JPH10208767A - Diaphragm for vanadium-based redox flow cell and manufacture thereof - Google Patents

Diaphragm for vanadium-based redox flow cell and manufacture thereof

Info

Publication number
JPH10208767A
JPH10208767A JP9317848A JP31784897A JPH10208767A JP H10208767 A JPH10208767 A JP H10208767A JP 9317848 A JP9317848 A JP 9317848A JP 31784897 A JP31784897 A JP 31784897A JP H10208767 A JPH10208767 A JP H10208767A
Authority
JP
Japan
Prior art keywords
group
vanadium
diaphragm
ion exchange
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9317848A
Other languages
Japanese (ja)
Other versions
JP3797578B2 (en
Inventor
Kanji Sakata
勘治 坂田
Tatsuya Maehashi
達哉 前端
Takahisa Yamamoto
宜契 山本
Hiroki Hirayama
浩喜 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP31784897A priority Critical patent/JP3797578B2/en
Publication of JPH10208767A publication Critical patent/JPH10208767A/en
Application granted granted Critical
Publication of JP3797578B2 publication Critical patent/JP3797578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an ion exchange membrane which is low in membrane resistance as a diaphragm, excellent in permeability of proton, low in permeability of vanadium ion and excellent in oxidation resistance by making cross- linking polymer having pyridinium group into a diaphragm for vanadium system redox flow cell. SOLUTION: Charging/discharging is performed by utilizing oxidation reduction reaction of V<2+> /V<3+> within a negative electrode liquid isolated via an ion exchange membrane and V<4+> /V<5+> within a positive electrode liquid. In this vanadium-based redox flow cell, a diaphragm for cell made of cross-linking polymer having pyridinium group is used as the ion exchange membrane. As the cross-linking polymer having this pyridinium group, ion exchange capacity 0.2 to 10mmol/g-dry membrane an overall dialysis coefficient ratio UH/UMg 50 or more of proton and magnesium ion are preferable. The cross-linking polymer is obtained by converting pyridyl group into the pyridinium group after pyridyl group vinyl polymerization monomer 100 pts.wt. cross-linking agent 1 to 100 pts.wt. monofunctional vinyl polymerization monomer or styrene system monomer 0 to 100 pts.wt. are copolymerized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極液にバナジウム
を使用したバナジウム系レドックスフロー電池の正極液
と負極液を隔てる隔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diaphragm for separating a positive electrode solution and a negative electrode solution of a vanadium-based redox flow battery using vanadium as an electrolyte.

【0002】[0002]

【従来の技術】レドックスフロー電池は、隔膜を介して
隔てられた正極室と負極室に充填した、或いは流通透過
させた電池活物質の、可逆的な酸化還元反応を利用して
充放電を繰り返す電池系で、電池活物質によって種々の
電池系が提案されている。例えば、クロム−臭素系、鉄
−クロム系、バナジウム−チタン系、バナジウム−バナ
ジウム系等である。レドックスフロー電池において、こ
れら活物質は通常、金属イオンの形態で電解液として使
用される。
2. Description of the Related Art In a redox flow battery, charge and discharge are repeated by utilizing a reversible oxidation-reduction reaction of a battery active material filled in or passed through a cathode chamber and an anode chamber separated by a diaphragm. Various battery systems have been proposed depending on the battery active material. For example, chromium-bromine-based, iron-chromium-based, vanadium-titanium-based, vanadium-vanadium-based, and the like. In a redox flow battery, these active materials are usually used as an electrolyte in the form of metal ions.

【0003】上記の電池活物質を用いた電池系の中で
は、特にバナジウム系のものが起電力や電池容量等に優
れている。そして、このものは、負極室におけるバナジ
ウムの2価(V2+)/3価(V3+)と正極室におけるバ
ナジウムの4価(V4+)/5価(V5+)の酸化還元反応
を利用しており、正極室と負極室の電解液が同一の金属
イオン種であるため、隔膜を介して電解液が混合して
も、充電によって電解液が簡単に再生できる利点を有す
る。
[0003] Among the battery systems using the above-mentioned battery active materials, those based on vanadium are particularly excellent in electromotive force, battery capacity and the like. And this is a redox of divalent (V 2+ ) / 3 (V 3+ ) of vanadium in the negative electrode chamber and a tetravalent (V 4+ ) / 5 pentavalent (V 5+ ) of vanadium in the positive electrode chamber. Since the reaction is utilized and the electrolytes in the positive electrode chamber and the negative electrode chamber are the same metal ion species, there is an advantage that the electrolyte can be easily regenerated by charging even if the electrolytes are mixed through the diaphragm.

【0004】レドックスフロー電池における隔膜は、正
極室と負極室とを隔てて電解液の混合を防ぐ役割の他
に、充放電の際に生起するプロトンが、正極室と負極室
との間を移動するのに必要なプロトン透過性を有するこ
とが要求される。そこで、レドックスフロー電池の隔膜
として、プロトン透過性に優れ、一方では、電池活物質
である金属イオンの透過性を抑えた選択的なイオン透過
性を有するイオン交換膜の適用が提案されている。例え
ば、上記バナジウム系レドックスフロー電池用の隔膜で
あれば、バナジウムイオンの透過を抑えてプロトンを選
択的に透過させることが必要になる。即ち、両極室間で
バナジウムが隔膜を通して混合すると、充電−放電を繰
り返すサイクルにおいて、エネルギー効率、所謂、充放
電効率が低下する問題が生じる。上記要求からバナジウ
ム系レドックスフロー電池用の隔膜としては、ポリスル
ホン系の陰イオン交換膜(特開平6−188005号公
報)等の種々のイオン交換膜が提案されている。但し、
上記の文献にはイオン交換基の種類については何も記載
されていない。
[0004] In a redox flow battery, a diaphragm separates a positive electrode chamber and a negative electrode chamber to prevent mixing of electrolytes, and protons generated during charging and discharging move between the positive electrode chamber and the negative electrode chamber. It is required to have a proton permeability necessary for the formation. Therefore, application of an ion exchange membrane having excellent proton permeability as a diaphragm of a redox flow battery and having selective ion permeability in which the permeability of metal ions as a battery active material is suppressed has been proposed. For example, in the case of a diaphragm for the vanadium-based redox flow battery, it is necessary to suppress permeation of vanadium ions and selectively allow protons to permeate. That is, when vanadium is mixed between the two electrode chambers through the diaphragm, there occurs a problem that energy efficiency, that is, charge / discharge efficiency is reduced in a cycle of repeating charging and discharging. From the above requirements, various ion exchange membranes such as a polysulfone anion exchange membrane (JP-A-6-188005) have been proposed as a diaphragm for a vanadium redox flow battery. However,
The above document does not describe anything about the type of ion exchange group.

