WO2015118402A1 - Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2), con estructura cúbica centrada en las caras (fcc) - Google Patents

Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2), con estructura cúbica centrada en las caras (fcc) Download PDF

Info

Publication number
WO2015118402A1
WO2015118402A1 PCT/IB2015/000120 IB2015000120W WO2015118402A1 WO 2015118402 A1 WO2015118402 A1 WO 2015118402A1 IB 2015000120 W IB2015000120 W IB 2015000120W WO 2015118402 A1 WO2015118402 A1 WO 2015118402A1
Authority
WO
WIPO (PCT)
Prior art keywords
mdmo
spheres
ppv
luminescent polymer
manufacturing
Prior art date
Application number
PCT/IB2015/000120
Other languages
English (en)
French (fr)
Inventor
Juan Carlos SALCEDO REYES
Original Assignee
Pontificia Universidad Javeriana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Javeriana filed Critical Pontificia Universidad Javeriana
Priority to KR1020167024764A priority Critical patent/KR20160119204A/ko
Priority to US15/117,313 priority patent/US9859497B2/en
Publication of WO2015118402A1 publication Critical patent/WO2015118402A1/es

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present patent application relates to a method of rapid, simple and reproducible manufacture of a colloidal glass with face-centered cubic packing (fcc) formed by spheres of silica (Si0 2 ) of 250 nm of diameter and infiltrated with the luminescent polymer Poly [2-methoxy-5- (3 ', 7'-dimethyloctyloxy) -1, 4-phenylene-vinyl] (MDMO-PPV) using the spin-coating technique .
  • fcc face-centered cubic packing
  • the present invention has its application within the field of the lighting industry and, more specifically, to the industry dedicated to the manufacture of luminescent flat screens, lamps, organic lasers, signs, light indicators and others.
  • OLED Organic Light Emitting Diodes
  • OLED Organic Light Emitting Diodes
  • an electroluminescent layer formed by a film of semiconductor and luminescent organic components that react to a given electrical stimulation, obtaining, in this way, a device that transforms electrical energy into light energy.
  • OLED technology has developed rapidly due to its potential applications in the manufacture of flat screens, notices, solid state lighting elements, among others.
  • the basic structure of an OLED consists of one or several layers of semiconductor organic material that are located between two electrodes (active region).
  • the negative electrode cathode
  • the positive electrode anode
  • the active region in an OLED is typically formed by a layer of a luminescent organic molecule and an organic hole transport layer (HTL, Hole Transport Layer).
  • the cathode injects electrons into the organic molecule, while the anode extracts electrons, that is, it injects positive (hollow) charges into the molecule.
  • the electron-hollow pair which corresponds to an excited state, can interact to form an exciton, which can decay radiatively, generating a photon of energy equal to the difference between the HOMO (High Occupied Molecular Orbital) levels and LUMO (Low Unoccupied Molecular Orbital) molecule.
  • the so-called excitonic radiation of the molecule By the Einstein-Planck ratio the energy of each photon is equivalent to the wavelength (color) of the emitted radiation.
  • an MDMO-PPV / OLED manufactured from the MDMO-PPV luminescent polymer
  • a layer is used thin tin oxide doped with Indium (ITO) which is a highly transparent degenerate semiconductor type p in the visible range that, within the structure of the OLED, functions as a hollow injector contact that supplies positive charges to the luminescent polymer (B) depending on the difference between the maximum of the valence band (Valence Band Maximum, VBM) of the ITO and the energy of the highest occupied molecular orbital (High Occupied Molecular Orbital, HOMO) of the polymer Luminescent and excitonic emission is produced by the organic layer of MDMO-PPV.
  • ITO Indium
  • an organic, conductive and transparent (D) layer of poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) is introduced, abbreviated as PEDOTPSS, which facilitates the transport of holes from the ITO to the luminescent polymer (B), because it has an intermediate energy level between the valence band of the ITO and the HOMO of the polymer.
