WO2015118690A1 - 中空ポペットバルブ - Google Patents

中空ポペットバルブ Download PDF

Info

Publication number
WO2015118690A1
WO2015118690A1 PCT/JP2014/053086 JP2014053086W WO2015118690A1 WO 2015118690 A1 WO2015118690 A1 WO 2015118690A1 JP 2014053086 W JP2014053086 W JP 2014053086W WO 2015118690 A1 WO2015118690 A1 WO 2015118690A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
umbrella
hollow
poppet valve
heat
Prior art date
Application number
PCT/JP2014/053086
Other languages
English (en)
French (fr)
Inventor
摂 常石
雅章 井上
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to PL14881411T priority Critical patent/PL3106633T3/pl
Priority to MX2016009708A priority patent/MX2016009708A/es
Priority to PCT/JP2014/053086 priority patent/WO2015118690A1/ja
Priority to JP2015561142A priority patent/JP6205437B2/ja
Priority to US15/114,460 priority patent/US9790822B2/en
Priority to RU2016136194A priority patent/RU2641870C1/ru
Priority to KR1020167016451A priority patent/KR101683590B1/ko
Priority to BR112016017938A priority patent/BR112016017938B8/pt
Priority to CN201480073621.0A priority patent/CN105980675B/zh
Priority to EP14881411.4A priority patent/EP3106633B1/en
Priority to TW104104210A priority patent/TWI638092B/zh
Publication of WO2015118690A1 publication Critical patent/WO2015118690A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0209Check valves or pivoted valves