【0005】その他に、レドックスフロー電池における
隔膜としては、充放電効率に関連して膜抵抗(充放電時
の電気抵抗)の小さいことや、長期間の電解液との接触
や充放電の繰り返しによって、隔膜の性能が低下しない
優れた耐久性を有することが求められる。特に耐久性に
関しては、レドックスフロー電池が電池活物質として酸
化力の強い金属イオンを含むため、強い耐酸化性が求め
られる。
[0005] In addition, as a diaphragm in a redox flow battery, the membrane resistance (electrical resistance during charge / discharge) is low in relation to charge / discharge efficiency, or the contact with the electrolytic solution for a long period of time or the charge / discharge cycle is repeated. It is required that the membrane has excellent durability so that the performance of the membrane does not decrease. In particular, with respect to durability, since a redox flow battery contains a metal ion having strong oxidizing power as a battery active material, strong oxidation resistance is required.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来、バナジ
ウム系レドックスフロー電池用の隔膜として提案されて
いるイオン交換膜は、イオン交換膜としてスルホン酸型
陽イオン交換膜等が使用されているが、耐酸化性に関し
十分なものではなかった。特に、バナジウム系レドック
スフロー電池は、正極室の活物質である5価バナジウム
(V5+)の酸化力が強い為に、一般のイオン交換膜は、
かかる正極室の室液に浸漬しただけでも酸化劣化を来し
て、このものを電池として使用しても、充放電効率が経
時的に、或いは充放電サイクルの繰り返しと共にその電
池性能が低下する問題があった。その為、バナジウム系
レドックスフロー電池用隔膜では、実用化に向けて、充
放電効率を高め、長期間の使用に耐え得るよう耐酸化性
を向上させることが望まれていた。
However, ion exchange membranes conventionally proposed as diaphragms for vanadium-based redox flow batteries use sulfonic acid type cation exchange membranes as ion exchange membranes. The oxidation resistance was not sufficient. In particular, a vanadium-based redox flow battery has a strong oxidizing power of pentavalent vanadium (V 5+ ), which is an active material of a positive electrode chamber, and thus a general ion exchange membrane is
Even when the battery is immersed only in such a solution of the positive electrode chamber, it is oxidized and deteriorated. Even when the battery is used as a battery, the charging / discharging efficiency is degraded with time or with repeated charging / discharging cycles. was there. For this reason, it has been desired for a diaphragm for a vanadium-based redox flow battery to increase charge / discharge efficiency and improve oxidation resistance so as to withstand long-term use for practical use.

【0007】以上の背景にあって、本発明は、隔膜とし
て膜抵抗が低く、プロトンの透過性に優れ且つバナジウ
ムイオンの透過性が低い他、この耐酸化性についても優
れるイオン交換膜を開発することを目的とする。
In view of the above background, the present invention develops an ion exchange membrane having low membrane resistance, excellent proton permeability, low vanadium ion permeability, and excellent oxidation resistance as a membrane. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決する為に、鋭意研究を進めた。その結果、特定のイ
オン交換基を有する架橋重合体よりなるイオン交換膜が
バナジウム系レドックスフロー電池の隔膜として、上記
課題を解決できることを見出し、本発明を完成するに至
った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems. As a result, they have found that an ion-exchange membrane made of a crosslinked polymer having a specific ion-exchange group can solve the above problems as a diaphragm of a vanadium-based redox flow battery, and have completed the present invention.

【0009】即ち、本発明は、ピリジニウム基を有する
架橋重合体よりなるバナジウム系レドックスフロー電池
用隔膜である。
That is, the present invention is a diaphragm for a vanadium redox flow battery comprising a crosslinked polymer having a pyridinium group.

【0010】このピリジニウム基を有する架橋重合体よ
りなるイオン交換膜は、バナジウムイオンの透過が良好
に抑えられ、一方でプロトンの選択透過性が高いことか
ら高い充放電効率を有し、また、5価バナジウムに対し
ても高い酸化耐久性を示して、バナジウム系レドックス
フロー電池の隔膜として極めて好適である。
The ion-exchange membrane made of the crosslinked polymer having a pyridinium group has a good charge / discharge efficiency because of a good suppression of the permeation of vanadium ions, and a high selective permeability of protons. It also shows high oxidation durability against vanadium (V), and is extremely suitable as a diaphragm for vanadium-based redox flow batteries.

【0011】一方、アミノ基の第四級アンモニウム形を
イオン交換基として有する一般的な陰イオン交換膜は、
耐酸化性が十分でなく、バナジウム溶液への浸漬やレド
ックスフロー電池における充放電によってイオン交換基
が外れて充放電効率が徐々に低下する。
On the other hand, a general anion exchange membrane having a quaternary ammonium form of an amino group as an ion exchange group is:
Oxidation resistance is not sufficient, and ion exchange groups are removed due to immersion in a vanadium solution or charge / discharge in a redox flow battery, and the charge / discharge efficiency gradually decreases.

【0012】本発明において、ピリジニウム基は、ピリ
ジン環の窒素原子にアルキル基や水素原子などが配位結
合して共有結合原子価4価の陽イオン、即ちピリジニウ
ムイオンを構成しているものである。ここで、上記アル
キル基としては、メチル基、エチル基、プロピル基、イ
ソプロピル基、ブチル基等の炭素数1〜4のものが好ま
しい。また、ピリジン環には、メチル基、エチル基等の
置換基を有していても良い。ピリジン環の窒素原子の位
置は特に制限されないが、4−ピリジルが好適である。
特に、ピリジン環の窒素原子に水素原子が配位結合して
得られる陰イオン交換膜はバナジウム系レドックスフロ
ー電池の隔膜として、特に高い充放電効率と耐酸化性を
示すために好ましい。
In the present invention, the pyridinium group is a covalent valence tetravalent cation, that is, a pyridinium ion, in which an alkyl group or a hydrogen atom is coordinately bonded to a nitrogen atom of a pyridine ring. . Here, the alkyl group preferably has 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Further, the pyridine ring may have a substituent such as a methyl group or an ethyl group. The position of the nitrogen atom in the pyridine ring is not particularly limited, but 4-pyridyl is preferred.
In particular, an anion exchange membrane obtained by coordinating a hydrogen atom to a nitrogen atom of a pyridine ring is preferable as a diaphragm of a vanadium-based redox flow battery because it exhibits particularly high charge / discharge efficiency and oxidation resistance.

【0013】本発明で使用する架橋重合体において、上
記ピリジニウム基は、イオン交換容量として、0.2〜
10mmol/g−乾燥膜、好ましくは2〜6mmol
/g−乾燥膜の量が導入されているのが好ましい。ま
た、これらのピリジニウム基が導入される架橋重合体
は、如何なるものであっても良いが、通常は、架橋剤に
より架橋されたビニル重合性単量体の重合体からなるも
のであるのが一般的である。ここで、重合体が架橋して
いない場合、耐酸化性が劣るためにバナジウム系レドッ
クスフロー電池用隔膜としての使用は困難となる。
In the crosslinked polymer used in the present invention, the pyridinium group has an ion exchange capacity of 0.2 to 0.2.
10 mmol / g-dry film, preferably 2-6 mmol
/ G-amount of dry film is preferably introduced. Further, the crosslinked polymer into which these pyridinium groups are introduced may be any, but usually, it is generally composed of a polymer of a vinyl polymerizable monomer crosslinked by a crosslinking agent. It is a target. Here, when the polymer is not crosslinked, it is difficult to use it as a diaphragm for a vanadium-based redox flow battery due to poor oxidation resistance.