  • the PEDOT: PSS acts within the structure as the HTL.
  • cathode (C) different metals that inject electrons into the electroluminescent layer can be used to recombine radiatively with the holes injected from the ITO (anode).
  • the efficiency of electron injection is strongly influenced by the work function of the metal used as a cathode, which is usually made of silver or aluminum [Méndez, et al., Rev. Col. Fis., 2010, 42, 397-401 ].
  • the radiation emitted by the active region can be classified into three main modes (Fig. 1): The waveguide mode, in which the radiation is trapped in the region formed by the METAL / MDMO-PPV / PEDOT: PSS / ITO due to internal total reflection phenomena, mainly in the ITO / substrate and METAL / MDMO-PPV interface.
  • the substrate mode when the radiation is trapped, within the substrate, due to the ITO / substrate and substrate / air interfaces.
  • the air mode when the radiation emitted by the active region leaves the device in the air.
  • the light extraction efficiency of the device is approximately only 20%, taking into account that the efficiency of the extraction of light from the OLED is defined as the ratio between the intensity of the air mode radiation and the intensity of the total radiation emitted by the active element of the device [F. Masayuki et al., Japanese Journal of Applied Physics 2005; 44, 3669-3677]. This is how, recently, a large number of techniques have been proposed that aim to solve the problem of radiation re-absorption in OLEDs.
  • patent application WO2007141364 teaches a method of preparing thin sheets of colloidal glass that includes the steps of: a) preparing a colloidal suspension containing the particles of the compound to be deposited as a thin sheet of colloidal glass, by dispersing said particles in a volatile liquid medium during the spin-coating process and stirring of said suspension for a period of time between 5 minutes and 24 hours, b) application of the colloidal suspension obtained in the previous stage on a substrate, previously treated or not, in sufficient quantity to cover said substrate, and c) rotation of the substrate (spin-coating) with the compound applied in the previous stage at speeds between 1 revolution per second and 200 revolutions per second for a period of time between 1 second and 1,200 seconds.
  • patent document No. WO2006110926 refers to an OLED device that uses an emitting polymer layer (MEH-PPV) located between two semi-transparent electrodes, where At least one of the electrodes is perforated and the organic semiconductor polymer is a soluble derivative Poly [p-phenylene-vinyl] (PPV).
  • MEH-PPV emitting polymer layer
  • US Patent No. US6403238 teaches a process for producing an OLED comprising one or more light emitting active layers, located between two contact injector layers coated on a substrate, where at least one of the active layers they consist of Poly [2-methoxy-5- (2-ethyl-hexyloxy) -1, 4-phenylene-vinyl-1, 2-ethenylene-2,5 dimethoxy-1, 4-phenylene-1, 2-ethylene ] (M3EH-PPV). Where the M3EH-PPV can optionally be mixed with other electrically active materials and applied in a film-like solution on the substrate.
  • Colombian application No. CO6470853 refers to a composite material comprising at least two components, wherein at least one component is present in the form of nano-particles, consisting of at least three metals and at least one non-metal and the diameter of which is less than a micrometer, preferably less than 200 nm.
  • the composite material according to the invention is particularly well suited for the production of photoactive layers.
  • US8329505 teaches a method for the deposition of the cathode for the structure of an OLED diode.
  • the invention comprises a number of potential advantages such as less device manufacturing time, less material consumption and less equipment.
  • Patent document EP 1929533 refers to a method of manufacturing an OLED screen having a plurality of OLED devices. The method includes providing a plurality of OLED devices on a substrate and sharing a common light transmitting electrode, thus forming a conductive layer structure stamped on the common light transmitting electrode.
  • Korean patent No.KR100873517 refers to an OLED-PhC device and its manufacturing method.
  • the patent teaches a device and a method that improves the quantum efficiency of the OLED by means of a PhC layer.
