WO2015118920A1 - 複合基板、発光素子及びそれらの製造方法 - Google Patents

複合基板、発光素子及びそれらの製造方法 Download PDF

Info

Publication number
WO2015118920A1
WO2015118920A1 PCT/JP2015/050911 JP2015050911W WO2015118920A1 WO 2015118920 A1 WO2015118920 A1 WO 2015118920A1 JP 2015050911 W JP2015050911 W JP 2015050911W WO 2015118920 A1 WO2015118920 A1 WO 2015118920A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
substrate
composite substrate
light
Prior art date
Application number
PCT/JP2015/050911
Other languages
English (en)
French (fr)
Inventor
滑川 政彦
隆史 吉野
倉岡 義孝
坂井 正宏
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015560910A priority Critical patent/JP6562842B2/ja
Publication of WO2015118920A1 publication Critical patent/WO2015118920A1/ja
Priority to US15/223,099 priority patent/US20160343906A1/en
Priority to US17/699,624 priority patent/US20220209062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a composite substrate, a light emitting element, and a manufacturing method thereof.
  • LEDs Light emitting diodes using a single crystal substrate
  • GaN gallium nitride
  • sapphire ⁇ -alumina single crystal
  • an n-type GaN layer a multi-quantum well layer (MQW) in which quantum well layers composed of InGaN layers and barrier layers composed of GaN layers are alternately stacked, and a p-type GaN layer are sequentially stacked on a sapphire substrate.
  • MQW multi-quantum well layer
  • Those with different structures have been mass-produced.
  • a multilayer substrate suitable for such applications has also been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-184144 discloses a gallium nitride crystal multilayer substrate including a sapphire base substrate and a gallium nitride crystal layer formed by crystal growth on the substrate. Yes.
  • a laser CVD method is known as a technique for realizing highly oriented crystal growth.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-107182
  • a laser beam is irradiated on the substrate surface while introducing a raw material component containing a gaseous substance in the direction of the substrate, and the reaction is performed by reaction of the raw material component simultaneously with heating of the substrate.
  • a film forming method for forming a film made of a product on the surface of a substrate is disclosed, and it is described that a film in which columnar crystals of yttria-stabilized zirconia (YSZ) are oriented perpendicularly to the substrate is obtained. Yes.
  • YSZ yttria-stabilized zirconia
  • Non-Patent Document 1 (Takashi Goto, “High-speed coating by heat and laser CVD”, SOKEIZAI, Vol.51, 2010, No.6, p.20-25) describes YSZ coating by laser CVD and ⁇ - An alumina coating is disclosed.
  • Non-Patent Document 2 (Atsuhiko Ito, “Highly Oriented Crystal Growth Using High-Speed Chemical Vapor Deposition in a High-Intensity Laser Field”, Materia (Japan), Vol. 52, No. 11, 2013, p.
  • the single crystal substrate as described above is generally small in area and expensive. In recent years, cost reduction of LED manufacturing using a large area substrate has been demanded, but it is not easy to mass-produce a large area single crystal substrate, and the manufacturing cost is further increased. Therefore, an inexpensive material that can be used as an alternative material for a single crystal substrate such as sapphire and is suitable for increasing the area is desired. In particular, since a single crystal substrate is commercially available in a flat plate shape, it has been difficult to produce a light-emitting element having a three-dimensional solid shape such as a curved surface shape or an uneven shape using the single crystal substrate.
  • the present inventors have recently formed a group 13 element nitride crystal layer on a substrate whose surface having a three-dimensional solid shape is made of oriented polycrystalline alumina, thereby providing a three-dimensional solid shape such as a curved surface shape or an uneven shape. It was found that a composite substrate suitable for manufacturing a light emitting device having a low cost can be provided.
  • an object of the present invention is to have a composite substrate suitable for manufacturing a light-emitting element having a three-dimensional solid shape such as a curved surface shape or an uneven shape at low cost, and a three-dimensional solid shape manufactured using the composite substrate.
  • the object is to provide a light emitting element.
  • a substrate having a surface having a three-dimensional solid shape wherein the surface having the three-dimensional solid shape includes a layer made of oriented polycrystalline alumina, or the whole of the substrate is oriented.
  • a composite substrate comprising a Group 13 element nitride crystal layer formed on oriented polycrystalline alumina of the substrate.
  • the composite substrate may further include a light emitting functional layer on the Group 13 element nitride crystal layer.
  • a step of forming a translucent electrode layer on the light emitting functional layer of the composite substrate of the present invention Before or after the formation of the translucent electrode layer, a step of locally removing a part of the light emitting functional layer to locally expose the lowermost layer of the light emitting functional layer; Forming an electrode layer on the exposed bottom layer to obtain a light emitting element; A method for manufacturing a light emitting device is provided.
  • a step of forming a reflective electrode layer or a translucent electrode layer on the light emitting functional layer of the composite substrate of the present invention Before or after the formation of the reflective electrode layer or the translucent electrode layer, at least the substrate is removed from the composite substrate to expose the light emitting functional layer, the group 13 element nitride crystal layer, or the seed crystal layer.
  • Process Forming a light-transmitting electrode layer or a reflective electrode layer on the exposed light-emitting functional layer, Group 13 element nitride crystal layer or seed crystal layer to obtain a light-emitting element; A method for manufacturing a light emitting device is provided.
  • a support layer that also has a surface having a three-dimensional solid shape and also functions as a reflective electrode; A layer formed of a plurality of semiconductor single crystal particles formed on the surface having the three-dimensional solid shape of the support layer and having a single crystal structure in a direction substantially normal to the surface having the three-dimensional solid shape; A light emitting functional layer having two or more; A translucent electrode layer provided on the side opposite to the support layer of the light emitting functional layer; A light-emitting element is provided.
  • FIG. 6 is a perspective view and a cross-sectional view taken along line A-A ′ of a substrate manufactured in Example 1. It is a perspective view which shows the casting mold for shape
  • FIG. FIG. 6 is a perspective view and a cross-sectional view taken along line A-A ′ of a substrate manufactured in Example 1. It is a perspective view which shows the casting mold for shape
  • FIG. 6 is a perspective view and a cross-sectional view taken along line B-B ′ of a substrate described as a modification in Example 1. It is a perspective view which shows the casting mold for shape
  • FIG. 6 is a view showing a graphite mold used in Example 4.
  • FIG. 10 is a view showing a graphite mold described as a modification in Example 4.
  • FIG. 1 schematically shows a layer structure of a composite substrate according to one embodiment of the present invention.
  • a composite substrate 10 shown in FIG. 1 includes a substrate 12 having a surface having a three-dimensional solid shape, a group 13 element nitride crystal layer 14 provided on the substrate 12, and a group 13 element nitride crystal as required.
  • a light emitting functional layer 16 provided on the layer 14. That is, the composite substrate 10 of the present invention may have a form having the light emitting functional layer 16 or a form not having the light emitting functional layer 16. According to the embodiment having the light emitting functional layer 16, it is possible to relatively easily manufacture a light emitting element such as an LED by simply processing the composite substrate 10 without providing the light emitting functional layer 16 separately.
  • the user provides the light emitting functional layer 16 separately on the composite substrate 10 with a desired configuration and technique, and then appropriately processes the LED to have a desired light emitting characteristic.
  • a light-emitting element can be manufactured.
  • the substrate 12 is a substrate in which a surface having a three-dimensional solid shape is provided with a layer made of oriented polycrystalline alumina or the whole of the substrate is made of oriented polycrystalline alumina. Since these are base materials composed of at least one surface of oriented polycrystalline alumina, these are collectively referred to as “oriented polycrystalline alumina substrate” to “substrate” below.
  • a group 13 element nitride crystal layer 14 is formed on the oriented polycrystalline alumina of the substrate 12.
  • the Group 13 element nitride crystal layer 14 can provide an optimum base with high crystallinity for forming the light emitting functional layer 16.
  • the substrate 12 used in the present invention is an oriented polycrystalline alumina substrate, not a sapphire substrate that is an alumina single crystal that has been widely used heretofore.
  • oriented polycrystalline alumina substrates are molded and fired using alumina powder or other raw material powders, and laser CVD methods are used as necessary. Since it can be efficiently manufactured by forming an oriented alumina layer using a technique, it can be manufactured at low cost, and because it is easy to mold, it gives a desired three-dimensional shape such as a curved surface shape or an uneven shape. It is suitable for large area.
  • the oriented polycrystalline alumina substrate can be produced or obtained at a much lower cost and with a larger area than a single crystal substrate such as sapphire, and can also have a desired three-dimensional shape.
  • a group 13 element nitride crystal layer 14 and, if desired, a light emitting functional layer 16 are provided.
  • the composite substrate 10 of the present invention enables the production of a light-emitting element with an unprecedented and innovative design having a three-dimensional solid shape such as a curved surface shape or an uneven shape.
  • a light emitting element with a curved surface by using a light emitting element with a curved surface, light emission can be concentrated in a specific direction or light emission can be dispersed in multiple directions.
  • the light emission surface area can be increased to increase the light emission intensity.
  • the substrate 12 is provided with a surface having a three-dimensional solid shape. That is, at least the surface on which the group 13 element nitride crystal layer 14 is to be formed needs to have a three-dimensional solid shape, and the other surface (for example, the back surface on which the group 13 element nitride crystal layer 14 is not formed). ) May not have a three-dimensional solid shape.
  • the entire surface of the substrate 12 (that is, the entire substrate 12) may have a three-dimensional solid shape.
  • the three-dimensional solid shape can be any solid shape other than the two-dimensional planar shape.
  • the preferred three-dimensional solid shape includes a curved surface shape and / or a concavo-convex shape, but the entire substrate 12 may be formed of a three-dimensional solid shape such as a curved surface shape and / or a concavo-convex shape (for example, FIGS. 4 and 5).
  • the shape which has a plane part in the part ie, the shape which combined the planar shape and the three-dimensional solid shape may be sufficient.
  • the surface of the substrate 12 on which the group 13 element nitride crystal layer 14 is formed has such a shape that the three-dimensional solid shape is reflected in the light emitting element itself as the final form. It is.
  • the three-dimensional solid shape is a macro shape having a visually recognizable three-dimensional profile. Since the shape is difficult to be reflected, it is not a desirable form.
  • a three-dimensional profile that can be visually recognized if the concavo-convex height difference is preferably 0.05 mm or more, more preferably 0.1 mm, and even more preferably 0.2 mm or more.
  • the number of concave portions or convex portions per 1 mm ⁇ 1 mm region is preferably 4 or more, more preferably 2 or more, and even more preferably 1 If it is individual, it is sufficiently acceptable as a macro shape having a visually recognizable three-dimensional profile. However, in order to make the most of the characteristics of the three-dimensional solid shape according to the present invention, it is preferable to have the three-dimensional solid shape on a larger scale.
  • the substrate 12 has a three-dimensional solid surface with a layer made of oriented polycrystalline alumina (hereinafter referred to as oriented polycrystalline alumina layer), or the whole substrate is made of oriented polycrystalline alumina.
  • Alumina is aluminum oxide (Al 2 O 3 ), which is typically ⁇ -alumina having the same corundum type structure as single-crystal sapphire, and oriented polycrystalline alumina is formed by aligning countless alumina crystal particles with each other. It is a combined solid.
  • the alumina crystal particles are particles composed of alumina, and may include a dopant and inevitable impurities as other elements, or may be composed of alumina and inevitable impurities.
  • the oriented polycrystalline alumina layer or oriented polycrystalline alumina body may also contain other phases or other elements as described above in addition to the alumina crystal particles, but preferably comprises alumina crystal particles and inevitable impurities.
  • the orientation plane of the oriented polycrystalline alumina layer or oriented polycrystalline alumina body from which the light emitting functional layer is produced is not particularly limited, and may be a c-plane, a-plane, r-plane, m-plane, or the like. In any case, high luminous efficiency can be realized by using the substrate 12 provided with oriented polycrystalline alumina.
  • the constituent layers of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 are formed on the oriented substrate 12 by epitaxial growth or similar crystal growth, the crystal orientations are substantially aligned in a substantially normal direction. Since the state is realized, high luminous efficiency equivalent to that obtained when a single crystal substrate is used can be obtained.
  • the orientation crystal orientation of oriented polycrystalline alumina is not particularly limited, and may be a c-plane, a-plane, r-plane, m-plane, etc., and a gallium nitride (GaN) -based material for the light emitting functional layer.
  • GaN gallium nitride
  • the degree of orientation on the plate surface is preferably 50% or more, more preferably 65% or more, still more preferably 75% or more, particularly preferably 85%, and particularly preferably.
  • This degree of orientation is calculated by the following formula by measuring the XRD profile when X-rays are irradiated to the plate surface of plate-like alumina using an XRD apparatus (for example, RINT-TTR III, manufactured by Rigaku Corporation). It is obtained by doing.
  • the substrate 12 is preferably a composite having an oriented polycrystalline alumina layer on a base substrate, more preferably a c-plane oriented polycrystalline alumina layer.
  • the base substrate may be an alumina-based sintered body or other inorganic material such as a ceramic sintered body.
  • the oriented polycrystalline alumina layer can be desirably formed by a laser CVD method and / or a lamp heating CVD method.
  • the oriented polycrystalline alumina layer thus obtained can be controlled in the c-axis direction depending on the film forming conditions, and tends to be c-plane oriented by increasing the amount of raw material supply.
  • the laser CVD method is preferable because it is easy to maintain a raw material composition and realize a corundum crystal structure.
  • the layer made of oriented polycrystalline alumina can be formed after the base substrate is manufactured, the base substrate can be molded with a high degree of freedom by using a casting mold having a desired shape. As a result, there is an advantage that it is easy to obtain a base material having a desired three-dimensional solid shape.
  • the oriented polycrystalline alumina layer formed by the laser CVD method and / or the lamp heating CVD method is a surface of a base substrate having a three-dimensional shape (more Strictly speaking, it is composed of a plurality of single crystal grains having a single crystal structure in a substantially normal direction to the tangential plane. That is, the oriented polycrystalline alumina layer may have a structure oriented in the tangential plane direction along the surface of the base substrate.
  • the thickness of the oriented polycrystalline alumina film is not particularly limited, but is preferably 0.1 to 100 ⁇ m.
  • the substrate 12 may be made of an oriented polycrystalline alumina sintered body.
  • the oriented polycrystalline alumina sintered body is composed of an alumina sintered body including a large number of alumina single crystal particles, and a large number of single crystal particles are oriented to some extent or highly in a certain direction.
  • the polycrystalline alumina sintered body oriented in this way is higher in strength and cheaper than alumina single crystal, and therefore, is a surface emitting device having a large area while being much cheaper than using a single crystal substrate. Enables the production of
  • high luminous efficiency can be realized by using an oriented polycrystalline alumina sintered body.
  • a hot isostatic pressing method HIP
  • HP hot press method
  • SPS discharge plasma sintering
  • a pressure sintering method and a combination thereof can be used.
  • What is necessary is just to provide a desired three-dimensional solid shape in that case.
  • a hot press method HP
  • a mold having a desired three-dimensional shape for example, a mold made of graphite
  • an oriented polycrystalline alumina sintered body having a corresponding desired three-dimensional shape is obtained.
  • An oriented polycrystalline alumina sintered body can be produced by molding and sintering using a plate-like alumina powder as a raw material.
  • Plate-like alumina powder is commercially available and is commercially available.
  • the plate-like alumina powder can be oriented by a technique using shearing force to obtain an oriented molded body.
  • the technique using shearing force include tape molding (doctor blade method, die coater method, etc.) and extrusion molding.
  • the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersing agent, and a dispersion medium to the plate-like alumina powder. It is preferable to discharge and form the sheet on the substrate by passing through a thin discharge port.
  • the slit width of the discharge port is preferably 10 to 400 ⁇ m.
  • the amount of the dispersion medium is preferably such that the slurry viscosity is 100 to 100,000 cP, more preferably 500 to 60,000 cP.
  • the thickness of the oriented molded body formed into a sheet is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m.
  • This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like.
  • the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold.
  • the molded body may be discharged.
  • the obtained molded body is preferably degreased according to known conditions.
  • the oriented molded body obtained as described above is subjected to pressure firing such as hot isostatic pressing (HIP), hot pressing (HP), spark plasma sintering (SPS), etc. in addition to normal atmospheric firing. Firing is performed by a sintering method or a combination of these methods to form an alumina sintered body containing oriented alumina crystal particles.
  • the firing temperature and firing time in the firing vary depending on the firing method, the firing temperature is 1100 to 1900 ° C., preferably 1500 to 1800 ° C., and the firing time is 1 minute to 10 hours, preferably 30 minutes to 5 hours.
