WO2015118945A1 - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
WO2015118945A1
WO2015118945A1 PCT/JP2015/051476 JP2015051476W WO2015118945A1 WO 2015118945 A1 WO2015118945 A1 WO 2015118945A1 JP 2015051476 W JP2015051476 W JP 2015051476W WO 2015118945 A1 WO2015118945 A1 WO 2015118945A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrode
power transmission
capacitor
power receiving
Prior art date
Application number
PCT/JP2015/051476
Other languages
English (en)
French (fr)
Inventor
市川敬一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015560918A priority Critical patent/JP6112235B2/ja
Publication of WO2015118945A1 publication Critical patent/WO2015118945A1/ja
Priority to US15/155,414 priority patent/US9973042B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power transmission system that wirelessly transmits power from a power transmission device to a power reception device.
  • Patent Document 1 discloses a power transmission system using an electric field coupling method, which stabilizes the reference potential of a power receiving apparatus during power transmission from the power transmitting apparatus to the power receiving apparatus and does not cause malfunction of the power receiving apparatus.
  • each of the power transmitting device and the power receiving device includes a reference potential electrode connected to the reference potential.
  • Patent Document 1 does not disclose conditions such as the size related to the reference potential electrode, and simply providing the reference potential electrode in each of the power receiving device and the power transmission device and making them face each other. In some cases, the reference potential of the power receiving device cannot be stabilized. If the reference potential of the power receiving device is not stable, malfunction may occur in the power receiving device.
  • an object of the present invention is to provide a power transmission system that stabilizes the reference potential of the power receiving apparatus.
  • the power transmission system includes a power transmission side first electrode and a power transmission side second electrode, and applies a AC voltage to the power transmission side first electrode and the power transmission side second electrode, and the power transmission side A power receiving side first electrode facing the first electrode with a gap; and a power receiving side second electrode facing the power transmitting side second electrode with a gap, the power receiving side first electrode and the power receiving side A power receiving device that supplies a voltage induced by electric field coupling to the second electrode to a load, and the power transmission device includes: a power transmission side reference electrode connected to a reference potential; the power transmission side reference electrode; A power transmission side first capacitor connected between one electrode and a power transmission side second capacitor connected between the power transmission side reference electrode and the power transmission side second electrode; Connected to a reference potential and spaced from the power transmission side reference electrode A power-receiving-side reference electrode, a power-receiving-side first capacitor connected between the power-receiving-side reference electrode and the power-receiving-side first electrode, and
  • the capacitance is represented by C1a, the capacitance of the power transmission side second capacitor by C1p, the capacitance of the power reception side first capacitor by C2a, and the capacitance of the power reception side second capacitor by C2p, Caa + Cpp ⁇ Cgg, C1a + C1p ⁇ Cgg Or, C2a + C2p ⁇ meets any condition of Cgg, characterized in that.
  • a power transmission system includes a power transmission side coil, a power transmission device that applies an AC voltage to the power transmission side coil, a power reception side coil that is opposed to the power transmission side coil with a gap therebetween, and A power receiving device for supplying a voltage induced by magnetic field coupling to a load on the side coil, wherein the power transmission device includes a power transmission side reference electrode connected to a reference potential, the power transmission side reference electrode, and the power transmission side coil A power transmission side first capacitor connected between the first end of the power transmission side, and a power transmission side second capacitor connected between the power transmission side reference electrode and the second end of the power transmission side coil, The power receiving device is connected to a reference potential, and is connected between the power receiving side reference electrode facing the power transmitting side reference electrode with a gap, and between the power receiving side reference electrode and the first end of the power receiving side coil.
  • a power-receiving-side second capacitor connected between a reference electrode and a second end of the power-receiving-side coil, and a capacitance generated between the power-transmitting-side coil and the power-receiving-side coil is represented by Ccc
  • the capacitance of the capacitor formed by facing the reference electrode and the power receiving side reference electrode is Cgg
  • the power transmitting side first capacitor is C1a
  • the power transmitting side second capacitor is C1p
  • the power receiving side first capacitor is Is represented by C2a
  • the capacitance of the power-receiving-side second capacitor is represented by C2p, it satisfies one of the following conditions: Ccc ⁇ Cgg, C1a + C1p ⁇ Cgg, or C2a + C2p ⁇ Cgg.
  • the reference potential of the power receiving device is connected to the reference potential of the power transmitting device via a capacitor formed by the power transmitting side reference electrode and the power receiving side reference electrode.
  • the capacitance Cgg of the capacitor satisfies a predetermined condition, the reference potential on the power receiving device side can be brought close to the reference potential on the power transmission device side. Thereby, the reference potential of the power receiving device can be stabilized.
  • the power transmission system according to the present invention preferably satisfies the condition of C1a + C1p ⁇ Cgg or C2a + C2p ⁇ Cgg.
  • the power transmission side first electrode and the power transmission side second electrode, and the power reception side first electrode and the power reception side second electrode, or the power transmission side coil and the power reception side coil are adjusted, and Caa, Cpp, or Since there is a possibility that the transmission power efficiency may be affected by adjusting Ccc, it is possible to prevent such a fear by satisfying the condition other than the electrode or the coil.
  • the power transmission system according to the present invention preferably satisfies the condition of C1a + C1p ⁇ Cgg.
  • the power transmission system can be easily designed by satisfying the conditions on the power transmission device side that is not required to be downsized.
  • the present invention it is possible to stabilize the reference potential of the power receiving apparatus by bringing the reference potential on the power receiving apparatus side closer to the reference potential on the power transmitting apparatus side.
  • capacitance of the capacitor Cgg The figure which shows the example of the electrode structure in the case of capacity adjustment The figure which shows the example of the electrode structure in the case of capacity adjustment The figure which shows the structural example in the case of providing a low dielectric constant layer between active electrodes and between passive electrodes The figure which shows the circuit of the electric power transmission system
  • FIG. 1 is a diagram illustrating a circuit of the power transmission system 1 according to the first embodiment.
  • the power transmission system 1 according to the present embodiment includes a power transmission device 101 and a power reception device 201.
  • a power receiving apparatus 201 is placed on the power transmitting apparatus 101.
  • the power transmitting apparatus 101 transmits power to the power receiving apparatus 201 that is placed.
  • the power receiving apparatus 201 includes a load circuit RL.
  • the load circuit RL includes a secondary battery and a charging circuit.
  • the power receiving device 201 is, for example, a portable electronic device. Examples of portable electronic devices include cellular phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs, and digital cameras.
  • the power receiving apparatus 201 charges the secondary battery with the power transmitted from the power transmitting apparatus 101.
  • the load circuit RL is provided in the power receiving apparatus 201, but may be mounted on an external device that is detachable from the power receiving apparatus 201.
  • the power transmission device 101 includes an AC power source Vin.
  • the AC power source Vin converts a DC voltage output from an AC adapter connected to a commercial power source into an AC voltage using an inverter circuit, and outputs the AC voltage.
  • the primary coil of the step-up transformer T1 is connected to the AC power source Vin.
  • the step-up transformer T ⁇ b> 1 has a secondary coil connected to the active electrode 13 and the passive electrode 14.
  • the step-up transformer T1 boosts the AC voltage output from the AC power source Vin and applies it to the active electrode 13 and the passive electrode 14.
  • the capacitor C1 is connected in parallel to the secondary coil of the step-up transformer T1.
  • the capacitor C1 forms a series resonance circuit together with a leakage inductance (not shown) of the secondary coil of the step-up transformer T1.
  • the series resonance circuit may be configured by a leakage inductance of the step-up transformer T1, or may be configured by an actual inductor.
