WO2015118757A1 - 超音波プローブ及び超音波処置装置 - Google Patents

超音波プローブ及び超音波処置装置 Download PDF

Info

Publication number
WO2015118757A1
WO2015118757A1 PCT/JP2014/081594 JP2014081594W WO2015118757A1 WO 2015118757 A1 WO2015118757 A1 WO 2015118757A1 JP 2014081594 W JP2014081594 W JP 2014081594W WO 2015118757 A1 WO2015118757 A1 WO 2015118757A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
electrode
treatment
main body
ultrasonic probe
Prior art date
Application number
PCT/JP2014/081594
Other languages
English (en)
French (fr)
Inventor
庸高 銅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP14881589.7A priority Critical patent/EP3103407B1/en
Priority to CN201480058233.5A priority patent/CN105658161B/zh
Priority to JP2015527381A priority patent/JP5836543B1/ja
Publication of WO2015118757A1 publication Critical patent/WO2015118757A1/ja
Priority to US15/053,768 priority patent/US9592072B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/149Probes or electrodes therefor bow shaped or with rotatable body at cantilever end, e.g. for resectoscopes, or coagulating rollers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320088Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with acoustic insulation, e.g. elements for damping vibrations between horn and surrounding sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00964Features of probes
    • A61B2018/0097Cleaning probe surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Definitions