【0014】本発明において、バナジウム系レドックス
フロー電池用隔膜として使用する上記陰イオン交換膜
は、膜の取扱い易さや機械的強度を考慮すると、10〜
200μmの範囲、特に50〜120μmの厚みを有す
るのが好適である。また、イオン交換膜のイオン選択性
を示す指標としてプロトンとマグネシウムイオンの総括
透析係数Uの比であるUH/UMgは、50以上、好まし
くは100以上であることが好ましい。
In the present invention, the anion exchange membrane used as a membrane for a vanadium-based redox flow battery is preferably 10 to 10 in consideration of easy handling and mechanical strength of the membrane.
It is preferred to have a thickness in the range of 200 μm, especially 50 to 120 μm. Further, as an index indicating the ion selectivity of the ion exchange membrane, U H / U Mg which is a ratio of the overall dialysis coefficient U of proton and magnesium ion is preferably 50 or more, and more preferably 100 or more.

【0015】本発明において、ピリジニウム基を有する
架橋重合体は、下記のような組成の重合性組成物を共重
合して得た共重合体のピリジル基をピリジニウム基に変
換したものが好適に使用できる。即ち、ピリジル基を有
するビニル重合性単量体100重量部に対して、架橋剤
1〜100重量部、好ましくは2〜15重量部、およ
び、単官能ビニル重合性単量体0〜100重量部、好ま
しくは10〜50重量部よりなる重合性組成物である。
In the present invention, as the crosslinked polymer having a pyridinium group, a polymer obtained by copolymerizing a polymerizable composition having the following composition, in which a pyridyl group is converted to a pyridinium group, is preferably used. it can. That is, based on 100 parts by weight of a vinyl polymerizable monomer having a pyridyl group, 1 to 100 parts by weight of a crosslinking agent, preferably 2 to 15 parts by weight, and 0 to 100 parts by weight of a monofunctional vinyl polymerizable monomer. , Preferably a polymerizable composition comprising 10 to 50 parts by weight.

【0016】また、単官能ビニル重合性単量体として、
特定量のスチレン系単量体を用いた場合、得られるピリ
ジニウム基を有する架橋重合体のバナジウム溶液に対す
る耐久性がさらに向上するために好ましい。即ち、ピリ
ジル基を有するビニル重合性単量体100重量部に対し
て、架橋剤1〜100重量部、好ましくは2〜15重量
部、および、スチレン系単量体10〜100重量部、好
ましくは20〜60重量部、さらに好ましくは30〜5
0重量部よりなる重合性組成物を好適に使用できる。
Also, as a monofunctional vinyl polymerizable monomer,
The use of a specific amount of a styrene-based monomer is preferable because the durability of the obtained crosslinked polymer having a pyridinium group to a vanadium solution is further improved. That is, based on 100 parts by weight of a vinyl polymerizable monomer having a pyridyl group, 1 to 100 parts by weight of a crosslinking agent, preferably 2 to 15 parts by weight, and 10 to 100 parts by weight of a styrene monomer, preferably 20 to 60 parts by weight, more preferably 30 to 5 parts by weight
A polymerizable composition comprising 0 parts by weight can be suitably used.

【0017】上記で説明した各単量体または共重合体と
しては、次のような化合物を使用することができる。ま
ず、ピリジル基を有するビニル重合性単量体は、分子内
にピリジル基とビニル基とを有する公知の化合物を何ら
制限なく使用することができる。本発明において好適に
使用できる化合物は下記式(1)で表すことができる。
The following compounds can be used as each monomer or copolymer described above. First, as the vinyl polymerizable monomer having a pyridyl group, a known compound having a pyridyl group and a vinyl group in a molecule can be used without any limitation. The compound that can be suitably used in the present invention can be represented by the following formula (1).

【0018】[0018]

【化1】 Embedded image

【0019】(ただし、R1は水素原子、アルキル基、
またはビニル基である。) ここで、アルキル基としては、メチル基、エチル基、プ
ロピル基、イソプロピル基、ブチル基等の炭素数1〜4
のものが好ましい。このようなピリジル基を有するビニ
ル重合性単量体の具体例としては、2−ビニルピリジ
ン、3−ビニルピリジン、4−ビニルピリジン、メチル
ビニルピリジン、エチルビニルピリジン、ジビニルピリ
ジン等を挙げることができる。
(Where R 1 is a hydrogen atom, an alkyl group,
Or a vinyl group. Here, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
Are preferred. Specific examples of such a vinyl polymerizable monomer having a pyridyl group include 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, methylvinylpyridine, ethylvinylpyridine, divinylpyridine, and the like. .

【0020】次に、架橋剤は、分子内に二個以上のビニ
ル重合性基を有する公知の化合物を何ら制限なく用いる
ことができ、一般式で表すと下記式(2)で示される化
合物を好適に使用できる。
As the cross-linking agent, a known compound having two or more vinyl polymerizable groups in the molecule can be used without any limitation, and a compound represented by the following formula (2) can be represented by a general formula. It can be suitably used.

【0021】[0021]

【化2】 Embedded image

【0022】(ただし、R2およびR3は、同種または異
種の水素原子、ハロゲン原子、またはアルキル基であ
り、Xは
(Where R 2 and R 3 are the same or different hydrogen atoms, halogen atoms, or alkyl groups, and X is

【0023】[0023]

【化3】 Embedded image

【0024】であり、nは0または1である。) ここで、アルキル基としては、メチル基、エチル基、プ
ロピル基、イソプロピル基、ブチル基等の炭素数1〜4
のものが好ましい。このような架橋剤としては、具体的
に、m−ジビニルベンゼン、p−ジビニルベンゼン、o
−ジビニルベンゼン、プタジエン、クロロプレン、イソ
プレン、トリビニルベンゼン、ジビニルナフタレン、ジ
ビニルビフェニル等を挙げることができる。
Where n is 0 or 1. Here, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
Are preferred. Specific examples of such a crosslinking agent include m-divinylbenzene, p-divinylbenzene, o
-Divinylbenzene, butadiene, chloroprene, isoprene, trivinylbenzene, divinylnaphthalene, divinylbiphenyl and the like.