  • the secondary coil of the step-up transformer T1 and the capacitor C1 may constitute a parallel resonance circuit.
  • the power transmission device 101 includes a reference potential electrode 15.
  • the reference potential electrode 15 is connected to the reference potential of the power transmission device 101.
  • the reference potential electrode 15 is connected to the active electrode 13 via the capacitor C1a.
  • the reference potential electrode 15 is connected to the passive electrode 14 via the capacitor C1p.
  • the capacitor C1a is an example of the “power transmission side first capacitor” according to the present invention
  • the capacitor C1p is an example of the “power transmission side second capacitor” according to the present invention.
  • the active electrode 13 is an example of a “power transmission side first electrode” according to the present invention
  • the passive electrode 14 is an example of a “power transmission side second electrode” according to the present invention
  • the reference potential electrode 15 is an example embodiment that corresponds to the “power transmission side reference electrode” according to the present invention.
  • the power receiving apparatus 201 includes an active electrode 23, a passive electrode 24, and a reference potential electrode 25.
  • the active electrode 23 faces the active electrode 13 of the power transmission apparatus 101 with a gap therebetween, thereby forming a capacitor Caa.
  • the passive electrode 24 is opposed to the passive electrode 14 of the power transmission device 101 with a gap therebetween to form a capacitor Cpp.
  • the active electrodes 13 and 23 and the passive electrodes 14 and 24 facing each other are capacitively coupled (electric field coupling), and a circuit capable of transmitting an AC signal between the power transmission side and the power reception side is formed. Then, power is transmitted to the power receiving apparatus 201. As a result, power transmission is possible even when the electrode of the power receiving apparatus 201 and the electrode of the power transmission apparatus 101 are not in contact with each other.
  • the reference potential electrode 25 is opposed to the reference potential electrode 15 of the power transmission device 101 with a gap therebetween to form a capacitor Cgg.
  • the reference potential electrode 25 is connected to the reference potential of the power receiving device 201. Therefore, the reference potential of the power receiving apparatus 201 is connected to the reference potential (eg, ground) of the power transmission apparatus 101 via the capacitor Cgg.
  • the reference potential electrode 25 is connected to the active electrode 23 via the capacitor C2a.
  • the reference potential electrode 25 is connected to the passive electrode 24 via the capacitor C2p.
  • the capacitor C2a is an example of the “power receiving side first capacitor” according to the present invention
  • the capacitor C2p is an example of the “power receiving side second capacitor” according to the present invention.
  • the values of the capacitors described above are determined so as to be mutually Caa: Cpp ⁇ C1a: C1p ⁇ C2a: C2p.
  • the active electrode 23 is an example of a “power receiving side first electrode” according to the present invention
  • the passive electrode 24 is an example of a “power receiving side second electrode” according to the present invention
  • the reference potential electrode 25 is an example embodiment that corresponds to the “power receiving side reference electrode” according to the present invention.
  • the primary coil of the step-down transformer T2 is connected to the active electrode 23 and the passive electrode 24 of the power receiving apparatus 201.
  • a capacitor C2 is connected in parallel to the primary coil of the step-down transformer T2.
  • the primary coil of the step-down transformer T2 and the capacitor C2 form a parallel resonance circuit.
  • This parallel resonance circuit is set to a constant so that the resonance frequency substantially coincides with the series resonance circuit formed on the power transmission device 101 side.
  • the series resonant circuit and the parallel resonant circuit are coupled and resonated (combined resonance).
  • the drive frequency in the power transmission from the power transmission apparatus 101 to the power reception apparatus 201 is set to the resonance frequency of the series resonance circuit and the parallel resonance circuit that are substantially the same, and the power transmission from the power transmission apparatus 101 to the power reception apparatus 201 is performed at the drive frequency. Do. Thereby, electric power transmission can be performed efficiently.
  • the load circuit RL is connected to the secondary coil of the step-down transformer T2.
  • the load circuit RL includes a rectifying / smoothing circuit, a DC-DC converter, and the like in addition to the above-described secondary battery and charging circuit.
  • the rectifying / smoothing circuit includes a diode bridge formed from four diodes, a capacitor, and an inductor.
  • the load circuit RL rectifies and smoothes the AC voltage stepped down by the step-down transformer T2, converts it to a stabilized predetermined voltage, and charges the secondary battery.
  • the power receiving apparatus 201 has a touch panel, and the touch panel is operated during power transmission from the power transmitting apparatus 101 to the power receiving apparatus 201, thereby The reference potential may fluctuate. In this case, a problem may occur in the power receiving apparatus 201, such as the touch panel not operating normally.
  • Such a problem is likely to occur particularly when the power receiving apparatus 201 is a small and portable apparatus.
  • the reference potential cannot be connected to an external ground. Therefore, in order to stabilize the reference potential, the shield case provided in the casing or as the casing, the ground electrode of the circuit board, etc. are made as large as possible.
  • the circuit operation is stabilized by increasing the size of the conductor constituting the reference potential of the device.
  • the casing is small and the shield case and the ground electrode of the circuit board are also small, so that it is impossible to ensure a sufficient size for stabilizing the reference potential.
  • the reference potential is easier to stabilize than the power reception device 201, for example, by making the housing relatively large and connecting it to the ground terminal of the outlet via an AC adapter.
  • the power transmission system 1 includes the reference potential electrodes 15 and 25, and the reference potential of the power receiving apparatus 201 is transmitted via the capacitor Cgg. Is connected to the reference potential.
  • the shield electrode on the power transmission device 101 side connected via the capacitor Cgg and the ground electrode of the circuit board also increase the reference potential conductor. Play a role. Thereby, in the state connected to the power transmission apparatus 101 via the capacitor Cgg, the reference potential of the power reception apparatus 201 is further stabilized, and the occurrence of problems can be prevented even during power transmission.
  • the potential difference between the reference potential of the power transmitting apparatus 101 and the reference potential of the power receiving apparatus 201 is represented by vN.
  • the reference potential of the power reception device 201 is connected to the reference potential of the power transmission device 101 via the capacitor Cgg. Therefore, when the reference potential vN becomes smaller, the reference potential of the power receiving apparatus 201 approaches the reference potential of the power transmitting apparatus 101, and the reference potential of the power receiving apparatus 201 is stabilized.
  • a noise current iN is generated.
  • the noise current iN flows through the capacitor Cgg, the first path of the capacitors C1a, Caa, and C2a and the second path of the capacitors C1p, Cpp, and C2p, as indicated by arrows in FIG.
  • iN1 is a noise current flowing through the capacitor Cgg
  • iN2 is a noise current flowing through the total capacitor Cint.
  • Cint represents the total capacitor of the first path and the second path.
  • FIG. 2 is a circuit diagram for explaining the reason why the reference potential of the power receiving apparatus 201 is stabilized by providing the reference potential electrodes 15 and 25.
  • 2A shows a circuit when the reference potential electrodes 15 and 25 are not provided
  • FIG. 2B shows a circuit when the reference potential electrodes 15 and 25 are provided.
  • vN0 a reference potential of the power receiving device 201 when the reference potential of the power transmitting device 101 is used as a reference when the reference potential electrodes 15 and 25 are not provided.
  • Cint is the capacitance of the total capacitor Cint.
  • the voltage vN when the reference potential electrodes 15 and 25 are provided is higher than the voltage vN0 when the reference potential electrodes 15 and 25 are not provided, compared to the voltage vN0 when the reference potential electrodes 15 and 25 are not provided. small. Therefore, when the reference potential electrodes 15 and 25 are provided, the reference potential of the power receiving device 201 is more stable than when the reference potential electrodes 15 and 25 are not provided.
  • the total capacitor Cint can be regarded as the circuit shown in FIG. FIG. 3 is an equivalent circuit of the total capacitor Cint.
  • the total capacitor Cint is a parallel circuit of capacitors C1a and C1p (hereinafter referred to as capacitors C1a + C1p), a parallel circuit of capacitors Caa and Cpp (hereinafter referred to as capacitors Caa + Cpp), and a parallel circuit of capacitors C2a and C2p (hereinafter referred to as capacitors C1a + C1p). , Represented by capacitors C2a + C2p) in series.