  • the present invention relates to an ultrasonic probe in which a treatment portion for treating a treatment target using ultrasonic vibration and high-frequency power is formed at a distal end portion, and an ultrasonic treatment apparatus including the ultrasonic probe.
  • Patent Document 1 discloses an ultrasonic treatment apparatus that treats a treatment target using ultrasonic vibration and high-frequency power.
  • an ultrasonic probe that transmits ultrasonic vibrations from the proximal direction to the distal direction extends along the longitudinal axis, and a treatment portion is provided at the distal end of the ultrasonic probe.
  • the outer peripheral direction side of the treatment portion is covered with a conductive portion.
  • a gap is formed between the treatment portion and the conductive portion. For this reason, even when the treatment portion vibrates due to the ultrasonic vibration, the ultrasonic vibration is not transmitted to the conductive portion, and the conductive portion does not vibrate.
  • the treatment portion and the conductive portion function as electrodes when high-frequency power is transmitted. Therefore, in the ultrasonic treatment apparatus, ultrasonic treatment is performed using the ultrasonic vibration transmitted to the treatment portion, and bipolar treatment is performed using the treatment portion and the conductive portion as electrodes.
  • the present invention has been made paying attention to the above-mentioned problems, and the object thereof is to effectively prevent the treatment target from being attached to the electrode in the treatment using ultrasonic vibration and high-frequency power, and the treatment performance is improved.
  • An object of the present invention is to provide an ultrasonic probe and an ultrasonic treatment apparatus that are appropriately secured.
  • an ultrasonic probe includes a probe main body that extends along a longitudinal axis and transmits ultrasonic vibration from a proximal direction to a distal direction, and the probe main body
  • the probe body is formed on the outer surface of the probe main body portion from the treatment portion toward the proximal end, and the probe main body portion transmits the ultrasonic vibration.
  • An insulating layer portion that vibrates integrally with the portion, and is provided on the outer surface of the insulating layer portion in a state where at least a portion is exposed to the outside in the treatment portion, and functions as an electrode that transmits high-frequency power
  • the probe main body portion transmits the ultrasonic vibration
  • at least a part of the first electrode portion that vibrates integrally with the probe main body portion and the insulating layer portion is processed.
  • Provided in a state exposed to the outside at the portion and functions as an electrode different from the first electrode portion to which the high-frequency power is transmitted, and is connected to the first electrode portion by the insulating layer portion.
  • a second electrode portion that vibrates integrally with the probe main body portion, the insulating layer portion, and the first electrode portion by electrically insulating the gap between the probe main body portion and the ultrasonic transmission of the probe main body portion; .
  • an ultrasonic probe and an ultrasonic treatment apparatus that can effectively prevent the treatment target from being attached to the electrode in a treatment using ultrasonic vibration and high-frequency power, and can appropriately ensure treatment performance. be able to.
  • FIG. 3 is a cross-sectional view schematically illustrating a configuration of a vibrator unit according to the first embodiment. It is a perspective view showing roughly the composition of the ultrasonic probe concerning a 1st embodiment. It is the schematic which shows the structure of the front-end
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 4.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG. 8.
  • FIG. 9 is a sectional view taken along line XX in FIG. 8.
  • FIG. 9 is a perspective view which shows roughly the structure of the front-end
  • FIG. 1 is a diagram showing an ultrasonic treatment apparatus 1 of the present embodiment.
  • the ultrasonic treatment apparatus 1 includes an ultrasonic treatment tool 2.
  • the ultrasonic treatment instrument 2 has a longitudinal axis C.
  • One of the directions parallel to the longitudinal axis C is the distal direction (the direction of the arrow C1 in FIG. 1), and the opposite direction to the distal direction is the proximal direction (the direction of the arrow C2 in FIG. 1).
  • tip direction and the base end direction be a longitudinal-axis direction.
  • the ultrasonic treatment apparatus 1 treats a treatment target such as a living tissue using high-frequency power (high-frequency current) in addition to ultrasonic vibration.
  • high-frequency current high-frequency current
  • the ultrasonic treatment instrument 2 includes a transducer unit 3, a holding unit 5, a sheath 6, and an ultrasonic probe 7.
  • the holding unit 5 includes a cylindrical case portion 11 that extends along the longitudinal axis C.
  • An energy operation input button 12 that is an energy operation input unit is attached to the cylindrical case unit 11.
  • the vibrator unit 3 includes a vibrator case 13.
  • the vibrator unit 3 is connected to the holding unit 5 by inserting the vibrator case 13 into the cylindrical case portion 11 from the proximal direction side.
  • One end of a cable 15 is connected to the base end of the vibrator case 13.
  • the other end of the cable 15 is connected to a control unit 10 such as an energy source device.
  • the control unit 10 includes an ultrasonic power source 16, a high frequency power source 17, and an energy control unit 18.
  • the energy control unit 18 is electrically connected to the energy operation input button 12 via an electrical path unit (not shown) extending through the transducer case 13 and the cable 15.
  • the energy control unit 18 controls the output state of the ultrasonic power from the ultrasonic power source 16 and the output state of the high frequency power from the high frequency power source 17 based on the input of the energy operation with the energy operation input button 12. Yes.
  • the ultrasonic power source 16 and the high frequency power source 17 may be separate bodies or the same power source.
  • the energy control unit 18 is formed of, for example, a CPU (Central Processing Unit) or an ASIC (application specific integrated circuit) and a storage unit such as a memory.
  • FIG. 2 is a diagram showing a configuration of the vibrator unit 3.
  • the transducer unit 3 includes the above-described transducer case 13 and an ultrasonic transducer 21 that is a vibration generating unit provided inside the transducer case 13.
  • the ultrasonic transducer 21 includes a plurality (four in this embodiment) of piezoelectric elements 22A to 22D that convert electric current (alternating current) into ultrasonic vibration. For this reason, ultrasonic vibration is generated in the ultrasonic transducer 21 by transmitting ultrasonic power to the ultrasonic transducer 21.
  • a horn member 23 extending along the longitudinal axis C is provided inside the vibrator case 13.
  • the horn member 23 includes a vibrator mounting portion 25.
  • a member for forming the ultrasonic vibrator 21 such as the piezoelectric elements 22A to 22D is attached to the vibrator mounting portion 25.
  • the horn member 23 is formed with a cross-sectional area changing portion 26. In the cross-sectional area changing portion 26, the cross-sectional area perpendicular to the longitudinal axis C becomes smaller toward the front end direction.
  • the cross-sectional area changing unit 26 increases the amplitude of the ultrasonic vibration.
  • a female screw portion 27 is provided at the tip of the horn member 23.
  • a male screw portion 28 is provided at the proximal end portion of the ultrasonic probe 7.
  • the ultrasonic probe 7 is connected to the distal direction side of the horn member 23.
  • the ultrasonic probe 7 extends along the longitudinal axis C.
  • the horn member 23 is connected to the ultrasonic probe 7 inside the cylindrical case portion 11.
  • the ultrasonic transducer 21 that is a vibration generating unit is located on the proximal direction side of the ultrasonic probe 7.
  • the sheath 6 is connected to the holding unit 5 by being inserted into the cylindrical case portion 11 from the distal direction side.
  • the sheath 6 is coupled to the transducer case 13 inside the cylindrical case portion 11.
  • the ultrasonic probe 7 is inserted through the sheath 6. For this reason, the distal end portion of the ultrasonic probe 7 protrudes from the distal end of the sheath 6 in the distal direction.
  • one end of electrical wirings 29 ⁇ / b> A and 29 ⁇ / b> B is connected to the ultrasonic transducer 21.
  • the electrical wires 29 ⁇ / b> A and 29 ⁇ / b> B pass through the inside of the cable 15 and the other end is connected to the ultrasonic power source 16 of the control unit 10.
  • ultrasonic power is supplied from the ultrasonic power source 16 to the ultrasonic vibrator 21 via the electrical wirings 29 ⁇ / b> A and 29 ⁇ / b> B
  • ultrasonic vibration is generated in the ultrasonic vibrator 21.
  • the generated ultrasonic vibration is transmitted from the ultrasonic transducer 21 to the ultrasonic probe 7 via the horn member 23.
  • FIG. 3 is a diagram showing the ultrasonic probe 7.
  • one of the directions perpendicular to the longitudinal axis C is defined as a first vertical direction (the direction of the arrow P1 in FIG. 3), and the direction opposite to the first vertical direction is defined as a second vertical direction (the arrow in FIG. 3).
  • P2 direction the direction opposite to the first vertical direction
  • one of the first vertical direction and the second vertical direction perpendicular to the longitudinal axis C is defined as a third vertical direction (the direction of the arrow P3 in FIG. 3), and the third vertical direction.
  • the direction opposite to is the fourth vertical direction (the direction of the arrow P4 in FIG. 3).
  • FIG. 4 is a diagram showing the configuration of the distal end portion of the sheath 6 and the distal end portion of the ultrasonic probe 7.
  • the sheath 6 is shown in a cross section perpendicular to the first vertical direction and the second vertical direction, and the ultrasonic probe 7 is shown as viewed from the first vertical direction side.
  • 5 is a cross-sectional view taken along line VV in FIG. 4
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • the ultrasonic probe 7 includes a probe main body 31 extending along the longitudinal axis C.
  • the ultrasonic vibration transmitted to the ultrasonic probe 7 is transmitted from the proximal direction to the distal direction in the probe main body 31.
  • the ultrasonic probe 7 (probe main body 31) vibrates (longitudinal vibration) with the longitudinal direction parallel to the longitudinal axis C as the vibration direction.
  • a predetermined resonance frequency (vibration state) in which the tip of the ultrasonic probe 7 (tip of the probe main body 31) becomes the most distal antinode position A1, which is one of the antinode positions of ultrasonic vibration (longitudinal vibration).
  • Vibrate Vibrate.
  • the most distal antinode position A1 is located closest to the distal direction among the antinode positions of ultrasonic vibration.
  • a position where the dimension from the distal end to the proximal end of the probe main body 31 in the state where the ultrasonic probe 7 vibrates at a predetermined resonance frequency becomes a quarter wavelength of the ultrasonic vibration is defined as a reference position R0.
  • the reference position R0 coincides with the most advanced node position N1, which is one of the node positions of ultrasonic vibration (longitudinal vibration) in a state where the ultrasonic probe 7 vibrates at a predetermined resonance frequency.
  • the most advanced node position N1 is located on the most distal direction side among the ultrasonic vibration node positions.
  • the reference position R0 (the most distal node position N1) is located on the proximal direction side from the distal end of the sheath 6. Therefore, the reference position R0 is located inside the sheath 6.
  • a treatment portion 32 is provided at the distal end portion of the probe main body portion 31.
  • the ultrasonic probe 7 is inserted into the sheath 6 with the treatment portion 32 protruding from the distal end of the sheath 6 toward the distal direction.
  • the treatment section 32 includes a curved projecting portion 33 that curves in the third vertical direction with respect to the longitudinal axis C and projects in the third vertical direction.
  • the curved protrusion 33 is formed in a hook shape.
  • the curved projecting portion 33 includes a projecting distal end surface 35 facing the distal end direction (the direction of the arrow C1 in FIG. 3) and a projecting proximal end surface 36 facing the proximal end direction (the direction of the arrow C2 in FIG. 3).
  • the protruding tip surface 35 forms the tip of the ultrasonic probe 7. Further, the base end position of the curved protrusion 33 is set to a curved base end position B1. The curved proximal end position B1 is located on the distal direction side from the distal end of the sheath 6.
  • An insulating layer portion 37 is formed on the outer surface of the probe main body portion 31.
  • the insulating layer portion 37 is a coating layer formed from an insulating material such as a resin, for example, and is indicated by dot hatching in FIGS. 3 and 4.
  • the insulating layer portion 37 extends from the treatment portion 32 toward the proximal end.
  • the entire outer surface of the probe main body 31 is covered by the insulating layer portion 37 in the range between the distal end of the ultrasonic probe 7 and the distal end of the sheath 6 in the longitudinal direction (that is, the treatment portion 32). Covered. Therefore, in the present embodiment, the outer surface of the probe main body 31 is not exposed to the outside even in the treatment section 32 located on the distal direction side from the distal end of the sheath 6.
  • the insulating layer portion 37 is extended from the reference position R0 (the most advanced node position N1) to a portion on the proximal direction side. For this reason, the base end of the insulating layer portion 37 is located on the base end direction side from the reference position R0, and is located on the base end direction side from the tip end of the sheath 6. Therefore, the base end of the insulating layer portion 37 is located inside the sheath 6.
  • the insulating layer portion 37 is in close contact with the outer surface of the probe main body portion 31. For this reason, when the probe main body 31 transmits ultrasonic vibration, the insulating layer 37 vibrates integrally with the probe main body 31 (longitudinal vibration).