  • a first firing step of firing in a hot press at 1500 to 1800 ° C. for 2 to 5 hours under a surface pressure of 100 to 200 kgf / cm 2 and the obtained sintered body is subjected to hot isostatic pressing (HIP) More preferably, it is carried out through a second firing step in which firing is carried out again at 1500 to 1800 ° C. for 30 minutes to 5 hours under a gas pressure of 1000 to 2000 kgf / cm 2 .
  • HIP hot isostatic pressing
  • the firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours. And in this 1st baking process, what is necessary is just to provide a desired three-dimensional solid shape to a molded object. That is, by performing hot pressing using a mold having a desired three-dimensional shape (for example, a graphite mold), a corresponding oriented polycrystalline alumina sintered body having a desired three-dimensional shape can be obtained. .
  • the alumina sintered body thus obtained becomes a polycrystalline alumina sintered body oriented in a desired plane such as the c-plane depending on the type of plate-like alumina powder used as the raw material.
  • the surface deposits are removed by sandblasting etc., and then the surface is smoothed by polishing cloth processing using diamond abrasive grains to obtain an oriented polycrystalline alumina substrate. preferable.
  • the group 13 element nitride crystal layer 14 is a layer formed on the oriented polycrystalline alumina of the substrate 12 and made of a group 13 element nitride crystal.
  • the group 13 element nitride crystal layer 14 preferably has a structure grown substantially following the crystal orientation of the oriented polycrystalline alumina of the substrate 12.
  • the group 13 element nitride crystal layer 14 provides an optimal base with high crystallinity for forming the light emitting functional layer 16, and lattice defects due to lattice mismatch that may occur between the substrate 12 and the light emitting functional layer 16. Is a layer for reducing crystallinity and improving crystallinity.
  • the orientation degree of the oriented polycrystalline alumina substrate 12 is low, if the light emitting functional layer 16 is directly formed on the substrate 12, a uniform and flat light emitting functional layer cannot be formed, and pores may be generated in the light emitting functional layer. There is also sex. In this respect, the formation of the Group 13 element nitride crystal layer 14 can improve the homogeneity and flatness thereof, reduce or eliminate pores, and the light emitting functional layer 16 of good quality can be formed.
  • the material of the Group 13 element nitride crystal layer 14 is not particularly limited as long as it is a Group 13 element nitride-based material, but is preferably a gallium nitride (GaN) material, an aluminum nitride (AlN) material, or nitridation.
  • An indium (InN) -based material most preferably a gallium nitride (GaN) -based material.
  • the material constituting the Group 13 element nitride crystal layer 14 may be a mixed crystal in which, for example, AlN, InN or the like is dissolved in GaN.
  • the Group 13 element nitride-based material constituting the Group 13 element nitride crystal layer 14 may be a non-doped material, and appropriately includes a dopant for controlling the p-type to n-type. It may be.
  • a seed crystal layer may exist between the group 13 element nitride crystal layer 14 and the substrate 12. That is, the Group 13 element nitride crystal layer 14 is formed by forming a Group 13 element nitride crystal layer 14 and a light emitting functional layer 16 after forming a seed crystal layer on an oriented alumina substrate. In this case, a seed crystal layer is present between the group 13 element nitride crystal layer 14 and the substrate 12.
  • the light-emitting functional layer 16 includes two or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction, and is appropriately provided with electrodes and / or phosphors to apply a voltage. Therefore, it is possible to adopt various known layer configurations that cause light emission based on the principle of a light emitting element typified by an LED. Accordingly, the light emitting functional layer 16 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or with visible light.
  • the light emitting functional layer 16 preferably constitutes at least a part of a light emitting element using a pn junction, and the pn junction includes a p-type layer 16a and an n-type layer 16c as shown in FIG.
  • the active layer 16b may be included in between.
  • a double heterojunction or a single heterojunction (hereinafter collectively referred to as a heterojunction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer as the active layer may be used.
  • a quantum well structure in which the active layer is thin can be adopted as one form of the p-type layer-active layer-n-type layer. In order to obtain a quantum well, it goes without saying that a double heterojunction in which the band gap of the active layer is smaller than that of the p-type layer and the n-type layer should be adopted.
  • the light emitting functional layer 16 preferably has a pn junction and / or a heterojunction and / or a quantum well junction having a light emitting function.
  • the two or more layers constituting the light emitting functional layer 16 are at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can contain two or more.
  • the n-type layer, the p-type layer, and the active layer may be composed of the same material as the main component, or may be composed of materials whose main components are different from each other.
  • Each layer constituting the light emitting functional layer 16 is preferably composed of a Group 13 element nitride-based material, more preferably a gallium nitride (GaN) -based material, like the Group 13 element nitride crystal layer 14.
  • a Group 13 element nitride-based material more preferably a gallium nitride (GaN) -based material, like the Group 13 element nitride crystal layer 14.
  • an n-type gallium nitride layer and a p-type gallium nitride layer may be grown on the group 13 element nitride crystal layer 14, and the stacking order of the p-type gallium nitride layer and the n-type gallium nitride layer is reversed. Also good.
  • the p-type dopant used for the p-type gallium nitride layer include a group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), and cadmium (Cd). 1 or more types selected from are mentioned.
  • the n-type dopant used for the n-type gallium nitride layer at least one selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn), and oxygen (O) is used.
  • the p-type gallium nitride layer and / or the n-type gallium nitride layer may be made of gallium nitride mixed with one or more kinds of crystals selected from the group consisting of AlN and InN.
  • the mixed gallium nitride may be doped with a p-type dopant or an n-type dopant.
  • Al x Ga 1-x N which is a mixed crystal of gallium nitride and AlN, is used as a p-type layer by doping Mg, and Al x Ga 1-x N is used as an n-type layer by doping Si. be able to.
  • gallium nitride is mixed with AlN, the band gap is widened, and the emission wavelength can be shifted to a higher energy side.
  • gallium nitride may be mixed with InN, whereby the band gap is narrowed and the emission wavelength can be shifted to a lower energy side.
  • the p-type gallium nitride layer and the n-type gallium nitride layer is composed of a mixed crystal of GaN with one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than both layers.
  • the active layer has a double heterojunction structure with a p-type layer and an n-type layer, and the thinned structure of the active layer corresponds to a light emitting device having a quantum well structure which is an embodiment of a pn junction, and has a luminous efficiency. Can be further increased.
  • the active layer may be made of a mixed crystal of GaN having one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than either one of the two layers. Even in such a single heterojunction, the luminous efficiency can be further increased.
  • Each layer constituting the Group 13 element nitride crystal layer 14 and the light emitting functional layer 16 is preferably composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction with respect to the surface of the substrate 12. That is, each layer is composed of a plurality of semiconductor single crystal grains connected in a tangential plane direction along the surface of the substrate 12, and therefore has a single crystal structure in a substantially normal direction. Therefore, each of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 is not a single crystal as a whole, but has a single crystal structure in a local domain unit, so that the light emitting function is ensured. It can have sufficiently high crystallinity.
  • each of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 has a structure grown substantially following the crystal orientation of oriented polycrystalline alumina constituting at least the surface of the substrate 12.
  • the structure grown roughly following the crystal orientation of oriented polycrystalline alumina means a structure brought about by crystal growth affected by the crystal orientation of oriented polycrystalline alumina.
  • the structure does not necessarily grow completely following the orientation, and may be a structure grown according to the crystal orientation of oriented polycrystalline alumina to some extent as long as a desired light emitting function can be ensured. That is, this structure includes a structure that grows in a crystal orientation different from that of oriented alumina.
  • a structure grown substantially following the crystal orientation can also be rephrased as “a structure grown substantially derived from the crystal orientation”. This paraphrase and the above meaning are similar to those in this specification. The same applies to expression. Therefore, although such crystal growth is preferably by epitaxial growth, it is not limited to this, and various forms of crystal growth similar thereto may be used. In particular, when each layer constituting the n-type layer, active layer, p-type layer, etc. grows in the same crystal orientation, the crystal orientation is almost uniform in the normal direction in each layer, and good light emission characteristics are obtained. Can do.
  • each of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 is observed as a single crystal when viewed in the normal direction, and a grain boundary is observed when viewed in the cut plane in the tangential plane. It can also be considered as an aggregate of columnar-structured semiconductor single crystal particles.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • each layer has only to have a structure grown to some extent along the crystal orientation of oriented polycrystalline alumina, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be that the semiconductor single crystal particles grow under the influence of the crystal orientation of the oriented polycrystalline alumina as the substrate 12 as described above.
  • the average particle diameter of the cross section of the semiconductor single crystal particles which can be said to be a columnar structure (hereinafter referred to as the average cross section diameter) depends not only on the film forming conditions but also on the average particle diameter of the plate surface of oriented polycrystalline alumina Conceivable.
  • the interface of the columnar structure constituting the light emitting functional layer affects the light emission efficiency and the light emission wavelength, but due to the presence of the grain boundary, the light transmittance in the cross-sectional direction is poor, and the light is scattered or reflected. For this reason, in the case of a structure in which light is extracted in the normal direction, an effect of increasing the luminance due to scattered light from the grain boundary is also expected.
  • the cross-sectional average diameter of the columnar structure is larger.
  • the cross-sectional average diameter of the semiconductor single crystal particles on the outermost surfaces of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 is 0.3 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the upper limit of this cross-sectional average diameter is not specifically limited, 1000 micrometers or less are realistic.
  • the sintered particle size on the plate surface of the alumina particles constituting the oriented polycrystalline alumina sintered body as the substrate 12 is 0.3 ⁇ m to
  • the thickness is preferably 1000 ⁇ m, more preferably 3 ⁇ m to 1000 ⁇ m.
  • the production method of the Group 13 element nitride crystal layer 14, the light emitting functional layer 16, and the seed crystal layer is not particularly limited, but it is preferable to promote crystal growth generally following the crystal orientation of the oriented polycrystalline alumina as the substrate 12.
  • MOCVD metal organic chemical vapor deposition
  • HVPE halide vapor phase epitaxy Na flux method, an ammonothermal method, or the like is preferably used.
  • a gas for example, ammonia
  • an organometallic gas for example, trimethyl gallium
  • gallium (Ga) and nitrogen (N) On the substrate as a raw material and grown in a temperature range of about 300 to 1200 ° C. in an atmosphere containing hydrogen, nitrogen, or both.
  • organometallic gases containing indium (In), aluminum (Al), silicon (Si) and magnesium (Mg) as n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane) Bis-cyclopentadienylmagnesium
  • n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane
  • Bis-cyclopentadienylmagnesium may be appropriately introduced to form a film.
  • the composite substrate can be manufactured as follows. That is, (1) an oriented polycrystalline alumina substrate 12 is prepared, (2) a seed crystal layer made of gallium nitride is formed on the substrate 12 using MOCVD, and (3) Na is formed on the seed crystal layer. A group 13 element nitride crystal layer 14 made of gallium nitride is formed using a flux method, and if desired, (4) a light emitting function composed of a gallium nitride material on the group 13 element nitride crystal layer 14 Layer 16 is formed. According to this procedure, a high-quality gallium nitride composite substrate 10 can be produced.
  • This method is characterized in that the Group 13 element nitride crystal layer 14 is formed by the Na flux method.
  • Formation of the group 13 element nitride crystal layer 14 by the Na flux method is performed by filling a crucible provided with a seed crystal substrate with a melt composition containing metal Ga, metal Na, and optionally a dopant, in a nitrogen atmosphere. It is preferable that the temperature is increased by pressurizing to 910 ° C. and 3.5 to 4.5 MPa, and then rotating while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 20 hours. Further, the gallium nitride crystal thus obtained by the Na flux method is preferably made into a group 13 element nitride crystal layer 14 by smoothing the plate surface by lapping using diamond abrasive grains.
  • An electrode layer and / or a phosphor layer may be further provided on the light emitting functional layer 16.
  • the composite material for a light-emitting element can be provided in a form closer to the light-emitting element, and the usefulness as the composite material for the light-emitting element is increased.
  • the electrode layer is preferably provided on the light emitting functional layer 16.
  • the electrode layer may be made of a known electrode material. However, if a transparent conductive film such as ITO, or a metal electrode having a high light extraction efficiency such as a lattice structure, a mesh structure, or a moth-eye structure, light generated in the light emitting functional layer is used. It is preferable in that the take-out efficiency can be increased.
  • a phosphor layer for converting ultraviolet light into visible light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting ultraviolet light into visible light.
  • a fluorescent component that emits blue light when excited by ultraviolet light, a fluorescent component that emits blue to green light when excited by ultraviolet light, and a fluorescent component that emits red light when excited by ultraviolet light are mixed. It is preferable that the white color is obtained as a mixed color.
  • Preferred combinations of such fluorescent components include (Ca, Sr) 5 (PO 4 ) 3 Cl: Eu, BaMgAl 10 O 17 : Eu, and Mn, Y 2 O 3 S: Eu, and these components Is preferably dispersed in a resin such as a silicone resin to form a phosphor layer.
  • a fluorescent component is not limited to the above-exemplified substances, but may be a combination of other ultraviolet light-excited phosphors such as yttrium aluminum garnet (YAG), silicate phosphors, and oxynitride phosphors. .
  • a phosphor layer for converting blue light into yellow light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting blue light into yellow light. For example, it may be combined with a phosphor emitting yellow light such as YAG. By doing in this way, since blue light emission which permeate
  • the phosphor layer includes both a fluorescent component that converts blue light into yellow and a fluorescent component that converts ultraviolet light into visible light, thereby converting ultraviolet light into visible light and blue light yellow. It is good also as a structure which performs both conversion to light.
  • a light-emitting element having a desired three-dimensional shape such as a curved surface shape or an uneven shape can be manufactured using the composite substrate according to the present invention described above. As a result, it is possible to manufacture a light-emitting element having an unprecedented design having a three-dimensional solid shape. For example, by using a light emitting element having a curved shape, it is possible to concentrate light emission in a specific direction or to distribute light emission in multiple directions. In addition, by using a light emitting element with an uneven shape, the light emission surface area can be increased to increase the light emission intensity.
  • the structure of the light-emitting element using the composite substrate of the present invention and the method for manufacturing the light-emitting element may process the composite substrate as appropriate to manufacture the light-emitting element.
  • a light emitting element with a horizontal structure can be manufactured, and a light emitting element with a vertical structure can also be manufactured.
  • a light emitting element with a so-called lateral structure in which a current flows not only in the normal direction of the light emitting functional layer 16 but also in the lateral direction can be manufactured using the composite substrate of the present invention.
  • a light emitting device having a lateral structure is manufactured by (a) forming a translucent electrode layer on the light emitting functional layer 16 of the composite substrate 10 and (b) forming a translucent electrode layer.
  • a part of the light emitting functional layer 16 is locally removed to locally expose the lowermost layer (for example, n-type layer or p-type layer) of the light emitting functional layer 16 (c ) It can be performed by forming an electrode layer on the exposed lowermost layer (for example, n-type layer or p-type layer) to obtain a light emitting element.
  • the translucent electrode layer is preferably a transparent conductive film such as ITO, or a metal electrode having a high light extraction efficiency such as a lattice structure, a mesh structure, or a moth-eye structure.
  • FIG. 2 shows an example of a light emitting element having a horizontal structure.
  • a translucent anode electrode 24 is provided on the surface of the light emitting functional layer 16 of the composite substrate 10 (the surface of the p-type layer 16a in the illustrated example), and if desired, on a part of the translucent anode electrode 24.
  • An anode electrode pad 25 is provided on the substrate.
  • a photolithography process and etching preferably reactive ion etching (RIE) are performed on the other part of the light emitting functional layer 16 to partially expose the n-type layer 16c, and the cathode electrode 22 is exposed to the exposed part.
  • RIE reactive ion etching
  • the composite substrate of the present invention a high-performance light-emitting element can be manufactured only by performing simple processing.
  • the composite substrate 10 may be provided with an electrode layer and / or a phosphor layer in advance, and in that case, a high-performance light-emitting element can be manufactured with fewer steps.