  • the capacitances of the capacitors C1a, C1p, C2a, and C2p are represented by C1a, C1p, C2a, and C2p.
  • the capacitance of the capacitor Caa formed with the active electrodes 13 and 23 facing each other is denoted by Caa
  • the capacitance of the capacitor Cpp formed with the passive electrodes 14 and 24 facing each other is denoted by Cpp.
  • FIG. 4 is a diagram for explaining a method of measuring the capacitance of the capacitors C1a + C1p.
  • the active electrode 13 and the passive electrode 14 are short-circuited.
  • capacitance between this short circuit part and a reference potential is measured.
  • FIG. 5 is a diagram for explaining a method of measuring the capacitance of the capacitors C2a + C2p.
  • the active electrode 23 and the passive electrode 24 are short-circuited.
  • capacitance between this short circuit part and a reference electric potential is measured.
  • FIG. 6 is a diagram for explaining a method of measuring the capacitance of the capacitor Caa + Cpp.
  • the active electrode 13 and the passive electrode 14 of the power transmission device 101 are short-circuited and connected to the constant voltage source Vs.
  • the active electrode 23 and the passive electrode 24 of the power receiving device 201 are short-circuited and connected to the ground.
  • the reference potentials 15 and 25 are connected to the ground.
  • FIG. 7 is a diagram for explaining a method of measuring the capacitance of the capacitor Cgg.
  • the active electrode 13 and the passive electrode 14 of the power transmission device 101 and the active electrode 23 and the passive electrode 24 of the power reception device 201 are connected to the ground.
  • the reference potential electrode 15 is connected to the constant voltage source Vs, and the reference potential electrode 25 is connected to the ground.
  • the capacitances of the capacitors C1a + C1p, Caa + Cpp, C2a + C2p, and Cgg can be measured. Then, the power transmission device 101 and the power reception device 201 are designed so that any one of C1a + C1p ⁇ Cgg, C2a + C2p ⁇ Cgg, or Caa + Cpp ⁇ Cgg is satisfied. At this time, the above conditions may be satisfied by changing the capacitors C1a and C1p or the elements of the capacitors C2a and C2p. In addition, the size or the interelectrode distance of the active electrodes 13 and 23, the passive electrodes 14 and 24, or the reference potential electrodes 15 and 25 may be adjusted to satisfy the above condition.
  • 8 and 9 are diagrams showing an example of an electrode structure in the case of adjusting the capacitance. 8 and 9, the circuits other than the step-up transformer T1 and the step-down transformer T2 are not shown.
  • a reference potential electrode 15 is provided so as to surround circuits such as the active electrode 13, the passive electrode 14, and the step-up transformer T1.
  • a reference potential electrode 25 is provided so as to surround circuits such as the active electrode 23, the passive electrode 24, and the step-down transformer T2.
  • each electrode is configured such that the distance dgg between the opposing reference potential electrodes 15 and 25 is shorter than the distance daa between the active electrodes 13 and 23 and the distance dpp between the passive electrodes 14 and 24.
  • the capacitance of the capacitor is large. This facilitates adjustment so that the relationship of Caa + Cpp ⁇ Cgg is established.
  • the reference potential electrode 15 of the power transmission apparatus 101 is provided so as to surround circuits such as the active electrode 13, the passive electrode 14, and the step-up transformer T1.
  • the reference potential electrode 25 of the power receiving device 201 is provided so as to surround circuits such as the active electrode 23, the passive electrode 24, and the step-down transformer T2.
  • the reference potential electrodes 15 and 25 are refracted so as to increase the area of the opposing portions. Thereby, by refracting the facing surface, the facing area can be increased as compared with the case where the facing surface is not refracted.
  • the opposing area of the reference potential electrodes 15 and 25 is larger than the opposing area of the active electrodes 13 and 23 and the opposing area of the passive electrodes 14 and 24.
  • the capacitance of the capacitor is large. Therefore, it becomes easy to adjust so that the relationship of Caa + Cpp ⁇ Cgg is satisfied.
  • the reference potential electrodes 15 and 25 are refracted so that when the power receiving apparatus 201 is mounted on the power transmitting apparatus 101, the mounting position of the power receiving apparatus 201 with respect to the power transmitting apparatus 101 can be easily determined. .
  • the capacitance of the capacitors Caa and Cpp is reduced, and the relationship of Caa + Cpp ⁇ Cgg is established. You may make it do.
  • the housing may be used as the reference potential electrodes 15 and 25.
  • the capacitance between the reference potential electrodes 15 and 25 may be increased by adopting an insulating structure with a metal oxide film.
  • FIG. 10 is a diagram showing a structural example in the case where a low dielectric constant layer is provided between the active electrodes 13 and 23 and between the passive electrodes 14 and 24.
  • the resin casing 101 ⁇ / b> A of the power transmission device 101 has a shape having a depression in a portion where the active electrode 13 and the passive electrode 14 face each other.
  • the active electrode 13, the passive electrode 14, and a part of the reference potential electrode 15 are provided along the inner wall surface of the resin casing 101A.
  • the resin casing 201 ⁇ / b> A of the power receiving apparatus 201 has a shape having a depression in a portion where the active electrode 23 and the passive electrode 24 face each other.
  • the active electrode 23, the passive electrode 24, and a part of the reference potential electrode 25 are provided along the inner wall surface of the resin casing 201A.
  • the active electrodes 13, 23, the passive electrodes 14, 24, and a part of the reference potential electrodes 15, 25 face each other.
  • an air gap 300 is formed between the active electrodes 13 and 23 and between the passive electrodes 14 and 24 due to the depressions of the resin casings 101A and 201A.
  • the air gap 300 is not formed between the reference potential electrodes 15 and 25.
  • any one of the conditions C1a + C1p ⁇ Cgg, C2a + C2p ⁇ Cgg, or Caa + Cpp ⁇ Cgg may be satisfied, but C1a + C1p ⁇ Cgg or C2a + C2p ⁇ Cgg
  • the power receiving device 201 may be required to be thin. Therefore, the degree of freedom in designing the power receiving apparatus 201 can be improved by designing the power transmitting apparatus 101 so that the condition of C1a + C1p ⁇ Cgg is satisfied.
  • FIG. 11 is a diagram illustrating a circuit of the power transmission system according to the second embodiment.
  • power is transmitted from the power transmission device to the power receiving device by the electric field coupling method
  • power is transmitted from the power transmission device to the power receiving device by the magnetic field coupling method.
  • the power transmission side coil 16 is connected to the secondary coil of the step-up transformer T1 instead of the active electrode and the passive electrode.
  • the power receiving side coil 26 is connected to the primary coil of the step-down transformer T2 instead of the active electrode and the passive electrode.
  • Other configurations are the same as those in the first embodiment.
  • the power transmitting side coil 16 and the power receiving side coil 26 face each other and are magnetically coupled. Electric power is transmitted from the power transmitting apparatus 102 to the power receiving apparatus 202 by this magnetic field coupling.
  • the power receiving apparatus 202 is designed by designing the power transmitting apparatus 102 and the power receiving apparatus 202 so that any of the conditions of C1a + C1p ⁇ Cgg, C2a + C2p ⁇ Cgg, or Ccc ⁇ Cgg is satisfied. The fluctuation of the reference potential can be suppressed.
  • FIG. 12 is a diagram illustrating another example of the circuit of the power transmission system according to the second embodiment.
  • capacitors C1 and C2 shown in FIG. 11 are not provided, capacitors C11 and C12 are connected to both ends of the secondary coil of step-up transformer T1, and capacitors C21 and C22 are connected to both ends of the primary coil of step-down transformer T2. is doing.
  • the capacitors C11, C12, C21, and C22 are all resonant capacitors, as are the capacitors C1 and C2. Even in this circuit configuration, fluctuations in the reference potential of the power receiving device 202 can be suppressed by satisfying the above-described conditions.
  • any one of C1a + C1p ⁇ Cgg, C2a + C2p ⁇ Cgg, or Ccc ⁇ Cgg may be satisfied, but C1a + C1p ⁇
  • the power receiving device 201 may be required to be thin. Therefore, the degree of freedom in designing the power receiving apparatus 201 can be improved by designing the power transmitting apparatus 101 so that the condition of C1a + C1p ⁇ Cgg is satisfied.
  • either one or both of the step-up transformer T1 and the step-down transformer T2 shown in FIGS. 11 and 12 may not be provided. That is, when a signal source (for example, AC power supply Vin) can output a voltage necessary for the power transmission side resonance circuit, it is preferable to directly connect the signal source to the power transmission side resonance circuit. In addition, when the output of the power reception side resonance circuit can output a voltage corresponding to the load, it is preferable to directly connect the power reception side resonance circuit to the load.
  • a signal source for example, AC power supply Vin
  • the output of the power reception side resonance circuit can output a voltage corresponding to the load, it is preferable to directly connect the power reception side resonance circuit to the load.