  • the outer surface of the insulating layer portion 37 includes a first conductive coating portion 38A that is a first electrode portion and a second conductive coating portion 38B that is a second electrode portion.
  • the first conductive coating portion 38A and the second conductive coating portion 38B are formed of a resin containing silver powder, metal plating, or the like, and have conductivity.
  • the first conductive coating portion 38A and the second conductive coating portion 38B are shown by solid line hatching.
  • One end of a first electric wiring portion 39A that is a first electric path portion is connected to the first conductive coating portion 38A.
  • a second electric wiring portion 39B which is a second electric path portion, is connected to the second conductive coating portion 38B.
  • the first electric wiring portion 39A and the second electric wiring portion 39B extend through the inside of the sheath 6, the inside of the vibrator case 13, and the inside of the cable 15.
  • the other end of the first electric wiring portion 39A and the other end of the second electric wiring portion 39B are connected to the high frequency power source 17 of the control unit 10.
  • the first electric wiring portion 39A and the second electric wiring portion 39B are electrically insulated from each other and electrically insulated from the probe main body portion 31 and the horn member 23.
  • High frequency power is transmitted from the high frequency power source 17 to the first conductive coating portion 38A through the first electric wiring portion 39A.
  • the first conductive coating portion 38A functions as an electrode (first electrode portion).
  • High frequency power is transmitted from the high frequency power source 17 to the second conductive coating portion 38B through the second electrical wiring portion 39B.
  • the second conductive coating portion 38B functions as an electrode (second electrode portion) different from the first conductive coating portion 38A.
  • the first conductive coating part 38A and the second conductive coating part 38B function as electrodes, the first conductive coating part 38A has a different potential from the second conductive coating part 38B.
  • the insulating layer portion 37 includes a first insulating surface portion 41A whose outer surface faces the first vertical direction, and a second insulating surface portion 41B whose outer surface faces the second vertical direction.
  • the first conductive coating portion 38A is provided on the first insulating surface portion 41A
  • the second conductive coating portion 38B is provided on the second insulating surface portion 41B.
  • An insulating layer portion 37 (first insulating surface portion 41A) is provided between the first conductive coating portion 38A and the probe main body portion 31, and between the second conductive coating portion 38B and the probe main body portion 31. Is provided with an insulating layer portion 37 (second insulating surface portion 41B). For this reason, the first conductive coating portion 38 ⁇ / b> A and the second conductive coating portion 38 ⁇ / b> B are electrically insulated from the probe main body portion 31.
  • the first conductive coating portion 38A and the second conductive coating portion 38B are provided on the outer surface of the insulating layer portion 37. Further, the first conductive coating portion 38A is located away from the second conductive coating portion 38B in the direction around the longitudinal axis. Therefore, the first conductive coating portion 38A and the second conductive coating portion 38B are electrically insulated by the insulating layer portion 37.
  • the first conductive coating portion 38A is in close contact with the outer surface of the insulating layer portion 37 in the first insulating surface portion 41A. For this reason, when the probe main body 31 transmits ultrasonic vibration, the first conductive coating portion 38 ⁇ / b> A vibrates integrally with the probe main body 31 and the insulating layer portion 37 (longitudinal vibration). Further, the second conductive coating portion 38B is in close contact with the outer surface of the insulating layer portion 37 in the second insulating surface portion 41B. For this reason, when the probe main body 31 transmits ultrasonic vibration, the second conductive coating portion 38B vibrates integrally with the probe main body portion 31, the insulating layer portion 37, and the first conductive coating portion 38A (longitudinal vibration). )
  • the first conductive coating portion 38A extends from the curved protruding portion 33 toward the proximal end in the first insulating surface portion 41A. Further, the second conductive coating portion 38B extends from the curved protrusion 33 toward the proximal direction in the second insulating surface portion 41B. The first conductive coating portion 38A and the second conductive coating portion 38B extend toward the proximal direction at least up to the reference position R0 (the most distal node position N1). The base end of the first conductive coating portion 38A and the base end of the second conductive coating portion 38B are located on the base end direction side from the reference position R0 or the reference position R0.
  • the proximal end of the first conductive coating portion 38 ⁇ / b> A and the proximal end of the second conductive coating portion 38 ⁇ / b> B are located on the proximal direction side from the distal end of the sheath 6 and are located inside the sheath 6.
  • the base end of the first conductive coating portion 38 ⁇ / b> A and the base end of the second conductive coating portion 38 ⁇ / b> B are located on the distal direction side from the base end of the insulating layer portion 37. Therefore, the first conductive coating portion 38A does not contact the probe main body portion 31 in any part.
  • the second conductive coating portion 38B does not contact the probe main body portion 31 in any part.
  • first electric wiring portion 39A is connected to the first conductive coating portion 38A at the reference position R0 (or in the vicinity of the reference position R0).
  • second electric wiring portion 39B is connected to the second conductive coating portion 38B at the reference position R0 (or in the vicinity of the reference position R0). Since the reference position R0 is the most advanced node position N1 in a state where the ultrasonic probe 7 vibrates at a predetermined resonance frequency, the amplitude of ultrasonic vibration (longitudinal vibration) becomes zero. In the vicinity of the reference position R0, the amplitude of the ultrasonic vibration becomes small.
  • the first electric wiring portion 39A is firmly connected to the first conductive coating portion 38A. Then, the second electric wiring portion 39B is firmly connected to the second conductive coating portion 38B.
  • the ultrasonic probe 7 includes a first insulating coating portion 42A that covers the outer surface of the first conductive coating portion 38A, and a second insulating coating portion 42B that covers the outer surface of the second conductive coating portion 38B. .
  • the first insulating coating portion 42A and the second insulating coating portion 42B are formed of an insulating material such as a resin, and are indicated by broken line hatching in FIGS.
  • the distal end of the first insulating coating portion 42A is located on the proximal direction side from the curved proximal end position B1. For this reason, in the curved protrusion 33, the first conductive coating portion 38A is exposed to the outside, and the first conductive exposed portion 43A is formed.
  • the distal end of the second insulating coating portion 42B is located on the proximal direction side with respect to the curved proximal end position B1. Therefore, in the curved protrusion 33, the second conductive coating portion 38B is exposed to the outside, and the second conductive exposed portion 43B is formed. In a state where a treatment target such as a living tissue is brought into contact with the protruding proximal end surface 36 of the curved protruding portion 33, the treatment target is in contact with the first conductive exposed portion 43A and the second conductive exposed portion 43B.
  • the distal end of the first insulating coating portion 42A and the distal end of the second insulating coating portion 42B are located on the distal direction side from the distal end of the sheath 6. Further, the proximal end of the first insulating coating portion 42 ⁇ / b> A and the proximal end of the second insulating coating portion 42 ⁇ / b> B are located on the proximal direction side from the distal end of the sheath 6. For this reason, the first conductive coating portion 38A is not exposed to the outside at a portion other than the first conductive exposed portion 43A.
  • first conductive exposed portion 43A first conductive exposed portion 43A
  • second conductive coating portion 38B is not exposed to the outside at portions other than the second conductive exposed portion 43B. That is, in the treatment portion 32 located on the distal direction side from the distal end of the sheath 6, a part of the second conductive coating portion 38B (second conductive exposed portion 43B) is exposed to the outside.
  • a living tissue or the like that is different from the treatment target does not contact the first conductive coating portion (first electrode portion) 38A at a portion other than the first conductive exposed portion 43A, and other than the second conductive exposed portion 43B.
  • the second conductive coating portion (second electrode portion) 38B is not in contact with the portion.
  • the base end of the first insulating coating portion 42A and the base end of the second insulating coating portion 42B are located on the distal direction side from the reference position R0 (the most distal node position N). For this reason, the outer surface of the first conductive coating portion 38A is not covered with the first insulating coating portion 42A at the reference position R0 where the first electric wiring portion 39A is connected to the first conductive coating portion 38A. . For this reason, the high frequency power is reliably transmitted from the first electric wiring portion 39A to the first conductive coating portion 38A.
  • the outer surface of the second conductive coating portion 38B is not covered by the second insulating coating portion 42B. . For this reason, the high frequency power is reliably transmitted from the second electric wiring portion 39B to the second conductive coating portion 38B.
  • the ultrasonic probe 7 and the ultrasonic treatment apparatus 1 of the present embodiment When treating a treatment target such as a biological tissue (blood vessel) using the ultrasonic treatment apparatus 1, the ultrasonic probe 7 and the sheath 6 are inserted into the body cavity. Then, the treatment target is brought into contact with the protruding proximal end surface 36 of the curved protruding portion 33 of the treatment portion 32. As a result, the first conductive exposed portion 43A of the first conductive coating portion (first electrode portion) 38A and the second conductive exposed portion 43B of the second conductive coating portion (second electrode portion) 38B are Contact the treatment target. In this state, an energy operation is input with the energy operation input button 12. Thereby, the ultrasonic power is output from the ultrasonic power source 16 and the high frequency power is output from the high frequency power source 17 by the energy control unit 18.
  • a treatment target such as a biological tissue (blood vessel)
  • the ultrasonic probe 7 and the sheath 6 are inserted into the body cavity. Then, the treatment
  • ultrasonic vibration is generated in the ultrasonic vibrator 21.
  • the generated ultrasonic vibration is transmitted to the ultrasonic probe 7 via the horn member 23.
  • ultrasonic vibration is transmitted from the proximal direction to the distal direction to the treatment portion 32, and the probe main body portion 31 vibrates (longitudinal vibration) at a predetermined resonance frequency.
  • the insulating layer portion 37, the first conductive coating portion (first electrode portion) 38A, and the second conductive coating portion (second electrode portion) 38B vibrate integrally with the probe main body portion 31.
  • the first conductive coating portion 38A functions as an electrode (first electrode portion).
  • the second conductive coating portion 38B functions as an electrode (second electrode portion) different from the first conductive coating portion 38A.
  • the first conductive coating portion 38A has a different potential from the second conductive coating portion 38B.
  • the treatment target 32 vibrates (longitudinal vibration) in a state where the treatment target is in contact with the protruding proximal end surface 36 of the curved protrusion 33, the treatment target is incised. Further, since the treatment target is in contact with the first conductive exposed portion 43A and the second conductive exposed portion 43B, the treatment target is passed between the first conductive coating portion 38A and the second conductive coating portion 38B. A high-frequency current flows, and a bipolar treatment is performed using the first conductive coating portion 38A and the second conductive coating portion 38B as electrodes. When the high frequency current flows through the treatment target, the treatment target is denatured and solidified. As described above, coagulation (sealing) is performed simultaneously with the incision (cutting) of the treatment target.
  • the first conductive coating portion 38A and the second conductive coating portion 38B vibrate integrally with the probe main body portion 31. Therefore, even in the bipolar treatment in which the treatment object contacts the first conductive coating part (first electrode part) 38A and the second conductive coating part (second electrode part) 38B, the first conductive exposure of the treatment object. The sticking to the part 43A and the sticking to the second conductive exposed part 43B to be treated are effectively prevented. Thereby, treatment performance can be appropriately ensured in treatment using ultrasonic vibration and high-frequency power.
  • the base end of the first conductive coating portion 38A and the base end of the second conductive coating portion 38B are located on the tip direction side from the base end of the insulating layer portion 37. Accordingly, the first conductive coating part 38A does not contact the probe main body part 31 at any part, and the second conductive coating part 38B does not contact the probe main body part 31 at any part. For this reason, in the bipolar treatment using high-frequency power, between the first conductive coating portion (first electrode portion) 38A and the second conductive coating portion (second electrode portion) 38B, other than the treatment target It is effectively prevented that a high frequency current flows through the portion (for example, the probe main body 31). Thereby, in the bipolar treatment, the current density of the high-frequency current flowing through the treatment target is increased, and the treatment performance can be improved.