  • the type of PhC is not specified. It could be a 2D-PhC by lithography or a colloidal crystal. It is also not specified which polymer is used.
  • the present invention proposes a method of manufacturing the active region from a single layer consisting of a colloidal crystal (S0 2 spheres of 250 nm in diameter with fcc structure) and the luminescent polymer (MDMO-PPV).
  • JP4533041 proposes to improve the quantum efficiency of an OLED by chemical treatment of the substrate to make it porous, without specifying the size of the pores, or the type of substrate.
  • Korean patent application No. KR20030026450 teaches an organic light emission device that improves quantum efficiency in an OLED by adding a PhC layer in the upper layer of the device (concave-convex structure). However, this document also does not specify what type of PhC is used.
  • Patent No. CN 101000949 proposes a method to improve the monochromaticity of OLEDs using a layer of colloidal glass.
  • a layer of the luminescent polymer (without specifying which one) is deposited on a layer of Si0 2 spheres, without specifying the method as this layer is deposited.
  • the present invention proposes to synthesize these two layers in a single procedure by means of a spin-coating method.
  • Chinese Patent No. CN 101409331 refers to an electroluminescent device that improves the extraction of light by placing a photonic crystal (does not specify which) on the top of the structure.
  • the improved display device can be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the structure.
  • Patent application No. US20080284320 proposes a method for the improvement of the quantum efficiency of OLED by using a substrate with a photonic crystal, this crystal comprises a film structure on a substrate produced using a combination of high and low materials refractive index.
  • Patent document No. US2010148158 refers to the improvement of the quantum efficiency of OLED which has excellent solubility and thermal stability by incorporating a layer of Si0 2 in nano-powder (nanopowder) by drip coating (dip-coating).
  • Puzzo D. et al reports a process for the improvement of the quantum efficiency of OLED by 1 D-PhC of TIN doped with antimony (Nano Lett., 201 1, 1 1 (4), pp 1457-1462).
  • Quang-Cherng H. also refers to the fabrication of the structure of a photonic crystal using nano-printing, which substantially improves the Quantum efficiency of PMMA-OLED using 2D-PhC by lithography (Microelectronic Engineering Volume 91, March 2012, Pages 178-184).
  • This invention describes the manufacturing process of a colloidal crystal with fcc structure formed by 250 nm diameter silica spheres infiltrated by the MDMO-PPV luminescent polymer by means of the spin-coating technique to subsequently be implemented within the typical structure of an OLED (Fig. 1) in order to improve the quantum efficiency of the device.
  • the object of the present invention is the manufacturing process, fast, simple and reproducible, using the spin-coating technique to obtain a thin film formed by a colloidal crystal infiltrated with MDMO-PPV.
  • the OLED device configuration comprises a sequence of organic layers located between two electrodes, an anode for the injection of holes and a cathode for the injection of electrons.
  • Load carriers move through the transport layers and are in the emission layer (EML, Emission Layer), where excitons are formed that have a certain probability of decaying radiatively.
  • EML emission layer
  • Emission Layer Emission Layer
  • the hole injection layer (HIL) has to facilitate the injection of holes from the anode to the hole transport layer (HTL). This can be achieved by choosing the energy level of the highest occupied molecular orbital (HOMO, High Occupied Molecular Orbital) so that it is between the HOMO of the HTL and the ionization potential of the anode.
  • HOMO highest occupied molecular orbital
  • the transmission of all organic layers must be high in the region of the emission wavelength.
  • the positions of the HOMO and LUMO (Low Unoccupied Molecular Orbital) orbitals of the emission layer (EML) should allow the injection of holes and electrons from the neighboring layers.
  • the properties of the electron transport (ETL) and electron injection (EIL) layers would be complementary to those already seen for the HIL and HTL layers.
  • the anode has a high ionization potential to inject gaps into the HOMO of the HIL. Therefore, the cathode must be a metal with a low working function.