Definitions

  • the present invention relates to a hollow poppet valve in which a heat insulating space and a hollow portion are formed from an umbrella portion to a shaft portion of a valve body.
  • Patent Documents 1 and 2 describe a poppet valve in which an umbrella part is integrally formed at the shaft end.
  • a poppet valve used in an internal combustion engine is seated on a valve seat of a cylinder head to which an intake passage or an exhaust passage is connected, and drives the engine by opening and closing the intake passage or the exhaust passage.
  • the combustion chamber becomes hot, but if the temperature of the combustion chamber is too high, knocking occurs and a predetermined engine output cannot be obtained, resulting in deterioration of fuel consumption (engine performance). Lead to a decrease in Therefore, as a method of actively conducting heat generated in the combustion chamber through the valve in order to lower the temperature of the combustion chamber (a method for increasing the heat-sucking effect of the valve), the coolant is hollowed together with the inert gas.
  • Various hollow valves loaded in the box have been proposed.
  • a hollow portion is formed from the umbrella portion to the shaft portion, and in this hollow portion, a coolant having a higher thermal conductivity than the base material of the engine valve (for example, metallic sodium, melting point of about 98 ° C. ) With an inert gas.
  • a coolant having a higher thermal conductivity than the base material of the engine valve for example, metallic sodium, melting point of about 98 ° C.
  • the hollow portion of the engine valve extends from the inside of the umbrella portion into the shaft portion, so that a large amount of coolant can be loaded into the hollow portion, so that the thermal conductivity of the engine valve (hereinafter referred to as the heat drawing effect of the valve) is increased. be able to.
  • the shaft portion of the engine valve is formed with a hollow portion and its volume is reduced, the temperature of the shaft portion excessively increases if the heat-drawing effect is too large.
  • the intake valve inhales a mixture of gasoline and air. If the surface temperature of the intake valve is too high, the mixture in contact with the intake valve expands and sucks in one cycle. The amount of air-fuel mixture that can be reduced will reduce engine efficiency.
  • the exhaust valves are exposed to a higher temperature than the intake valves, and the neck portion is particularly susceptible to strength reduction.
  • JP2012-72748 Japanese Utility Model Publication 61-106677
  • the present invention has been made on the basis of the above-mentioned knowledge of the inventor with respect to the prior art, and its purpose is to significantly improve the combustion efficiency by suppressing the thermal energy obtained in the combustion chamber from being dissipated to the valve. It is to provide a hollow poppet valve that can be used.
  • the valve in the hollow poppet valve according to the present invention (Claim 1), in the hollow poppet valve in which an umbrella portion is integrally formed on one end side of the shaft portion, the valve is separated by a partition wall.
  • the umbrella-side hollow portion and the shaft-side hollow portion are formed, and the umbrella-side hollow portion contains a gas or a material having a lower thermal conductivity than the valve-forming metal to constitute a heat insulating portion, and the shaft-side hollow portion Is configured to be loaded with a coolant.
  • the poppet valve is an intake valve
  • the intake air-fuel mixture is heated and expanded, the amount of the air-fuel mixture sucked in one cycle is reduced, and fuel consumption is reduced.
  • the air-fuel mixture is cooled by the coolant, the air-fuel mixture is sufficiently supplied in quantity and the engine operates smoothly.
  • the intake air (air mixture) around the valve expands in volume due to the heat received from the valve, so that the reduction in combustion efficiency due to the reduction in the intake amount is suppressed, and the combustion efficiency is coupled with the above-described suppression of heat energy dissipation. Can be greatly improved.
  • the vertical position and the vertical length of the partition are appropriately set according to the type of vehicle used. Appropriate heat insulating effect and heat pulling effect can be obtained. Further, since the hollow structure is formed by forming the heat insulating space portion and the cooling portion, the mechanical strength of the poppet valve is insufficient, but the mechanical strength is increased by the partition wall.
  • the partition wall is formed integrally with the valve body.
  • valve body and the partition wall are integrally molded, there is no joint interface, high rigidity, high resistance to thermal and mechanical stress, and poppet valve used in harsh environments Can be provided.
  • a cylindrical body having an outer diameter substantially the same as an inner diameter of the shaft portion is inserted into the cooling portion, welded, or the like. It is configured to be joined and fixed at a predetermined position.
  • a cap material defining a bottom surface of the umbrella-side hollow portion is joined to the combustion chamber side of the umbrella portion.
  • the hollow poppet valve according to the present invention it is easy to change the installation position and the vertical length of the partition wall, and appropriate heat insulation effect and heat drawing effect can be obtained by appropriately setting according to the vehicle model used. Further, the partition wall increases the mechanical or thermal strength of the poppet valve in which the heat insulating space portion and the cooling portion are formed.
  • the hollow poppet valve according to claim 2 at least one place on the combustion chamber side surface of the umbrella part that is easily exposed to high temperature, the outer peripheral surface from the umbrella part to the shaft part, and the inner wall of the umbrella side hollow part.
  • a heat insulating layer having a low thermal conductivity is formed, so that these portions are prevented from being thermally damaged by the heat of the combustion gas in the combustion chamber or the exhaust furnace, and the umbrella side hollow portion is combusted.
  • the deformation at the time of molding is large, and the contribution to the strength improvement in the vicinity of the boundary between the shaft portion and the umbrella portion increases.
  • the volume of the heat insulating space and the cooling part can be set relatively freely in the partition wall, so that the heat insulating effect and the heat pulling effect can be brought close to their optimum values.
  • the umbrella side hollow portion is filled with a desired gas or heat insulating material, or the umbrella side hollow portion is filled.
  • the part can be easily maintained at vacuum or reduced pressure.
  • FIG. 1 It is a longitudinal cross-sectional view of the hollow poppet valve which is the 1st Example of this invention. It is a figure which shows the manufacturing process of the hollow poppet valve of a 1st Example, (a) is a hot forging process which forges the shell which is a valve
  • a hole drilling step for drilling (c) a hole drilling step for drilling a hole corresponding to the small-diameter hollow portion near the shaft end, and (d) a coolant loading step for filling the small-diameter hollow portion with a coolant
  • (E) is an axial contact process (small-diameter hollow portion sealing process) for axially contacting the shaft end member
  • (f) is a process of joining a cap to the opening side inner peripheral surface of the concave portion (large-diameter hollow portion) of the umbrella outer shell ( It is a figure which shows a large diameter hollow part sealing process. It is a longitudinal cross-sectional view of the hollow poppet valve which is the 2nd Example of this invention.
  • the step of forming the stepped flat portion on the ceiling surface of the large-diameter hollow portion is the shaft portion from the bottom of the concave portion of the umbrella outer shell (the ceiling surface of the large-diameter hollow portion)
  • a hole drilling step for drilling a hole corresponding to the small-diameter hollow portion is the shaft portion from the bottom of the concave portion of the umbrella outer shell (the ceiling surface of the large-diameter hollow portion)
  • a hole drilling step for drilling a hole corresponding to the small-diameter hollow portion
  • a coolant charging step for filling the small-diameter hollow portion with a coolant from the concave portion side of the umbrella outer shell
  • a small-diameter hollow portion The process of press-fitting a plug into the opening and joining by brazing (small-diameter hollow part sealing process), (f) welding the cap to the opening-side inner peripheral surface of the concave part (large-diameter hollow part) of the umbrella outer shell It is a
  • FIG. 1 shows a hollow poppet valve for an internal combustion engine according to a first embodiment of the present invention.
  • reference numeral 10 denotes a heat-resistant alloy in which a valve umbrella portion 14 is integrally formed on one end side of a valve shaft portion 12 that extends straight through an R-shaped fillet portion 13 that gradually increases in outer diameter.
  • a tapered poppet valve is provided with a tapered face portion 16 on the outer periphery of the valve umbrella portion 14.
  • the hollow portion in the hollow poppet valve 10 has a large diameter on the valve umbrella portion 14 side by a partition wall 15 having a thickness x1 provided at a position corresponding to the fillet portion 13 between the valve umbrella portion 14 and the valve shaft portion 12.
  • the hollow portion (umbrella-side hollow portion) S1 and the small-diameter hollow portion (shaft-side hollow portion) S2 on the valve shaft 12 side are separated, and the separated large-diameter hollow portion S1 includes atmospheric pressure air, A gas such as nitrogen or argon is filled or kept under vacuum or reduced pressure, and the small diameter hollow portion S2 is filled with a coolant 19 together with an inert gas.
  • the large-diameter hollow portion S1 is desirably maintained in a vacuum with low thermal conductivity.
  • a spherical (dome) -shaped large-diameter hollow portion having a spherical ceiling surface 14b1 and a tapered outer peripheral surface (inclined surface) 14b2 substantially following the outer shape of the valve umbrella portion 14 in the valve umbrella portion 14.
  • S1 is provided, and on the other hand, an elongated cylindrical small-diameter hollow portion S2 extending to the vicinity of the ceiling surface 14b1 is provided in the valve shaft portion 12 so as to be orthogonal to the spherical ceiling surface 14b1 of the large-diameter hollow portion S1.
  • a partition wall 15 having a thickness x1 formed integrally with the valve umbrella portion 14 is provided between the small-diameter hollow portion S2 and the large-diameter hollow portion S1.
  • a shaft-integrated shell (hereinafter simply referred to as a shell) 11, a disk-shaped cap 18 joined to the opening-side inner peripheral surface 14 c of the spherical recess 14 b of the umbrella outer shell 14 a of the shell 11, and the shaft of the shell 11
  • a hollow poppet valve 10 in which a hollow portion S1 in the valve umbrella portion 14 and a hollow portion S2 in the valve shaft portion 12 are separated via a partition wall 15 by the shaft end member 12b axially connected to the portion 12a,
  • the hollow portion S1 is filled with a gas such as air, nitrogen, and argon, and the hollow portion S2 is filled with a coolant 19 together with an inert gas.
  • the amount of the coolant 19 loaded is, for example, approximately 1/2 to 4/5 of the volume of the hollow portion S2.
  • reference numeral 2 denotes a cylinder head
  • reference numeral 6 denotes an exhaust passage extending from the combustion chamber 4.
  • An annular valve seat 8 provided with 8a is provided.
  • Reference numeral 3 denotes a valve insertion hole provided in the cylinder head 2, and the valve insertion hole 3 includes a cylindrical valve guide 3 a with which the shaft portion 12 of the valve 10 is slidably contacted.
  • Reference numeral 9 is a valve spring that urges the valve 10 in the valve closing direction (upward in FIG. 1)
  • reference numeral 12 c is a cotter groove provided at the end of the valve shaft 12.
  • the cap 18 uses a material of low thermal conductivity (for example, Inconel), and the shell 11, which is a part exposed to the high temperature gas in the combustion chamber 4 or the exhaust passage 6, is made of heat resistant steel (for example, SUH 35).
  • the shaft end member 12b which requires mechanical strength but does not require heat resistance as much as the shell 11 and the cap 18, is a low-cost material (for example, SUH11) of heat-resistant steel used in the shell 11. It consists of
  • the hollow portion S1 below the partition wall 15 of the hollow poppet valve 10 thus configured is normally filled with air, but a heat insulating material may be loaded into this space.
  • a heat insulating material examples include a heat-resistant metal and carbon.
  • a stainless steel nonwoven fabric, a short fiber, a long fiber, a powder, a wire net, or a glassy carbon microsphere having a porosity of about Can be used as a 25-80% filter.
  • a laminated metal nonwoven fabric filter formed by laminating a reinforcing metal mesh or a protective wire mesh on a metal nonwoven fabric can be exemplified. This insulation is easy to handle.