【0025】単官能ビニル重合性単量体は、分子内にビ
ニル基を1個有する公知の化合物を何ら制限なく用いる
ことができる。このような単官能ビニル重合性単量体の
具体例としては、ペンテン、ヘプテン、オクテン等のオ
レフィン;アクリル酸及びそのエステル、メタクリル酸
及びそのエステル、アクリルアミド及びその誘導体、メ
タクリルアミド及びその誘導体、アクリロニトリル、メ
タクリロニトリル等のアクリル系単量体;無水マレイン
酸及びそのエステル、マレアミド酸及びその誘導体、マ
レイミド及びその誘導体等のマレイン酸系単量体;ビニ
ルシクロプロパン、ビニルナフタレン、ビニルフルオレ
ン、ビニルフェナントレン、ビニルアントラセン等の各
単量体及びこれらの誘導体等を挙げることができる。
As the monofunctional vinyl polymerizable monomer, a known compound having one vinyl group in the molecule can be used without any limitation. Specific examples of such a monofunctional vinyl polymerizable monomer include olefins such as pentene, heptene, and octene; acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, methacrylamide and its derivatives, and acrylonitrile. , Methacrylonitrile and other acrylic monomers; maleic anhydride and its esters, maleamic acid and its derivatives, maleimide and its derivatives, and other maleic monomers; vinylcyclopropane, vinylnaphthalene, vinylfluorene, vinylphenanthrene And various monomers such as vinylanthracene and derivatives thereof.

【0026】スチレン系単量体は、スチレンまたはその
誘導体であり、一般式(3)で表す化合物を好適に使用
できる。
The styrene monomer is styrene or a derivative thereof, and a compound represented by the general formula (3) can be preferably used.

【0027】[0027]

【化4】 Embedded image

【0028】(ただし、R4、R5およびR6は、それぞ
れ同種または異種の水素原子、ハロゲン原子、アルキル
基、フェニル基である。) ここで、アルキル基としては、メチル基、エチル基、プ
ロピル基、イソプロピル基、ブチル基等の炭素数1〜4
のものが好ましい。このようなスチレン系単量体として
は、スチレン、α−メチルスチレン、α−ハロゲン化ス
チレン、クロロスチレン、クロロメチルスチレン、α、
β、β’−トリハロゲン化メチルスチレン、ビニルトル
エン、ビニルキシレン、ビニルビフェニル等を例示する
ことができる。
(However, R 4 , R 5 and R 6 are the same or different, respectively, a hydrogen atom, a halogen atom, an alkyl group and a phenyl group.) Here, the alkyl group includes a methyl group, an ethyl group, 1-4 carbon atoms such as propyl, isopropyl and butyl groups
Are preferred. Such styrene monomers include styrene, α-methylstyrene, α-halogenated styrene, chlorostyrene, chloromethylstyrene, α,
β, β′-trihalogenated methylstyrene, vinyltoluene, vinylxylene, vinylbiphenyl and the like can be exemplified.

【0029】本発明において、ビリジニウム基を有する
架橋重合体からなるバナジウム系レドックスフロー電池
用隔膜は、いかなる製造方法によって製造したものでも
良い。好適な製造方法を示せば、ピリジル基を有するビ
ニル重合性単量体、架橋剤、および必要により用いられ
る単官能ビニル重合性単量体を含む重合性組成物を、膜
状に成形して重合し、その後、ピリジル基をピリジニウ
ム基に変換する方法が挙げられる。
In the present invention, the diaphragm for a vanadium-based redox flow battery comprising a crosslinked polymer having a viridinium group may be produced by any production method. If a suitable production method is shown, a polymerizable composition containing a vinyl polymerizable monomer having a pyridyl group, a crosslinking agent, and a monofunctional vinyl polymerizable monomer used as needed is formed into a film and polymerized. After that, a method of converting a pyridyl group to a pyridinium group may be mentioned.

【0030】ここで、各単量体および共重合体とその使
用量は、既に説明したとおりである。
Here, the monomers and copolymers and the amounts used are as described above.

【0031】隔膜の成形重合の製膜性を高める目的等の
為に、増粘剤や可塑剤、そして、重合性組成物のビニル
重合を開始させる為に重合開始剤等を配合させても良
い。具体的には、増粘剤としては、スチレン−ブタジェ
ン共重合体やアクリロニトリル−ブタジエン共重合体や
これらを水素添加したものが、可塑剤としてはフタル酸
等の芳香族酸や脂肪族酸のアルコールエステル類やアル
キルリン酸エステル等が挙げられる。また、重合開始剤
としては、主に有機過酸化物やアゾ化合物系の熱分解型
重合開始剤が使用されるが、紫外線等の光の照射による
光重合による場合には、光重合開始剤を使用することが
できる。有機過酸化物系の熱分解型重合開始剤を例示す
ると、ベンゾイルペルオキサイド、2,4−ジクロロベ
ンゾイルペルオキサイド、t−ブチルペルオキシ−2−
エチルヘキサノエート、ラウリルペルオキサイド、ステ
アリルペルオキサイド、メチルイソブチルケトンペルオ
キサイド、シクロヘキサンペルオキサイド、o−メチル
ベンゾイルオキサイド、2,4,4−トリメチルペンチ
ルペルオキシ−フェノキシアセテート、α−クミルペル
オキシネオデカノエート、ジ−t−ブチルペルオキシヘ
キサハイドロテレフタレート、t−ブチルペルオキシベ
ンゾエート、ジイソプロピルベンゼンヒドロペルオキサ
イド、ジ−t−ブチルペルオキサイド、1,1−ビス−
t−ブチルペルオキシ−3,3,5−トリメチルシクロ
ヘキサン等が挙げられる。
For the purpose of enhancing the film forming property of the polymerization of the diaphragm, a thickener or a plasticizer, and a polymerization initiator or the like may be added to initiate the vinyl polymerization of the polymerizable composition. . Specifically, a styrene-butadiene copolymer or an acrylonitrile-butadiene copolymer or a hydrogenated product thereof is used as a thickener, and an alcohol of an aromatic or aliphatic acid such as phthalic acid is used as a plasticizer. Esters and alkyl phosphate esters are exemplified. As the polymerization initiator, an organic peroxide or an azo compound-based thermally decomposable polymerization initiator is mainly used, but in the case of photopolymerization by irradiation of light such as ultraviolet light, the photopolymerization initiator is used. Can be used. Examples of the organic peroxide-based thermal decomposition type polymerization initiator include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, and t-butylperoxy-2-.
Ethyl hexanoate, lauryl peroxide, stearyl peroxide, methyl isobutyl ketone peroxide, cyclohexane peroxide, o-methylbenzoyl oxide, 2,4,4-trimethylpentyl peroxy-phenoxy acetate, α-cumyl peroxy neodecano Ethate, di-t-butylperoxyhexahydroterephthalate, t-butylperoxybenzoate, diisopropylbenzene hydroperoxide, di-t-butylperoxide, 1,1-bis-
t-butylperoxy-3,3,5-trimethylcyclohexane and the like.

【0032】以上の配合組成で調製されたペースト状の
重合性組成物は、膜状に成形重合される。この成形重合
は、該重合性組成物を膜状の基材に付着させた後、加熱
等の重合処理を施すことにより行うのが一般的である。
基材としては、従来からイオン交換膜の基材として用い
られているポリ塩化ビニル、ポリオレフィン等の素材樹
脂を、繊維化して織布、不織布、網、或いはフィルム化
して多孔性シート等の形状に加工したものが使用でき
る。基材の厚さは、10〜200μmの範囲、特に50
〜120μmが好適である。
The paste-form polymerizable composition prepared with the above composition is formed and polymerized into a film. This molding polymerization is generally carried out by applying the polymerizable composition to a film-like base material and then performing a polymerization treatment such as heating.
As the base material, material resins such as polyvinyl chloride and polyolefin, which have been conventionally used as base materials for ion exchange membranes, are turned into fibers to form woven fabrics, nonwoven fabrics, nets, or films into porous sheets. Processed ones can be used. The thickness of the substrate is in the range of 10 to 200 μm, especially 50
120120 μm is preferred.