Abstract

 送電装置(101)及び受電装置(201)は、アクティブ電極(13,23)、パッシブ電極(14,24)、基準電位電極(15,25)が対向して容量結合し、容量Caa,Cpp,Cggが生じる。基準電位電極(15)とアクティブ電極(13)及びパッシブ電極(14)の間、並びに、基準電位電極(25)とアクティブ電極(23)及びパッシブ電極(24)の間には、それぞれ容量C1a,C1p,C2a,C2pのキャパシタが接続されている。電力伝送システム(1)は、Caa+Cpp<Cgg、C1a+C1p<Cgg、又は、C2a+C2p<Cggの何れかの条件を満たしている。これにより、受電装置の基準電位を安定させる電力伝送システムを提供する。

Description

電力伝送システム
 本発明は、送電装置から受電装置へワイヤレスで電力を伝送する電力伝送システムに関する。
 電力伝送システムとして、電界結合方式を利用したシステムがある。この電力伝送システムでは、送電装置及び受電装置それぞれのアクティブ電極を対向させて二つの電極間に強い電場を形成し、電極同士を電界結合させることで、送電装置から受電装置へ電力を伝送する。
 特許文献1には、電界結合方式を利用した電力伝送システムであって、送電装置から受電装置への電力伝送時における受電装置の基準電位を安定させ、受電装置の誤作動を引き起こさない電力伝送システムが開示されている。この電力伝送システムでは、送電装置及び受電装置それぞれは、基準電位に接続された基準電位電極を備えている。送電装置から受電装置への電力伝送時に、この基準電位電極同士を対向させることで、受電装置の基準電位を安定化させ、受電装置の動作を安定化させている。
国際公開2013/054800号パンフレット
 しかしながら、特許文献1に記載の電力伝送システムでは、基準電位電極に関する大きさ等の条件が開示されておらず、基準電位電極を受電装置及び送電装置それぞれに単に設け、それらを対向させただけでは、受電装置の基準電位を安定化できない場合がある。受電装置の基準電位が安定しないと、受電装置において誤動作が生じるおそれがある。
 そこで、本発明の目的は、受電装置の基準電位を安定させる電力伝送システムを提供することにある。
 本発明に係る電力伝送システムは、送電側第1電極及び送電側第2電極を有し、交流電圧を前記送電側第1電極及び前記送電側第2電極に印加する送電装置と、前記送電側第1電極に間隙をおいて対向する受電側第1電極、及び、前記送電側第2電極に間隙をおいて対向する受電側第2電極を有し、前記受電側第1電極及び前記受電側第2電極に電界結合により誘起される電圧を負荷へ供給する受電装置と、を備え、前記送電装置は、基準電位に接続された送電側基準電極と、前記送電側基準電極と前記送電側第1電極との間に接続された送電側第1キャパシタと、前記送電側基準電極と前記送電側第2電極との間に接続された送電側第2キャパシタと、を有し、前記受電装置は、基準電位に接続され、前記送電側基準電極と間隙をおいて対向する受電側基準電極と、前記受電側基準電極と前記受電側第1電極との間に接続された受電側第1キャパシタと、前記受電側基準電極と前記受電側第2電極との間に接続された受電側第2キャパシタと、を有し、前記送電側第1電極と前記受電側第1電極とが対向して形成されるキャパシタの容量をCaa、前記送電側第2電極と前記受電側第2電極とが対向して形成されるキャパシタの容量をCpp、前記送電側基準電極と前記受電側基準電極とが対向して形成されるキャパシタの容量をCgg、前記送電側第1キャパシタの容量をC1a、前記送電側第2キャパシタの容量をC1p,前記受電側第1キャパシタの容量をC2a、前記受電側第2キャパシタの容量をC2pで表すと、Caa+Cpp<Cgg、C1a+C1p<Cgg、又は、C2a+C2p<Cggの何れかの条件を満たしている、ことを特徴とする。
 本発明に係る電力伝送システムは、送電側コイルを有し、交流電圧を前記送電側コイルに印加する送電装置と、前記送電側コイルに間隙をおいて対向する受電側コイルを有し、前記受電側コイルに、磁界結合により誘起される電圧を負荷へ供給する受電装置と、を備え、前記送電装置は、基準電位に接続された送電側基準電極と、前記送電側基準電極と前記送電側コイルの第1端との間に接続された送電側第1キャパシタと、前記送電側基準電極と前記送電側コイルの第2端との間に接続された送電側第2キャパシタと、を有し、前記受電装置は、基準電位に接続され、前記送電側基準電極と間隙をおいて対向する受電側基準電極と、前記受電側基準電極と前記受電側コイルの第1端との間に接続された受電側第1キャパシタと、前記受電側基準電極と前記受電側コイルの第2端との間に接続された受電側第2キャパシタと、を有し、前記送電側コイルと前記受電側コイルとの間に生じる容量をCcc、前記送電側基準電極と前記受電側基準電極とが対向して形成されるキャパシタの容量をCgg、前記送電側第1キャパシタの容量をC1a、前記送電側第2キャパシタの容量をC1p,前記受電側第1キャパシタの容量をC2a、前記受電側第2キャパシタの容量をC2pで表すと、Ccc<Cgg、C1a+C1p<Cgg、又は、C2a+C2p<Cggの何れかの条件を満たしていることを特徴とする。
 この構成では、受電装置の基準電位が、送電側基準電極と受電側基準電極とで形成されるキャパシタを介して、送電装置の基準電位に接続されている。このキャパシタの容量Cggが所定条件を満たすと、受電装置側の基準電位を送電装置側の基準電位に近づけることができる。これにより、受電装置の基準電位の安定化を図ることができる。
 本発明に係る電力伝送システムは、C1a+C1p<Cgg、又は、C2a+C2p<Cggの条件を満たしていることが好ましい。
 この構成では、送電側第1電極及び送電側第2電極、並びに、受電側第1電極及び受電側第2電極、又は、送電側コイル及び受電側コイルを調整して、Caa,Cpp、又は、Cccを調整することで伝送電力効率に影響が及ぶおそれがあるため、電極又はコイル以外で、条件を満たすようにすることで、そのおそれを防止できる。
 本発明に係る電力伝送システムは、C1a+C1p<Cggの条件を満たしていることが好ましい。
 この構成では、小型化が要求されない送電装置側で、条件が満たすようにすることで、電力伝送システムを設計しやすくできる。
 本発明によれば、受電装置側の基準電位を送電装置側の基準電位に近づけることがで、受電装置の基準電位の安定化を図ることができる。
実施形態1に係る電力伝送システムの回路を示す図 基準電位電極を設けることで、受電装置の基準電位が安定する理由を説明するための回路図であり、(A)は、基準電位電極を設けない場合の回路を示し、(B)は、基準電位電極を設けた場合の回路を示す図 総合キャパシタの等価回路 キャパシタC1a+C1pの容量の測定方法を説明するための図 キャパシタC2a+C2pの容量の測定方法を説明するための図 キャパシタCaa+Cppの容量の測定方法を説明するための図 キャパシタCggの容量の測定方法を説明するための図 容量調整する場合の電極構造の例を示す図 容量調整する場合の電極構造の例を示す図 アクティブ電極の間、及び、パッシブ電極の間に低誘電率層を設ける場合の構造例を示す図 実施形態2に係る電力伝送システムの回路を示す図 実施形態2に係る電力伝送システムの回路の別の例を示す図
(実施形態1)
 図1は、実施形態1に係る電力伝送システム1の回路を示す図である。本実施形態に係る電力伝送システム1は、送電装置101と受電装置201とで構成されている。送電装置101には受電装置201が載置される。送電装置101は、載置された受電装置201へ電力を伝送する。