  • first electric wiring portion 39A is connected to the first conductive coating portion 38A at the reference position R0 (the most distal node position N1), and one end of the second electric wiring portion 39B is connected to the reference position R0. It is connected to the second conductive coating portion 38B at (the most advanced node position N1). Therefore, even when the first conductive coating portion 38A and the second conductive coating portion 38B are vibrated integrally with the probe main body portion 31, the first electric wiring portion 39A is firmly connected to the first conductive coating portion 38A. Then, the second electric wiring portion 39B is firmly connected to the second conductive coating portion 38B. Therefore, high frequency power can be appropriately transmitted from the first electrical wiring portion 39A to the first conductive coating portion 38A, and high frequency power can be appropriately transmitted from the second electrical wiring portion 39B to the second conductive coating portion 38B. Can communicate.
  • first conductive coating portion 38A is not exposed to the outside by the first insulating coating portion 42A at a portion other than the first conductive exposed portion 43A.
  • second conductive coating portion 38B is not exposed to the outside by the second insulating coating portion 42B except for the second conductive exposed portion 43B. Therefore, in a bipolar treatment using a high-frequency current, a living tissue or the like that is different from the treatment target does not contact the first conductive coating portion (first electrode portion) 38A at a portion other than the first conductive exposed portion 43A.
  • the second conductive coating portion (second electrode portion) 38B is not in contact with the portion other than the second conductive exposed portion 43B. Thereby, in bipolar treatment, treatment performance can be improved.
  • the outer surface of the first conductive coating portion 38A is not covered with the first insulating coating portion 42A.
  • the outer surface of the second conductive coating portion 38B is not covered by the second insulating coating portion 42B. .
  • high frequency power can be reliably transmitted from the first electrical wiring portion 39A to the first conductive coating portion 38A, and high frequency power can be reliably transmitted from the second electrical wiring portion 39B to the second conductive coating portion 38B. Can be transmitted.
  • the two conductive coating portions (38A, 38B) functioning as electrodes are provided, but the present invention is not limited to this.
  • FIGS. 7 to 10 as a first modification, only one conductive coating portion 38 may be provided.
  • FIG. 7 is a diagram showing the distal end portion of the ultrasonic probe 7
  • FIG. 8 is a diagram showing the distal end portion of the ultrasonic probe 7 and the distal end portion of the sheath 6.
  • 9 is a cross-sectional view taken along line IX-IX in FIG. 8
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • FIG. 7 is a diagram showing the distal end portion of the ultrasonic probe 7
  • FIG. 8 is a diagram showing the distal end portion of the ultrasonic probe 7 and the distal end portion of the sheath 6.
  • 9 is a cross-sectional view taken along line IX-IX in FIG. 8
  • FIG. 10 is a cross-sectional view taken along line XX
  • the sheath 6 is shown in a cross section perpendicular to the first vertical direction and the second vertical direction, and the ultrasonic probe 7 is shown as viewed from the first vertical direction side. 7 and 8, the insulating layer portion 37 is indicated by hatching with dots, and the conductive coating portion 38 is indicated by hatching with solid lines.
  • the conductive coating portion 38 has substantially the same configuration as the first conductive coating portion 38A of the first embodiment, and is a first electrode portion that functions as an electrode when high-frequency power is transmitted. In other words, the conductive coating portion 38 vibrates integrally with the probe main body portion 31 (longitudinal vibration). In addition, the conductive coating portion 38 is formed on the outer surface of the insulating layer portion 37.
  • the insulating layer portion 37 is extended to a portion on the proximal direction side from the reference position R0 (the most distal node position N1), and the conductive coating portion 38 is extended toward at least the reference position R0 in the proximal direction. Has been. Further, the base end of the conductive coating portion 38 is located inside the sheath 6 and is located on the distal direction side from the base end of the insulating layer portion 37.
  • one end of the electric wiring portion 39 that is an electric path portion is connected to the conductive coating portion 38.
  • the electrical wiring portion 39 has a configuration substantially similar to that of the first electrical wiring portion 39A of the first embodiment. That is, the other end of the electrical wiring portion 39 is connected to the high frequency power source 17 of the control unit 10. Then, high-frequency power is transmitted from the high-frequency power source 17 to the conductive coating unit 38 via the electrical wiring unit 39.
  • the insulating coating part 42 has substantially the same configuration as the first insulating coating part 42A of the first embodiment. That is, the distal end of the insulating coating portion 42 is located on the proximal direction side from the curved base end position B1, and the conductive projection portion 38 is exposed to the outside in the curved protrusion 33, and the conductive exposed portion 43 is formed. Yes. When a treatment target is brought into contact with the protruding proximal end surface 36 of the curved protrusion 33, the treatment target contacts the conductive exposed portion 43.
  • the distal end of the insulating coating portion 42 is located on the distal direction side from the distal end of the sheath 6, and the proximal end of the insulating coating portion 42 is located inside the sheath 6.
  • the base end of the insulating coating part 42 is located in the front end direction side from the reference position R0 (the most distal node position N). 7 and 8, the insulating coating portion 42 is indicated by broken line hatching.
  • the present modification unlike the first embodiment, in the range between the distal end of the ultrasonic probe 7 and the distal end of the sheath 6 in the longitudinal direction (that is, the treatment portion 32), Only a part, not the entire surface, is covered with the insulating layer portion 37.
  • the outer surface of the probe main body 31 is exposed to the outside at a part of the protruding proximal end surface 36 of the curved protruding portion 33. That is, a main body exposed portion 45 that is exposed to the outside at the protruding proximal end surface 36 of the treatment portion 32 is provided on the outer surface of the probe main body portion 31.
  • the main body exposed portion 45 is not covered with the insulating layer portion 37.
  • the main body exposed part 45 is indicated by solid line hatching.
  • one end of an electrical wiring (not shown) is connected to the proximal end portion of the horn member 23.
  • the electrical wiring extends through the inside of the cable 15 and the other end is connected to the high-frequency power source 17.
  • High frequency power is transmitted to the main body exposed portion 45 from the high frequency power source 17 through electrical wiring (not shown), the horn member 23 and the probe main body portion 31.
  • the main body exposed portion 45 functions as an electrode (second electrode portion) different from the conductive coating portion (first electrode portion) 38.
  • the main body exposed portion 45 is located away from the conductive coating portion 38. Further, an insulating layer portion 37 is provided between the conductive coating portion 38 and the probe main body portion 31, and the conductive coating portion 38 is electrically insulated from the probe main body portion 31. For this reason, the conductive coating portion (first electrode portion) 38 and the main body exposed portion (second electrode portion) 45 are electrically insulated by the insulating layer portion 37. Further, since the main body exposed portion 45 is a part of the probe main body portion 31, it vibrates integrally with the probe main body portion 31 (longitudinal vibration).
  • the treatment target is incised when the treatment portion 32 vibrates (longitudinal vibration) while the treatment target is in contact with the protruding proximal end surface 36 of the curved protrusion 33.
  • the treatment target comes into contact with the conductive exposed portion 43 and the main body exposed portion 45 of the conductive coating portion 38. Therefore, a high-frequency current flows through the treatment target between the conductive coating portion 38 and the main body exposed portion 45, and a bipolar treatment is performed using the conductive coating portion 38 and the main body exposed portion 45 as electrodes.
  • the treatment target is coagulated. As described above, coagulation (sealing) is performed simultaneously with the incision (cutting) of the treatment target.
  • the conductive coating portion 38 and the main body exposed portion 45 vibrate integrally with the probe main body portion 31. Therefore, even in the bipolar treatment in which the treatment target is in contact with the conductive coating portion (first electrode portion) 38 and the main body exposed portion (second electrode portion) 45, the sticking to the conductive exposure portion 43 of the treatment target, and Sticking to the main body exposed portion 45 to be treated is effectively prevented. Thereby, treatment performance can be appropriately ensured in treatment using ultrasonic vibration and high-frequency power. In addition, this modification also has the same effect as that described in the first embodiment.
  • the hook-shaped curved protrusion 33 may not be provided in the treatment portion 32.
  • the treatment portion 32 is formed in a spatula shape.
  • the first vertical direction (the direction of arrow P1 in FIG. 11), the second vertical direction (the direction of arrow P2 in FIG. 11), and the third vertical direction ( The direction of the arrow P3 in FIG. 11) and the fourth vertical direction (the direction of the arrow P4 in FIG. 11) are defined.
  • the treatment portion 32 includes a curved extending portion 47 that is curved with respect to the longitudinal axis C in the third vertical direction and the fourth vertical direction.
  • the tip of the ultrasonic probe 7 is formed by the curved extending portion 47.
  • the dimensions in the first vertical direction and the second vertical direction are larger than the dimensions in the third vertical direction and the fourth vertical direction.
  • the entire outer surface of the probe main body 31 is in the range between the distal end of the ultrasonic probe 7 and the distal end of the sheath 6 (that is, the treatment portion 32) in the longitudinal axis direction. Is covered with an insulating layer portion 37.
  • the insulating layer portion 37 extends from the reference position R0 (the most distal node position N1) to a portion on the proximal direction side.
  • the insulating layer portion 37 includes a first insulating surface portion 48A having an outer surface facing the first vertical direction, a second insulating surface portion 48B having an outer surface facing the second vertical direction, and a third outer surface having a third surface.
  • a third insulating surface portion 48C facing in the vertical direction and a fourth insulating surface portion 48D having an outer surface facing in the fourth vertical direction are provided.
  • the first conductive coating portion 38A that is the first electrode portion is provided on the first insulating surface portion 48A
  • the second electrode portion that is the second electrode portion is provided on the second insulating surface portion 48B.
  • the conductive coating portion 38B is provided.
  • the first insulating coating portion 42A is exposed to the outside of the first conductive coating portion 38A in a state in which the first conductive exposed portion 43A of the first conductive coating portion 38A is exposed to the outside in the curved extending portion 47. It covers the surface.
  • the second conductive coating portion 38B of the second conductive coating portion 38B is exposed to the outside
  • the second insulating coating portion 42B is exposed to the outside of the second conductive coating portion 38B. It covers the surface.
  • a first electrode portion is provided on the third insulating surface portion 48C.
  • the conductive coating portion 38A may be extended, and the second conductive coating portion 38B as the second electrode portion may be extended on the fourth insulating surface portion 48D.
  • the second and third modified examples are electrically connected between the first conductive coating portion 38A and the second conductive coating portion 38B by the insulating layer portion 37. Insulated.
  • the second modification and the third modification also have the same effects as those of the first embodiment. 11 to 13, the insulating layer portion 37 is indicated by dot hatching, the first conductive coating portion 38A and the second conductive coating portion 38B are indicated by solid line hatching, and the first insulating coating portion is shown. 42A and the second insulating coating portion 42B are indicated by dashed hatching.
  • the insulating layer portion (for example, 37) is formed on the outer surface of the probe main body portion (for example, 31) from the treatment portion (for example, 32) toward the proximal direction (for example, C2). Yes. And the 1st electrode part (for example, 38A; 38) is provided in the outer surface of the insulating layer part (for example, 37) in the state which at least one part exposes with respect to the exterior in the treatment part (for example, 32). . And the 2nd electrode part (for example, 38B; 45) is provided in the state which at least one part exposes with respect to the exterior in a treatment part (for example, 32).
  • the first electrode portion (for example, 38A; 38) and the second electrode portion (for example, 38B; 45) function as electrodes to which high-frequency power is transmitted, and the first electrode portion is formed by the insulating layer portion (for example, 37).
  • 38A; 38) and the second electrode portion (for example, 38B; 45) are electrically insulated.
  • the probe main body (for example, 31) transmits ultrasonic vibration
  • the probe main body (for example, 31) has an insulating layer (for example, 37), a first electrode (for example, 38A; 38), and a second electrode. It vibrates integrally with the part (for example, 38B; 45).