【0033】重合性組成物の基材への付着方法は、例え
ば塗布、含浸、或いは浸漬等の公知の方法が使用でき、
基材の材質や形状、或いは重合性組成物の性状に応じて
適宜選択すれば良い。基材に付着させた重合性組成物
は、配合される重合開始剤の種類に応じて、加熱による
方法、或いは紫外線等の光や電離性放射線を照射する方
法により重合される。重合開始剤が熱分解型重合開始剤
であり加熱により重合する場合には、添加した重合開始
剤の分解温度以上に加熱して重合が行なわれるが、一般
には50〜150℃の範囲で基材の樹脂素材の耐熱性を
考慮して重合温度を設定すればよい。重合時間は、5〜
16時間の範囲から採択するのが好ましい。 このよう
にして製膜された架橋重合体よりなる膜状物には、次い
で、そのピリジル基をピリジニウム基へ変換する処理が
施される。かかるピリジニウム基への変換の方法は、公
知の方法が制限なく使用される。例えばピリジニウム基
として、ピリジン環の窒素原子にアルキル基等の有機基
が配位結合しているものを得る場合は、前記膜状物をヨ
ウ化メチル等のハロゲン化アルキルを含む浴に浸漬する
等の従来公知の四級化方法で処理すればよい。
As a method for attaching the polymerizable composition to the substrate, for example, known methods such as coating, impregnation, and dipping can be used.
What is necessary is just to select suitably according to the material and shape of a base material, or the property of a polymerizable composition. The polymerizable composition adhered to the substrate is polymerized by a method of heating or a method of irradiating light such as ultraviolet rays or ionizing radiation depending on the type of the polymerization initiator to be blended. When the polymerization initiator is a thermal decomposition type polymerization initiator and is polymerized by heating, the polymerization is carried out by heating to a temperature not lower than the decomposition temperature of the added polymerization initiator. The polymerization temperature may be set in consideration of the heat resistance of the resin material. The polymerization time is between 5 and
It is preferable to adopt from a range of 16 hours. The film-like product made of the crosslinked polymer thus formed is then subjected to a treatment for converting the pyridyl group to a pyridinium group. As a method for converting to a pyridinium group, a known method is used without limitation. For example, when obtaining a pyridinium group in which an organic group such as an alkyl group is coordinated to a nitrogen atom of a pyridine ring, the film is dipped in a bath containing an alkyl halide such as methyl iodide. May be processed by the conventionally known quaternization method.

【0034】また、ピリジニウム基として、ピリジン環
の窒素原子に水素原子が配位結合しているものを得る場
合は、前記膜状物を塩酸や硫酸等の鉱酸類の水溶液に浸
漬するプロトネーション化方法を採用すればよい。その
場合、鉱酸類の水溶液には、さらに有機溶媒を混合すれ
ば、得られたイオン交換膜のイオン交換容量は増加し
て、バナジウム系レドックスフロー電池の隔膜として用
いた際に、充放電効率がより高まり効果的である。この
有機溶媒は、塩酸や硫酸等の鉱酸類の水溶液に溶解する
水溶性のものであれば特に制限されるものではなく、好
適には、メチルアルコール、エチルアルコール、イソプ
ロピルアルコール等のアルコール類や、エチレングリコ
ールモノエチルエーテル等のセロソルプ類、アセトン、
エチルメチルケトン等のケトン類、ジオキサン、テトラ
ヒドロフラン等の環状エーテル類等が例示される。これ
ら有機溶媒の混合量は、下記の浸漬反応条件にも依る
が、5重量%以上、好ましくは10重量%以上である。
When a pyridinium group in which a hydrogen atom is coordinately bonded to a nitrogen atom of a pyridine ring is obtained, the film is immersed in an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid. A method may be adopted. In that case, if an organic solvent is further mixed with the aqueous solution of mineral acids, the ion exchange capacity of the obtained ion exchange membrane increases, and when used as a diaphragm of a vanadium-based redox flow battery, the charge / discharge efficiency increases. It is more effective and effective. The organic solvent is not particularly limited as long as it is soluble in an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid.Preferably, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, Cellosolps such as ethylene glycol monoethyl ether, acetone,
Examples thereof include ketones such as ethyl methyl ketone, and cyclic ethers such as dioxane and tetrahydrofuran. The mixing amount of these organic solvents depends on the following immersion reaction conditions, but is at least 5% by weight, preferably at least 10% by weight.

【0035】一方、鉱酸類の水溶液の酸濃度は塩酸等の
一塩基酸でも0.5mol/l以上の濃度で十分で、こ
れ以下の濃度であっても、浸漬処理時間の延長や浸漬浴
温度を上げることによって、プロトネーション化は容易
に進行する。従って、浸漬浴温度や浸漬処理時間を厳密
に規定する必要はなく、常温で3時間以上の浸漬処理で
十分な効果が得られる。また、上記プロトネーション化
の処理を確実にする為に、浸漬浴温度を高めることも可
能であり、その場合には鉱酸類としては不揮発性の硫酸
が好適で、浸漬浴温度は浸漬浴に混合添加した有機化合
物溶媒の沸点以下で在ることが望ましい。
On the other hand, the acid concentration of the aqueous solution of a mineral acid is preferably 0.5 mol / l or more even with a monobasic acid such as hydrochloric acid. By increasing the value, the protonation proceeds easily. Therefore, it is not necessary to strictly regulate the immersion bath temperature and the immersion treatment time, and a sufficient effect can be obtained by immersion treatment at room temperature for 3 hours or more. Further, in order to ensure the above-mentioned protonation treatment, it is possible to increase the immersion bath temperature. In this case, nonvolatile sulfuric acid is preferable as the mineral acid, and the immersion bath temperature is mixed with the immersion bath. It is desirable that the temperature be below the boiling point of the added organic compound solvent.

【0036】以上により得られた陰イオン交換膜を、本
発明ではバナジウム系レドックスフロー電池用隔膜とし
て使用する。ここで、バナジウム系レドックスフロー電
池とは、隔膜により正極と負極を分離した正極室および
負極室に、正極液としてバナジウムの4価/5価を含む
硫酸溶液を、負極液としてバナジウムの2価/3価を含
む硫酸溶液を、液透過型の電解槽に流通せしめ、酸化還
元反応を利用して充放電を行うものである。
In the present invention, the anion exchange membrane obtained as described above is used as a diaphragm for a vanadium redox flow battery. Here, a vanadium-based redox flow battery refers to a sulfuric acid solution containing vanadium tetravalent / pentavalent as a positive electrode solution and a vanadium divalent / pentavalent / vanadium solution as a negative electrode solution in a positive electrode chamber and a negative electrode chamber in which a positive electrode and a negative electrode are separated by a diaphragm. A sulfuric acid solution containing trivalent is allowed to flow through a liquid permeable electrolytic cell, and charge and discharge are performed using an oxidation-reduction reaction.

