WO2015119125A1 - 蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池 - Google Patents

蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池 Download PDF

Info

Publication number
WO2015119125A1
WO2015119125A1 PCT/JP2015/053030 JP2015053030W WO2015119125A1 WO 2015119125 A1 WO2015119125 A1 WO 2015119125A1 JP 2015053030 W JP2015053030 W JP 2015053030W WO 2015119125 A1 WO2015119125 A1 WO 2015119125A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
fine particles
phosphor fine
raw material
solar cell
Prior art date
Application number
PCT/JP2015/053030
Other languages
English (en)
French (fr)
Inventor
高島浩
伯田幸也
鳥井淳史
菱木達也
Original Assignee
独立行政法人産業技術総合研究所
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 日本碍子株式会社 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2015119125A1 publication Critical patent/WO2015119125A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing phosphor fine particles of perovskite oxide, a phosphor thin film, a wavelength conversion film, a wavelength conversion device, and a solar cell using the phosphor fine particles.
  • Japanese Patent No. 3698215 describes a basic idea that a part of the wavelength of sunlight is converted to a long wavelength side with high spectral sensitivity of a solar cell to improve power generation efficiency. Further, as a material having a wavelength conversion function, there are descriptions in Japanese Patent No. 5339288 and Japanese Patent Application Laid-Open No. 2012-251082, and a solar cell having a wavelength conversion layer is described in Japanese Patent Application Laid-Open No. 2013-004806. .
  • Japanese Patent No. 3698215 provides a high-efficiency solar cell light-receiving element by paying attention to the light activation characteristics of rare earth ions and converting the wavelength of light energy to the photoelectric conversion unit. This idea is shown.
  • a wavelength conversion region Eu (europium) or Ce (cerium) rare earth metal is used as the wavelength conversion material, and an example in which the peak wavelength of sunlight 370 nm is converted to light having a peak of about 410 nm is described.
  • Japanese Patent No. 5339288 discloses, (Sr x Ca 1-x ) 1-y Pr y TiO 3: 0 ⁇ x ⁇ 0.8,0.001 ⁇ y ⁇ 0.01 oxide phosphor thin film according consisting
  • an emission spectrum of 580 to 650 nm is exhibited when ultraviolet rays are irradiated with a lamp having a wavelength of 254 nm.
  • Illumination and display are disclosed as applications.
  • An example is described in which an oxide phosphor thin film made of (Sr x Ca 1-x ) 1-y Pr y TiO 3 is produced by a vapor phase growth method. In the following description, it referred for short as "PCSTO" a (Sr x Ca 1-x) 1-y Pr y TiO 3.
  • Japanese Patent Application Laid-Open No. 2012-251082 discloses phosphor fine particles having a perovskite structure represented by ABO 3 : Pr 3+ , having a primary particle size of 100 nm or less, no aggregation, and a single crystal. Phosphor fine particles are described.
  • a process for hydrothermal reaction in subcritical or supercritical water is described. The temperature conditions for the hydrothermal reaction are 200 ° C. to 550 ° C., the pressure conditions for the hydrothermal reaction are 5 MPa to 100 MPa, and the conditions for the treatment time of the hydrothermal reaction are 0.001 seconds to 60 seconds.
  • wavelength conversion films for EL devices and solar cells are disclosed.
  • JP 2013-004806 A describes a solar cell in which a surface protective layer, a wavelength conversion layer, and a sealing resin layer which are outermost layers are provided on a light receiving surface of a solar cell.
  • the surface protective layer transmits light in a short wavelength region of 350 nm or less.
  • the wavelength conversion layer is provided directly below the surface protective layer, and has a wavelength conversion material that absorbs light in a short wavelength region of 350 nm or less and has an emission wavelength in a longer wavelength region.
  • the excitation wavelength of 330 nm is converted into fluorescence having a central wavelength of 615 nm, and the shift amount for wavelength conversion is 285 nm, which is significantly larger than that of Japanese Patent No. 3698215.
  • the excitation wavelength of 328 nm is converted into fluorescence having a central wavelength of 612 nm, and the shift amount for wavelength conversion is 284 nm, which has almost the same wavelength conversion ability as that of Japanese Patent No. 5339288.
  • the wavelength conversion layer is made of an organic material, so that there are restrictions on places where it can be installed, for example, it cannot be installed on the outermost surface of the solar cell.
  • the present invention has been made in consideration of such problems, and can convert the sunlight component in the shorter wavelength region to the longer wavelength side than before, and further improve the crystallinity and the emission intensity.
  • An object of the present invention is to provide a method for producing phosphor fine particles capable of improving the above.
  • An object of the present invention is to convert a sunlight component in a shorter wavelength region to a longer wavelength side than before, and to further improve the emission intensity, a phosphor thin film, a wavelength conversion film, and a wavelength.
  • An object is to provide a conversion device.
  • An object of the present invention is to improve the power generation efficiency by using the phosphor fine particles, the wavelength conversion film or the wavelength conversion device described above, and further, to install the wavelength conversion film or the portion having the wavelength conversion function.
  • An object of the present invention is to provide a solar cell that can be arbitrarily selected and can improve design freedom.
  • a method for producing phosphor fine particles according to the first aspect of the present invention is a phosphor fine particle having a perovskite structure represented by (Ca, Sr) TiO 3 : Pr 3+ , even if the particle diameter is large.
  • a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material comprising Pr ions are subcritical to And a hydrothermal reaction step in supercritical water, wherein the (Ca + Sr) / Ti molar ratio in the composition of the raw material is 1.0 to 2.5.
  • the method for producing phosphor fine particles according to the second aspect of the present invention is a phosphor fine particle having a perovskite structure represented by (Ca, Sr) TiO 3 : Pr 3+ , even if the particle diameter is large.
  • a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material comprising Pr ions are subcritical to A process of hydrothermal reaction in supercritical water, wherein the K / Ti molar ratio in the composition of the raw material is 1.2 to 2.4.
  • a method for producing phosphor fine particles according to a third aspect of the present invention is a phosphor fine particle having a perovskite structure represented by (Ca, Sr) TiO 3 : Pr 3+ , which has a large particle diameter.
  • a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material comprising Pr ions are subcritical to A process of hydrothermal reaction in supercritical water, wherein the raw material composition has a (Ca + Sr) / Ti molar ratio of 1.0 to 2.5 and a K / Ti molar ratio of 1.2.
  • (Ca + Sr) / Ti molar ratio in the composition of the raw material is 1.2 to 2.5, and K / Ti molar ratio is 1.2 to 2.4.
  • the phosphor thin film according to the fourth aspect of the present invention includes phosphor fine particles produced by the method for producing phosphor fine particles according to the first to third aspects of the present invention.
  • the wavelength conversion film according to the fifth aspect of the present invention includes phosphor fine particles produced by the method for producing phosphor fine particles according to the first to third aspects of the present invention, and emits light in the ultraviolet region to the visible light region. It is characterized by being converted into light.
  • the phosphor fine particles may be dispersed in a liquid phase and produced by a coating method.
  • the liquid phase may include a compound that generates a siloxane bond, and the liquid phase may be cured while taking up the phosphor fine particles.
  • the film thickness is 200 to 2000 nm, and the film thickness when the phosphor fine particles contained in the wavelength conversion film are integrated to form a dense plate corresponds to 100 to 1000 nm. Is preferred.
  • a wavelength conversion device includes a substrate and a wavelength conversion film according to the fifth aspect of the present invention formed on the substrate.
  • the substrate may be a flexible resin sheet or a composite sheet of a resin and an inorganic material.
  • the phosphor fine particles produced by the method for producing phosphor fine particles according to the first to third aspects of the invention are included in at least one component of the solar cell. It is characterized by.
  • the solar cell according to the eighth aspect of the present invention is characterized in that the wavelength conversion film according to the fifth aspect of the present invention is formed on the front surface or the back surface of at least one component of the solar cell.
  • a solar cell according to the ninth aspect of the present invention is characterized in that the wavelength conversion device according to the sixth aspect of the present invention is provided between a plurality of constituent members of the solar cell or on the light incident surface.
  • the method for producing phosphor fine particles according to the present invention it is possible to convert the sunlight component in the shorter wavelength region to the longer wavelength side than before, and to improve the crystallinity and the emission intensity. Can be planned.
  • the phosphor thin film, the wavelength conversion film, and the wavelength conversion device according to the present invention it is possible to convert the wavelength of sunlight components in a shorter wavelength region to the longer wavelength side than before, and to improve the emission intensity. Can be planned.
  • the solar cell of the present invention it is possible to improve the power generation efficiency by using the phosphor fine particles, the wavelength conversion film, or the wavelength conversion device described above, and further, to install the portion having the wavelength conversion function. It can be arbitrarily selected, and the degree of freedom in design can be improved.
  • FIG. 1 is an explanatory view showing a crystal structure of phosphor fine particles produced by the method for producing phosphor fine particles according to the present embodiment.
  • FIG. 2 is a configuration diagram showing a flow-through hydrothermal synthesis reaction apparatus used in the method for producing phosphor fine particles according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing a state in which the phosphor thin film according to the present embodiment is formed on a substrate.
  • FIG. 4 is a cross-sectional view showing a state where the wavelength conversion film according to the present embodiment is formed on quartz glass.
  • FIG. 5 is a flowchart illustrating an example of a method for manufacturing a wavelength conversion film.
  • FIG. 6A is a cross-sectional view showing a wavelength conversion film containing phosphor fine particles.
  • FIG. 6B is a cross-sectional view showing a state in which the phosphor fine particles contained in the wavelength conversion film are integrated to form a dense plate.
  • FIG. 7 is a cross-sectional view showing the wavelength conversion device according to the present embodiment.
  • FIG. 8A is a cross-sectional view showing a main part of the first solar cell.
  • FIG. 8B is a cross-sectional view showing a main part of the second solar cell.
  • FIG. 8C is a cross-sectional view showing the main parts of the third solar cell.
  • FIG. 8D is a cross-sectional view showing the main parts of the fourth solar cell.
  • FIG. 9A is a cross-sectional view showing the main parts of the fifth solar cell.
  • FIG. 9B is a cross-sectional view showing the main parts of the sixth solar cell.
  • FIG. 9C is a cross-sectional view showing the main parts of the seventh solar cell.
  • FIG. 10A is a diagram showing an XRD pattern of the phosphor fine particles according to sample 6.
  • FIG. 10B is a TEM image showing phosphor fine particles according to Sample 6.
  • FIG. 11 is a diagram showing an excitation spectrum of light having an excitation wavelength of 320 nm and a fluorescence spectrum of phosphor fine particles according to sample 6.
  • FIG. 12 is a diagram showing fluorescence spectra of the phosphor fine particles according to samples 6, 8, 14 and 24.
  • FIG. 13 is a graph showing the relative light emission intensity of Samples 1 to 25 when the molar ratio of (Ca + Sr) / Ti in the raw material composition is changed while fixing the molar ratio of K / Ti in the raw material composition. is there.
  • FIG. 14 is a graph showing the relative luminescence intensity of Samples 1 to 25 when the molar ratio of (Ca + Sr) / Ti in the raw material composition is fixed and the molar ratio of K / Ti in the raw material composition is changed. is there.
  • FIG. 15 is a graph showing changes in the film thickness of the wavelength conversion film with respect to the number of spin coatings.
  • FIG. 16 is a graph showing a change in phosphor fine particle integrated film thickness (indicated as “phosphor integrated film thickness” in FIG.
  • FIG. 17 is a graph showing the relationship between the phosphor fine particle integrated film thickness, the wavelength conversion film thickness, and the relative light emission intensity.
  • FIG. 18 is a cross-sectional view showing the main parts of the solar cell according to Comparative Example 1.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the phosphor fine particles produced by the method for producing phosphor fine particles according to the present embodiment have a perovskite structure represented by (Ca, Sr) TiO 3 : Pr 3+ and have a particle diameter of 100 nm at the largest. It is as follows.