  • a light emitting element with a so-called vertical structure in which a current flows in the normal direction of the light emitting functional layer 16 can be manufactured using the composite substrate of the present invention. Since the composite substrate 10 of the present invention uses polycrystalline alumina, which is an insulating material, for the substrate 12, if it is as it is, an electrode cannot be provided on the substrate 12 side, and a light emitting element having a vertical structure is formed. I can't. However, if the substrate 12 is removed from the composite substrate 10, a light emitting element having a vertical structure can be manufactured.
  • a vertical structure light emitting device is manufactured by (a) forming a reflective electrode layer or a translucent electrode layer on the light emitting functional layer 16 of the composite substrate 10, and (b) reflecting electrode. Before or after the formation of the layer or the translucent electrode layer (preferably after the formation), at least the substrate 12 is removed from the composite substrate 10, and the light emitting functional layer 16, the Group 13 element nitride crystal layer 14 or the seed crystal layer is formed. (C) performing a light-emitting element by forming a light-transmitting electrode layer or a reflective electrode layer on the exposed light-emitting functional layer 16, the Group 13 element nitride crystal layer 14 or the seed crystal layer. Can do.
  • the translucent electrode layer is preferably a transparent conductive film such as ITO, or a metal electrode having a high light extraction efficiency such as a lattice structure, a mesh structure, or a moth-eye structure.
  • the method for removing the substrate 12 from the composite substrate 10 is not particularly limited, but is spontaneous using grinding, chemical etching, interfacial heating (laser lift-off) by laser irradiation from the oriented sintered body, and thermal expansion difference during temperature rise. Exfoliation and the like.
  • FIG. 3 shows an example of a light emitting device having a vertical structure manufactured as described above.
  • the light emitting element 30 shown in FIG. 3 is manufactured using the composite substrate 10.
  • the anode electrode layer 32 is provided in advance on the outermost surface of the composite substrate 10 (in the illustrated example, the surface of the p-type layer 16a) as necessary.
  • the anode electrode layer 32 on the outermost surface of the light emitting functional layer 16 of the composite substrate 10 is bonded to a separately prepared substrate 36 (hereinafter referred to as a mounting substrate 36).
  • the substrate 12 is removed by a known method such as grinding, laser lift-off, or etching.
  • the cathode electrode layer 34 is provided on the surface of the light emitting functional layer 16, the group 13 element nitride crystal layer 14 or the seed crystal layer exposed by removing the substrate 12.
  • the light emitting functional layer 16, the group 13 element nitride crystal layer 14, or the seed crystal layer needs to be made conductive by doping with a p-type or n-type dopant.
  • the light emitting element 30 in which the light emitting functional layer 16 is formed on the mounting substrate 36 can be obtained.
  • the type of the mounting substrate 36 is not particularly limited.
  • the mounting substrate 36 when the mounting substrate 36 has conductivity, the light emitting element 30 having a vertical structure using the mounting substrate 36 itself as an electrode may be used.
  • the mounting substrate 36 may be a semiconductor material doped with a p-type or n-type dopant or a metal material as long as it is not affected by diffusion into the light emitting functional layer 16.
  • the light emitting functional layer 16 may generate heat with light emission, the light emitting functional layer 16 and its surrounding temperature can be kept low by using the highly heat conductive mounting substrate 36.
  • the light emitting device is manufactured by (a) forming a support layer 42 that also functions as a reflective electrode on the light emitting functional layer 16 of the composite substrate 10 to form a reinforced composite substrate. (B) At least the substrate 12 (the substrate 12 and the Group 13 element nitride crystal layer 14 in FIG. 4) is removed from the reinforced composite substrate, and the light emitting functional layer 16 and the Group 13 element nitride crystal layer are obtained. 14 or the seed crystal layer (the light emitting functional layer 16 in FIG.
  • a light-transmitting electrode layer is formed on the exposed light emitting functional layer 16, the group 13 element nitride crystal layer 14 or the seed crystal layer. This can be performed by forming a light emitting element.
  • the material of the support layer 42 is not particularly limited as long as it is a material that can be used as a reflective electrode and can secure the strength as a support in a layer form having a desired thickness.
  • Al, Ni, Ag, Pt, W In the case where the light emitting layer is GaN, W or Mo is preferable because the thermal expansion coefficient is close and stress generated in the light emitting functional layer due to temperature change can be suppressed.
  • the light emitting layer is GaN, W or Mo is preferable because the thermal expansion coefficient is close and stress generated in the light emitting functional layer due to temperature change can be suppressed.
  • the composite substrate 10 has a curved surface shape having the light emitting functional layer 16 as an outer peripheral surface, and as a result, the curved light emitting device in which the light emitting element emits light toward the inner peripheral surface side. 40. That is, the curved light emitting element 40 is configured such that the light emitting functional layer 16 is formed on the inner peripheral surface of the support layer 42, and thereby the light emitting element emits light toward the inner peripheral surface side.
  • the light-emitting element is manufactured by (a) forming a temporary support layer 52 on the light-emitting functional layer 16 of the composite substrate 10 to obtain a reinforced composite substrate, and (b) At least the substrate 12 (the substrate 12 and the Group 13 element nitride crystal layer 14 in FIG. 5) is removed from the reinforced composite substrate, and the light emitting functional layer 16, the Group 13 element nitride crystal layer 14 or the seed crystal layer is removed. (Light emitting functional layer 16 in FIG. 5) is exposed, and (c) a support layer 54 that also functions as a reflective electrode is formed on the exposed light emitting functional layer 16, Group 13 element nitride crystal layer 14, or seed crystal layer.
  • a light-transmitting electrode layer (not shown) is formed thereon to obtain a light-emitting element. It may be performed by.
  • the material of the temporary support layer 52 is not particularly limited as long as it can secure strength as a support in a layer form having a desired thickness and can be removed in a later step. For example, silica, polycrystalline silicon (polysilicon) ), Photoresist, alumina or the like can be used.
  • the material of the support layer 54 is not particularly limited as long as it is a material that can be used as a reflective electrode and can secure strength as a support in a layer form having a desired thickness.
  • the composite substrate 10 has a curved surface shape with the light emitting functional layer 16 as an outer peripheral surface, and as a result, the light emitting element is configured as a curved light emitting element 50 that emits light toward the outer peripheral surface side. Is done. That is, the curved light emitting element 50 is configured such that the light emitting functional layer 16 is formed on the outer peripheral surface of the support layer 54, and thereby the light emitting element emits light toward the outer peripheral surface side.
  • Example 1 Production of substrate on which c-axis oriented alumina film was formed
  • a molding slurry was prepared as follows in order to produce a substrate 62 made of a ceramic molded body as shown in FIG. 100 parts by weight of alumina powder as raw material powder and 0.025 part by weight of magnesia, 30 parts by weight of polybasic acid ester as dispersion medium, 4 parts by weight of MDI (diphenylmethane diisocyanate) resin as a gelling agent, 2 parts by weight of dispersant, triethylamine as catalyst 0.2 part by weight was mixed to form a molding slurry.
  • the molding slurry was cast in an aluminum alloy casting mold 64 as shown in FIG.
  • the substrate 62 having the projections 62a patterned as shown in FIG. 6 is obtained using the casting mold 64 patterned with the depressions 64a as shown in FIG. 8 may be obtained as a substrate 72 having a patterned concave portion 72a as shown in FIG. 8 using a casting mold 74 having a patterned convex portion 74a.
  • film formation using laser CVD was performed.
  • the film formation by laser CVD was performed using aluminum tris (acetylacetonate) as an Al source material at a substrate temperature of 1170 K or more and an excess Al source material.
  • a ceramic sintered body substrate whose entire surface was covered with a c-axis oriented alumina film having a thickness of 5 ⁇ m was obtained.
  • a seed crystal layer was formed on the c-axis oriented alumina film by MOCVD. Specifically, after depositing a low-temperature GaN layer of 40 nm at 530 ° C., a GaN film having a thickness of 3 ⁇ m was laminated at 1050 ° C. to obtain a seed crystal substrate.
  • the alumina crucible was placed on a table that can rotate the crystal growth furnace. After heating and pressurizing to 870 ° C. and 4.0 MPa in a nitrogen atmosphere, the solution was rotated while being held for 10 hours, so that a gallium nitride crystal was grown as a Group 13 element nitride crystal layer while stirring. After completion of the crystal growth, it was gradually cooled to room temperature over 3 hours, and the growth vessel was taken out of the crystal growth furnace. The melt composition remaining in the crucible was removed using ethanol, and the sample on which the gallium nitride crystal was grown was collected. In the obtained sample, a gallium nitride crystal was grown on the entire surface of a 50.8 mm (2 inch) seed crystal substrate, and the thickness of the crystal was about 0.1 mm. Cracks were not confirmed.
  • the gallium nitride crystal on the oriented alumina substrate thus obtained is fixed to a ceramic surface plate together with the substrate, and the gallium nitride crystal plate surface is smoothed by lapping using diamond abrasive grains. did. At this time, the flatness was improved while gradually reducing the size of the abrasive grains from 10 ⁇ m to 0.1 ⁇ m.
  • the average roughness Ra after processing of the gallium nitride crystal plate surface was 0.2 nm.
  • a substrate in which a gallium nitride crystal layer having a thickness of about 50 ⁇ m was formed on the oriented alumina substrate was obtained.
  • a heat treatment at 800 ° C. was performed in a nitrogen atmosphere for 10 minutes to obtain a light emitting element substrate.
  • a Ni / Au film was patterned to a thickness of 6 nm and 12 nm, respectively, as a translucent anode electrode on the p-type conductive layer. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve the ohmic contact characteristics. Further, by using a photolithography process and a vacuum deposition method, a Ni / Au film serving as an anode electrode pad is formed to a thickness of 5 nm and 60 nm on a partial region of the upper surface of the Ni / Au film serving as a light-transmitting anode electrode, respectively. Patterned. The wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a horizontal structure.
  • Example 2 (1) Production of light emitting element substrate (1a) Formation of Group 13 element nitride crystal layer by Na flux method Seed in which GaN film having a thickness of 3 ⁇ m was laminated on an oriented alumina substrate in the same manner as in Example 1. A crystal substrate was prepared. A Group 13 element nitride crystal layer was formed on this seed crystal substrate in the same manner as in (2b) of Example 1 except that the melt composition was changed to the following composition.
  • a gallium nitride crystal doped with germanium was grown on the entire surface of a 50.8 mm (2 inch) seed crystal substrate, and the thickness of the crystal was about 0.1 mm. Cracks were not confirmed. Thereafter, the sample was processed using the same method as in Example 1 (2b) to obtain a substrate in which a germanium-doped gallium nitride crystal layer having a thickness of about 50 ⁇ m was formed as a Group 13 element nitride crystal layer on the oriented alumina film.
  • volume resistivity in the plane of the germanium-doped gallium nitride crystal layer was measured using a Hall effect measuring device. As a result, the volume resistivity was 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the Group 13 element nitride crystal layer composed of germanium-doped gallium nitride was exposed.
  • a Ti / Al / Ni / Au film as a cathode electrode was patterned to a thickness of 15 nm, 70 nm, 12 nm, and 60 nm on the Group 13 element nitride crystal layer by using a photolithography process and a vacuum deposition method, respectively.
  • the cathode electrode pattern was shaped to have an opening so that light could be extracted from a location where no electrode was formed. Thereafter, a heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve the ohmic contact characteristics.
  • the wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a vertical structure.
  • Example 3 (1) Production of substrate for light emitting device (1a) Formation of group 13 element nitride crystal layer by Na flux method In the same manner as in Examples 1 and 2, a GaN film having a thickness of 3 ⁇ m was laminated on an oriented alumina substrate. A seed crystal substrate was prepared. A Group 13 element nitride crystal layer was formed on this seed crystal substrate in the same manner as in (2b) of Example 1 except that the melt composition was changed to the following composition. ⁇ Metal Ga: 60g ⁇ Metal Na: 60g ⁇ Germanium tetrachloride: 1.85 g
  • a gallium nitride crystal doped with germanium was grown on the entire surface of a 50.8 mm (2 inch) seed crystal substrate, and the thickness of the crystal was about 0.1 mm. Cracks were not confirmed. Thereafter, the sample was processed using the same method as in Example 1 (2b) to obtain a substrate in which a germanium-doped gallium nitride crystal layer having a thickness of about 50 ⁇ m was formed as a Group 13 element nitride crystal layer on the oriented alumina film.
  • volume resistivity in the plane of the germanium-doped gallium nitride crystal layer was measured using a Hall effect measuring device. As a result, the volume resistivity was 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • a polycrystalline alumina support member was formed as a temporary support layer using a laser CVD method.
  • excimer laser with a wavelength of 248 nm is irradiated from the polycrystalline alumina substrate side of the base substrate to thermally decompose GaN in the vicinity of the polycrystalline alumina substrate, and then the wafer is brought to 30 ° C. to temporarily support the layer / light emitting function
  • the layer / Group 13 element nitride crystal layer laminate was peeled from the polycrystalline alumina substrate.
  • the Group 13 element nitride crystal layer composed of germanium-doped gallium nitride was exposed.
  • a W film having a thickness of 100 ⁇ m was deposited as a reflective cathode electrode layer on the exposed Group 13 element nitride crystal layer.
  • an excimer laser with a wavelength of 248 nm is irradiated from the side of the alumina support member formed by the above laser CVD, GaN near the alumina support member (temporary support layer) is thermally decomposed, and the temporary support layer is removed to emit light.
  • the functional layer (more specifically, the p-type conductive layer) was exposed.
  • a Ti / Al / Ni / Au film as an anode electrode is formed on the exposed light emitting functional layer (more specifically, the p-type conductive layer) by using a photolithography process and a vacuum deposition method, respectively, at 15 nm, 70 nm, Patterning was performed at a thickness of 12 nm and 60 nm.
  • the anode electrode pattern was shaped to have an opening so that light could be extracted from a location where no electrode was formed.
  • a heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve the ohmic contact characteristics.
  • the wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a vertical structure.
  • Example 4 Other production example of c-axis oriented polycrystalline alumina substrate
  • plate-like alumina powder manufactured by Kinsei Matec Co., Ltd., grade 00700
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, Kurokin Kasei Co., Ltd.
  • a dispersant Rosidol SP-O30, manufactured by Kao Corporation
  • a dispersion medium (2-ethylhexanol
  • the amount of the dispersion medium was adjusted so that the slurry viscosity was 20000 cP.
  • the slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 ⁇ m.
  • the obtained tape was cut into a circle having a diameter of 100 mm, and then 150 sheets were laminated and placed on an Al plate having a thickness of 10 mm, followed by vacuum packing. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to obtain a molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours.
  • the obtained degreased body was baked in a hot press at 1600 ° C. for 4 hours under nitrogen at a surface pressure of 200 kgf / cm 2 using a graphite mold 84 in which concave portions 84a as shown in FIG. 10 were patterned.
  • the obtained sintered body was fired again at 1700 ° C. for 2 hours in argon at a gas pressure of 1500 kgf / cm 2 by a hot one-pressure method (HIP).
  • the mold 84 with the concave portions 84a patterned as shown in FIG. 10 is used.
  • the mold 94 with the convex portions 94a patterned as shown in FIG. 11 may be used.
  • the sintered body thus obtained is removed by surface blasting by sandblasting, and then fixed to a ceramic surface plate, and the surface is smoothed by polishing cloth processing using diamond abrasive grains, and sintered with oriented alumina.
  • the body was obtained as an oriented polycrystalline alumina substrate.
  • a light emitting device can be produced in the same manner as in Examples 1 and 2 except that this oriented polycrystalline alumina substrate is used.
  • the present invention may be variously modified within the scope of the present invention other than the above-described aspects.
  • modified modes include the following.
  • the base material may be a ceramic sintered body or a metal.
  • the material of the base material is similar to or close to the material of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 Therefore, the damage to the Group 13 element nitride crystal layer 14 and the light emitting functional layer 16 due to the difference in thermal expansion coefficient can be prevented or reduced.
  • each of the Group 13 element nitride crystal layer 14 and the light emitting functional layer 16 is composed of gallium nitride (GaN)
  • the base substrate is aluminum nitride (AlN), molybdenum (Mo), tungsten (W), Alternatively, a combination thereof may be used.
  • This embodiment is suitable for a horizontal light emitting element in which the substrate 12 does not need to be removed.
  • the substrate 12 is a composite of a base material and an oriented polycrystalline alumina layer, the material of the base material is significantly different from the material of the group 13 element nitride crystal layer 14 and the light emitting functional layer 16 Therefore, the substrate 12 can be easily removed from the light emitting functional layer 16 by utilizing the difference in thermal expansion coefficient.
  • This embodiment is suitable for a vertical light emitting device in which the substrate 12 needs to be removed.
  • the light emitting functional layer 16 may be formed by a laser CVD method and / or a lamp heating CVD method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 曲面形状、凹凸形状等の三次元立体形状を有する発光素子を低コストで製造するのに適した複合基板、及びそれを用いて製造される三次元立体形状を有する発光素子が提供される。本発明の複合基板は、三次元立体形状を有する表面を備えた基板と、この基板上に設けられる第13族元素窒化物結晶層とを備えてなる。基板は、三次元立体形状を有する表面が配向多結晶アルミナからなる層を備えた又は該基板の全体が配向多結晶アルミナからなる基板である。この基板の配向多結晶アルミナ上に第13族元素窒化物結晶層14が形成されてなる。所望により、第13族元素窒化物結晶層上には設けられる発光機能層が設けられる。