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

超音波プローブ(7)はプローブ本体部(31)を具備している。プローブ本体部(31)の外表面は絶縁層部(37)によって覆われている。絶縁層部(37)の外表面には、第1及び第2の導電コーティング部(38A、38B)が形成されている。両導電コーティング部(38A、38B)の間は絶縁層部(37)によって絶縁されている。プローブ本体部(31)は、その基端に伝達された超音波振動を湾曲突出部(33)に伝達する。湾曲突出部(33)に接触している血管は、振動する湾曲突出部(33)によって切断される。同時に導電コーティング部(38A、38B)を介して血管に高周波電流が流れる。このため、切断された血管は熱凝固によって封止される。導電コーティング部(38A、38B)はプローブ本体部(31)と一体で振動するので、生体組織が導電コーティング部(38A、38B)に貼り付くことが有効に防止される。

Description

超音波プローブ及び超音波処置装置
 本発明は、超音波振動及び高周波電力を用いて処置対象を処置する処置部が先端部に形成された超音波プローブ、及び、その超音波プローブを備える超音波処置装置に関する。
 特許文献1には、超音波振動及び高周波電力を用いて処置対象を処置する超音波処置装置が開示されている。この超音波処置装置では、基端方向から先端方向へ超音波振動を伝達する超音波プローブが長手軸に沿って延設され、超音波プローブの先端部に処置部が設けられている。処置部の外周方向側は、導電部によって覆われている。ここで、処置部と導電部との間には隙間が形成されている。このため、超音波振動によって処置部が振動する状態でも、導電部に超音波振動が伝達されず、導電部は振動しない。処置部及び導電部は、高周波電力が伝達されることにより電極として機能する。したがって、超音波処置装置では、処置部に伝達された超音波振動を用いて超音波処置が行われるとともに、処置部及び導電部を電極としたバイポーラ処置が行われる。
特開2006-187668号公報
 前記特許文献1では、2つの電極の一方である導電部に超音波振動が伝達されない。このため、処置対象のバイポーラ処置において、導電部は振動せず、処置対象が貼付き易くなる。処置対象が導電部に貼付き易くなることにより、超音波振動及び高周波電力を用いた処置での処置性能が低下してしまう。
 本発明は前記課題に着目してなされたものであり、その目的とするところは、超音波振動及び高周波電力を用いた処置において電極への処置対象の貼付きが有効に防止され、処置性能が適切に確保される超音波プローブ及び超音波処置装置を提供することにある。
 前記目的を達成するために、本発明のある態様の超音波プローブは、長手軸に沿って延設され、基端方向から先端方向へ超音波振動を伝達するプローブ本体部と、前記プローブ本体部の先端部に設けられる処置部と、前記プローブ本体部の外表面において前記処置部から前記基端方向へ向かって形成され、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部と一体に振動する絶縁層部と、少なくとも一部が前記処置部において外部に対して露出する状態で前記絶縁層部の外表面に設けられ、高周波電力が伝達される電極として機能するとともに、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部及び前記絶縁層部と一体に振動する第1の電極部と、 少なくとも一部が前記処置部において前記外部に対して露出する状態で設けられ、前記高周波電力が伝達される前記第1の電極部とは別の電極として機能するとともに、前記絶縁層部によって前記第1の電極部との間が電気的に絶縁され、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部、前記絶縁層部及び前記第1の電極部と一体に振動する第2の電極部と、を備える。
 本発明によれば、超音波振動及び高周波電力を用いた処置において電極への処置対象の貼付きが有効に防止され、処置性能が適切に確保される超音波プローブ及び超音波処置装置を提供することができる。
第1の実施形態に係る超音波処置装置を示す概略図である。 第1の実施形態に係る振動子ユニットの構成を概略的に示す断面図である。 第1の実施形態に係る超音波プローブの構成を概略的に示す斜視図である。 第1の実施形態に係るシースの先端部及び超音波プローブの先端部の構成を示す概略図である。 図4のV-V線断面図である。 図4のVI-VI線断面図である。 第1の変形例に係る超音波プローブの先端部の構成を概略的に示す斜視図である。 第1の変形例に係るシースの先端部及び超音波プローブの先端部の構成を示す概略図である。 図8のIX-IX線断面図である。 図8のX-X線断面図である。 第2の変形例に係る超音波プローブの先端部の構成を概略的に示す斜視図である。 第2の変形例に係るシースの先端部及び超音波プローブの先端部の構成を示す概略図である。 第3の変形例に係るシースの先端部及び超音波プローブの先端部の構成を示す概略図である。
 (第1の実施形態) 
 本発明の第1の実施形態について、図1乃至図6を参照して説明する。
 図1は、本実施形態の超音波処置装置1を示す図である。図1に示すように、超音波処置装置1は、超音波処置具2を備える。超音波処置具2は、長手軸Cを有する。長手軸Cに平行な方向の一方が先端方向(図1の矢印C1の方向)であり、先端方向とは反対方向が基端方向(図1の矢印C2の方向)である。また、先端方向及び基端方向を長手軸方向とする。本実施形態では、超音波処置装置1は、超音波振動に加えて高周波電力(高周波電流)を用いて生体組織等の処置対象を処置する。
 超音波処置具2は、振動子ユニット3と、保持ユニット5と、シース6と、超音波プローブ7と、を備える。保持ユニット5は、長手軸Cに沿って延設される筒状ケース部11を備える。筒状ケース部11には、エネルギー操作入力部であるエネルギー操作入力ボタン12が取付けられている。
 振動子ユニット3は、振動子ケース13を備える。振動子ケース13が筒状ケース部11の内部に基端方向側から挿入されることにより、振動子ユニット3が保持ユニット5に連結される。振動子ケース13の基端部には、ケーブル15の一端が接続されている。ケーブル15の他端は、例えばエネルギー源装置等の制御ユニット10に接続されている。制御ユニット10は、超音波電力源16と、高周波電力源17と、エネルギー制御部18と、を備える。エネルギー制御部18は、振動子ケース13及びケーブル15の内部を通って延設される電気経路部(図示しない)を介して、エネルギー操作入力ボタン12に電気的に接続されている。エネルギー制御部18は、エネルギー操作入力ボタン12でのエネルギー操作の入力に基づいて、超音波電力源16からの超音波電力の出力状態及び高周波電力源17からの高周波電力の出力状態を制御している。なお、超音波電力源16及び高周波電力源17は、別体であってもよく、同一の電力源であってもよい。また、エネルギー制御部18は、例えば、CPU(Central Processing Unit)又はASIC(application specific integrated circuit)、及び、メモリ等の記憶部から形成されている。
 図2は、振動子ユニット3の構成を示す図である。図2に示すように、振動子ユニット3は、前述の振動子ケース13と、振動子ケース13の内部に設けられる振動発生部である超音波振動子21と、を備える。超音波振動子21は、電流(交流電流)を超音波振動に変換する複数(本実施形態では4つ)の圧電素子22A~22Dを備える。このため、超音波振動子21に超音波電力が伝達されることにより、超音波振動子21で超音波振動が発生する。
 また、振動子ケース13の内部には、長手軸Cに沿って延設されるホーン部材23が、設けられている。ホーン部材23は、振動子装着部25を備える。振動子装着部25に、圧電素子22A~22D等の超音波振動子21を形成する部材が装着される。また、ホーン部材23には、断面積変化部26が形成されている。断面積変化部26では、先端方向に向かうにつれて、長手軸Cに垂直な断面積が小さくなる。断面積変化部26によって、超音波振動の振幅が拡大される。ホーン部材23の先端部には、雌ネジ部27が設けられている。
 図2に示すように、超音波プローブ7の基端部には、雄ネジ部28が設けられている。雄ネジ部28が雌ネジ部27に螺合することにより、ホーン部材23の先端方向側に超音波プローブ7が接続される。超音波プローブ7は、長手軸Cに沿って延設されている。ホーン部材23は、筒状ケース部11の内部で超音波プローブ7に接続されている。また、振動発生部である超音波振動子21は、超音波プローブ7より基端方向側に位置している。
 図1に示すように、シース6は、先端方向側から筒状ケース部11の内部に挿入されることにより、保持ユニット5に連結される。そして、筒状ケース部11の内部で、シース6が振動子ケース13に連結される。また、超音波プローブ7は、シース6に挿通されている。このため、超音波プローブ7の先端部は、シース6の先端から先端方向へ向かって突出している。
 図2に示すように、超音波振動子21には、電気配線29A,29Bの一端が接続されている。電気配線29A,29Bは、ケーブル15の内部を通って、他端が制御ユニット10の超音波電力源16に接続されている。超音波電力源16から電気配線29A,29Bを介して超音波振動子21に超音波電力が供給されることにより、超音波振動子21で超音波振動が発生する。そして、発生した超音波振動は、超音波振動子21からホーン部材23を介して、超音波プローブ7に伝達される。
 図3は、超音波プローブ7を示す図である。ここで、長手軸Cに垂直な方向の1つを第1の垂直方向(図3の矢印P1の方向)とし、第1の垂直方向とは反対方向を第2の垂直方向(図3の矢印P2の方向)とする。また、長手軸Cに垂直で、かつ、第1の垂直方向及び第2の垂直方向に垂直な方向の一方を第3の垂直方向(図3の矢印P3の方向)とし、第3の垂直方向とは反対方向を第4の垂直方向(図3の矢印P4の方向)とする。図4は、シース6の先端部及び超音波プローブ7の先端部の構成を示す図である。図4では、シース6は第1の垂直方向及び第2の垂直方向に垂直な断面で示され、超音波プローブ7は、第1の垂直方向側から視た状態で示されている。そして、図5は、図4のV-V線断面図であり、図6は、図4のVI-VI線断面図である。
 図3乃至図6に示すように、超音波プローブ7は、長手軸Cに沿って延設されるプローブ本体部31を備える。超音波プローブ7に伝達された超音波振動は、プローブ本体部31において基端方向から先端方向へ伝達される。プローブ本体部31が超音波振動を伝達することにより、超音波プローブ7(プローブ本体部31)は、長手軸Cに平行な長手軸方向を振動方向として振動(縦振動)する。なお、この際、超音波プローブ7の先端(プローブ本体部31の先端)が超音波振動(縦振動)の腹位置の1つである最先端腹位置A1となる、所定の共振周波数(振動状態)で振動する。所定の共振周波数で超音波プローブ7が振動する状態では、最先端腹位置A1は、超音波振動の腹位置の中で最も先端方向側に位置している。
 また、超音波プローブ7が所定の共振周波数で振動する状態においてプローブ本体部31の先端から基端方向への寸法が超音波振動の4分の1波長となる位置を基準位置R0とする。基準位置R0は、超音波プローブ7が所定の共振周波数で振動する状態での超音波振動(縦振動)の節位置の1つである最先端節位置N1と一致する。最先端節位置N1は、超音波振動の節位置の中で最も先端方向側に位置している。基準位置R0(最先端節位置N1)は、シース6の先端より基端方向側に位置している。したがって、基準位置R0は、シース6の内部に位置している。
 プローブ本体部31の先端部には、処置部32が設けられている。超音波プローブ7は、処置部32がシース6の先端から先端方向へ向かって突出する状態で、シース6に挿通されている。処置部32は、長手軸Cに対して第3の垂直方向に湾曲し、第3の垂直方向に向かって突出する湾曲突出部33を備える。本実施形態では、湾曲突出部33は、フック形状に形成されている。湾曲突出部33は、先端方向(図3の矢印C1の方向)を向く突出先端面35と、基端方向(図3の矢印C2の方向)を向く突出基端面36と、を備える。突出先端面35によって、超音波プローブ7の先端が形成されている。また、湾曲突出部33の基端位置を、湾曲基端位置B1とする。湾曲基端位置B1は、シース6の先端より先端方向側に位置している。
 プローブ本体部31の外表面には、絶縁層部37が形成されている。絶縁層部37は、例えば樹脂等の絶縁材料から形成されるコーティング層であり、図3及び図4ではドットのハッチングで示されている。絶縁層部37は、処置部32から基端方向へ向かって延設されている。本実施形態では、長手軸方向について超音波プローブ7の先端とシース6の先端との間の範囲(すなわち、処置部32)において、プローブ本体部31の外表面の全体が、絶縁層部37によって覆われている。したがって、本実施形態では、シース6の先端より先端方向側に位置する処置部32においても、プローブ本体部31の外表面は、外部に対して露出していない。