  • at least one electrode must be transparent to achieve high light extraction efficiency. For this reason, ITO (tin-indium oxide) is used as the transparent anode in most cases.
  • the OLED device has fewer layers than those mentioned, since some organic materials have several of the properties mentioned above in one layer.
  • a single layer must fulfill all the necessary tasks. This can only lead to high quantum efficiencies if this single layer is capable of injecting and transporting holes and electrons with the same ease.
  • Carrier injection barriers in the different interfaces and mobilities determine the position of the recombination zone and the performance of the device, affecting the operating voltages and luminescence efficiency.
  • the interaction between the electrode and the organic layer also has a substantial influence on the electronic properties of the interface, which in turn determine the properties of the OLED.
  • barriers to charge injection by choosing electrodes with working functions well adjusted to the polymer bands are for the ITO and PEDOT: PSS anode, which have the property of being transparent, allowing light to leave the device.
  • the material used is a metal with an improved injection of electrons such as aluminum or silver.
  • these materials are reactive with oxygen, so the device must be hermetically sealed to prolong its life. It is possible to achieve an improved injection of electrons from these metals, by coating the electrode with a self-assembled polar monolayer.
  • luminescent polymers show different advantages over traditional inorganic semiconductors, mainly due to the high degree of solubility. This property allows the use of so-called wet manufacturing techniques (wet techniques) whose main feature is that they do not require high vacuum systems, which makes them cheaper and more versatile opto-electronic device manufacturing techniques.
  • wet techniques wet manufacturing techniques
  • FIG. 1 Schematic diagram of a typical OLED. The optical modes of the device are indicated.
  • Fig. Schematic diagram of an OLED manufactured from the MDMO-PPV electroluminescent polymer showing the different layers that make up the device.
  • Fig 3 Schematic diagram of the layer structure in an MDMO-PPV OLED.
  • Fig 7. SEM image of a colloidal crystal obtained from a 15:85 w / w solution of Si0 2 spheres of 250 nm in diameter and 1% w / w cyclohexanone.
  • Fig 8. SEM image of a colloidal crystal obtained from a 17:83 w / w solution of Si0 2 spheres of 250 nm in diameter and 1% w / w cyclohexanone.
  • Fig 9. Transmittance spectrum of a colloidal crystal formed by Si0 2 spheres of 250 nm in diameter and infiltrated with MDMO-PPV.
  • the structure of an OLED device has a layered configuration and is manufactured sequentially.
  • the ITO anode consists of a transparent glass support or a flexible polymer, on which a mixture of indium and tin oxides that form a conductive layer is deposited. Then, the organic film or films are deposited sequentially. The way of depositing these layers depends on the nature of the chemical substances themselves, which can be polymers or small molecules. Finally, and once all the films have been deposited, the device closes with the cathode, which is constituted by a metal or alloy of low-working metals (aluminum, silver or gold), and which is deposited by techniques of evaporation in high vacuum.
  • the cathode which is constituted by a metal or alloy of low-working metals (aluminum, silver or gold), and which is deposited by techniques of evaporation in high vacuum.
  • An OLED device manufactured from electroluminescent polymer comprises different layers that are aligned according to the different energy levels of the heterostructure.
  • An OLED made from the MDMO-PPV polymer (PPV-OLED) has the structure ITO / PEDOT: PSS / MDMO-PPV / Metal shown in Figure 2.
  • a thin layer of doped tin oxide is used as the anode.
  • ITO Indian (1) which is a highly transparent degenerated semiconductor type p (transmittance greater than 90%) in the visible range that, within the structure of the OLED, functions as a hollow injector contact that supplies positive loads to the MDMO-PPV as a function of the difference between the maximum of the valence band (VBM, Valence Band Maximum) of the ITO and the energy of the highest occupied molecular orbital (HOMO) of the organic layer MDMO-PPV.