  • the phosphor fine particles have a perovskite type crystal structure as shown in FIG. 1, Ca (calcium) is arranged at several vertices, and Sr (strontium) is arranged at the remaining vertices. Ti (titanium) is arranged on the surface, and O (oxygen) is arranged on each face center around Ti. Although Pr 3+ is not shown in the figure, it is mainly replaced with a part of Ca or Sr.
  • the first production method is a step of hydrothermally reacting a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides with a raw material consisting of Pr ions in subcritical or supercritical water.
  • the molar ratio of (Ca + Sr) / Ti in the raw material composition is 1.0 to 2.5.
  • the second production method is a step of hydrothermally reacting a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides with a raw material consisting of Pr ions in subcritical or supercritical water.
  • the molar ratio of K / Ti in the raw material composition is 1.2 to 2.4.
  • the third production method is a step of hydrothermally reacting a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material consisting of Pr ions in subcritical or supercritical water.
  • a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material consisting of Pr ions in subcritical or supercritical water.
  • Ca + Sr) / Ti molar ratio in the composition of the raw material is 1.0 to 2.5, and K / Ti molar ratio is 1.2 to 2.0, or
  • the Ca + Sr) / Ti molar ratio is 1.2 to 2.5, and the K / Ti molar ratio is 1.2 to 2.4.
  • the reaction medium for the hydrothermal reaction is not particularly limited as long as the hydrothermal reaction of the raw material occurs, but a raw material solution containing the raw material, an alkali solution, and water are preferable, and the raw material solution containing the raw material, the alkaline solution, and the subcritical By mixing with water in a supercritical state, the reaction conditions of the raw material are instantaneously reached, and fine, non-aggregating, single-crystalline, and highly crystalline fluorescence is produced without causing excessive particle growth. Body fine particles are obtained.
  • Ca and Sr materials include ions, oxides, and hydroxides.
  • Ions can be obtained by dissolving a raw material in a reaction medium.
  • a reaction medium For example, at least one of compounds containing raw metal such as calcium nitrate, strontium nitrate, calcium chloride, strontium chloride, calcium sulfate, strontium sulfate is used as the reaction medium.
  • the raw material oxide include calcium oxide and strontium oxide.
  • Examples of the raw material hydroxide include calcium hydroxide and strontium hydroxide.
  • Ti raw material examples include ions, oxides, and hydroxides.
  • Ti ions can be obtained by dissolving a raw material in a reaction medium.
  • compounds containing raw metal such as titanium sulfate, titanium chloride, and titanium alkoxide can be obtained by dissolving in a reaction medium.
  • Ti oxide examples include titania (TiO 2 ).
  • Ti hydroxide of Ti titanium hydroxide etc. are mentioned, for example.
  • the source of O is not particularly limited as long as phosphor fine particles are obtained.
  • the composition Pr 3+ can be obtained, for example, by dissolving or dispersing a compound containing a praseodymium raw material metal such as praseodymium nitrate, praseodymium sulfate, or praseodymium oxide in a reaction medium.
  • a praseodymium raw material metal such as praseodymium nitrate, praseodymium sulfate, or praseodymium oxide
  • the amount of metal in the raw material consisting of Pr ions is X and the total amount of metal in the raw material selected from Ti ions, oxides or hydroxides is Y, X / Y The ratio is preferably 0.0001 to 0.01. When the X / Y ratio is less than 0.0001 or exceeds 0.01, sufficient fluorescence intensity may not be obtained.
  • the alkali solution is used for hydrolysis reaction, complex formation reaction, and solubility control by pH operation.
  • the ratio of KOH / HNO 3 is preferably 1.0 to 3.0 on the basis of the amount of substance.
  • the ratio of KOH / HNO 3 is less than 1.0, unreacted raw materials may be contained in the product.
  • the ratio exceeds 3.0, the particle size increases due to particle growth, It may not be obtained in a single phase.
  • the nitric acid source of nitric acid include nitric acid compounds used as raw materials.
  • the raw material is subjected to a hydrothermal reaction in subcritical or supercritical water.
  • the water in the subcritical or supercritical state indicates water in a high temperature and high pressure state, and the temperature condition and pressure condition of the hydrothermal reaction depend on the temperature and pressure of the water.
  • the temperature condition for the hydrothermal reaction is preferably 200 ° C. to 550 ° C., more preferably 350 ° C. to 500 ° C.
  • the temperature condition is less than 200 ° C., unreacted raw materials may remain in the product. If the temperature condition exceeds 550 ° C., the strength of the apparatus is drastically reduced, making synthesis difficult.
  • the pressure condition for the hydrothermal reaction is preferably 5 MPa to 100 MPa, more preferably 20 MPa to 40 MPa. If the pressure condition is less than 5 MPa, unreacted raw materials may remain in the product. If the pressure condition exceeds 100 MPa, the particle size may increase due to particle growth, or the target product may not be obtained in a single phase. There are things to do.
  • the treatment time for the hydrothermal reaction is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001 to 60 seconds. When the treatment time is less than 0.001 seconds, unreacted raw materials may remain in the product. When the treatment time exceeds 60 seconds, aggregation proceeds or components eluted from the apparatus are contained. There are things to do.
  • Fluorescent particles are generated by the hydrothermal reaction.
  • the method for collecting the phosphor fine particles is not particularly limited and can be appropriately selected according to the purpose.
  • the phosphor fine particles can be appropriately cooled depending on the purpose, and then cooled with an appropriate filter, and then collected by filtration with an appropriate filter. Can be mentioned.
  • the composition of the phosphor fine particles can be measured by an energy dispersive X-ray analyzer.
  • the crystal structure can be measured with a powder X-ray diffractometer (XRD).
  • XRD powder X-ray diffractometer
  • the cohesiveness and particle diameter can be observed with an electron microscope such as a transmission electron microscope (TEM).
  • the particle diameter of the phosphor fine particles indicates the particle diameter of the phosphor fine particles obtained by the hydrothermal reaction, and indicates the particle diameter in a state where secondary treatment such as pulverization and classification is not performed.
  • the average particle size can be obtained by averaging the particle size of the phosphor fine particles present in the observation field of the electron microscope.
  • FIG. 1 An example of the flow-type hydrothermal synthesis reaction apparatus 10 used for the hydrothermal reaction is shown in FIG.
  • This flow-type hydrothermal synthesis reactor 10 includes three high-pressure pumps 12, 14 and 16, a heater 18, two micromixers 20 and 22, a reaction tube heater 24, a reaction tube 26, and indirect.
  • the cooler 28, the back pressure valve 30, the recovery device 32, the nitrogen cylinder 34, the alkaline aqueous solution tank 36, the pure water tank 38, and the raw metal salt solution tank 40 are configured.
  • As a joint and piping arranged between each member for example, those made of SUS316 are used.
  • Pure water is sent from the pure water tank 38 to the heater 18 by the high-pressure pump 12 and sent to the reaction tube 26 as high-temperature and high-pressure water.
  • the alkaline aqueous solution and the raw metal salt solution are respectively sent from the alkaline aqueous solution tank 36 and the raw metal salt solution tank 40 to the micromixer 20 by the high pressure pumps 14 and 16 and mixed. And rapidly heated to the reaction temperature and fed to the reaction tube 26.
  • Each solution sent to the reaction tube 26 is allowed to stay in the reaction tube 26 for a certain period of time and is subjected to a hydrothermal reaction.
  • the phosphor fine particles and the reaction end liquid generated by the hydrothermal reaction are cooled by the indirect cooler 28 disposed at the outlet of the reaction tube 26, and then the pressure is reduced by the back pressure valve 30 and collected in the collector 32.
  • the phosphor fine particles are collected in the collection device 32 as a slurry together with the reaction completion liquid. By separating this from solid and liquid, phosphor fine particles can be obtained.
  • the phosphor thin film 50 includes phosphor fine particles produced by the first to third production methods described above.
  • the method for forming the phosphor thin film 50 is not particularly limited as long as the phosphor thin film is included, and can be appropriately selected according to the purpose. For example, a general spray method or dipping method may be used.
  • FIG. 3 shows a state where the phosphor thin film 50 is formed on the substrate 52.
  • the wavelength conversion film 54 includes phosphor fine particles manufactured by the first manufacturing method to the third manufacturing method described above, and converts the light 56 in the ultraviolet region into the visible light region. Converted into light 58.
  • the wavelength conversion film 54 is formed on the surface of the quartz glass 60, for example.
  • the wavelength conversion film 54 can be manufactured by the following method. That is, the phosphor fine particles are dispersed in the liquid phase, and the wavelength conversion film 54 is produced by a coating method.
  • step S1 of FIG. 5 an ethanol solution is put into a container in which phosphor fine particle powder is placed.
  • step S2 the fine phosphor particles in the container are ultrasonically dispersed.
  • a polysiloxane oligomer-containing coating material (for example, trade name: Glassca, product name: HP7003) is put into the container.
  • the polysiloxane oligomer-containing coating material is a solution containing a polysiloxane oligomer using alkoxysilane as a raw material. By applying and drying this solution, a strong transparent film in which the main skeleton is composed of a network structure of siloxane bonds-(Si-O) n- is formed.
  • step S4 the phosphor fine particles in the container are ultrasonically dispersed to produce a film forming slurry.
  • step S5 for example, a film-forming slurry is applied to the surface of the quartz glass 60.
  • spin coating is performed using a slurry for film formation.
  • step S6 the film forming slurry on the quartz glass 60 is dried at room temperature. By this drying, the liquid phase is hardened while taking in the phosphor fine particles, and as described above, a strong wavelength conversion film 54 having a main skeleton composed of a siloxane-bonded network structure — (Si—O) n— is formed.
  • the wavelength conversion film 54 including the phosphor fine particles 62 has a film thickness ta of 200 to 2000 nm, and as shown in FIG. 6B, the phosphor fine particles contained in the wavelength conversion film 54 It is preferable that the film thickness (hereinafter referred to as phosphor fine particle integrated film thickness tb) when the 62 is integrated into the dense plate 64 is equivalent to 100 to 1000 nm. More preferably, the wavelength conversion film 54 has a film thickness ta of 500 to 1000 nm and a phosphor fine particle integrated film thickness tb of 200 to 600 nm.
  • the wavelength conversion device 70 includes a substrate 72 and the above-described wavelength conversion film 54 formed on one main surface of the substrate 72.
  • the substrate 72 the above-described quartz glass, soda glass used for solar cells, or the like can be used.
  • a flexible transparent resin sheet or a composite sheet of a resin and an inorganic material can be used. In this case, a transparent film is preferable.
  • the main part of the solar cell (first solar cell 80A) includes a plurality of power generation cells 82 arranged in a plane and these power generation cells 82. It has the sealing layer 84 formed so that it may coat
  • sealing layer 84 for example, a translucent sealing resin such as polyethylene-polyvinyl acetate copolymer (EVA) is used.
  • EVA polyethylene-polyvinyl acetate copolymer
  • the sealing layer 84 preferably has a light transmittance of 80% or more at a wavelength of 200 nm to 800 nm.
  • the glass 86 is a protective glass, and soda glass is generally used.
  • the main part of the solar cell according to the second embodiment has substantially the same configuration as that of the first solar cell 80A, but wavelength conversion is performed on the glass 86. The difference is that the devices 70 are stacked.
  • the main part of the solar cell according to the third embodiment has substantially the same configuration as that of the first solar cell 80A.
  • the difference is that the wavelength conversion film 54 is formed (coated) on the surface of the stop layer 84 side.
  • the main part of the solar cell (fourth solar cell 80D) according to the fourth embodiment has substantially the same configuration as the second solar cell 80B, as shown in FIG. This is different in that a wavelength conversion device 70 is disposed between the device 86 and the device 86.
  • the main part of the solar cell according to the fifth embodiment (fifth solar cell 80E) is formed so as to cover a plurality of power generation cells 82 and these power generation cells 82, as shown in FIG. 9A.
  • the phosphor layer 62 is added with a sealing layer 88 and the glass 86 laminated on the sealing layer 88.
  • the main part of the solar cell according to the sixth embodiment (sixth solar cell 80F) has substantially the same configuration as that of the second solar cell 80B as shown in FIG. 9B, but has a wavelength on the power generation cell 82.
  • the conversion device 70 is stacked, and the sealing layer 84 is formed so as to cover the power generation cell 82 and the wavelength conversion device 70.
  • the main part of the solar cell according to the seventh embodiment (seventh solar cell 80G) has substantially the same configuration as that of the first solar cell 80A as shown in FIG. 9C, but on the surface of the power generation cell 82.