 受電装置201は負荷回路RLを備えている。負荷回路RLは、二次電池及び充電回路等を含む。そして、受電装置201は、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA(Personal Digital Assistant)、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。受電装置201は、送電装置101から伝送された電力を二次電池に充電する。
 なお、図1では、負荷回路RLは受電装置201内に設けられているが、受電装置201に着脱可能な外部機器に搭載されていてもよい。
 送電装置101は交流電源Vinを備えている。交流電源Vinは、詳しくは、商用電源に接続されるACアダプタから出力される直流電圧をインバータ回路で交流電圧に変換し、出力する。
 交流電源Vinには、昇圧トランスT1の1次コイルが接続されている。この昇圧トランスT1は、2次コイルがアクティブ電極13とパッシブ電極14とに接続されている。昇圧トランスT1は、交流電源Vinから出力された交流電圧を昇圧し、アクティブ電極13及びパッシブ電極14に印加する。
 昇圧トランスT1の2次コイルにはキャパシタC1が並列に接続されている。このキャパシタC1は、昇圧トランスT1の2次コイルの漏れインダクタンス(不図示)と共に直列共振回路を形成している。なお、直列共振回路は、昇圧トランスT1の漏れインダクタンスから構成されていてもよいし、実部品のインダクタから構成されていてもよい。また、昇圧トランスT1の2次コイルと、キャパシタC1とで並列共振回路を構成していてもよい。
 また、送電装置101は基準電位電極15を備えている。基準電位電極15は送電装置101の基準電位に接続されている。基準電位電極15は、キャパシタC1aを介してアクティブ電極13に接続されている。また、基準電位電極15は、キャパシタC1pを介してパッシブ電極14に接続されている。
 キャパシタC1aは、本発明に係る「送電側第1キャパシタ」の一例であり、キャパシタC1pは、本発明に係る「送電側第2キャパシタ」の一例である。
 アクティブ電極13は、本発明に係る「送電側第1電極」の一例であり、パッシブ電極14は、本発明に係る「送電側第2電極」の一例である。基準電位電極15は、本発明に係る「送電側基準電極」の一例である。
 受電装置201は、アクティブ電極23、パッシブ電極24及び基準電位電極25を備えている。受電装置201を送電装置101に載置すると、アクティブ電極23は、送電装置101のアクティブ電極13と間隙をおいて対向し、キャパシタCaaを形成する。パッシブ電極24は、送電装置101のパッシブ電極14と間隙をおいて対向し、キャパシタCppを形成する。対向したアクティブ電極13,23、パッシブ電極14,24がそれぞれ容量結合(電界結合)し、送電側と受電側との間に交流信号を伝えることが可能な回路が形成されるため、送電装置101から受電装置201へ電力が伝送される。これにより、受電装置201の電極と送電装置101の電極が非接触の状態でも電力伝送が可能となる。
 また、基準電位電極25は、送電装置101の基準電位電極15と間隙をおいて対向し、キャパシタCggを形成する。基準電位電極25は、受電装置201の基準電位に接続されている。したがって、受電装置201の基準電位は、キャパシタCggを介して、送電装置101の基準電位(例えばグランド)に接続されている。
 基準電位電極25は、キャパシタC2aを介してアクティブ電極23に接続されている。また、基準電位電極25は、キャパシタC2pを介してパッシブ電極24に接続されている。キャパシタC2aは、本発明に係る「受電側第1キャパシタ」の一例であり、キャパシタC2pは、本発明に係る「受電側第2キャパシタ」の一例である。
 なお、前述したキャパシタの値は、相互にCaa:Cpp≒C1a:C1p≒C2a:C2pとなるように定める。これにより、アクティブ電極13とパッシブ電極14の間に高い電圧が加わった場合でも、送電装置101および受電装置201双方の基準電位の変動が抑えられる。
 アクティブ電極23は、本発明に係る「受電側第1電極」の一例であり、パッシブ電極24は、本発明に係る「受電側第2電極」の一例である。基準電位電極25は、本発明に係る「受電側基準電極」の一例である。
 受電装置201のアクティブ電極23及びパッシブ電極24には、降圧トランスT2の1次コイルが接続されている。降圧トランスT2の1次コイルにはキャパシタC2が並列接続されている。そして、降圧トランスT2の1次コイルとキャパシタC2とで並列共振回路を形成している。
 この並列共振回路は、送電装置101側に形成された直列共振回路と共振周波数がほぼ一致するよう定数設定されている。送電装置101に受電装置201を載置すると、直列共振回路と並列共振回路とは結合共振(複合共振)する。そして、送電装置101から受電装置201への電力伝送における駆動周波数を、ほぼ同じにした直列共振回路及び並列共振回路の共振周波数に定め、その駆動周波数で送電装置101から受電装置201へ電力伝送を行う。これにより、効率よく電力伝送できる。
 降圧トランスT2の2次コイルには、負荷回路RLが接続されている。この負荷回路RLは、前記した二次電池及び充電回路に加え、整流平滑回路及びDC-DCコンバータ等を含む。整流平滑回路は、4つのダイオードから形成されたダイオードブリッジ、キャパシタ及びインダクタからなる。負荷回路RLは、降圧トランスT2で降圧された交流電圧を整流及び平滑した後、安定化された所定電圧に変換し、二次電池に充電する。
 以上のように構成された電力伝送システム1において、例えば、受電装置201がタッチパネルを有し、送電装置101から受電装置201への電力伝送中にそのタッチパネルが操作されることで、受電装置201の基準電位が変動する場合がある。この場合、タッチパネルが正常に動作しないなど、受電装置201において不具合が生じるおそれがある。
 このような問題は、特に、受電装置201が小型で可搬型の装置の場合に起こりやすい。すなわち、可搬型の装置においては、基準電位を外部のアースに接続できないため、通常は基準電位を安定化させるために筐体内あるいは筐体として設けるシールドケースや回路基板のグランド電極等をできるだけ大きくして装置の基準電位を構成する導体を大型化することで、回路の動作を安定化する。しかしながら、小型の携帯無線端末等の場合には、筐体が小さく、シールドケース及び回路基板のグランド電極も小さくなるため、基準電位を安定化するために十分な大きさを確保できなくなる。そのため、通信よりも電力の大きい電力伝送を行う場合に、基準電位の変動が起こりやすくなる。一方、送電装置101側は、筐体を比較的大きくし、ACアダプタを介してコンセントの接地端子に接続する等によって、受電装置201よりも基準電位が安定化しやすい。
 そこで、受電装置の基準電位を安定化するために、本実施形態に係る電力伝送システム1は、基準電位電極15,25を備え、受電装置201の基準電位を、キャパシタCggを介して送電装置101の基準電位に接続している。受電装置201側で基準電位を構成するシールドケース及び回路基板のグランド電極に加えて、キャパシタCggを介して接続された送電装置101側のシールド電極及び回路基板のグランド電極も基準電位導体を大きくする役割を果たす。これにより、キャパシタCggを介して送電装置101に接続した状態においては、受電装置201の基準電位はより安定化され、電力伝送時においても不具合の発生を防ぐことができる。
 以下、基準電位電極15,25を設けることで、受電装置201の基準電位の変動を抑制できる理由についてより詳しく説明する。