  • VBM Valence Band Maximum
  • HOMO highest occupied molecular orbital
  • a conductive and transparent organic layer PEDOT: PSS (2) is introduced that facilitates the transport of gaps from the ITO (1) to the luminescent polymer, because it has an intermediate energy level between the valence band of the ITO and the HOMO of the polymer.
  • the PEDOT is called: PSS as a hollow transport layer (HTL).
  • cathode (4) different metals that inject electrons into the electroluminescent layer can be used to radically recombine with the holes injected from the ITO (anode).
  • the efficiency of the Electron injection is strongly influenced by the metal's work function that is used as a cathode (1) that is usually made of aluminum, silver or gold.
  • the electroluminescent characteristics of the MDMO-PPV system intrinsically depend on the constituent materials, which determine the alignment of their energy levels, the density of holes, and the efficiency of electron injection from the cathode, it is clear that the The efficiency of the device is affected by geometric factors and manufacturing parameters, such as the thickness of the MDMO-PPV (3), PEDOSPSS (2) and ITO (1) layers and, above all, the quality of their interfaces.
  • the incorporation of dispersion centers into the structure is one of the most efficient methods to improve the extraction of light from OLEDs for general lighting applications. If a compact hexagonal monolayer (hcp) of colloidal S1O2 spheres is incorporated into the region of the waveguide mode, the efficiency of the device increases considerably because the ordered structure behaves like a two-dimensional diffraction grating. Two-dimensional PhCs have been intensively used to increase light extraction in OLED forming structures known as ITO / Organic / PhC.
  • the radiation emitted by the active region MDMO-PPV can be classified into three main modes shown in Figure 3.
  • the waveguide mode (5) in which the radiation is trapped in the formed region by the layers of ETL / MDMO-PPV / PEDOT: PSS / ITO due to internal total reflection phenomena, mainly in the ITO / substrate interface and ETL / MDMO-PPV.
  • the substrate mode (6) when the radiation is trapped, within the substrate, due to the ITO / substrate and substrate / air interfaces.
  • the air mode (7) when the radiation emitted by the active region leaves the device in the air.
  • the radiation produced in the active region undergoes different reflection-refraction processes, dependent on the refractive indices, at the interface between the different layers of the structure, this is represented in the figure by the arrows on the interfaces.
  • the light extraction efficiency of the device is only 20%, taking into account that the efficiency
  • the extraction of light from the OLED is defined as the ratio between the intensity of the air mode radiation and the intensity of the total radiation emitted by the active element of the device.
  • the present invention develops a manufacturing method, by the spin-coating technique, of a colloidal crystal formed by silica spheres of about 250 nm in diameter with a face-centered cubic structure (fcc ) and infiltrated with the MDMO-PPV luminescent polymer for application in increasing the extraction of OLED light.
  • the manufacturing process of a thin film formed by a colloidal crystal infiltrated with the MDMO-PPV luminescent polymer formed from silica spheres (Si0 2 ), with a face-centered cubic structure (fcc) includes the following steps:
  • Synthesis of mono-dispersed Si0 2 spheres i) Synthesis of Si0 2 spheres of 250 nm in diameter by the Stóber method (Stóber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 1968: 26 (1): 62-69). This method is suitable for synthesizing spheres between 100 and 2000 nm, depending on the reaction time and the relative concentration between water, ammonia, ethanol and tetraethyl orthosilicate (Si (OC2H 5 ) 4 ), abbreviated teos.
  • reaction is left for the necessary time, of the order of approximately one hour, depending on the diameter of the S1O2 spheres required.
  • a mixture of water and the Si0 2 spheres obtained in the previous step are sedimented at least three times in order to obtain a mono-dispersed solution of S1O2 spheres.
  • the suspension is dried by centrifugation at the speed and time necessary for the spheres to separate from the solvent in order to obtain spheres of powdered S1O2, heated to the temperature and time necessary for the solvent to evaporate completely.