  • the wavelength conversion film 54 is formed (coated), and the sealing layer 84 is formed so as to cover the power generation cell 82 and the wavelength conversion film 54.
  • the wavelength conversion film 54 and the wavelength conversion device 70 may be basically installed between the power generation cell 82 and the sunlight incident surface.
  • the glass 86 protective glass: generally soda glass
  • the sealing layer 84 seal such as EVA
  • the wavelength conversion film 54 is preferably more incident surface of sunlight. It is better to be closer to the side.
  • the wavelength conversion layer is made of an organic material, so it is indirectly stated that it is not preferable to install it on the outermost surface exposed to the outside air.
  • the wavelength conversion film 54 since the wavelength conversion film 54 is made of an inorganic material, it may be installed on the outermost surface. That is, the installation location of the wavelength conversion film 54 or the wavelength conversion device 70 can be arbitrarily selected, and the degree of design freedom can be improved.
  • quartz glass that transmits ultraviolet light is used as the protective glass, but it is considered impossible to use high-cost quartz glass in an actual solar cell.
  • a mixed solution (raw metal salt solution) of titania sol, calcium nitrate aqueous solution, strontium nitrate aqueous solution, and praseodymium nitrate aqueous solution is stored in the raw metal salt solution tank 40.
  • the molar mass of the raw metal salt solution is 0.05 mol / kg for titania sol, 0.036 mol / kg for calcium nitrate, 0.024 mol / kg for strontium nitrate, and 0.0001 mol / kg for praseodymium nitrate. .
  • Samples 2, 3 and 4 have KOH concentrations in the raw material compositions of 0.08, 0.10 and 0.12 mol / kg, respectively, and a molar ratio of K / Ti of 1.6, 2.0 and 2.4, respectively. Except for the above, phosphor fine particles according to Samples 2, 3 and 4 were produced in the same manner as Sample 1.
  • Sample 5 was the same as Sample 1 except that the calcium nitrate in the raw material composition was 0.042 mol / kg, strontium nitrate was 0.028 mol / kg, and the molar ratio of (Ca + Sr) / Ti was 1.5. Thus, phosphor fine particles according to Sample 5 were manufactured.
  • Samples 6, 7, and 8 have KOH concentrations in the raw material composition of 0.08, 0.10, and 0.12 mol / kg, respectively, and a molar ratio of K / Ti of 1.6, 2.0, and 2.4, respectively. Except for the above, phosphor fine particles according to Samples 6, 7 and 8 were produced in the same manner as Sample 5.
  • Sample 9 was the same as Sample 1 except that the calcium nitrate in the raw material composition was 0.048 mol / kg, strontium nitrate was 0.032 mol / kg, and the molar ratio of (Ca + Sr) / Ti was 2.0. Thus, phosphor fine particles according to Sample 9 were manufactured.
  • Samples 10, 11 and 12 had KOH concentrations in the raw material composition of 0.08, 0.10 and 0.12 mol / kg, respectively, and a molar ratio of K / Ti of 1.6, 2.0 and 2.4, respectively. Except for the above, phosphor fine particles according to Samples 10, 11 and 12 were produced in the same manner as Sample 9.
  • Sample 13 was the same as Sample 1 except that the calcium nitrate in the raw material composition was 0.06 mol / kg, strontium nitrate was 0.04 mol / kg, and the molar ratio of (Ca + Sr) / Ti was 2.5. Thus, phosphor fine particles according to Sample 13 were manufactured.
  • Samples 14, 15 and 16 had KOH concentrations in the raw material composition of 0.08, 0.10 and 0.12 mol / kg, respectively, and a molar ratio of K / Ti of 1.6, 2.0 and 2.4, respectively. Except for the above, phosphor fine particles according to Samples 14, 15 and 16 were produced in the same manner as Sample 13.
  • Sample 17 was the same as Sample 1 except that the calcium nitrate in the raw material composition was 0.03 mol / kg, strontium nitrate was 0.02 mol / kg, and the molar ratio of (Ca + Sr) / Ti was 1.0. Thus, phosphor fine particles according to Sample 17 were manufactured.
  • Samples 18 and 19 are the same as Sample 17 except that the KOH concentration in the raw material composition is 0.08 and 0.10 mol / kg, respectively, and the molar ratio of K / Ti is 1.6 and 2.0, respectively. Thus, phosphor fine particles according to samples 18 and 19 were produced.
  • Sample 20 is the same as sample 1 except that the KOH concentration in the raw material composition is 0.16 mol / kg and the molar ratio of K / Ti is 3.2. did.
  • Sample 21 is the same as sample 5, except that the KOH concentration in the raw material composition is 0.16 mol / kg and the molar ratio of K / Ti is 3.2. did.
  • Sample 22 is the same as sample 9, except that the KOH concentration in the raw material composition is 0.16 mol / kg and the molar ratio of K / Ti is 3.2. did.
  • Sample 23 is the same as sample 13 except that the KOH concentration in the raw material composition is 0.16 mol / kg and the molar ratio of K / Ti is 3.2. did.
  • Samples 24 and 25 were the same as Sample 17 except that the KOH concentrations in the raw material composition were 0.12 and 0.16 mol / kg, respectively, and the K / Ti molar ratios were 2.4 and 3.2, respectively. Thus, phosphor fine particles according to Samples 24 and 25 were produced.
  • FIG. 10A shows an XRD pattern of the phosphor fine particles according to Sample 6. This XRD pattern coincided with the XRD pattern of orthorhombic Ca 0.6 Sr 0.4 TiO 3 : Pr 3+ . Further, a TEM image of the phosphor fine particles according to Sample 6 is shown in FIG. 10B. The particles observed in the TEM image are not aggregates but single particles, and the size is about 40 nm. The crystallite diameter calculated from the XRD result of FIG. 10A is about 40 nm. Therefore, these are presumed to be single crystal fine particles.
  • each fluorescent fine particle (samples 1 to 25) was irradiated with light having an excitation wavelength of 320 nm, and the fluorescence spectrum (PL spectrum) of the light emitted from each sample was measured.
  • FIG. 11 shows a waveform (see curve L0) of an excitation spectrum (PLE spectrum) of light having an excitation wavelength of 320 nm and a waveform of a fluorescence spectrum of sample 6 (see curve L1).
  • FIG. 12 shows the waveforms of the fluorescence spectra of samples 6, 8, 14 and 24 (see curves L1, L2, L3 and L4).
  • FIG. 13 shows a graph of each curve when the molar ratio of (Ca + Sr) / Ti in the raw material composition is changed while fixing the molar ratio of K / Ti in the raw material composition.
  • the curve shows a graph when the molar ratio of (Ca + Sr) / Ti in the raw material composition is fixed and the molar ratio of K / Ti in the raw material composition is changed.
  • samples having a relative light emission intensity of 0.2 or more are samples 1 to 19.
  • a raw material selected from Ca, Sr and Ti ions, oxides or hydroxides and a raw material consisting of Pr ions are put into subcritical or supercritical water.
  • the (Ca + Sr) / Ti molar ratio in the raw material composition is preferably 1.0 to 2.5, more preferably 1.2 to 2.5, and more preferably Is 1.5 to 2.0.
  • the K / Ti molar ratio in the raw material composition is preferably 1.2 to 2.4, more preferably 1.6 to 2.0.
  • the (Ca + Sr) / Ti molar ratio in the raw material composition is 1.0 to 2.5, and the K / Ti molar ratio is 1.2 to 2.0, or (Ca + Sr) / Ti in the raw material composition It is preferable that the Ti molar ratio is 1.2 to 2.5 and the K / Ti molar ratio is 1.2 to 2.4. More preferably, the (Ca + Sr) / Ti molar ratio in the raw material composition is 1.5 to 2.0 and the K / Ti molar ratio is 1.2 to 2.4, or (Ca + Sr in the raw material composition). ) / Ti molar ratio is 1.2 to 2.5, and K / Ti molar ratio is 1.6 to 2.0. More preferably, the (Ca + Sr) / Ti molar ratio in the raw material composition is 1.5 to 2.0, and the K / Ti molar ratio is 1.6 to 2.0.
  • This second embodiment is a method for manufacturing the wavelength conversion film 54 shown in FIG. 5, in which ethanol is used as a solvent and the phosphor fine particle powder and the polysiloxane oligomer-containing coating material (for example, trade name: Grasca: manufactured by JSR, product name: HP7003). ) And subjected to ultrasonic dispersion treatment were used as a slurry for film formation.
  • the volume fraction of the solid content in the slurry for film formation (the total amount of the phosphor fine particle powder and the solid content in the coating material) is fixed to 4%, and the volume concentration ratio of the phosphor fine particle powder in the solid content is set to 1, Five levels of film-forming slurries with varying levels of 10, 25, 50 and 75% were used.
  • a film was formed on a quartz glass substrate by spin coating using each of the film forming slurries. The number of spin coatings was 1, 2, 5, 10, 20, 50.
  • the film thickness ta of the wavelength conversion film 54 was measured from a cross-sectional structure by a scanning electron microscope (SEM).
  • FIG. 15 shows a change in the film thickness ta (shown as “wavelength conversion film thickness” in FIG. 15) of the wavelength conversion film 54 with respect to the number of spin coatings.
  • FIG. 15 shows that the film thickness ta of the wavelength conversion film 54 has a correlation with the number of spin coatings.
  • the phosphor fine particle integrated film thickness tb was calculated from the film thickness ta of the wavelength conversion film 54 and the phosphor fine particle volume concentration obtained by image analysis of the cross-sectional structure by a transmission electron microscope (TEM).
  • FIG. 16 shows a change in phosphor fine particle integrated film thickness tb (indicated as “phosphor integrated film thickness” in FIG. 16) with respect to (spin coating number ⁇ phosphor volume concentration in slurry solid content).
  • FIG. 16 shows that the phosphor fine particle integrated film thickness tb has a correlation with (the number of spin coating times the phosphor volume concentration in the slurry solid content).
  • Table 3 shows the number of coatings of samples 101 to 130, the phosphor volume in the slurry solid content, the film thickness ta of the wavelength conversion film 54, the phosphor fine particle integrated film thickness tb, and the relative light emission intensity.
  • FIG. 17 shows the relationship between the phosphor fine particle integrated film thickness tb, the film thickness ta of the wavelength conversion film 54, and the relative light emission intensity.
  • the relative luminescence intensity of samples 101 to 130 is shown assuming that the luminescence intensity of sample 115 is 1.0.
  • the samples with relative emission intensity of 0.6 or more are Samples 109, 110, 113 to 115, 117 to 120, 122 to 125, 129, 130, and among them, the relative emission intensity is 0.9 or more. These samples were Samples 114, 115, 118, 119, 120, 124, and 125.
  • the thickness ta of the wavelength conversion film 54 is equivalent to 200 to 2000 nm and the phosphor fine particle integrated film thickness tb is equivalent to 100 to 1000 nm. More preferably, the wavelength conversion film 54 has a thickness ta corresponding to 500 to 1000 nm and a phosphor fine particle integrated film thickness tb corresponding to 200 to 600 nm.
  • the following can be inferred.
  • A If the absolute amount of the phosphor fine particles contained in the wavelength conversion film is small, the ultraviolet light cannot be absorbed and a part of the ultraviolet light is transmitted, so that the light emission amount is small.
  • B The amount of the phosphor fine particles has an appropriate amount that can absorb ultraviolet rays, and the light emission amount is maximized at the appropriate amount. It is estimated that the phosphor fine particle integrated film thickness tb at which the amount of the phosphor fine particles is appropriate is equivalent to 200 to 600 nm.
  • C Even if the amount of the phosphor fine particles is increased to an appropriate amount or more, light does not hit the deep phosphor fine particles, and the light emission amount reaches a peak.
  • the wavelength conversion film thickness ta is estimated to be 2000 nm or more.
  • Comparative Example 1 includes a plurality of power generation cells 82 arranged in a plane, a sealing layer 84 stacked on the power generation cells 82, and a glass stacked on the sealing layer 84. 86.
  • Example 1 has the same configuration as the first solar cell 80A shown in FIG. 8A
  • Example 2 has the same configuration as the second solar cell 80B shown in FIG. 8B
  • Example 3 shows 8C has the same configuration as the third solar cell 80C
  • Example 4 has the same configuration as the fourth solar cell 80D shown in FIG. 8D.
  • Example 5 has the same configuration as the fifth solar cell 80E shown in FIG. 9A
  • Example 6 has the same configuration as the sixth solar cell 80F shown in FIG. 9B
  • Example 7 FIG. 9C has the same configuration as that of the seventh solar cell 80G.
  • Example 1 The breakdown of Comparative Example 1 and Examples 1 to 7, the power generation amount (mW / cm 2 ), and the improvement (%) of Examples 1 to 7 are shown in Table 4 below. For example, in Example 1, the improvement was calculated by (power generation amount of Example 1 ⁇ power generation amount of Comparative Example 1) / power generation amount of Comparative Example 1.
  • the power generation amount of Comparative Example 1 was 11.2 (mW / cm 2 ).
  • the power generation amounts of Examples 1 to 7 were all improved as compared with Comparative Example 1.
  • Example 1 in which the wavelength conversion film 54 was positioned on the sunlight incident surface side had the highest power generation amount.
  • Example 2 in which the wavelength conversion film 54 was positioned on the sunlight incident surface side had the highest power generation amount.
  • Example 3 Example 4 and so on the power generation amount was lower toward the inside of the solar cell.
  • the phosphor fine particle production method, the phosphor thin film, the wavelength conversion film, the wavelength conversion device, and the solar cell according to the present invention are not limited to the above-described embodiments, and various types can be made without departing from the gist of the present invention. Of course, the configuration can be adopted.

