WO2017203921A1 - Vanadium redox secondary battery and method for producing vanadium redox secondary battery - Google Patents

Vanadium redox secondary battery and method for producing vanadium redox secondary battery Download PDF

Info

Publication number
WO2017203921A1
WO2017203921A1 PCT/JP2017/016315 JP2017016315W WO2017203921A1 WO 2017203921 A1 WO2017203921 A1 WO 2017203921A1 JP 2017016315 W JP2017016315 W JP 2017016315W WO 2017203921 A1 WO2017203921 A1 WO 2017203921A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
secondary battery
electrode
diaphragm
vanadium redox
Prior art date
Application number
PCT/JP2017/016315
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 茂樹
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2017203921A1 publication Critical patent/WO2017203921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the vanadium redox secondary battery according to the present invention includes a vanadium ion whose oxidation number changes between pentavalent and tetravalent or an ion containing vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction.
  • a vanadium redox secondary battery 1 (hereinafter referred to as battery 1) includes an outer bag 2 and a positive electrode terminal 3 protruding from a part of the peripheral edge of the outer bag 2. And a negative electrode terminal 4, a positive electrode material 5, and a negative electrode material 6.
  • the positive electrode terminal 3 and the negative electrode terminal 4 protrude from a part of the peripheral edge portion of the outer bag 2 in a state where the base end side is covered with the sealing materials 30 and 40.
  • the battery 1 alone or a combination of the battery 1 and another battery 1 may be accommodated in a case (not shown).
  • the half 22 is electrolyte impermeable.
  • the half 22 is preferably composed of a laminate sheet containing a synthetic resin layer and a metal layer.
  • the material for the synthetic resin layer include polypropylene, polyethylene, polyamide such as nylon 6, nylon 66, and the like.
  • the material for the metal layer include aluminum, aluminum alloy, copper, copper alloy, iron, stainless steel, titanium, and titanium alloy.
  • the thickness of the half body 22 is not particularly limited, but is preferably 15 to 250 ⁇ m. When the thickness is 15 to 250 ⁇ m, the battery has sufficient strength and the volume energy density of the battery is improved.
  • vanadium ions whose oxidation number changes between divalent and trivalent or ions containing vanadium whose oxidation number changes between divalent and trivalent due to oxidation-reduction reaction are applied to the protective layer 62.
  • a precipitate containing a solid compound containing the contained vanadium solid salt as a negative electrode active material is supported.
  • contact between the positive electrode 5 and the negative electrode 6 due to passage of pentavalent vanadium ions and divalent vanadium ions through the diaphragm 7 is suppressed, that is, cross contamination of active material ions is prevented. Since it is suppressed, a long life and long-time voltage maintenance can be realized, and since proton conductivity is high, it is considered that use at a high input / output density is realized.
  • the thickness of the diaphragm 7 is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 10 ⁇ m or less. When the thickness is 50 ⁇ m or less, the charge energy density and the discharge energy density when the current density is increased are good.
  • V 2 (SO 4 ) 3 as a trivalent vanadium compound, VOSO 4 as a tetravalent vanadium compound, and a hinder are mixed in a carbon material, and mixed powder is obtained by mixing with a stirrer.
  • the composition of the carbon material, active material, and binder is determined according to the required capacity, drying conditions, external environment (temperature, humidity), and the like.
  • the electrode material is selectively used for the electrode material 5 and the electrode material 6.
  • a water retention film 55 is provided on the electrode 50 of the electrode material 5.
  • the current collector of the electrode material 5 is fixed to the half body 22 of the outer bag 2 and the current collector of the electrode material 6 of the electrode material 6 is fixed to the half body 21 by hot pressing or the like.
  • the volume resistivity at 1 kHz measured in 0.5 M sulfuric acid of the diaphragm 7 is 280 ⁇ ⁇ cm or more, and the sheet resistance is 3 ⁇ ⁇ cm. Since it is 2 or less, it has a good energy density when it is input / output at a high current density, that is, it can realize a high input / output, has a long life, and can maintain a voltage for a long time. And since it has the water retention film
  • Comparative Example 3 A battery of Comparative Example 3 was produced in the same manner as in Example 1 except that an anion exchange membrane (“ion exchange membrane M”, manufactured by FuMA-Tech) was used as the diaphragm. The thickness and the like of the ion exchange membrane of Comparative Example 3 are shown in No. 1 of Table 1. 7 shows.
  • Step 1 of Table 2 after CC charging to 1.45 V at 8 mA, CC discharging to 0.8 V at 8 mA was taken as one cycle, and 20 cycles of charging / discharging were performed.
  • step 2 after charging CC to 1.45 V at 8 mA, charging and discharging for one cycle was performed in which CC discharging was performed to 0.8 V at 16 mA. Thereafter, charge and discharge were performed in the same manner.
  • the “capacity maintenance ratio” in Table 1 was obtained by (discharge current capacity at 40th cycle) / (discharge current capacity at 20th cycle).
  • the “@ 20 mA / cm 2 ” of “Discharge energy density” in Table 1 can be taken out when CC discharge is performed at 8 mA to 1.45 V and then CC discharge is performed at 125 mA to 0.8 V in Step 5.
  • Energy (Wh) divided by (L) by electrode volume. 125 (mA) /6.25 20 (mA / cm 2 ), and the discharge energy density extracted when a current was passed at a current density of 20 mA / cm 2 was obtained.
  • FIG. 3 is a graph showing the relationship between the volume resistivity of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the voltage maintenance rate.
  • the horizontal axis represents volume resistivity [ ⁇ ⁇ cm], and the vertical axis represents voltage maintenance ratio [%]. From FIG. 3, it can be seen that the batteries 1 of Examples 1 to 4 in which the volume resistivity of the ion exchange membrane is 280 ⁇ ⁇ cm or more and the batteries of Comparative Example 1 have a voltage maintenance rate of 92% or more and are good. .
  • the voltage maintenance rate is 97% or more, which is more preferable.
  • FIG. 4 is a graph showing the relationship between the volume resistivity of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the capacity retention rate.
  • the horizontal axis represents volume resistivity [ ⁇ ⁇ cm], and the vertical axis represents capacity retention rate [%].
  • the batteries 1 of Examples 1 to 4 in which the volume resistivity of the ion exchange membrane is 280 ⁇ ⁇ cm or more and the batteries of Comparative Example 1 have a capacity retention rate of 65% or more. It turns out that it is improving more.
  • the voltage maintenance rate is preferably 86% or more, and when the volume resistivity is 1500 ⁇ ⁇ cm or more, the voltage maintenance rate is 89% or more, more preferable.
  • the capacity retention rate of Comparative Example 4 is high. This is because the discharge current capacity has already greatly decreased due to the deterioration of the battery at the 20th cycle, and the discharge current capacity at the 40th cycle. Since it has not changed, the capacity retention rate is apparently high.
  • FIG. 7 is a graph showing the relationship between the sheet resistance value of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the discharge energy density.
  • the horizontal axis represents the sheet resistance [ ⁇ ⁇ cm 2 ], and the vertical axis represents the discharge energy density [Wh / L].
  • 2.56mA / cm 2, 10mA / cm 2, 20mA / cm 2 by applying a current at a current density of each shows the result of obtaining discharge energy density could be extracted when fully been charged. As the current density increases, the discharge energy density that can be extracted decreases.
  • FIG. 8 is a graph showing the relationship between the thickness of the ion exchange membrane 7 of the example and the energy density.
  • the horizontal axis is the thickness [ ⁇ m]
  • the vertical axis is the energy density [Wh / L].
  • is charging energy density @ 10 mA / cm 2
  • is discharging energy density @ 10 mA / cm 2 . From FIG. 8, it can be seen that the batteries 1 of Examples 1 to 4 have a high charge energy density and discharge energy density when a current is passed at a high current density of 10 mA / cm 2 .
  • the discharge energy density becomes higher when the current density is increased.
  • the Coulomb efficiency when charging and discharging are repeated becomes better, and the discharge energy density becomes higher when the current density is increased.

Abstract

Provided are: a vanadium redox secondary battery that has an excellent energy density when inputting/outputting at a high current density, has a long life, and can maintain voltage for a long time; and a method for producing said vanadium redox secondary battery. This battery 1 comprises: a positive electrode material 5 including a positive-electrode active material that includes vanadium ions having an oxidation number changing between pentavalence and tetravalence, or vanadium-containing ions having an oxidation number changing between pentavalence and tetravalence, by an oxidation-reduction reaction; a negative electrode material 6 including a negative-electrode active material that includes vanadium ions having an oxidation number changing between divalence and trivalence, or vanadium-containing ions having an oxidation number changing between divalence and trivalence, by an oxidation-reduction reaction; and a diaphragm 7 that partitions the electrode materials and that lets hydrogen ions pass through. The diaphragm 7 has a volume resistivity of 280 Ω·cm or higher at 1 kHz as measured in a 0.5 M sulfuric acid.