Description

複合基板、発光素子及びそれらの製造方法
 本発明は、複合基板、発光素子及びそれらの製造方法に関する。
 単結晶基板を用いた発光ダイオード(LED)として、窒化ガリウム(GaN)単結晶上に各種GaN層を形成したものや、サファイア(α-アルミナ単結晶)上に各種GaN層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。また、このような用途に適した積層基板も提案されている。例えば、特許文献1(特開2012-184144号公報)には、サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含む、窒化ガリウム結晶積層基板が開示されている。
 一方で、高配向の結晶成長を実現する技術として、レーザーCVD法が知られている。例えば、特許文献2(特開2004-107182号公報)には、気体物質を含む原料成分を基板方向に導入しながらレーザー光を基板表面に照射し、基板の加熱と同時に原料成分の反応によって反応生成物からなる膜を基板の表面に形成する膜形成方法が開示されており、基板に対して垂直にイットリア安定化ジルコニア(YSZ)の柱状結晶が配向した膜が得られたことが記載されている。また、非特許文献1(後藤孝、「熱及びレーザーCVDによる高速コーティング」、SOKEIZAI、Vol.51、2010年、No.6、p.20-25)にはレーザーCVDによるYSZのコーティングとα-アルミナのコーティングが開示されている。非特許文献2(伊藤暁彦、「高強度レーザー場での高速化学気相析出を利用した高配向結晶成長」、まてりあ(Materia Japan)、第52巻、第11号、2013年、p.525-529)には、レーザーCVDによりα-アルミナの選択的結晶配向成長を促してc軸配向α-アルミナ膜を得たこと、特に多結晶AlN基板上にc軸配向係数90%の強配向性α-アルミナ膜を高速合成できることが開示されている。
特開2012-184144号公報 特開2004-107182号公報
後藤孝、「熱及びレーザーCVDによる高速コーティング」、SOKEIZAI、Vol.51、2010年、No.6、p.20-25 伊藤暁彦、「高強度レーザー場での高速化学気相析出を利用した高配向結晶成長」、まてりあ(Materia Japan)、第52巻、第11号、2013年、p.525-529
 しかしながら、上述したような単結晶基板は一般的に面積が小さく且つ高価なものである。近年、大面積基板を用いたLED製造の低コスト化が求められてきているが、大面積の単結晶基板を量産することは容易なことではなく、その製造コストはさらに高くなる。そこで、サファイア等の単結晶基板の代替材料となりうる、大面積化にも適した安価な材料が望まれる。特に、単結晶基板は平板状で市販されるため、それを用いて曲面形状、凹凸形状等の三次元立体形状を備えた発光素子を製造することは困難であった。
 本発明者らは、今般、三次元立体形状を有する表面が配向多結晶アルミナからなる基板上に第13族元素窒化物結晶層を形成することで、曲面形状、凹凸形状等の三次元立体形状を有する発光素子を低コストで製造するのに適した複合基板を提供できるとの知見を得た。
 したがって、本発明の目的は、曲面形状、凹凸形状等の三次元立体形状を有する発光素子を低コストで製造するのに適した複合基板、及びそれを用いて製造される三次元立体形状を有する発光素子を提供することにある。
 本発明の一態様によれば、三次元立体形状を有する表面を備えた基板であって、前記三次元立体形状を有する表面が配向多結晶アルミナからなる層を備えた又は該基板の全体が配向多結晶アルミナからなる基板と、
 前記基板の配向多結晶アルミナ上に形成された第13族元素窒化物結晶層と、を備えた、複合基板が提供される。この複合基板は、前記第13族元素窒化物結晶層上に発光機能層をさらに備えたものであってもよい。
 本発明の更に別の一態様によれば、本発明の複合基板の前記発光機能層上に透光性電極層を形成する工程と、
 前記透光性電極層の形成前又は後に、前記発光機能層の一部を局所的に除去して前記発光機能層の最下層を局所的に露出させる工程と、
 前記露出された最下層上に電極層を形成して発光素子を得る工程と、
を含む、発光素子の製造方法が提供される。
 本発明の更に別の一態様によれば、本発明の複合基板の前記発光機能層上に反射電極層又は透光性電極層を形成する工程と、
 前記反射電極層又は透光性電極層の形成前又は後に、前記複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
 前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に透光性電極層又は反射電極層を形成して発光素子を得る工程と、
を含む、発光素子の製造方法が提供される。
 本発明の更に別の一態様によれば、本発明の複合基板の前記発光機能層上に反射電極としても機能する支持体層を形成して、補強された複合基板を得る工程と、
 前記補強された複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
 前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に透光性電極層を形成して発光素子を得る工程と、
を含む、発光素子の製造方法が提供される。
 本発明の更に別の一態様によれば、本発明の複合基板の前記発光機能層上に仮支持体層を形成して、補強された複合基板を得る工程と、
 前記補強された複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
 前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に反射電極としても機能する支持体層を形成して、更に補強された複合基板を得る工程と、
 前記更に補強された複合基板から前記仮支持体層を除去して前記発光機能層を露出させる工程と、
 前記露出された発光機能層上に透光性電極層を形成して発光素子を得る工程と、
を含む、発光素子の製造方法が提供される。
 本発明の更に別の一態様によれば、三次元立体形状を有する表面を備えた、反射電極としても機能する支持体層と、
 前記支持体層の前記三次元立体形状を有する表面上に形成され、前記三次元立体形状を有する表面に対し略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を二以上有する発光機能層と、
 前記発光機能層の前記支持体層と反対側に設けられる透光性電極層と、
を備えた、発光素子が提供される。
本発明の複合基板の一例を示す模式断面図である。 本発明の複合基板を用いて作製された横型発光素子の一例を示す模式断面図である。 本発明の複合基板を用いて作製された縦型発光素子の一例を示す模式断面図である。 本発明による発光素子の製造方法の一例を示す工程図である。 本発明による発光素子の製造方法の他の一例を示す工程図である。 例1において作製された基板の斜視図及びA-A’線断面図である。 例1において使用された、図6に示される基板を成形するための鋳込み型を示す斜視図である。 例1において変形例として記載される基板の斜視図及びB-B’線断面図である。 例1において変形例として記載される、図8に示される基板を成形するための鋳込み型を示す斜視図である。 例4で使用した黒鉛製の型を示す図である。 例4において変形例として説明される黒鉛製の型を示す図である。
 複合基板
 図1に、本発明の一態様による複合基板の層構成を模式的に示す。図1に示される複合基板10は、三次元立体形状を有する表面を備えた基板12と、基板12上に設けられる第13族元素窒化物結晶層14と、所望により第13族元素窒化物結晶層14上に設けられる発光機能層16とを備えてなる。すなわち、本発明の複合基板10は、発光機能層16を有する形態であってもよいし、発光機能層16を有しない形態であってもよい。発光機能層16を有する形態によれば、ユーザーが発光機能層16を別途設けることなく複合基板10に適宜加工を施すだけでLED等の発光素子を比較的容易に作製することができる。一方、発光機能層16を有しない形態によれば、ユーザーが発光機能層16を所望の構成及び手法にて複合基板10に別途設けた上で適宜加工を施して所望の発光特性のLED等の発光素子を作製することができる。
 基板12は、三次元立体形状を有する表面が配向多結晶アルミナからなる層を備えた又は該基板の全体が配向多結晶アルミナからなる基板である。これらはいずれも少なくとも一面側の表面が配向多結晶アルミナで構成される基材であることから、「配向多結晶アルミナ基板」ないし「基板」と以下に総称するものとする。この基板12の配向多結晶アルミナ上に第13族元素窒化物結晶層14が形成されてなる。第13族元素窒化物結晶層14は発光機能層16を形成するための結晶性の高い最適な下地を与えることができる。特に、本発明において用いられる基板12は、従来広く使用されてきたアルミナ単結晶であるサファイア基板ではなく、配向多結晶アルミナ基板である。配向多結晶アルミナ基板は、種結晶から長時間育成するサファイア等の単結晶基板とは異なり、アルミナ粉末又はそれ以外の原料粉末を用いて成形及び焼成を行い、必要に応じてレーザーCVD法等の手法を用いて配向アルミナ層の成膜を行うことにより効率的に製造できるため、低コストで製造できるだけでなく、成形しやすいが故に曲面形状、凹凸形状等の所望の三次元立体形状を付与することができ、大面積化にも適する。つまり、配向多結晶アルミナ基板は、サファイア等の単結晶基板よりも格段に安価に且つ大面積で作製又は入手することができるのみならず、所望の三次元立体形状を付与することができる。そして、本発明者らの知見によれば、三次元立体形状を有する配向多結晶アルミナ基板12を用い、その上に第13族元素窒化物結晶層14及び所望により発光機能層16を設けることで、曲面形状、凹凸形状等の所望の三次元立体形状を有する発光素子を低コストで製造するのに適した複合基板を提供できる。このように、本発明の複合基板10は、曲面形状、凹凸形状等の三次元立体形状を有する従来に無い画期的なデザインの発光素子の製造を可能とするものである。例えば、曲面形状の発光素子とすることで特定方向に発光を集中させたり或いは多方向に発光を分散させたりすることができる。また、凹凸形状の発光素子とすることで、発光表面積を大きくして発光強度を高めることもできる。
 基板12は三次元立体形状を有する表面を備えてなる。すなわち、少なくとも第13族元素窒化物結晶層14が形成されるべき表面が三次元立体形状を有していればよく、それ以外の表面(例えば第13族元素窒化物結晶層14が形成されない裏面)は三次元立体形状を有しなくてもよい。勿論、基板12の表面全域(すなわち基板12の全体)にわたって三次元立体形状を有していてもよい。三次元立体形状は、二次元平面形状以外の任意の立体形状であることができる。好ましい三次元立体形状は曲面形状及び/又は凹凸形状を含むものであるが、基板12の全体が曲面形状及び/又は凹凸形状等の三次元立体形状で構成されてもよいし(例えば図4及び5を参照)、その一部に平面部分を有する形状、すなわち平面形状と三次元立体形状とを組み合わせた形状であってもよい(例えば図6及び8を参照)。いずれにしても、第13族元素窒化物結晶層14が形成される側の基板12の表面が、最終形態としての発光素子自体に三次元立体形状が反映されるような形状であることが望まれる。したがって、三次元立体形状は、視認可能な三次元プロファイルを有するマクロ形状であるのが望ましく、顕微鏡で用いないと判別できないような三次元ミクロ形状は、最終形態としての発光素子自体に三次元立体形状が反映されにくくなるため望ましい形態とはいえない。目安として、凹凸形状を有する平板状の基板の場合、凹凸の高低差が好ましくは0.05mm以上、より好ましくは0.1mm、さらに好ましくは0.2mm以上であれば、視認可能な三次元プロファイルを有するマクロ形状として十分に許容可能である。また、凹部又は凸部が一定のピッチで形成されてなる基板の場合、1mm×1mmの領域あたりの凹部又は凸部の個数が好ましくは4個以上、より好ましくは2個以上、さらに好ましくは1個であれば、視認可能な三次元プロファイルを有するマクロ形状として十分に許容可能である。もっとも、本発明による三次元立体形状の特徴を最大限に活かすためには、より大きなスケールで三次元立体形状を有するのが好ましい。
 基板12は、三次元立体形状を有する表面が配向多結晶アルミナからなる層(以下、配向多結晶アルミナ層という)を備えたものであるか、又は基板全体が配向多結晶アルミナからなるものである。アルミナは酸化アルミニウム(Al)であり、典型的には単結晶サファイアと同じコランダム型構造を有するα-アルミナであり、配向多結晶アルミナは無数のアルミナ結晶粒子が配向された状態で互いに結合されてなる固体である。アルミナ結晶粒子はアルミナを含んで構成される粒子であり、他の元素として、ドーパント及び不可避不純物を含んでいてもよいし、アルミナ及び不可避不純物からなるものであってもよい。また、配向多結晶アルミナ層又は配向多結晶アルミナ体も、アルミナ結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくはアルミナ結晶粒子及び不可避不純物からなる。また、発光機能層が作製される配向多結晶アルミナ層又は配向多結晶アルミナ体の配向面は特に限定がなく、c面、a面、r面又はm面などであってもよい。いずれにせよ、配向多結晶アルミナを備えた基板12を用いることで高い発光効率が実現可能となる。特に、配向された基板12上に第13族元素窒化物結晶層14及び発光機能層16の構成層をエピタキシャル成長又はこれに類する結晶成長により形成した場合、略法線方向に結晶方位が概ね揃った状態が実現されるため、単結晶基板を用いた場合と同等の高い発光効率が得られる。
 上述のとおり、配向多結晶アルミナの配向結晶方位は特に限定されるものではなく、c面、a面、r面又はm面などであってもよく、発光機能層に窒化ガリウム(GaN)系材料等の第13族元素窒化物系材料や酸化亜鉛系材料を用いる場合はc面に配向しているのが格子定数マッチングの観点で好ましい。配向度については、例えば、板面における配向度が50%以上であるのが好ましく、より好ましくは65%以上、さらに好ましくは75%以上であり、特に好ましくは85%であり、特により好ましくは90%以上であり、最も好ましくは95%以上である。この配向度は、XRD装置(例えば、株式会社リガク製、RINT-TTR III)を用い、板状アルミナの板面に対してX線を照射したときのXRDプロファイルを測定し、以下の式により算出することにより得られるものである。