Abstract

 本発明は、蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池に関する。(Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、前記原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5である。

Description

蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
 本発明は、ペロブスカイト型酸化物の蛍光体微粒子の製造方法、該蛍光体微粒子を用いた蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池に関する。
 近時、太陽光の波長の一部を太陽電池の分光感度の高い長波長側に変換して発電効率を向上させる、という基本的な考え方が特許第3698215号公報に記載されている。また、波長変換機能を有する材料として、特許第5339288号公報及び特開2012-251082号公報に記載があり、波長変換層を具備した太陽電池については、特開2013-004806号公報に記載がある。
 具体的には、特許第3698215号公報には、希土類イオンの光活性化特性に着目し、光エネルギーを波長変換して光電変換部に伝送することにより、高効率の太陽電池受光素子を提供するという考え方が示されている。波長変換材料としてEu(ユウロピウム)あるいはCe(セリウム)の希土類金属を用い、波長変換域の一例として、太陽光のピーク波長370nmを410nm程度のピークの光に変換した例が記載されている。
 特許第5339288号公報には、(SrxCa1-x1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01からなる酸化物蛍光体薄膜が記載され、波長254nmのランプで紫外線を照射したときに580~650nmの発光スペクトルを示すことが記載されている。用途として、照明、ディスプレイが開示されている。なお、(SrxCa1-x1-yPryTiO3からなる酸化物蛍光体薄膜を、気相成長法で作製する例が記載されている。以下の説明では、(SrxCa1-x1-yPryTiO3を「PCSTO」と略して記す。
 特開2012-251082号公報には、ABO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、一次粒径が大きくとも100nm以下で、凝集がなく、単結晶である蛍光体微粒子が記載されている。亜臨界ないし超臨界状態の水中にて水熱反応させる工程が記載されている。水熱反応の温度条件は200℃~550℃、水熱反応の圧力条件は5MPa~100MPa、水熱反応の処理時間の条件は0.001秒~60秒である。用途として、ELデバイス及び太陽電池の波長変換膜が開示されている。
 特開2013-004806号公報には、太陽電池セルの受光面上に、最外層となる表面保護層、波長変換層、封止樹脂層を設けた太陽電池が記載されている。表面保護層は、350nm以下の短波長域の光を透過する。波長変換層は、表面保護層の直下に設けられ、350nm以下の短波長域の光を吸収すると共に、より長波長域の発光波長を有する波長変換材料を有する。
 ところで、特許第3698215号公報では、波長変換するシフト量が40nm程度しかなく、波長変換能が低いという問題がある。
 特許第5339288号公報では、励起波長330nmを中心波長615nmの蛍光に変換し、波長変換するシフト量が285nmであり、特許第3698215号公報と比して大幅にシフト量が大きくなっている。
 特開2012-251082号公報では、励起波長328nmを中心波長612nmの蛍光に変換し、波長変換するシフト量が284nmであり、特許第5339288号公報とほぼ同様の波長変換能を有する。
 特開2013-004806号公報では、波長変換層を有機材料で構成しているため、太陽電池の最外表面に設置できない等、設置できる箇所に制約があった。
 将来の動向を考慮すると、さらに短波長の領域の太陽光成分を長波長側に波長変換して、例えば太陽電池の発電効率を向上させることが考えられる。また、結晶性の改善及び発光強度の向上も図ることも必要になると思われる。
 本発明はこのような課題を考慮してなされたものであり、従来よりもさらに短波長の領域の太陽光成分を長波長側に波長変換することができ、しかも、結晶性の改善並びに発光強度の向上を図ることができる蛍光体微粒子の製造方法を提供することを目的とする。
 本発明の目的は、従来よりもさらに短波長の領域の太陽光成分を長波長側に波長変換することができ、しかも、発光強度の向上を図ることができる蛍光体薄膜、波長変換膜及び波長変換デバイスを提供することを目的とする。
 本発明の目的は、上述した蛍光体微粒子あるいは波長変換膜あるいは波長変換デバイスを用いることで、発電効率の向上を図ることができ、しかも、波長変換膜あるいは波長変換機能を有する部分の設置個所を任意に選択することができ、設計の自由度を向上させることができる太陽電池を提供することを目的とする。
[1] 第1の本発明に係る蛍光体微粒子の製造方法は、(Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、前記原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5であることを特徴とする。
[2] 第2の本発明に係る蛍光体微粒子の製造方法は、(Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、前記原料の組成中のK/Tiモル比が1.2~2.4であることを特徴とする。
[3] 第3の本発明に係る蛍光体微粒子の製造方法は、(Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、前記原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5で、且つ、K/Tiモル比が1.2~2.0、又は、前記原料の組成中の(Ca+Sr)/Tiモル比が1.2~2.5で、且つ、K/Tiモル比が1.2~2.4であることを特徴とする。
[4] 第4の本発明に係る蛍光体薄膜は、第1~第3の本発明に係る蛍光体微粒子の製造方法にて製造された蛍光体微粒子を含むことを特徴とする。
[5] 第5の本発明に係る波長変換膜は、第1~第3の本発明に係る蛍光体微粒子の製造方法にて製造された蛍光体微粒子を含み、紫外線領域の光を可視光領域の光に変換することを特徴とする。
[6] 第5の本発明において、前記蛍光体微粒子を液相に分散させ、塗布方法により作製してもよい。
[7] この場合、前記液相がシロキサン結合を生成する化合物を含み、前記液相が前記蛍光体微粒子を取り込みつつ硬化してなるようにしてもよい。
[8] 第5の本発明において、膜厚が200~2000nmであって、当該波長変換膜に含まれる前記蛍光体微粒子を集積し緻密板とした際の膜厚が100~1000nm相当であることが好ましい。
[9] 第6の本発明に係る波長変換デバイスは、基板と、前記基板上に形成された第5の本発明に係る波長変換膜とを含むことを特徴とする。
[10] 第6の本発明において、前記基板が可撓性を有する樹脂シートあるいは樹脂と無機材料の複合シートであってもよい。
[11] 第7の本発明に係る太陽電池は、太陽電池の少なくとも1つの構成部材に第1~第3の本発明に係る蛍光体微粒子の製造方法にて製造された蛍光体微粒子が含まれていることを特徴とする。
[12] 第8の本発明に係る太陽電池は、太陽電池の少なくとも1つの構成部材の表面あるいは裏面に第5の本発明に係る波長変換膜が形成されていることを特徴とする。
[13] 第9の本発明に係る太陽電池は、太陽電池の複数の構成部材間あるいは光入射表面に第6の本発明に係る波長変換デバイスを備えたことを特徴とする。
 本発明に係る蛍光体微粒子の製造方法によれば、従来よりもさらに短波長の領域の太陽光成分を長波長側に波長変換することができ、しかも、結晶性の改善並びに発光強度の向上を図ることができる。
 本発明に係る蛍光体薄膜、波長変換膜及び波長変換デバイスによれば、従来よりもさらに短波長の領域の太陽光成分を長波長側に波長変換することができ、しかも、発光強度の向上を図ることができる。
 本発明に係る太陽電池によれば、上述した蛍光体微粒子あるいは波長変換膜あるいは波長変換デバイスを用いることで、発電効率の向上を図ることができ、しかも、波長変換機能を有する部分の設置個所を任意に選択することができ、設計の自由度を向上させることができる。
図1は、本実施の形態に係る蛍光体微粒子の製造方法にて作製される蛍光体微粒子の結晶構造を示す説明図である。 図2は、本実施の形態に係る蛍光体微粒子の製造方法で使用される流通式水熱合成反応装置を示す構成図である。 図3は、本実施の形態に係る蛍光体薄膜を基板上に成膜した状態を示す断面図である。 図4は、本実施の形態に係る波長変換膜を石英ガラス上に成膜した状態を示す断面図である。 図5は、波長変換膜の製造方法の一例を示すフローチャートである。 図6Aは、蛍光体微粒子を含む波長変換膜を示す断面図である。図6Bは、波長変換膜に含まれる蛍光体微粒子を集積して、緻密板とした状態を示す断面図である。 図7は、本実施の形態に係る波長変換デバイスを示す断面図である。 図8Aは、第1太陽電池の要部を示す断面図である。図8Bは、第2太陽電池の要部を示す断面図である。図8Cは、第3太陽電池の要部を示す断面図である。図8Dは、第4太陽電池の要部を示す断面図である。 図9Aは、第5太陽電池の要部を示す断面図である。図9Bは、第6太陽電池の要部を示す断面図である。図9Cは、第7太陽電池の要部を示す断面図である。 図10Aは、サンプル6に係る蛍光体微粒子のXRDパターンを示す図である。図10Bは、サンプル6に係る蛍光体微粒子を示すTEM像である。 図11は、励起波長320nmの光の励起スペクトルとサンプル6に係る蛍光体微粒子の蛍光スペクトルを示す図である。 図12は、サンプル6、8、14及び24に係る蛍光体微粒子の蛍光スペクトルを示す図である。 図13は、サンプル1~25について、原料組成中のK/Tiのモル比を固定にして、原料組成中の(Ca+Sr)/Tiのモル比を変化させた場合の相対発光強度を示すグラフである。 図14は、サンプル1~25について、原料組成中の(Ca+Sr)/Tiのモル比を固定にして、原料組成中のK/Tiのモル比を変化させた場合の相対発光強度を示すグラフである。 図15は、スピンコート回数に対する波長変換膜の膜厚の変化を示すグラフである。 図16は、(スピンコート回数×スラリー固形分中の蛍光体体積濃度)に対する蛍光体微粒子集積膜厚(図16では「蛍光体集積膜厚」と表記)の変化を示すグラフである。 図17は、蛍光体微粒子集積膜厚と波長変換膜の膜厚と相対発光強度との関係を示すグラフである。 図18は、比較例1に係る太陽電池の要部を示す断面図である。
 以下、本発明に係る蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池の実施の形態例を図1~図18を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
(蛍光体微粒子の製造方法)
 本実施の形態に係る蛍光体微粒子の製造方法にて作製される蛍光体微粒子は、(Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有し、粒子径が大きくとも100nm以下である。
 蛍光体微粒子は、図1に示すようにペロブスカイト型構造の結晶構造を有し、いくつかの各頂点にCa(カルシウム)が配置され、残りの各頂点にSr(ストロンチウム)が配置され、体心にTi(チタン)が配置され、Tiを中心として、各面心にO(酸素)が配置される。Pr3+は、図示しないが、主としてCa又はSrの一部と置換されて配置される。
 本実施の形態に係る蛍光体微粒子の製造方法は、3つの製造方法(第1製造方法~第3製造方法)がある。
 第1製造方法は、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、原料組成中の(Ca+Sr)/Tiのモル比が1.0~2.5である。
 第2製造方法は、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、原料組成中のK/Tiのモル比が1.2から2.4である。
 第3製造方法は、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5で、且つ、K/Tiモル比が1.2~2.0、又は、原料の組成中の(Ca+Sr)/Tiモル比が1.2~2.5で、且つ、K/Tiモル比が1.2~2.4である。
<水熱反応の反応媒体>
 水熱反応の反応媒体としては、原料の水熱反応が生ずる限り特に制限はないが、原料を含む原料溶液と、アルカリ溶液と、水とが好ましく、原料を含む原料溶液とアルカリ溶液と亜臨界ないし超臨界状態の水とを混合することで、瞬時に原料の反応条件に達し、余剰の粒子成長等を生じさせることなく、微細で非凝集性、単結晶性、且つ、高結晶性の蛍光体微粒子が得られる。