Description

バナジウムレドックス二次電池、及びバナジウムレドックス二次電池の製造方法Vanadium redox secondary battery and method for manufacturing vanadium redox secondary battery
 本発明は、活物質として、バナジウムイオン又はバナジウムを含むイオンを含有し、活物質による酸化還元反応を利用して充放電を行うバナジウムレドックス二次電池、及びバナジウムレドックス二次電池の製造方法に関する。 The present invention relates to a vanadium redox secondary battery that contains vanadium ions or vanadium-containing ions as an active material and performs charge / discharge using an oxidation-reduction reaction by the active material, and a method for manufacturing a vanadium redox secondary battery.
 二次電池は、デジタル家電製品、電気自動車、ハイブリッド自動車及び太陽光発電設備等に広く用いられている。この電池として、リチウムイオン二次電池、バナジウムレドックス二次電池(特許文献1)等が挙げられる。バナジウムレドックス二次電池は、2組の酸化還元対を利用して、イオンの価数変化によって充放電を行う。活物質としては、バナジウムイオン又はバナジウムを含むイオンが用いられる。 Secondary batteries are widely used in digital home appliances, electric vehicles, hybrid vehicles, solar power generation facilities, and the like. Examples of the battery include a lithium ion secondary battery and a vanadium redox secondary battery (Patent Document 1). The vanadium redox secondary battery performs charge and discharge by changing the valence of ions using two sets of redox pairs. As the active material, vanadium ions or ions containing vanadium are used.
 バナジウムレドックス二次電池は、活物質及び水系電解液を有する電極と、電極に対向する銅等の導電体(集電体)とを備える電極材を、極性が異なる電極材が隔膜、例えばイオン交換膜を介して対向する状態で複数並設し、外装袋に収容することにより構成される。このバナジウムレドックス二次電池は、さらにケースに収容されることもある。 A vanadium redox secondary battery is composed of an electrode material comprising an electrode having an active material and an aqueous electrolyte and a conductor (current collector) such as copper facing the electrode. A plurality are arranged side by side in a state of being opposed to each other through a membrane, and are housed in an exterior bag. The vanadium redox secondary battery may be further accommodated in a case.
 従来のバナジウムレドックス電池においては、高入出力密度(高入出力化)を実現できるイオン交換膜を選択した場合、高寿命(良好なサイクル特性)、及び長時間の電圧維持の実現が困難であった。一方、高寿命及び長時間の電圧維持を実現できるイオン交換膜を選択した場合、高入出力化が困難であるという問題があった。従って、バナジウムレドックス二次電池において、高寿命であり、電圧を長時間維持できることと、高入出力密度での使用が可能であることとの両立が求められている。 In a conventional vanadium redox battery, when an ion exchange membrane capable of realizing a high input / output density (high input / output) is selected, it is difficult to realize a long life (good cycle characteristics) and a long-time voltage maintenance. It was. On the other hand, when an ion exchange membrane capable of realizing a long life and maintaining a voltage for a long time is selected, there is a problem that it is difficult to increase the input / output. Therefore, in a vanadium redox secondary battery, it is required to have both a long life and being able to maintain a voltage for a long time and being able to be used at a high input / output density.
特開2014-235833号公報JP 2014-235833 A
 本発明は、斯かる事情に鑑みてなされたものであり、高電流密度で入出力した場合に良好なエネルギー密度を有し、高寿命であり、電圧を長時間維持することができるバナジウムレドックス二次電池、及びバナジウムレドックス二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a good energy density when input / output is performed at a high current density, has a long life, and can maintain a voltage for a long time. An object of the present invention is to provide a secondary battery and a method for producing a vanadium redox secondary battery.
 本発明に係るバナジウムレドックス二次電池は、酸化還元反応によって、5価及び4価の間で酸化数が変化するバナジウムイオン、又は5価及び4価の間で酸化数が変化するバナジウムを含むイオンを含有する正極活物質を含む正の電極材と、酸化還元反応によって、2価及び3価の間で酸化数が変化するバナジウムイオン、又は2価及び3価の間で酸化数が変化するバナジウムを含むイオンを含有する負極活物質を含む負の電極材と、両電極材を区画するプロトン伝導性の隔膜とを有し、前記隔膜は、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であることを特徴とする。 The vanadium redox secondary battery according to the present invention includes a vanadium ion whose oxidation number changes between pentavalent and tetravalent or an ion containing vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction. A positive electrode material containing a positive electrode active material containing vanadium and a vanadium ion whose oxidation number changes between divalent and trivalent by a redox reaction, or vanadium whose oxidation number changes between divalent and trivalent A negative electrode material containing a negative electrode active material containing ions containing protons, and a proton-conductive diaphragm separating both electrode materials, the diaphragm being volume resistivity at 1 kHz measured in 0.5 M sulfuric acid Is 280 Ω · cm or more, and the sheet resistance is 3 Ω · cm 2 or less.
 本発明に係るバナジウムレドックス二次電池の製造方法は、3価のバナジウム化合物と、4価のバナジウム化合物と、炭素材料と、バインダとを混合して混合物を得、該混合物に水系電解液を配合して、混練物を得、該混練物を成形して電極を得、集電体に該電極を配置して電極材を得、一対の前記電極材間に、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であるプロトン伝導性の隔膜を介在させた状態で電池を組み立てることを特徴とする。 The manufacturing method of the vanadium redox secondary battery which concerns on this invention mixes a trivalent vanadium compound, a tetravalent vanadium compound, a carbon material, and a binder, obtains a mixture, and mix | blends aqueous electrolyte solution with this mixture Then, a kneaded product was obtained, the kneaded product was molded to obtain an electrode, the electrode was arranged on a current collector to obtain an electrode material, and measurement was performed in 0.5 M sulfuric acid between the pair of electrode materials. The battery is assembled in a state where a proton conductive diaphragm having a volume resistivity at 1 kHz of 280 Ω · cm or more and an area resistance value of 3 Ω · cm 2 or less is interposed.
 本発明によれば、隔膜は、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が、3Ω・cm以下であるので、バナジウムレドックス二次電池は、高電流密度で入出力した場合に良好なエネルギー密度を有し、即ち高入出力化を実現できるとともに、高寿命であり、かつ電圧を長時間維持することができる。 According to the present invention, the diaphragm has a volume resistivity at 1 kHz measured in 0.5 M sulfuric acid of 280 Ω · cm or more and an area resistance value of 3 Ω · cm 2 or less, so that the vanadium redox secondary The battery has a good energy density when input / output is performed at a high current density, that is, it can realize high input / output, has a long life, and can maintain a voltage for a long time.
本発明の実施の形態1に係るバナジウムレドックス二次電池1を示す模式的平面図である。1 is a schematic plan view showing a vanadium redox secondary battery 1 according to Embodiment 1 of the present invention. 図1のII-II線模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG. 実施例及び比較例のイオン交換膜の体積抵抗率と、電圧維持率との関係を示すグラフである。It is a graph which shows the relationship between the volume resistivity of the ion exchange membrane of an Example and a comparative example, and a voltage maintenance factor. 実施例及び比較例のイオン交換膜の体積抵抗率と、容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the volume resistivity of the ion exchange membrane of an Example and a comparative example, and a capacity | capacitance maintenance factor. 実施例及び比較例のイオン交換膜の体積抵抗率と、40サイクル目の放電電流容量との関係を示すグラフである。It is a graph which shows the relationship between the volume resistivity of the ion exchange membrane of an Example and a comparative example, and the discharge current capacity of the 40th cycle. 実施例及び比較例のイオン交換膜の面積抵抗値と、20サイクル目のクーロン効率との関係を示すグラフである。It is a graph which shows the relationship between the area resistance value of the ion exchange membrane of an Example and a comparative example, and the Coulomb efficiency of 20th cycle. 実施例及び比較例のイオン交換膜の面積抵抗値と、放電エネルギー密度との関係を示すグラフである。It is a graph which shows the relationship between the sheet resistance value of the ion exchange membrane of an Example and a comparative example, and discharge energy density. 実施例のイオン交換膜の厚みと、エネルギー密度との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the ion exchange membrane of an Example, and an energy density.
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
1.バナジウムレドックス二次電池
 図1及び図2に示すように、バナジウムレドックス二次電池1(以下、電池1という)は、外装袋2と、外装袋2の周縁部の一部から突出した正極端子3及び負極端子4と、正極の電極材5と、負極の電極材6とを備える。正極端子3,負極端子4は、基端部側がシール材30,40に覆われた状態で、外装袋2の周縁部の一部から突出している。この電池1単体、又は該電池1と他の電池1とを組み合わせてケース(不図示)に収容してもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
1. Vanadium Redox Secondary Battery As shown in FIGS. 1 and 2, a vanadium redox secondary battery 1 (hereinafter referred to as battery 1) includes an outer bag 2 and a positive electrode terminal 3 protruding from a part of the peripheral edge of the outer bag 2. And a negative electrode terminal 4, a positive electrode material 5, and a negative electrode material 6. The positive electrode terminal 3 and the negative electrode terminal 4 protrude from a part of the peripheral edge portion of the outer bag 2 in a state where the base end side is covered with the sealing materials 30 and 40. The battery 1 alone or a combination of the battery 1 and another battery 1 may be accommodated in a case (not shown).
 電極材5は、電極50、導電体51、保護層52、シーラント54、及び保水膜55を備える。
 導電体51は角型平板状をなし、前記外装袋2の、図2における下側の半体22の上面に配されており、導電体51の上面は保護層52により覆われている。保護層52の上面の周縁部の内側には、活物質、導電助剤としての炭素材料、バインダ、及び水系電解液を有する角型平板状の電極50が設けられている。
The electrode material 5 includes an electrode 50, a conductor 51, a protective layer 52, a sealant 54, and a water retention film 55.
The conductor 51 has a rectangular flat plate shape and is disposed on the upper surface of the lower half 22 in FIG. 2 of the outer bag 2, and the upper surface of the conductor 51 is covered with a protective layer 52. Inside the peripheral edge of the upper surface of the protective layer 52, a square plate electrode 50 having an active material, a carbon material as a conductive additive, a binder, and an aqueous electrolyte is provided.
 電極50上には、電極50より平面面積が大きい保水膜55が設けられており、保水膜55上には、保水膜55より平面面積が大きいプロトン伝導性の隔膜7が設けられている。
 なお、保水膜55は電極60に設けてもよく、電池1には備えないことにしてもよい。 シーラント54は縁部を有する枠状をなし、前記周縁部及び半体22に接着されており、半体22及び保護層52とにより導電体51を封止する。
A water retention film 55 having a larger planar area than the electrode 50 is provided on the electrode 50, and a proton conductive diaphragm 7 having a larger planar area than the water retention film 55 is provided on the water retention film 55.
The water retention film 55 may be provided on the electrode 60 and may not be provided in the battery 1. The sealant 54 has a frame shape having an edge portion, and is bonded to the peripheral edge portion and the half body 22. The conductor 51 is sealed by the half body 22 and the protective layer 52.
 以下、電極材5の各部、及び外装袋2の半体22について詳述する。
 半体22は電解液非透過性である。半体22は、合成樹脂層及び金属層を含有するラミネートシートからなるのが好ましい。
 合成樹脂層の材料としては、ポリプロピレン、ポリエチレン、ナイロン6,ナイロン66等のポリアミド等が挙げられる。金属層の材料としては、アルミニウム、アルミニウム合金、銅、銅合金、鉄、ステンレス、チタン、チタン合金等が挙げられる。
 半体22の厚みは特に限定されないが、15~250μmであるのが好ましい。厚みが15~250μmである場合、十分な強度を有するとともに、電池の体積エネルギー密度が向上する。
Hereinafter, each part of the electrode material 5 and the half body 22 of the exterior bag 2 will be described in detail.
The half 22 is electrolyte impermeable. The half 22 is preferably composed of a laminate sheet containing a synthetic resin layer and a metal layer.
Examples of the material for the synthetic resin layer include polypropylene, polyethylene, polyamide such as nylon 6, nylon 66, and the like. Examples of the material for the metal layer include aluminum, aluminum alloy, copper, copper alloy, iron, stainless steel, titanium, and titanium alloy.
The thickness of the half body 22 is not particularly limited, but is preferably 15 to 250 μm. When the thickness is 15 to 250 μm, the battery has sufficient strength and the volume energy density of the battery is improved.
 導電体51の平面面積は半体22の平面面積より小さい。
 導電体51は、銅、アルミニウム、ニッケル等の金属箔からなるのが好ましい。厚みは、5~100μmであるのが好ましい。厚みが100μm以下である場合、電池の体積エネルギー密度、重量エネルギー密度が向上する。
 導電体51は、周縁部の一部から突出したタブ(不図示)を有し、タブの先端部は正極端子3に接続されている。
The planar area of the conductor 51 is smaller than the planar area of the half body 22.