  • the thermal conductivity of the hollow portion S1 is lowered, and thereby the energy generated by the combustion of the fuel is used as heat for the valve body. This reduces the amount taken to the outside (cooling loss is reduced).
  • the coolant such as metallic sodium in the hollow part S2 above the partition wall 15 cools the air-fuel mixture around the outer wall surface of the cooling part and the cooling part. Since the cooling part is formed in a hollow shape, the high temperature strength is lowered and easily damaged due to a high temperature. However, since it is cooled by the coolant, there is almost no possibility of causing thermal damage.
  • the small-diameter hollow portion S2 includes a small-diameter hollow portion S21 near the valve shaft end portion having a relatively large inner diameter d1 and a small-diameter hollow portion S22 near the valve umbrella portion 14 having a relatively small inner diameter d2 (d2 ⁇ d1).
  • An annular stepped portion 17 is formed between the small-diameter hollow portions S21 and S22, and the coolant 19 is loaded up to a position beyond the stepped portion 17.
  • the stepped portion 17 in the small-diameter hollow portion S is provided at a position substantially corresponding to the end portion 3 b facing the exhaust passage 6 of the valve guide 3 and has a shaft end portion having a large inner diameter.
  • the stepped portion 17 in the small-diameter hollow portion S2 has a predetermined position (in the valve shaft portion 12) that does not enter the exhaust passage 6 when the valve 10 is fully opened (lowered), as indicated by the phantom line in FIG.
  • a thin-walled small-diameter hollow portion S21 forming wall is provided at a predetermined position that is not easily affected by heat in the exhaust passage 6.
  • Reference numeral 17X in FIG. 1 indicates the position of the stepped portion 17 in a state where the valve 10 is fully opened (lowered).
  • the region near the valve umbrella portion 14 in the valve shaft portion 12 that is always in the exhaust passage 6 and exposed to high heat reduces the fatigue strength. It must be formed to a thickness that can withstand.
  • heat from the combustion chamber 4 and the exhaust passage 6 is transmitted via the coolant 19.
  • the transmitted heat is immediately radiated to the cylinder head 2 through the valve guide 3a, the temperature does not become as high as that near the valve umbrella portion 14.
  • the inner diameter of the small-diameter hollow portion S21 is increased, and first, the surface area of the entire small-diameter hollow portion S2 (contact area with the coolant 19) is increased, so that the valve shaft portion 12 Heat transfer efficiency is increased. Secondly, the total weight of the valve 10 is reduced by increasing the volume of the entire small-diameter hollow portion S2.
  • the valve 10 can be provided at low cost by using an inexpensive material (eg, SUH11) having lower heat resistance than the material of the shell 11. .
  • an inexpensive material eg, SUH11
  • a hollow valve configured to be hollow from the valve shaft portion to the valve umbrella portion is bent or twisted in the valve shaft portion as compared with a hollow valve having a solid valve shaft portion.
  • the partition wall 15 that separates the small-diameter hollow portion S2 and the large-diameter hollow portion S1 is formed integrally with the valve umbrella portion 14, and the valve shaft portion 12 is bent. Because it compensates for the decrease in strength against twisting and twisting, it is excellent in durability.
  • a shell 11 in which an umbrella outer shell 14a provided with a spherical concave portion 14b and a shaft portion 12a are integrally formed is formed by a hot forging process.
  • the bottom surface 14b1 of the spherical recess 14b in the umbrella outer shell 14a is formed as a spherical surface orthogonal to the shaft portion 12a (the central axis L of the shell 11).
  • a hot forging process after forging a spherical part at the end of a heat-resistant steel bar with an extruding forging to manufacture the shell 11 from a heat-resistant steel block or an upsetter by extrusion forging that sequentially replaces the mold, Any of upsetting forging which forges shell 11 (umbrella outer shell 14a) using a metal mold may be used.
  • an R-shaped fillet portion 13 is formed between the umbrella outer shell 14a and the shaft portion 12a of the shell 11, and a tapered face portion is formed on the outer peripheral surface of the umbrella outer shell 14a. 16 is formed.
  • a hole 14e corresponding to the small-diameter hollow portion S22 is drilled from the end side of the shaft portion 12a of the shell 11 (hole drilling step).
  • a partition wall 15 is formed that separates the concave portion 14b of the umbrella outer shell 14a constituting the large-diameter hollow portion S1 and the hole 14e on the shaft portion 12a side constituting the small-diameter hollow portion S22.
  • a hole 14f corresponding to the small-diameter hollow portion S21 is drilled from the end of the shaft portion 12a of the shell 11 to form a stepped portion 17 (hole). Drilling process).
  • the shaft portion 12a of the shell 11 is arranged facing upward, and a predetermined amount of coolant (solid) 19 is filled in the holes 14e and 14f corresponding to the small-diameter hollow portion S2. (Coolant charging process).
  • the shaft end member 12b is axially contacted with the shaft portion 12a of the shell 11 in an argon gas atmosphere (small-diameter hollow portion sealing step).
  • a cap 18 is joined (for example, resistance joining) to the opening-side inner peripheral surface 14c of the recess 14b of the umbrella outer shell 14a in an argon gas atmosphere, and the valve 10
  • the large-diameter hollow portion S1 is hermetically sealed (large-diameter hollow portion sealing step), and the valve 10 is completed by performing processing for forming a cotter groove 12c (see FIG. 1) at the shaft end portion.
  • the cap 18 may be joined by electron beam welding or laser welding instead of resistance joining.
  • the inside of the large-diameter hollow portion S1 can be decompressed by joining in a reduced pressure state instead of the above-described argon gas atmosphere.
  • FIG. 3 shows a hollow poppet valve for an internal combustion engine according to a second embodiment of the present invention.
  • the thickness of the partition wall 15A is set to x2 which is thicker than the thickness x1 of the partition wall 15 of the first embodiment (x1 ⁇ x2).
  • the configuration is the same as that of the example.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the thickness (length in the vertical direction) of the partition wall 15A is made thicker than that of the first embodiment, so that the fillet portion 13 having relatively weak mechanical strength is reinforced. Thus, necessary and sufficient strength can be obtained by appropriately adjusting the thickness of the partition wall 15A.
  • the hole drilling distance when drilling the hole 14e in the hole drilling step of FIG. A step of shortening by x2-x1) may be added.
  • FIG. 4 shows a hollow poppet valve according to a third embodiment of the present invention.
  • the hollow poppet valve 10B of the third embodiment is a modification of the second embodiment, and the same members as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a recessed portion 14g is formed along the central axis L at the top of the spherical ceiling surface 14b1, and a partition wall 15B is formed between the recessed portion 14g and the small-diameter hollow portion S2.
  • the volume of the recessed portion 14g is increased or decreased to optimally set the volume of the heat insulating space combined with the large-diameter hollow portion S1, Desirable insulation efficiency can be obtained.
  • FIG. 5 shows a hollow poppet valve according to a fourth embodiment of the present invention.
  • the hollow poppet valve 10C of the fourth embodiment is a modification of the second embodiment, and the same members as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the bottom surface of the umbrella outer shell 14a and the bottom surface of the cap 18, the R-shaped fillet portion 13, and the inner wall of the umbrella-side hollow portion (S1) are thermally insulated layers 21 made of ceramics or the like, for example, by thermal spraying. Is formed by coating.
  • the heat insulating layer 21 may be coated on at least one of the bottom surface of the umbrella outer shell 14a, the lower surface of the cap 18, the fillet portion 13, and the inner wall of the umbrella side hollow portion.
  • the inner wall of the umbrella-side hollow portion (S1) includes the dome-shaped spherical recess (14b) of the umbrella-side hollow portion (S1) and the upper surface of the cap 18, and the heat insulating layer 21 is formed on all or a part thereof. To do.
  • the bottom surface of the umbrella outer shell 14a and the bottom surface of the cap 18 are exposed to the high temperature of the combustion chamber 4, and when the poppet valve is an exhaust valve, the fillet portion 13 is disposed in the exhaust passage. Exposure to hot air-fuel mixture.
  • the heat insulation layer 21 is formed in these places, heat resistance is improved and high temperature stability is obtained.
  • the heat insulating layer 21 is formed on the upper surface of the cap 18 on the inner wall of the umbrella side hollow portion, the heat that could not be blocked by the heat insulating layer 21 on the lower surface side of the cap 18 is blocked, and heat is conducted to the hollow portion of the umbrella side. Can be suppressed. Moreover, it can suppress that the heat
  • FIG. 6 shows a hollow poppet valve according to a fifth embodiment of the present invention.
  • the hollow poppet valve 10D of the fifth embodiment is a modification of the first embodiment, and the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the large-diameter hollow portion S1 ′ is not hemispherical, but is formed in a substantially truncated cone shape. Therefore, the ceiling surface of the large-diameter hollow portion S1 ′ is formed as a flat surface 14c, and the The stepped portion 17 in the first embodiment is not formed in the hollow portion S2 ′.
  • the large-diameter hollow portion S1 ′ and the small-diameter hollow portion S2 ′ are partitioned by the partition wall 15C as in the above-described embodiments, and the heat insulating effect and the cooling effect are exhibited, respectively. . Convection does not occur in the small-diameter hollow portion S2 ', but the production is simplified accordingly.
  • FIG. 7 shows a hollow poppet valve according to a sixth embodiment of the present invention.
  • the hollow poppet valve has a small-diameter hollow portion in the valve shaft portion and a large-diameter hollow portion in the valve umbrella portion separated by a partition wall formed integrally with the shell.
  • the small-diameter hollow portion S2 "in the valve shaft portion 12 and the large-diameter hollow portion S1" in the valve umbrella portion 14 are connected to the large-diameter hollow portion S1 "of the small-diameter hollow portion S2".
  • the shell 11E which is fixed in the opening and constituting the partition, is separated by a plug (cylindrical body) 15D made of the same heat-resistant steel or a material having a lower thermal conductivity (for example, Inconel).
  • the plug 15D is fixed at a predetermined position by being press-fitted (inserted) from the direction of the large-diameter hollow portion S1 ".
  • the top of the inclined outer peripheral surface 14b2 of the large-diameter hollow portion S1" A stepped flat portion 14b3 is formed in the vicinity.
  • the plug 15D which is a partition wall that separates the hollow portions S1 ′′ and S2 ′′, is made of the same material as the heat-resistant steel that is the material of the valve 10E or a material having a lower thermal conductivity than that. Therefore, the heat transmitted from the hollow portion S1 ′′ can be further suppressed by the partition wall, and the heat insulation effect is thus much improved. Further, since it can be processed without being axially contacted, a new axial contact is achieved. There is no need to provide a process, and the process can be omitted.
  • a shell 11E in which an umbrella outer shell 14a provided with a spherical concave portion 14b and a valve shaft portion 12 are integrally formed is formed by a hot forging process.
  • a stepped flat portion 14b3 is formed by cutting or the like near the top of the spherical surface of the large-diameter hollow portion S1 ′′ (stepped flat portion forming step).
  • the shell 11B is arranged so that the concave portion 14b of the umbrella outer shell 14a faces upward, and from the stepped flat portion 14b3 on the concave portion 14b side of the umbrella outer shell 14a.
  • a circular hole 14e corresponding to the small-diameter hollow portion S2 ′′ is drilled through the valve shaft portion 12 (hole drilling step).
  • An umbrella outer shell 14a constituting the large-diameter hollow portion S1 ′′ is formed by the hole drilling step.
  • the circular hole 14e on the side of the valve shaft 12 constituting the small-diameter hollow portion S2 "communicate with each other. In this hole drilling step, drilling can be performed from the stepped flat portion 14b3, so that the circular shape can be accurately and easily performed.
  • the hole 14e can be drilled.
  • a predetermined amount of coolant (solid) 19 is filled in the circular hole 14e of the recess 14b of the umbrella outer shell 14a of the shell 11B (coolant charging step).
  • a plug 15B is press-fitted into the opening of the hole 14e in the recess 14b of the umbrella outer shell 14a and fixed by brazing, so that a small-diameter hollow The part S2 ′′ is sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)
  • Check Valves (AREA)
  • Details Of Valves (AREA)