 Ca、Srの原料としては、イオン、酸化物、又は水酸化物を挙げることができる。イオンとしては、原料を反応媒体に溶解させて得ることができ、例えば、硝酸カルシウム、硝酸ストロンチウム、塩化カルシウム、塩化ストロンチウム、硫酸カルシウム、硫酸ストロンチウム等の原料金属を含む化合物の少なくともいずれかを反応媒体に溶解させて得ることができる。また、原料の酸化物としては、例えば、酸化カルシウム、酸化ストロンチウム等が挙げられる。また、原料の水酸化物としては、例えば、水酸化カルシウム、水酸化ストロンチウム等が挙げられる。
 Tiの原料としては、イオン、酸化物又は水酸化物を挙げることができる。Tiのイオンとしては、原料を反応媒体に溶解させて得ることができ、例えば硫酸チタン、塩化チタン、チタンアルコキシド等の原料金属を含む化合物の少なくともいずれかを反応媒体に溶解させて得ることができる。また、Tiの酸化物としては、例えばチタニア(TiO2)等が挙げられる。また、Tiの水酸化物としては、例えば水酸化チタン等が挙げられる。
 O(酸素)の供給源としては、蛍光体微粒子が得られる限り、特に制限はなく、例えば原料金属の酸化物又は水酸化物、アルカリ溶液及び水の少なくともいずれかに含まれる酸素、もしくはこれらの反応媒体と独立して供給される酸素ガス等が想定される。
 組成Pr3+としては、例えば、硝酸プラセオジム、硫酸プラセオジム、酸化プラセオジム等のプラセオジム原料金属を含む化合物を反応媒体に溶解もしくは分散させて得ることができる。
 また、Prのイオンからなる原料中の金属の物質量をXとし、Tiのイオン、酸化物又は水酸化物から選択される原料中の金属の総物質量をYとしたとき、X/Yの比としては、0.0001~0.01が好ましい。X/Yの比が、0.0001未満の場合や0.01を超える場合には、十分な蛍光強度が得られないことがある。
 アルカリ溶液としては、pH操作による加水分解反応、錯形成反応、溶解度の制御のために用いられる。アルカリ溶液の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液、アンモニア水溶液、尿素水溶液等が挙げられる。
 なお、水熱反応を水酸化カリウム及び硝酸の存在下で行う場合には、KOH/HNO3の比を物質量基準で1.0~3.0とすることが好ましい。KOH/HNO3の比が1.0未満であると、生成物中に未反応の原料が含まれることがあり、3.0を超えると、粒子成長により粒径が増大したり、目的物が単一相で得られなかったりすることがある。硝酸の硝酸源としては、原料として用いられる硝酸化合物が挙げられる。
<水熱反応>
 本実施の形態では、上述の通り、原料を亜臨界ないし超臨界状態の水中にて水熱反応させる。ここで、亜臨界ないし超臨界状態の水とは、高温高圧状態にある水を示し、水熱反応の温度条件及び圧力条件は、水の温度及び圧力に従う。
 水熱反応の温度条件としては、200℃~550℃が好ましく、350℃~500℃がより好ましい。
 温度条件が200℃未満であると、生成物中に未反応の原料が残存することがあり、550℃を超えると、装置の強度が急激に低下するため合成が困難となる。また、水熱反応の圧力条件としては、5MPa~100MPaが好ましく、20MPa~40MPaがより好ましい。圧力条件が5MPa未満であると、生成物中に未反応の原料が残存することがあり、100MPaを超えると、粒子成長により粒径が増大したり、目的物が単一相で得られなかったりすることがある。
 水熱反応の処理時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001秒~60秒が好ましい。処理時間が0.001秒未満であると、生成物中に未反応の原料が残存することがあり、60秒を超えると、凝集が進行したり、装置からの溶出成分が含有されてしまったりすることがある。
 水熱反応により、蛍光体微粒子が生成される。この蛍光体微粒子の回収方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、反応終了液と共に冷却した後、適当なフィルターによりろ別し、紛体として回収する方法が挙げられる。
 蛍光体微粒子の組成としては、エネルギー分散型X線分析装置により測定することができる。また、結晶構造としては、粉末X線回折装置(XRD)により測定することができる。さらに、その凝集性や粒子径としては、透過型電子顕微鏡(TEM)等の電子顕微鏡により観察することができる。
 なお、蛍光体微粒子の粒子径とは、水熱反応により得られた蛍光体微粒子の粒子径を示し、粉砕処理及び分級処理等の二次的処理を行わない状態における粒子径を示す。また、粒子径の平均としては、電子顕微鏡の観察野に存在する蛍光体微粒子の粒子径を平均化して求めることができる。
(水熱反応装置)
 水熱反応に用いられる流通式水熱合成反応装置10の一例を図2に示す。この流通式水熱合成反応装置10は、3基の高圧ポンプ12、14及び16と、加熱器18と、2基のマイクロミキサ20及び22と、反応管用ヒータ24と、反応管26と、間接冷却器28と、背圧弁30、回収器32と、窒素ボンベ34と、アルカリ水溶液槽36と、純水槽38と、原料金属塩溶液槽40とから構成される。各部材間に配される継手及び配管としては、例えばSUS316製のものが使用される。
 純水は、純水槽38から高圧ポンプ12により加熱器18に送液され、高温高圧水として反応管26に送液される。
 また、アルカリ水溶液及び原料金属塩溶液は、それぞれアルカリ水溶液槽36及び原料金属塩溶液槽40から高圧ポンプ14及び16によりマイクロミキサ20に送液されて混合され、さらにマイクロミキサ22内で高温高圧水と混合され、急速に反応温度まで昇温されて、反応管26に送液される。
 反応管26に送液された各液は、反応管26内に一定時間滞在させて水熱反応に供される。水熱反応により生成された蛍光体微粒子及び反応終了液は、反応管26の出口に配された間接冷却器28により冷却された後、背圧弁30にて降圧され、回収器32内に回収される。
 この際、蛍光体微粒子は、反応終了液と共にスラリーとして回収器32内に回収される。これを固液分離することにより、蛍光体微粒子を得ることができる。
(蛍光体薄膜)
 本実施の形態に係る蛍光体薄膜50は、図3に示すように、上述した第1製造方法~第3製造方法にて製造された蛍光体微粒子を含む。蛍光体薄膜50の形成方法としては、蛍光体微粒子を含む限り特に制限はなく、目的に応じて適宜選択することができ、例えば、一般的なスプレー法やディッピング法でもよい。図3は、基板52上に蛍光体薄膜50を成膜した状態を示す。
(波長変換膜)
 本実施の形態に係る波長変換膜54は、図4に示すように、上述した第1製造方法~第3製造方法にて製造された蛍光体微粒子を含み、紫外線領域の光56を可視光領域の光58に変換する。この波長変換膜54は、例えば石英ガラス60の表面に形成される。
 波長変換膜54は以下の方法にて作製することができる。すなわち、液相に蛍光体微粒子を分散させ、塗布方法によって、波長変換膜54を作製する。
 具体的には、図5のステップS1において、蛍光体微粒子の粉末が入れられた容器内にエタノール溶液を投入する。ステップS2において、容器内の蛍光体微粒子の粉末を超音波分散する。
 その後、ステップS3において、容器内にポリシロキサンオリゴマー含有コーティング材(例えば商品名グラスカ:JSR社製、製品名:HP7003)を投入する。ここで、ポリシロキサンオリゴマー含有コーティング材とは、アルコキシシランを原料としたポリシロキサンオリゴマーを含んだ溶液である。この溶液を塗布乾燥することにより、主骨格がシロキサン結合のネットワーク構造-(Si-O)n-で構成される強固な透明皮膜を形成する。
 ステップS4において、容器内の蛍光体微粒子の粉末を超音波分散して、成膜用スラリーを作製する。ステップS5において、例えば石英ガラス60の表面に成膜用スラリーを塗布する。例えば成膜用スラリーを用いてスピンコートを行う。
 そして、ステップS6において、石英ガラス60上の成膜用スラリーを常温乾燥する。この乾燥によって、液相が蛍光体微粒子を取り込みつつ硬化し、上述したように、主骨格がシロキサン結合のネットワーク構造-(Si-O)n-で構成される強固な波長変換膜54が形成される。
 また、図6Aに示すように、蛍光体微粒子62を含む波長変換膜54は、膜厚taが200~2000nmであって、図6Bに示すように、当該波長変換膜54に含まれる蛍光体微粒子62を集積し、緻密板64とした際の膜厚(以下、蛍光体微粒子集積膜厚tbと記す)が100~1000nm相当であることが好ましい。さらに好ましくは、波長変換膜54は、膜厚taが500~1000nmであって、蛍光体微粒子集積膜厚tbが200~600nm相当である。
(波長変換デバイス)
 本実施の形態に係る波長変換デバイス70は、図7に示すように、基板72と、該基板72の一主面に形成された上述した波長変換膜54とを有する。基板72としては、上述した石英ガラス、太陽電池に使用されるソーダガラス等を用いることができる。また、基板72としては、可撓性を有する透明な樹脂シートあるいは樹脂と無機材料の複合シート等を用いることができる。この場合、透明性のフィルムが好ましい。
(太陽電池)
 先ず、第1の本実施の形態に係る太陽電池(第1太陽電池80A)の主要部は、図8Aに示すように、平面状に配列された複数の発電セル82と、これら発電セル82を被覆するように形成された封止層84と、封止層84上に積層されたガラス86と、ガラス86の表面に成膜された波長変換膜54とを有する。
 封止層84としては、例えばポリエチレン-ポリ酢酸ビニル共重合体(EVA)等の透光性封止樹脂が用いられる。封止層84は、波長200nm~800nmにおける光透過率が80%以上であることが好ましい。ガラス86は、保護ガラスであって、一般にソーダガラスが使用される。
 第2の本実施の形態に係る太陽電池(第2太陽電池80B)の主要部は、図8Bに示すように、第1太陽電池80Aとほぼ同様の構成を有するが、ガラス86上に波長変換デバイス70が積層されている点で異なる。
 第3の本実施の形態に係る太陽電池(第3太陽電池80C)の主要部は、図8Cに示すように、第1太陽電池80Aとほぼ同様の構成を有するが、ガラス86の裏面(封止層84側の面)に波長変換膜54が成膜(塗布)されている点で異なる。
 第4の本実施の形態に係る太陽電池(第4太陽電池80D)の主要部は、図8Dに示すように、第2太陽電池80Bとほぼ同様の構成を有するが、封止層84とガラス86との間に波長変換デバイス70が配置されている点で異なる。
 第5の本実施の形態に係る太陽電池(第5太陽電池80E)の主要部は、図9Aに示すように、複数の発電セル82と、これら発電セル82を被覆するように形成され、且つ、蛍光体微粒子62が添加された封止層88と、封止層88上に積層されたガラス86とを有する。
 第6の本実施の形態に係る太陽電池(第6太陽電池80F)の主要部は、図9Bに示すように、第2太陽電池80Bとほぼ同様の構成を有するが、発電セル82上に波長変換デバイス70が積層され、これら発電セル82と波長変換デバイス70とを被覆するように封止層84が形成されている点で異なる。
 第7の本実施の形態に係る太陽電池(第7太陽電池80G)の主要部は、図9Cに示すように、第1太陽電池80Aとほぼ同様の構成を有するが、発電セル82の表面に波長変換膜54が成膜(塗布)され、これら発電セル82と波長変換膜54を被覆するように封止層84が形成されている点で異なる。
 波長変換膜54及び波長変換デバイス70は、基本的には、発電セル82と太陽光の入射表面との間に設置すればよい。但し、ガラス86(保護ガラス:一般的にソーダガラス)及び封止層84(EVA等の樹脂)は一部の紫外線を吸収するため、波長変換膜54は、好ましくは、より太陽光の入射表面側に近い方がよい。
 上述した特開2013-004806号公報では、波長変換層が有機材料で構成されているため、外気にさらされる最外表面に設置することは好ましくないと間接的に述べている。本実施の形態では、波長変換膜54を無機材料で構成しているため、最外表面に設置してもよい。すなわち、波長変換膜54あるいは波長変換デバイス70の設置個所を任意に選択することができ、設計の自由度を向上させることができる。また、これに関連し、特開2013-004806号公報では保護ガラスに紫外光を透過する石英ガラスを用いているが、実際の太陽電池に高コストな石英ガラスを用いることはありえないと考えられる。
[第1実施例]
 サンプル1~25について、励起波長320nmの光(図11の曲線L0参照)を蛍光体微粒子に照射して測定した蛍光スペクトルの相対発光強度を確認した。
 蛍光スペクトルは、Prイオン由来の中心波長612nmの鋭いピークが見られた。サンプル1~25の発光強度は、いずれも蛍光スペクトルのピーク値をプロットしたものである。
 サンプル1~25の内訳について、下記表1を参照しながら説明する。
Figure JPOXMLDOC01-appb-T000001
(サンプル1)
 図2に示す流通式水熱合成反応装置10を用いてペロブスカイト型酸化物の蛍光体微粒子を製造した。
 具体的には、先ず、原料金属塩溶液槽40に、チタニアゾルと硝酸カルシウム水溶液と硝酸ストロンチウム水溶液と硝酸プラセオジム水溶液の混合溶液(原料金属塩溶液)を貯溜する。原料金属塩溶液の質量モル濃度は、チタニアゾルが0.05モル/kg、硝酸カルシウムが0.036モル/kg、硝酸ストロンチウムが0.024モル/kg、硝酸プラセオジムが0.0001モル/kgである。