The conductor 51 is preferably made of a metal foil such as copper, aluminum, or nickel. The thickness is preferably 5 to 100 μm. When the thickness is 100 μm or less, the volume energy density and weight energy density of the battery are improved.
The conductor 51 has a tab (not shown) protruding from a part of the peripheral edge, and the tip of the tab is connected to the positive electrode terminal 3.
 保護層52は、導電体51の一面に、グラファイトシートを例えば導電性の接着シートを介し設けてなる。保護層52の厚みは1~100μmであるのが好ましい。この場合、電極50と導電体51との電気伝導性の低下を抑制でき、電池の内部抵抗を小さくすることができる。
 なお、保護層52の材質はグラファイトシートには限定されない。保護層52は導電性かつ電解液非透過性であればよく、導電性フィルム、シート状の導電性ゴムを用いることにしてもよい。また、導電体51の一面に黒鉛でコーティングすることにより、保護層52を形成することにしてもよい。また、水系電解液が酸性又はアルカリ性ではなく、導電体51が腐食等される虞がない場合は、保護層52を備えていなくてもよい。
The protective layer 52 is formed by providing a graphite sheet on one surface of the conductor 51 with, for example, a conductive adhesive sheet. The thickness of the protective layer 52 is preferably 1 to 100 μm. In this case, a decrease in electrical conductivity between the electrode 50 and the conductor 51 can be suppressed, and the internal resistance of the battery can be reduced.
The material of the protective layer 52 is not limited to the graphite sheet. The protective layer 52 may be conductive and non-permeable to electrolyte solution, and a conductive film or a sheet-like conductive rubber may be used. Alternatively, the protective layer 52 may be formed by coating one surface of the conductor 51 with graphite. Further, when the aqueous electrolyte is not acidic or alkaline and there is no possibility that the conductor 51 is corroded, the protective layer 52 may not be provided.
 なお、本実施の形態において、以後、符号を付さずに単に「集電体」と記載するときは、「導電体51(又は61)及び保護層52(又は62)」、又は「導電体51(又は61)単体」、を意味する。 In the present embodiment, hereinafter, when “collector” is simply described without reference, “conductor 51 (or 61) and protective layer 52 (or 62)” or “conductor” 51 (or 61) simple substance ”.
 電極50は、上述したように保護層52の上面の周縁部の内側に、即ち保護層52の上面の周縁部以外の部分に設けられている。
 電極50においては、保護層52に、酸化還元反応によって、5価及び4価の間で酸化数が変化するバナジウムイオン、又は5価及び4価の間で酸化数が変化するバナジウムを含むイオンを含有するバナジウム固体塩を正極活物質として含有する固体状の化合物を含む析出物が担持されている。
As described above, the electrode 50 is provided inside the peripheral edge of the upper surface of the protective layer 52, that is, at a portion other than the peripheral edge of the upper surface of the protective layer 52.
In the electrode 50, vanadium ions whose oxidation number changes between pentavalent and tetravalent or ions containing vanadium whose oxidation number changes between pentavalent and tetravalent by oxidation-reduction reaction are applied to the protective layer 52. A precipitate containing a solid compound containing the contained vanadium solid salt as a positive electrode active material is supported.
 5価及び4価の間で酸化数が変化する前記バナジウムを含むイオンとしては、VO2+(IV)、VO2 +(V )が例示される。
 正極用の活物質であるバナジウム化合物としては、酸化硫酸バナジウム(IV)(VOSO・nHO)、酸化硫酸バナジウム(V)((VOSO・nHO)を挙げることができる。中でも、VOSO・nHOが好ましい。なお、nは0から5の整数を示す。
The ion containing pentavalent and tetravalent the vanadium oxidation number changes between, VO 2+ (IV), VO 2 + (V) are exemplified.
Examples of the vanadium compound which is an active material for the positive electrode include vanadium oxide (IV) (VOSO 4 · nH 2 O) and vanadium oxide (V) ((VO 2 ) 2 SO 4 · nH 2 O). it can. Of these, VOSO 4 · nH 2 O is preferable. N represents an integer of 0 to 5.
 バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、及びフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVDF/HFP)等が挙げられる。 Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF / HFP).
 炭素材料としては、アセチレンブラック,ケッチェンブラック(登録商標)等のカーボンブラック、及びグラファイト等が挙げられる。炭素材料は1種又は2種以上を用いることができる。 Examples of the carbon material include carbon black such as acetylene black and ketjen black (registered trademark), and graphite. The carbon material can use 1 type (s) or 2 or more types.
 電極50に含まれる水系電解液は、硫酸水溶液であるのが好ましい。硫酸水溶液として、例えば濃度が90質量%未満の硫酸を用いることができる。電解液は、電池のSOCを0~100%まで取り得るのに過不足のない量である。電解液の量は、例えばバナジウム化合物100gに対して、2M(mol/L)の硫酸70mLである。 The aqueous electrolyte contained in the electrode 50 is preferably an aqueous sulfuric acid solution. As the sulfuric acid aqueous solution, for example, sulfuric acid having a concentration of less than 90% by mass can be used. The amount of the electrolyte is not excessive or deficient so that the SOC of the battery can be taken from 0 to 100%. The amount of the electrolytic solution is, for example, 70 mL of 2M (mol / L) sulfuric acid with respect to 100 g of the vanadium compound.
 電極50上に設けられる保水膜55は電解液透過性である。保水膜55は多孔質材料からなるのが好ましい。この場合、保水性が良好である。
 保水膜55として、具体的には、多孔質ガラスセパレータ、多孔質PTFEセパレータ、及びカーボンペーパー等が挙げられる。
The water retention film 55 provided on the electrode 50 is electrolyte permeable. The water retaining film 55 is preferably made of a porous material. In this case, water retention is good.
Specific examples of the water retention film 55 include a porous glass separator, a porous PTFE separator, and carbon paper.
 保水膜55の厚みは50μm以上135μm以下であることが好ましい。保水膜55の厚みが50μm以上135μm以下である場合、隔膜7の水分低下に伴う抵抗値の上昇が抑制されるともに、電極占有率が低下してエネルギー密度が下がることがなく、充放電性能が良好である。 The thickness of the water retaining film 55 is preferably 50 μm or more and 135 μm or less. When the thickness of the water retaining film 55 is not less than 50 μm and not more than 135 μm, an increase in the resistance value due to a decrease in the moisture content of the diaphragm 7 is suppressed, and the electrode occupancy rate does not decrease and the energy density does not decrease. It is good.
 保水膜55には水、又は水溶液を含浸させる。水溶液にはバナジウム、又は硫黄を含むことができる。特にバナジウムを含む水溶液を含浸させる場合、電池1の理論的な容量を増加させることができる。 The water retaining film 55 is impregnated with water or an aqueous solution. The aqueous solution can contain vanadium or sulfur. In particular, when the aqueous solution containing vanadium is impregnated, the theoretical capacity of the battery 1 can be increased.
 保水膜55中のバナジウム元素濃度は5mol /L以下であることが好ましい。この場合、電池1の充放電性能が良好である。 The vanadium element concentration in the water retaining film 55 is preferably 5 mol / L or less. In this case, the charge / discharge performance of the battery 1 is good.
 シーラント54は上述したように枠状をなし、角筒状の枠本体の上端部に、内側に張り出した内側縁部54aを備え、枠本体の下端部に、外側に張り出した外側縁部54bを備える。即ち、シーラント54は平面視で、内側縁部54a(電極50の外側部分)の外側に、外側縁部54bが位置するように構成されている。 The sealant 54 has a frame shape as described above, and includes an inner edge portion 54a projecting inwardly at the upper end portion of the rectangular tube-shaped frame body, and an outer edge portion 54b projecting outwardly at the lower end portion of the frame body. Prepare. That is, the sealant 54 is configured such that the outer edge portion 54b is positioned outside the inner edge portion 54a (the outer portion of the electrode 50) in plan view.
 シーラント54の内側縁部54aは保護層52の上面の周縁部に接着されており、内側縁部54aの内側面の上部は、保水膜55の側面に接着されている。
 外側縁部54bは半体22の導電体51側の面の、導電体51の外側に接着されている。これにより、導電体51及び保護層52は、半体22とシーラント54とに挟着されている。即ち、半体22、保護層52、及びシーラント54により、導電体51は封止された状態で、導電体51は半体22に固定されている。なお、導電体51の側面はシーラント54に接着されていてもよく、接着されていなくてもよい。
The inner edge portion 54 a of the sealant 54 is bonded to the peripheral edge portion of the upper surface of the protective layer 52, and the upper portion of the inner side surface of the inner edge portion 54 a is bonded to the side surface of the water retention film 55.
The outer edge portion 54 b is bonded to the outer surface of the conductor 51 on the surface of the half body 22 on the conductor 51 side. Thereby, the conductor 51 and the protective layer 52 are sandwiched between the half body 22 and the sealant 54. That is, the conductor 51 is fixed to the half body 22 in a state where the conductor 51 is sealed by the half body 22, the protective layer 52, and the sealant 54. In addition, the side surface of the conductor 51 may be bonded to the sealant 54, or may not be bonded.
 シーラント54の材料としては、例えばポリプロピレン又はポリエチレン等が挙げられる。ポロプロピレン又はポリエチレン等を用いることにより、熱溶着で容易に導電体51を封止することが可能となる。 Examples of the material of the sealant 54 include polypropylene or polyethylene. By using polypropylene or polyethylene, the conductor 51 can be easily sealed by heat welding.
 電極材6は電極材5と同様の構成を有し、電極60、導電体61、保護層62、及びシーラント64を備える。導電体61は角型平板状をなし、外装袋1の半体21の図2における下面に配されており、導電体61の下面は保護層62により覆われている。保護層62の下面の周縁部の内側には、活物質及び電解液を有する角型平板状の電極60が設けられている。シーラント64は枠状をなし、角筒状の枠本体の下端部に、内側に張り出した内側縁部64aを備え、枠本体の上端部に、外側に張り出した外側縁部64bを備える。内側縁部64aは前記周縁部に接着され、外側縁部64bは半体21に接着され、シーラント64は半体21及び保護層62とにより導電体61を封止する。
 電極材6の導電体61は、周縁部の一部から突出したタブ(不図示)を有し、タブの先端部は負極端子4に接続されている。
 電極材6の導電体61、保護層62、及びシーラント64は電極材5と同様の材料を用いてなる。
The electrode material 6 has the same configuration as the electrode material 5, and includes an electrode 60, a conductor 61, a protective layer 62, and a sealant 64. The conductor 61 has a rectangular flat plate shape, and is disposed on the lower surface in FIG. 2 of the half body 21 of the outer bag 1, and the lower surface of the conductor 61 is covered with a protective layer 62. A rectangular flat plate-like electrode 60 having an active material and an electrolytic solution is provided inside the peripheral edge of the lower surface of the protective layer 62. The sealant 64 has a frame shape, and includes an inner edge portion 64a projecting inward at the lower end portion of the rectangular tube-shaped frame body, and an outer edge portion 64b projecting outward at the upper end portion of the frame body. The inner edge portion 64 a is bonded to the peripheral edge portion, the outer edge portion 64 b is bonded to the half body 21, and the sealant 64 seals the conductor 61 with the half body 21 and the protective layer 62.
The conductor 61 of the electrode material 6 has a tab (not shown) protruding from a part of the peripheral edge, and the tip of the tab is connected to the negative electrode terminal 4.
The conductor 61, the protective layer 62, and the sealant 64 of the electrode material 6 are formed using the same materials as the electrode material 5.
 電極60においては、保護層62に、酸化還元反応によって、2価及び3価の間で酸化数が変化するバナジウムイオン、又は2価及び3価の間で酸化数が変化するバナジウムを含むイオンを含有するバナジウム固体塩を負極活物質として含有する固体状の化合物を含む析出物が担持されている。 In the electrode 60, vanadium ions whose oxidation number changes between divalent and trivalent or ions containing vanadium whose oxidation number changes between divalent and trivalent due to oxidation-reduction reaction are applied to the protective layer 62. A precipitate containing a solid compound containing the contained vanadium solid salt as a negative electrode active material is supported.
 2価及び3価の間で酸化数が変化する前記バナジウムイオンとしては、V2+(II)、V3+(III )が例示される。
 負極用の活物質であるバナジウム化合物としては、硫酸バナジウム(II)(VSO・nHO)、硫酸バナジウム(III )(V(SO・nHO)が挙げられる。中でも、V(SO・nHOが好ましい。なお、nは0から10の整数を示す。
Examples of the vanadium ion whose oxidation number changes between divalent and trivalent include V 2+ (II) and V 3+ (III).
Examples of the vanadium compound that is an active material for the negative electrode include vanadium sulfate (II) (VSO 4 · nH 2 O) and vanadium sulfate (III) (V 2 (SO 4 ) 3 · nH 2 O). Among these, V 2 (SO 4 ) 3 · nH 2 O is preferable. N represents an integer of 0 to 10.
 隔膜7は保水膜55を覆い、シーラント54の内側縁部54aの上面に接着されている。
 隔膜7は水素イオン(プロトン)を通過させることができる。すなわち、隔膜7は、プロトン伝導性を有している。また、隔膜7は、硫酸イオンを通過させることができる。隔膜7はイオン交換膜であるのが好ましい。
 本実施の形態に係る電池1は保水膜55を有し、保水膜55が隔膜7に水分を供給することができ、隔膜7のイオン移動に関する抵抗の増加を抑制することができる。
The diaphragm 7 covers the water retention film 55 and is bonded to the upper surface of the inner edge portion 54 a of the sealant 54.