Abstract

冷媒を使用するポペットバルブで、断熱効果と熱引き効果の相対値を調節して、最大の燃焼効率を達成する。中空ポペットバルブ(10)の傘部(14)内から軸部(12)にかけて、隔壁(15)で分離された断熱空間部(S1)と、冷却材(19)が装填された冷却部(S2)を形成する。隔壁(15)の設置位置や上下長を、使用車種等に応じて適宜設定することにより、適切な断熱効果と熱引き効果が得られる。さらに、前記隔壁(15)により、断熱空間部(S1)や冷却部(S2)が形成されたポペットバルブの機械的または熱的強度が上昇する。

Description

中空ポペットバルブ
 本発明は、バルブ本体の傘部から軸部にかけて、断熱空間と中空部が形成された中空ポペットバルブに関する。
 特許文献1、2等には、軸端部に傘部を一体的に形成したポペットバルブが記載されている。内燃機関で使用されるポペットバルブは、吸気路又は排気路が接続されるシリンダヘッドの弁座に着座して前記吸気路又は排気路を開閉させてエンジンを駆動させている。
 通常、内燃機関は、燃焼室の内部温度が高いほど燃焼効率は向上する。前記燃焼室の熱は前記ポペットバルブを介して外部に散逸することが多い。そのため、前記燃焼室に接触するポペットバルブの傘表にあるいはその近傍に、空間を形成して、この空間を真空にしたり、不活性ガスを充填したり、あるいは前記ポペットバルブを構成する材料より熱伝導率の小さい材料を充填して、断熱空間を形成し、燃焼室内の熱の散逸を抑制している(特許文献1参照)。
 このように、断熱空間を形成することにより、燃焼室は高温になるが、燃焼室の温度が高すぎると、ノッキングが発生して所定のエンジン出力が得られず、燃費の悪化(エンジンの性能の低下)につながる。そこで、燃焼室の温度を下げるために、燃焼室で発生する熱をバルブを介して積極的に熱伝導させる方法(バルブの熱引き効果を上げる方法)として、冷却材を不活性ガスとともに中空部に装填した種々の中空バルブが提案されている。
 特許文献2のポペットバルブでは、傘部から軸部にかけて中空部が形成され、この中空部には、エンジンバルブの母材よりも熱伝導率の高い冷却材(例えば、金属ナトリウム、融点約98℃)が不活性ガスとともに装填されている。
 エンジンバルブの中空部は、傘部内から軸部内に延びており、それだけ多くの量の冷却材を中空部に装填できるので、エンジンバルブの熱伝導性(以下、バルブの熱引き効果という)を高めることができる。しかしながら、エンジンバルブの軸部は中空部が形成されて体積が減少しているため、前記熱引き効果が大きすぎると、軸部の温度が過度に上昇する。エンジンバルブのうちの吸気バルブは、ガソリンと空気の混合気を吸気するが、この吸気バルブの表面温度が高すぎると、この吸気バルブに接触する前記混合気が体積膨張して、ワンサイクルで吸引できる混合気の量が減少して、エンジンの効率が低下してしまう。また、エンジンバルブのうち、排気バルブは吸気バルブと比較して高温にさらされ、特に首部の強度低下が生じやすくなっている。
特開2012-72748 実開昭61-106677
 このように冷媒を使用するポペットバルブでは、断熱効果と熱引き効果の相対値を調節して、最大の燃焼効率を達成することが望ましい。特許文献2記載のポペットバルブでは、断熱空間部9と冷却室7が形成され、両者が傘部表面部Aにより分離されている。このポペットバルブでは、断熱効果を生じさせる断熱空間部9と、熱引き効果を生じさせる冷却室7が存在するが、両者を分離する傘部表面部Aは、バルブ固有の部材で、この部材をコントロールして断熱効果と熱引き効果を調節するという発想は生じない。つまり、断熱空間部9と冷却室7の形状が固定され、したがってそれぞれの容量が一定であるため、断熱効果と熱引き効果を各車種等に応じた適切な相対割合に設定できないのである。
 本発明は、先行文献に対する発明者の前記した知見に基づいてなされたもので、その目的は、燃焼室で得られた熱エネルギーがバルブに散逸してしまうことを抑制し燃焼効率を格段に改善できる中空ポペットバルブを提供することにある。
 前記目的を達成するために、本発明(請求項1)に係る中空ポペットバルブにおいては、軸部の一端側に傘部を一体的に形成した中空ポペットバルブにおいて、前記バルブには、隔壁で分離された傘側中空部と軸側中空部が形成され、前記傘側中空部には、ガスまたはバルブ形成金属より低熱伝導率の材料を収容して断熱部が構成され、かつ前記軸側中空部には、冷却材が装填されるように構成した。
 (作用)このような構成から成るポペットバルブを、エンジンバルブとして使用すると、隔壁より下方の傘側中空部(断熱空間部または大径中空部)では、該空間の熱伝導率が低いため、燃焼室内の熱の放散が抑制されて燃焼室内の温度が高く維持される。一方前記隔壁より上方の冷却部では、金属ナトリウムなどの冷却材が、冷却部の外壁面と該冷却部の周囲の混合気を冷却する。冷却部は中空状に成型されているため、高熱により疲労強度の低下が生じ損傷しやすくなるが、前記冷却材により冷却されるため、熱的な損傷が生ずる虞が殆ど生じなくなる。これは、混合気の温度が高い排気バルブの首部において特に顕著である。そして前記ポペットバルブが吸気バルブの場合、吸気される混合気が加熱膨張してワンサイクルで吸気される混合気の量が減少して燃費が低下する。しかしながら冷却材により前記混合気が冷却されるため、混合気が量的に十分に供給されてエンジンが円滑に作動するようになる。つまり、バルブ周辺の吸入気(混合気)がバルブから受ける熱により体積膨張するため吸入量が減少することによる燃焼効率低下が抑制され、さらに前述の熱エネルギーの散逸抑制と相俟って燃焼効率を格段に改善させることが可能になる。
 そして本発明の場合、前記断熱空間部と前記冷却部が前記隔壁により分離されているため、この隔壁の上下方向の位置や上下方向の長さを、使用車種等に応じて適宜設定することにより、適切な断熱効果と熱引き効果が得られる。さらに、前記断熱空間部と前記冷却部を形成したことにより中空構造になるため、前記ポペットバルブの機械的強度が不足するが、前記隔壁により、機械的強度が上昇する。
 請求項2においては、請求項1に記載の中空ポペットバルブにおいて、前記傘部の燃焼室側表面、前記傘部から前記軸部に掛けての外周面、および傘側中空部内壁の少なくとも一箇所に、断熱層を形成するよう構成した。
 (作用)この中空ポペットバルブでは、本来高温に曝されやすい前記傘部の燃焼室側表面、例えば傘部外殻の底面とキャップ下面と、前記傘部から前記軸部に掛けての外周面、例えばポペットバルブのフィレット部の両方または一方に、セラミックス等から成る断熱層が形成されているため、各部材が高温に曝されることが回避され、高温安定性が得られる。また、傘側中空部内壁にも断熱層を形成することにより、傘部外殻に成形した断熱層を通過した熱が傘部中空に伝導するのを抑制し、更に断熱効果を高めることが出来る。
 請求項3においては、請求項1または2に記載の中空ポペットバルブにおいて、前記隔壁が、バルブ本体と一体成型されているように構成する。
 (作用)バルブ本体と隔壁が一体成型されていると、接合界面が存在せず、剛性が高く、熱的および機械的応力に対して、高耐性があり、過酷な環境で使用されるポペットバルブが提供できる。
 請求項4においては、請求項1または2に記載の中空ポペットバルブにおいて、前記隔壁が、前記軸部の内径と実質的に同じ外径を有する円柱体を前記冷却部内に挿嵌や溶接などの接合をして所定位置に固定されるよう構成する。
 (作用)この円柱体を冷却部内に挿嵌して隔壁を構成する態様では、一体成型の場合と同程度の剛性は得られないが、円柱体の挿嵌位置や円柱体の上下長さを容易に変更でき、更に材質の変更も容易であり、必要とする断熱効果と熱引き効果を得やすくなる。
 請求項5においては、請求項1から4までのいずれか1項に記載の中空ポペットバルブにおいて、前記傘部の燃焼室側には、傘側中空部の底面を画成するキャップ材が接合されるよう構成する。
 (作用)このキャップを接合する態様では、傘側中空部を所望の断熱材やガスで充填することが容易になり、かつ接合を真空または減圧下で行うことにより、傘側中空部を低熱伝導性の真空または減圧に維持できる。
 本発明に係る中空ポペットバルブによれば、隔壁の設置位置や上下長を変更しやすく、使用車種等に応じて適宜設定することにより、適切な断熱効果と熱引き効果が得られる。さらに、前記隔壁により、断熱空間部や冷却部が形成されたポペットバルブの機械的または熱的強度が上昇する。
 請求項2に係る中空ポペットバルブによれば、高温に曝されやすい傘部の燃焼室側表面、前記傘部から前記軸部に掛けての外周面、および傘側中空部内壁の少なくとも一箇所に、熱伝導率の低い断熱層を形成してあり、これによりこれらの箇所が、燃焼室内や排気炉内の燃焼ガスの熱により熱的に損傷することが回避され、かつ傘側中空部の燃焼室側の内壁に断熱層を形成することにより、燃焼室側から傘側中空部に熱が伝導されるのを抑制する。さらに傘側中空部の軸部側の内壁に断熱層を形成すると、燃焼室内の熱が軸部側に伝導されるのを抑制する。
 請求項3に係る中空ポペットバルブによれば、隔壁とバルブ本体を一体成型したポペットバルブにおいて、成型時の変形が大きい、前記軸部と前記傘部の境界付近の強度向上に対する寄与が大きくなる。
 請求項4に係る中空ポペットバルブによれば、隔壁を前記断熱空間部と前記冷却部の容積を比較的自由に設定でき、したがって断熱効果と熱引き効果をそれぞれの最適値に近づけることができる。
 請求項5に係る中空ポペットバルブによれば、キャップ材が接合して傘側中空部の底面を画成するため、傘側中空部内へ所望のガスや断熱材を充填したり、前記傘側中空部を真空または減圧に維持することを容易に行うことができる。