Figure JPOXMLDOC01-appb-M000001
 一方、無配向の多結晶アルミナ層や無配向の多結晶アルミナ焼結体を基板に用いた場合、第13族元素窒化物結晶層14及び発光機能層16の構成層を形成する際に、様々な結晶方位の粒子がランダムな方向に結晶成長する。この結果、互いの結晶相が干渉するため、基板の略法線方向に結晶方位が概ね揃った状態を形成することができない。また、結晶方位によって結晶成長速度が異なるため均質、平坦な発光機能層を形成することができず、良質な発光機能層を形成することが困難である。
 基板12は、下地基材上に配向多結晶アルミナ層を備えた複合体であるのが好ましく、より好ましくはc面配向多結晶アルミナ層である。下地基材はアルミナ系焼結体であってもよいし、それ以外のセラミック焼結体等の無機材料であってもよい。配向多結晶アルミナ層は、レーザーCVD法及び/又はランプ加熱CVD法により望ましく形成することができる。こうして得られる配向多結晶アルミナ層は成膜条件によってc軸方向が制御可能で、原料供給量を多くすることによりc面配向になる傾向がある。特に、レーザーCVD法は、原料組成の維持やコランダム型結晶構造の実現が容易であるため好ましい。上記手法によれば、下地基材を製造した後に配向多結晶アルミナからなる層の形成を行えるため、所望の形状の鋳込み型の使用等により下地基材の成形を高い自由度で行うことができ、その結果、所望の三次元立体形状を付与した基材を得やすいとの利点がある。レーザーCVD法及び/又はランプ加熱CVD法により形成した配向多結晶アルミナ層は、特許文献2並びに非特許文献1及び2に報告されるように、三次元立体形状を有する下地基材の表面(より厳密には接平面)に対し略法線方向に単結晶構造を有する複数の単結晶粒子で構成される。すなわち、配向多結晶アルミナ層は、下地基材の表面に沿って接平面方向に配向した構造であればよい。配向多結晶アルミナ膜の膜厚は特に限定されないが、0.1~100μmが好ましい。
 基板12は、配向多結晶アルミナ焼結体からなるものであってもよい。配向多結晶アルミナ焼結体は、多数のアルミナ単結晶粒子を含んで構成されるアルミナ焼結体からなり、多数の単結晶粒子が一定の方向にある程度又は高度に配向したものである。このように配向された多結晶アルミナ焼結体は、アルミナ単結晶よりも高強度で且つ安価であり、それ故、単結晶基板を用いる場合よりも非常に安価でありながら大面積の面発光素子の製造を可能にする。その上、上述したとおり、配向多結晶アルミナ焼結体を用いることで高い発光効率も実現可能である。このような配向アルミナ焼結体を得るため、通常の常圧焼結法に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)などの加圧焼結法、及びこれらを組み合わせた方法を用いることができる。そして、その際に所望の三次元立体形状を付与すればよい。例えば、所望の三次元立体形状を有する型(例えば黒鉛製の型)を用いてホットプレス法(HP)を行うことにより、対応した所望の三次元立体形状を有する配向多結晶アルミナ焼結体を得ることができる。
 配向多結晶アルミナ焼結体は、板状アルミナ粉末を原料として用いて成形及び焼結を行うことにより製造することができる。板状アルミナ粉末は市販されており、商業的に入手可能である。好ましくは、板状アルミナ粉末を、せん断力を用いた手法により配向させ、配向成形体とすることができる。せん断力を用いた手法の好ましい例としては、テープ成形(ドクターブレード法、ダイコーター法等)、押出し成形が挙げられる。せん断力を用いた配向手法は、上記例示したいずれの手法においても、板状アルミナ粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、基板上にシート状に吐出及び成形するのが好ましい。吐出口のスリット幅は10~400μmとするのが好ましい。なお、分散媒の量はスラリー粘度が100~100000cPとなるような量にするのが好ましく、より好ましくは500~60000cPである。シート状に成形した配向成形体の厚さは5~500μmであるのが好ましく、より好ましくは10~200μmである。このシート状に成形した配向成形体を多数枚積み重ねて、所望の厚さを有する前駆積層体とし、この前駆積層体にプレス成形を施すのが好ましい。このプレス成形は前駆積層体を真空パック等で包装して、50~95℃の温水中で10~2000kgf/cmの圧力で静水圧プレスにより好ましく行うことができる。或いは、複数のシート状成形体を重ねた状態で50℃~95℃に加温した2本のローラーの間を通すことにより、連続的に圧着することも好ましい。また、押出し成形を用いる場合には、金型内の流路の設計により、金型内で細い吐出口を通過した後、シート状の成形体が金型内で一体化され、積層された状態で成形体が排出されるようにしてもよい。得られた成形体には公知の条件に従い脱脂を施すのが好ましい。上記のようにして得られた配向成形体を通常の常圧焼成に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)などの加圧焼結法、及びこれらを組み合わせた方法にて焼成し、アルミナ結晶粒子を配向して含んでなるアルミナ焼結体を形成する。上記焼成での焼成温度や焼成時間は焼成方法によって異なるが、焼成温度は1100~1900℃、好ましくは1500~1800℃、焼成時間は1分間~10時間、好ましくは30分間~5時間である。ホットプレスにて1500~1800℃で2~5時間、面圧100~200kgf/cmの条件で焼成する第一の焼成工程と、得られた焼結体を熱間等方圧加圧法(HIP)にて1500~1800℃で30分間~5時間、ガス圧1000~2000kgf/cmの条件で再度焼成する第二の焼成工程を経て行われるのがより好ましい。上記焼成温度での焼成時間は特に限定されないが、好ましくは1~10時間であり、より好ましくは2~5時間である。そして、この第一の焼成工程において、所望の三次元立体形状を成形体に付与すればよい。すなわち、所望の三次元立体形状を有する型(例えば黒鉛製の型)を用いてホットプレスを行うことにより、対応した所望の三次元立体形状を有する配向多結晶アルミナ焼結体を得ることができる。こうして得られたアルミナ焼結体は、前述した原料となる板状アルミナ粉末の種類によりc面等の所望の面に配向した多結晶アルミナ焼結体となる。こうして得られた配向多結晶アルミナ焼結体に対し、サンドブラスト等により表面の付着物を除去した後、ダイヤモンド砥粒を用いたポリッシングクロス加工により表面を平滑化して配向多結晶アルミナ基板とするのが好ましい。
 第13族元素窒化物結晶層14は、基板12の配向多結晶アルミナ上に形成され、第13族元素窒化物結晶からなる層である。第13族元素窒化物結晶層14は、基板12の配向多結晶アルミナの結晶方位に概ね倣って成長した構造を有するのが好ましい。第13族元素窒化物結晶層14は発光機能層16を形成するための結晶性の高い最適な下地を与えるものであり、基板12と発光機能層16との間で起こりうる格子ミスマッチによる格子欠陥を低減し、結晶性を改善するための層である。また、配向多結晶アルミナ基板12の配向度が低い場合、基板12に直接発光機能層16を作製すると均質、平坦な発光機能層を形成することができず、発光機能層中に気孔が生じる可能性もある。この点、第13族元素窒化物結晶層14の形成によってこれらの均質性や平坦性を改善し、気孔等を低減又は除去することができ、良質な発光機能層16を形成することができる。第13族元素窒化物結晶層14の材質は、第13族元素窒化物系の材料であれば特に限定されないが、好ましくは窒化ガリウム系(GaN)系材料、窒化アルミニウム(AlN)系材料、窒化インジウム(InN)系材料であり、最も好ましくは窒化ガリウム(GaN)系材料である。また、第13族元素窒化物結晶層14を構成する材料は、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。さらに、第13族元素窒化物結晶層14を構成する第13族元素窒化物系材料は、ノンドープの材料であってもよいし、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。
 第13族元素窒化物結晶層14と基板12の間には種結晶層が存在していてもよい。すなわち、第13族元素窒化物結晶層14の成膜は、配向アルミナ基板上に種結晶層を作製した後、第13族元素窒化物結晶層14及び発光機能層16を成膜させることにより行うのが好ましく、その場合、第13族元素窒化物結晶層14と基板12の間には種結晶層が存在することになる。
 発光機能層16は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を二以上有してなり、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層16は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層16は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図1に示されるように、p型層16aとn型層16cの間に活性層16bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルヘテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層16は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。したがって、発光機能層16を構成する二以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも二以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。
 発光機能層16を構成する各層は、第13族元素窒化物結晶層14と同様、第13族元素窒化物系材料で構成されるのが好ましく、より好ましくは窒化ガリウム系(GaN)系材料、窒化アルミニウム(AlN)系材料、窒化インジウム(InN)系材料であり、最も好ましくは窒化ガリウム系(GaN)材料で構成される。例えば、第13族元素窒化物結晶層14上にn型窒化ガリウム層及びp型窒化ガリウム層を成長させてもよく、p型窒化ガリウム層とn型窒化ガリウム層の積層順序は逆であってもよい。p型窒化ガリウム層に使用されるp型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。また、n型窒化ガリウム層に使用されるn型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。また、p型窒化ガリウム層及び/又はn型窒化ガリウム層は、AlN及びInNからなる群から選択される1種以上の結晶と混晶化された窒化ガリウムからなるものであってもよく、p型層及び/又はn型層はこの混晶化された窒化ガリウムにp型ドーパント又はn型ドーパントがドープされていてもよい。例えば、窒化ガリウムとAlNの混晶であるAlGa1-xNにMgをドーピングすることでp型層、AlGa1-xNにSiをドーピングすることでとしてn型層として使用することができる。窒化ガリウムをAlNと混晶化することでバンドギャップが広がり、発光波長を高エネルギー側にシフトさせることができる。また、窒化ガリウムをInNとの混晶としてもよく、これによりバンドギャップが狭まり、発光波長を低エネルギー側にシフトさせることができる。p型窒化ガリウム層とn型窒化ガリウム層との間に、両層のいずれよりもバンドギャップが小さいGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなる活性層を少なくとも有してもよい。活性層はp型層及びn型層とダブルへテロ接合された構造であり、この活性層を薄くした構成はp-n接合の一態様である量子井戸構造の発光素子に相当し、発光効率をより一層高めることができる。また、活性層は両層のいずれか一方よりもバンドギャップが小さくGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなるものとしてもよい。このようなシングルヘテロ接合にても発光効率をより一層高めることができる。
 第13族元素窒化物結晶層14及び発光機能層16を構成する各層は、基板12の表面に対し略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成されるのが好ましい。すなわち、各層は、基板12の表面に沿った接平面方向に連結されてなる複数の半導体単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有することになる。したがって、第13族元素窒化物結晶層14及び発光機能層16の各層は、層全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有するため、発光機能を確保するのに十分な高い結晶性を有することができる。好ましくは、第13族元素窒化物結晶層14及び発光機能層16の各層は、基板12の少なくとも表面を構成する配向多結晶アルミナの結晶方位に概ね倣って成長した構造を有する。「配向多結晶アルミナの結晶方位に概ね倣って成長した構造」とは、配向多結晶アルミナの結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶アルミナの結晶方位に完全に倣って成長した構造であるとは限らず、所望の発光機能を確保できるかぎり、配向多結晶アルミナの結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向アルミナと異なる結晶方位に成長する構造も含む。その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもでき、この言い換え及び上記意味は本明細書中の同種の表現に同様に当てはまる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。特にn型層、活性層、p型層等を構成する各層が同じ結晶方位に成長する場合は各層間でも略法線方向に関しては結晶方位が概ね揃った構造となり、良好な発光特性を得ることができる。