 絶縁層部37は、基準位置R0(最先端節位置N1)より基端方向側の部位まで、延設されている。このため、絶縁層部37の基端は、基準位置R0より基端方向側に位置し、シース6の先端より基端方向側に位置している。したがって、絶縁層部37の基端は、シース6の内部に位置している。また、絶縁層部37は、プローブ本体部31の外表面に密着している。このため、プローブ本体部31が超音波振動を伝達することにより、絶縁層部37は、プローブ本体部31と一体に振動(縦振動)する。
 絶縁層部37の外表面には、第1の電極部である第1の導電コーティング部38Aと、第2の電極部である第2の導電コーティング部38Bと、を備える。第1の導電コーティング部38A及び第2の導電コーティング部38Bは、銀パウダーを含有する樹脂、金属メッキ等から形成され、導電性を有する。図3及び図4では、第1の導電コーティング部38A及び第2の導電コーティング部38Bは、実線のハッチングで示されている。第1の導電コーティング部38Aには、第1の電気経路部である第1の電気配線部39Aの一端が接続されている。また、第2の導電コーティング部38Bには、第2の電気経路部である第2の電気配線部39Bの一端が接続されている。第1の電気配線部39A及び第2の電気配線部39Bは、シース6の内部、振動子ケース13の内部及びケーブル15の内部を通って延設されている。そして、第1の電気配線部39Aの他端及び第2の電気配線部39Bの他端は、制御ユニット10の高周波電力源17に接続されている。なお、第1の電気配線部39A及び第2の電気配線部39Bは、互いに対して電気的に絶縁され、プローブ本体部31及びホーン部材23に対して電気的に絶縁されている。
 第1の導電コーティング部38Aには、高周波電力源17から第1の電気配線部39Aを通して高周波電力が伝達される。これにより、第1の導電コーティング部38Aは、電極(第1の電極部)として機能する。第2の導電コーティング部38Bには、高周波電力源17から第2の電気配線部39Bを通して高周波電力が伝達される。これにより、第2の導電コーティング部38Bは、第1の導電コーティング部38Aとは異なる電極(第2の電極部)として機能する。第1の導電コーティング部38A及び第2の導電コーティング部38Bが電極として機能する状態では、第1の導電コーティング部38Aは、第2の導電コーティング部38Bに対して、電位が異なる。
 絶縁層部37は、外表面が第1の垂直方向を向く第1の絶縁表面部41Aと、外表面が第2の垂直方向を向く第2の絶縁表面部41Bと、を備える。本実施形態では、第1の導電コーティング部38Aは、第1の絶縁表面部41Aに設けられ、第2の導電コーティング部38Bは、第2の絶縁表面部41Bに設けられている。第1の導電コーティング部38Aとプローブ本体部31との間には絶縁層部37(第1の絶縁表面部41A)が設けられ、第2の導電コーティング部38Bとプローブ本体部31との間には絶縁層部37(第2の絶縁表面部41B)が設けられている。このため、第1の導電コーティング部38A及び第2の導電コーティング部38Bは、プローブ本体部31に対して電気的に絶縁されている。
 ここで、長手軸Cを中心とする円の円周に沿った2方向を長手軸回り方向とする。第1の導電コーティング部38A及び第2の導電コーティング部38Bは、絶縁層部37の外表面に設けられている。また、第1の導電コーティング部38Aは、長手軸回り方向について第2の導電コーティング部38Bから離間して、位置している。このため、第1の導電コーティング部38Aと第2の導電コーティング部38Bとの間は、絶縁層部37によって、電気的に絶縁されている。
 第1の導電コーティング部38Aは、第1の絶縁表面部41Aにおいて絶縁層部37の外表面に密着している。このため、プローブ本体部31が超音波振動を伝達することにより、第1の導電コーティング部38Aは、プローブ本体部31及び絶縁層部37と一体に振動(縦振動)する。また、第2の導電コーティング部38Bは、第2の絶縁表面部41Bにおいて絶縁層部37の外表面に密着している。このため、プローブ本体部31が超音波振動を伝達することにより、第2の導電コーティング部38Bは、プローブ本体部31、絶縁層部37及び第1の導電コーティング部38Aと一体に振動(縦振動)する。
 第1の導電コーティング部38Aは、第1の絶縁表面部41Aにおいて湾曲突出部33から基端方向へ向かって延設されている。また、第2の導電コーティング部38Bは、第2の絶縁表面部41Bにおいて湾曲突出部33から基端方向へ向かって延設されている。そして、第1の導電コーティング部38A及び第2の導電コーティング部38Bは、少なくとも基準位置R0(最先端節位置N1)まで基端方向に向かって延設されている。第1の導電コーティング部38Aの基端及び第2の導電コーティング部38Bの基端は、基準位置R0又は基準位置R0より基端方向側に位置している。したがって、第1の導電コーティング部38Aの基端及び第2の導電コーティング部38Bの基端は、シース6の先端より基端方向側に位置し、シース6の内部に位置している。ただし、第1の導電コーティング部38Aの基端及び第2の導電コーティング部38Bの基端は、絶縁層部37の基端より先端方向側に位置している。したがって、第1の導電コーティング部38Aは、いずれの部位においてもプローブ本体部31に接触しない。同様に、第2の導電コーティング部38Bは、いずれの部位においてもプローブ本体部31に接触しない。
 第1の電気配線部39Aの一端は、基準位置R0(又は基準位置R0の近傍)で、第1の導電コーティング部38Aに接続されている。また、第2の電気配線部39Bの一端は、基準位置R0(又は基準位置R0の近傍)で、第2の導電コーティング部38Bに接続されている。基準位置R0は、超音波プローブ7が所定の共振周波数で振動する状態での最先端節位置N1であるため、超音波振動(縦振動)の振幅がゼロになる。そして、基準位置R0の近傍では、超音波振動の振幅が小さくなる。このため、プローブ本体部31と一体に第1の導電コーティング部38A及び第2の導電コーティング部38Bが振動する状態でも、第1の電気配線部39Aが第1の導電コーティング部38Aに強固に接続され、第2の電気配線部39Bが第2の導電コーティング部38Bに強固に接続される。
 また、超音波プローブ7には、第1の導電コーティング部38Aの外表面を覆う第1の絶縁コーティング部42Aと、第2の導電コーティング部38Bの外表面を覆う第2の絶縁コーティング部42Bと、を備える。第1の絶縁コーティング部42A及び第2の絶縁コーティング部42Bは、樹脂等の絶縁材料から形成され、図3及び図4では破線のハッチングで示されている。第1の絶縁コーティング部42Aの先端は、湾曲基端位置B1より基端方向側に位置している。このため、湾曲突出部33では、第1の導電コーティング部38Aが外部に対して露出し、第1の導電露出部43Aが形成されている。また、第2の絶縁コーティング部42Bの先端は、湾曲基端位置B1より基端方向側に位置している。このため、湾曲突出部33では、第2の導電コーティング部38Bが外部に対して露出し、第2の導電露出部43Bが形成されている。生体組織等の処置対象を湾曲突出部33の突出基端面36に接触させた状態では、第1の導電露出部43A及び第2の導電露出部43Bに処置対象が接触する。
 第1の絶縁コーティング部42Aの先端及び第2の絶縁コーティング部42Bの先端は、シース6の先端より先端方向側に位置している。また、第1の絶縁コーティング部42Aの基端及び第2の絶縁コーティング部42Bの基端は、シース6の先端より基端方向側に位置している。このため、第1の導電コーティング部38Aは、第1の導電露出部43A以外の部位で、外部に対して露出していない。すなわち、シース6の先端より先端方向側に位置する処置部32において、第1の導電コーティング部38Aの一部(第1の導電露出部43A)が外部に対して露出している。同様に、第2の導電コーティング部38Bは、第2の導電露出部43B以外の部位で、外部に対して露出していない。すなわち、シース6の先端より先端方向側に位置する処置部32において、第2の導電コーティング部38Bの一部(第2の導電露出部43B)が外部に対して露出している。したがって、処置対象とは異なる生体組織等が、第1の導電露出部43A以外の部位で第1の導電コーティング部(第1の電極部)38Aに接触せず、第2の導電露出部43B以外の部位で第2の導電コーティング部(第2の電極部)38Bに接触しない。
 また、第1の絶縁コーティング部42Aの基端及び第2の絶縁コーティング部42Bの基端は、基準位置R0(最先端節位置N)より先端方向側に位置している。このため、第1の電気配線部39Aが第1の導電コーティング部38Aに接続される基準位置R0において、第1の導電コーティング部38Aの外表面は第1の絶縁コーティング部42Aによって覆われていない。このため、第1の電気配線部39Aから第1の導電コーティング部38Aに確実に高周波電力が伝達される。同様に、第2の電気配線部39Bが第2の導電コーティング部38Bに接続される基準位置R0において、第2の導電コーティング部38Bの外表面は第2の絶縁コーティング部42Bによって覆われていない。このため、第2の電気配線部39Bから第2の導電コーティング部38Bに確実に高周波電力が伝達される。
 次に、本実施形態の超音波プローブ7及び超音波処置装置1の作用及び効果について説明する。超音波処置装置1を用いて生体組織(血管)等の処置対象を処置する際には、超音波プローブ7及びシース6を体腔内に挿入する。そして、処置部32の湾曲突出部33の突出基端面36に、処置対象を接触させる。これにより、第1の導電コーティング部(第1の電極部)38Aの第1の導電露出部43A及び第2の導電コーティング部(第2の電極部)38Bの第2の導電露出部43Bが、処置対象に接触する。この状態で、エネルギー操作入力ボタン12でエネルギー操作を入力する。これにより、エネルギー制御部18によって、超音波電力源16から超音波電力が出力され、高周波電力源17から高周波電力が出力される。
 超音波振動子21に超音波電力が伝達されることにより、超音波振動子21で超音波振動が発生する。そして、発生した超音波振動は、ホーン部材23を介して、超音波プローブ7に伝達される。そして、超音波プローブ7(プローブ本体部31)において、基端方向から先端方向へ、処置部32まで超音波振動が伝達され、所定の共振周波数でプローブ本体部31は振動(縦振動)する。この際、絶縁層部37、第1の導電コーティング部(第1の電極部)38A及び第2の導電コーティング部(第2の電極部)38Bは、プローブ本体部31と一体に振動する。また、高周波電力源17から高周波電力が伝達されことより、第1の導電コーティング部38Aは、電極(第1の電極部)として機能する。高周波電力源17から高周波電力が伝達されることにより、第2の導電コーティング部38Bは、第1の導電コーティング部38Aとは異なる電極(第2の電極部)として機能する。この際、第1の導電コーティング部38Aは、第2の導電コーティング部38Bに対して、電位が異なる。
 湾曲突出部33の突出基端面36に処置対象が接触する状態で処置部32が振動(縦振動)することにより、処置対象が切開される。また、第1の導電露出部43A及び第2の導電露出部43Bに処置対象が接触しているため、第1の導電コーティング部38Aと第2の導電コーティング部38Bとの間で、処置対象を通して高周波電流が流れ、第1の導電コーティング部38A及び第2の導電コーティング部38Bを電極とするバイポーラ処置が行われる。処置対象に高周波電流が流れることにより、処置対象が変性され、凝固される。前述のようにして、処置対象の切開(切断)と同時に凝固(封止)が行われる。
 ここで、第1の導電コーティング部38A及び第2の導電コーティング部38Bは、プローブ本体部31と一体に振動している。したがって、第1の導電コーティング部(第1の電極部)38A及び第2の導電コーティング部(第2の電極部)38Bに処置対象が接触するバイポーラ処置においても、処置対象の第1の導電露出部43Aへの貼付き、及び、処置対象の第2の導電露出部43Bへの貼付きが有効に防止される。これにより、超音波振動及び高周波電力を用いた処置において、処置性能を適切に確保することができる。