The diaphragm 7 can pass hydrogen ions (protons). That is, the diaphragm 7 has proton conductivity. Further, the diaphragm 7 can pass sulfate ions. The diaphragm 7 is preferably an ion exchange membrane.
The battery 1 according to the present embodiment has a water retention film 55, and the water retention film 55 can supply moisture to the diaphragm 7, and an increase in resistance related to ion movement of the diaphragm 7 can be suppressed.
 隔膜7の、0.5M硫酸中で測定した1kHzにおける体積抵抗率は280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下である。
 この場合、電圧を長時間維持することができ、充放電を繰り返したときの放電電流容量が高く、クーロン効率及び容量維持率が良好であり、サイクル特性が良好である。そして、高電流密度で入出力した場合に良好なエネルギー密度を有し、高入出力密度での使用が可能である。
 本実施の形態においては、正の電極5及び負の電極6間で、5価のバナジウムイオン及び2価のバナジウムイオンの隔膜7の通過による接触が抑制され、即ち活物質イオンのクロスコンタミネーションが抑制されているので、高寿命及び長時間の電圧維持が実現でき、かつ、プロトン伝導度が高いので、高入出力密度での使用が実現されると考えられる。
The volume resistivity of the diaphragm 7 at 1 kHz measured in 0.5 M sulfuric acid is 280 Ω · cm or more and the sheet resistance is 3 Ω · cm 2 or less.
In this case, the voltage can be maintained for a long time, the discharge current capacity when charging / discharging is repeated is high, the coulomb efficiency and the capacity maintenance ratio are good, and the cycle characteristics are good. And when it inputs / outputs with a high current density, it has a favorable energy density and can be used with a high input / output density.
In the present embodiment, contact between the positive electrode 5 and the negative electrode 6 due to passage of pentavalent vanadium ions and divalent vanadium ions through the diaphragm 7 is suppressed, that is, cross contamination of active material ions is prevented. Since it is suppressed, a long life and long-time voltage maintenance can be realized, and since proton conductivity is high, it is considered that use at a high input / output density is realized.
 前記体積抵抗率は600Ω・cm以上であるのが好ましく、1500Ω・cm以上であるのがより好ましい。この場合、長時間の電圧維持率、並びに充放電を繰り返した場合の放電電流容量及び容量維持率がより良好になる。
 前記体積抵抗率は10000Ω・cm以下であるのが好ましい。体積抵抗率が10000Ω・cmを超えた場合、仮に隔膜7の厚みを薄くしたとしても抵抗値が高くなりすぎてしまい、高入出力密度を得るのが困難となる。
The volume resistivity is preferably 600 Ω · cm or more, and more preferably 1500 Ω · cm or more. In this case, the voltage maintenance rate for a long time, and the discharge current capacity and the capacity maintenance rate when charging and discharging are repeated become better.
The volume resistivity is preferably 10,000 Ω · cm or less. When the volume resistivity exceeds 10,000 Ω · cm, even if the thickness of the diaphragm 7 is reduced, the resistance value becomes too high, and it becomes difficult to obtain a high input / output density.
 0.5M硫酸中で測定した1kHzにおける面積抵抗値の上限は2Ω・cmであるのが好ましく、1Ω・cmであるのがより好ましい。この場合、電流密度を高くした場合の放電エネルギー密度がより高くなる。
 面積抵抗値の下限は0.15Ω・cmであるのが好ましい。この場合、充放電を繰り返した場合のクーロン効率がより良好になり、電流密度を高くした場合の放電エネルギー密度がより高くなる。
The upper limit of the sheet resistance value at 1 kHz measured in 0.5 M sulfuric acid is preferably 2 Ω · cm 2 , and more preferably 1 Ω · cm 2 . In this case, the discharge energy density when the current density is increased becomes higher.
The lower limit of the sheet resistance value is preferably 0.15 Ω · cm 2 . In this case, the Coulomb efficiency when charging and discharging are repeated becomes better, and the discharge energy density becomes higher when the current density is increased.
 隔膜7の厚みは50μm以下であるのが好ましく、25μm以下であるのがより好ましく、10μm以下であるのがさらに好ましい。厚みは50μm以下である場合、電流密度を高くした場合の充電エネルギー密度及び放電エネルギー密度が良好である。 The thickness of the diaphragm 7 is preferably 50 μm or less, more preferably 25 μm or less, and even more preferably 10 μm or less. When the thickness is 50 μm or less, the charge energy density and the discharge energy density when the current density is increased are good.
 隔膜7は陰イオン交換膜であるのが好ましい。
 この場合、低い膜抵抗値を維持しつつ、イオン選択性が良好である。
The diaphragm 7 is preferably an anion exchange membrane.
In this case, the ion selectivity is good while maintaining a low membrane resistance value.
 以上のように構成された電池1の電極材5の電極50と電極材6の電極60との間において、下記式(1)及び(2)の反応が生じる。
正極:VOX・nHO(s)⇔VOX・(n-1)HO(s)+HX+H+e …(1)
負極:VX・nHO(s)+H+e⇔VX・nHO(s)+HX …(2)
 式中、Xは1価の陰イオンを表す。Xがm価の陰イオンである場合、結合係数(1/m)が考慮される。nは種々の値をとり得る。
Reactions of the following formulas (1) and (2) occur between the electrode 50 of the electrode material 5 and the electrode 60 of the electrode material 6 of the battery 1 configured as described above.
Positive electrode: VOX 2 · nH 2 O (s) ⇔VO 2 X · (n−1) H 2 O (s) + HX + H + + e (1)
Negative electrode: VX 3 · nH 2 O (s) + H + + e ⇔VX 2 · nH 2 O (s) + HX (2)
In the formula, X represents a monovalent anion. When X is an m-valent anion, the coupling coefficient (1 / m) is considered. n can take various values.
 前記式(1)及び(2)の反応を利用してバナジウム固体塩電池1を用いたバナジウム固体塩電池の充放電が行われる。このとき、正極端子3,負極端子4を介して、外部の負荷又は充電器等との間で充放電が行われる。式(1)及び(2)の反応において隔膜7を介して、電極50,60間でプロトンが移動する。 The charge and discharge of the vanadium solid salt battery using the vanadium solid salt battery 1 is performed using the reactions of the above formulas (1) and (2). At this time, charging / discharging is performed with an external load or a charger via the positive terminal 3 and the negative terminal 4. In the reaction of the formulas (1) and (2), protons move between the electrodes 50 and 60 through the diaphragm 7.
 なお、電極材5のバナジウム化合物としてVOSO・nHOを用い、電極材6のバナジウム化合物としてV(SO・nHOを用いた場合の各物質の反応を以下に示す。
正極:2VOSO・nHO(s)⇔(VOSO・(n-2)HO(s)+HSO+2H+2e …(3)
負極:V(SO・nHO(s)+2H+2e⇔2VSO・nHO(s)+HSO …(4)
The reaction of each material when VOSO 4 · nH 2 O is used as the vanadium compound of the electrode material 5 and V 2 (SO 4 ) 3 · nH 2 O is used as the vanadium compound of the electrode material 6 is shown below.
Positive electrode: 2VOSO 4 · nH 2 O (s) ⇔ (VO 2 ) 2 SO 4 · (n−2) H 2 O (s) + H 2 SO 4 + 2H + + 2e (3)
Negative electrode: V 2 (SO 4 ) 3 · nH 2 O (s) + 2H + + 2e ⇔2VSO 4 · nH 2 O (s) + H 2 SO 4 (4)
2.バナジウムレドックス二次電池の製造方法
 以下、本発明の電池1の製造方法について説明する。
 ここで、正極の電極材5と負極の電極材6とを各別に作製するのではなく、単一の電極材を作製した後、正極側及び負極側のいずれに用いるかを使い分けし、電池1の組立後の通電によって、正極の電極材5及び負極の電極材6を形成する場合について説明する。
2. Method for Manufacturing Vanadium Redox Secondary Battery Hereinafter, a method for manufacturing the battery 1 of the present invention will be described.
Here, the positive electrode material 5 and the negative electrode material 6 are not manufactured separately, but after a single electrode material is manufactured, the battery 1 is used depending on whether it is used for the positive electrode side or the negative electrode side. A case where the positive electrode material 5 and the negative electrode material 6 are formed by energization after assembly will be described.
 まず、炭素材料に、3価のバナジウム化合物としてのV(SO、4価のバナジウム化合物としてのVOSO、及びハインダを配合し、攪拌機により混合することにより混合粉を得る。炭素材料、活物質、及びバインダの組成は、要求される容量、乾燥条件、及び外部環境(気温、湿度)等に応じて決定する。 First, V 2 (SO 4 ) 3 as a trivalent vanadium compound, VOSO 4 as a tetravalent vanadium compound, and a hinder are mixed in a carbon material, and mixed powder is obtained by mixing with a stirrer. The composition of the carbon material, active material, and binder is determined according to the required capacity, drying conditions, external environment (temperature, humidity), and the like.
 次に、前記混合粉に水系電解液を配合し、プラネタリーミキサ等を用いて混練することにより、混錬物を得る。 Next, a kneaded product is obtained by blending an aqueous electrolyte into the mixed powder and kneading it using a planetary mixer or the like.
 前記混錬物はロールプレス等により圧延成形され、電極形状に打ち抜かれて集電体に配置される。ここで、集電体としては、上述の「導電体51(又は61)単体」、及び「導電体51(又は61)及び保護層52(又は62)」等が挙げられる。 The kneaded material is rolled and formed by a roll press or the like, punched into an electrode shape, and placed on a current collector. Here, examples of the current collector include the above-mentioned “conductor 51 (or 61) alone”, “conductor 51 (or 61) and protective layer 52 (or 62)”, and the like.
 上述したように、電極材を電極材5用,電極材6用に使い分ける。電極材5の電極50上には保水膜55を設ける。外装袋2の半体22に電極材5の集電体を、半体21に電極材6の電極材の集電体を熱プレス等により固着する。 As described above, the electrode material is selectively used for the electrode material 5 and the electrode material 6. A water retention film 55 is provided on the electrode 50 of the electrode material 5. The current collector of the electrode material 5 is fixed to the half body 22 of the outer bag 2 and the current collector of the electrode material 6 of the electrode material 6 is fixed to the half body 21 by hot pressing or the like.
 以上のように集電体が固定された半体21,22を内側が対向するように合わせ、半体21,22の周縁部の一部から正極端子3及び負極端子4が突出する状態で、周縁部を圧接し、接着することにより外装袋2が形成され、電池1が得られる。なお、半体21,22は最初から一体化されていてもよい。 As described above, the halves 21 and 22 to which the current collector is fixed are aligned so that the inside faces each other, and the positive electrode terminal 3 and the negative electrode terminal 4 protrude from a part of the peripheral edge of the halves 21 and 22. The outer bag 2 is formed by press-contacting and bonding the peripheral edge portion, and the battery 1 is obtained. The halves 21 and 22 may be integrated from the beginning.
 電池の組み立て後の通電により、正極の電極材5のバナジウム化合物の価数が4価、負極の電極材6のバナジウム化合物の価数が3価になる。 By energization after the battery is assembled, the valence of the vanadium compound of the positive electrode material 5 becomes tetravalent and the valence of the vanadium compound of the negative electrode material 6 becomes trivalent.
 以上のように構成された本実施の形態に係る電池1は、隔膜7の0.5M硫酸中で測定した1kHzにおける体積抵抗率は280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であるので、高電流密度で入出力した場合に良好なエネルギー密度を有し、即ち高入出力化を実現できるとともに、高寿命であり、かつ電圧を長時間維持することができる。
 そして、負極の電極50との間に保水膜55を有するので、隔膜7の厚みを薄くした場合に、隔膜7の保水量が向上する。
 また、本実施の形態においては、導電体51は、シーラント54、保護層52、及び半体22により封止され、電極50は保水膜55及び隔膜7と、シーラント54aとにより包囲されているので、電極50に含まれる酸性電解液が導電体51に接触することがなく、導電体51の腐食が防止されている。同様に、導電体61は、シーラント64、保護層62、及び半体21により封止され、電極60は隔膜7と、シーラント64aとにより包囲されているので、電極60に含まれる酸性電解液が導電体61と反応することがなく、導電体61の腐食が防止されている。
In the battery 1 according to this embodiment configured as described above, the volume resistivity at 1 kHz measured in 0.5 M sulfuric acid of the diaphragm 7 is 280 Ω · cm or more, and the sheet resistance is 3 Ω · cm. Since it is 2 or less, it has a good energy density when it is input / output at a high current density, that is, it can realize a high input / output, has a long life, and can maintain a voltage for a long time.
And since it has the water retention film | membrane 55 between the electrodes 50 of a negative electrode, when the thickness of the diaphragm 7 is made thin, the water retention amount of the diaphragm 7 improves.
In the present embodiment, the conductor 51 is sealed by the sealant 54, the protective layer 52, and the half body 22, and the electrode 50 is surrounded by the water retention film 55, the diaphragm 7, and the sealant 54a. The acidic electrolyte contained in the electrode 50 does not come into contact with the conductor 51, and corrosion of the conductor 51 is prevented. Similarly, since the conductor 61 is sealed by the sealant 64, the protective layer 62, and the half body 21, and the electrode 60 is surrounded by the diaphragm 7 and the sealant 64a, the acidic electrolyte contained in the electrode 60 is It does not react with the conductor 61, and corrosion of the conductor 61 is prevented.
 以下、本発明の実施例を具体的に説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.
1.電池の製造
[実施例1]
 炭素材料としてのカーボンブラック(「ケッチェンブラック(登録商標)」、株式会社ライオン製)2.93gに、3価のバナジウム化合物としてのV(SO・nHO(自社製)を2.89g、4価のバナジウム化合物としてのVOSO・nHO(新興化学株式会社製)を2.5g、バインダとしてのPTFE(「6-J」、三井デュポンフロロケミカル株式会社製)を0.08g配合して、上述の混合粉を得た。
 次に、この混合粉2.0gに1M硫酸0.73mLを配合して混練し、上述の混錬物を得た。該混練物をロールプレス等により圧延成形し、打ち抜いて電極を得た。
 銅箔からなる導電体にグラファイトシートを接着して集電体を得た。