 そして、上述した原料金属塩溶液を5cm3/minで、濃度0.06モル/kgの水酸化カリウム水溶液を5cm3/minで、純水を75cm3/minで、それぞれ反応管26内に送液し、これを反応温度400℃、反応圧力30MPa及び滞在時間5秒とする水熱反応条件で反応させ、サンプル1に係る蛍光体微粒子を製造した。すなわち、サンプル1における原料組成中の(Ca+Sr)/Tiのモル比は1.2であり、原料組成中のK/Tiのモル比は1.2である。
(サンプル2~4)
 サンプル2、3及び4は、原料組成中のKOH濃度をそれぞれ0.08、0.10及び0.12mol/kgとし、K/Tiのモル比をそれぞれ1.6、2.0及び2.4としたこと以外は、サンプル1と同様にして、サンプル2、3及び4に係る蛍光体微粒子を製造した。
(サンプル5)
 サンプル5は、原料組成中の硝酸カルシウムを0.042mol/kg、硝酸ストロンチウムを0.028mol/kgとし、(Ca+Sr)/Tiのモル比を1.5としたこと以外は、サンプル1と同様にして、サンプル5に係る蛍光体微粒子を製造した。
(サンプル6~8)
 サンプル6、7及び8は、原料組成中のKOH濃度をそれぞれ0.08、0.10及び0.12mol/kgとし、K/Tiのモル比をそれぞれ1.6、2.0及び2.4としたこと以外は、サンプル5と同様にして、サンプル6、7及び8に係る蛍光体微粒子を製造した。
(サンプル9)
 サンプル9は、原料組成中の硝酸カルシウムを0.048mol/kg、硝酸ストロンチウムを0.032mol/kgとし、(Ca+Sr)/Tiのモル比を2.0としたこと以外は、サンプル1と同様にして、サンプル9に係る蛍光体微粒子を製造した。
(サンプル10~12)
 サンプル10、11及び12は、原料組成中のKOH濃度をそれぞれ0.08、0.10及び0.12mol/kgとし、K/Tiのモル比をそれぞれ1.6、2.0及び2.4としたこと以外は、サンプル9と同様にして、サンプル10、11及び12に係る蛍光体微粒子を製造した。
(サンプル13)
 サンプル13は、原料組成中の硝酸カルシウムを0.06mol/kg、硝酸ストロンチウムを0.04mol/kgとし、(Ca+Sr)/Tiのモル比を2.5としたこと以外は、サンプル1と同様にして、サンプル13に係る蛍光体微粒子を製造した。
(サンプル14~16)
 サンプル14、15及び16は、原料組成中のKOH濃度をそれぞれ0.08、0.10及び0.12mol/kgとし、K/Tiのモル比をそれぞれ1.6、2.0及び2.4としたこと以外は、サンプル13と同様にして、サンプル14、15及び16に係る蛍光体微粒子を製造した。
(サンプル17)
 サンプル17は、原料組成中の硝酸カルシウムを0.03mol/kg、硝酸ストロンチウムを0.02mol/kgとし、(Ca+Sr)/Tiのモル比を1.0としたこと以外は、サンプル1と同様にして、サンプル17に係る蛍光体微粒子を製造した。
(サンプル18、19)
 サンプル18及び19は、原料組成中のKOH濃度をそれぞれ0.08及び0.10mol/kgとし、K/Tiのモル比をそれぞれ1.6及び2.0としたこと以外は、サンプル17と同様にして、サンプル18及び19に係る蛍光体微粒子を製造した。
(サンプル20)
 サンプル20は、原料組成中のKOH濃度を0.16mol/kgとし、K/Tiのモル比を3.2としたこと以外は、サンプル1と同様にして、サンプル20に係る蛍光体微粒子を製造した。
(サンプル21)
 サンプル21は、原料組成中のKOH濃度を0.16mol/kgとし、K/Tiのモル比を3.2としたこと以外は、サンプル5と同様にして、サンプル21に係る蛍光体微粒子を製造した。
(サンプル22)
 サンプル22は、原料組成中のKOH濃度を0.16mol/kgとし、K/Tiのモル比を3.2としたこと以外は、サンプル9と同様にして、サンプル22に係る蛍光体微粒子を製造した。
(サンプル23)
 サンプル23は、原料組成中のKOH濃度を0.16mol/kgとし、K/Tiのモル比を3.2としたこと以外は、サンプル13と同様にして、サンプル23に係る蛍光体微粒子を製造した。
(サンプル24、25)
 サンプル24及び25は、原料組成中のKOH濃度をそれぞれ0.12及び0.16mol/kgとし、K/Tiのモル比をそれぞれ2.4及び3.2としたこと以外は、サンプル17と同様にして、サンプル24及び25に係る蛍光体微粒子を製造した。
(評価:XRDパターン及びTEM像)
 図10Aにサンプル6に係る蛍光体微粒子のXRDパターンを示す。このXRDパターンは、斜方晶Ca0.6Sr0.4TiO3:Pr3+のXRDパターンと一致した。また、サンプル6に係る蛍光体微粒子のTEM像を図10Bに示す。TEM像で観察される粒子は凝集体ではなく単一の粒子であり、その大きさは40nm程度であることがわかる、図10AのXRDの結果から計算される結晶子径は40nm程度であることから、これらは単結晶の微粒子であると推測される。
(評価:相対発光強度)
 分光蛍光光度計を用い、励起波長320nmの光を各蛍光体微粒子(サンプル1~25)にそれぞれ照射して各サンプルから出射される光の蛍光スペクトル(PLスペクトル)を測定した。図11に、励起波長320nmの光の励起スペクトル(PLEスペクトル)の波形(曲線L0参照)と、サンプル6の蛍光スペクトルの波形(曲線L1参照)を示す。また、図12に、サンプル6、8、14及び24の蛍光スペクトルの波形(曲線L1、L2、L3及びL4参照)を示す。
 図11及び図12からもわかるように、各蛍光スペクトルでは、Prイオン由来の中心波長612nmの鋭いピークが見られた。
 そして、サンプル1~25の各蛍光スペクトルのピーク値をそれぞれサンプル1~25の発光強度としてプロットし、そのうち、代表的にサンプル6のピーク値を1.0として、他のサンプルの相対発光強度を求めた。その評価結果を下記表2、図13及び図14に示す。図13は、各曲線について、原料組成中のK/Tiのモル比を固定にして、原料組成中の(Ca+Sr)/Tiのモル比を変化させた場合のグラフを示し、図14は、各曲線について、原料組成中の(Ca+Sr)/Tiのモル比を固定にして、原料組成中のK/Tiのモル比を変化させた場合のグラフを示す。
Figure JPOXMLDOC01-appb-T000002
(考察)
 サンプル1~25のうち、相対発光強度が0.2以上であるサンプルは、サンプル1~19である。このことから、蛍光体微粒子の製造方法において、Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、原料組成中の(Ca+Sr)/Tiモル比が1.0~2.5であることが好ましく、さらに好ましくは1.2~2.5であり、より好ましくは1.5~2.0である。また、サンプル1~19から、原料組成中のK/Tiモル比が1.2~2.4であることが好ましく、さらに好ましくは1.6~2.0である。
 また、原料組成中の(Ca+Sr)/Tiモル比が1.0~2.5で、且つ、K/Tiモル比が1.2~2.0、又は、原料の組成中の(Ca+Sr)/Tiモル比が1.2~2.5で、且つ、K/Tiモル比が1.2~2.4であることが好ましい。さらに好ましくは、原料組成中の(Ca+Sr)/Tiモル比が1.5~2.0で、且つ、K/Tiモル比が1.2~2.4、又は、原料の組成中の(Ca+Sr)/Tiモル比が1.2~2.5で、且つ、K/Tiモル比が1.6~2.0である。より好ましくは、原料組成中の(Ca+Sr)/Tiモル比が1.5~2.0で、且つ、K/Tiモル比が1.6~2.0である。
[第2実施例](波長変換膜(蛍光体薄膜))
 サンプル101~130について、図6Aに示すように、波長変換膜54の膜厚taと、図6Bに示すように、波長変換膜54に含まれる蛍光体微粒子62を集積して、緻密板64とした際の膜厚(蛍光体微粒子集積膜厚tb)と、相対発光強度との関係を確認した。
 この第2実施例は、図5に示す波長変換膜54の製造方法において、エタノールを溶媒とし、蛍光体微粒子粉末とポリシロキサンオリゴマー含有コーティング材(例えば商品名グラスカ:JSR社製、製品名:HP7003)を加え、超音波分散処理を行ったものを成膜用スラリーとして用いた。成膜用スラリー中における固形分(蛍光体微粒子粉末とコーティング材中の固形分の合計)の体積分率を4%と固定し、固形分中の蛍光体微粒子粉末の体積濃度割合を、1、10、25、50、75%と変化させた5水準の成膜用スラリーを用いた。各成膜用スラリーを用いてスピンコートにより、石英ガラス基板上に成膜を行った、スピンコート回数は1、2、5、10、20、50回で行った。
 波長変換膜54の膜厚taは、走査型電子顕微鏡(SEM)による断面構造より測定した。図15に、スピンコート回数に対する波長変換膜54の膜厚ta(図15では「波長変換膜厚」と表記)の変化を示す。図15から、波長変換膜54の膜厚taはスピンコート回数と相関があることがわかる。
 また、蛍光体微粒子集積膜厚tbは、波長変換膜54の膜厚taと透過型電子顕微鏡(TEM)による断面構造を画像解析することにより得た蛍光体微粒子体積濃度から計算した。図16に、(スピンコート回数×スラリー固形分中の蛍光体体積濃度)に対する蛍光体微粒子集積膜厚tb(図16では「蛍光体集積膜厚」と表記)の変化を示す。図16から、蛍光体微粒子集積膜厚tbは(スピンコート回数×スラリー固形分中の蛍光体体積濃度)と相関があることがわかる。
 そして、サンプル101~130のコート回数、スラリー固形分中の蛍光体体積、波長変換膜54の膜厚taと、蛍光体微粒子集積膜厚tb及び相対発光強度を表3に示す。また、図17に、蛍光体微粒子集積膜厚tbと波長変換膜54の膜厚taと相対発光強度との関係を示す。ここで、サンプル101~130の相対発光強度は、サンプル115の発光強度を1.0として示した。
Figure JPOXMLDOC01-appb-T000003
 表3から、相対発光強度が0.6以上のサンプルは、サンプル109、110、113~115、117~120、122~125、129、130であり、その中でも、相対発光強度が0.9以上のサンプルは、サンプル114、115、118、119、120、124、125であった。
 すなわち、図17からわかるように、波長変換膜54の厚みtaが200~2000nm相当であって、且つ、蛍光体微粒子集積膜厚tbが100~1000nm相当であることが好ましい。さらに好ましくは、波長変換膜54の厚みtaが500~1000nm相当であって、且つ、蛍光体微粒子集積膜厚tbが200~600nm相当である。
 上述のことから、以下のことが推察される。
 (a) 波長変換膜に含まれる蛍光体微粒子の絶対量が少ないと、紫外線を吸収しきれず、一部の紫外線は透過してしまうため発光量は小さい。
 (b) 蛍光体微粒子の量には紫外線を吸収しきる適正量があり、適正量において発光量は最大となる。蛍光体微粒子の量が適正量となる蛍光体微粒子集積膜厚tbが200~600nm相当と推測される。
 (c) 蛍光体微粒子の量を適正量以上に多くしても、深部の蛍光体微粒子には光が当たらないため、発光量は頭打ちになる。
 (d) 蛍光体微粒子の量が適正量であっても、波長変換膜の厚さが厚すぎると、蛍光体微粒子の分布が粗になってしまい、紫外線が蛍光体微粒子に当たらずに透過し、発光量は低下する。この波長変換膜厚taが2000nm以上と推測される。
[第3実施例](太陽電池)
 比較例1、実施例1~7について、発電量の違いを確認した。また、実施例1~7について、比較例1に対する発電量の向上分を確認した。
(比較例1)
 比較例1は、図18に示すように、平面状に配列された複数の発電セル82と、これら発電セル82上に積層された封止層84と、封止層84上に積層されたガラス86とを有する。
(実施例1~7)
 実施例1は、図8Aに示す第1太陽電池80Aと同様の構成を有し、実施例2は、図8Bに示す第2太陽電池80Bと同様の構成を有し、実施例3は、図8Cに示す第3太陽電池80Cと同様の構成を有し、実施例4は、図8Dに示す第4太陽電池80Dと同様の構成を有する。
 また、実施例5は、図9Aに示す第5太陽電池80Eと同様の構成を有し、実施例6は、図9Bに示す第6太陽電池80Fと同様の構成を有し、実施例7は、図9Cに示す第7太陽電池80Gと同様の構成を有する。
(評価)
 比較例1、実施例1~7の内訳及び発電量(mW/cm2)、並びに実施例1~7の向上分(%)を下記表4に示す。向上分は、例えば実施例1では、(実施例1の発電量-比較例1の発電量)/比較例1の発電量で算出した。
Figure JPOXMLDOC01-appb-T000004
 比較例1の発電量は11.2(mW/cm2)であった。これに対して、実施例1~7の発電量はいずれも比較例1よりも向上していた。特に、波長変換膜54が太陽光の入射面側に位置した実施例1が最も発電量が高かった。次いで、実施例2、実施例3、実施例4・・・というように、太陽電池の内部に向かうほど、発電量が低かった。
 なお、本発明に係る蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (13)