【0037】[0037]

【発明の効果】本発明のピリジニウム基を架橋重合体の
構造に組み込んだ陰イオン交換膜は、バナジウム系レド
ックスフロー電池の隔膜として、膜抵抗が低く、且つバ
ナジウムイオンの透過を抑えてプロトン選択透過性が高
く、充放電効率が高いという特性を有する。そしてさら
に、従来のイオン交換膜に比して耐酸化性に優れている
ため、充放電の繰り返しや電解液との接触による充放電
効率の低下が少なく、長期間の使用に耐えるという利点
を有する。従って、本発明の隔膜を用いれば、高性能の
バナジウム系レドックスフロー電池が提供でき、本発明
は、産業上極めて有用である。
The anion exchange membrane of the present invention in which the pyridinium group is incorporated in the structure of the crosslinked polymer has a low membrane resistance and suppresses the permeation of vanadium ions as a diaphragm for a vanadium-based redox flow battery. And high charge and discharge efficiency. Furthermore, since it has excellent oxidation resistance as compared with the conventional ion exchange membrane, there is little reduction in charge / discharge efficiency due to repeated charge / discharge and contact with the electrolytic solution, and has an advantage that it can withstand long-term use. . Therefore, by using the diaphragm of the present invention, a high-performance vanadium-based redox flow battery can be provided, and the present invention is extremely useful in industry.

【0038】[0038]

【実施例】以下に、本発明を具体的に説明するための実
施例を掲げるが、本発明はこれら実例に限定されるもの
ではない。
The present invention will be described in more detail with reference to the following Examples, which by no means limit the scope of the present invention.

【0039】なお、実施例中に記した各測定値は以下の
方法により測定した。
The measured values described in the examples were measured by the following methods.

【0040】・イオン交換容量 塩化物イオン型から硝酸イオン型に置換した時に遊離し
た塩化物イオンをモール法により定量した。
Ion exchange capacity Chloride ion released when the chloride ion type was replaced with the nitrate ion type was quantified by the Mohr method.

【0041】・UH/UMg この数値は、イオン交換膜のイオン選択透過性を示す指
標であり、マグネシウムイオンとプロトンの総括透析係
数Uの比である。この数量が大きいほどイオンの選択透
過性が高いことを示す。UMgとUHの測定方法は次の通
りである。標準液として1mol/l硫酸と0.5mo
l/l硫酸マグネシウムの混合溶液をイオン交換膜(有
効膜面積A)の片側に供給し、イオン交換膜の反対側に
は水を供給して、液温を25℃に保ちつつイオン交換膜
を通して水側に透過したマグネシウムイオンとプロトン
の量(m)を測定し、両室の対数濃度差(△C)から、
次式により求めた。
U H / U Mg This value is an index indicating the ion selective permeability of the ion exchange membrane, and is the ratio of the total dialysis coefficient U of magnesium ions and protons. The larger the quantity, the higher the selective permeability of ions. The method for measuring U Mg and U H is as follows. 1mol / l sulfuric acid and 0.5mo as standard solution
A mixed solution of 1 / l magnesium sulfate is supplied to one side of the ion exchange membrane (effective membrane area A), and water is supplied to the other side of the ion exchange membrane. The amount (m) of magnesium ions and protons permeated to the water side was measured, and from the logarithmic concentration difference (△ C) between the two chambers,
It was determined by the following equation.

【0042】U=m/(A×△C) ・バナジウム系レドックスフロー電池の電池性能 正極液として2mol/lVOSO4+2mol/l硫
酸の混合溶液を、そして負極液として2mol/lV2
(SO43+2mol/l硫酸の混合溶液を用いて、電
流密度60mA/cm2で充放電を行い、充電時の総電
力に対して放電時に得られた全電力の比を充放電効率と
して表し、電池性能を示す指標とした。
U = m / (A × ΔC) Battery performance of vanadium redox flow battery A mixed solution of 2 mol / l VOSO 4 +2 mol / l sulfuric acid as a positive electrode solution and 2 mol / l V 2 as a negative electrode solution
Using a mixed solution of (SO 4 ) 3 +2 mol / l sulfuric acid, charging and discharging were performed at a current density of 60 mA / cm 2 , and the ratio of the total power obtained during discharging to the total power during charging was defined as the charging and discharging efficiency. And used as an index indicating battery performance.

【0043】・イオン交換膜の耐酸化性 劣化加速試験として、イオン交換膜を60℃の1mol
/lの5価バナジウムを含む硫酸溶液に浸漬し、3日目
と6ヶ月後にイオン交換膜を取り出して、上記のバナジ
ウム系レドックスフロー電池に隔膜として組み込み、上
記と同様の条件で充放電効率を測定し、充放電効率の低
下具合からイオン交換膜の酸化耐久性を判断した。
Oxidation resistance of the ion exchange membrane As an accelerated deterioration test, the ion exchange membrane was heated to
/ L of sulfuric acid solution containing pentavalent vanadium, and after 3 days and 6 months, the ion exchange membrane was taken out, incorporated into the above vanadium redox flow battery as a diaphragm, and charge and discharge efficiency was measured under the same conditions as above. The oxidation durability of the ion exchange membrane was determined based on the measurement and the degree of decrease in charge / discharge efficiency.

【0044】実施例1〜16 表1に示した組成表に従って、各種単量体と共重合体を
混合することにより、ペースト状の重合性組成物を得
た。得られた重合性組成物をポリ塩化ビニル製の織布に
塗布し、ポリエステルのフィルムを剥離材として被覆し
た後、75℃で6時間、加熱重合した。
Examples 1 to 16 According to the composition table shown in Table 1, various monomers and a copolymer were mixed to obtain a paste-like polymerizable composition. The obtained polymerizable composition was applied to a woven fabric made of polyvinyl chloride, coated with a polyester film as a release material, and then heated and polymerized at 75 ° C. for 6 hours.

【0045】次に、得られた膜状共重合体を、次の2種
類のイオン化方法によりイオン化することによりレドッ
クスフロー電池用隔膜を得た。
Next, the obtained membrane copolymer was ionized by the following two ionization methods to obtain a membrane for a redox flow battery.

【0046】1)ヨウ化メチル40wt%とヘキサン6
0wt%の混合液中に30℃で24時間浸漬した。
1) 40% by weight of methyl iodide and 6 of hexane
It was immersed in a 0 wt% mixed solution at 30 ° C. for 24 hours.

【0047】2)硫酸10wt%およびアセトン40w
t%の水溶液中に35℃で5時間浸漬した。
2) Sulfuric acid 10 wt% and acetone 40 w
It was immersed in an aqueous solution of t% at 35 ° C. for 5 hours.