 該集電体に前記電極を配置して電極材を作製した。
 保水膜55として、27mm角のガラスセパレータ(「TGP008F」、日本板硝子株式会社製)に、4価のバナジウム1Mと硫酸2Mとの溶液を80μL含浸させたものを用いた。
 隔膜7として、陰イオン交換膜(「VX-10」、FuMA-Tech社製)を用い、上述にようにして、実施例1の電池1を作製した。
1. Production of battery [Example 1]
Carbon black (“Ketjen Black (registered trademark)”, manufactured by Lion Corporation) as a carbon material 2.93 g of V 2 (SO 4 ) 3 · nH 2 O (made in-house) as a trivalent vanadium compound 2.89 g, 2.5 g of VOSO 4 · nH 2 O (made by Shinsei Chemical Co., Ltd.) as a tetravalent vanadium compound, and 0 PTFE (“6-J”, made by Mitsui DuPont Fluoro Chemical Co., Ltd.) as a binder 0.08 g was mixed to obtain the above-mentioned mixed powder.
Next, 0.73 mL of 1M sulfuric acid was added to 2.0 g of the mixed powder and kneaded to obtain the above kneaded product. The kneaded product was roll-formed by a roll press or the like and punched to obtain an electrode.
A graphite sheet was bonded to a conductor made of copper foil to obtain a current collector.
The electrode was arranged on the current collector to produce an electrode material.
As the water retaining film 55, a 27 mm square glass separator ("TGP008F" manufactured by Nippon Sheet Glass Co., Ltd.) impregnated with 80 μL of a solution of tetravalent vanadium 1M and sulfuric acid 2M was used.
Using an anion exchange membrane (“VX-10”, manufactured by FuMA-Tech) as the diaphragm 7, the battery 1 of Example 1 was produced as described above.
 下記の表1のNo.1が実施例1に相当する。実施例1のイオン交換膜7の厚み[μm]、面積抵抗値[Ω・cm]、体積抵抗率[Ω・cm]を表1に示す。
 イオン交換膜7の抵抗は、AGCエンジニアリング株式会社のイオン交換膜抵抗測定器を用いて測定した。
 抵抗の測定条件は、以下の通りである。
 電解液:0.5M硫酸
 周波数:1kHz
No. in Table 1 below. 1 corresponds to Example 1. Table 1 shows the thickness [μm], sheet resistance [Ω · cm 2 ], and volume resistivity [Ω · cm] of the ion exchange membrane 7 of Example 1.
The resistance of the ion exchange membrane 7 was measured using an ion exchange membrane resistance measuring instrument manufactured by AGC Engineering Co., Ltd.
The resistance measurement conditions are as follows.
Electrolyte: 0.5M sulfuric acid Frequency: 1kHz
 後述する実施例2~4が表1のNo.2~4に相当し、比較例1~4が表1のNo.5~8に相当する。 Examples 2 to 4 described later are Nos. In Table 1. No. 2 in Table 1 corresponds to Comparative Examples 1 to 4. Corresponds to 5-8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 隔膜7として、陰イオン交換膜(「VX-05」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、実施例2の電池1を作製した。実施例2のイオン交換膜7の厚み等を表1のNo.2に示す。
[Example 2]
A battery 1 of Example 2 was fabricated in the same manner as Example 1 except that an anion exchange membrane (“VX-05”, manufactured by FuMA-Tech) was used as the diaphragm 7. The thickness and the like of the ion exchange membrane 7 of Example 2 are set as No. 1 in Table 1. It is shown in 2.
[実施例3]
 隔膜7として、陰イオン交換膜(「イオン交換膜I」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、実施例3の電池1を作製した。実施例3のイオン交換膜7の厚み等を表1のNo.3に示す。
[Example 3]
A battery 1 of Example 3 was fabricated in the same manner as in Example 1 except that an anion exchange membrane (“Ion Exchange Membrane I”, manufactured by FuMA-Tech) was used as the diaphragm 7. The thickness and the like of the ion exchange membrane 7 of Example 3 are shown in No. 1 of Table 1. 3 shows.
[実施例4]
 隔膜7として、陰イオン交換膜(「イオン交換膜J」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、実施例4の電池1を作製した。実施例4のイオン交換膜7の厚み等を表1のNo.4に示す。
[Example 4]
A battery 1 of Example 4 was produced in the same manner as in Example 1 except that an anion exchange membrane (“ion exchange membrane J”, manufactured by FuMA-Tech) was used as the diaphragm 7. The thickness and the like of the ion exchange membrane 7 of Example 4 are set as No. 1 in Table 1. 4 shows.
[比較例1]
 隔膜として、陰イオン交換膜(「イオン交換膜K」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、比較例1の電池を作製した。比較例1のイオン交換膜の厚み等を表1のNo.5に示す。
[Comparative Example 1]
A battery of Comparative Example 1 was produced in the same manner as in Example 1 except that an anion exchange membrane (“ion exchange membrane K”, manufactured by FuMA-Tech) was used as the diaphragm. The thickness and the like of the ion exchange membrane of Comparative Example 1 are shown in No. 1 of Table 1. As shown in FIG.
[比較例2]
 隔膜として、陰イオン交換膜(「イオン交換膜L」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、比較例2の電池を作製した。比較例2のイオン交換膜の厚み等を表1のNo.6に示す。
[Comparative Example 2]
A battery of Comparative Example 2 was produced in the same manner as in Example 1 except that an anion exchange membrane (“ion exchange membrane L”, manufactured by FuMA-Tech) was used as the diaphragm. The thickness and the like of the ion exchange membrane of Comparative Example 2 are shown in No. 1 of Table 1. It is shown in FIG.
[比較例3]
 隔膜として、陰イオン交換膜(「イオン交換膜M」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、比較例3の電池を作製した。比較例3のイオン交換膜の厚み等を表1のNo.7に示す。
[Comparative Example 3]
A battery of Comparative Example 3 was produced in the same manner as in Example 1 except that an anion exchange membrane (“ion exchange membrane M”, manufactured by FuMA-Tech) was used as the diaphragm. The thickness and the like of the ion exchange membrane of Comparative Example 3 are shown in No. 1 of Table 1. 7 shows.
[比較例4]
 隔膜として、陰イオン交換膜(「FS-1040」、FuMA-Tech社製)を用いたこと以外は実施例1と同様にして、比較例4の電池を作製した。比較例4のイオン交換膜の厚み等を表1のNo.8に示す。
[Comparative Example 4]
A battery of Comparative Example 4 was produced in the same manner as in Example 1 except that an anion exchange membrane (“FS-1040”, manufactured by FuMA-Tech) was used as the diaphragm. The thickness and the like of the ion exchange membrane of Comparative Example 4 are shown in No. 1 of Table 1. It is shown in FIG.
2.電池の性能評価
 上述の各実施例の電池1、及び各比較例の電池について、性能を評価した。充放電条件を下記の表2に示す。
2. Battery Performance Evaluation The performance of the battery 1 of each of the above examples and the battery of each comparative example was evaluated. The charge / discharge conditions are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2のステップ1においては、8mAで1.45VまでCC充電した後、8mAで0.8VまでCC放電を行うことを1サイクルとし、20サイクルの充放電を実施した。ステップ2においては、8mAで1.45VまでCC充電した後、16mAで0.8VまでCC放電を行う1サイクルの充放電を実施した。以下、同様にして充放電を行った。 In Step 1 of Table 2, after CC charging to 1.45 V at 8 mA, CC discharging to 0.8 V at 8 mA was taken as one cycle, and 20 cycles of charging / discharging were performed. In step 2, after charging CC to 1.45 V at 8 mA, charging and discharging for one cycle was performed in which CC discharging was performed to 0.8 V at 16 mA. Thereafter, charge and discharge were performed in the same manner.
 各実施例及び比較例の電池性能の評価結果を上記表1に示す。
 表1の「20サイクル目」の項目の「放電電流容量」は、表2のステップ1の20サイクル目を実施したときの放電電流容量、「C効率」は20サイクル目の充電時のクーロン量に対する放電時のクーロン量の比率である。
 表1の「40サイクル目」の項目の「放電電流容量」は、表2のステップ16の20サイクル目(全体としては54サイクル目に相当する)を実施したときの放電電流容量、「C効率」は前記20サイクル目の充電時のクーロン量に対する放電時のクーロン量の比率である。
The evaluation results of the battery performance of each example and comparative example are shown in Table 1 above.
“Discharge current capacity” in the item of “20th cycle” in Table 1 is the discharge current capacity when the 20th cycle in Step 1 of Table 2 is performed, and “C efficiency” is the amount of coulomb at the time of charging in the 20th cycle. It is the ratio of the amount of coulomb at the time of discharge to
“Discharge current capacity” in the item of “40th cycle” in Table 1 is the discharge current capacity when the 20th cycle of Step 16 in Table 2 (corresponding to the 54th cycle as a whole) is performed, “C efficiency” "Is the ratio of the coulomb amount during discharging to the coulomb amount during charging in the 20th cycle.
 表1の「容量維持率」は、(40サイクル目の放電電流容量)/(20サイクル目の放電電流容量)により求めた。 The “capacity maintenance ratio” in Table 1 was obtained by (discharge current capacity at 40th cycle) / (discharge current capacity at 20th cycle).
 表1の「放電エネルギー密度」の「@2.56mA/cm」は、上述したようにステップ2において、8mAで1.45VまでCC充電した後、16mAで0.8VまでCC放電を行った際に取り出せたエネルギー(Wh)を電極体積で(L)で除することにより求めた。電極の面積が6.25cmであるので、16(mA)/6.25=2.56(mA/cm)であり、電流密度2.56(mA/cm)で電流を流したときに取り出せた放電エネルギー密度を求めたことになる。
 表1の「放電エネルギー密度」の「@10mA/cm」は、同様に、ステップ4において、8mAで1.45VまでCC充電した後、63mAで0.8VまでCC放電を行った際に取り出せたエネルギー(Wh)を電極体積で(L)で除することにより求めた。63(mA)/6.25=10(mA/cm)であり、電流密度10mA/cmで電流を流したときに取り出せた放電エネルギー密度を求めたことになる。
 表1の「放電エネルギー密度」の「@20mA/cm」は、同様に、ステップ5において、8mAで1.45VまでCC充電した後、125mAで0.8VまでCC放電を行った際に取り出せたエネルギー(Wh)を電極体積で(L)で除することにより求めた。125(mA)/6.25=20(mA/cm)であり、電流密度20mA/cmで電流を流したときに取り出せた放電エネルギー密度を求めたことになる。
As described above, “@ 2.56 mA / cm 2 ” of “Discharge energy density” in Table 1 was CC charged to 1.45 V at 8 mA in Step 2 and then CC discharged to 0.8 V at 16 mA. It calculated | required by remove | dividing the energy (Wh) taken out in that case by (L) by electrode volume. Since the area of the electrode is 6.25 cm 2 , 16 (mA) /6.25=2.56 (mA / cm 2 ), and a current is passed at a current density of 2.56 (mA / cm 2 ). The discharge energy density that can be taken out is obtained.
Similarly, “@ 10 mA / cm 2 ” of “Discharge energy density” in Table 1 can be taken out when CC discharge is performed at 8 mA to 1.45 V and then CC discharge is performed at 63 mA to 0.8 V in Step 4. Energy (Wh) divided by (L) by electrode volume. It is 63 (mA) /6.25=10 (mA / cm 2 ), and the discharge energy density that can be taken out when a current is passed at a current density of 10 mA / cm 2 is obtained.
Similarly, the “@ 20 mA / cm 2 ” of “Discharge energy density” in Table 1 can be taken out when CC discharge is performed at 8 mA to 1.45 V and then CC discharge is performed at 125 mA to 0.8 V in Step 5. Energy (Wh) divided by (L) by electrode volume. 125 (mA) /6.25=20 (mA / cm 2 ), and the discharge energy density extracted when a current was passed at a current density of 20 mA / cm 2 was obtained.
 表1の「充電エネルギー密度」の「@10mA/cm」は、同様に、ステップ11において、63mAで1.45VまでCC充電した後、8mAで0.8VまでCC放電を行った際に取り出せたエネルギー(Wh)を電極体積で(L)で除することにより求めた。63(mA)/6.25=10(mA/cm)であり、電流密度10mA/cmで電流を流して充電した後、2.56mA/cmで放電したときに取り出せた放電エネルギー密度を求めたことになる。 Similarly, “@ 10 mA / cm 2 ” of “Charge energy density” in Table 1 can be taken out when CC discharge is performed at 63 mA to 1.45 V and then CC discharge is performed at 8 mA to 0.8 V in Step 11. Energy (Wh) divided by (L) by electrode volume. 63 (mA) /6.25=10 (mA / cm 2 ), and after charging with a current density of 10 mA / cm 2 , the discharge energy density extracted when discharging at 2.56 mA / cm 2 I asked for.
 表1の「80hでの電圧維持率」は、ステップ15において、8mAで1.45VまでCC充電した後、80時間放置した際の開回路電圧をモニタリングして求めた。その後、8mAで0.8VまでのCC放電を行った。 The “voltage maintenance rate at 80 h” in Table 1 was obtained by monitoring the open circuit voltage when CC was charged to 1.45 V at 8 mA in step 15 and left for 80 hours. Then, CC discharge to 0.8V was performed at 8 mA.
 図3は、実施例のイオン交換膜7及び比較例のイオン交換膜の体積抵抗率と、前記電圧維持率との関係を示すグラフである。横軸は体積抵抗率[Ω・cm]、縦軸は電圧維持率[%]である。
 図3より、イオン交換膜の体積抵抗率が280Ω・cm以上である実施例1~4の電池1、及び比較例1の電池は電圧維持率が92%以上であり、良好であることが分かる。体積抵抗率が600Ω・cm以上である場合、電圧維持率が97%以上であるので、より好ましい。
FIG. 3 is a graph showing the relationship between the volume resistivity of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the voltage maintenance rate. The horizontal axis represents volume resistivity [Ω · cm], and the vertical axis represents voltage maintenance ratio [%].
From FIG. 3, it can be seen that the batteries 1 of Examples 1 to 4 in which the volume resistivity of the ion exchange membrane is 280 Ω · cm or more and the batteries of Comparative Example 1 have a voltage maintenance rate of 92% or more and are good. . When the volume resistivity is 600 Ω · cm or more, the voltage maintenance rate is 97% or more, which is more preferable.