 送電装置101の基準電位と受電装置201の基準電位との電位差をvNで表す。受電装置201の基準電位は、キャパシタCggを介して、送電装置101の基準電位に接続されている。したがって、基準電位vNがより小さくなれば、受電装置201の基準電位が送電装置101の基準電位に近づき、受電装置201の基準電位は安定する。
 受電装置201の基準電位が変動すると、ノイズ電流iNが発生する。このノイズ電流iNは、図1の矢印に示すように、キャパシタCggと、キャパシタC1a,Caa,C2aの第1経路、及び、キャパシタC1p,Cpp,C2pの第2経路とに流れる。図1に示すiN1はキャパシタCggに流れるノイズ電流、iN2は総合キャパシタCintに流れるノイズ電流である。ここで、Cintは、第1経路及び第2経路の総合キャパシタを表す。
 図2は、基準電位電極15,25を設けることで、受電装置201の基準電位が安定する理由を説明するための回路図である。図2(A)は、基準電位電極15,25を設けない場合の回路を示し、図2(B)は、基準電位電極15,25を設けた場合の回路を示す図である。
 図2(A)に示すように、基準電位電極15,25を設けない場合、ノイズ電流iNは、キャパシタCintのみに印加される。このとき、キャパシタCintに印加される電圧をvN0で表すと、
 iN=jωCint・vN0…(1)
 で表せる。この電圧vN0は、基準電位電極15,25を設けない場合における、送電装置101の基準電位を基準としたときの受電装置201の基準電位である。ここで、Cintは、総合キャパシタCintの容量である。
 図2(B)に示すように、基準電位電極15,25を設けた場合、キャパシタCggに印加される電圧はvNであり、電圧vNは、
vN=iN/jω(Cint+Cgg)…(2)
で表せる。
 式(1)と式(2)とから、電圧vNは、
vN=Cint・vN0/(Cint+Cgg)…(3)
で表せる。
 式(3)から判るように、基準電位電極15,25を設けた場合の電圧vNは、基準電位電極15,25を設けない場合の電圧vN0と比べると、分流される分だけ電圧vN0よりも小さい。したがって、基準電位電極15,25を設けた場合、基準電位電極15,25を設けない場合と比べて、受電装置201の基準電位は安定する。
 また、式(3)において、Cint<Cggとした場合、電圧vNは、電圧をvN0の1/2未満になる。したがって、基準電位電極15,25を設け、Cint<Cggの条件が満たされるよう、電力伝送システム1を設計することで、受電装置201の基準電位をより安定させることができる。
 前述したように、キャパシタの値は、相互にCaa:Cpp≒C1a:C1p≒C2a:C2pとなるように定められているため、総合キャパシタCintは、図3で示す回路とみなすことができる。図3は、総合キャパシタCintの等価回路である。総合キャパシタCintは、キャパシタC1a,C1pの並列回路(以下、キャパシタC1a+C1pで表す。)、キャパシタCaa,Cppの並列回路(以下、キャパシタCaa+Cppで表す。)、及び、キャパシタC2a,C2pの並列回路(以下、キャパシタC2a+C2pで表す。)が直列接続された回路とみなすことができる。
 ここで、キャパシタC1a,C1p,C2a,C2pそれぞれの容量を、C1a,C1p,C2a,C2pで表す。また、アクティブ電極13,23が対向して形成されるキャパシタCaaの容量をCaaで表し、パッシブ電極14,24が対向して形成されるキャパシタCppの容量をCppで表す。
 この場合において、キャパシタC1a+C1p,C2a+C2p、Caa+Cppの何れか一つでもCggよりも小さければ、Cint<Cggの条件が成立する。したがって、C1a+C1p<Cgg、C2a+C2p<Cgg、又は、Caa+Cpp<Cggの何れかの条件を満たすことで、Cint<Cggの条件が成立し、受電装置201の基準電位をより安定させることができる。
 以下に、各キャパシタの測定方法について説明する。
 図4は、キャパシタC1a+C1pの容量の測定方法を説明するための図である。キャパシタC1a+C1pの容量を測定する場合、アクティブ電極13及びパッシブ電極14を短絡する。そして、この短絡部と基準電位との間(図4に示す端子P1,P2間)の容量を測定する。
 図5は、キャパシタC2a+C2pの容量の測定方法を説明するための図である。キャパシタC2a+C2pの容量を測定する場合、アクティブ電極23及びパッシブ電極24を短絡する。そして、この短絡部と基準電位との間(図5に示す端子P3,P4間)の容量を測定する。
 図6は、キャパシタCaa+Cppの容量の測定方法を説明するための図である。キャパシタCaa+Cppの容量を測定する場合、送電装置101のアクティブ電極13及びパッシブ電極14を短絡し、定電圧源Vsに接続する。また、受電装置201のアクティブ電極23及びパッシブ電極24を短絡し、グランドに接続する。さらに、基準電位電極15,25の影響を除去するために、送電装置101及び受電装置201の基準電位はグランドに接続する。
 そして、定電圧源Vsから電圧を出力したときに、定電圧源VsからキャパシタCaa,Cppを通り、グランドに流れる電流を検出する。定電圧源Vsの出力電圧をVs、検出する電流をIsで表すと、
(Caa+Cpp)=Is/2πfVs…(4)
の式から、キャパシタCaa+Cppの容量(Caa+Cpp)が算出できる。
 図7は、キャパシタCggの容量の測定方法を説明するための図である。キャパシタCggの容量を測定する場合、送電装置101のアクティブ電極13及びパッシブ電極14、並びに、受電装置201のアクティブ電極23及びパッシブ電極24それぞれをグランドに接続する。また、基準電位電極15を定電圧源Vsに接続し、基準電位電極25をグランドに接続する。
 そして、定電圧源Vsから電圧を出力したときに、キャパシタCggに流れる電流Isを検出し、
Cgg=Is/2πfVs…(5)
から、キャパシタCggの容量が算出できる。
 以上のように、キャパシタC1a+C1p,Caa+Cpp,C2a+C2p,Cggそれぞれの容量は測定できる。そして、C1a+C1p<Cgg、C2a+C2p<Cgg、又は、Caa+Cpp<Cggの何れかの条件が満たされるよう、送電装置101及び受電装置201を設計する。このとき、キャパシタC1a,C1p、又は、キャパシタC2a,C2pの素子を変更して前記条件を満たすようにしてもよい。また、アクティブ電極13,23、パッシブ電極14,24又は基準電位電極15,25の大きさ又は電極間距離を調整して、前記条件を満たすようにしてもよい。
 図8及び図9は、容量調整する場合の電極構造の例を示す図である。なお、図8及び図9では、昇圧トランスT1及び降圧トランスT2以外の回路は図示を省略している。
 図8に示す例では、送電装置101において、アクティブ電極13、パッシブ電極14及び、昇圧トランスT1等の回路を囲うように基準電位電極15が設けられている。同様に、受電装置201において、アクティブ電極23、パッシブ電極24及び、降圧トランスT2等の回路を囲うように基準電位電極25が設けられている。基準電位電極15,25でアクティブ電極13,23等の高電圧部分を囲うことで、高電圧部分からのノイズを遮蔽できる。
 送電装置101に受電装置201を載置すると、アクティブ電極13,23が対向し、パッシブ電極14,24が対向する。また、基準電位電極15,25の一部が対向する。このとき、対向する基準電位電極15,25の距離dggが、アクティブ電極13,23の距離daa、及び、パッシブ電極14,24の距離dppよりも短くなるように、各電極が構成されている。電極間距離が短いと、キャパシタの容量は大きい。これにより、Caa+Cpp<Cggの関係が成立するように調整しやすくなる。