【0048】このようにして得られたレドックスフロー
電池用隔膜の膜厚、イオン交換容量、UH/UMg、充放
電効率を測定した。更に耐酸化性を調べる為の劣化加速
試験後の充放電効率を測定した。これらの結果を表2に
示した。
The film thickness, ion exchange capacity, U H / U Mg , and charge / discharge efficiency of the thus obtained redox flow battery membrane were measured. Further, the charge / discharge efficiency after the accelerated deterioration test for examining the oxidation resistance was measured. Table 2 shows the results.

【0049】比較例1 スチレン100重量部、純度約57%のジビニルベンゼ
ン5重量部、ペンゾイルパーオキシド2重量部を混合し
て得たペースト状混合物をポリ塩化ビニル製の織布に塗
布し、ポリエステルのフィルムを剥離材として被覆した
後、100℃で5時間、加熱重合した。
Comparative Example 1 A paste-like mixture obtained by mixing 100 parts by weight of styrene, 5 parts by weight of divinylbenzene having a purity of about 57%, and 2 parts by weight of benzoyl peroxide was applied to a woven fabric made of polyvinyl chloride. Was coated as a release material, and then heated and polymerized at 100 ° C. for 5 hours.

【0050】次に、得られた膜状共重合体を98%濃硫
酸と純度90%以上のクロルスルホン酸の1:1の混合
物中に60分間、40℃で浸漬し、スルホン酸型陽イオ
ン交換膜を得た。
Next, the obtained film-form copolymer was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid having a purity of 90% or more for 60 minutes at 40 ° C. to obtain a sulfonic acid type cation. An exchange membrane was obtained.

【0051】このスルホン酸型陽イオン交換膜の膜厚、
イオン交換容量、UH/UMg、充放電効率を測定した。
更に耐酸化性を調べる為の劣化加速試験後の充放電効率
を測定した。これらの結果を表2に示した。
The thickness of the sulfonic acid type cation exchange membrane,
The ion exchange capacity, U H / U Mg , and charge / discharge efficiency were measured.
Further, the charge / discharge efficiency after the accelerated deterioration test for examining the oxidation resistance was measured. Table 2 shows the results.

【0052】比較例2 ポリスルホン(商品名:UDEL,amoco社製)を
1,1,2,2,−テトラクロルエタンに溶解し、クロ
ロメチルと無水塩化スズを添加し、110℃で4時間反
応させた後、メチルアルコールで沈殿、洗浄し、クロロ
メチル化物を得た。
Comparative Example 2 Polysulfone (trade name: UDEL, manufactured by amoco) was dissolved in 1,1,2,2-tetrachloroethane, chloromethyl and anhydrous tin chloride were added, and the mixture was reacted at 110 ° C. for 4 hours. After that, precipitation and washing were performed with methyl alcohol to obtain a chloromethylated product.

【0053】得られたクロロメチル化物をテトラクロル
エタンに溶解し10wt%の溶液を得た。次いで、この
溶液をガラス板上に流延した後、50℃で2時間加熱乾
燥させ、膜厚0.025mmのキャスト膜を得た。
The obtained chloromethylated product was dissolved in tetrachloroethane to obtain a 10% by weight solution. Next, this solution was cast on a glass plate and dried by heating at 50 ° C. for 2 hours to obtain a cast film having a thickness of 0.025 mm.

【0054】次に、上記キャスト膜は1.2mol/L
のN,N,N’,N1−テトラメチル1,3−ジアミノ
プロパンのメタノールジメチルスルホキシド混合溶液
に、40℃で16時間浸漬し、イオン交換基として第4
級アンモニウム塩基を有するポリスルホン系陰イオン交
換膜を得た。
Next, the above-mentioned cast film was 1.2 mol / L.
Was immersed in a mixed solution of N, N, N ', N 1 -tetramethyl-1,3-diaminopropane in methanol and dimethyl sulfoxide at 40 ° C. for 16 hours to obtain a fourth ion-exchange group.
A polysulfone-based anion exchange membrane having a quaternary ammonium base was obtained.

【0055】このポリスルホン系陰イオン交換膜の膜
厚、イオン交換容量、UH/UMg、充放電効率を測定し
た。更に耐酸化性を調べる為の劣化加速試験後の充放電
効率を測定した。これらの結果を表2に示した。
The thickness, ion exchange capacity, U H / U Mg , and charge / discharge efficiency of this polysulfone anion exchange membrane were measured. Further, the charge / discharge efficiency after the accelerated deterioration test for examining the oxidation resistance was measured. Table 2 shows the results.

【0056】比較例3 クロロメチルスチレン100重量部、純度約57%のジ
ビニルベンゼン5重量部、ペンゾイルパーオキシド2重
量部を混合して得たペースト状混合物をポリ塩化ビニル
製の織布に塗布し、ポリエステルのフィルムを剥離材と
して被覆した後、75℃で6時間、加熱重合した。
Comparative Example 3 A paste-like mixture obtained by mixing 100 parts by weight of chloromethylstyrene, 5 parts by weight of divinylbenzene having a purity of about 57% and 2 parts by weight of benzoyl peroxide was applied to a woven fabric made of polyvinyl chloride. After coating with a polyester film as a release material, the mixture was heated and polymerized at 75 ° C for 6 hours.

【0057】次に、得られた膜状共重合体をトリメチル
アミン10重量%およびアセトン20重量%水溶液中に
30℃で15時間浸漬してアミノ化し、陰イオン交換膜
を得た。
Next, the obtained film-form copolymer was immersed in an aqueous solution of 10% by weight of trimethylamine and 20% by weight of acetone at 30 ° C. for 15 hours to aminate to obtain an anion exchange membrane.