 図4は、実施例のイオン交換膜7及び比較例のイオン交換膜の体積抵抗率と、前記容量維持率との関係を示すグラフである。横軸は体積抵抗率[Ω・cm]、縦軸は容量維持率[%]である。
 図4より、イオン交換膜の体積抵抗率が280Ω・cm以上である実施例1~4の電池1、及び比較例1の電池は、容量維持率が65%以上であり、比較例2及び3より向上していることが分かる。体積抵抗率が600Ω・cm以上である場合、電圧維持率が86%以上であるので好ましく、体積抵抗率が1500Ω・cm以上である場合、電圧維持率が89%以上であるのでより好ましい。
 なお、図4において、比較例4の容量維持率は高くなっているが、これは、20サイクル目で電池の劣化により放電電流容量が既に大きく低下しており、40サイクル目で放電電流容量が変化していないため、見かけ上、容量維持率が高くなっている。
FIG. 4 is a graph showing the relationship between the volume resistivity of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the capacity retention rate. The horizontal axis represents volume resistivity [Ω · cm], and the vertical axis represents capacity retention rate [%].
As shown in FIG. 4, the batteries 1 of Examples 1 to 4 in which the volume resistivity of the ion exchange membrane is 280 Ω · cm or more and the batteries of Comparative Example 1 have a capacity retention rate of 65% or more. It turns out that it is improving more. When the volume resistivity is 600 Ω · cm or more, the voltage maintenance rate is preferably 86% or more, and when the volume resistivity is 1500 Ω · cm or more, the voltage maintenance rate is 89% or more, more preferable.
In FIG. 4, the capacity retention rate of Comparative Example 4 is high. This is because the discharge current capacity has already greatly decreased due to the deterioration of the battery at the 20th cycle, and the discharge current capacity at the 40th cycle. Since it has not changed, the capacity retention rate is apparently high.
 図5は、実施例のイオン交換膜7及び比較例のイオン交換膜の体積抵抗率と、40サイクル目の放電電流容量との関係を示すグラフである。横軸は体積抵抗率[Ω・cm]、縦軸は放電電流容量[mAh]である。
 図5より、実施例1~4の電池1、及び比較例1の電池は、40サイクル目の放電電流容量が2.0mAhを超えており、良好であることが分かる。上述の比較例4は、前記放電電流容量が2.0mAhであり、電池が劣化していることが分かる。
FIG. 5 is a graph showing the relationship between the volume resistivity of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the discharge current capacity at the 40th cycle. The horizontal axis represents volume resistivity [Ω · cm], and the vertical axis represents discharge current capacity [mAh].
FIG. 5 shows that the batteries 1 of Examples 1 to 4 and the battery of Comparative Example 1 have good discharge current capacity at the 40th cycle exceeding 2.0 mAh. In Comparative Example 4 described above, the discharge current capacity is 2.0 mAh, and it can be seen that the battery is deteriorated.
 図6は、実施例のイオン交換膜7及び比較例のイオン交換膜の面積抵抗値と、20サイクル目のクーロン効率との関係を示すグラフである。横軸は面積抵抗[Ω・cm]、縦軸は20サイクル目のクーロン効率[%]である。
 図6より、面積抵抗値が0.15Ω・cm以上である実施例1~4、及び比較例1~3は、20サイクル目のクーロン効率が94%以上であり、良好であることが分かる。
FIG. 6 is a graph showing the relationship between the area resistance values of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the Coulomb efficiency at the 20th cycle. The horizontal axis represents the sheet resistance [Ω · cm 2 ], and the vertical axis represents the Coulomb efficiency [%] at the 20th cycle.
From FIG. 6, it can be seen that Examples 1 to 4 and Comparative Examples 1 to 3 having a sheet resistance value of 0.15 Ω · cm or more have excellent Coulomb efficiency at the 20th cycle of 94% or more.
 図7は、実施例のイオン交換膜7及び比較例のイオン交換膜の面積抵抗値と、放電エネルギー密度との関係を示すグラフである。横軸は面積抵抗値[Ω・cm]、縦軸は放電エネルギー密度[Wh/L]である。
 2.56mA/cm、10mA/cm、20mA/cm夫々の電流密度で電流を流し、満充電したときに取り出せた放電エネルギー密度を求めた結果を示す。
 電流密度が高くなるのに従い、取り出せる放電エネルギー密度は小さくなる。
 比較例1の場合、2.56mA/cmのとき、放電エネルギー密度は略21Wh/Lであるが、10mA/cm、及び20mA/cmのとき、0である。
 図7より、面積抵抗値が3Ω・cm以下である場合、20mA/cmのとき、放電エネルギー密度が0を超えることが分かる。
 面積抵抗値の上限値は2Ω・cmであるのが好ましく、1.7Ω・cmであるのがより好ましく、1.5Ω・cmであるのがさらに好ましく、面積抵抗値の下限値は0.15であるのが好ましく、0.5であるのがより好ましい。
FIG. 7 is a graph showing the relationship between the sheet resistance value of the ion exchange membrane 7 of the example and the ion exchange membrane of the comparative example and the discharge energy density. The horizontal axis represents the sheet resistance [Ω · cm 2 ], and the vertical axis represents the discharge energy density [Wh / L].
2.56mA / cm 2, 10mA / cm 2, 20mA / cm 2 by applying a current at a current density of each shows the result of obtaining discharge energy density could be extracted when fully been charged.
As the current density increases, the discharge energy density that can be extracted decreases.
For Comparative Example 1, when the 2.56mA / cm 2, discharge energy density is substantially the 21Wh / L, 10mA / cm 2 , and when 20 mA / cm 2, is zero.
From FIG. 7, it can be seen that when the sheet resistance value is 3 Ω · cm 2 or less, the discharge energy density exceeds 0 at 20 mA / cm 2 .
Upper limit of the sheet resistivity is preferably a 2Ω · cm 2, more preferably from 1.7 ohm · cm 2, more preferably from 1.5Ω · cm 2, the lower limit of the sheet resistivity is It is preferably 0.15, and more preferably 0.5.
 図8は、実施例のイオン交換膜7の厚みと、エネルギー密度との関係を示すグラフである。横軸は厚み[μm]、縦軸はエネルギー密度[Wh/L]である。図8中、◇は充電エネルギー密度@10mA/cm、□は放電エネルギー密度@10mA/cmである。
 図8より、実施例1~4の電池1は、10mA/cmという高電流密度で電流を流した場合の充電エネルギー密度及び放電エネルギー密度が高いことが分かる。
FIG. 8 is a graph showing the relationship between the thickness of the ion exchange membrane 7 of the example and the energy density. The horizontal axis is the thickness [μm], and the vertical axis is the energy density [Wh / L]. In FIG. 8, ◇ is charging energy density @ 10 mA / cm 2 , and □ is discharging energy density @ 10 mA / cm 2 .
From FIG. 8, it can be seen that the batteries 1 of Examples 1 to 4 have a high charge energy density and discharge energy density when a current is passed at a high current density of 10 mA / cm 2 .
 以上より、本実施の形態に係る電池1は、高電流密度で入出力した場合に良好なエネルギー密度を有し、即ち高入出力化を実現できるとともに、高寿命であり、かつ電圧を長時間維持することができることが確認された。 As described above, the battery 1 according to the present embodiment has a good energy density when input / output is performed at a high current density, that is, can achieve a high input / output, has a long life, and a voltage for a long time. It was confirmed that it can be maintained.
 以上のように、本発明に係るバナジウムレドックス電池は、酸化還元反応によって、5価及び4価の間で酸化数が変化するバナジウムイオン、又は5価及び4価の間で酸化数が変化するバナジウムを含むイオンを含有する正極活物質を含む正の電極材と、酸化還元反応によって、2価及び3価の間で酸化数が変化するバナジウムイオン、又は2価及び3価の間で酸化数が変化するバナジウムを含むイオンを含有する負極活物質を含む負の電極材と、両電極材を区画するプロトン伝導性の隔膜とを有し、前記隔膜は、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であることを特徴とする。 As described above, the vanadium redox battery according to the present invention has vanadium ions whose oxidation number changes between pentavalent and tetravalent or vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction. A positive electrode material containing a positive electrode active material containing ions containing vanadium and a vanadium ion whose oxidation number changes between divalent and trivalent by an oxidation-reduction reaction, or an oxidation number between divalent and trivalent A negative electrode material containing a negative electrode active material containing ions containing changing vanadium, and a proton-conductive diaphragm separating both electrode materials, the diaphragm at 1 kHz measured in 0.5 M sulfuric acid The volume resistivity is 280 Ω · cm or more and the sheet resistance value is 3 Ω · cm 2 or less.
 本発明においては、電圧を長時間維持することができ、充放電を繰り返した場合の放電電流容量が高く、クーロン効率及び容量維持率が良好であり、サイクル特性が良好である。そして、高電流密度で入出力した場合に良好なエネルギー密度を有し、高入出力密度での使用(高入力化)が可能である。 In the present invention, the voltage can be maintained for a long time, the discharge current capacity when charging and discharging are repeated is high, the coulomb efficiency and the capacity maintenance ratio are good, and the cycle characteristics are good. And when it inputs / outputs at a high current density, it has a favorable energy density and can be used at a high input / output density (higher input).
 本発明に係るバナジウムレドックス電池は、前記体積抵抗率は、600Ω・cm以上であることを特徴とする。 The vanadium redox battery according to the present invention is characterized in that the volume resistivity is 600 Ω · cm or more.
 本発明においては、電圧維持率、充放電を繰り返した場合の放電電流容量及び容量維持率がより良好になる。 In the present invention, the voltage maintenance ratio, the discharge current capacity and the capacity maintenance ratio when charging and discharging are repeated become better.
 本発明に係るバナジウムレドックス電池は、前記面積抵抗値は、2Ω・cm以下であることを特徴とする。 The vanadium redox battery according to the present invention is characterized in that the sheet resistance value is 2 Ω · cm 2 or less.
 本発明においては、電流密度を高くした場合の放電エネルギー密度がより高くなる。 In the present invention, the discharge energy density becomes higher when the current density is increased.
 本発明に係るバナジウムレドックス電池は、前記面積抵抗値は、0.15Ω・cm以上であることを特徴とする。 The vanadium redox battery according to the present invention is characterized in that the sheet resistance value is 0.15 Ω · cm 2 or more.
 本発明においては、充放電を繰り返した場合のクーロン効率がより良好になり、電流密度を高くした場合の放電エネルギー密度がより高くなる。 In the present invention, the Coulomb efficiency when charging and discharging are repeated becomes better, and the discharge energy density becomes higher when the current density is increased.
 本発明に係るバナジウムレドックス電池は、前記隔膜の厚みは、50μm以下であることを特徴とする。 The vanadium redox battery according to the present invention is characterized in that the thickness of the diaphragm is 50 μm or less.
 本発明においては、電流密度を高くした場合の充電エネルギー密度及び放電エネルギー密度が良好である。 In the present invention, the charge energy density and the discharge energy density when the current density is increased are good.
 本発明に係るバナジウムレドックス電池は、前記隔膜は、陰イオン交換膜であることを特徴とする。 The vanadium redox battery according to the present invention is characterized in that the diaphragm is an anion exchange membrane.
 本発明においては、低い膜抵抗値を維持しつつ、イオン選択性が良好である。 In the present invention, the ion selectivity is good while maintaining a low membrane resistance value.
 本発明に係るバナジウムレドックス二次電池の製造方法は、3価のバナジウム化合物と、4価のバナジウム化合物と、炭素材料と、バインダとを混合して混合物を得、該混合物に水系電解液を配合して、混練物を得、該混練物を成形して電極を得、集電体に該電極を配置して電極材を得、一対の前記電極材間に、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であるプロトン伝導性の隔膜を介在させた状態で電池を組み立てることを特徴とする。 The manufacturing method of the vanadium redox secondary battery which concerns on this invention mixes a trivalent vanadium compound, a tetravalent vanadium compound, a carbon material, and a binder, obtains a mixture, and mix | blends aqueous electrolyte solution with this mixture Then, a kneaded product was obtained, the kneaded product was molded to obtain an electrode, the electrode was arranged on a current collector to obtain an electrode material, and measurement was performed in 0.5 M sulfuric acid between the pair of electrode materials. The battery is assembled in a state where a proton conductive diaphragm having a volume resistivity at 1 kHz of 280 Ω · cm or more and an area resistance value of 3 Ω · cm 2 or less is interposed.
 本発明においては、得られた電池は、高電流密度で入出力した場合に良好なエネルギー密度を有し、即ち高入出力化を実現できるとともに、高寿命であり、かつ電圧を長時間維持することができる。 In the present invention, the obtained battery has a good energy density when input / output is performed at a high current density, that is, can realize a high input / output, has a long life, and maintains a voltage for a long time. be able to.
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 例えば、バナジウムレドックス二次電池は、一対の電極材を備える場合に限定されず、複数対の電極材を備えることにしてもよい。
 また、シーラント54、64を備える場合に限定されない。
The present invention is not limited to the contents of the above-described embodiments, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
For example, the vanadium redox secondary battery is not limited to the case of including a pair of electrode materials, and may include a plurality of pairs of electrode materials.
Moreover, it is not limited to the case where the sealants 54 and 64 are provided.
 1:バナジウムレドックス二次電池、2:外装袋、3:正極端子、4:負極端子、5,6:電極材、50,60:電極、51,61:導電体、52,62:保護層、54,64:シーラント、55:保水膜、7:隔膜
 