本発明の第1の実施例である中空ポペットバルブの縦断面図である。 第1の実施例の中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程、(b)は傘部寄り小径中空部に相当する孔を穿設する孔穿設工程、(c)は軸端部寄り小径中空部に相当する孔を穿設する孔穿設工程、(d)は小径中空部に冷却材を充填する冷却材装填工程、(e)は軸端部材を軸接する軸接工程(小径中空部密閉工程)、(f)は傘部外殻の凹部(大径中空部)の開口側内周面にキャップを接合する工程(大径中空部密閉工程)を示す図である。 本発明の第2の実施例である中空ポペットバルブの縦断面図である。 本発明の第3の実施例である中空ポペットバルブの縦断面図である。 本発明の第4の実施例である中空ポペットバルブの縦断面図である。 本発明の第5の実施例である中空ポペットバルブの縦断面図である。 本発明の第6の実施例である中空ポペットバルブの縦断面図である。 第6の実施例の中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程、(b)は傘部の外殻の球面状の凹部底面(大径中空部の天井面)に段付き平坦部を形成する工程(段付き平坦部形成工程)、(c)は傘部外殻の凹部底面(大径中空部の天井面)から軸部にかけて小径中空部に相当する孔を穿設する孔穿設工程、(d)は傘部外殻の凹部側から小径中空部に冷却材を充填する冷却材装填工程、(e)は小径中空部の開口部にプラグを圧入してロウ付けなどで接合する工程(小径中空部密閉工程)、(f)は傘部外殻の凹部(大径中空部)の開口側内周面にキャップを溶接する工程(大径中空部密閉工程)を示す図である。
 次に、本発明の実施の形態を実施例に基づいて説明する。
 図1は、本発明の第1の実施例である内燃機関用の中空ポペットバルブを示す。
 図1において、符号10は、真っ直ぐに延びるバルブ軸部12の一端側に、外径が徐々に大きくなるR形状のフィレット部13を介して、バルブ傘部14が一体的に形成された耐熱合金製の中空ポペットバルブで、バルブ傘部14の外周には、テーパ形状のフェース部16が設けられている。
 中空ポペットバルブ10内の中空部は、バルブ傘部14とバルブ軸部12間のフィレット部13に対応する位置に設けられた厚さがx1である隔壁15によって、バルブ傘部14側の大径中空部(傘側中空部)S1と、バルブ軸部12側の小径中空部(軸側中空部)S2とに分離されるとともに、分離された大径中空部S1には、常圧の空気、窒素、アルゴン等のガスが充填されるか真空または減圧に保持され、小径中空部S2には、不活性ガスとともに冷却材19がそれぞれ装填されている。前記大径中空部S1は熱伝導性が低い真空に維持することが望ましい。
 詳しくは、バルブ傘部14内には、球面状の天井面14b1およびバルブ傘部14の外形に略倣うテーパ形状の外周面(傾斜面)14b2を備えた球面(ドーム)形状の大径中空部S1が設けられ、一方、バルブ軸部12内には、大径中空部S1の球面状天井面14b1に対し直交するように該天井面14b1の近傍まで延びる細長い円柱状の小径中空部S2が設けられて、小径中空部S2と大径中空部S1間には、バルブ傘部14に一体的に形成された厚さx1の隔壁15が設けられている。
 さらに詳しくは、軸部12aの一端側に傘部外殻14aが一体的に形成され、軸部12aの他端側に開口する小径中空部S2に相当する孔が形成されたバルブ中間品である軸一体型シェル(以下、単にシェルという)11と、シェル11の傘部外殻14aの球面状の凹部14bにおける開口側内周面14cに接合された円盤形状のキャップ18と、シェル11の軸部12aに軸接された軸端部材12bとによって、バルブ傘部14内の中空部S1とバルブ軸部12内の中空部S2が隔壁15を介して分離された中空ポペットバルブ10が構成され、中空部S1には、空気、窒素、アルゴン等のガスが充填され、中空部S2には、不活性ガスとともに冷却材19がそれぞれ装填されている。冷却材19の装填量は、例えば、中空部S2の容積のほぼ1/2~4/5である。
 なお、図1における符号2はシリンダヘッド、符号6は燃焼室4から延びる排気通路で、排気通路6の燃焼室4への開口周縁部には、バルブ10のフェース部16が当接できるテーパ面8aを備えた円環状のバルブシート8が設けられている。符号3はシリンダヘッド2に設けられたバルブ挿通孔で、バルブ挿通孔3は、バルブ10の軸部12が摺接する円筒形状のバルブガイド3aで構成されている。符号9は、バルブ10を閉弁方向(図1の上方向)に付勢するバルブスプリング、符号12cは、バルブ軸部12の端部に設けられたコッタ溝である。
 キャップ18は低熱伝導の材料(例えばインコネルなど)の材料を使用し、また、燃焼室4や排気通路6の高温ガスにさらされる部位である、シェル11は、耐熱鋼(例えばSUH35など)で構成されているのに対し、機械的強度が要求されるものの、シェル11およびキャップ18ほどの耐熱性が要求されない軸端部材12bは、シェル11で使用する耐熱鋼の廉価材(例えばSUH11など)などで構成されている。
 このように構成された中空ポペットバルブ10の隔壁15より下方の中空部S1には、通常空気が充填されるが、この空間に断熱材を装填しても良い。該断熱材の材質としては、耐熱金属やカーボンなどがあり、例えばステンレス鋼製の不織布、短繊維、長繊維、粉末、又は金網、あるいはグラッシーカーボンの小微球により構成された、空隙率が約25~80%のフィルターとして使用できる。また、別の具体例として、金属製不織布に補強金網や保護金網を積層してなる、積層金属不織布フィルターを、例示することができる。この断熱材は取扱いが容易になる。さらに前記断熱材は耐熱金属糸を立体的に形成した金属織物によって構成してもよい。
 中空部S1内に空気を充填するか、あるいはに断熱材を装填することにより、この中空部S1の熱伝導率が低下して、これにより、燃料の燃焼によって発生するエネルギーが熱としてバルブ本体を介して外部に奪われる量が少なくなる(冷却損失が小さくなる。)。
 前記隔壁15より上方の中空部S2内の金属ナトリウムなどの冷却材は、冷却部の外壁面と該冷却部の周囲の混合気を冷却する。冷却部は中空状に成型されているため、高温により高温強度が低下が生じ損傷しやすくなるが、前記冷却材により冷却されるため、熱的な損傷が生ずる虞が殆ど生じなくなる。
 小径中空部S2は、内径d1が比較的大きいバルブ軸端部寄りの小径中空部S21と、内径d2が比較的小さい(d2<d1)バルブ傘部14寄りの小径中空部S22で構成されて、小径中空部S21、S22間には、円環状の段差部17が形成されるとともに、段差部17を越えた位置まで冷却材19が装填されている。
 このため、小径中空部S2内の冷却材19が、バルブ10が開閉動作する際に作用する慣性力によって上下方向に移動する際に、段差部17近傍に乱流が発生し、冷却材19が攪拌されることとなって、バルブ軸部12における熱引き効果(熱伝導性)が改善されている。
 また、小径中空部S内の段差部17は、図1に示すように、バルブガイド3の排気通路6に臨む側の端部3bに略対応する位置に設けられて、内径の大きい軸端部寄り小径中空部S21を軸方向に長く形成することで、バルブ10の耐久性を低下させることなく、バルブ軸部12の冷却材19との接触面積が増えて、バルブ軸部12の熱伝達効率が上がり、小径中空部S21形成壁が薄肉となって、バルブ10も軽量となる。即ち、小径中空部S2内の段差部17は、図1の仮想線に示すように、バルブ10が開弁(下降)しきった状態で、排気通路6内とならない所定位置(バルブ軸部12における薄肉の小径中空部S21形成壁が排気通路6内の熱の影響を受け難い所定位置)に設けられている。図1の符号17Xは、バルブ10が開弁(下降)しきった状態での段差部17の位置を示す。
 詳しくは、金属の疲労強度は高温になるほど低下するため、常に排気通路6内にあって高熱にさらされる部位である、バルブ軸部12におけるバルブ傘部14寄りの領域は、疲労強度の低下に耐え得る程度の肉厚に形成する必要がある。一方、熱源から離れ、しかも常にバルブガイド3aに摺接する部位である、バルブ軸部12における軸端部寄りの領域は、冷却材19を介して燃焼室4や排気通路6の熱が伝達されるものの、伝達された熱はバルブガイド3aを介して直ちにシリンダヘッド2に放熱されるため、バルブ傘部14寄りの領域ほどの高温となることがない。
 即ち、バルブ軸部12における軸端部寄り領域は、バルブ傘部14寄りの領域よりも疲労強度が低下しないため、薄肉に形成(小径中空部S21の内径を大きく形成)しても、強度的(疲労により折損する等の耐久性)には問題がない。
 そこで、本実施例では、小径中空部S21の内径を大きく形成して、第1には、小径中空部S2全体の表面積(冷却材19との接触面積)を増やすことで、バルブ軸部12における熱伝達効率が高められている。第2には、小径中空部S2全体の容積を増やすことで、バルブ10の総重量が軽減されている。
 また、バルブの軸端部材12bは、シェル11ほどの耐熱性が要求されないため、シェル11の材料よりも耐熱性の低い廉価材(例えばSUH11など)を用いることで、バルブ10を安価に提供できる。
 また、先行特許文献2のように、バルブ軸部からバルブ傘部にかけて中空に構成された中空バルブは、バルブ軸部が中実体で構成された中空バルブと比べて、バルブ軸部の曲げや捩じりに対する強度が低いが、本実施例のバルブ10では、小径中空部S2と大径中空部S1を分離する隔壁15がバルブ傘部14に一体的に形成されて、バルブ軸部12の曲げや捩じりに対する強度の低下を補うので、それだけ耐久性に優れている。
 次に、第1の実施例の中空ポペットバルブ10の製造工程を、図2に基づいて説明する。
 まず、図2(a)に示すように、熱間鍛造工程により、球面状の凹部14bを設けた傘部外殻14aと軸部12aとを一体的に形成したシェル11を成形する。傘部外殻14aにおける球面状の凹部14bの底面14b1は、軸部12a(シェル11の中心軸線L)に対し直交する球面で形成されている。