 また、第1の導電コーティング部38Aの基端及び第2の導電コーティング部38Bの基端は、絶縁層部37の基端より先端方向側に位置している。したがって、第1の導電コーティング部38Aは、いずれの部位においてもプローブ本体部31に接触せず、第2の導電コーティング部38Bは、いずれの部位においてもプローブ本体部31に接触しない。このため、高周波電力を用いたバイポーラ処置において、第1の導電コーティング部(第1の電極部)38A及び第2の導電コーティング部(第2の電極部)38Bとの間で、処置対象以外の部分(例えば、プローブ本体部31)に高周波電流が流れることが、有効に防止される。これにより、バイポーラ処置において、処置対象に流れる高周波電流の電流密度が高くなり、処置性能を向上させることができる。
 また、第1の電気配線部39Aの一端は、基準位置R0(最先端節位置N1)で、第1の導電コーティング部38Aに接続され、第2の電気配線部39Bの一端は、基準位置R0(最先端節位置N1)で、第2の導電コーティング部38Bに接続されている。このため、プローブ本体部31と一体に第1の導電コーティング部38A及び第2の導電コーティング部38Bが振動する状態でも、第1の電気配線部39Aが第1の導電コーティング部38Aに強固に接続され、第2の電気配線部39Bが第2の導電コーティング部38Bに強固に接続される。したがって、第1の電気配線部39Aから第1の導電コーティング部38Aに高周波電力を適切に伝達することができ、第2の電気配線部39Bから第2の導電コーティング部38Bに高周波電力を適切に伝達することができる。
 また、第1の導電コーティング部38Aは、第1の絶縁コーティング部42Aによって、第1の導電露出部43A以外の部位で、外部に対して露出していない。同様に、第2の導電コーティング部38Bは、第2の絶縁コーティング部42Bによって、第2の導電露出部43B以外の部位で、外部に対して露出していない。したがって、高周波電流を用いたバイポーラ処置において、処置対象とは異なる生体組織等が、第1の導電露出部43A以外の部位で第1の導電コーティング部(第1の電極部)38Aに接触せず、第2の導電露出部43B以外の部位で第2の導電コーティング部(第2の電極部)38Bに接触しない。これにより、バイポーラ処置において、処置性能を向上させることができる。
 また、第1の電気配線部39Aが第1の導電コーティング部38Aに接続される基準位置R0において、第1の導電コーティング部38Aの外表面は第1の絶縁コーティング部42Aによって覆われていない。同様に、第2の電気配線部39Bが第2の導電コーティング部38Bに接続される基準位置R0において、第2の導電コーティング部38Bの外表面は第2の絶縁コーティング部42Bによって覆われていない。このため、第1の電気配線部39Aから第1の導電コーティング部38Aに確実に高周波電力を伝達することができ、第2の電気配線部39Bから第2の導電コーティング部38Bに確実に高周波電力を伝達することができる。
 (変形例) 
 なお、第1の実施形態では、電極として機能する2つの導電コーティング部(38A,38B)が設けられているが、これに限るものではない。例えば、第1の変形例として図7乃至図10に示すように、導電コーティング部38が1つのみ、設けられてもよい。ここで、図7は、超音波プローブ7の先端部を示す図であり、図8は、超音波プローブ7の先端部及びシース6の先端部を示す図である。そして、図9は、図8のIX―IX線断面図であり、図10は、図8のX―X線断面図である。なお、図8では、シース6は第1の垂直方向及び第2の垂直方向に垂直な断面で示され、超音波プローブ7は、第1の垂直方向側から視た状態で示されている。また、図7及び図8では、絶縁層部37はドットのハッチングで示され、導電コーティング部38は実線のハッチングで示されている。
 導電コーティング部38は、第1の実施形態の第1の導電コーティング部38Aと略同様の構成であり、高周波電力が伝達されることにより電極として機能する第1の電極部である。すなわち、導電コーティング部38は、プローブ本体部31と一体に振動(縦振動)する。また、導電コーティング部38は、絶縁層部37の外表面に形成されている。そして、絶縁層部37は、基準位置R0(最先端節位置N1)より基端方向側の部位まで、延設され、導電コーティング部38は、少なくとも基準位置R0まで基端方向へ向かって延設されている。また、導電コーティング部38の基端は、シース6の内部に位置し、絶縁層部37の基端より先端方向側に位置している。
 基準位置R0(又は基準位置R0の近傍)では、電気経路部である電気配線部39の一端が、導電コーティング部38に接続されている。電気配線部39は、第1の実施形態の第1の電気配線部39Aと略同様の構成である。すなわち、電気配線部39の他端は、制御ユニット10の高周波電力源17に接続されている。そして、導電コーティング部38には、電気配線部39を介して、高周波電力源17から高周波電力が伝達される。
 また、導電コーティング部38の外表面は、絶縁コーティング部42によって、覆われている。絶縁コーティング部42は、第1の実施形態の第1の絶縁コーティング部42Aと略同一の構成である。すなわち、絶縁コーティング部42の先端は、湾曲基端位置B1より基端方向側に位置し、湾曲突出部33では、導電コーティング部38が外部に対して露出し、導電露出部43が形成されている。湾曲突出部33の突出基端面36に処置対象を接触させて処置を行う際には、導電露出部43に処置対象が接触する。また、絶縁コーティング部42の先端は、シース6の先端より先端方向側に位置し、絶縁コーティング部42の基端は、シース6の内部に位置している。そして、絶縁コーティング部42の基端は、基準位置R0(最先端節位置N)より先端方向側に位置している。なお、図7及び図8では、絶縁コーティング部42は、破線のハッチングで示されている。
 ただし、本変形例では第1の実施形態とは異なり、長手軸方向について超音波プローブ7の先端とシース6の先端との間の範囲(すなわち、処置部32)において、プローブ本体部31の外表面の全体ではなく一部のみが、絶縁層部37によって覆われている。そして、本変形例では、湾曲突出部33の突出基端面36の一部においてプローブ本体部31の外表面が外部に対して露出している。すなわち、処置部32の突出基端面36において外部に対して露出する本体露出部45が、プローブ本体部31の外表面に設けられている。本体露出部45は、絶縁層部37によって覆われていない。図7では、本体露出部45は、実線のハッチングで示されている。
 本変形例では、ホーン部材23の基端部に、電気配線(図示しない)の一端が接続されている。そして、電気配線は、ケーブル15の内部を通って延設され、他端が、高周波電力源17に接続されている。本体露出部45には、電気配線(図示しない)、ホーン部材23及びプローブ本体部31を通して、高周波電力源17から高周波電力が伝達される。高周波電力が伝達されることにより、本体露出部45は、導電コーティング部(第1の電極部)38とは異なる電極(第2の電極部)として機能する。湾曲突出部33の突出基端面36に処置対象を接触させて処置を行う際には、本体露出部45に処置対象が接触する。
 ここで、湾曲突出部33では、本体露出部45は、導電コーティング部38から離間して位置している。また、導電コーティング部38とプローブ本体部31との間には絶縁層部37が設けられ、導電コーティング部38は、プローブ本体部31から電気的に絶縁されている。このため、導電コーティング部(第1の電極部)38と本体露出部(第2の電極部)45との間は、絶縁層部37によって、電気的に絶縁されている。また、本体露出部45はプローブ本体部31の一部であるため、プローブ本体部31と一体に振動(縦振動)する。
 本変形例でも第1の実施形態と同様に、湾曲突出部33の突出基端面36に処置対象が接触する状態で処置部32が振動(縦振動)することにより、処置対象が切開される。また、湾曲突出部33の突出基端面36に処置対象が接触することにより、導電コーティング部38の導電露出部43及び本体露出部45に処置対象が接触する。このため、導電コーティング部38と本体露出部45との間で、処置対象を通して高周波電流が流れ、導電コーティング部38及び本体露出部45を電極とするバイポーラ処置が行われる。処置対象に高周波電流が流れることにより、処置対象が凝固される。前述のようにして、処置対象の切開(切断)と同時に凝固(封止)が行われる。
 ここで、導電コーティング部38及び本体露出部45は、プローブ本体部31と一体に振動している。したがって、導電コーティング部(第1の電極部)38及び本体露出部(第2の電極部)45に処置対象が接触するバイポーラ処置においても、処置対象の導電露出部43への貼付き、及び、処置対象の本体露出部45への貼付きが有効に防止される。これにより、超音波振動及び高周波電力を用いた処置において、処置性能を適切に確保することができる。また、本変形例でも第1の実施形態で前述した効果と同様の効果を、奏する。
 また、第2の変形例として図11及び図12に示すように、フック形状の湾曲突出部33が、処置部32に設けられていなくてもよい。本変形例では、処置部32がヘラ形状に形成されている。本変形例でも、第1の実施形態と同様に、第1の垂直方向(図11の矢印P1の方向)、第2の垂直方向(図11の矢印P2の方向)、第3の垂直方向(図11の矢印P3の方向)及び第4の垂直方向(図11の矢印P4の方向)が規定される。処置部32は、第3の垂直方向及び第4の垂直方向について長手軸Cに対して湾曲する湾曲延設部47を備える。湾曲延設部47によって、超音波プローブ7の先端が形成されている。ヘラ形状に形成される処置部32では、第1の垂直方向及び第2の垂直方向についての寸法が、第3の垂直方向及び第4の垂直方向についての寸法に比べて、大きくなる。
 本変形例でも第1の実施形態と同様に、長手軸方向について超音波プローブ7の先端とシース6の先端との間の範囲(すなわち処置部32)において、プローブ本体部31の外表面の全体が、絶縁層部37によって覆われている。そして、絶縁層部37は、基準位置R0(最先端節位置N1)より基端方向側の部位まで、延設されている。絶縁層部37は、外表面が第1の垂直方向を向く第1の絶縁表面部48Aと、外表面が第2の垂直方向を向く第2の絶縁表面部48Bと、外表面が第3の垂直方向を向く第3の絶縁表面部48Cと、外表面が第4の垂直方向を向く第4の絶縁表面部48Dと、を備える。
 そして、本変形例では、第1の絶縁表面部48Aに第1の電極部である第1の導電コーティング部38Aが設けられ、第2の絶縁表面部48Bに第2の電極部である第2の導電コーティング部38Bが設けられている。そして、湾曲延設部47において第1の導電コーティング部38Aの第1の導電露出部43Aが外部に対して露出する状態に、第1の絶縁コーティング部42Aが第1の導電コーティング部38Aの外表面を覆っている。また、湾曲延設部47において第2の導電コーティング部38Bの第2の導電露出部43Bが外部に対して露出する状態に、第2の絶縁コーティング部42Bが第2の導電コーティング部38Bの外表面を覆っている。
 また、第3の変形例(第2の変形例の変形例)として図14に示すように、ヘラ形状の処置部32において、第3の絶縁表面部48Cに第1の電極部である第1の導電コーティング部38Aが延設され、第4の絶縁表面部48Dに第2の電極部である第2の導電コーティング部38Bが延設されてもよい。
 第2の変形例及び第3の変形例でも第1の実施形態と同様に、第1の導電コーティング部38Aと第2の導電コーティング部38Bとの間は、絶縁層部37によって、電気的に絶縁されている。このため、第2の変形例及び第3の変形例でも第1の実施形態と同様の効果を奏する。なお、図11乃至図13では、絶縁層部37がドットのハッチングで示され、第1の導電コーティング部38A及び第2の導電コーティング部38Bが実線のハッチングで示され、第1の絶縁コーティング部42A及び第2の絶縁コーティング部42Bが破線のハッチングで示されている。
 前述の実施形態及び変形例では、プローブ本体部(例えば31)の外表面において、処置部(例えば32)から基端方向(例えばC2)へ向かって、絶縁層部(例えば37)が形成されている。そして、少なくとも一部が処置部(例えば32)において外部に対して露出する状態で、第1の電極部(例えば38A;38)が、絶縁層部(例えば37)の外表面に設けられている。そして、少なくとも一部が処置部(例えば32)において外部に対して露出する状態で、第2の電極部(例えば38B;45)が設けられている。第1の電極部(例えば38A;38)及び第2の電極部(例えば38B;45)は、高周波電力が伝達される電極として機能し、絶縁層部(例えば37)によって、第1の電極部(例えば38A;38)と第2の電極部(例えば38B;45)との間が電気的に絶縁される。プローブ本体部(例えば31)が超音波振動を伝達することにより、プローブ本体部(例えば31)は、絶縁層部(例えば37)、第1の電極部(例えば38A;38)及び第2の電極部(例えば38B;45)と一体に、振動する。
 以上、本発明の実施形態等について説明したが、本発明は前述の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。