  1.  (Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、
     Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、
     前記原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5であることを特徴とする蛍光体微粒子の製造方法。
  2.  (Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、
     Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、
     前記原料の組成中のK/Tiモル比が1.2~2.4であることを特徴とする蛍光体微粒子の製造方法。
  3.  (Ca、Sr)TiO3:Pr3+で表されるペロブスカイト型構造を有する蛍光体微粒子であって、粒子径が大きくとも100nm以下である蛍光体微粒子を製造する蛍光体微粒子の製造方法において、
     Ca、Sr及びTiのイオン、酸化物又は水酸化物から選択される原料とPrのイオンからなる原料とを、亜臨界ないし超臨界状態の水中にて水熱反応させる工程を有し、
     前記原料の組成中の(Ca+Sr)/Tiモル比が1.0~2.5で、且つ、K/Tiモル比が1.2~2.0、又は、前記原料の組成中の(Ca+Sr)/Tiモル比が1.2~2.5で、且つ、K/Tiモル比が1.2~2.4であることを特徴とする蛍光体微粒子の製造方法。
  4.  請求項1~3のいずれか1項に記載の蛍光体微粒子の製造方法にて製造された蛍光体微粒子を含むことを特徴とする蛍光体薄膜。
  5.  請求項1~3のいずれか1項に記載の蛍光体微粒子の製造方法にて製造された蛍光体微粒子を含み、紫外線領域の光を可視光領域の光に変換することを特徴とする波長変換膜。
  6.  請求項5記載の波長変換膜において、
     前記蛍光体微粒子を液相に分散させ、塗布方法により作製したことを特徴とする波長変換膜。
  7.  請求項6記載の波長変換膜において、
     前記液相がシロキサン化合物を生成する化合物を含み、前記液相が前記蛍光体微粒子を取り込みつつ硬化してなることを特徴とする波長変換膜。
  8.  請求項5~7のいずれか1項に記載の波長変換膜において、
     膜厚が200~2000nmであって、
     当該波長変換膜に含まれる前記蛍光体微粒子を集積し緻密板とした際の膜厚が100~1000nm相当であることを特徴とする波長変換膜。
  9.  基板(72)と、
     前記基板(72)上に形成された請求項5~8のいずれか1項に記載の波長変換膜(54)とを含むことを特徴とする波長変換デバイス。
  10.  請求項9記載の波長変換デバイスにおいて、
     前記基板(72)が可撓性を有する樹脂シートあるいは樹脂と無機材料の複合シートであることを特徴とする波長変換デバイス。
  11.  太陽電池の少なくとも1つの構成部材に請求項1~3のいずれか1項に記載の蛍光体微粒子の製造方法にて製造された蛍光体微粒子が含まれていることを特徴とする太陽電池。
  12.  太陽電池の少なくとも1つの構成部材の表面あるいは裏面に請求項5~8のいずれか1項に記載の波長変換膜が形成されていることを特徴とする太陽電池。
  13.  太陽電池の複数の構成部材間あるいは光入射表面に請求項9又は10記載の波長変換デバイスを備えたことを特徴とする太陽電池。
PCT/JP2015/053030 2014-02-07 2015-02-04 蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池 WO2015119125A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022870A JP2017061582A (ja) 2014-02-07 2014-02-07 蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
JP2014-022870 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015119125A1 true WO2015119125A1 (ja) 2015-08-13