 熱間鍛造工程としては、金型を順次取り替える押し出し鍛造で、耐熱鋼製ブロックからシェル11を製造する押し出し鍛造、またはアップセッタで耐熱鋼製棒材の端部に球状部を据え込んだ後に、金型を用いてシェル11(の傘部外殻14a)を鍛造する据え込み鍛造のいずれであってもよい。なお、熱間鍛造工程において、シェル11の傘部外殻14aと軸部12aとの間には、R形状フィレット部13が形成され、傘部外殻14aの外周面には、テーパ形状フェース部16が形成される。
 次に、図2(b)に示すように、シェル11の軸部12aの端部側から小径中空部S22に相当する孔14eをドリル加工により穿設する(孔穿設工程)。この孔穿設工程により、大径中空部S1を構成する傘部外殻14aの凹部14bと、小径中空部S22を構成する軸部12a側の孔14eとを分離する隔壁15が形成される。
 次に、図2(c)に示すように、シェル11の軸部12aの端部側から、小径中空部S21に相当する孔14fをドリル加工により穿設し、段部17を形成する(孔穿設工程)。
 次に、図2(d)に示すように、シェル11の軸部12aを上に向けて配置し、小径中空部S2に相当する孔14e、14f内に冷却材(固体)19を所定量充填する(冷却材装填工程)。
 次に、図2(e)に示すように、アルゴンガス雰囲気下で、シェル11の軸部12aに軸端部材12bを軸接する(小径中空部密閉工程)。
 最後に、図4(f)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14bの開口側内周面14cにキャップ18を接合(例えば、抵抗接合)して、バルブ10の大径中空部S1を密閉(大径中空部密閉工程)し、軸端部にコッタ溝12c(図1参照)を形成する加工を施すことで、バルブ10が完成する。なお、キャップ18の接合は、抵抗接合に代えて、電子ビーム溶接やレーザー溶接等を採用してもよい。なおキャップ18を接合する際に、前述のアルゴンガス雰囲気に代えて、減圧状態で接合すると、大径中空部S1内を減圧にすることができる。
 図3は、本発明の第2の実施例である内燃機関用の中空ポペットバルブを示す。
 第2の実施例の中空ポペットバルブ10A(シェル11A)では、隔壁15Aの厚さを第1の実施例の隔壁15の厚さx1より厚いx2とした(x1<x2)こと以外は、第1実施例と同様の構成を有する。第1の実施例と同一部材には同一の符号を付すことで、その重複した説明は省略する。第2の実施例のポペットバルブでは、隔壁15Aの厚さ(上下方向の長さ)を第1の実施例より厚くしたので、機械的強度が比較的弱いフィレット部13が強化される。このように、隔壁15Aの厚さを適宜調節することにより、必要十分な強度を得ることができる。
 なお、図3に示した第2の実施例の中空ポペットバルブ10Aを製造するためには、図2(b)の孔穿設工程における孔14e穿設のドリル加工時の孔穿設距離を(x2-x1)だけ短くする工程を加えれば良い。
 図4は、本発明の第3の実施例である中空ポペットバルブを示す。第3の実施例の中空ポペットバルブ10Bは、前記第2の実施例の変形例で、第2の実施例と同一部材には同一符号を付して説明を省略する。第3の実施例では、球面状の天井面14b1の頂上部に、中心軸線Lに沿って凹入部14gを形成し、該凹入部14gと小径中空部S2間に隔壁15Bが形成される。
 この第3の実施例では、凹入部14gの長さを調節することにより、前記凹入部14gの体積を増減させて、大径中空部S1と合わせた断熱空間の体積を最適に設定して、望ましい断熱効率を得ることができる。
 図5は、本発明の第4の実施例である中空ポペットバルブを示す。第4の実施例の中空ポペットバルブ10Cは、前記第2の実施例の変形例で、第2の実施例と同一部材には同一符号を付して説明を省略する。第4の実施例では、傘部外殻14aの底面およびキャップ18の下面、R形状のフィレット部13、および、傘側中空部(S1)内壁に、セラミックス等から成る断熱層21が、例えば溶射により被覆形成されている。この断熱層21は、傘部外殻14aの底面とキャップ18の下面、フィレット部13、および傘側中空部内壁の少なくとも一箇所に被覆すればよい。ここで、傘側中空部(S1)内壁とは、傘側中空部(S1)のドーム状の球状凹部(14b)とキャップ18上面が含まれ、これらの全部または一部に断熱層21を形成する。
 中空ポペットバルブ10Cの内、傘部外殻14aの底面とキャップ18の下面は燃焼室4の高温に曝され、またポペットバルブが排気バルブである場合には、前記フィレット部13が排気路内の高温の混合気に曝される。これらの箇所に断熱層21を形成することで、耐熱性が向上し、高温安定性が得られる。また、傘側中空部内壁のキャップ18上面に断熱層21を形成すると、キャップ18下面側の断熱層21では遮断できなかった熱が遮断されて、傘側中空部に熱が伝導されるのを抑制することができる。また球状凹部(14b)に形成された断熱部により、傘状中空部(S1)内の熱が軸部方向に伝達されることを抑制できる。
 図6は、本発明の第5の実施例である中空ポペットバルブを示す。第5の実施例の中空ポペットバルブ10Dは、前記第1の実施例の変形例で、第1の実施例と同一部材には同一符号を付して説明を省略する。第5の実施例では、大径の中空部S1’が半球状ではなく、略円錐台状に形成され、したがって前記大径の中空部S1’の天井面が平面14cとして形成され、さらに小径の中空部S2’に、第1の実施例における段部17が形成されていない。この第5の実施例でも、前述の各実施例と同様に、隔壁15Cにより前記大径の中空部S1’と小径の中空部S2’が区画されて、それぞれ断熱効果と冷却効果が発揮される。小径の中空部S2’内での対流は生じないが、その分、製造が簡略化される。
 図7は、本発明の第6の実施例である中空ポペットバルブを示す。前述の実施例では、中空ポペットバルブは、バルブ軸部内の小径中空部とバルブ傘部内の大径中空部は、シェルに一体的に形成された隔壁によって分離されているのに対し、この第6の実施例の中空ポペットバルブ10Eでは、バルブ軸部12内の小径中空部S2”とバルブ傘部14内の大径中空部S1”は、小径中空部S2”の大径中空部S1”への開口部内に固定されて隔壁を構成するシェル11Eと同材の耐熱鋼もしくはそれよりも低熱伝導の材料(例えばインコネルなど)のプラグ(円柱体)15Dよって分離されている。このプラグ15Dは、大径中空部S1”方向から圧入(挿嵌)することにより所定位置に固定される。この第6の実施例では、大径中空部S1”の傾斜外周面14b2の頂上部付近に段付き平坦部14b3が形成されている。
 その他の構成は、前記した第1の実施例に係る中空ポペットバルブ10と同一であり、同一の符号を付すことで、その重複した説明は省略する。
 この第6の実施例のバルブ10Eでは、中空部S1”、S2”を分離する隔壁であるプラグ15Dが、バルブ10Eの素材である耐熱鋼と同材もしくはそれよりも低熱伝導の材料で構成されているので、中空部S1”から伝達される熱を隔壁で更に抑制することが出来て、それだけ断熱効果に優れている。また、軸接せずに加工することが出来るので、新たに軸接工程を設ける必要がなく、工程を省略することが出来る。
 次に、中空ポペットバルブ10Eの製造工程を、図8に基づいて説明する。
 まず、図8(a)に示すように、熱間鍛造工程により、球面状の凹部14bを設けた傘部外殻14aとバルブ軸部12とを一体的に形成したシェル11Eを成形する。
 次に、図8(b)に示すように、大径中空部S1”の球形面の頂上部付近に切削等により、段付き平坦部14b3を形成する(段付き平坦部形成工程)。
 次に、図8(c)に示すように、傘部外殻14aの凹部14bが上向きとなるようにシェル11Bを配置し、傘部外殻14aの凹部14b側の前記段付き平坦部14b3からバルブ軸部12にかけて小径中空部S2”に相当する円孔14eをドリル加工により穿設する(孔穿設工程)。孔穿設工程により、大径中空部S1”を構成する傘部外殻14aの凹部14bと、小径中空部S2”を構成するバルブ軸部12側の円孔14eが連通する。この孔穿設工程では、段付き平坦部14b3からドリル加工ができるため、正確かつ容易に円孔14eを穿設できる。
 次に、図8(d)に示すように、シェル11Bの傘部外殻14aの凹部14bの円孔14eに冷却材(固体)19を所定量充填する(冷却材装填工程)。
 次に、図8(e)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14b内の孔14eの開口部に、プラグ15Bを圧入しロウ付けにより固定して、小径中空部S2”を密閉する。
 最後に、図8(f)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14bにキャップ18を接合した後、軸端部にコッタ溝を形成する加工を施すことで、バルブ10Eが完成する。
10、10A、10B、10C、10D、10E 中空ポペットバルブ
11、11A、11B、11C,11D、11E 傘部外殻と軸部を一体的に形成したバルブ中間品であるシェル
12 バルブ軸部
12a シェルの軸部
14 バルブ傘部
14a 傘部外殻
14b 傘部外殻の凹部
14b1 大径中空部の天井面
14b2 大径中空部のテーパ形状外周面
14b3 段付き平坦部
15、15A、15B.15D 隔壁
15E 隔壁を構成するプラグ(円柱体)
17 段部
18 キャップ
19 冷却材
21 断熱層
L バルブの中心軸線
S1、S1’,S1” 円錐台形状の傘側中空部(大径中空部)
S2、S2’,S2” 直線状の軸側中空部(小径中空部)
S21 軸端部寄り小径中空部
S22 傘部寄り小径中空部