 
1: vanadium redox secondary battery, 2: exterior bag, 3: positive electrode terminal, 4: negative electrode terminal, 5, 6: electrode material, 50, 60: electrode, 51, 61: conductor, 52, 62: protective layer, 54, 64: Sealant, 55: Water-retaining film, 7: Diaphragm

Claims (7)

  1.  酸化還元反応によって、5価及び4価の間で酸化数が変化するバナジウムイオン、又は5価及び4価の間で酸化数が変化するバナジウムを含むイオンを含有する正極活物質を含む正の電極材と、
     酸化還元反応によって、2価及び3価の間で酸化数が変化するバナジウムイオン、又は2価及び3価の間で酸化数が変化するバナジウムを含むイオンを含有する負極活物質を含む負の電極材と、
     両電極材を区画するプロトン伝導性の隔膜と
     を有し、
     前記隔膜は、
     0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、
     面積抵抗値が3Ω・cm以下であることを特徴とするバナジウムレドックス二次電池。
    Positive electrode comprising a positive electrode active material containing vanadium ions whose oxidation number changes between pentavalent and tetravalent or ions containing vanadium whose oxidation number changes between pentavalent and tetravalent by oxidation-reduction reaction Material,
    Negative electrode comprising a negative electrode active material containing vanadium ions whose oxidation number changes between divalent and trivalent by oxidation-reduction reaction, or ions containing vanadium whose oxidation number changes between divalent and trivalent Material,
    A proton-conducting diaphragm that partitions both electrode materials,
    The diaphragm is
    The volume resistivity at 1 kHz measured in 0.5 M sulfuric acid is 280 Ω · cm or more, and
    A vanadium redox secondary battery having a sheet resistance value of 3 Ω · cm 2 or less.
  2.  前記体積抵抗率は、600Ω・cm以上であることを特徴とする請求項1に記載のバナジウムレドックス二次電池。 The vanadium redox secondary battery according to claim 1, wherein the volume resistivity is 600 Ω · cm or more.
  3.  前記面積抵抗値は、2Ω・cm以下であることを特徴とする請求項1又は2に記載のバナジウムレドックス二次電池。 The vanadium redox secondary battery according to claim 1, wherein the sheet resistance value is 2 Ω · cm 2 or less.
  4.  前記面積抵抗値は、0.15Ω・cm以上であることを特徴とする請求項1から3のいずれか1項に記載のバナジウムレドックス二次電池。 4. The vanadium redox secondary battery according to claim 1, wherein the sheet resistance value is 0.15 Ω · cm 2 or more. 5.
  5.  前記隔膜の厚みは、50μm以下であることを特徴とする請求項1から4のいずれか1項に記載のバナジウムレドックス二次電池。 The vanadium redox secondary battery according to any one of claims 1 to 4, wherein a thickness of the diaphragm is 50 µm or less.
  6.  前記隔膜は、陰イオン交換膜であることを特徴とする請求項1から5のいずれか1項に記載のバナジウムレドックス二次電池。 The vanadium redox secondary battery according to any one of claims 1 to 5, wherein the diaphragm is an anion exchange membrane.
  7.  3価のバナジウム化合物と、4価のバナジウム化合物と、炭素材料と、バインダとを混合して混合物を得、
     該混合物に水系電解液を配合して、混練物を得、
     該混練物を成形して電極を得、
     集電体に該電極を配置して電極材を得、
     一対の前記電極材間に、0.5M硫酸中で測定した1kHzにおける体積抵抗率が280Ω・cm以上であり、かつ、面積抵抗値が3Ω・cm以下であるプロトン伝導性の隔膜を介在させた状態で電池を組み立てることを特徴とするバナジウムレドックス二次電池の製造方法。
     