【0058】この陰イオン交換膜の膜厚、イオン交換容
量、UH/UMg、充放電効率を測定した。更に耐酸化性
を調べる為の劣化加速試験後の充放電効率を測定した。
これらの結果を表2に示した。
The thickness, ion exchange capacity, U H / U Mg and charge / discharge efficiency of this anion exchange membrane were measured. Further, the charge / discharge efficiency after the accelerated deterioration test for examining the oxidation resistance was measured.
Table 2 shows the results.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平山 浩喜 山口県徳山市御影町1番1号 株式会社ト クヤマ内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroki Hirayama 1-1, Mikage-cho, Tokuyama-shi, Yamaguchi Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ピリジニウム基を有する架橋重合体よりな
るバナジウム系レドックスフロー電池用隔膜。
1. A diaphragm for a vanadium redox flow battery comprising a crosslinked polymer having a pyridinium group.
【請求項2】ピリジニウム基を有する架橋重合体が、イ
オン交換容量0.2〜10mmol/g−乾燥膜である
請求項1記載の隔膜。
2. The membrane according to claim 1, wherein the crosslinked polymer having a pyridinium group is an ion exchange capacity of 0.2 to 10 mmol / g-dry membrane.
【請求項3】ピリジニウム基を有する架橋重合体が、プ
ロトンとマグネシウムイオンの総括透析係数の比(UH
/UMg)が50以上である請求項1記載の隔膜。
3. The crosslinked polymer having a pyridinium group has a ratio of the overall dialysis coefficient of proton to magnesium ion (U H
/ U Mg ) is 50 or more.
【請求項4】ピリジニウム基を有する架橋重合体が、ピ
リジン環の窒素原子に水素原子が配位結合しているもの
である請求項1記載の隔膜。
4. The membrane according to claim 1, wherein the crosslinked polymer having a pyridinium group has a hydrogen atom coordinated to a nitrogen atom of a pyridine ring.
【請求項5】ピリジニウム基を有する架橋重合体が、ピ
リジル基を有するビニル重合性単量体100重量部、架
橋剤1〜100重量部、および、単官能ビニル重合性単
量体0〜100重量部を共重合させて得た共重合体のピ
リジル基をピリジニウム基に変換したものである請求項
1記載の隔膜。
5. A crosslinked polymer having a pyridinium group comprising 100 parts by weight of a vinyl polymerizable monomer having a pyridyl group, 1 to 100 parts by weight of a crosslinking agent, and 0 to 100 parts by weight of a monofunctional vinyl polymerizable monomer. 2. The membrane according to claim 1, wherein the pyridyl group of the copolymer obtained by copolymerizing parts is converted to a pyridinium group.
【請求項6】ピリジニウム基を有する架橋重合体が、ピ
リジル基を有するビニル重合性単量体100重量部、架
橋剤1〜100重量部、および、スチレン系単量体10
〜100重量部を共重合させて得た共重合体のピリジル
基をピリジニウム基に変換したものである請求項1記載
の隔膜。
6. A crosslinked polymer having a pyridinium group comprising 100 parts by weight of a vinyl polymerizable monomer having a pyridyl group, 1 to 100 parts by weight of a crosslinking agent, and a styrene monomer 10
2. The membrane according to claim 1, wherein the pyridyl group of the copolymer obtained by copolymerizing 〜100 parts by weight is converted to a pyridinium group.
【請求項7】ピリジル基を有するビニル重合性単量体、
架橋剤および必要により用いられる単官能ビニル重合性
単量体を含む重合性組成物を成形重合せしめた後、ピリ
ジル基をピリジニウム基に変換することを特徴とする請
求項1記載の隔膜の製造方法。
7. A vinyl polymerizable monomer having a pyridyl group,
2. The method for producing a diaphragm according to claim 1, wherein a pyridyl group is converted into a pyridinium group after a polymerizable composition containing a crosslinking agent and optionally a monofunctional vinyl polymerizable monomer is subjected to molding polymerization. .
JP31784897A 1996-11-22 1997-11-19 Membrane for vanadium redox flow battery Expired - Lifetime JP3797578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784897A JP3797578B2 (en) 1996-11-22 1997-11-19 Membrane for vanadium redox flow battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31219096 1996-11-22
JP8-312190 1996-11-22
JP31784897A JP3797578B2 (en) 1996-11-22 1997-11-19 Membrane for vanadium redox flow battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000319228A Division JP3846843B2 (en) 1996-11-22 2000-10-19 Manufacturing method of diaphragm for vanadium redox flow battery

Publications (2)

Publication Number Publication Date
JPH10208767A true JPH10208767A (en) 1998-08-07
JP3797578B2 JP3797578B2 (en) 2006-07-19

Family

ID=26567059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784897A Expired - Lifetime JP3797578B2 (en) 1996-11-22 1997-11-19 Membrane for vanadium redox flow battery

Country Status (1)

Country Link
JP (1) JP3797578B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632507B2 (en) 1998-06-05 2003-10-14 Premark Rwp Holdings, Inc. Holographically enhanced decorative laminate
KR100477897B1 (en) * 2002-07-10 2005-03-18 광주과학기술원 Method for preparation of anion-exchange membranes containing pyridinium and its derivatives as anion-exchanger and device containing them
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9147903B2 (en) 2011-04-18 2015-09-29 Samsung Sdi Co., Ltd. Separator for redox flow battery and redox flow battery
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
WO2016158217A1 (en) * 2015-03-31 2016-10-06 株式会社東北テクノアーチ Vanadium redox cell
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
WO2017203921A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632507B2 (en) 1998-06-05 2003-10-14 Premark Rwp Holdings, Inc. Holographically enhanced decorative laminate
KR100477897B1 (en) * 2002-07-10 2005-03-18 광주과학기술원 Method for preparation of anion-exchange membranes containing pyridinium and its derivatives as anion-exchanger and device containing them
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
US9147903B2 (en) 2011-04-18 2015-09-29 Samsung Sdi Co., Ltd. Separator for redox flow battery and redox flow battery
US9799906B2 (en) 2011-12-28 2017-10-24 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091600A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR20140098189A (en) 2011-12-28 2014-08-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3046174A1 (en) 2011-12-28 2016-07-20 Asahi Kasei E-materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10256493B2 (en) 2011-12-28 2019-04-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091598A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091599A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
WO2016158217A1 (en) * 2015-03-31 2016-10-06 株式会社東北テクノアーチ Vanadium redox cell
WO2017203921A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite

Also Published As

Publication number Publication date
JP3797578B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP5889907B2 (en) Method for producing a monomer solution for producing a cation exchange membrane
JPH10208767A (en) Diaphragm for vanadium-based redox flow cell and manufacture thereof
Maurya et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries
JP3417946B2 (en) Electrochemical battery provided with polymer electrolyte and method for producing polymer electrolyte
KR101217947B1 (en) Separation Membrane for Fuel Battery and Process for Producing the Same
JP2000331693A (en) Solid polymer type fuel cell
EP1177246A1 (en) Polymer membrane and a process for the production thereof
JPH11144745A (en) Solid high molecular electrolyte type methanol fuel cell
WO2003075386A1 (en) Electrolyte film and solid polymer fuel cell using the same
US7629393B2 (en) Solid polymer electrolyte membrane and process for producing the same, and fuel cell
JP2004079252A (en) High ruggedness solid polyelectrolyte and solid polyelectrolyte (composite) membrane using it
JP2022550498A (en) Fluorinated aliphatic hydrocarbon-based stable anion exchange membrane and method for producing the same
JP3729296B2 (en) Membrane for vanadium redox flow battery
JP5770163B2 (en) Method for producing a membrane for a polymer electrolyte fuel cell
JP2007329106A (en) Polymer electrolyte, manufacturing method thereof, membrane electrode assembly, and fuel cell
JP3846843B2 (en) Manufacturing method of diaphragm for vanadium redox flow battery
JP4979236B2 (en) Cross-linked electrolyte membrane and method for producing the same
JP2013149462A (en) Membrane-electrode assembly
JPH0638340B2 (en) Redox flow battery diaphragm
JP5349313B2 (en) Diaphragm for direct liquid fuel cell and manufacturing method thereof
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JPS60238328A (en) Manufacture of ion-exchange membrane
JP2007234247A (en) Proton conductive material and its manufacturing method
JP3167050B2 (en) Diffusion dialysis membrane
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term