Family

ID=53777929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053030 WO2015119125A1 (ja) 2014-02-07 2015-02-04 蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池

Country Status (2)

Country Link
JP (1) JP2017061582A (ja)
WO (1) WO2015119125A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700102364A1 (it) * 2017-09-13 2019-03-13 Univ Degli Studi Milano Bicocca Concentratore solare luminescente a base di perovskiti

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056249A (ja) * 2018-01-11 2021-04-08 コニカミノルタ株式会社 波長変換粒子、分散液、波長変換フィルム及び波長変換粒子の製造方法
JP7096956B2 (ja) * 2020-07-13 2022-07-06 日本碍子株式会社 精製方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251082A (ja) * 2011-06-03 2012-12-20 National Institute Of Advanced Industrial Science & Technology 蛍光体微粒子、該蛍光体微粒子の製造方法、蛍光体薄膜及びelデバイス
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251082A (ja) * 2011-06-03 2012-12-20 National Institute Of Advanced Industrial Science & Technology 蛍光体微粒子、該蛍光体微粒子の製造方法、蛍光体薄膜及びelデバイス
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN DAI 77 NENKAI KENKYU HAPPYO KOEN YOSHISHU, 2012, pages 499 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700102364A1 (it) * 2017-09-13 2019-03-13 Univ Degli Studi Milano Bicocca Concentratore solare luminescente a base di perovskiti
WO2019053567A1 (en) * 2017-09-13 2019-03-21 Glass To Power S.P.A. LUMINESCENT SOLAR CONCENTRATOR USING PEROVSKITE STRUCTURES
JP2020533813A (ja) * 2017-09-13 2020-11-19 グラス・ト・パワー・ソチエタ・ペル・アツィオーニ ペロブスカイト構造を使用した発光型太陽集光器

Also Published As

Publication number Publication date
JP2017061582A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2015119124A1 (ja) 蛍光体微粒子、蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
US6773629B2 (en) Compound based on an alkaline-earth metal, sulphur and aluminium, gallium or indium, its method of preparation and its use as a phosphor
Li et al. Microwave-assisted Sol− Gel synthesis and photoluminescence characterization of LaPO4: Eu3+, Li+ nanophosphors
JP6587639B2 (ja) 蛍光体微粒子及び蛍光体微粒子の製造方法
WO2015119125A1 (ja) 蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
Wei et al. Manipulating luminescence and photocatalytic activities of BiVO4 by Eu3+ ions incorporation
US10934483B2 (en) Fine fluorescent-material particles, process for producing fine fluorescent-material particles, thin fluorescent-material film, wavelength conversion film, wavelength conversion device, and solar cell
JP5688656B2 (ja) 蛍光体微粒子、該蛍光体微粒子の製造方法、蛍光体薄膜及びelデバイス
JP6143047B2 (ja) 波長変換デバイス及びその製造方法
CN103261367A (zh) 包含核-壳铝酸盐的组合物,由所述的组合物获得的荧光粉及制备方法
Karthika et al. Structural and spectroscopic studies of Sm 3+/CdS nanocrystallites in sol–gel TiO 2-ZrO 2 matrix
CN106268768A (zh) 一种具有可见光响应的锑钼酸钇纳米光催化剂的制备及光降解应用
Fernández-Osorio et al. Europium-doped ZnAl2O4 nanophosphors: structural and luminescence properties
Min et al. Luminescence improvement of (Ti, Si) O2: Eu3+/Li+ spherical particles for anti-counterfeiting application
Aritman et al. Comparative study on structural and optical features of undoped and Eu3+ doped Pr6O11 synthesized via sol-gel and flame spray pyrolysis
Alifi et al. Zinc-Doped Titania Embedded on the Surface of Zirconia: A Potential Visible-Responsive Photocatalyst Material
Hofmann et al. Fast low temperature synthesis of layered perovskite heterojunctions for overall water splitting
Liu et al. Preparation and photoluminescence properties of europium ions doped TiO2 nanocrystals
CN110437823A (zh) 一种氧化锌掺铕发光材料的制备及在包装防伪中的应用
Hur et al. Synthesis of high-efficiency red-emission Ca14Zn6Al9. 97Mn0. 03O35 phosphors with particle control
CN101230268A (zh) 一种Mg掺杂的ZnO发光材料的制备方法
Avci Sol-gel processes for protection and synthesis of luminescent materials
Hirano et al. Synthesis and properties of new anatase-type and composite nanophosphors via hydrothermal method
CN104556192A (zh) 氟化铈材料、稀土离子掺杂的氟化铈材料及其制备方法与应用
RASDI SYNTHESIS, STRUCTURAL AND OPTICAL PROPERTIES OF COBALT (II) DOPED ZINC SILICATE VIA SOL-GEL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP