox battery of the present invention can be utilized.
 上記の一般式(1)で示される構成成分を含むスルホン酸基含有ポリベンズイミダゾール(A)を与え、前記Rを構成する芳香族テトラミン類の具体例としては、特に限定されるものではないが、たとえば、1,2,4,5-テトラアミノベンゼン、3,3’-ジアミノベンジジン、3,3’,4,4’-テトラアミノジフェニルエーテル、3,3’,4,4’-テトラアミノジフェニルチオエーテル、3,3’,4,4’-テトラアミノジフェニルスルホン、2,2-ビス(3,4-ジアミノフェニル)プロパン、ビス(3,4-ジアミノフェニル)メタン、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、1,4-ビス(3,4-ジアミノフェノキシ)ベンゼン、などおよびこれらの誘導体が挙げられる。これらうち、一般式(2)、一般式(3)で表される結合ユニットを形成することができる、3,3’,4,4’-テトラアミノジフェニルエーテル、3,3’,4,4’-テトラアミノジフェニルスルホン、2,2-ビス(3,4-ジアミノフェニル)プロパン、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、1,4-ビス(3,4-ジアミノフェノキシ)ベンゼンおよびこれらの誘導体より得られるポリベンズイミダゾールは、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒に溶解させることができ、イオン交換膜の加工性の容易さから特に好ましい。 Specific examples of the aromatic tetramines that give the sulfonic acid group-containing polybenzimidazole (A) containing the structural component represented by the general formula (1) and constitute R 1 are not particularly limited. Are, for example, 1,2,4,5-tetraaminobenzene, 3,3′-diaminobenzidine, 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4,4′-tetraamino Diphenylthioether, 3,3 ′, 4,4′-tetraaminodiphenylsulfone, 2,2-bis (3,4-diaminophenyl) propane, bis (3,4-diaminophenyl) methane, 2,2-bis ( 3,4-diaminophenyl) hexafluoropropane, 1,4-bis (3,4-diaminophenoxy) benzene, and the like and their derivatives. Among these, 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4,4 ′, which can form a binding unit represented by general formula (2) or general formula (3). -Tetraaminodiphenyl sulfone, 2,2-bis (3,4-diaminophenyl) propane, 2,2-bis (3,4-diaminophenyl) hexafluoropropane, 1,4-bis (3,4-diaminophenoxy) ) Polybenzimidazole obtained from benzene and derivatives thereof can be used in aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, hexamethylphosphonamide and the like. It is particularly preferable from the viewpoint of ease of workability of the ion exchange membrane.
 これらの芳香族テトラミン類の誘導体の具体例としては、塩酸、硫酸、リン酸などの酸との塩などを挙げることができる。また、これらの化合物は単独で使用してもよいが、同時に複数使用することもできる。さらに、これらの化合物は、必要に応じて塩化スズ(II)や亜リン酸化合物などの公知の酸化防止剤を含んでいてもよい。 Specific examples of these aromatic tetramine derivatives include salts with acids such as hydrochloric acid, sulfuric acid and phosphoric acid. These compounds may be used alone or in combination. Furthermore, these compounds may contain known antioxidants such as tin (II) chloride and phosphorous acid compounds as necessary.
 上述の式(1)の構造を与えるイオン性基含有ジカルボン酸中のイオン性基(X)として、スルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基が挙げられる。中でも、プロトン解離度の高いスルホン酸基、ホスホン酸基が好ましい。スルホン酸基、ホスホン酸基を用いることにより、イオン伝導度が高まり、低抵抗なイオン交換膜を得ることができる。
また、本発明においては上記イオン性基(X)がポリマー主鎖に結合しているため、ポリマーを膜状に成形した後の酸浸漬処理を特に必要としない利点がある。
Examples of the ionic group (X) in the ionic group-containing dicarboxylic acid that gives the structure of the above formula (1) include a sulfonic acid group, a phosphonic acid group, a hydroxyl group, and a carboxyl group. Of these, sulfonic acid groups and phosphonic acid groups having a high degree of proton dissociation are preferred. By using a sulfonic acid group or a phosphonic acid group, the ion conductivity is increased and a low resistance ion exchange membrane can be obtained.
Further, in the present invention, since the ionic group (X) is bonded to the polymer main chain, there is an advantage that an acid immersion treatment after forming the polymer into a film is not particularly required.
上述の式(1)の構造を与えるイオン性基含有ジカルボン酸は、芳香族系ジカルボン酸中に1個から4個のイオン性基を含有するものを選択することができるが、具体例としては、例えば、2,5-ジカルボキシベンゼンスルホン酸、2,5-ジカルボキシベンゼンホスホン酸、3,5-ジカルボキシベンゼンスルホン酸、3,5-ジカルボキシベンゼンホスホン酸、2,5-ジカルボキシ-1,4-ベンゼンジスルホン酸、4,6-ジカルボキシ-1,3-ベンゼンジスルホン酸、2,2’-ジスルホ-4,4’-ビフェニルジカルボン酸、3,3’-ジスルホ-4,4’-ビフェニルジカルボン酸、(3,3’-ジスルホ-4,4’-ジカルボン酸)ジフェニルエーテル、(2,6-ジスルホ)-1,5-ナフタレンジカルボン酸等のスルホン酸基含有ジカルボン酸、ホスホン酸基含有ジカルボン酸、及びこれらの誘導体を挙げることができる。誘導体としては、ナトリウム、カリウムなどのアルカリ金属塩や、アンモニウム塩、アルキルアンモニウム塩などをあげることができる。スルホン酸基含有ジカルボン酸あるいはホスホン酸基含有ジカルボン酸の構造は特にこれらに限定されることはない。上述の式(1)におけるmは、1から4の整数より選ばれる。mが5以上であると、ポリマーの耐水性が低下する傾向が出てくるので好ましくない。 The ionic group-containing dicarboxylic acid that gives the structure of the above formula (1) can be selected from those containing 1 to 4 ionic groups in the aromatic dicarboxylic acid. For example, 2,5-dicarboxybenzenesulfonic acid, 2,5-dicarboxybenzenephosphonic acid, 3,5-dicarboxybenzenesulfonic acid, 3,5-dicarboxybenzenephosphonic acid, 2,5-dicarboxy- 1,4-benzenedisulfonic acid, 4,6-dicarboxy-1,3-benzenedisulfonic acid, 2,2′-disulfo-4,4′-biphenyldicarboxylic acid, 3,3′-disulfo-4,4 ′ -Biphenyl dicarboxylic acid, (3,3'-disulfo-4,4'-dicarboxylic acid) diphenyl ether, (2,6-disulfo) -1,5-naphthalenedicarboxylic acid, etc. Acid group-containing dicarboxylic acids, phosphonic acid group-containing dicarboxylic acid, and may be derivatives thereof. Examples of the derivatives include alkali metal salts such as sodium and potassium, ammonium salts, and alkyl ammonium salts. The structure of the sulfonic acid group-containing dicarboxylic acid or phosphonic acid group-containing dicarboxylic acid is not particularly limited thereto. M in the above formula (1) is selected from an integer of 1 to 4. If m is 5 or more, the water resistance of the polymer tends to decrease, such being undesirable.
 これらの化合物は単独で使用してもよいが、同時に複数使用することもできる。さらに、これらの化合物は、必要に応じて塩化スズ(II)や亜リン酸化合物などの公知の酸化防止剤を含んでいてもよい。 These compounds may be used alone or in combination. Furthermore, these compounds may contain known antioxidants such as tin (II) chloride and phosphorous acid compounds as necessary.
 イオン性基含有ジカルボン酸はそれら単独だけでなく、イオン性基を含有しないジカルボン酸とともに共重合の形でRとして導入することができる。イオン性基含有ジカルボン酸とともに使用できるジカルボン酸例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ビフェニルジカルボン酸、ターフェニルジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン等ポリエステル原料として報告されている一般的なジカルボン酸を使用することができ、ここで例示したものに限定されるものではない。これらのジカルボン酸のうち、耐酸化性を向上させるために、エーテル結合など電子供与性をもたないものが好ましい。例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸などの誘導体を用いることが好ましい。 The ionic group-containing dicarboxylic acids can be introduced not only by themselves but also as R 2 in the form of copolymerization with dicarboxylic acids not containing ionic groups. Examples of dicarboxylic acids that can be used with ionic group-containing dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, biphenyl dicarboxylic acid, terphenyl dicarboxylic acid, 2,2-bis (4 -Carboxyphenyl) General dicarboxylic acids reported as polyester raw materials such as hexafluoropropane can be used, and are not limited to those exemplified here. Among these dicarboxylic acids, those having no electron donating property such as an ether bond are preferable in order to improve oxidation resistance. For example, it is preferable to use derivatives such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenylsulfone dicarboxylic acid and the like.
 イオン性基含有ジカルボン酸とともにイオン性基を含有しないジカルボン酸を使用する場合、イオン性基含有ジカルボン酸を全ジカルボン酸中の20モル%以上とすることでイオン性基の効果を明確にすることができる。中でも、スルホン酸基またはホスホン酸基のきわだった効果を引き出すためには、40モル%以上であることがさらに好ましい。きわだった効果とは、イミダゾールと酸性イオン性基による分子内の酸塩基相互作用により、極めて強固なポリマー構造をとることができ、結果として、高イオン透過選択性と高耐久性を示すイオン交換膜となる。また、酸性イオン性基を導入することでイオン伝導度も向上するので、低抵抗なイオン交換膜となる。スルホン酸基またはホスホン酸基を有する芳香族ジカルボン酸の含有率が20モル%未満の場合には、本発明のポリベンズイミダゾール系化合物のイオン導電率や酸塩基相互作用が低下し、高抵抗かつ耐久性が低下する傾向にある。 When using a dicarboxylic acid not containing an ionic group together with an ionic group-containing dicarboxylic acid, clarifying the effect of the ionic group by setting the ionic group-containing dicarboxylic acid to 20 mol% or more of the total dicarboxylic acid. Can do. Especially, in order to draw out the remarkable effect of a sulfonic acid group or a phosphonic acid group, it is more preferable that it is 40 mol% or more. The remarkable effect is that an extremely strong polymer structure can be obtained due to intramolecular acid-base interaction between imidazole and acidic ionic groups. As a result, ion exchange membranes exhibit high ion permeation selectivity and high durability. It becomes. In addition, since the ion conductivity is improved by introducing an acidic ionic group, a low-resistance ion exchange membrane is obtained. When the content of the aromatic dicarboxylic acid having a sulfonic acid group or phosphonic acid group is less than 20 mol%, the ionic conductivity and acid-base interaction of the polybenzimidazole compound of the present invention are reduced, and the resistance is high. Durability tends to decrease.
 本発明のレドックス用イオン交換膜は、ポリイミドベンゾオキサゾール(A)を10~100質量%含有することが好ましい様態のうちの1つである。 The ion exchange membrane for redox of the present invention is one of the preferred embodiments containing 10 to 100% by mass of polyimide benzoxazole (A).
 本発明の好適な様態は、前記(1)式で表される構成成分を含むポリイミドベンゾオキサゾール(A)と酸性イオン性基を有する第2のポリマー(B)を含有する組成物からなるレドックスイオン電池用イオン交換膜である。
酸性イオン性基を有する第2のポリマー(B)は、前記(1)式の構造を含有しないポリマーである。後述のポリマー(B1)~(B4)はいずれも該ポリマー(B)の好ましい様態を示すものである。その含有量(すなわち、ポリマー(B1)~(B4)の合計含有量)は、組成物に対して80重量%以下であることが好ましく、60質量%以下10重量%以上であることがより好ましい。その範囲とすることで、高イオン透過選択性と低抵抗を発現させることができる。ポリベンズイミダゾールに対して80重量%以上であると、酸性イオン性基を有する第2のポリマー(B)の特性が大きくなりすぎて、イオン透過選択性や耐水性が低下し、前記の性能すべてを発現できない場合がある。一方、10重量%以下であると、ポリベンズイミダゾール(A)の特性が大きくなりすぎて、抵抗が高くなり、前記の性能すべてを発現できない場合がある。酸性イオン性基含有ポリベンズイミダゾール(A)に酸性イオン性基を有する第2のポリマー(B)を混合すると、(A)のイミダゾールと(B)の酸性イオン性基間でイオン架橋を形成する。この効果により、混合した異種ポリマー同士の相互作用が強化され、結果として、上記の性能が発現する。この時、酸性イオン性基を有しないポリベンズイミダゾールであっても、同様に酸性イオン性基を有する第2のポリマー(B)を混合することで前記の効果は発現させることができる。しかし、酸性イオン性基を有しないポリベンズイミダゾールの場合、ポリベンズイミダゾールの含有量を増やしていくと均一な溶液とはなりにくく、酸性イオン性基を有する第2のポリマー(B)をあらかじめアミン塩などにしておくことでようやく均一溶液となるものが多く、また製膜後酸処理が必要となる煩雑な製造工程を要する。
また、ポリベンズイミダゾール(A)と酸性イオン性基を有する第2のポリマー(B)を含む組成物使用する上記の様態においては、両者の合計量は10~100質量%であることが好ましい。
A preferred embodiment of the present invention is a redox ion comprising a composition containing a polyimide benzoxazole (A) containing the component represented by the formula (1) and a second polymer (B) having an acidic ionic group. It is an ion exchange membrane for a battery.
The 2nd polymer (B) which has an acidic ionic group is a polymer which does not contain the structure of said (1) Formula. All of the polymers (B1) to (B4) described below show preferred modes of the polymer (B). The content thereof (that is, the total content of the polymers (B1) to (B4)) is preferably 80% by weight or less, more preferably 60% by weight or less and 10% by weight or more based on the composition. . By setting it as the range, high ion permeation selectivity and low resistance can be expressed. When it is 80% by weight or more based on polybenzimidazole, the characteristics of the second polymer (B) having an acidic ionic group become too large, and the ion permeation selectivity and water resistance are lowered. May not be expressed. On the other hand, if it is 10% by weight or less, the characteristics of the polybenzimidazole (A) become too large, the resistance becomes high, and all of the above performance may not be exhibited. When the second polymer (B) having an acidic ionic group is mixed with the acidic ionic group-containing polybenzimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B). . By this effect, the interaction between the mixed different types of polymers is strengthened, and as a result, the above performance is exhibited. At this time, even if it is polybenzimidazole which does not have an acidic ionic group, the said effect can be expressed by mixing the 2nd polymer (B) which has an acidic ionic group similarly. However, in the case of polybenzimidazole having no acidic ionic group, if the polybenzimidazole content is increased, a uniform solution is unlikely to be obtained, and the second polymer (B) having an acidic ionic group is preliminarily amined. In many cases, a salt solution or the like finally becomes a uniform solution, and a complicated manufacturing process that requires acid treatment after film formation is required.
In the above-described embodiment in which the composition containing polybenzimidazole (A) and the second polymer (B) having an acidic ionic group is used, the total amount of both is preferably 10 to 100% by mass.
酸性イオン性基を有する第2のポリマー(B)として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン12などのポリアミド類、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマー、ポリテトラフルオロエチレン、ポリビニリデンフルオリドなどのフッ素系樹脂、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、ベンゾオキサジン樹脂などに前記のようなイオン性基を導入したポリマーであれば、特に制限はない。 Examples of the second polymer (B) having an acidic ionic group include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12. Acrylate resins such as polymethyl methacrylate, polymethacrylic acid esters, polymethyl acrylate, polyacrylic acid esters, polyacrylic acid resins, polymethacrylic acid resins, polyethylene, polypropylene, polystyrene and diene polymers Various polyolefins, polyurethane resins, cellulose resins such as cellulose acetate and ethyl cellulose, polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide Aromatic hydrocarbon polymers such as polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzoxazole, polybenzthiazole, and fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride There is no particular limitation as long as it is a polymer in which an ionic group as described above is introduced into a resin, an epoxy resin, a phenol resin, a novolac resin, a benzoxazine resin, or the like.
 より好ましくは、高電流効率、低抵抗、耐熱性、高機械強度を示す芳香族系炭化水素系ポリマーである。具体的には、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールが好ましく例示される。これらのポリマーをスルホン化したポリマーであることがより好ましい。 More preferably, it is an aromatic hydrocarbon polymer exhibiting high current efficiency, low resistance, heat resistance, and high mechanical strength. Specifically, polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, and polybenzthiazole. Preferably exemplified. A polymer obtained by sulfonating these polymers is more preferable.
 さらに好ましくは、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミドなどのスルホン化したポリマーである。これらのポリマーである場合、ポリマー構造がより剛直であるため、より優れた耐熱性や機械強度を示す。 More preferred are sulfonated polymers such as polyarylate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, and polyimide. In the case of these polymers, since the polymer structure is more rigid, more excellent heat resistance and mechanical strength are exhibited.
 ポリマー(B)の好適な様態であるポリマー(B1)は、イオン交換容量が1.5mmeq/g以上であり、2.0mmeq/g以上であることがさらに好ましい。上記の範囲とすることで、膜中の酸性イオン性基量が増加し、結果として抵抗が低下する。1.5mmeq/g以下であると、膜中の酸性イオン性基量が不足し、抵抗が上昇するため好ましくない。通常の炭化水素系ポリマーでイオン交換容量を増やしていくと、抵抗は下がるもののイオン透過選択性が低下し、さらには水に溶解するなど耐水生が大きく低下する。本発明のようにポリベンズイミダゾールにイオン性基を導入したポリマー(A)と、酸性イオン性基を有するポリマー(B1)との混合物にすることで、イミダゾールと酸性イオン性基間でイオン架橋を形成し、イオン交換容量を上げても上記の問題点を解消することができる。 The polymer (B1) which is a preferred embodiment of the polymer (B) has an ion exchange capacity of 1.5 mmeq / g or more, and more preferably 2.0 mmeq / g or more. By setting it as said range, the amount of acidic ionic groups in a film | membrane increases, and resistance falls as a result. If it is 1.5 mmeq / g or less, the amount of acidic ionic groups in the film is insufficient and the resistance increases, which is not preferable. When the ion exchange capacity is increased with a normal hydrocarbon-based polymer, although the resistance is lowered, the ion permeation selectivity is lowered, and further, the aquatic resistance is greatly lowered such as dissolution in water. By making a mixture of a polymer (A) in which an ionic group is introduced into polybenzimidazole and a polymer (B1) having an acidic ionic group as in the present invention, ionic crosslinking is performed between the imidazole and the acidic ionic group. Even if it is formed and the ion exchange capacity is increased, the above-mentioned problems can be solved.
 ポリマー(B)の好適な様態であるポリマー(B2)は、前記(1)式の構造を含有しない芳香族炭化水素系ポリマーであり、ポリマーより製膜した場合に製膜方向の引っ張り強度が50MPa以上であるポリマーであることが好ましい。酸性イオン性基含有ポリイミダゾール(A)に酸性イオン性基を有するポリマー(B2)を混合すると、(A)のイミダゾールと(B2)の酸性イオン性基間でイオン架橋を形成する。この効果により、混合した異種ポリマー同士の相互作用が強化され、結果として、高イオン透過選択性と低抵抗、高耐久性を発現させることができる。この時、酸性イオン性基を有しないポリベンズイミダゾールであっても、同様に酸性イオン性基を有するポリマー(B2)を混合することで前記の効果は発現させることができる。しかし、酸性イオン性基を有しないポリベンズイミダゾールの場合、ポリベンズイミダゾールの含有量を増やしていくと均一な溶液とはなりにくく、酸性イオン性基を有する第2のポリマー(B2)をあらかじめアミン塩などにしておくことでようやく均一溶液となるものが多く、製膜後酸処理が必要となる煩雑な製造工程を要するものであった。 The polymer (B2), which is a preferred embodiment of the polymer (B), is an aromatic hydrocarbon polymer that does not contain the structure of the formula (1). When the film is formed from the polymer, the tensile strength in the film forming direction is 50 MPa. It is preferable that it is the polymer which is the above. When the polymer (B2) having an acidic ionic group is mixed with the acidic ionic group-containing polyimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B2). By this effect, the interaction between the mixed different polymers is strengthened, and as a result, high ion permeation selectivity, low resistance, and high durability can be expressed. At this time, even if it is polybenzimidazole which does not have an acidic ionic group, the said effect can be expressed by mixing the polymer (B2) which has an acidic ionic group similarly. However, in the case of polybenzimidazole having no acidic ionic group, if the polybenzimidazole content is increased, a uniform solution is unlikely to be obtained, and the second polymer (B2) having acidic ionic group is preliminarily amined. In many cases, a salt solution or the like finally becomes a uniform solution, which requires a complicated manufacturing process that requires acid treatment after film formation.
 酸性イオン性基を有するポリマー(B2)として、例えば、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマーは、優れた耐熱性や機械的強度の高さから好ましく用いられ、これらに前記のようなイオン性基を導入したポリマーが使用可能であり、スルホン化されたポリマーまたは組成物であることがより好ましい。さらに好ましくは、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトンなどのスルホン化されたポリマーである。これらのポリマーは、イオン交換膜として優れた電流効率、低抵抗を示すことから好ましく用いられる。 Examples of the polymer (B2) having an acidic ionic group include polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, and polybenzimidazole. Aromatic hydrocarbon polymers such as polybenzoxazole and polybenzthiazole are preferably used because of their excellent heat resistance and mechanical strength, and polymers containing ionic groups as described above are used. More preferably, it is a sulfonated polymer or composition. More preferred are sulfonated polymers such as polyarylate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone. These polymers are preferably used because they exhibit excellent current efficiency and low resistance as ion exchange membranes.
 ポリマー(B)の好適な様態であるポリマー(B3)は、前記(1)式の構造を含有しないポリマーであり、その繰り返し単位中にスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を、少なくとも1個以上含有する。酸性イオン性基含有ポリイミダゾール(A)に酸性イオン性基を有するポリマー(B3)を混合すると、(A)のイミダゾールと(B3)の酸性イオン性基間でイオン架橋を形成する。この効果により、混合した異種ポリマー同士の相互作用が強化され、結果として、高イオン透過選択性と低抵抗、高耐久性を発現させることができる。この時、酸性イオン性基を有しないポリベンズイミダゾールであっても、同様に酸性イオン性基を有するポリマー(B3)を混合することで前記の効果は発現させることができる。しかし、酸性イオン性基を有しないポリベンズイミダゾールの場合、ポリベンズイミダゾールの含有量を増やしていくと均一な溶液とはなりにくく、酸性イオン性基を有すポリマー(B3)をあらかじめアミン塩などにしておくことでようやく均一溶液となるものが多く、製膜後酸処理が必要となる煩雑な製造工程を要するものであった。 The polymer (B3) which is a preferred embodiment of the polymer (B) is a polymer not containing the structure of the formula (1), and a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group or these in the repeating unit. At least one or more acidic ionic groups selected from metal salts and ammonium salts. When the polymer (B3) having an acidic ionic group is mixed with the acidic ionic group-containing polyimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B3). By this effect, the interaction between the mixed different polymers is strengthened, and as a result, high ion permeation selectivity, low resistance, and high durability can be expressed. At this time, even if it is polybenzimidazole which does not have an acidic ionic group, the said effect can be expressed by mixing the polymer (B3) which has an acidic ionic group similarly. However, in the case of polybenzimidazole having no acidic ionic group, if the polybenzimidazole content is increased, it becomes difficult to form a uniform solution, and the polymer (B3) having an acidic ionic group is previously converted to an amine salt or the like. In many cases, the solution finally becomes a uniform solution, which requires a complicated manufacturing process that requires acid treatment after film formation.
 酸性イオン性基を有するポリマー(B3)として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン12などのポリアミド類、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマー、ポリテトラフルオロエチレン、ポリビニリデンフルオリドなどのフッ素系樹脂、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、ベンゾオキサジン樹脂などに前記のようなイオン性基を導入したポリマーであれば、特に制限はない。これらのうち、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂などのポリマーは、有機溶媒への溶解性など加工の容易さから好ましく用いられ、これらのスルホン化されたポリマーまたは組成物であることがより好ましい。さらに好ましくは、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーなどのスルホン化されたポリマーである。これらのポリマーは、エーテル結合など電子供与性基をもたないため耐酸化性を向上させることができることから好ましく用いられる。特に、ポリスチレンのスルホン化されたポリマーは、イオン交換容量が高いため、低抵抗を示すことから好ましく用いられる。 Examples of the polymer (B3) having an acidic ionic group include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12, poly Acrylate resins such as methyl methacrylate, polymethacrylates, polymethyl acrylate, polyacrylates, polyacrylic resins, polymethacrylic resins, polyethylene, polypropylene, various polyolefins including polystyrene and diene polymers, Cellulose resins such as polyurethane resin, cellulose acetate, ethyl cellulose, polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, Aromatic hydrocarbon polymers such as resulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, polybenzthiazole, polytetrafluoroethylene, polyvinylidene fluoride The polymer is not particularly limited as long as it is a polymer in which an ionic group as described above is introduced into a fluorine resin, an epoxy resin, a phenol resin, a novolac resin, a benzoxazine resin, or the like. Of these, acrylate resins such as polymethyl methacrylate, polymethacrylates, polymethyl acrylate, polyacrylates, polyacrylic resins, polymethacrylic resins, polyethylene, polypropylene, polystyrene and diene polymers Polymers such as various polyolefins, including polyurethane resins, cellulose resins such as cellulose acetate and ethyl cellulose are preferably used from the viewpoint of ease of processing such as solubility in organic solvents, and these sulfonated polymers or compositions are used. More preferably. More preferred are sulfonated polymers such as polyethylene, polypropylene, polystyrene and diene polymers. These polymers are preferably used because they do not have an electron donating group such as an ether bond and can improve oxidation resistance. In particular, polystyrene sulfonated polymers are preferably used because of their high ion exchange capacity and low resistance.
 ポリマー(B)の好適な様態であるポリマー(B4)は、前記(1)式の構造を含有せず、スルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を有し、かつ炭素数12以上の繰返し単位を有するポリマーである。炭素数12以上の繰り返し単位を有することでイオン交換膜として適度な強度を持たせることが出来る。酸性イオン性基含有ポリイミダゾール(A)に酸性イオン性基を有するポリマー(B4)を混合すると、(A)のイミダゾールと(B4)の酸性イオン性基間でイオン架橋を形成する。この効果により、混合した異種ポリマー同士の相互作用が強化され、結果として、高イオン透過選択性と低抵抗、高耐久性を発現させることができる。この時、酸性イオン性基を有しないポリベンズイミダゾールであっても、同様に酸性イオン性基を有するポリマー(B4)を混合することで前記の効果は発現させることができる。しかし、酸性イオン性基を有しないポリベンズイミダゾールの場合、ポリベンズイミダゾールの含有量を増やしていくと均一な溶液とはなりにくく、酸性イオン性基を有するポリマー(B4)をあらかじめアミン塩などにしておくことでようやく均一溶液となるものが多く、製膜後酸処理が必要となる煩雑な製造工程を要するものであった。 The polymer (B4) which is a preferred embodiment of the polymer (B) does not contain the structure of the above formula (1), and is composed of a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, or a metal salt or ammonium salt thereof. It is a polymer having at least one selected acidic ionic group and having a repeating unit having 12 or more carbon atoms. By having a repeating unit having 12 or more carbon atoms, an appropriate strength can be obtained as an ion exchange membrane. When the polymer (B4) having an acidic ionic group is mixed with the acidic ionic group-containing polyimidazole (A), an ionic bridge is formed between the imidazole of (A) and the acidic ionic group of (B4). By this effect, the interaction between the mixed different polymers is strengthened, and as a result, high ion permeation selectivity, low resistance, and high durability can be expressed. At this time, even if it is polybenzimidazole which does not have an acidic ionic group, the said effect can be expressed by mixing the polymer (B4) which has an acidic ionic group similarly. However, in the case of polybenzimidazole having no acidic ionic group, if the polybenzimidazole content is increased, a uniform solution is unlikely to be obtained, and the polymer (B4) having acidic ionic group is previously converted to an amine salt or the like. In many cases, the solution finally becomes a homogeneous solution, and a complicated manufacturing process that requires acid treatment after film formation is required.
 酸性イオン性基を有する第2のポリマー(B4)として、例えば、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ナイロン6,6、ナイロン6,10、ナイロン12などのポリアミド類、ポリメタクリル酸エステル類、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマー、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、ベンゾオキサジン樹脂などに前記のようなイオン性基を導入したポリマーであれば、特に制限はない。これらのうち、ポリアリレート、アラミド、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマーは、優れた耐熱性や機械的強度の高さから好ましく用いられ、これらのスルホン化されたポリマーであることがより好ましい。さらに好ましくは、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリスチレンなどのポリマーをスルホン化したポリマーである。これらのポリマーは、イオン交換膜として優れた電流効率、低抵抗を示すことから好ましく用いられる。 Examples of the second polymer (B4) having an acidic ionic group include polyesters such as polybutylene terephthalate and polyethylene naphthalate, polyamides such as nylon 6,6, nylon 6,10, and nylon 12, and polymethacrylates. , Acrylate resins such as polyacrylic acid esters, polyacrylic acid resins, polymethacrylic acid resins, various polyolefins including polystyrene and diene polymers, polyurethane resins, cellulose acetates such as cellulose acetate, ethyl cellulose, Polyarylate, aramid, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, Aromatic hydrocarbon-based polymers such as Li benzthiazole, epoxy resins, phenolic resins, novolak resins, as long as the polymer obtained by introducing an ionic group such as the such as the benzoxazine resin is not particularly limited. Of these, aromatic hydrocarbons such as polyarylate, aramid, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, and polybenzthiazole. Polymers are preferably used because of their excellent heat resistance and mechanical strength, and are more preferably sulfonated polymers. More preferred is a polymer obtained by sulfonating a polymer such as polyarylate, polysulfone, polyethersulfone, polyetheretherketone or polystyrene. These polymers are preferably used because they exhibit excellent current efficiency and low resistance as ion exchange membranes.
 本発明の組成物に含有する、酸性イオン性基を有する第2のポリマー(B)は、前記(1)式の構造を含有しないポリマーであり、その含有量は、組成物を100質量部としたときに80質量部以下であることが好ましく、60質量部以下10質量部以上であることがより好ましい。その範囲とすることで、高イオン透過選択性と低抵抗、高耐久性を発現させることができる。組成物に対して80質量部以上であると、酸性イオン性基を有する第2のポリマー(B)の特性が大きくなりすぎて、前記の性能すべてを発現できない場合がある。一方、10質量部以下であると、前記の性能すべてを発現できない場合がある。 The second polymer (B) having an acidic ionic group contained in the composition of the present invention is a polymer not containing the structure of the formula (1), and the content thereof is 100 parts by mass of the composition. Is preferably 80 parts by mass or less, more preferably 60 parts by mass or less and 10 parts by mass or more. By setting it as the range, high ion permeation selectivity, low resistance, and high durability can be expressed. If the amount is 80 parts by mass or more based on the composition, the characteristics of the second polymer (B) having an acidic ionic group may become too large to exhibit all the above performance. On the other hand, if it is 10 parts by mass or less, all of the above performance may not be exhibited.
 前記組成物において、ポリマー(B1)又は(B2)は、下記一般式(4)及び(5)で示される構成成分を含むことが好ましい。 In the composition, the polymer (B1) or (B2) preferably contains constituents represented by the following general formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000014
ただし、Arは2価の芳香族基を、Yはスルホン基またはカルボニル基を、ZはO原子、S原子、直接結合のいずれかを、XはHまたは1価のカチオン種を示す。
Figure JPOXMLDOC01-appb-C000014
Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a carbonyl group, Z represents an O atom, an S atom, or a direct bond, and X represents H or a monovalent cation species.
Figure JPOXMLDOC01-appb-C000015
ただし、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
Figure JPOXMLDOC01-appb-C000015
However, Z represents either an O atom or an S atom, and Ar ′ represents a divalent aromatic group.
 また、本発明の組成物に(A)、(B)以外のポリマーも使用可能で、例えば柔軟性を向上させるためにスチレン‐ブタジエンゴム、エチレン‐プロピレンゴム、エチレン‐プロピレン‐ジエンゴム、二トリルゴムなどのゴム成分を添加したり、機械的強度や耐薬品性を向上させるために架橋成分を導入してもよい。 In addition, polymers other than (A) and (B) can be used in the composition of the present invention. For example, in order to improve flexibility, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, nitrile rubber, etc. A rubber component may be added, or a crosslinking component may be introduced to improve mechanical strength and chemical resistance.
 前述の芳香族テトラミン類およびそれらの誘導体よりなる群から選ばれる一種以上の化合物と芳香族ジカルボン酸およびその誘導体よりなる群から選ばれる一種以上の化合物とを用いて、スルホン酸基および/またはホスホン酸基を有するポリベンズイミダゾール系化合物を合成する方法は、特に限定されるものではないが、たとえば、J.F.Wolfe,Encyclopedia of Polymer Science and Engineering,2nd Ed.,Vol.11,P.601(1988)に記載されるようなポリリン酸を溶媒とする脱水、環化重合により合成することができる。また、ポリリン酸のかわりにメタンスルホン酸/五酸化リン混合溶媒系を用いた同様の機構による重合を適用することもできる。なお、熱安定性の高いポリベンズイミダゾール系化合物を合成するには、一般によく使用されるポリリン酸を用いた重合が好ましい。 Using one or more compounds selected from the group consisting of the aromatic tetramines and derivatives thereof and one or more compounds selected from the group consisting of aromatic dicarboxylic acids and derivatives thereof, sulfonic acid groups and / or phosphones A method for synthesizing a polybenzimidazole compound having an acid group is not particularly limited. F. Wolfe, Encyclopedia of Polymer Science and Engineering, 2nd Ed. , Vol. 11, p. 601 (1988), and can be synthesized by dehydration and cyclopolymerization using polyphosphoric acid as a solvent. Further, polymerization by a similar mechanism using a mixed solvent system of methanesulfonic acid / phosphorus pentoxide instead of polyphosphoric acid can be applied. In order to synthesize a polybenzimidazole compound having high thermal stability, polymerization using polyphosphoric acid that is commonly used is preferred.
 さらに、本発明のイオン交換膜に使用するポリベンズイミダゾール(A)を得るには、たとえば、適当な有機溶媒中や混合原料モノマー融体の形での反応でポリアミド構造などを有する前駆体ポリマーを合成しておき、その後の適当な熱処理などによる環化反応で目的のポリベンズイミダゾール構造に変換する方法なども使用することができる。 Furthermore, in order to obtain the polybenzimidazole (A) used for the ion exchange membrane of the present invention, for example, a precursor polymer having a polyamide structure or the like in a reaction in a suitable organic solvent or mixed raw material monomer melt is used. A method of synthesizing and then converting to the target polybenzimidazole structure by a cyclization reaction by appropriate heat treatment or the like can also be used.
 本発明の酸性イオン性基を含有するポリベンズイミダゾール(A)の分子量は、特に限定されるものではないが、1,000以上であることが好ましく、3,000以上であればより好ましい。また、この分子量は1,000,000以下であることが好ましく、200,000以下であればより好ましい。この分子量が1,000未満の場合には、粘度の低下によりポリベンズイミダゾール系化合物から良好な性質を備えた成形物を得ることが困難となる場合がある。また、この分子量が1,000,000を超えると粘度の上昇によりポリベンズイミダゾール系化合物を成形することが困難になる場合がある。また、酸性イオン性基を含有するポリベンズイミダゾール系化合物の分子量は、実質的には濃硫酸中で測定した場合の対数粘度で評価することができる。そして、この対数粘度は0.25以上であることが好ましく、特に0.40以上であればより好ましい。また、この対数粘度は10以下であることが好ましく、特に8以下であればより好ましい。この対数粘度が0.25未満の場合には、粘度の低下によりポリベンズイミダゾール系化合物から良好な性質を備えた成形物を得ることが困難となる。また、この分子量が10を超えると粘度の上昇によりポリベンズイミダゾール系化合物を成形することが困難になる。前記酸性イオン性基として、スルホン酸基および/またはホスホン酸基を有することが好ましい。 The molecular weight of the polybenzimidazole (A) containing an acidic ionic group of the present invention is not particularly limited, but is preferably 1,000 or more, more preferably 3,000 or more. The molecular weight is preferably 1,000,000 or less, more preferably 200,000 or less. When the molecular weight is less than 1,000, it may be difficult to obtain a molded product having good properties from the polybenzimidazole compound due to a decrease in viscosity. On the other hand, when the molecular weight exceeds 1,000,000, it may be difficult to mold the polybenzimidazole compound due to an increase in viscosity. Moreover, the molecular weight of the polybenzimidazole compound containing an acidic ionic group can be evaluated substantially by the logarithmic viscosity when measured in concentrated sulfuric acid. The logarithmic viscosity is preferably 0.25 or more, and more preferably 0.40 or more. The logarithmic viscosity is preferably 10 or less, more preferably 8 or less. When the logarithmic viscosity is less than 0.25, it is difficult to obtain a molded product having good properties from the polybenzimidazole compound due to the decrease in viscosity. On the other hand, when the molecular weight exceeds 10, it becomes difficult to mold a polybenzimidazole compound due to an increase in viscosity. The acidic ionic group preferably has a sulfonic acid group and / or a phosphonic acid group.
また、本発明の酸性イオン性基を含有するポリベンズイミダゾール(A)を合成する際の反応時間は、個々の原料モノマーの組み合わせにより最適な反応時間があるので一概には規定できないが、従来報告されているような長時間をかけた反応では、スルホン酸基および/またはホスホン酸基を有する芳香族ジカルボン酸などの原料モノマーを含む系では、得られたポリベンズイミダゾール系化合物の熱安定性が低下してしまう場合もあり、この場合には反応時間を本発明の効果の得られる範囲で短くすることが好ましい。反応時間は、48時間以下であることが好ましく、24時間以下であることがより好ましい。このように反応時間を短くすることにより、スルホン酸基および/またはホスホン酸基を有するポリベンズイミダゾール系化合物も熱安定性の高い状態で得ることができる。 In addition, the reaction time for synthesizing the polybenzimidazole (A) containing an acidic ionic group of the present invention cannot be specified unconditionally because there is an optimum reaction time depending on the combination of individual raw material monomers. In a reaction that takes a long time as described above, in a system containing a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group and / or a phosphonic acid group, the thermal stability of the obtained polybenzimidazole compound is low. In this case, it is preferable to shorten the reaction time within a range where the effects of the present invention can be obtained. The reaction time is preferably 48 hours or less, and more preferably 24 hours or less. By shortening the reaction time in this way, a polybenzimidazole compound having a sulfonic acid group and / or a phosphonic acid group can also be obtained in a highly heat stable state.
そして、本発明の酸性イオン性基を含有するポリベンズイミダゾール(A)を合成する際の反応温度は、個々の原料モノマーの組み合わせにより最適な反応温度があるので一概には規定できないが、従来報告されているような高温による反応では、スルホン酸基および/またはホスホン酸基を有する芳香族ジカルボン酸などの原料モノマーを含む系では、得られたポリベンズイミダゾール系化合物へのスルホン酸基および/またはホスホン酸基の導入量の制御が不能となる場合もあり、この場合には反応温度を本発明の効果の得られる範囲で低くすることが好ましい。反応温度は300℃以下が好ましく、250℃以下がさらに好ましい。このように反応温度を低くすることにより、酸性基の量が多いポリベンズイミダゾール系化合物へのスルホン酸基および/またはホスホン酸基の導入量の制御を可能とすることができる。 The reaction temperature when synthesizing the polybenzimidazole (A) containing the acidic ionic group of the present invention cannot be defined unconditionally because there is an optimum reaction temperature depending on the combination of individual raw material monomers, but it has been reported in the past. In a reaction involving a high temperature as described above, in a system including a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group and / or a phosphonic acid group, the sulfonic acid group and / or the resulting polybenzimidazole compound is obtained. In some cases, it becomes impossible to control the amount of phosphonic acid groups introduced. In this case, it is preferable to lower the reaction temperature within a range where the effects of the present invention can be obtained. The reaction temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower. By lowering the reaction temperature in this way, it is possible to control the amount of sulfonic acid group and / or phosphonic acid group introduced into the polybenzimidazole compound having a large amount of acidic groups.
なお、本発明のイオン交換膜は、必要に応じて、例えば酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤、などの各種添加剤を含んでいても良い。 In addition, the ion exchange membrane of the present invention can be used as necessary, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, and an antifoaming agent. In addition, various additives such as a dispersant and a polymerization inhibitor may be contained.
 本発明のレドックス電池用イオン交換膜は、押し出し、圧延またはキャストなど任意の方法で膜状に成形することができる。中でも適当な溶媒に溶解した溶液から成形することが好ましい。この溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒や、リン酸や硫酸などの強酸性溶媒、メタノール、エタノール等のアルコール類から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。 The ion exchange membrane for a redox battery of the present invention can be formed into a membrane by any method such as extrusion, rolling or casting. Among these, it is preferable to mold from a solution dissolved in an appropriate solvent. Examples of the solvent include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and hexamethylphosphonamide, and strong acid such as phosphoric acid and sulfuric acid. A suitable solvent can be selected from alcohols such as methanol, ethanol and the like, but is not limited thereto. A plurality of these solvents may be used as a mixture within a possible range.
 これらの溶媒のうち、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒が加工の容易さ、加工設備の耐酸性が不要といった点から好ましい。 Among these solvents, aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and hexamethylphosphonamide are easy to process, This is preferable because acid resistance is not necessary.
 溶液中の化合物固形分濃度は0.1~50質量%の範囲であることが好ましい。溶液中の化合物濃度が0.1質量%未満であると良好な成形物を得るのが困難となる傾向にあり、50質量%を超えると加工性が悪化する傾向にある。溶液から成形体を得る方法は従来から公知の方法を用いて行うことができる。たとえば、加熱、減圧乾燥、化合物を溶解する溶媒と混和することができる化合物非溶媒への浸漬等によって、溶媒を除去し膜状成形体を得ることができる。溶媒が、有機溶媒の場合には、加熱又は減圧乾燥によって溶媒を留去させることが好ましい。溶解挙動が類似する化合物と組み合わせた場合には、良好な成形ができる点で好ましい。このようにして得られた成形体中のスルホン酸基はカチオン種との塩の形のものを含んでいても良いが、必要に応じて酸処理することによりフリーのスルホン酸基に変換することもできる。 The compound solid concentration in the solution is preferably in the range of 0.1 to 50% by mass. If the compound concentration in the solution is less than 0.1% by mass, it tends to be difficult to obtain a good molded product, and if it exceeds 50% by mass, the workability tends to deteriorate. A method of obtaining a molded body from a solution can be performed using a conventionally known method. For example, the film can be obtained by removing the solvent by heating, drying under reduced pressure, or immersing in a compound non-solvent that can be mixed with the solvent that dissolves the compound. When the solvent is an organic solvent, the solvent is preferably distilled off by heating or drying under reduced pressure. When combined with a compound having a similar dissolution behavior, it is preferable in that good molding can be achieved. The sulfonic acid group in the molded article thus obtained may contain a salt form with a cationic species, but it can be converted to a free sulfonic acid group by acid treatment as necessary. You can also.
 本発明の前記イオン性基含有ポリベンズイミダゾール(A)またはその組成物からイオン交換膜を成形する手法として最も好ましいのは、溶液からのキャストであり、キャストした溶液から上記のように溶媒を除去してレドックス電池用イオン交換膜を得ることができる。当該溶液としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどの有機極性溶媒を用いた溶媒や、場合によっては強酸性溶液、アルコール系溶媒なども使用することができる。溶媒の除去は、乾燥によることがバナジウム系レドックス電池用イオン交換膜の均一性からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下でできるだけ低い温度で乾燥することもできる。また、溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液の厚みは特に制限されないが、10~1000μmであることが好ましい。より好ましくは50~500μmである。溶液の厚みが10μmよりも薄いとレドックス電池用イオン交換膜としての形態を保てなくなる傾向にあり、1000μmよりも厚いと不均一なイオン交換膜ができやすくなる傾向にある。溶液のキャスト厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度で厚みを制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱する場合には最初の段階では低温にして蒸発速度を下げたりすることができる。また、水などの非溶媒に浸漬する場合には、溶液を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を調整することができる。 The most preferable method for forming an ion exchange membrane from the ionic group-containing polybenzimidazole (A) of the present invention or a composition thereof is casting from a solution, and the solvent is removed from the cast solution as described above. Thus, an ion exchange membrane for a redox battery can be obtained. As the solution, a solvent using an organic polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, or a strong acid solution or an alcohol solvent may be used depending on the case. . The removal of the solvent is preferably by drying in view of the uniformity of the ion exchange membrane for vanadium redox batteries. Moreover, in order to avoid decomposition | disassembly and alteration of a compound or a solvent, it can also dry at the lowest temperature possible under reduced pressure. Further, when the viscosity of the solution is high, when the substrate or the solution is heated and cast at a high temperature, the viscosity of the solution is lowered and the casting can be easily performed. The thickness of the solution at the time of casting is not particularly limited, but is preferably 10 to 1000 μm. More preferably, it is 50 to 500 μm. If the thickness of the solution is less than 10 μm, the form as an ion exchange membrane for a redox battery tends not to be maintained, and if it is thicker than 1000 μm, a non-uniform ion exchange membrane tends to be easily formed. As a method for controlling the cast thickness of the solution, a known method can be used. For example, the thickness can be controlled with the amount and concentration of the solution with a constant thickness using an applicator, a doctor blade, or the like, and with a cast area constant using a glass petri dish or the like. The cast solution can obtain a more uniform film by adjusting the solvent removal rate. For example, in the case of heating, the evaporation rate can be reduced by lowering the temperature in the first stage. In addition, when immersed in a non-solvent such as water, the coagulation rate of the compound can be adjusted by leaving the solution in air or an inert gas for an appropriate time.
 本発明のレドックス電池用イオン交換膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが好ましい。具体的には5~200μmであることが好ましく、5~50μmであることがさらに好ましく、5~20μmであることが最も好ましい。レドックス電池用イオン交換膜の厚みが5μmより薄いとイオン交換膜の取扱が困難となりバナジウム系レドックス電池を作製した場合に短絡等が起こる傾向にあり、200μmよりも厚いとイオン交換膜の電気抵抗値が高くなりレドックス電池のエネルギー効率が低下する傾向にある。電池の活物質としてバナジウムイオンを用いるバナジウム系レドックス電池用イオン交換膜として使用する場合、膜中のスルホン酸基は金属塩になっているものを含んでいても良いが、適当な酸処理によりフリーのスルホン酸に変換することもできる。この場合、硫酸、塩酸、等の水溶液中に加熱下あるいは加熱せずに膜を浸漬処理することで行うことも効果的である。また、イオン交換膜のイオン伝導率は1.0x10-3S/cm以上であることが好ましい。イオン伝導率が1.0x10-3S/cm以上である場合には、そのイオン交換膜を用いたレドックスフロー電池において良好な出力が得られる傾向にあり、1.0x10-3S/cm未満である場合にはレドックス電池の出力低下が起こる傾向にある。 The ion exchange membrane for a redox battery of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, the thickness is preferably 5 to 200 μm, more preferably 5 to 50 μm, and most preferably 5 to 20 μm. If the thickness of the ion exchange membrane for redox batteries is less than 5 μm, the handling of the ion exchange membrane becomes difficult, and a short circuit or the like tends to occur when a vanadium redox battery is produced. However, the energy efficiency of the redox battery tends to decrease. When used as an ion exchange membrane for vanadium-based redox batteries using vanadium ions as the active material of the battery, the sulfonic acid groups in the membrane may include those in the form of metal salts, but free by appropriate acid treatment. It can also be converted to sulfonic acid. In this case, it is also effective to immerse the membrane in an aqueous solution of sulfuric acid, hydrochloric acid, etc. with or without heating. The ion conductivity of the ion exchange membrane is preferably 1.0 × 10 −3 S / cm or more. When the ionic conductivity is 1.0 × 10 −3 S / cm or more, a redox flow battery using the ion exchange membrane tends to provide good output, and less than 1.0 × 10 −3 S / cm. In some cases, the output of the redox battery tends to decrease.
 本発明のイオン交換膜の3%重量減少温度は、300℃~500℃であることが好ましい。300℃以下であると、温度を上げて使用したときに耐久性が不十分である可能性がある。 The 3% weight reduction temperature of the ion exchange membrane of the present invention is preferably 300 ° C to 500 ° C. When the temperature is 300 ° C. or lower, durability may be insufficient when the temperature is increased.
 本発明におけるレドックス電池とは、価数の異なる活物質(例えばバナジウム等)の酸化還元反応によって充放電を行う電池であり、後述のレドックスフロー電池も包含するものである。バナジウム系レドックス電池は本発明の好ましい様態であり、その場合においては、イオン交換膜は正極・負極内のイオンバランスを調製すると共に、価数の異なるバナジウムの混合を防ぐための隔膜として用いる。本発明のバナジウム系レドックス電池用イオン交換膜は、水溶液系電解液をポンプの循環によって充放電を行うレドックスフロー電池に用いてもよく、または水溶液系電解液の代わりにバナジウム水和物を炭素電極に含浸したレドックス電池として用いても良い。水溶液系電解液をポンプの循環によって充放電を行うレドックスフロー電池は、例えば間隙を介した状態で対向して配設された一対の集電板間に隔膜が配設され、該集電板と隔膜との間に少なくとも一方に電極材が圧接挟持され、電極材は活物質を含んだ水溶液からなる電解液を含んだ構造を有する電解槽を備える。 The redox battery in the present invention is a battery that charges and discharges by an oxidation-reduction reaction of active materials having different valences (for example, vanadium), and includes a redox flow battery described later. A vanadium-based redox battery is a preferred embodiment of the present invention. In this case, the ion exchange membrane is used as a diaphragm for adjusting the ion balance in the positive electrode and the negative electrode and preventing mixing of vanadium having different valences. The ion exchange membrane for a vanadium redox battery of the present invention may be used in a redox flow battery in which an aqueous electrolyte is charged and discharged by circulating a pump, or vanadium hydrate is used as a carbon electrode instead of an aqueous electrolyte. It may be used as a redox battery impregnated with. A redox flow battery that charges and discharges aqueous electrolyte solution by circulating a pump has a diaphragm disposed between a pair of current collector plates facing each other with a gap interposed therebetween, for example. An electrode material is sandwiched between at least one of the diaphragms, and the electrode material includes an electrolytic cell having a structure including an electrolytic solution made of an aqueous solution containing an active material.
本発明のレドックス電池及びレドックスフロー電池に用いられる水溶液系電解液としては、前述の如きバナジウム系電解液の他、鉄-クロム系、チタン-マンガン-クロム系、クロム-クロム系、鉄-チタン系などが挙げられるが、バナジウム系電解液が好ましい。本発明の炭素電極材集合体は、特に、粘度が25℃にて0.005Pa・s以上であるバナジウム系電解液、あるいは1.5mol/l以上のバナジウムイオンを含むバナジウム系電解液を使用するレドックスフロー電池に用いるのが有用である。 Examples of the aqueous electrolyte used in the redox battery and redox flow battery of the present invention include iron-chromium, titanium-manganese-chromium, chromium-chromium, iron-titanium, in addition to the vanadium electrolyte as described above. The vanadium electrolyte is preferable. In particular, the carbon electrode material assembly of the present invention uses a vanadium-based electrolyte having a viscosity of 0.005 Pa · s or more at 25 ° C. or a vanadium-based electrolyte containing 1.5 mol / l or more of vanadium ions. Useful for redox flow batteries.
 以下本発明を実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。 Hereinafter, the present invention will be specifically described using examples, but the present invention is not limited to these examples. Various measurements were performed as follows.
溶液粘度:ポリマー粉末を0.5g/dlの濃度でメタンスルホン酸に溶解し、30℃の恒温槽中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度ln[ta/tb]/c)で評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。 Solution viscosity: The polymer powder was dissolved in methanesulfonic acid at a concentration of 0.5 g / dl, the viscosity was measured using a Ubbelohde viscometer in a constant temperature bath at 30 ° C., and the logarithmic viscosity ln [ta / tb] / c ) (Ta is the number of seconds that the sample solution falls, tb is the number of seconds that the solvent is dropped, and c is the polymer concentration).
TGA:島津製作所製熱重量測定計(TGA-50)を用い、アルゴン雰囲気中、昇温速度10℃/minで測定を行った(途中、150℃で30分保持して水分を十分除去する)。3%重量減少温度は、200℃まで昇温した後の重量に対して3%重量減少した時の温度とした。 TGA: Using a thermogravimetry meter (TGA-50) manufactured by Shimadzu Corporation, measurement was performed in an argon atmosphere at a heating rate of 10 ° C./min (while maintaining at 150 ° C. for 30 minutes to sufficiently remove moisture) . The 3% weight reduction temperature was the temperature at which the weight decreased by 3% with respect to the weight after the temperature was raised to 200 ° C.
電池特性:上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm を有する小型のセルを作り、定電流密度で充放電を繰り返し、電流効率、セル抵抗、エネルギー効率、電圧効率を下記の通りに算出した。また、正極電解液には1.5mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.5mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 Battery characteristics: A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flow direction) and 1 cm in the width direction is formed, and charging and discharging are repeated at a constant current density, current efficiency, cell resistance, energy efficiency, voltage efficiency Was calculated as follows. Moreover, a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. It was. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 (a)電流効率:η 
充電に始まり、放電で終わる1サイクルのテストにおいて、電流密度を電極幾何面積当たり80mA/cm2(1260mA)として、1.6Vまでの充電に要した電気量をQクーロン、1.0Vまでの定電流放電で取りだした電気量をQクーロンとし、数式1で電流効率ηI を求める。
(A) Current efficiency: η I
In a one-cycle test that starts with charging and ends with discharging, the current density is 80 mA / cm 2 (1260 mA) per electrode geometric area, and the amount of electricity required for charging up to 1.6 V is constant at Q 1 coulomb and 1.0 V. The amount of electricity taken out by the current discharge is defined as Q 2 coulomb, and the current efficiency ηI is obtained by Equation 1.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 (b)セル抵抗:R
 負極液中のV3+をV2+に完全に還元するのに必要な理論電気量Qthに対して、放電により取りだした電気量の比を充電率とし、数式2で充電率を求める。
(B) Cell resistance: R
The ratio of the amount of electricity taken out by discharge with respect to the theoretical amount of electricity Q th necessary to completely reduce V 3+ in the negative electrode solution to V 2+ is taken as the charging rate, and the charging rate is obtained by Equation 2.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 充電率が50%のときの電気量に対応する充電電圧VC50、放電電圧VD50を電気量-電圧曲線からそれぞれ求め、数式3より電極幾何面積に対するセル抵抗R(Ω・cm
)を求める。
Charging voltage V C50 of the charging rate corresponding to the quantity of electricity at 50% electric quantity discharge voltage V D50 - calculated respectively from the voltage curves, the cell resistance to the electrode geometry area than the formula 3 R (Ω · cm 2
)
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 (c)電圧効率:η
 上記の方法で求めたセル抵抗Rを用いて数式4の簡便法により電圧効率ηを求める。
(C) Voltage efficiency: η V
Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by the simple method of Equation 4.
Figure JPOXMLDOC01-appb-M000019

ここで、Eは充電率50%のときのセル開回路電圧1.432V(実測値)、Iは定電流充放電における電流値1.260Aである。
Figure JPOXMLDOC01-appb-M000019

Here, E is a cell open circuit voltage of 1.432 V (measured value) when the charging rate is 50%, and I is a current value of 1.260 A in constant current charge / discharge.
 (d)エネルギー効率:η
 前述の電流効率ηと電圧効率ηを用いて、数式5によりエネルギー効率ηを求める。
(D) Energy efficiency: η E
Using the current efficiency η I and the voltage efficiency η V described above, the energy efficiency η E is obtained by Equation 5.
Figure JPOXMLDOC01-appb-M000020
 
Figure JPOXMLDOC01-appb-M000020
 
NMR測定:ポリマーを溶媒に溶解し、VARIAN社製UNITY-500を用いてH-NMRは室温で測定を行った。溶媒には重ジメチルスルホキシドを用いた。構造式(2)に由来するピーク面積値と構造式(3)に由来するピーク面積値から、構成成分のmol比を算出し、nの値を算出した。 NMR measurement: The polymer was dissolved in a solvent, and 1 H-NMR was measured at room temperature using UNITY-500 manufactured by VARIAN. Heavy dimethyl sulfoxide was used as the solvent. From the peak area value derived from the structural formula (2) and the peak area value derived from the structural formula (3), the molar ratio of the constituent components was calculated, and the value of n was calculated.
耐酸化性試験:0.9mol/lの5価のバナジウムイオンを含む4.0mol/l硫酸から成る電解液に膜を浸漬させ、70℃で24時間インキュベートした。試験後の膜について、膜形状の有無を確認後、2.5mol/l硫酸に一晩以上浸漬させ、純水でさらに1時間浸漬することで酸成分を除去した。その後、前述の方法に従って、前述の方法に従ってηIを求め、数式6に従って電流効率損失を求めた。 Oxidation resistance test: The membrane was immersed in an electrolytic solution composed of 4.0 mol / l sulfuric acid containing 0.9 mol / l of pentavalent vanadium ions and incubated at 70 ° C. for 24 hours. About the film | membrane after a test, after confirming the presence or absence of a film | membrane shape, it was immersed in 2.5 mol / l sulfuric acid overnight or more, and the acid component was removed by immersing in pure water for further 1 hour. Then, according to the above-mentioned method, (eta) I was calculated | required according to the above-mentioned method, and the current efficiency loss was calculated | required according to Numerical formula 6.
Figure JPOXMLDOC01-appb-M000021
  
ここで、ΔηIは電流効率損失、ηIIは浸漬試験前の電流効率、ηI2は浸漬試験後の電流効率である。
Figure JPOXMLDOC01-appb-M000021

Here, Δη I is the current efficiency loss, η II is the current efficiency before the immersion test, and η I2 is the current efficiency after the immersion test.
(ポリベンゾイミダゾール(A)の重合)
3,3’,4,4‘-テトラアミノジフェニルスルホン(略号:TAS)1.500g(5.389x10-3mole)、2,5-ジカルボキシベンゼンスルホン酸モノナトリウム(略号:STA、純度99%)1.445g(5.389x10-3mole)、ポリリン酸(五酸化リン含量75%)20.48g、五酸化リン16.41gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温 する。10
0℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いてpH試験紙中性になるまで水洗を繰り返した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.71を示した。得られたポリマーをポリマー1と称し、その構造式を下記に示す。
(Polymerimidazole (A) polymerization)
3,3 ′, 4,4′-tetraaminodiphenylsulfone (abbreviation: TAS) 1.500 g (5.389 × 10 −3 mole), monosodium 2,5-dicarboxybenzenesulfonate (abbreviation: STA, purity 99%) 1.445 g (5.389 × 10 −3 mole), 20.48 g of polyphosphoric acid (phosphorus pentoxide content 75%), and 16.41 g of phosphorus pentoxide are weighed in a polymerization vessel. Flow nitrogen and raise the temperature to 100 ° C while stirring gently on an oil bath. 10
After maintaining at 0 ° C. for 1 hour, the temperature was raised to 150 ° C. for 1 hour, and the temperature was raised to 200 ° C. for 4 hours for polymerization. After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.71. The obtained polymer is referred to as polymer 1 and the structural formula is shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(実施例1)
 上記で得られたポリマー1を1g計量し、NMP10mlに溶解し、ホットプレート上ガラス板に約200μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。また、本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は453℃であった。
Example 1
1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 200 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 453 ° C.
(実施例2)
 上記で得られたポリマー1を1g計量し、NMP10mlに溶解し、ホットプレート上ガラス板に約150μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは10μmであった。
(Example 2)
1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 150 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 10 μm.
(実施例3)
 上記で得られたポリマー1を1g計量し、NMP10mlに溶解し、ホットプレート上ガラス板に約300μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは20μmであった。
Example 3
1 g of the polymer 1 obtained above was weighed, dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 300 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 20 μm.
(実施例18)
TAS10.000g(0.03567mole)、2,6&#8722;ジカルボキシベンゼンスルホン酸モノナトリウム9.665g(0.03567mole)、ポリリン酸(五酸化リン含量75%)122.5g、五酸化リン20.73gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温する。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いてpH試験紙中性になるまで水洗を繰り返した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.10を示した。得られたポリマーの構造式を下記に示す。得られたポリマーをポリマー8と称する。
(Example 18)
TAS 10.000 g (0.03567 mole), 2,6 &#8722; 9.665 g (0.03567 mole) dicarboxybenzenesulfonic acid monosodium, 122.5 g polyphosphoric acid (phosphorus pentoxide content 75%), phosphorus pentoxide 20. Weigh 73 g into a polymerization vessel. The temperature is raised to 100 ° C. while slowly stirring on an oil bath while flowing nitrogen. After maintaining at 100 ° C. for 1 hour, the temperature was raised to 150 ° C. for 1 hour, and the temperature was raised to 200 ° C. and polymerized for 4 hours. After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.10. The structural formula of the obtained polymer is shown below. The resulting polymer is referred to as polymer 8.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
得られたポリマー1gをNMP10mlに溶解し、ホットプレート上ガラス板に約300μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。また、本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は433℃であった。 1 g of the obtained polymer was dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 300 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of the film was 433 ° C.
(実施例19)
TAS10.000g(0.03567mole)、2,5&#8722;ジカルボキシベンゼンスルホン酸モノナトリウム2.899g(0.01070mole)、2,6&#8722;ジカルボキシベンゼンホスホン酸6.208g(0.02497mole)、ポリリン酸(五酸化リン含量75%)122.5g、五酸化リン20.73gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温する。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いてpH試験紙中性になるまで水洗を繰り返した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.33を示した。得られたポリマーの構造式を下記に示す。得られたポリマーをポリマー9と称する。
(Example 19)
TAS 10.000 g (0.03567 mole), 2,5 &#8722; monosodium dicarboxybenzenesulfonate 2.899 g (0.01070 mole), 2,6 &#8722; 6.208 g (0.02497 mole) dicarboxybenzenephosphonic acid 122.5 g of polyphosphoric acid (phosphorus pentoxide content 75%) and 20.73 g of phosphorus pentoxide are weighed into a polymerization vessel. The temperature is raised to 100 ° C. while slowly stirring on an oil bath while flowing nitrogen. After maintaining at 100 ° C. for 1 hour, the temperature was raised to 150 ° C. for 1 hour, and the temperature was raised to 200 ° C. and polymerized for 4 hours. After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.33. The structural formula of the obtained polymer is shown below. The resulting polymer is referred to as polymer 9.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
得られたポリマー1gをNMP10mlに溶解し、ホットプレート上ガラス板に約200μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。また、本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は433℃であった。 1 g of the obtained polymer was dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 200 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of the film was 433 ° C.
(実施例20)
<モノマー合成>
 4,4‘-オキシジベンゾイックアシッド28.7gを発煙硫酸60ml中で110℃、2時間反応させた。反応系を冷却水中に落とし、この溶液に塩化ナトリウムを加えて沈殿物を析出させた(塩析)。沈殿物をろ過し、得られた固体を水で再結晶することで精製し、2.2‘-ジスルホ-4.4’-オキシジベンゾイックアシッドを純度99.8%で得た。
<ポリマー重合>
 TAS10.000g(0.03567mole)、2.2‘-ジスルホ-4.4’-オキシジベンゾイックアシッド16.511g(0.03567mole)、ポリリン酸(五酸化リン含量75%)122.5g、五酸化リン20.73gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温する。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いてpH試験紙中性になるまで水洗を繰り返した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、0.99を示した。得られたポリマーの構造式を下記に示す。
(Example 20)
<Monomer synthesis>
2,8.7 'of 4,4'-oxydibenzoic acid was reacted in 60 ml of fuming sulfuric acid at 110 ° C for 2 hours. The reaction system was dropped into cooling water, and sodium chloride was added to this solution to precipitate a precipitate (salting out). The precipitate was filtered, and the resulting solid was purified by recrystallization from water to obtain 2.2'-disulfo-4.4'-oxydibenzoic acid with a purity of 99.8%.
<Polymer polymerization>
TAS 10.000 g (0.03567 mole), 2.2'-disulfo-4.4'-oxydibenzoic acid 16.511 g (0.03567 mole), polyphosphoric acid (phosphorus pentoxide content 75%) 122.5 g, pentoxide Weigh 20.73 g of phosphorus into the polymerization vessel. The temperature is raised to 100 ° C. while slowly stirring on an oil bath while flowing nitrogen. After maintaining at 100 ° C. for 1 hour, the temperature was raised to 150 ° C. for 1 hour, and the temperature was raised to 200 ° C. and polymerized for 4 hours. After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 0.99. The structural formula of the obtained polymer is shown below.
Figure JPOXMLDOC01-appb-C000025
得られたポリマー1gをNMP10mlに溶解し、ホットプレート上ガラス板に約200μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。また、本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は411℃であった。
Figure JPOXMLDOC01-appb-C000025
1 g of the obtained polymer was dissolved in 10 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 200 μm, NMP was distilled off until a film was formed, and then immersed in water overnight. The thickness of the obtained film was 15 μm. Moreover, the 3% weight reduction | decrease temperature (measured on the basis of the sample weight in 200 degreeC) by thermogravimetry of this film was 411 degreeC.
(比較例1)
 佐藤ライト工業社製ポリベンズイミダゾールのN,N-ジメチルアセトアミド溶液をホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまで溶媒を留去した後、水中に一晩以上浸漬することで、厚さ平均10μmのフィルムを調整した。その構造式を下記に示す。
(Comparative Example 1)
Cast a N, N-dimethylacetamide solution of polybenzimidazole manufactured by Sato Light Kogyo Co., Ltd. onto a glass plate on a hot plate while adjusting the thickness, distill off the solvent until a film is formed, and then immerse in water overnight Thus, a film having an average thickness of 10 μm was prepared. Its structural formula is shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(比較例2)
 3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を4.3220g(0.00875mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を4.1847g(0.02426mole)、4,4’-ビフェノール6.1494g(0.03300mole)、炭酸カリウム5.0171g(0.03630mole)を100ml四つ口フラスコに計り取り、窒素を流した。30mlのNMPを入れて、150℃で一時間撹拌した後、反応温度を195-200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約5時間)。放冷の後、沈降しているモレキュラーシーブを除いて水中にストランド状に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、乾燥した。ポリマー構造式を下記に示す。
(Comparative Example 2)
4.3220 g (0.00875 mole) of 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) and 4.6-dichlorobenzonitrile (abbreviation: DCBN) 1847 g (0.02426 mole), 4,4′-biphenol 6.1494 g (0.03300 mole), and 5.0171 g (0.03630 mole) of potassium carbonate were weighed into a 100 ml four-necked flask and flushed with nitrogen. After adding 30 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 5 hours). After standing to cool, the precipitated molecular sieve was removed and the mixture was precipitated in water as a strand. The obtained polymer was washed in boiling water for 1 hour and then dried. The polymer structural formula is shown below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 比較例2で得られたポリマーのNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は380℃であった。 The NMP solution of the polymer obtained in Comparative Example 2 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 μm was prepared. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 380 ° C.
(比較例3)
 3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を4.4560g(0.00902mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を3.1583g(0.01831mole)、4,4’-ビフェノール5.0912g(0.02732mole)、炭酸カリウム4.1538g(0.03005mole)とする以外は、比較例2と同様にして重合を行い、下記構造のポリマーを得た。
(Comparative Example 3)
4.4560 g (0.00902 mole) of 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) and 3,6-dichlorobenzonitrile (abbreviation: DCBN) of 3. Polymerization was conducted in the same manner as in Comparative Example 2 except that 1583 g (0.01831 mole), 4,4′-biphenol 5.0912 g (0.02732 mole), and potassium carbonate 4.1538 g (0.03005 mole). Of polymer was obtained.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 比較例3で得られたポリマーのNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は384℃であった。 The NMP solution of the polymer obtained in Comparative Example 3 was cast on a glass plate on a hot plate by adjusting the thickness, and after NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 μm was prepared. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 384 ° C.
(比較例4)
 3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)5.000g(0.01012mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)2.2215g(0.01288mole)、4,4’-ビフェノール4.2846g(0.02299mole)、炭酸カリウム3.4957g(0.02529mole)、モレキュラーシーブ2.61gとする以外は、比較例2と同様にして重合を行い、下記構造のポリマーを得た。
(Comparative Example 4)
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 5.000 g (0.01012 mole), 2,6-dichlorobenzonitrile (abbreviation: DCBN) 2.2215 g ( 0.01288 mole), 4,4′-biphenol 4.2846 g (0.02299 mole), potassium carbonate 3.4957 g (0.02529 mole), and molecular sieve 2.61 g. And a polymer having the following structure was obtained.
Figure JPOXMLDOC01-appb-C000029
 比較例4で得られたポリマーのNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は393℃であった。
Figure JPOXMLDOC01-appb-C000029
The NMP solution of the polymer obtained in Comparative Example 4 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water overnight or longer. A film having an average thickness of 30 μm was prepared. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 393 ° C.
(比較例5)
 3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)5.000g(0.01012mole)、4,4’-ジクロロジフェニルスルホン(略号:DCDPS)2.9140g(0.01012mole)、4,4’-ビフェノール3.7704g(0.02023mole)、炭酸カリウム3.0762g(0.02226mole)、モレキュラーシーブ2.61gとする以外は、比較例2と同様にして重合を行い、下記構造のポリマーを得た。
(Comparative Example 5)
3,3′-Disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 5.000 g (0.01012 mole), 4,4′-dichlorodiphenylsulfone (abbreviation: DCDPS) 2.9140 g (0.01012 mole), 4,4′-biphenol 3.7704 g (0.02023 mole), potassium carbonate 3.0762 g (0.02226 mole), and molecular sieve 2.61 g. To obtain a polymer having the following structure.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
比較例5で得られたポリマーのNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は354℃であった。 The NMP solution of the polymer obtained in Comparative Example 5 was cast on a glass plate on a hot plate by adjusting the thickness, and after the NMP was distilled off until it became a film, it was immersed in water for more than one night. A film having an average thickness of 30 μm was prepared. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 354 ° C.
 実施例1~3及び比較例1~5で作製したイオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cmを有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能のテストを行った。充放電時の電流値は1280mAとすることで、電流密度は80mA/cmとした。充電時の上限電圧は1.6V、放電時の下限電圧は1.0Vとした。正極電解液には1.5mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.5mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 The ion exchange membranes produced in Examples 1 to 3 and Comparative Examples 1 to 5 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG. A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, charge and discharge were repeated at a constant current density, and the ion exchange membrane performance was tested. The current value at the time of charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 . The upper limit voltage during charging was 1.6 V, and the lower limit voltage during discharging was 1.0 V. A 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 実施例1~3及び比較例1~5で作製したイオン交換膜を用いて、充放電を2~4サイクル行った。もまた、他の比較例として、米国デュポン社製Nafion115CS及び旭ガラス社製SelemionDMVを用いて同様の測定を行った(比較例6、7)。さらに、耐酸化性試験も行い、その結果、表1のようになった。 Using the ion exchange membranes produced in Examples 1 to 3 and Comparative Examples 1 to 5, charging and discharging were performed for 2 to 4 cycles. As other comparative examples, the same measurement was performed using Nafion 115CS manufactured by DuPont of the United States and Selemion DMV manufactured by Asahi Glass (Comparative Examples 6 and 7). Furthermore, an oxidation resistance test was also performed, and the results were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
表1の結果から明らかなように、実施例1~3のイオン性基含有ポリベンズイミダゾールからなるイオン交換膜は、低抵抗かつ非常に高い電流効率を示し、結果として高いエネルギー効率を示した。さらに、他の比較例よりも膜厚みが薄いにも関わらず、耐酸化性試験後においても膜形状を保持し、電流効率損失もほとんど見られなかった。この結果から、イオン性基含有ポリベンズイミダゾールからなるイオン交換膜は、高いエネルギー効率と非常に優れた耐酸化性を有していることがわかった。 As is clear from the results in Table 1, the ion exchange membranes comprising the ionic group-containing polybenzimidazoles of Examples 1 to 3 exhibited a low resistance and a very high current efficiency, resulting in a high energy efficiency. Furthermore, although the film thickness was thinner than the other comparative examples, the film shape was maintained even after the oxidation resistance test, and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane made of ionic group-containing polybenzimidazole has high energy efficiency and very good oxidation resistance.
これに対し、イオン性基を含有していないポリベンズイミダゾールからなるイオン交換膜(比較例1)は、非常に抵抗が高く、エネルギー効率にも劣る結果であった。さらに、耐酸化性も不十分であった。この結果から、酸性イオン性基を導入した効果が発現しているものと考えられる。また、比較例2~5は従来の芳香族系ポリマーにスルホン酸基を導入したものである。これらの初期エネルギー効率は実施例1~3と同等であるものの、耐酸化性試験において膜が断片化または溶解してしまい、膜形状を保持できるものはなかった。一方、比較例6のようなパーフルオロ系イオン交換膜においては、耐酸化性に優れているものの、電流効率が低いため初期のエネルギー効率は低かった。さらに、市販のイオン交換膜(比較例7)においても、比較例2~5と同様の結果であった。 In contrast, the ion exchange membrane made of polybenzimidazole containing no ionic group (Comparative Example 1) was very high in resistance and inferior in energy efficiency. Furthermore, the oxidation resistance was insufficient. From this result, it is considered that the effect of introducing the acidic ionic group is expressed. In Comparative Examples 2 to 5, sulfonic acid groups are introduced into conventional aromatic polymers. Although these initial energy efficiencies are equivalent to those of Examples 1 to 3, the film was fragmented or dissolved in the oxidation resistance test, and none of the films could maintain the film shape. On the other hand, in the perfluoro-type ion exchange membrane as in Comparative Example 6, although the oxidation resistance was excellent, the initial energy efficiency was low because the current efficiency was low. Further, in the commercially available ion exchange membrane (Comparative Example 7), the same results as in Comparative Examples 2 to 5 were obtained.
(酸性イオン性基を有するポリマー(B)の重合)
(重合例1:IEC=2.1mmeq/gのポリマー重合)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)5.000g(0.01012mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)2.2215g(0.01288mole)、4,4’-ビフェノール4.2846g(0.02299mole)、炭酸カリウム3.4957g(0.02529mole)、を100ml四つ口フラスコに計り取り、窒素を流した。40mlのNMPを入れて、150℃で一時間撹拌した後、反応温度を195-200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約5時間)。放冷の後、水中にストランド状に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、乾燥した。NMR測定により、下記構造のポリマーを得た。下記ポリマーをポリマー2と称する。本ポリマーの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は389℃であった。ポリマー2の対数粘度は、1.43dl/gを示した。滴定で求めたIECは2.03meq/gを示した。
(Polymerization of polymer (B) having acidic ionic group)
(Polymerization Example 1: Polymer polymerization of IEC = 2.1 mmeq / g)
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 5.000 g (0.01012 mole), 2,6-dichlorobenzonitrile (abbreviation: DCBN) 2.2215 g ( 0.01288 mole), 4,4′-biphenol 4.2846 g (0.02299 mole), and potassium carbonate 3.4957 g (0.02529 mole) were weighed into a 100 ml four-necked flask and flushed with nitrogen. After adding 40 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 5 hours). After cooling, it was precipitated in strands in water. The obtained polymer was washed in boiling water for 1 hour and then dried. A polymer having the following structure was obtained by NMR measurement. The following polymer is referred to as Polymer 2. The thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 389 ° C. The logarithmic viscosity of polymer 2 was 1.43 dl / g. The IEC determined by titration was 2.03 meq / g.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(重合例2:IEC=2.4mmeq/gのポリマー重合)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を2.4450g(0.00495mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を0.6983g(0.00405mole)とする以外は、重合例1と同様にして重合を行い、下記構造式のポリマーを得た。ポリマー構造式を下記に示す。下記ポリマーをポリマー3と称する。本ポリマーの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は393℃であった。ポリマー3の対数粘度は、1.33dl/gを示した。滴定で求めたIECは2.41meq/gを示した。
(Polymerization Example 2: Polymer polymerization of IEC = 2.4 mmeq / g)
2.4450 g (0.00495 mole) of 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) and 0.26 of 2,6-dichlorobenzonitrile (abbreviation: DCBN). Polymerization was conducted in the same manner as in Polymerization Example 1 except that 6983 g (0.00405 mole) was obtained, and a polymer having the following structural formula was obtained. The polymer structural formula is shown below. The following polymer is referred to as Polymer 3. The thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 393 ° C. The logarithmic viscosity of Polymer 3 was 1.33 dl / g. The IEC determined by titration was 2.41 meq / g.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(重合例3:IEC=2.6mmeq/gのポリマー重合)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)1.500g(0.00304mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)0.2820g(0.00163mole)、4,4’-ビフェノール0.8701g(0.00467mole)、炭酸カリウム0.7099g(0.00514mole)とする以外は、十号例1と同様にして重合を行い、下記構造のポリマーを得た。下記ポリマーをポリマー4と称する。本ポリマーの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は389℃であった。ポリマー4の対数粘度は、1.54dl/gを示した。滴定で求めたIECは2.61meq/gを示した。
(Polymerization Example 3: Polymer polymerization of IEC = 2.6 mmeq / g)
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 1.500 g (0.00304 mole), 2,6-dichlorobenzonitrile (abbreviation: DCBN) 0.2820 g ( 0.00163 mole), 4,4′-biphenol 0.8701 g (0.00467 mole), and potassium carbonate 0.7099 g (0.00514 mole). A polymer was obtained. The following polymer is referred to as Polymer 4. The thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 389 ° C. The logarithmic viscosity of polymer 4 was 1.54 dl / g. The IEC determined by titration was 2.61 meq / g.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(重合例4:IEC=1.4mmeq/gのポリマー重合)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を4.3220g(0.00875mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を4.1847g(0.02426mole)、4,4’-ビフェノール6.1494g(0.03300mole)、炭酸カリウム5.0171g(0.03630mole)とする以外は、重合例1と同様にして重合を行い、下記構造式のポリマーを得た。ポリマーの対数粘度は、1.43dl/gを示した。ポリマー構造式を下記に示す。下記ポリマーをポリマー5と称する。本ポリマーの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は388℃であった。ポリマー5の対数粘度は、1.35dl/gを示した。滴定で求めたIECは1.39meq/gを示した。
(Polymerization Example 4: Polymer polymerization of IEC = 1.4 mmeq / g)
4.3220 g (0.00875 mole) of 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) and 4.6-dichlorobenzonitrile (abbreviation: DCBN) Polymerization was conducted in the same manner as in Polymerization Example 1 except that 1847 g (0.02426 mole), 4,4′-biphenol 6.1494 g (0.03300 mole), and potassium carbonate 5.0171 g (0.03630 mole). A polymer of the formula was obtained. The logarithmic viscosity of the polymer was 1.43 dl / g. The polymer structural formula is shown below. The following polymer is referred to as Polymer 5. The thermogravimetric 3% weight loss temperature of this polymer (measured based on the sample weight at 200 ° C.) was 388 ° C. The logarithmic viscosity of polymer 5 was 1.35 dl / g. The IEC determined by titration was 1.39 meq / g.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(実施例4)
ポリマー1を1g計量し、これをNMP10mlに溶解した(溶液A)。また、ポリマー2を1g計量し、これをNMP10mlに溶解した(溶液B)。重量比が溶液A:溶液B=4:6となるように両溶液を混合し、脱泡後、ホットプレート上ガラス板に約200μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。
Example 4
1 g of polymer 1 was weighed and dissolved in 10 ml of NMP (solution A). Further, 1 g of polymer 2 was weighed and dissolved in 10 ml of NMP (solution B). Both solutions were mixed so that the weight ratio was Solution A: Solution B = 4: 6, defoamed, cast on a glass plate on a hot plate to a thickness of about 200 μm, and NMP was distilled off until a film was formed. Soaked in water for more than one night. The thickness of the obtained film was 15 μm.
(実施例5)
重量比が溶液A:溶液B=2:8となるように両溶液を混合した以外は、実施例4と同様にしてフィルムを得た。得られたフィルムの厚みは15μmであった。
(Example 5)
A film was obtained in the same manner as in Example 4 except that both solutions were mixed so that the weight ratio was Solution A: Solution B = 2: 8. The thickness of the obtained film was 15 μm.
(実施例6)
ポリマー3を1g計量し、これをNMP10mlに溶解した(溶液C)。重量比が溶液A:溶液C=4:6となるように両溶液を混合した以外は、実施例4と同様にしてフィルムを得た。得られたフィルムの厚みは17μmであった。
(Example 6)
1 g of the polymer 3 was weighed and dissolved in 10 ml of NMP (solution C). A film was obtained in the same manner as in Example 4 except that both solutions were mixed so that the weight ratio was Solution A: Solution C = 4: 6. The thickness of the obtained film was 17 μm.
(実施例7)
キャスト後の膜を希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した以外は、実施例6と同様にしてフィルムを得た。得られたフィルムの厚みは17μmであった。
(Example 7)
The membrane after casting was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component, and Example 6 A film was obtained in the same manner. The thickness of the obtained film was 17 μm.
(実施例8)
重量比が溶液A:溶液C=6:4となるように両溶液を混合した以外は、実施例7と同様にしてフィルムを得た。得られたフィルムの厚みは15μmであった。
(Example 8)
A film was obtained in the same manner as in Example 7 except that both solutions were mixed so that the weight ratio was Solution A: Solution C = 6: 4. The thickness of the obtained film was 15 μm.
(実施例9)
ポリマー4を1g計量し、これをNMP10mlに溶解した(溶液D)。重量比が溶液A:溶液D=6:4となるように両溶液を混合した以外は、実施例7と同様にしてフィルムを得た。得られたフィルムの厚みは16μmであった。
Example 9
1 g of polymer 4 was weighed and dissolved in 10 ml of NMP (solution D). A film was obtained in the same manner as in Example 7 except that both solutions were mixed so that the weight ratio was Solution A: Solution D = 6: 4. The thickness of the obtained film was 16 μm.
(実施例10)
重量比が溶液A:溶液D=7:3となるように両溶液を混合した以外は、実施例7と同様にしてフィルムを得た。得られたフィルムの厚みは15μmであった。
(Example 10)
A film was obtained in the same manner as in Example 7 except that both solutions were mixed so that the weight ratio was Solution A: Solution D = 7: 3. The thickness of the obtained film was 15 μm.
(比較例8)
 溶液Bのみを用いて、ホットプレート上ガラス板に約400μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した後、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。得られたフィルムの厚みは30μmであった。
(Comparative Example 8)
Using only solution B, cast it on a glass plate on a hot plate to a thickness of about 400 μm, distill off NMP until it becomes a film, and then immerse it in water for more than one night, then dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) ) For 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. The thickness of the obtained film was 30 μm.
(比較例9)
 溶液Dのみを用いた以外は、比較例8と同様にフィルムを得た。得られたフィルムの厚みは30μmであった。
(Comparative Example 9)
A film was obtained in the same manner as in Comparative Example 8 except that only the solution D was used. The thickness of the obtained film was 30 μm.
(比較例10)
 ポリマー5を1g計量し、これをNMP10mlに溶解した(溶液E)。溶液Eのみを用い、比較例8と同様にフィルムを得た。得られたフィルムの厚みは30μmであった。
(Comparative Example 10)
1 g of the polymer 5 was weighed and dissolved in 10 ml of NMP (solution E). Using only solution E, a film was obtained in the same manner as in Comparative Example 8. The thickness of the obtained film was 30 μm.
(比較例11)
 下記構造式の佐藤ライト工業社製ポリベンズイミダゾールの10wt%N,N-ジメチルアセトアミド溶液(溶液F)を用い、重量比が溶液F:溶液B=4:6とした以外は、実施例7と同様にしてフィルムを得た。得られたフィルムの厚みは16μmであった。下記ポリマーをポリマー6と称する。
(Comparative Example 11)
Example 7 except that a 10 wt% N, N-dimethylacetamide solution (solution F) of polybenzimidazole manufactured by Sato Light Industry Co., Ltd. having the following structural formula was used and the weight ratio was set to solution F: solution B = 4: 6. A film was obtained in the same manner. The thickness of the obtained film was 16 μm. The following polymer is referred to as Polymer 6.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 実施例4~10及び比較例8~10で作製したイオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1.6cmの電極面積16cm を有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能のテストを行った。充放電時の電流値は1280mAとすることで、電流密度は80mA/cmとした。充電時の上限電圧は1.6V、放電時の下限電圧は1.0Vとした。正極電解液には1.5mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.5mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 The ion exchange membranes produced in Examples 4 to 10 and Comparative Examples 8 to 10 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG. A small cell having an electrode area of 16 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1.6 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance. The current value at the time of charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 . The upper limit voltage during charging was 1.6 V, and the lower limit voltage during discharging was 1.0 V. A 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 実施例4~10及び比較例8~10で作製したイオン交換膜を用いて、充放電を2~4サイクル行った。また、他の比較例として、米国デュポン社製Nafion115CS及び旭ガラス社製SelemionDMVを用いて同様の測定を行った(比較例12、13)。その結果、表2のようになった。 Using the ion exchange membranes produced in Examples 4 to 10 and Comparative Examples 8 to 10, charging and discharging were performed for 2 to 4 cycles. Further, as another comparative example, the same measurement was performed using Nafion 115CS manufactured by DuPont, USA and Selemion DMV manufactured by Asahi Glass Co., Ltd. (Comparative Examples 12 and 13). As a result, it became as shown in Table 2.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表2の結果から明らかなように、実施例4~10のイオン性基含有ポリベンズイミダゾールと、イオン交換容量が1.5mmeq/g以上の酸性イオン性基を含有するポリマーとの混合物から成るイオン交換膜は、低抵抗かつ非常に高い電流効率を示し、結果として高いエネルギー効率を示した。特に、実施例4、6、7は非常に低い抵抗値と高い電流効率を両立できている。このように、酸性イオン性基を含有するポリベンズイミダゾールと酸性イオン性基を有する第2のポリマー間でイオン架橋を形成することで、混合した異種ポリマー同士の相互作用が強化され、結果として、上記の性能が発現したと考える。 As is apparent from the results in Table 2, ions comprising a mixture of the ionic group-containing polybenzimidazoles of Examples 4 to 10 and a polymer containing acidic ionic groups having an ion exchange capacity of 1.5 mmeq / g or more. The exchange membrane exhibited a low resistance and very high current efficiency, resulting in high energy efficiency. In particular, Examples 4, 6, and 7 can achieve both a very low resistance value and high current efficiency. Thus, by forming an ionic bridge between the polybenzimidazole containing an acidic ionic group and the second polymer having an acidic ionic group, the interaction between the mixed different polymers is strengthened, The above performance is considered to have developed.
 これに対し、ポリマー2のみからなる膜は電流効率が低い結果となった(比較例8)。ポリマー2よりもさらに高IEC化したポリマー4単独では、電池測定中にバナジウムの移動が多すぎたため評価不可であった(比較例9)。IECの低いポリマー5のみからなる膜は、高抵抗となり、エネルギー効率に劣る結果であった(比較例10)。比較例11は、酸性イオン性基を含有していないポリベンズイミダゾールとポリマー2からなる膜である。これは非常に抵抗が高く、実施例4~10のような効果は発現しなかった。これにより、ポリベンズイミダゾールに酸性イオン性基を導入すると、エネルギー効率で有利になることがわかる。また、比較例12のようなパーフルオロ系イオン交換膜においては、電流効率が低いため初期のエネルギー効率は低かった。さらに、市販のイオン交換膜(比較例13)においても、抵抗が高い結果であった。 On the other hand, the film made of only polymer 2 resulted in low current efficiency (Comparative Example 8). The polymer 4 alone having a higher IEC than that of the polymer 2 was not able to be evaluated because the movement of vanadium was excessive during battery measurement (Comparative Example 9). The film consisting only of the polymer 5 having a low IEC had a high resistance and was inferior in energy efficiency (Comparative Example 10). Comparative Example 11 is a film made of polybenzimidazole and polymer 2 that do not contain an acidic ionic group. This was very high in resistance, and the effects as in Examples 4 to 10 were not exhibited. This shows that introduction of an acidic ionic group into polybenzimidazole is advantageous in terms of energy efficiency. Further, in the perfluoro-based ion exchange membrane as in Comparative Example 12, the initial energy efficiency was low because the current efficiency was low. Further, the resistance was also high in the commercially available ion exchange membrane (Comparative Example 13).
(実施例11)
ポリエーテルエーテルケトン10gを100mLの97%濃硫酸の入った容器に入れて、40℃で3時間以上撹拌した後、さらに80℃で3時間以上撹拌して反応させた。反応終了後この溶液を放冷した後、氷水の入った容器に注ぎ入れた。pH試験紙が中性を示すまで残った酸を除去してスルホン化したポリマーを回収した。得られたポリマーは80℃で終夜減圧乾燥した。このスルホン化ポリエーテルケトンをポリマー7と称する。
(Example 11)
10 g of polyetheretherketone was placed in a container containing 100 mL of 97% concentrated sulfuric acid and stirred at 40 ° C. for 3 hours or longer, and further stirred at 80 ° C. for 3 hours or longer to react. After completion of the reaction, the solution was allowed to cool and then poured into a container containing ice water. The remaining acid was removed until the pH test paper was neutral and the sulfonated polymer was recovered. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. This sulfonated polyether ketone is referred to as polymer 7.
 前記のポリマー1のNMP溶液と、前記の方法で得られたスルホン化ポリエーテルエーテルケトン(ポリマー7)のNMP溶液を、ポリマーの重量比が6:4となるよう混合した。このとき、塩化リチウムをポリマー重量に対して20重量%~30重量%となるよう添加して混合した。この混合ポリマー溶液をホットプレート上ガラス板に溶液濃度に応じて約150μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。 The NMP solution of the polymer 1 and the NMP solution of the sulfonated polyetheretherketone (polymer 7) obtained by the above method were mixed so that the weight ratio of the polymer was 6: 4. At this time, lithium chloride was added and mixed so as to be 20% by weight to 30% by weight with respect to the polymer weight. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 μm depending on the solution concentration, NMP was distilled off until it became a film, and then immersed in water overnight or longer. The thickness of the obtained film was 15 μm. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
 実施例11で作製したイオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm2 を有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能のテストを行った。充放電時の電流値は1280mAとすることで、電流密度は80mA/cm2とした。充電時の上限電圧は1.7V、放電時の下限電圧は1.0Vとした。正極電解液には1.7mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.7mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 The ion exchange membrane produced in Example 11 was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG. A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance. The current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 . The upper limit voltage during charging was 1.7 V, and the lower limit voltage during discharging was 1.0 V. A 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium sulfate was used for the negative electrode electrolyte. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 実施例11で作製したイオン交換膜を用いて耐酸化性試験を行い、その結果、表3のようになった。また、他の比較例として、旭硝子社製セレミオンAPS4を用いて同様の測定を行った(比較例14)。 The oxidation resistance test was performed using the ion exchange membrane produced in Example 11, and the results are shown in Table 3. Moreover, the same measurement was performed using Asahi Glass Co., Ltd. Selemion APS4 as another comparative example (Comparative Example 14).
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表3の結果から明らかなように、実施例11のポリベンズイミダゾール(A)と酸性イオン性基含有ポリマー(B)からなるイオン交換膜は、低抵抗であり、耐酸化性試験後においても膜形状を保持し、電流効率損失もほとんど見られなかった。この結果から、イオン性基含有ポリベンズイミダゾール(A)と酸性イオン性基含有ポリマー(B)からなるイオン交換膜は、非常に優れた初期特性と耐酸化性を有していることが分かった。
一方、比較例14のような市販のイオン交換膜においても、抵抗が高い結果であった。
As is apparent from the results in Table 3, the ion exchange membrane comprising the polybenzimidazole (A) and the acidic ionic group-containing polymer (B) in Example 11 has a low resistance, and is a membrane even after the oxidation resistance test. The shape was maintained and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane comprising the ionic group-containing polybenzimidazole (A) and the acidic ionic group-containing polymer (B) has very excellent initial characteristics and oxidation resistance. .
On the other hand, the commercially available ion exchange membrane as in Comparative Example 14 also showed high resistance.
(実施例12)
 Sigma-Aldrich社製のポリ(4-スチレンスルホン酸)溶液(Mw:75000、18wt%水溶液)を乾燥させることにより水を除去し、得られた固体のポリ(4-スチレンスルホン酸)をNMPに溶解させて20重量%~25重量%の溶液を調製した。
Example 12
A poly (4-styrenesulfonic acid) solution (Mw: 75000, 18 wt% aqueous solution) manufactured by Sigma-Aldrich was dried to remove water, and the resulting solid poly (4-styrenesulfonic acid) was converted into NMP. Dissolved to prepare a 20 wt% to 25 wt% solution.
 前記のポリマー1のNMP溶液と、ポリ(4-スチレンスルホン酸)のNMP溶液を、ポリマーの重量比が6:4となるよう混合した。このとき、塩化リチウムをポリマー重量に対して20重量%~30重量%となるよう添加して混合した。この混合ポリマー溶液をホットプレート上ガラス板に溶液濃度に応じて約150~250μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは10~25μmであった。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。 The NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 6: 4. At this time, lithium chloride was added and mixed so as to be 20% by weight to 30% by weight with respect to the polymer weight. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 to 250 μm depending on the concentration of the solution, NMP was distilled off until a film was formed, and then immersed in water overnight or longer. The thickness of the obtained film was 10 to 25 μm. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(実施例13)
 実施例12において、前記のポリマー1のNMP溶液と、ポリ(4-スチレンスルホン酸)のNMP溶液を、ポリマーの重量比が7:3となるよう混合する以外は、実施例12と同様に行った。
(Example 13)
In Example 12, the same procedure as in Example 12 was performed, except that the NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 7: 3. It was.
(実施例14)
 実施例12において、前記のポリマー1のNMP溶液と、ポリ(4-スチレンスルホン酸)のNMP溶液を、ポリマーの重量比が8:2となるよう混合する以外は、実施例12と同様に行った。
(Example 14)
In Example 12, the same procedure as in Example 12 was performed, except that the NMP solution of polymer 1 and the NMP solution of poly (4-styrenesulfonic acid) were mixed so that the weight ratio of the polymer was 8: 2. It was.
 実施例12~14で作製したイオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm2 を有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能のテストを行った。充放電時の電流値は1280mAとすることで、電流密度は80mA/cm2とした。充電時の上限電圧は1.7V、放電時の下限電圧は1.0Vとした。正極電解液には1.7mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.7mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 The ion exchange membranes produced in Examples 12 to 14 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG. A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance. The current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 . The upper limit voltage during charging was 1.7 V, and the lower limit voltage during discharging was 1.0 V. A 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.7 mol / l vanadium sulfate was used for the negative electrode electrolyte. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 実施例12~14で作製したイオン交換膜を用いて耐酸化性試験を行い、その結果、表4のようになった。また、他の比較例として、旭硝子社製セレミオンAPS4を用いて同様の測定を行った(比較例15)。 The oxidation resistance test was performed using the ion exchange membranes produced in Examples 12 to 14. As a result, the results shown in Table 4 were obtained. Moreover, the same measurement was performed using Asahi Glass Co., Ltd. Selemion APS4 as another comparative example (Comparative Example 15).
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表4の結果から明らかなように、実施例12~14のポリベンズイミダゾール(A)と酸性イオン性基含有ポリマー(B)からなるイオン交換膜は、低抵抗であり、耐酸化性試験後においても膜形状を保持し、電流効率損失もほとんど見られなかった。この結果から、イオン性基含有ポリベンズイミダゾール(A)と酸性イオン性基含有ポリマー(B)からなるイオン交換膜は、非常に優れた初期特性と耐酸化性を有していることが分かった。 As is clear from the results in Table 4, the ion exchange membranes comprising the polybenzimidazole (A) of Examples 12 to 14 and the acidic ionic group-containing polymer (B) have low resistance, and after the oxidation resistance test However, the film shape was maintained and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane comprising the ionic group-containing polybenzimidazole (A) and the acidic ionic group-containing polymer (B) has very excellent initial characteristics and oxidation resistance. .
 この結果から、ポリマー(A)のポリベンズイミダゾールとポリマー(B)のスルホン酸が強固な相互作用を形成していることにより、実施例のように水溶性のポリマーを用いた場合でも溶出することなく、低抵抗化成分として機能していると考える。また、実施例ではポリマー(B)として電子供与基をもたないポリマーを使用していることにより、従来の炭化水素系イオン交換膜よりも耐酸化性に優れていると考える。一方、比較例15のような市販のイオン交換膜においても、抵抗が高い結果であった。 From this result, the polybenzimidazole of the polymer (A) and the sulfonic acid of the polymer (B) form a strong interaction, so that even when a water-soluble polymer is used as in the example, it is eluted. It is thought that it functions as a low resistance component. In the examples, it is considered that the polymer (B) is superior in oxidation resistance to the conventional hydrocarbon ion exchange membrane by using a polymer having no electron donating group. On the other hand, the resistance of the commercially available ion exchange membrane as in Comparative Example 15 was also high.
(実施例15)
 前記のポリマー1のNMP溶液と、ポリマー5のNMP溶液を、ポリマーの重量比が7:3となるよう混合した。この混合ポリマー溶液をホットプレート上ガラス板に約150μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Example 15)
The NMP solution of polymer 1 and the NMP solution of polymer 5 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 μm, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(実施例16)
 前記のポリマー1のNMP溶液と、ポリマー2のNMP溶液を、ポリマーの重量比が7:3となるよう混合した。この混合ポリマー溶液をホットプレート上ガラス板に約150μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Example 16)
The NMP solution of polymer 1 and the NMP solution of polymer 2 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 μm, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(実施例17)
 前記のポリマー1のNMP溶液と、ポリマー4のNMP溶液を、ポリマーの重量比が7:3となるよう混合した。この混合ポリマー溶液をホットプレート上ガラス板に約150μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムの厚みは15μmであった。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Example 17)
The NMP solution of polymer 1 and the NMP solution of polymer 4 were mixed so that the weight ratio of the polymer was 7: 3. This mixed polymer solution was cast on a glass plate on a hot plate to a thickness of about 150 μm, NMP was distilled off until it became a film, and then immersed in water overnight. The thickness of the obtained film was 15 μm. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(比較例16)
 ポリマー6のN,N-ジメチルアセトアミド溶液をホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまで溶媒を留去した後、水中に一晩以上浸漬することで、厚さ平均10μmのフィルムを調製した。
(Comparative Example 16)
The N, N-dimethylacetamide solution of polymer 6 was cast on a glass plate on a hot plate while adjusting the thickness, the solvent was distilled off until it became a film, and then immersed in water for more than one night. A 10 μm film was prepared.
(比較例17)
 比較例16に記載のポリマー6の溶液と、実施例15に記載のポリマー5の溶液を、ポリマーの重量比が4:6となるよう混合した。この混合ポリマー溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均15μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Comparative Example 17)
The solution of polymer 6 described in Comparative Example 16 and the solution of polymer 5 described in Example 15 were mixed so that the weight ratio of the polymer was 4: 6. This mixed polymer solution was cast on a glass plate on a hot plate with the thickness adjusted, NMP was distilled off until it became a film, and then immersed in water overnight to adjust the film with an average thickness of 15 μm. did. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(比較例18)
 ポリマー5のNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調製した。
(Comparative Example 18)
The NMP solution of polymer 5 was cast on a glass plate on a hot plate while adjusting the thickness, and after NMP was distilled off until it became a film, it was immersed in water overnight for a film with an average thickness of 30 μm. Prepared.
(比較例19)
 比較例18で得られたフィルムを、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Comparative Example 19)
The film obtained in Comparative Example 18 was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(比較例20)
 ポリマー2のNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Comparative Example 20)
The NMP solution of polymer 2 was cast on a glass plate on a hot plate with the thickness adjusted, and after NMP was distilled off until it became a film, it was immersed in water for more than one night to form a film with an average thickness of 30 μm. It was adjusted. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
(比較例21)
 ポリマー4のNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均30μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。
(Comparative Example 21)
The NMP solution of polymer 4 was cast on a glass plate on a hot plate while adjusting the thickness, and after NMP was distilled off until it became a film, it was immersed in water overnight for a film with an average thickness of 30 μm. It was adjusted. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component.
 実施例15~17及び比較例16~21で作製したイオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm2 を有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能のテストを行った。充放電時の電流値は1280mAとすることで、電流密度は80mA/cm2とした。充電時の上限電圧は1.6V、放電時の下限電圧は1.0Vとした。正極電解液には1.5mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.5mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。 The ion exchange membranes produced in Examples 15 to 17 and Comparative Examples 16 to 21 were sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.) to assemble a cell as shown in FIG. A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to test the ion exchange membrane performance. The current value at charging / discharging was set to 1280 mA, and the current density was set to 80 mA / cm 2 . The upper limit voltage during charging was 1.6 V, and the lower limit voltage during discharging was 1.0 V. A 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte, and a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. The amount of the electrolytic solution was excessively large with respect to the cell and the piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
 実施例15~17及び比較例16~21で作製したイオン交換膜を用いて耐酸化性試験を行い、その結果、表1のようになった。また、他の比較例として、米国デュポン社製ナフィオン115CS及び旭硝子社製セレミオンCSO、セレミオンCMVを用いて同様の測定を行った(比較例22~24)。 The oxidation resistance test was performed using the ion exchange membranes produced in Examples 15 to 17 and Comparative Examples 16 to 21, and the results are shown in Table 1. As another comparative example, the same measurement was performed using Nafion 115CS manufactured by DuPont of the United States, and Selemion CSO and Selemion CMV manufactured by Asahi Glass (Comparative Examples 22 to 24).
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表5の結果から明らかなように、実施例15~17のイオン性基含有ポリベンズイミダゾール(A)とポリマー(B)からなるイオン交換膜は、他の比較例よりも膜厚みが薄いにも関わらず、耐酸化性試験後においても膜形状を保持し、電流効率損失もほとんど見られなかった。この結果から、イオン性基含有ポリベンズイミダゾールからなるイオン交換膜は、非常に優れた耐酸化性を有していることが分かった。 As is clear from the results in Table 5, the ion exchange membranes comprising the ionic group-containing polybenzimidazole (A) and the polymer (B) in Examples 15 to 17 are thinner than the other comparative examples. Nevertheless, the film shape was maintained even after the oxidation resistance test, and almost no current efficiency loss was observed. From this result, it was found that the ion exchange membrane made of ionic group-containing polybenzimidazole had very excellent oxidation resistance.
 これに対し、イオン性基を含有していないポリベンズイミダゾールからなるイオン交換膜(比較例16)は、耐酸化性が不十分であった。さらに、このイオン性基を含有していないポリベンズイミダゾールと、酸性イオン性基を含有するポリマーからなるイオン交換膜(比較例17)でも、耐酸化性が不十分であった。この結果から、ポリベンズイミダゾールにイオン性基を導入した効果が発現しているものと考えられる。また、比較例18~21は従来の芳香族系ポリマーにスルホン酸基を導入したものである。これらは耐酸化性試験において膜が溶解または断片化してしまい、膜形状を保持できるものはなかった。一方、比較例22のようなパーフルオロカーボンスルホン酸イオン交換膜においては、耐酸化性に優れているものの、電流効率が低いため初期のエネルギー効率は85.5%であり、実施例15のエネルギー効率88.5%に比べて低かった。さらに、市販のイオン交換膜(比較例23、24)においても、比較例16~21と同様の結果であった。 On the other hand, the ion exchange membrane made of polybenzimidazole containing no ionic group (Comparative Example 16) had insufficient oxidation resistance. Furthermore, even the ion exchange membrane (Comparative Example 17) made of a polybenzimidazole containing no ionic group and a polymer containing an acidic ionic group had insufficient oxidation resistance. From this result, it is considered that the effect of introducing an ionic group into polybenzimidazole is expressed. In Comparative Examples 18 to 21, sulfonic acid groups are introduced into conventional aromatic polymers. In these oxidation resistance tests, the film was dissolved or fragmented, and none of the films could maintain the film shape. On the other hand, the perfluorocarbon sulfonic acid ion exchange membrane as in Comparative Example 22 is excellent in oxidation resistance, but the initial energy efficiency is 85.5% because of low current efficiency. It was low compared to 88.5%. Further, in the commercially available ion exchange membranes (Comparative Examples 23 and 24), the same results as in Comparative Examples 16 to 21 were obtained.
 本発明のイオン性基含有ポリベンズイミダゾール(A)またはその組成物をレドックス電池用イオン交換膜として用いることにより、長寿命、低いセル抵抗、優れた電圧効率及びエネルギー効率を示すレドックス電池を提供することができる。 By using the ionic group-containing polybenzimidazole (A) or the composition thereof of the present invention as an ion exchange membrane for a redox battery, a redox battery exhibiting long life, low cell resistance, excellent voltage efficiency and energy efficiency is provided. be able to.
 1…集電板、2…スペーサ、3…イオン交換膜、4a,b…通液路、5…電極材、6…正極液タンク、7…負極液タンク、8,9…ポンプ DESCRIPTION OF SYMBOLS 1 ... Current collector plate, 2 ... Spacer, 3 ... Ion exchange membrane, 4a, b ... Liquid passage, 5 ... Electrode material, 6 ... Positive electrode tank, 7 ... Negative electrode tank, 8, 9 ... Pump