 図9に示す例では、図8と同様に、送電装置101の基準電位電極15は、アクティブ電極13、パッシブ電極14及び、昇圧トランスT1等の回路を囲うように設けられている。また、受電装置201の基準電位電極25は、アクティブ電極23、パッシブ電極24及び、降圧トランスT2等の回路を囲うように設けられている。基準電位電極15,25は、対向する部分の面積が大きくなるよう、屈折している。これにより、対向面を屈折させることで、対向面が屈折していない場合と比べて、対向面積を大きくできる。
 これにより、基準電位電極15,25の対向面積は、アクティブ電極13,23の対向面積、及び、パッシブ電極14,24の対向面積よりも大きく。電極の対向面積が大きいと、キャパシタの容量は大きい。したがって、Caa+Cpp<Cggの関係が成立するように調整しやすくなる。
 また、図9に示す構成の場合、基準電位電極15,25を屈折させることで、送電装置101に受電装置201を載置する際、送電装置101に対する受電装置201の載置位置が決めやすくなる。
 また、アクティブ電極13,23の間、又は、パッシブ電極14,24の間にエアギャップなどの低誘電率層を設けることで、キャパシタCaa,Cppの容量を小さくし、Caa+Cpp<Cggの関係が成立するようにしてもよい。
 なお、図8及び図9に示す例において、送電装置101及び受電装置201の金属製の筐体とした場合、その筐体を基準電位電極15,25として利用してもよい。また、金属筐体の表面処理として、金属酸化膜での絶縁構造にすることで、基準電位電極15,25間の容量を大きくしてもよい。
 図10は、アクティブ電極13,23の間、及び、パッシブ電極14,24の間に低誘電率層を設ける場合の構造例を示す図である。
 図10に示す例では、送電装置101の樹脂筐体101Aは、アクティブ電極13及びパッシブ電極14が対向する部分に窪みを有した形状である。アクティブ電極13と、パッシブ電極14と、及び基準電位電極15の一部とは、樹脂筐体101Aの内壁面に沿って設けられている。また、受電装置201の樹脂筐体201Aは、アクティブ電極23及びパッシブ電極24が対向する部分に窪みを有した形状である。アクティブ電極23と、パッシブ電極24と、及び基準電位電極25の一部とは、樹脂筐体201Aの内壁面に沿って設けられている。
 送電装置101に受電装置201を載置した場合、アクティブ電極13,23同士、パッシブ電極14,24同士、基準電位電極15,25の一部同士がそれぞれ対向する。このとき、樹脂筐体101A,201Aが有する窪みにより、アクティブ電極13,23の間、パッシブ電極14,24の間には、エアギャップ300が形成される。これに対し、基準電位電極15,25の間には、エアギャップ300が形成されない。これにより、Caa<Cgg、及び、Cpp<Cggの関係になるため、Caa+Cpp<Cggの関係が成立する。
 なお、受電装置201の基準電位を安定させるためには、C1a+C1p<Cgg、C2a+C2p<Cgg、又は、Caa+Cpp<Cggの何れかの条件が満たされていればよいが、C1a+C1p<Cgg又はC2a+C2p<Cggの条件が満たされるように設計することで、アクティブ電極間、パッシブ電極間の容量を確保し、伝送電力や電力伝送効率を高めつつ基準電位を安定化することができる。また、受電装置201は薄型化が要求されることがある。このため、C1a+C1p<Cggの条件が満たされるように送電装置101を設計することで、受電装置201の設計の自由度を向上させることができる。
(実施形態2)
 図11は、実施形態2に係る電力伝送システムの回路を示す図である。実施形態1では、電界結合方式により、送電装置から受電装置へ電力を伝送するのに対し、本実施形態では、磁界結合方式により、送電装置から受電装置へ電力を伝送する。
 この例では、送電装置102では、アクティブ電極及びパッシブ電極に代わり、昇圧トランスT1の2次コイルには、送電側コイル16が接続されている。また、受電装置202では、アクティブ電極及びパッシブ電極に代わり、降圧トランスT2の1次コイルには、受電側コイル26が接続されている。なお、他の構成は、実施形態1と同様である。
 受電装置202を送電装置102に載置した場合、送電側コイル16と受電側コイル26とが対向し、磁界結合する。この磁界結合により、送電装置102から受電装置202へ電力が伝送される。
 また、送電側コイル16と受電側コイル26とが対向することで、コイル間にキャパシタCccが形成される。このキャパシタCccは、実施形態1で説明したキャパシタCaa+Cppに相当する。したがって、C1a+C1p<Cgg、C2a+C2p<Cgg、又は、Ccc<Cggの何れかの条件が満たされるよう、送電装置102及び受電装置202を設計することで、実施形態1で説明したように、受電装置202の基準電位の変動を抑制できる。
 図12は、実施形態2に係る電力伝送システムの回路の別の例を示す図である。この例では、図11に示すキャパシタC1,C2を設けず、昇圧トランスT1の2次コイルの両端にキャパシタC11,C12を接続し、降圧トランスT2の1次コイルの両端にキャパシタC21,C22を接続している。キャパシタC11,C12,C21,C22は何れも、キャパシタC1,C2と同様、共振用のキャパシタである。この回路構成であっても、上述の条件を満たすことで、受電装置202の基準電位の変動を抑制できる。
 なお、実施形態1と同様、受電装置201の基準電位を安定させるためには、C1a+C1p<Cgg、C2a+C2p<Cgg、又は、Ccc<Cggの何れかの条件が満たされていればよいが、C1a+C1p<Cgg又はC2a+C2p<Cggの条件が満たされるように設計することで、送電側コイル16と受電側コイル26とのコイル巻回数等を変更する必要がなくなる。この場合、送電側コイル16と受電側コイル26とのコイル巻回数等を変更することで、伝送電力効率に影響が及ぶおそれを回避できる。また、受電装置201は薄型化が要求されることがある。このため、C1a+C1p<Cggの条件が満たされるように送電装置101を設計することで、受電装置201の設計の自由度を向上させることができる。
 また、図11及び図12に示す昇圧トランスT1及び降圧トランスT2のいずれか一方又は両方を設けなくてもよい。即ち、信号源(例えば、交流電源Vin)が送電側共振回路に必要な電圧を出力できるときは、信号源を送電側共振回路に直接接続することが好ましい。また、受電側共振回路の出力が負荷に対応する電圧を出力できるときは、受電側共振回路を負荷に直接接続することが好ましい。
13…アクティブ電極(送電側第1電極)
14…パッシブ電極(送電側第2電極)
15…基準電位電極(送電側基準電極)
16…送電側コイル
23…アクティブ電極(受電側第1電極)
24…パッシブ電極(受電側第2電極)
25…基準電位電極(受電側基準電極)
26…受電側コイル
101,102…送電装置
201,202…受電装置
101A,201A…樹脂筐体
300…エアギャップ
C1,C2…キャパシタ
C1a…キャパシタ(送電側第1キャパシタ)
C1p…キャパシタ(送電側第2キャパシタ)
C2a…キャパシタ(受電側第1キャパシタ)
C2p…キャパシタ(受電側第2キャパシタ)
Caa,Cpp,Cgg,Ccc…キャパシタ
Cint…総合キャパシタ
daa,dgg,dpp…距離
P1,P2,P3,P4,P5,P6…端子
RL…負荷回路
T1…昇圧トランス
T2…降圧トランス
Vin…交流電源