Claims (17)

  1.  長手軸に沿って延設され、基端方向から先端方向へ超音波振動を伝達するプローブ本体部と、
     前記プローブ本体部の先端部に設けられる処置部と、
     前記プローブ本体部の外表面において前記処置部から前記基端方向へ向かって形成され、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部と一体に振動する絶縁層部と、
     少なくとも一部が前記処置部において外部に対して露出する状態で前記絶縁層部の外表面に設けられ、高周波電力が伝達される電極として機能するとともに、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部及び前記絶縁層部と一体に振動する第1の電極部と、
     少なくとも一部が前記処置部において前記外部に対して露出する状態で設けられ、前記高周波電力が伝達される前記第1の電極部とは別の電極として機能するとともに、前記絶縁層部によって前記第1の電極部との間が電気的に絶縁され、前記プローブ本体部が前記超音波振動を伝達することにより、前記プローブ本体部、前記絶縁層部及び前記第1の電極部と一体に振動する第2の電極部と、
     を具備する超音波プローブ。
  2.  前記プローブ本体部の先端から前記基端方向への寸法が前記超音波振動の4分の1波長となる位置を基準位置とした場合に、前記絶縁層部は、前記基準位置より基端方向側の部位まで延設され、
     前記第1の電極部の基端は、前記絶縁層部の基端より先端方向側に位置している、
     請求項1の超音波プローブ。
  3.  前記処置部において前記第1の電極部の一部が前記外部に対して露出する状態に、前記第1の電極部の外表面を覆う絶縁コーティング部をさらに具備する、請求項2の超音波プローブ。
  4.  前記第1の電極部は、少なくとも前記基準位置まで前記基端方向に向かって延設され、
     前記絶縁コーティング部の基端は、前記基準位置より前記先端方向側に位置している、
     請求項3の超音波プローブ。
  5.  請求項4の超音波プローブと、
     前記基準位置で前記第1の電極部に一端が接続される電気経路部と、
     前記電気経路部の他端が接続され、前記第1の電極部及び前記第2の電極部に伝達される前記高周波電力を発生するとともに、前記電気経路部を介して前記第1の電極部に前記高周波電力を伝達する高周波電力源と、
     を具備する超音波処置装置。
  6.  請求項4の超音波プローブと、
     前記処置部が前記先端方向へ向かって突出する状態で前記超音波プローブが挿通され、前記絶縁コーティング部の前記基端が内部に位置するシースと、
     を具備する超音波処置装置。
  7.  請求項2の超音波プローブと、
     前記処置部が前記先端方向へ向かって突出する状態で前記超音波プローブが挿通され、前記絶縁層部の前記基端が内部に位置するシースと、
     を具備する超音波処置装置。
  8.  前記第2の電極部は、前記絶縁層部の外表面に設けられている、請求項1の超音波プローブ。
  9.  前記プローブ本体部の先端から前記基端方向への寸法が前記超音波振動の4分の1波長となる位置を基準位置とした場合に、前記絶縁層部は、前記基準位置より基端方向側の部位まで延設され、
     前記第1の電極部の基端及び前記第2の電極部の基端は、前記絶縁層部の基端より先端方向側に位置している、
     請求項8の超音波プローブ。
  10.  前記処置部において前記第1の電極部の一部が前記外部に対して露出する状態に、前記第1の電極部の外表面を覆う第1の絶縁コーティング部と、
     前記処置部において前記第2の電極部の一部が前記外部に対して露出する状態に、前記第2の電極部の外表面を覆う第2の絶縁コーティング部と、
     をさらに具備する、請求項9の超音波プローブ。
  11.  前記第1の電極部及び前記第2の電極部は、少なくとも前記基準位置まで前記基端方向に向かって延設され、
     前記第1の絶縁コーティング部の基端及び前記第2の絶縁コーティング部の基端は、前記基準位置より前記先端方向側に位置している、
     請求項10の超音波プローブ。
  12.  請求項11の超音波プローブと、
     前記基準位置で前記第1の電極部に一端が接続される第1の電気経路部と、
     前記基準位置で前記第2の電極部に一端が接続される第2の電気経路部と、
     前記第1の電気経路部の他端及び前記第2の電気経路部の他端が接続され、前記第1の電極部及び前記第2の電極部に伝達される前記高周波電力を発生するとともに、前記第1の電気経路部を介して前記第1の電極部に前記高周波電力を伝達し、前記第2の電気経路部を介して前記第2の電極部に前記高周波電力を伝達する高周波電力源と、
     を具備する超音波処置装置。
  13.  請求項11の超音波プローブと、
     前記処置部が前記先端方向へ向かって突出する状態で前記超音波プローブが挿通され、前記第1の絶縁コーティング部の前記基端及び前記第2の絶縁コーティング部の基端が内部に位置するシースと、
     を具備する超音波処置装置。
  14.  前記長手軸に垂直な方向の1つを第1の垂直方向とし、前記第1の垂直方向とは反対方向を第2の垂直方向とした場合に、前記絶縁層部は、前記外表面が前記第1の垂直方向を向く第1の絶縁表面部と、前記外表面が前記第2の垂直方向を向く第2の絶縁表面部と、を備え、
     前記第1の電極部は、前記第1の絶縁表面部に設けられ、
     前記第2の電極部は、前記第2の絶縁表面部に設けられている、
     請求項8の超音波プローブ。
  15.  前記長手軸に垂直で、かつ、前記第1の垂直方向及び前記第2の垂直方向に垂直な方向の一方を第3の垂直方向とした場合に、前記処置部は、前記長手軸に対して前記第3の垂直方向に湾曲し、前記第3の垂直方向に向かって突出する湾曲突出部を備え、
     前記第1の電極部は、前記第1の絶縁表面部において前記湾曲突出部から前記基端方向へ向かって延設され、
     前記第2の電極部は、前記第2の絶縁表面部において前記湾曲突出部から前記基端方向へ向かって延設されている、
     請求項14の超音波プローブ。
  16.  前記第2の電極部は、前記処置部において前記外部に対して露出する状態で前記プローブ本体部の前記外表面に形成され、前記プローブ本体部を介して前記高周波電力が伝達されている、請求項1の超音波プローブ。
  17.  請求項1の超音波プローブと、
     前記超音波プローブより基端方向側に設けられ、前記処置部に伝達される前記超音波振動を発生する振動発生部と、
     前記振動発生部に伝達される超音波電力を発生する超音波電力源と、
     前記第1の電極部及び前記第2の電極部に伝達される前記高周波電力を発生する高周波電力源と、
     を具備する超音波処置装置。
PCT/JP2014/081594 2014-02-06 2014-11-28 超音波プローブ及び超音波処置装置 WO2015118757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14881589.7A EP3103407B1 (en) 2014-02-06 2014-11-28 Ultrasonic probe and ultrasonic treatment apparatus
CN201480058233.5A CN105658161B (zh) 2014-02-06 2014-11-28 超声波探头及超声波处理装置
JP2015527381A JP5836543B1 (ja) 2014-02-06 2014-11-28 超音波プローブ及び超音波処置装置
US15/053,768 US9592072B2 (en) 2014-02-06 2016-02-25 Ultrasonic treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021672 2014-02-06
JP2014021672 2014-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/053,768 Continuation US9592072B2 (en) 2014-02-06 2016-02-25 Ultrasonic treatment apparatus

Publications (1)

Publication Number Publication Date
WO2015118757A1 true WO2015118757A1 (ja) 2015-08-13

Family

ID=53777574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081594 WO2015118757A1 (ja) 2014-02-06 2014-11-28 超音波プローブ及び超音波処置装置

Country Status (5)

Country Link
US (1) US9592072B2 (ja)
EP (1) EP3103407B1 (ja)
JP (1) JP5836543B1 (ja)
CN (1) CN105658161B (ja)
WO (1) WO2015118757A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105832405A (zh) * 2015-10-28 2016-08-10 安进医疗科技(北京)有限公司 用于外科手术的手柄及手术控制系统
WO2018087837A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 医療機器、医療機器の製造方法
WO2018087838A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 医療機器
CN108697451A (zh) * 2016-01-20 2018-10-23 奥林巴斯株式会社 处置器具

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
PL1802245T3 (pl) 2004-10-08 2017-01-31 Ethicon Endosurgery Llc Ultradźwiękowy przyrząd chirurgiczny
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
EP2900158B1 (en) 2012-09-28 2020-04-15 Ethicon LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
EP3050529A4 (en) * 2013-09-27 2017-05-17 Olympus Corporation Ultrasonic probe, ultrasonic treatment tool and treatment system
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
JP5959769B2 (ja) * 2014-05-23 2016-08-02 オリンパス株式会社 処置具
WO2016013338A1 (ja) * 2014-07-24 2016-01-28 オリンパス株式会社 超音波処置システム、エネルギー源ユニット、及び、エネルギー源ユニットの作動方法
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
JP6250246B1 (ja) * 2016-01-29 2017-12-20 オリンパス株式会社 高周波処置具
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10736649B2 (en) 2016-08-25 2020-08-11 Ethicon Llc Electrical and thermal connections for ultrasonic transducer
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11607265B2 (en) * 2018-08-24 2023-03-21 Covidien Lp Cutting electrode enhancement for laparoscopic electrosurgical device
EP3698734A1 (en) * 2019-02-21 2020-08-26 Orthofix S.R.L. System and method for driving an ultrasonic device
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US20210196362A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical end effectors with thermally insulative and thermally conductive portions
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
WO2023223166A1 (en) * 2022-05-16 2023-11-23 Covidien Lp Combination ultrasonic and plasma instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211057A (ja) * 1986-03-12 1987-09-17 オリンパス光学工業株式会社 超音波振動処置装置
JPH04221539A (ja) * 1990-03-19 1992-08-12 Everest Medical Corp 内側乳房動脈を採取するためのバイポーラ外科用メス
JP2001087274A (ja) * 1999-09-24 2001-04-03 Olympus Optical Co Ltd 超音波処置具
JP2013504396A (ja) * 2009-09-15 2013-02-07 セロン アクチエンゲゼルシャフト メディカル インスツルメンツ 超音波およびhf複合型手術用システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043342A (en) * 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
EP0148250A1 (en) * 1983-07-06 1985-07-17 STASZ, Peter Electro cautery surgical blade
JPH11318919A (ja) * 1998-05-11 1999-11-24 Olympus Optical Co Ltd 手術装置及び手術システム
US20030073987A1 (en) * 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Treating apparatus and treating device for treating living-body tissue
US7223267B2 (en) * 2004-02-06 2007-05-29 Misonix, Incorporated Ultrasonic probe with detachable slidable cauterization forceps
US8357154B2 (en) * 2004-07-20 2013-01-22 Microline Surgical, Inc. Multielectrode electrosurgical instrument
JP4679416B2 (ja) 2006-04-10 2011-04-27 オリンパス株式会社 手術装置
US20080058803A1 (en) * 2006-08-30 2008-03-06 Kenichi Kimura Surgical instrument and surgical instrument driving method
JP5430161B2 (ja) * 2008-06-19 2014-02-26 オリンパスメディカルシステムズ株式会社 超音波手術装置
US20100168741A1 (en) * 2008-12-29 2010-07-01 Hideo Sanai Surgical operation apparatus
US20100331742A1 (en) * 2009-06-26 2010-12-30 Shinya Masuda Surgical operating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211057A (ja) * 1986-03-12 1987-09-17 オリンパス光学工業株式会社 超音波振動処置装置
JPH04221539A (ja) * 1990-03-19 1992-08-12 Everest Medical Corp 内側乳房動脈を採取するためのバイポーラ外科用メス
JP2001087274A (ja) * 1999-09-24 2001-04-03 Olympus Optical Co Ltd 超音波処置具
JP2013504396A (ja) * 2009-09-15 2013-02-07 セロン アクチエンゲゼルシャフト メディカル インスツルメンツ 超音波およびhf複合型手術用システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3103407A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105832405A (zh) * 2015-10-28 2016-08-10 安进医疗科技(北京)有限公司 用于外科手术的手柄及手术控制系统
CN108697451A (zh) * 2016-01-20 2018-10-23 奥林巴斯株式会社 处置器具
EP3406215A4 (en) * 2016-01-20 2019-09-25 Olympus Corporation TREATMENT TOOL
CN108697451B (zh) * 2016-01-20 2021-05-18 奥林巴斯株式会社 处置器具
US11071581B2 (en) 2016-01-20 2021-07-27 Olympus Corporation Treatment instrument including a resin coating
WO2018087837A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 医療機器、医療機器の製造方法
WO2018087838A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 医療機器

Also Published As

Publication number Publication date
US20160175000A1 (en) 2016-06-23
JPWO2015118757A1 (ja) 2017-03-23
JP5836543B1 (ja) 2015-12-24
EP3103407B1 (en) 2018-11-21
CN105658161A (zh) 2016-06-08
CN105658161B (zh) 2018-05-22
US9592072B2 (en) 2017-03-14
EP3103407A4 (en) 2017-10-25
EP3103407A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5836543B1 (ja) 超音波プローブ及び超音波処置装置
US9693793B2 (en) Ultrasonic probe and ultrasonic treatment instrument
EP2859858B1 (en) Ultrasound probe
US20170224405A1 (en) Grasping treatment unit and grasping treatment instrument
WO2015137139A1 (ja) 把持ユニット及びバイポーラ処置具
JP5959769B2 (ja) 処置具
JP5379931B1 (ja) 把持処置装置
JPWO2016009921A1 (ja) 処置具
US10010342B2 (en) Ultrasonic probe and ultrasonic treatment apparatus
CN107205764B (zh) 振动体单元以及超声波探头
CN107708585A (zh) 医疗器械
JP6192886B1 (ja) 振動伝達部材、超音波処置具及び振動体ユニット
US20150196782A1 (en) Ultrasonic probe and ultrasonic treatment device
WO2018070043A1 (ja) 超音波トランスデューサ
JP5970142B2 (ja) 超音波プローブ及び超音波処置具
WO2019167194A1 (ja) 超音波プローブ及び超音波処置具
WO2018087841A1 (ja) 振動伝達部材及び超音波処置具
US10010365B2 (en) Surgical treatment instrument

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527381

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014881589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881589

Country of ref document: EP