Claims (5)

  1.  軸部の一端側に傘部を一体的に形成した中空ポペットバルブにおいて、
     前記バルブには、隔壁で分離された傘側中空部と軸側中空部が形成され、前記傘側中空部には、ガスまたはバルブ形成金属より低熱伝導率の材料を収容して断熱部が構成され、かつ前記軸側中空部には、冷却材が装填されていることを特徴とする中空ポペットバルブ。
  2.  前記傘部の燃焼室側表面、前記傘部から前記軸部に掛けての外周面、および傘側中空部内壁の少なくとも一箇所に、断熱層を形成したことを特徴とする請求項1記載の中空ポペットバルブ。
  3.  前記隔壁は、バルブ本体と一体成型されていることを特徴とする請求項1または2に記載の中空ポペットバルブ。
  4.  前記隔壁は、前記軸部の内径と実質的に同じ外径を有する円柱体を前記冷却部内に挿嵌して所定位置に固定されることを特徴とする請求項1または2に記載の中空ポペットバルブ。
  5.  前記傘部の燃焼室側には、傘側中空部の底面を画成するキャップ材が接合された請求項1から4までのいずれか1項に記載の中空ポペットバルブ。
PCT/JP2014/053086 2014-02-10 2014-02-10 中空ポペットバルブ WO2015118690A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL14881411T PL3106633T3 (pl) 2014-02-10 2014-02-10 Sposób regulowania przewodności cieplnej wydrążonego zaworu grzybkowego
MX2016009708A MX2016009708A (es) 2014-02-10 2014-02-10 Valvula de asiento hueca.
PCT/JP2014/053086 WO2015118690A1 (ja) 2014-02-10 2014-02-10 中空ポペットバルブ
JP2015561142A JP6205437B2 (ja) 2014-02-10 2014-02-10 中空ポペットバルブ
US15/114,460 US9790822B2 (en) 2014-02-10 2014-02-10 Hollow poppet valve
RU2016136194A RU2641870C1 (ru) 2014-02-10 2014-02-10 Полый тарельчатый клапан
KR1020167016451A KR101683590B1 (ko) 2014-02-10 2014-02-10 중공 포핏 밸브
BR112016017938A BR112016017938B8 (pt) 2014-02-10 2014-02-10 Método para ajustar os valores relativos de um efeito de isolamento de calor e um efeito de dissipação de calor de uma válvula reguladora de pressão oca
CN201480073621.0A CN105980675B (zh) 2014-02-10 2014-02-10 空心提升阀
EP14881411.4A EP3106633B1 (en) 2014-02-10 2014-02-10 Method for adjusting heat conductivities of a hollow poppet valve
TW104104210A TWI638092B (zh) 2014-02-10 2015-02-09 中空提動閥及中空提動閥之隔熱效果與導熱效果之相對值的調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053086 WO2015118690A1 (ja) 2014-02-10 2014-02-10 中空ポペットバルブ