Claims (4)

  1.  送電側第1電極及び送電側第2電極を有し、交流電圧を前記送電側第1電極及び前記送電側第2電極に印加する送電装置と、
     前記送電側第1電極に間隙をおいて対向する受電側第1電極、及び、前記送電側第2電極に間隙をおいて対向する受電側第2電極を有し、前記受電側第1電極及び前記受電側第2電極に電界結合により誘起される電圧を負荷へ供給する受電装置と、
     を備え、
     前記送電装置は、
     基準電位に接続された送電側基準電極と、
     前記送電側基準電極と前記送電側第1電極との間に接続された送電側第1キャパシタと、
     前記送電側基準電極と前記送電側第2電極との間に接続された送電側第2キャパシタと、
     を有し、
     前記受電装置は、
     基準電位に接続され、前記送電側基準電極と間隙をおいて対向する受電側基準電極と、
     前記受電側基準電極と前記受電側第1電極との間に接続された受電側第1キャパシタと、
     前記受電側基準電極と前記受電側第2電極との間に接続された受電側第2キャパシタと、
     を有し、
     前記送電側第1電極と前記受電側第1電極とが対向して形成されるキャパシタの容量をCaa、前記送電側第2電極と前記受電側第2電極とが対向して形成されるキャパシタの容量をCpp、前記送電側基準電極と前記受電側基準電極とが対向して形成されるキャパシタの容量をCgg、前記送電側第1キャパシタの容量をC1a、前記送電側第2キャパシタの容量をC1p,前記受電側第1キャパシタの容量をC2a、前記受電側第2キャパシタの容量をC2pで表すと、
     Caa+Cpp<Cgg、C1a+C1p<Cgg、又は、C2a+C2p<Cggの何れかの条件を満たしている、
     電力伝送システム。
  2.  送電側コイルを有し、交流電圧を前記送電側コイルに印加する送電装置と、
     前記送電側コイルに間隙をおいて対向する受電側コイルを有し、前記受電側コイルに、磁界結合により誘起される電圧を負荷へ供給する受電装置と、
     を備え、
     前記送電装置は、
     基準電位に接続された送電側基準電極と、
     前記送電側基準電極と前記送電側コイルの第1端との間に接続された送電側第1キャパシタと、
     前記送電側基準電極と前記送電側コイルの第2端との間に接続された送電側第2キャパシタと、
     を有し、
     前記受電装置は、
     基準電位に接続され、前記送電側基準電極と間隙をおいて対向する受電側基準電極と、
     前記受電側基準電極と前記受電側コイルの第1端との間に接続された受電側第1キャパシタと、
     前記受電側基準電極と前記受電側コイルの第2端との間に接続された受電側第2キャパシタと、
     を有し、
     前記送電側コイルと前記受電側コイルとの間に生じる容量をCcc、前記送電側基準電極と前記受電側基準電極とが対向して形成されるキャパシタの容量をCgg、前記送電側第1キャパシタの容量をC1a、前記送電側第2キャパシタの容量をC1p,前記受電側第1キャパシタの容量をC2a、前記受電側第2キャパシタの容量をC2pで表すと、
     Ccc<Cgg、C1a+C1p<Cgg、又は、C2a+C2p<Cggの何れかの条件を満たしている、
     電力伝送システム。
  3.  C1a+C1p<Cgg、又は、C2a+C2p<Cggの条件を満たしている、請求項1又は2に記載の電力伝送システム。
  4.  C1a+C1p<Cggの条件を満たしている、請求項3に記載の電力伝送システム。
PCT/JP2015/051476 2014-02-07 2015-01-21 電力伝送システム WO2015118945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560918A JP6112235B2 (ja) 2014-02-07 2015-01-21 電力伝送システム
US15/155,414 US9973042B2 (en) 2014-02-07 2016-05-16 Power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022458 2014-02-07
JP2014-022458 2014-02-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/155,414 Continuation US9973042B2 (en) 2014-02-07 2016-05-16 Power transmission system

Publications (1)

Publication Number Publication Date
WO2015118945A1 true WO2015118945A1 (ja) 2015-08-13

Family

ID=53777752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051476 WO2015118945A1 (ja) 2014-02-07 2015-01-21 電力伝送システム

Country Status (3)

Country Link
US (1) US9973042B2 (ja)
JP (1) JP6112235B2 (ja)
WO (1) WO2015118945A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005296B2 (en) * 2017-06-07 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Electrode unit, power transmitting device, power receiving device, electronic device, vehicle, and wireless power transmission system
US11011922B2 (en) 2018-06-09 2021-05-18 Nxp Aeronautics Research, Llc Monitoring tower with device powered using differentials in electric field strengths within vicinity of powerlines
US10391867B1 (en) 2018-06-09 2019-08-27 Nxp Aeronautics Research, Llc Apparatus having electric-field actuated generator for powering electrical load within vicinity of powerlines
US11139690B2 (en) * 2018-09-21 2021-10-05 Solace Power Inc. Wireless power transfer system and method thereof
US11431168B2 (en) 2019-08-26 2022-08-30 Nxp Aeronautics Research, Llc UAV airways systems and apparatus
CN114156987A (zh) * 2021-12-06 2022-03-08 联想(北京)有限公司 控制方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054800A1 (ja) * 2011-10-12 2013-04-18 株式会社村田製作所 ワイヤレス電力伝送システム
WO2013073508A1 (ja) * 2011-11-14 2013-05-23 株式会社村田製作所 電力伝送システム
JP2013230079A (ja) * 2012-03-26 2013-11-07 Semiconductor Energy Lab Co Ltd 受電装置及び給電システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611199B1 (en) * 1995-10-11 2003-08-26 Motorola, Inc. Capacitively powered portable communication device and associated exciter/reader and related method
US5874921A (en) * 1996-09-20 1999-02-23 Ericsson, Inc. Antenna impedance matching network requiring no switch contacts
DE102006001671B4 (de) * 2006-01-12 2010-09-30 Siemens Ag Vorrichtung mit einem bewegten und einem stationären System
JP5415780B2 (ja) * 2009-02-20 2014-02-12 健一 原川 電力供給システム、及びそのための可動体と固定体
TWI382316B (zh) * 2009-07-30 2013-01-11 Mao Ting Chang 具保全功能之隨身碟串接組合結構
WO2013001569A1 (en) * 2011-06-28 2013-01-03 Murata Manufacturing Co., Ltd. High-frequency power device, power transmission device, and power transfer system
CN103733532A (zh) * 2011-08-16 2014-04-16 皇家飞利浦有限公司 利用电容性电力输送进行电力配送的大表面的导电层
WO2013024396A1 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. Dynamic resonant matching circuit for wireless power receivers
WO2013073608A1 (ja) 2011-11-18 2013-05-23 シャープ株式会社 太陽電池モジュール、太陽電池モジュールの製造方法、および太陽電池モジュール製造装置
JP6088234B2 (ja) * 2011-12-23 2017-03-01 株式会社半導体エネルギー研究所 受電装置、無線給電システム
WO2014112639A1 (ja) * 2013-01-21 2014-07-24 株式会社村田製作所 電力伝送システム
GB2526711B (en) * 2013-03-19 2019-05-29 Murata Manufacturing Co Wireless power transmission system
JP5935950B2 (ja) * 2013-10-03 2016-06-15 株式会社村田製作所 送電装置、受電装置及びワイヤレス電力伝送システム
US9748801B2 (en) * 2013-10-09 2017-08-29 Philips Lighting Holding B.V. System for capacitively driving a load
JP6004122B2 (ja) * 2013-12-05 2016-10-05 株式会社村田製作所 受電装置及び電力伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054800A1 (ja) * 2011-10-12 2013-04-18 株式会社村田製作所 ワイヤレス電力伝送システム
WO2013073508A1 (ja) * 2011-11-14 2013-05-23 株式会社村田製作所 電力伝送システム
JP2013230079A (ja) * 2012-03-26 2013-11-07 Semiconductor Energy Lab Co Ltd 受電装置及び給電システム

Also Published As

Publication number Publication date
US20160315504A1 (en) 2016-10-27
JPWO2015118945A1 (ja) 2017-03-23
US9973042B2 (en) 2018-05-15
JP6112235B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6112235B2 (ja) 電力伝送システム
JP6032366B2 (ja) ワイヤレス電力伝送システム
US9461507B2 (en) Wireless power transmission system
US9780572B2 (en) Wireless power multi-coil mutual induction cancellation methods and apparatus
US9698629B2 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP5790897B2 (ja) ワイヤレス電力伝送システム
US10014720B2 (en) Power transmission system
US10069335B2 (en) Power transfer system with capacitive coupling
KR20160030672A (ko) 무선 전력 수신 장치 및 무선 전력 송수신 시스템
US9846183B2 (en) Parameter derivation method
JP5979301B2 (ja) 送電装置および受電装置
JP6112222B2 (ja) 周波数特性測定方法
WO2016136568A1 (ja) 回路装置および電力伝送システム
JP5935950B2 (ja) 送電装置、受電装置及びワイヤレス電力伝送システム
JP5907307B2 (ja) ワイヤレス電力伝送システム
JPWO2014174722A1 (ja) 電力伝送システム
JP2015092545A (ja) 圧電トランス、及びワイヤレス電力伝送システム
TWM546049U (zh) 無線電力接收單元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746733

Country of ref document: EP

Kind code of ref document: A1