Claims (15)

  1. 下記の一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)を含有することを特徴とする、レドックス電池用イオン交換膜。
    Figure JPOXMLDOC01-appb-C000001
     
    ただし、Rはイミダゾール環を形成できる4価の芳香族ユニットを、Rは2価の芳香族基を表す。Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基、及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を表す。
    An ion exchange membrane for a redox battery, comprising polybenzimidazole (A) containing a constituent represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    However, R 1 represents a tetravalent aromatic unit capable of forming an imidazole ring, and R 2 represents a divalent aromatic group. X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents an integer of 1 to 4.
  2.  前記一般式(1)の構成成分が、下記一般式(2)及び下記一般式(3)で示される構成成分を含むことを特徴とする、請求項1に記載のレドックス電池用イオン交換膜。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003

    ただし、nは一般式(2)の共重合比を示し、20≦n≦100の式を満たす。Rは2価の芳香族基を表し、Xはスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基及びこれらの金属塩、アンモニウム塩から選ばれる一種以上のイオン性基を表し、mは1から4の整数を、ZはO、SO、C(CH、C(CF、及びOPhO(但しPhは芳香族基を表す)からなる群より選択されてなる少なくとも1種以上を表す。
    2. The ion exchange membrane for a redox battery according to claim 1, wherein the constituent of the general formula (1) includes constituents represented by the following general formula (2) and the following general formula (3).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003

    However, n shows the copolymerization ratio of General formula (2), and satisfy | fills the formula of 20 <= n <= 100. R 2 represents a divalent aromatic group, X represents one or more ionic groups selected from a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a carboxyl group, and metal salts and ammonium salts thereof, and m represents 1 To an integer of 4 to 4, wherein Z is at least one selected from the group consisting of O, SO 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , and OPhO (where Ph represents an aromatic group). It represents the above.
  3.  請求項1~2のいずれかに記載のポリベンズイミダゾール(A)を10~100質量%含むことを特徴とするレドックス電池用イオン交換膜。 An ion exchange membrane for a redox battery comprising 10 to 100% by mass of the polybenzimidazole (A) according to any one of claims 1 to 2.
  4. 前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、スルホン酸基、ホスホン酸基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも1種以上の酸性イオン性基を有し、かつ式(1)の構造を含まないポリマー(B1)を含有する組成物からなり、該(B1)のイオン交換容量が1.5mmeq/g以上であることを特徴とする、請求項1又は2に記載のレドックス電池用イオン交換膜。 Polybenzimidazole (A) containing the structural component represented by the general formula (1), and at least one acidic ion selected from a sulfonic acid group, a phosphonic acid group, a carboxyl group, or a metal salt thereof, or an ammonium salt It comprises a composition containing a polymer (B1) having a functional group and not containing the structure of formula (1), wherein the ion exchange capacity of (B1) is 1.5 mmeq / g or more. The ion exchange membrane for redox batteries of Claim 1 or 2.
  5. 前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を有する芳香族炭化水素系ポリマー(B2)を含有する組成物からなることを特徴とする請求項1、2、4のいずれか1項に記載のレドックス電池用イオン交換膜。 Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) It consists of a composition containing the aromatic hydrocarbon polymer (B2) which has at least 1 or more types of acidic ionic groups chosen from a salt and ammonium salt, Any one of Claim 1, 2, 4 characterized by the above-mentioned. The ion exchange membrane for redox batteries described in 1.
  6. 前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を、1個以上含有する繰り返し単位を有するポリマー(B3)とを含有する組成物からなることを特徴とする請求項1、2、4のいずれか1項に記載のレドックス電池用イオン交換膜。 Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) It consists of a composition containing the polymer (B3) which has a repeating unit which contains at least 1 or more types of acidic ionic groups chosen from a salt and ammonium salt, One or more, The ion exchange membrane for redox batteries of any one of these.
  7.  前記一般式(1)で表される構成成分を含むポリベンズイミダゾール(A)と、式(1)の構造を含まず、かつスルホン酸基、ホスホン酸基、ヒドロキシル基、カルボキシル基またはこれらの金属塩、アンモニウム塩から選ばれる少なくとも一種以上の酸性イオン性基を有するポリマー(B4)を含有する組成物からなり、ポリマー(B4)が炭素数12以上の繰り返し単位を有することを特徴とする請求項1、2、4のいずれか1項に記載のレドックス電池用イオン交換膜。 Polybenzimidazole (A) containing the structural component represented by the general formula (1), and a sulfonic acid group, phosphonic acid group, hydroxyl group, carboxyl group or a metal thereof which does not contain the structure of the formula (1) It consists of a composition containing a polymer (B4) having at least one acidic ionic group selected from a salt and an ammonium salt, and the polymer (B4) has a repeating unit having 12 or more carbon atoms. The ion exchange membrane for redox batteries according to any one of 1, 2, and 4.
  8.  前記組成物において、ポリマー(B1)又はポリマー(B2)が、下記一般式(4)及び(5)で示される構成成分を含むことを特徴とする、請求項4又は5のいずれかに記載のレドックス電池用イオン交換膜。
    Figure JPOXMLDOC01-appb-C000004
    ただし、Arは2価の芳香族基を、Yはスルホニル基またはカルボニル基を、ZはO原子、S原子、直接結合のいずれかを、XはHまたは1価のカチオン種を示す。
    Figure JPOXMLDOC01-appb-C000005
    ただし、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
    In the said composition, a polymer (B1) or a polymer (B2) contains the structural component shown by following General formula (4) and (5), It is any one of Claim 4 or 5 characterized by the above-mentioned. Ion exchange membrane for redox batteries.
    Figure JPOXMLDOC01-appb-C000004
    Here, Ar represents a divalent aromatic group, Y represents a sulfonyl group or a carbonyl group, Z represents an O atom, an S atom, or a direct bond, and X represents H or a monovalent cation species.
    Figure JPOXMLDOC01-appb-C000005
    However, Z represents either an O atom or an S atom, and Ar ′ represents a divalent aromatic group.
  9. 請求項4~8のいずれかに記載の組成物において、前記ポリベンズイミダゾール(A)を含有するとともに、前記ポリマー(B1)~ポリマー(B4)からなる群より選ばれる少なくとも1種以上のポリマーを含有し、該ポリマー(B1)~ポリマー(B4)の合計含有量が該組成物の10~80質量%であることを特徴とする請求項4~8のいずれかに記載のレドックス電池用イオン交換膜。 The composition according to any one of claims 4 to 8, which contains the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4). 9. The ion exchange for redox battery according to claim 4, wherein the total content of the polymer (B1) to the polymer (B4) is 10 to 80% by mass of the composition. film.
  10. 請求項4~8のいずれかに記載の組成物において、前記ポリベンズイミダゾール(A)を含有するとともに、前記ポリマー(B1)~ポリマー(B4)からなる群より選ばれる少なくとも1種以上のポリマーを含有し、該ポリマー(A)と該ポリマー(B1)~ポリマー(B4)の合計含有量が該組成物の10~100質量%であることを特徴とする請求項4~8のいずれかに記載のレドックス電池用イオン交換膜。 The composition according to any one of claims 4 to 8, which contains the polybenzimidazole (A) and at least one polymer selected from the group consisting of the polymers (B1) to (B4). The total content of the polymer (A) and the polymer (B1) to the polymer (B4) is 10 to 100% by mass of the composition, according to any one of claims 4 to 8. Ion exchange membrane for redox batteries.
  11.  レドックスフロー電池用イオン交換膜であることを特徴とする、請求項1~10のいずれかに記載のレドックス電池用イオン交換膜。 11. The ion exchange membrane for a redox battery according to claim 1, which is an ion exchange membrane for a redox flow battery.
  12.  電池の活物質としてバナジウムイオンを用いるレドックス電池に用いられることを特徴とする、請求項1~11のいずれかに記載のレドックス電池用イオン交換膜。 The ion exchange membrane for a redox battery according to any one of claims 1 to 11, which is used for a redox battery using vanadium ions as an active material of the battery.
  13.  請求項1~12のいずれかに記載のイオン交換膜と電極とを含有することを特徴とするレドックス電池用イオン交換膜/電極複合体。 An ion exchange membrane / electrode composite for a redox battery comprising the ion exchange membrane according to any one of claims 1 to 12 and an electrode.
  14.  請求項1~12のいずれかに記載のイオン交換膜を含有することを特徴とするレドックス電池。 A redox battery comprising the ion exchange membrane according to any one of claims 1 to 12.
  15.  請求項13に記載のイオン交換膜/電極複合体を含有することを特徴とするレドックス電池。 A redox battery comprising the ion exchange membrane / electrode composite according to claim 13.
PCT/JP2015/053519 2014-02-07 2015-02-09 Ion-exchange membrane for redox battery, complex, and redox battery WO2015119272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015561076A JP6447520B2 (en) 2014-02-07 2015-02-09 Ion exchange membrane for redox battery, composite, and redox battery

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014-021985 2014-02-07
JP2014021985 2014-02-07
JP2014028300 2014-02-18
JP2014-028300 2014-02-18
JP2014-028301 2014-02-18
JP2014028301 2014-02-18
JP2014167622 2014-08-20
JP2014167620 2014-08-20
JP2014-167620 2014-08-20
JP2014-167622 2014-08-20
JP2014-167621 2014-08-20
JP2014167621 2014-08-20

Publications (1)

Publication Number Publication Date
WO2015119272A1 true WO2015119272A1 (en) 2015-08-13

Family

ID=53778069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053519 WO2015119272A1 (en) 2014-02-07 2015-02-09 Ion-exchange membrane for redox battery, complex, and redox battery

Country Status (2)

Country Link
JP (1) JP6447520B2 (en)
WO (1) WO2015119272A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279130A1 (en) * 2016-03-24 2017-09-28 United Technologies Corporation Separator layer for flow battery
WO2017203921A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
CN108400362A (en) * 2018-02-05 2018-08-14 大连理工大学 A kind of side chain type alkyl sulfonate polybenzimidazole amberplex and preparation method thereof
JP2018133141A (en) * 2017-02-13 2018-08-23 東洋紡株式会社 Redox battery using thin diaphragm
US10985425B2 (en) 2017-09-11 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Flow battery containing lithium ion conductor
JP2021513733A (en) * 2018-02-28 2021-05-27 コーロン インダストリーズ インク Ion exchange membrane and energy storage device containing it
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
EP3993115A1 (en) * 2020-10-31 2022-05-04 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Acid-base polymer blend membranes
EP4213290A3 (en) * 2022-01-14 2023-11-08 Microcosm Technology Co., Ltd. Separator and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327825A (en) * 2002-05-08 2003-11-19 Toyobo Co Ltd Composition containing acidic group-containing polybenzimidazole-based compound and acidic group- containing polymer, ion-conductive film, adhesive, composite material and fuel cell
JP2013507742A (en) * 2009-10-16 2013-03-04 中国科学院大▲連▼化学物理研究所 Application of Aromatic Polymer Ion Exchange Membrane and Its Composite Membrane to Acidic Electrolyte Flow Energy Storage Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327825A (en) * 2002-05-08 2003-11-19 Toyobo Co Ltd Composition containing acidic group-containing polybenzimidazole-based compound and acidic group- containing polymer, ion-conductive film, adhesive, composite material and fuel cell
JP2013507742A (en) * 2009-10-16 2013-03-04 中国科学院大▲連▼化学物理研究所 Application of Aromatic Polymer Ion Exchange Membrane and Its Composite Membrane to Acidic Electrolyte Flow Energy Storage Battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279130A1 (en) * 2016-03-24 2017-09-28 United Technologies Corporation Separator layer for flow battery
JP2017174814A (en) * 2016-03-24 2017-09-28 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery and separator layer
CN107230792A (en) * 2016-03-24 2017-10-03 联合工艺公司 Carrier ring for flow battery
WO2017203921A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
JP2018133141A (en) * 2017-02-13 2018-08-23 東洋紡株式会社 Redox battery using thin diaphragm
US10985425B2 (en) 2017-09-11 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Flow battery containing lithium ion conductor
CN108400362A (en) * 2018-02-05 2018-08-14 大连理工大学 A kind of side chain type alkyl sulfonate polybenzimidazole amberplex and preparation method thereof
JP2021513733A (en) * 2018-02-28 2021-05-27 コーロン インダストリーズ インク Ion exchange membrane and energy storage device containing it
JP7154723B2 (en) 2018-02-28 2022-10-18 コーロン インダストリーズ インク Ion exchange membrane and energy storage device containing the same
US11605829B2 (en) 2018-02-28 2023-03-14 Kolon Industries, Inc. Ion exchange membrane and energy storage device comprising same
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
EP3993115A1 (en) * 2020-10-31 2022-05-04 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Acid-base polymer blend membranes
WO2022091011A1 (en) * 2020-10-31 2022-05-05 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Acid-base polymer blend membranes
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
EP4213290A3 (en) * 2022-01-14 2023-11-08 Microcosm Technology Co., Ltd. Separator and application thereof

Also Published As

Publication number Publication date
JPWO2015119272A1 (en) 2017-03-30
JP6447520B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6447520B2 (en) Ion exchange membrane for redox battery, composite, and redox battery
JP5140907B2 (en) PROTON CONDUCTIVE POLYMER MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME
JP4424129B2 (en) Block copolymer and use thereof
JP5472267B2 (en) Nitrogen-containing aromatic compound, method for producing the same, polymer, and proton conducting membrane
US8557472B2 (en) Proton conducting polymer membrane, method for production thereof and fuel cell therewith
WO2002038650A1 (en) Polybenzazole compound having sulfo group and/or phosphono group, resin composition containing the same, molded resin, solid polymer electrolyte film, solid electrolyte film/electrode catalyst layer composite, and process for producing the composite
WO2013027758A1 (en) Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery
JP2016207608A (en) Ion exchange membrane for polybenzimidazole-based redox battery, method for producing the same, composite body, and redox battery
JP2017033895A (en) Diaphragm for redox battery
WO2014034415A1 (en) Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery
JP2006339064A (en) Polybenzimidazole-based proton-conducting polymer film, manufacturing method of the same, and fuel cell using the same
US20110033774A1 (en) Polymer electrolyte composition and method for preparing the same, and fuel cell
JP2016192294A (en) Ion exchange membrane for vanadium-based redox battery, complex and vanadium-based redox battery
JP4096227B2 (en) Composition comprising an acid group-containing polybenzimidazole compound and an acid group-containing polymer, an ion conductive membrane, an adhesive, a composite, and a fuel cell
WO2012015072A1 (en) Polymer electrolyte composition, polymer electrolyte and sulfur-containing heterocyclic aromatic compound
JP4228040B2 (en) POLYBENZAZOLE COMPOUND HAVING SULFONIC ACID GROUP AND / OR PHOSPHONIC GROUP, RESIN COMPOSITION CONTAINING THE SAME, RESIN MOLDED ARTICLE, SOLID POLYMER ELECTROLYTE MEMBRANE, SOLID ELECTROLYTE MEMBRANE / ELECTRODE CATALYST LAYER COMPLEX, AND METHOD FOR PRODUCING THE SAME
JP2010031231A (en) New aromatic compound and polyarylene-based copolymer having nitrogen-containing aromatic ring
JP4752336B2 (en) Proton conducting membrane with improved thermal stability and composition for forming the conducting membrane
JP4337038B2 (en) Composition comprising an acidic group-containing polybenzimidazole compound
JP4470099B2 (en) Acid group-containing polybenzimidazole compound and composition thereof
JP5581593B2 (en) Polyarylene-based copolymer, proton conducting membrane and solid polymer electrolyte fuel cell
JP5391779B2 (en) Polymer electrolyte membrane and solid polymer electrolyte fuel cell
JP5347287B2 (en) Polymer electrolyte for direct methanol fuel cell and its use
JP2002146016A (en) Ion-conductive polyazole containing phosphonic acid group
JP2002146013A (en) Ion-conductive polyazole containing phosphonic acid group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015561076

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15746499

Country of ref document: EP

Kind code of ref document: A1