 したがって、第13族元素窒化物結晶層14及び発光機能層16の各層は、法線方向に見た場合に単結晶と観察され、接平面方向の切断面で見た場合に粒界が観察される柱状構造の半導体単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、各層は配向多結晶アルミナの結晶方位にある程度倣って成長した構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、基板12である配向多結晶アルミナの結晶方位の影響を受けて半導体単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる半導体単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、配向多結晶アルミナの板面の平均粒径にも依存するものと考えられる。発光機能層を構成する柱状構造の界面は発光効率や発光波長に影響を与えるが、粒界があることにより断面方向の光の透過率が悪く、光が散乱ないし反射する。このため、法線方向に光を取り出す構造の場合、粒界からの散乱光により輝度が高まる効果も期待される。
 もっとも、第13族元素窒化物結晶層14及び発光機能層16を構成する柱状構造同士の界面は結晶性が低下するため、発光効率が低下し、発光波長が変動し、発光波長がブロードになる可能性がある。このため、柱状構造の断面平均径は大きいほうが良い。好ましくは、第13族元素窒化物結晶層14及び発光機能層16の最表面における半導体単結晶粒子の断面平均径は0.3μm以上であり、より好ましくは3μm以上である。この断面平均径の上限は特に限定されないが、1000μm以下が現実的である。また、このような断面平均径の半導体単結晶粒子を作製するには、例えば、基板12である配向多結晶アルミナ焼結体を構成するアルミナ粒子の板面における焼結粒径を0.3μm~1000μmとするのが望ましく、より望ましくは3μm~1000μmである。
 第13族元素窒化物結晶層14、発光機能層16及び種結晶層の作製方法は特に限定されないが、基板12である配向多結晶アルミナの結晶方位に概ね倣った結晶成長を促すものが好ましい。発光機能層16及び種結晶層の作製には、MOCVD(有機金属気相成長法)が好適に用いられる。第13族元素窒化物結晶層14の作製には、HVPE(ハライド気相成長法)Naフラックス法、アモノサーマル法等が好適に用いられる。例えばMOCVD法を用いて窒化ガリウム系材料からなる発光機能層16を作製する場合においては、少なくともガリウム(Ga)を含む有機金属ガス(例えばトリメチルガリウム)と窒素(N)を少なくとも含むガス(例えばアンモニア)を原料として基板上にフローさせ、水素、窒素又はその両方を含む雰囲気等において300~1200℃程度の温度範囲で成長させてもよい。この場合、バンドギャップ制御のためインジウム(In)、アルミニウム(Al)、n型及びp型ドーパントとしてシリコン(Si)及びマグネシウム(Mg)を含む有機金属ガス(例えばトリメチルインジウム、トリメチルアルミニウム、モノシラン、ジシラン、ビス-シクロペンタジエニルマグネシウム)を適宜導入して成膜を行ってもよい。
 本発明の特に好ましい態様によれば、複合基板を以下のようにして製造することができる。すなわち、(1)配向多結晶アルミナ基板12を用意し、(2)基板12上に、MOCVD法を用いて窒化ガリウムからなる種結晶層を形成し、(3)この種結晶層上に、Naフラックス法を用いて、窒化ガリウムからなる第13族元素窒化物結晶層14を形成し、所望により(4)第13族元素窒化物結晶層14上に、窒化ガリウム系材料で構成される発光機能層16を形成する。この手順によれば高品質な窒化ガリウム系の複合基板10を作製できる。この方法は第13族元素窒化物結晶層14の形成をNaフラックス法により行うことを特徴としている。Naフラックス法による第13族元素窒化物結晶層14の形成は、種結晶基板を設置した坩堝に金属Ga、金属Na及び所望によりドーパントを含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~20時間程度としてもよい。また、こうしてNaフラックス法により得られた窒化ガリウム結晶をダイヤモンド砥粒を用いたラップ加工により板面を平滑化して第13族元素窒化物結晶層14とするのが好ましい。
 発光機能層16の上に電極層及び/又は蛍光体層をさらに備えていてもよい。こうすることで発光素子用複合材料をより発光素子に近い形態で提供することができ、発光素子用複合材料としての有用性が高まる。電極層が設けられる場合、発光機能層16上に設けられるのが好ましい。電極層は公知の電極材料で構成すればよいが、ITO等の透明導電膜、又は格子構造、メッシュ構造若しくはモスアイ構造等の光取出し効率が高い金属電極とすれば、発光機能層で発生した光の取り出し効率を上げられる点で好ましい。
 発光機能層16が紫外光を放出可能なものである場合には、紫外光を可視光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は紫外線を可視光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えば、紫外光により励起されて青色光を発光する蛍光成分と、紫外光により励起されて青~緑色光を発光する蛍光成分と、紫外光により励起されて赤色光を発光する蛍光成分とを混在させて、混合色として白色光を得るような構成とするのが好ましい。そのような蛍光成分の好ましい組み合わせとしては、(Ca,Sr)(POCl:Eu、BaMgAl1017:Eu、及びMn、YS:Euが挙げられ、これらの成分をシリコーン樹脂等の樹脂中に分散させて蛍光体層を形成するのが好ましい。このような蛍光成分は上記例示物質に限定されるものではなく、他の紫外光励起蛍光体、例えばイットリウム・アルミニウム・ガーネット(YAG)やシリケート系蛍光体、酸窒化物系蛍光体等の組み合わせでもよい。
 一方、発光機能層16が青色光を放出可能なものである場合には、青色光を黄色光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は青色光を黄色光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えばYAGなどの黄色発光する蛍光体との組み合わせたものとしてもよい。このようにすることで、蛍光体層を透過した青色発光と蛍光体からの黄色発光は補色関係にあるため、擬似的な白色光源とすることができる。なお、蛍光体層は、青色を黄色に変換する蛍光成分と、紫外光を可視光に変換するための蛍光成分との両方を備えることで、紫外光の可視光への変換と青色光の黄色光への変換との両方を行う構成としてもよい。
 発光素子
 上述した本発明による複合基板を用いて曲面形状、凹凸形状等の所望の三次元立体形状を有する発光素子を作製することができる。その結果、三次元立体形状を有する従来に無い画期的なデザインの発光素子の製造を可能とするものである。例えば、曲面形状の発光素子とすることで特定方向に発光を集中させたり或いは多方向に発光を分散されせたりすることができる。また、凹凸形状の発光素子とすることで、発光表面積を大きくして発光強度を高めることもできる。本発明の複合基板を用いた発光素子の構造やその作製方法は特に限定されるものではなく、ユーザーが複合基板を適宜加工して発光素子を作製すればよい。複合基板の加工の仕方次第で、横型構造の発光素子を製造することもできるし、縦型構造の発光素子も製造することができる。
(1)横型構造の発光素子
 本発明の複合基板を用いて、発光機能層16の法線方向だけでなく、横方向にも電流が流れる、いわゆる横型構造の発光素子を作製することができる。本発明の好ましい態様によれば、横型構造の発光素子の製造は、(a)複合基板10の発光機能層16上に透光性電極層を形成し、(b)透光性電極層の形成前又は後に(望ましくは形成後に)、発光機能層16の一部を局所的に除去して発光機能層16の最下層(例えばn型層又はp型層)を局所的に露出させ、(c)露出された最下層(例えばn型層又はp型層)上に電極層を形成して発光素子を得ることにより行うことができる。透光性電極層はITO等の透明導電膜、又は格子構造、メッシュ構造若しくはモスアイ構造等の光取出し効率が高い金属電極であるのが好ましい。図2に横型構造の発光素子の一例を示す。図2に示される発光素子20は、複合基板10としてその端部を電極形成用に平板状に形成したものを用いて作製されたものである(図2において曲面形状の部分は説明の便宜上省略した)。具体的には、複合基板10の発光機能層16の表面(図示例ではp型層16aの表面)に透光性アノード電極24が設けられ、所望により透光性アノード電極24の一部の上にアノード電極パッド25が設けられる。一方、発光機能層16の他の部分ではフォトリソグラフィープロセス及びエッチング(好ましくは反応性イオンエッチング(RIE))が施されてn型層16cが部分的に露出され、この露出部分にカソード電極22が設けられる。このように、本発明の複合基板を用いることで、簡単な加工を施すだけで、高性能な発光素子を製造することができる。前述のとおり、複合基板10には電極層及び/又は蛍光体層が予め設けられていてもよく、その場合には、より少ない工程で高性能の発光素子を製造することができる。
(2)縦型構造の発光素子
 また、本発明の複合基板を用いて、発光機能層16の法線方向に電流が流れる、いわゆる縦型構造の発光素子も作製することができる。本発明の複合基板10は絶縁材料の多結晶アルミナを基板12に用いているため、そのままの形態であると、基板12側に電極を設けることができず、縦型構造の発光素子を構成することができない。しかしながら、複合基板10から基板12を除去すれば縦型構造の発光素子も作製可能である。本発明の好ましい態様によれば、縦型構造の発光素子の製造は、(a)複合基板10の発光機能層16上に反射電極層又は透光性電極層を形成し、(b)反射電極層又は透光性電極層の形成前又は後に(望ましくは形成後に)、複合基板10から少なくとも基板12を除去して、発光機能層16、第13族元素窒化物結晶層14又は種結晶層を露出させ、(c)露出された発光機能層16、第13族元素窒化物結晶層14又は種結晶層上に透光性電極層又は反射電極層を形成して発光素子を得ることにより行うことができる。透光性電極層はITO等の透明導電膜、又は格子構造、メッシュ構造若しくはモスアイ構造等の光取出し効率が高い金属電極であるのが好ましい。複合基板10から基板12を除去する方法は、特に限定されないが、研削加工、ケミカルエッチング、配向焼結体側からのレーザー照射による界面加熱(レーザーリフトオフ)、昇温時の熱膨張差を利用した自発剥離等が挙げられる。
 基板12の除去を複合基板10の実装基板への接合後に行うことで、基板12の除去時及びその後の工程で必要な強度を確保することができる。図3にそのようにして製造された縦型構造の発光素子の一例を示す。図3に示される発光素子30は、複合基板10を用いて作製されたものである。具体的には、予め必要に応じて複合基板10の最表面(図示例ではp型層16aの表面)にアノード電極層32を設けておく。そして、別途用意した基板36(以下、実装基板36という)に複合基板10の発光機能層16の最表面のアノード電極層32を接合する。その後、研削加工、レーザーリフトオフ、エッチング等の公知の方法で基板12を除去する。最後に、基板12を除去して露出した発光機能層16、第13族元素窒化物結晶層14又は種結晶層の表面にカソード電極層34を設ける。なお、このような構造とする場合は発光機能層16、第13族元素窒化物結晶層14又は種結晶層にp型ないしn型ドーパントのドーピング等により導電性を持たせる必要がある。こうして、実装基板36上に発光機能層16が形成された発光素子30を得ることができる。実装基板36の種類には特に限定がないが、実装基板36に導電性がある場合は実装基板36自体を電極とした縦型構造の発光素子30とすることもできる。この場合の実装基板36には発光機能層16への拡散などの影響がない限り、p型ないしn型ドーパントをドーピングした半導体材料でもよいし、金属材料としてもよい。また、発光機能層16は発光に伴って発熱する可能性があるが、高熱伝導性の実装基板36を用いることで発光機能層16及びその周辺温度を低く保つことができる。
 複合基板10の加工時に支持体層を形成することで、基板12の除去時及びその後の工程で必要な強度を確保してもよい。例えば、図4に示されるように、発光素子の製造は、(a)複合基板10の発光機能層16上に反射電極としても機能する支持体層42を形成して、補強された複合基板を得、(b)この補強された複合基板から少なくとも基板12(図4では基板12及び第13族元素窒化物結晶層14)を除去して、発光機能層16、第13族元素窒化物結晶層14又は種結晶層(図4では発光機能層16)を露出させ、(c)この露出された発光機能層16、第13族元素窒化物結晶層14又は種結晶層上に透光性電極層を形成して発光素子を得ることにより行うことができる。支持体層42の材質は反射電極として使用可能で且つ所望の厚さの層形態において支持体としての強度を確保可能な材料であれば特に限定されず、例えばAl、Ni、Ag、Pt、W、Mo等が挙げられるが、発光層がGaNである場合、熱膨張係数が近く、温度変化による発光機能層に生じる応力が抑制できるWやMoが好ましい。また、好ましくは、図4に示されるように、複合基板10が発光機能層16を外周面とする曲面形状を有しており、その結果、発光素子が内周面側に発光する曲面発光素子40として構成される。すなわち、この曲面発光素子40は、支持体層42の内周面上に発光機能層16が形成され、それにより発光素子が内周面側に発光するように構成されてなる。
 あるいは、図5に示されるように、発光素子の製造は、(a)複合基板10の発光機能層16上に仮支持体層52を形成して、補強された複合基板を得、(b)この補強された複合基板から少なくとも基板12(図5では基板12及び第13族元素窒化物結晶層14)を除去して、発光機能層16、第13族元素窒化物結晶層14又は種結晶層(図5では発光機能層16)を露出させ、(c)露出された発光機能層16、第13族元素窒化物結晶層14又は種結晶層上に反射電極としても機能する支持体層54を形成して、更に補強された複合基板を得、(d)更に補強された複合基板から仮支持体層52を除去して発光機能層16を露出させ、(e)露出された発光機能層16上に透光性電極層(図示せず)を形成して発光素子を得ることにより行ってもよい。仮支持体層52の材質は所望の厚さの層形態において支持体として強度を確保可能で且つ後の工程で除去可能なものであれば特に限定されず、例えばシリカ、多結晶シリコン(ポリシリコン)、フォトレジスト、アルミナ等が使用可能である。支持体層54の材質は反射電極として使用可能で且つ所望の厚さの層形態において支持体としての強度を確保可能な材料であれば特に限定されず、例えばAl、Ni、Ag、Pt、W、Mo等が挙げられる。好ましくは、図5に示されるように、複合基板10が発光機能層16を外周面とする曲面形状を有しており、その結果、発光素子が外周面側に発光する曲面発光素子50として構成される。すなわち、この曲面発光素子50は、支持体層54の外周面上に発光機能層16が形成され、それにより発光素子が外周面側に発光するように構成されてなる。