  • the luminescent polymer is added to the suspension obtained in the previous step so that a mixture, with adequate viscosity and density values, is obtained between the luminescent polymer, the organic solvent and the S1O2 spheres.
  • a mixture with adequate viscosity and density values, is obtained between the luminescent polymer, the organic solvent and the S1O2 spheres.
  • a soda lime substrate is introduced in chromic solution (mixture of potassium dichromate, sulfuric acid and water in appropriate proportions) for the necessary time as to get that effect.
  • the substrate is removed from the chromic solution and rinsed multiple times with deionized water and dried under the flow of an inert gas (argon or nitrogen).
  • the thin films obtained are characterized, structurally, by scanning electron microscopy (JEOL JSM 6490) and, optically, by UV-VIS absorbance at an angle (Ocean optics QE65000 Scientific-grade Spectrometer) and photoluminescence (Acton research 270 monochromator, Hamamatsu photomultiplier tube, Standford research systems SR830 Amplifier lock-in).
  • the preparation of the colloidal solution of S1O2 spheres requires a high viscosity organic solvent that also allows the polymer to dissolve.
  • the solvent is chosen from the family of organic components such as cyclohexanone.
  • the present method contemplates the step of introducing an amount of organic polymer into the colloidal solution, so that a colloidal Si0 2 crystal infiltrated with a luminescent polymer is obtained.
  • the effect that these characteristics manage to include is that thanks to the use of a high viscosity solvent, a combined colloidal solution preparation is achieved.
  • the efficiency of the combined device OLED-colloidal glass is increased when there is a coupling between the absorption of the luminescent polymer and the absorbance of the colloidal crystal.
  • the photoluminescence spectrum of MDMO-PPV is shown in Figure 6, which shows that the emission wavelength of MDMO-PPV, dissolved in 1% w / w ciciohexanone is approximately 565 nm (10) . Another emission peak of lower intensity appears at 665 nm (1 1).

Abstract

La presente invención consiste en un método para la fabricación de películas delgadas formadas por esferas de SiO2 de 250 nm de diámetro empaquetadas en estructura cúbica simple e infiltradas con el polímero orgánico luminiscente Poli[2-metoxi-5-(3',7'-dimetiloctiloxi)-1,4-fenileno-vinileno] (MDMO-PPV). La película delgada se puede depositar sobre un substrato de cal de soda o de óxido de indio dopado con estaño (ITO). El método de fabricación incluye la síntesis de una solución coloidal, en las proporciones adecuadas, de esferas de S1O2 y un solvente orgánico de alta viscosidad y su posterior tratamiento por medio del método de centrifugado (spin coating). El método planteado permite obtener películas de grosor controlable y con buena calidad estructural que pueden ser acoplados fácilmente como región activa en la estructura de un diodo emisor de luz orgánico en el que, gracias a la película que se plantea en la presente invención, se mejora considerablemente la extracción de luz producida por la región activa.

Description

MÉTODO PARA LA FABRICACIÓN DE UNA PELÍCULA DELGADA FORMADA POR UN CRISTAL COLOIDAL INFILTRADO CON EL POLÍMERO LUMINISCENTE MDMO-PPV FORMADO A PARTIR DE ESFERAS DE SÍLICE (SI02), CON
ESTRUCTURA CÚBICA CENTRADA EN LAS CARAS (FCC)
Objetivo de la invención
La presente solicitud de patente de invención se refiere a un método de fabricación rápido, sencillo y reproducible de un cristal coloidal con empaquetamiento cúbico centrado en las caras (fcc, face centered cubic) formado por esferas de sílice (Si02) de 250 nm de diámetro e infiltrado con el polímero luminiscente Poli[2-metoxi-5-(3',7'- dimetiloctiloxi)-1 ,4-fenileno-vinileno] (MDMO-PPV) usando la técnica de recubrimiento por centrifugado (spin-coating).