Publications (1)

Publication Number Publication Date
WO2015118690A1 true WO2015118690A1 (ja) 2015-08-13

Family

ID=53777516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053086 WO2015118690A1 (ja) 2014-02-10 2014-02-10 中空ポペットバルブ

Country Status (11)

Country Link
US (1) US9790822B2 (ja)
EP (1) EP3106633B1 (ja)
JP (1) JP6205437B2 (ja)
KR (1) KR101683590B1 (ja)
CN (1) CN105980675B (ja)
BR (1) BR112016017938B8 (ja)
MX (1) MX2016009708A (ja)
PL (1) PL3106633T3 (ja)
RU (1) RU2641870C1 (ja)
TW (1) TWI638092B (ja)
WO (1) WO2015118690A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225618A1 (de) * 2014-12-11 2016-06-16 Mahle International Gmbh Verfahren zur Herstellung eines Hohlventils
DE102016200739A1 (de) * 2016-01-20 2017-07-20 Mahle International Gmbh Metallisches Hohlventil für eine Brennkraftmaschine eines Nutzkraftfahrzeugs
DE102017211905A1 (de) 2017-07-12 2019-01-17 Evoguard Gmbh Prozessventil und Lebensmittelbehandlungs- und/oder -abfüll-Anlage
CN107605562A (zh) * 2017-09-13 2018-01-19 张家港保税区通勤精密机械有限公司 一种高强度排气门
GB2567846A (en) 2017-10-26 2019-05-01 Eaton Srl Poppet Valve
WO2019086244A1 (en) * 2017-10-30 2019-05-09 Eaton Intelligent Power Limited Poppet valve
GB2568975A (en) 2017-10-30 2019-06-05 Eaton Srl Poppet valve
US20190277169A1 (en) 2018-03-06 2019-09-12 Ohio State Innovation Foundation Hollow Valve For An Engine
CN110439661A (zh) * 2019-06-26 2019-11-12 乐元 有高速阀的发动机排气歧管
RU2746231C1 (ru) * 2020-06-08 2021-04-09 Юрий Иванович Духанин Запорный клапан
US11530629B2 (en) * 2020-06-26 2022-12-20 GM Global Technology Operations LLC Method to attach copper alloy valve inserts to aluminum cylinder head
CN118234926A (zh) 2021-11-16 2024-06-21 伊顿智能动力有限公司 中空提升阀及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273306U (ja) * 1975-11-29 1977-06-01
JPS52111813U (ja) * 1976-02-21 1977-08-25
JPS5525679U (ja) * 1978-08-09 1980-02-19
JPS61106677U (ja) 1984-12-18 1986-07-07
JPH0465907U (ja) * 1990-10-08 1992-06-09
JPH04311611A (ja) * 1991-04-09 1992-11-04 Aisan Ind Co Ltd セラミックコーティングエンジンバルブ
JP2003307105A (ja) * 2002-04-12 2003-10-31 Fuji Oozx Inc エンジンバルブ
JP2012072748A (ja) 2010-09-30 2012-04-12 Mazda Motor Corp エンジン用バルブ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1670965A (en) * 1923-06-09 1928-05-22 Sam D Heron Cooling of exhaust valves of internal-combustion engines
GB224288A (en) * 1923-08-07 1924-11-07 Sam Dalziel Heron Improvements in the cooling of valves or other moving parts of internal combustion engines that are subject to high temperature
US2238628A (en) * 1939-05-10 1941-04-15 Eaton Mfg Co Valve construction
US2371548A (en) * 1943-12-06 1945-03-13 Thomas F Saffady Valve
GB618607A (en) * 1946-06-04 1949-02-24 William Thomas Davies Improvements in or relating to the production of corrosion resistant coatings on poppet valves for internal-combustion engines
DE2313339A1 (de) * 1973-03-17 1974-09-19 Maschf Augsburg Nuernberg Ag Ventil, insbesondere auslassventil fuer brennkraftmaschinen
SU881357A1 (ru) * 1980-02-08 1981-11-15 Институт Технической Теплофизики Ан Украинской Сср Выпускной клапан дл двигател внутреннего сгорани
JPS588212A (ja) * 1981-07-08 1983-01-18 Mitsubishi Heavy Ind Ltd きのこ状弁
JPS5810105A (ja) * 1981-07-13 1983-01-20 Mitsubishi Heavy Ind Ltd きのこ状弁
DE3150708A1 (de) * 1981-12-22 1983-07-07 Gesenkschmiede Schneider Gmbh, 7080 Aalen "tellerventil als auslassventil fuer hochbelastbare motore"
JPS61106677A (ja) 1984-10-30 1986-05-24 Aisin Chem Co Ltd 高膜厚型塗料組成物
JPH09184404A (ja) * 1995-12-28 1997-07-15 Fuji Oozx Inc 内燃機関用中空弁
JPH1121679A (ja) * 1997-07-03 1999-01-26 Sumitomo Electric Ind Ltd セラミックス断熱部材で被覆した機械構造部品
DE10117513A1 (de) * 2001-04-07 2002-10-17 Volkswagen Ag Brennkraftmaschine mit Direkteinspritzung
DE10209770A1 (de) * 2002-03-05 2003-10-09 Daimler Chrysler Ag Leichtbauventil
WO2012026011A1 (ja) * 2010-08-25 2012-03-01 日鍛バルブ株式会社 中空ポペットバルブおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273306U (ja) * 1975-11-29 1977-06-01
JPS52111813U (ja) * 1976-02-21 1977-08-25
JPS5525679U (ja) * 1978-08-09 1980-02-19
JPS61106677U (ja) 1984-12-18 1986-07-07
JPH0465907U (ja) * 1990-10-08 1992-06-09
JPH04311611A (ja) * 1991-04-09 1992-11-04 Aisan Ind Co Ltd セラミックコーティングエンジンバルブ
JP2003307105A (ja) * 2002-04-12 2003-10-31 Fuji Oozx Inc エンジンバルブ
JP2012072748A (ja) 2010-09-30 2012-04-12 Mazda Motor Corp エンジン用バルブ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Also Published As

Publication number Publication date
EP3106633B1 (en) 2019-11-13
RU2641870C1 (ru) 2018-01-22
BR112016017938B8 (pt) 2023-04-25
CN105980675B (zh) 2018-08-31
JPWO2015118690A1 (ja) 2017-03-23
KR101683590B1 (ko) 2016-12-07
JP6205437B2 (ja) 2017-10-04
PL3106633T3 (pl) 2020-05-18
EP3106633A4 (en) 2017-10-11
US20160356186A1 (en) 2016-12-08
BR112016017938A2 (ja) 2018-05-08
BR112016017938B1 (pt) 2022-05-24
TWI638092B (zh) 2018-10-11
EP3106633A1 (en) 2016-12-21
US9790822B2 (en) 2017-10-17
CN105980675A (zh) 2016-09-28
MX2016009708A (es) 2016-11-08
KR20160093028A (ko) 2016-08-05
TW201544676A (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6205437B2 (ja) 中空ポペットバルブ
JP6072053B2 (ja) 中空ポペットバルブ
WO2014167694A1 (ja) 中空ポペットバルブ
US20180335140A1 (en) Piston structure for engine
JP6033402B2 (ja) 中空ポペットバルブ
JP6251177B2 (ja) 中空ポペットバルブ
JP6029742B2 (ja) 中空ポペットバルブ
JP6063558B2 (ja) 中空ポペットバルブ
JP6131318B2 (ja) 中空ポペットバルブ
WO2015170384A1 (ja) 中空ポペットバルブ
JP2008138649A (ja) 中空バルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561142

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167016451

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014881411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009708

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15114460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016136194

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016017938

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016017938

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160802