 本発明を以下の例によってさらに具体的に説明する。
 例1
(1)c軸配向アルミナ膜が形成された基板の作製
 先ず、図6に示されるようなセラミック成形体からなる基板62を作製すべく、成形スラリーを以下のようにして調製した。原料粉末としてアルミナ粉末100重量部及びマグネシア0.025重量部、分散媒として多塩基酸エステル30重量部、ゲル化剤としてMDI(ジフェニルメタンジイソシアネート)樹脂4重量部、分散剤2重量部、触媒としてトリエチルアミン0.2重量部を混合して成形スラリーとした。この成形スラリーを、図7に示されるようなアルミニウム合金製の鋳込み型64に室温で注型後、室温で1時間放置し、固化してから離型した。さらに、室温、次いで温度90℃のそれぞれの温度にて2時間放置して、セラミック成形体を得た。この成形体を大気中において温度1200℃で仮焼した後、水素:窒素=3:1の雰囲気中において温度1800℃で焼成し、緻密化及び透光化させた。この結果、高さ0.3mmの凸部を1mmのピッチで有するセラミック焼結体を得た。なお、本例では図7に示されるような凹部64aがパターニングされた鋳込み型64を用いて図6に示されるような凸部62aがパターニングされた基板62を得ているが、図9に示されるような凸部74aがパターニングされた鋳込み型74を用いて図8に示されるような凹部72aがパターニングされた基板72として得てもよい。
 次に、上記凸部を有するセラミック焼結体にc軸配向アルミナ膜を形成するため、レーザーCVDを用いた成膜を行った。レーザーCVDによる成膜は、Al原料としてアルミニウムトリス(アセチルアセトナート)を用いて、基板温度1170K以上で、Al原料が過剰となる条件で行った。こうして、表面全体が厚さ5μmのc軸配向アルミナ膜で覆われたセラミック焼結体基板を得た。
(2)発光素子用基板の作製
(2a)種結晶層の成膜
 次に、c軸配向アルミナ膜上にMOCVD法を用いて、種結晶層を形成した。具体的には、530℃にて低温GaN層を40nm堆積させた後に、1050℃にて厚さ3μmのGaN膜を積層させて種結晶基板を得た。
(2b)Naフラックス法による第13族元素窒化物結晶層の成膜
 上記工程で作製した種結晶基板を、内径80mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:60g
・金属Na:60g
 このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で870℃、4.0MPaまで昇温加圧後、10時間保持しつつ溶液を回転することで、撹拌しながら窒化ガリウム結晶を第13族元素窒化物結晶層として成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収した。得られた試料は、50.8mm(2インチ)の種結晶基板の全面上に窒化ガリウム結晶が成長しており、結晶の厚さは約0.1mmであった。クラックは確認されなかった。
 こうして得られた配向アルミナ基板上の窒化ガリウム結晶を、基板ごとセラミックスの定盤に固定し、窒化ガリウム結晶の板面をダイヤモンド砥粒を用いたラップ加工により、窒化ガリウム結晶の板面を平滑化した。このとき、砥粒のサイズを10μmから0.1μmまで段階的に小さくしつつ、平坦性を高めた。窒化ガリウム結晶板面の加工後の平均粗さRaは0.2nmであった。こうして、配向アルミナ基板上に厚み約50μmの窒化ガリウム結晶層を形成した基板を得た。
(2c)MOCVD法による発光機能層の成膜と断面平均径の評価
 MOCVD法を用いて、基板上にn型導電層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を3μm堆積した。次に活性層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型導電層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型導電層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行い、発光素子用基板を得た。
(3)横型発光素子の作製と評価
 作製した発光素子用基板の発光機能層側においてフォトリソグラフィープロセスとRIE法とを用い、n型導電層の一部を露出した。続いて、フォトリソグラフィープロセスと真空蒸着法とを用いて、n型導電層の露出部分に、カソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型導電層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られたウェハーを切断してチップ化し、さらにリードフレームに実装して、横型構造の発光素子を得た。
(発光素子の評価)
 カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
 例2
(1)発光素子用基板の作製
(1a)Naフラックス法による第13族元素窒化物結晶層の成膜
 例1と同様にして、配向アルミナ基板上に厚さ3μmのGaN膜を積層させた種結晶基板を作製した。この種結晶基板上に、融液組成物を下記組成としたこと以外は例1の(2b)と同様にして第13族元素窒化物結晶層を成膜した。
・金属Ga:60g
・金属Na:60g
・四塩化ゲルマニウム:1.85g
 得られた試料は、50.8mm(2インチ)の種結晶基板の全面上にゲルマニウムがドープされた窒化ガリウム結晶が成長しており、結晶の厚さは約0.1mmであった。クラックは確認されなかった。その後、例1(2b)と同じ方法を用いて試料を加工し、配向アルミナ膜上に厚み約50μmのゲルマニウムドープ窒化ガリウム結晶層を第13族元素窒化物結晶層として形成した基板を得た。
(体積抵抗率の評価)
 ホール効果測定装置を用い、ゲルマニウムドープ窒化ガリウム結晶層の面内の体積抵抗率を測定した。その結果、体積抵抗率は1×10-2Ω・cmであった。
(1b)MOCVD法による発光機能層の成膜と断面平均径の評価
 例1の(2c)と同様の方法を用いて、基板上へ発光機能層を形成し、発光素子用基板を得た。
(2)縦型発光素子の作製と評価
 本例で作製した発光素子用基板に、真空蒸着法を用いて、p型導電層に反射性アノード電極層としてAg膜を200nmの厚みに堆積した。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。次に、多結晶アルミナ基板側から波長248nmのエキシマレーザーを照射し、多結晶アルミナ基板近傍のGaNを熱分解させ、次にウェハーを30℃にすることでGaNを多結晶アルミナ基板から剥離することにより、ゲルマニウムドープ窒化ガリウムで構成された第13族元素窒化物結晶層を露出した。次に、フォトリソグラフィープロセスと真空蒸着法とを用いて、第13族元素窒化物結晶層にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。カソード電極のパターンは、電極が形成されていない箇所から光が取り出せるように開口部を有する形状とした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。こうして得られたウェハーを切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(発光素子の評価)
 カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
 例3
(1)発光素子用基板の作製
(1a)Naフラックス法による第13族元素窒化物結晶層の成膜
 例1及び2と同様にして、配向アルミナ基板上に厚さ3μmのGaN膜を積層させた種結晶基板を作製した。この種結晶基板上に、融液組成物を下記組成としたこと以外は例1の(2b)と同様にして第13族元素窒化物結晶層を成膜した。
・金属Ga:60g
・金属Na:60g
・四塩化ゲルマニウム:1.85g
 得られた試料は、50.8mm(2インチ)の種結晶基板の全面上にゲルマニウムがドープされた窒化ガリウム結晶が成長しており、結晶の厚さは約0.1mmであった。クラックは確認されなかった。その後、例1(2b)と同じ方法を用いて試料を加工し、配向アルミナ膜上に厚み約50μmのゲルマニウムドープ窒化ガリウム結晶層を第13族元素窒化物結晶層として形成した基板を得た。
(体積抵抗率の評価)
 ホール効果測定装置を用い、ゲルマニウムドープ窒化ガリウム結晶層の面内の体積抵抗率を測定した。その結果、体積抵抗率は1×10-2Ω・cmであった。
(1b)MOCVD法による発光機能層の成膜と断面平均径の評価
 例1の(2c)と同様の方法を用いて、基板上へ発光機能層を形成し、発光素子用基板を得た。
(2)縦型発光素子の作製と評価
 本例で作製した発光素子用基板の発光機能層上に、レーザーCVD法を用いて多結晶アルミナ製支持部材を仮支持体層として形成した。次に、下地基板の多結晶アルミナ基板側から波長248nmのエキシマレーザーを照射し、多結晶アルミナ基板近傍のGaNを熱分解させ、次にウェハーを30℃にすることで仮支持体層/発光機能層/第13族元素窒化物結晶層の積層体を多結晶アルミナ基板から剥離した。こうして、ゲルマニウムドープ窒化ガリウムで構成された第13族元素窒化物結晶層を露出させた。露出された第13族元素窒化物結晶層に反射性カソード電極層としてW膜を100μmの厚みに堆積した。次に上記レーザーCVDで形成したアルミナ製支持部材側から波長248nmのエキシマレーザーを照射し、アルミナ製支持部材(仮支持体層)近傍のGaNを熱分解させ、仮支持体層を除去して発光機能層(より具体的にはp型導電層)を露出させた。次に、フォトリソグラフィープロセスと真空蒸着法とを用いて、露出した発光機能層(より具体的にはp型導電層)にアノード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。アノード電極のパターンは、電極が形成されていない箇所から光が取り出せるように開口部を有する形状とした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。こうして得られたウェハーを切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(発光素子の評価)
 カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
 例4:c軸配向多結晶アルミナ基板の他の作製例
 原料として、板状アルミナ粉末(キンセイマテック株式会社製、グレード00610)を用意した。板状アルミナ粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)7重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)3.5重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部と、分散媒(2-エチルヘキサノール)を混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが20μmとなるように、シート状に成形した。得られたテープを直径100mmの円形に切断した後150枚積層し、厚さ10mmのAl板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、成形体を得た。
 得られた成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を図10に示されるような凹部84aがパターニングされた黒鉛製の型84を用い、ホットプレスにて窒素中1600℃で4時間、面圧200kgf/cmの条件で焼成した。得られた焼結体を熱間当方圧加圧法(HIP)にてアルゴン中1700℃で2時間、ガス圧1500kgf/cmの条件で再度焼成した。なお、本例では図10に示されるような凹部84aがパターニングされた型84を用いたが、図11に示されるような凸部94aがパターニングされた型94を用いてもよい。
 このようにして得た焼結体をサンドブラストにより表面の付着物を除去し、その後、セラミックスの定盤に固定し、ダイヤモンド砥粒を用いたポリッシングクロス加工により、表面を平滑化し、配向アルミナ焼結体を配向多結晶アルミナ基板として得た。この配向多結晶アルミナ基板を用いること以外は例1及び2と同様にして発光素子を作製することができる。
 変形態様の例示列挙
 本発明は上述した態様以外にも本発明の趣旨を逸脱しない範囲内で各種の変形がなされてよい。そのような変形態様の例としては、以下のようなものが挙げられる。
‐ 基板12が下地基材と配向多結晶アルミナ層との複合体である場合、下地基材はセラミック焼結体であってもよいし、金属であってもよい。
‐ 基板12が下地基材と配向多結晶アルミナ層との複合体である場合、下地基材の材質を第13族元素窒化物結晶層14及び発光機能層16の材質と同様の又は近い熱膨張率を有する材質で構成してもよく、それにより熱膨張率の差に起因する第13族元素窒化物結晶層14及び発光機能層16のダメージを防止又は低減することができる。例えば、第13族元素窒化物結晶層14及び発光機能層16の各層が窒化ガリウム(GaN)で構成される場合、下地基材は窒化アルミニウム(AlN)、モリブデン(Mo)、タングステン(W)、又はそれらの組合せで構成すればよい。この態様は基板12を除去しなくてよい横型発光素子に適する。
‐ 基板12が下地基材と配向多結晶アルミナ層との複合体である場合、下地基材の材質を第13族元素窒化物結晶層14及び発光機能層16の材質と有意に異なる熱膨張率を有する材質で構成してもよく、それにより熱膨張率の差を利用して発光機能層16からの基板12の除去を容易にすることができる。この態様は基板12を除去が必要とされる縦型発光素子に適する。
‐ 発光機能層16の形成をレーザーCVD法及び/又はランプ加熱CVD法により行ってもよい。
 