    Mixing a trivalent vanadium compound, a tetravalent vanadium compound, a carbon material, and a binder to obtain a mixture,
    An aqueous electrolyte solution is blended into the mixture to obtain a kneaded product,
    The kneaded product is molded to obtain an electrode,
    An electrode material is obtained by arranging the electrode on a current collector,
    A proton-conductive membrane having a volume resistivity at 1 kHz measured in 0.5 M sulfuric acid of 280 Ω · cm or more and an area resistance of 3 Ω · cm 2 or less is interposed between the pair of electrode materials. A method for producing a vanadium redox secondary battery, comprising assembling the battery in a wet state.
PCT/JP2017/016315 2016-05-25 2017-04-25 Vanadium redox secondary battery and method for producing vanadium redox secondary battery WO2017203921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104428A JP2017212104A (en) 2016-05-25 2016-05-25 Vanadium redox secondary battery, and manufacturing method for vanadium redox secondary battery
JP2016-104428 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203921A1 true WO2017203921A1 (en) 2017-11-30

Family

ID=60411708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016315 WO2017203921A1 (en) 2016-05-25 2017-04-25 Vanadium redox secondary battery and method for producing vanadium redox secondary battery

Country Status (2)

Country Link
JP (1) JP2017212104A (en)
WO (1) WO2017203921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782843A (en) * 2021-09-07 2021-12-10 北京阳光鸿志电气工程技术有限公司 Preparation method of solid vanadium battery and obtained solid vanadium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208767A (en) * 1996-11-22 1998-08-07 Tokuyama Corp Diaphragm for vanadium-based redox flow cell and manufacture thereof
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
JP2015069935A (en) * 2013-09-30 2015-04-13 株式会社 東北テクノアーチ Vanadium solid salt battery
WO2015119272A1 (en) * 2014-02-07 2015-08-13 東洋紡株式会社 Ion-exchange membrane for redox battery, complex, and redox battery
WO2016158217A1 (en) * 2015-03-31 2016-10-06 株式会社東北テクノアーチ Vanadium redox cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208767A (en) * 1996-11-22 1998-08-07 Tokuyama Corp Diaphragm for vanadium-based redox flow cell and manufacture thereof
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
JP2015069935A (en) * 2013-09-30 2015-04-13 株式会社 東北テクノアーチ Vanadium solid salt battery
WO2015119272A1 (en) * 2014-02-07 2015-08-13 東洋紡株式会社 Ion-exchange membrane for redox battery, complex, and redox battery
WO2016158217A1 (en) * 2015-03-31 2016-10-06 株式会社東北テクノアーチ Vanadium redox cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOKYOUNG KIM ET AL.: "Test of ionic exchange membrane for Vanadium redox flow battery", KIST EUROPE ANNUAL REPORT 2013 2013, 23 May 2016 (2016-05-23), pages 89, Retrieved from the Internet <URL:http://www.kist-europe.com/index.php/en/publication/ect-3?task=document.viewdoc&id=80> *
JIAWEI SUN ET AL.: "The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium", JOURNAL OF POWER SOURCES, vol. 271, 20 December 2014 (2014-12-20), pages 1 - 7, XP029055203, DOI: doi:10.1016/j.jpowsour.2014.07.111 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782843A (en) * 2021-09-07 2021-12-10 北京阳光鸿志电气工程技术有限公司 Preparation method of solid vanadium battery and obtained solid vanadium battery
CN113782843B (en) * 2021-09-07 2024-01-05 北京阳光鸿志电气工程技术有限公司 Preparation method of solid vanadium battery and obtained solid vanadium battery

Also Published As

Publication number Publication date
JP2017212104A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5614600B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5934340B2 (en) Electrochemical cell, method for producing electrochemical cell, battery pack and vehicle
JP6100420B2 (en) Bipolar battery, battery pack and car
JP6260870B2 (en) Metal air battery
US11011743B2 (en) Lithium ion secondary battery
JP7211405B2 (en) Storage element
JP2018170131A (en) Vanadium redox secondary battery, barrier membrane for redox secondary battery, and method of producing barrier membrane for redox secondary battery
WO2017203921A1 (en) Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2014156595A1 (en) Vanadium solid-salt cell and method for manufacturing same
WO2018029991A1 (en) Vanadium redox secondary battery and ion conductive film for batteries
JP6766863B2 (en) Lithium ion secondary battery
JP2017183017A (en) Vanadium redox secondary battery
WO2018055857A1 (en) Vanadium redox secondary cell and separating membrane for same
WO2017169162A1 (en) Vanadium redox secondary battery
JP5472743B2 (en) Lithium secondary battery
JP6880488B2 (en) Lithium ion secondary battery
WO2017203920A1 (en) Vanadium redox secondary battery
JP6599815B2 (en) Lithium air secondary battery
JP2018166092A (en) Vanadium redox secondary battery, method for manufacturing diaphragm, method for manufacturing vanadium redox secondary battery, and diaphragm
JP2017130310A (en) Vanadium solid salt battery
JP2018168012A (en) Method for producing vanadium sulfate (III), method for producing electrode precursor, and method for producing vanadium redox secondary battery
JP2018160404A (en) Vanadium redox secondary battery
JP2018163769A (en) Vanadium redox secondary battery and battery diaphragm
JP2010205430A (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2017224532A (en) Battery and method for manufacturing battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802519

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802519

Country of ref document: EP

Kind code of ref document: A1