Claims (17)

  1.  三次元立体形状を有する表面を備えた基板であって、前記三次元立体形状を有する表面が配向多結晶アルミナからなる層を備えた又は該基板の全体が配向多結晶アルミナからなる基板と、
     前記基板の配向多結晶アルミナ上に形成された第13族元素窒化物結晶層と、
    を備えた、複合基板。
  2.  前記三次元立体形状が曲面形状及び/又は凹凸形状を含む、請求項1に記載の複合基板。
  3.  前記三次元立体形状が、視認可能な三次元プロファイルを有するマクロ形状である、請求項1又は2に記載の複合基板。
  4.  前記第13族元素窒化物結晶層と前記基板の間に種結晶層を更に備えた、請求項1~3のいずれか一項に記載の複合基板。
  5.  前記第13族元素窒化物結晶層が、前記配向多結晶アルミナの結晶方位に概ね倣って成長した構造を有する、請求項1~4のいずれか一項に記載の複合基板。
  6.  前記基板が、下地基材上に配向多結晶アルミナからなる層を備えた複合体であり、前記配向多結晶アルミナからなる層がレーザーCVD法及び/又はランプ加熱CVD法により形成されたものである、請求項1~5のいずれか一項に記載の複合基板。
  7.  前記基板が、配向多結晶アルミナ焼結体からなる、請求項1~5のいずれか一項に記載の複合基板。
  8.  前記第13族元素窒化物結晶層上に発光機能層をさらに備えた、請求項1~7のいずれか一項に記載の複合基板。
  9.  請求項8に記載の複合基板の前記発光機能層上に透光性電極層を形成する工程と、
     前記透光性電極層の形成前又は後に、前記発光機能層の一部を局所的に除去して前記発光機能層の最下層を局所的に露出させる工程と、
     前記露出された最下層上に電極層を形成して発光素子を得る工程と、
    を含む、発光素子の製造方法。
  10.  請求項8に記載の複合基板の前記発光機能層上に反射電極層又は透光性電極層を形成する工程と、
     前記反射電極層又は透光性電極層の形成前又は後に、前記複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
     前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に透光性電極層又は反射電極層を形成して発光素子を得る工程と、
    を含む、発光素子の製造方法。
  11.  請求項8に記載の複合基板の前記発光機能層上に反射電極としても機能する支持体層を形成して、補強された複合基板を得る工程と、
     前記補強された複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
     前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に透光性電極層を形成して発光素子を得る工程と、
    を含む、発光素子の製造方法。
  12.  前記複合基板が前記発光機能層を外周面とする曲面形状を有しており、その結果、前記発光素子が内周面側に発光する曲面発光素子として構成される、請求項11に記載の方法。
  13.  請求項8に記載の複合基板の前記発光機能層上に仮支持体層を形成して、補強された複合基板を得る工程と、
     前記補強された複合基板から少なくとも前記基板を除去して、前記発光機能層、前記第13族元素窒化物結晶層又は前記種結晶層を露出させる工程と、
     前記露出された発光機能層、第13族元素窒化物結晶層又は種結晶層上に反射電極としても機能する支持体層を形成して、更に補強された複合基板を得る工程と、
     前記更に補強された複合基板から前記仮支持体層を除去して前記発光機能層を露出させる工程と、
     前記露出された発光機能層上に透光性電極層を形成して発光素子を得る工程と、
    を含む、発光素子の製造方法。
  14.  前記複合基板が前記発光機能層を外周面とする曲面形状を有しており、その結果、前記発光素子が外周面側に発光する曲面発光素子として構成される、請求項13に記載の方法。
  15.  三次元立体形状を有する表面を備えた、反射電極としても機能する支持体層と、
     前記支持体層の前記三次元立体形状を有する表面上に形成され、前記三次元立体形状を有する表面に対し略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を二以上有する発光機能層と、
     前記発光機能層の前記支持体層と反対側に設けられる透光性電極層と、
    を備えた、発光素子。
  16.  前記三次元立体形状が曲面形状であり、前記支持体層の内周面上に前記発光機能層が形成され、それにより前記発光素子が内周面側に発光する曲面発光素子として形成される、請求項15に記載の発光素子。
  17.  前記三次元立体形状が曲面形状であり、前記支持体層の外周面上に前記発光機能層が形成され、それにより前記発光素子が外周面側に発光する曲面発光素子として形成される、請求項15に記載の発光素子。
PCT/JP2015/050911 2014-02-07 2015-01-15 複合基板、発光素子及びそれらの製造方法 WO2015118920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560910A JP6562842B2 (ja) 2014-02-07 2015-01-15 複合基板、発光素子及びそれらの製造方法
US15/223,099 US20160343906A1 (en) 2014-02-07 2016-07-29 Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element
US17/699,624 US20220209062A1 (en) 2014-02-07 2022-03-21 Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-022006 2014-02-07
JP2014022006 2014-02-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/223,099 Continuation US20160343906A1 (en) 2014-02-07 2016-07-29 Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element

Publications (1)

Publication Number Publication Date
WO2015118920A1 true WO2015118920A1 (ja) 2015-08-13

Family

ID=53777728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050911 WO2015118920A1 (ja) 2014-02-07 2015-01-15 複合基板、発光素子及びそれらの製造方法

Country Status (3)

Country Link
US (2) US20160343906A1 (ja)
JP (1) JP6562842B2 (ja)
WO (1) WO2015118920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157732A (ja) * 2016-03-03 2017-09-07 日本碍子株式会社 単位発光体、発光体、発光体の製造方法、および、発光体粉末の製造方法
JP2019006648A (ja) * 2017-06-27 2019-01-17 日本碍子株式会社 配向セラミックス焼結体及びその製法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713026A (zh) * 2019-02-26 2019-05-03 京东方科技集团股份有限公司 一种硅基电致发光显示面板及其制造方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359495A (ja) * 2003-06-04 2004-12-24 Ngk Insulators Ltd エピタキシャル膜用アルミナ基板
JP2006049871A (ja) * 2004-07-08 2006-02-16 Sharp Corp 窒化物系化合物半導体発光素子およびその製造方法
JP2009073710A (ja) * 2007-09-25 2009-04-09 Panasonic Corp 窒化ガリウム基板の製造方法、および窒化ガリウム基板ならびに半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302853A (ja) * 1993-04-12 1994-10-28 Victor Co Of Japan Ltd 半導体発光素子
KR100632760B1 (ko) * 2001-03-21 2006-10-11 미츠비시 덴센 고교 가부시키가이샤 반도체 발광 소자
JP2003031895A (ja) * 2001-07-13 2003-01-31 Sharp Corp 半導体発光装置およびその製造方法
JP3857141B2 (ja) * 2002-01-07 2006-12-13 富士通株式会社 光半導体装置及びその製造方法
KR101305876B1 (ko) * 2007-08-09 2013-09-09 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20100024231A (ko) * 2008-08-25 2010-03-05 삼성전자주식회사 광추출 효율이 향상된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
JP2012231103A (ja) * 2011-04-15 2012-11-22 Mitsubishi Chemicals Corp Iii族窒化物結晶の製造方法およびiii族窒化物結晶

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359495A (ja) * 2003-06-04 2004-12-24 Ngk Insulators Ltd エピタキシャル膜用アルミナ基板
JP2006049871A (ja) * 2004-07-08 2006-02-16 Sharp Corp 窒化物系化合物半導体発光素子およびその製造方法
JP2009073710A (ja) * 2007-09-25 2009-04-09 Panasonic Corp 窒化ガリウム基板の製造方法、および窒化ガリウム基板ならびに半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157732A (ja) * 2016-03-03 2017-09-07 日本碍子株式会社 単位発光体、発光体、発光体の製造方法、および、発光体粉末の製造方法
JP2019006648A (ja) * 2017-06-27 2019-01-17 日本碍子株式会社 配向セラミックス焼結体及びその製法

Also Published As

Publication number Publication date
JP6562842B2 (ja) 2019-08-21
US20220209062A1 (en) 2022-06-30
JPWO2015118920A1 (ja) 2017-03-23
US20160343906A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5770905B1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6474734B2 (ja) 発光素子用複合基板及びその製造方法
JP6480398B2 (ja) 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
US20220209062A1 (en) Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element
WO2014192911A1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
CN108779578B (zh) 包含多晶第13族元素氮化物的自立基板和使用该自立基板的发光元件
KR102172356B1 (ko) 질화갈륨 자립 기판, 발광 소자 및 이들의 제조 방법
US10707373B2 (en) Polycrystalline gallium nitride self-supported substrate and light emitting element using same
JPWO2017057272A1 (ja) エピタキシャル成長用配向アルミナ基板
JP6684815B2 (ja) エピタキシャル成長用配向アルミナ基板
JP6339069B2 (ja) 窒化ガリウム結晶の育成方法、複合基板、発光素子の製造方法および結晶育成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746042

Country of ref document: EP

Kind code of ref document: A1