Campo de la invención
La presente invención tiene su aplicación dentro del campo de la industria de la iluminación y, más específicamente, a la industria dedicada a la fabricación de pantallas planas luminiscentes, lámparas, láseres orgánicos, avisos, indicadores luminosos y demás.
Antecedentes de la invención
Los Diodos Emisores de Luz Orgánicos (OLED, por sus siglas en inglés Organic Light Emitting Diode) se basan en la inclusión, entre el ánodo y cátodo, de una capa electroluminiscente formada por una película de componentes orgánicos semiconductores y luminiscentes que reaccionan a una determinada estimulación eléctrica, obteniendo, de esta manera, un dispositivo que transforma energía eléctrica en energía lumínica. A pesar de su, relativamente, reciente creación, la tecnología OLED se ha desarrollado rápidamente debido a sus potenciales aplicaciones en la fabricación de pantallas planas, avisos, elementos de iluminación de estado sólido, entre otras.
La estructura básica de un OLED consiste en una o varias capas de material orgánico semiconductor que se sitúan entre dos electrodos (región activa). El electrodo negativo (cátodo) está formado por un metal o por una aleación de metales. El electrodo positivo (ánodo) es un material conductor ópticamente transparente (generalmente vidrio recubierto con un óxido conductor transparente como, por ejemplo, óxido de estaño dopado con Indio), de manera que la luz generada en la región activa pueda atravesar el ánodo. La región activa en un OLED está formada, típicamente, por una capa de una molécula orgánica luminiscente y una capa orgánica de transporte de huecos (HTL, Hole Transport Layer). En términos generales, cuando se aplica una diferencia de potencial al dispositivo, el cátodo inyecta electrones a la molécula orgánica, mientras que el ánodo extrae electrones, es decir, inyecta cargas positivas (huecos) a la molécula. En la molécula orgánica el par electrón-hueco, que corresponde a un estado excitado, puede interactuar para formar un excitón, el cual puede decaer radiativamente, generando un fotón de energía igual a la diferencia entre los niveles HOMO (High Occupied Molecular Orbital) y LUMO (Low Unoccupied Molecular Orbital) de la molécula. Generando, de esta forma, la llamada radiación excitónica de la molécula. Por la relación de Einstein-Planck la energía de cada fotón equivale a la longitud de onda (color) de la radiación emitida.
Específicamente, un MDMO-PPV/OLED (fabricado a partir del polímero luminiscente MDMO-PPV) tiene la estructura ITO/PEDOT:PSS/MDMO-PPV/METAL que se muestra en la figura 1. Como ánodo (A) se usa una capa delgada de óxido de estaño dopado con Indio (ITO, por su siglas en inglés) que es un semiconductor degenerado tipo p altamente transparente en el rango visible que, dentro de la estructura del OLED, funciona como contacto inyector de huecos que suministra cargas positivas al polímero luminiscente (B) en función de la diferencia entre el máximo de la banda de valencia (Valence Band Máximum, VBM) del ITO y la energía del más alto orbital molecular ocupado (High Occupied Molecular Orbital, HOMO) del polímero luminiscente y la emisión excitónica es producida por la capa orgánica de MDMO- PPV. Con el fin de aumentar la probabilidad de inyección de huecos a la capa de MDMO-PPV, se introduce una capa orgánica, conductora y transparente (D), de poli(3,4-etilenodioxitiofeno)-poli(estireno sulfonato), abreviado como PEDOTPSS, que facilita el transporte de huecos desde el ITO hasta el polímero luminiscente (B), debido a que posee un nivel de energía intermedio entré la banda de valencia del ITO y el HOMO del polímero. De ahí que el PEDOT:PSS actúa dentro de la estructura como la HTL. Como cátodo (C) se pueden usar diferentes metales que inyectan electrones a la capa electroluminiscente para que recombinen radiativamente con los huecos inyectados desde el ITO (ánodo). La eficiencia de la inyección de electrones está fuertemente influenciada por la función trabajo del metal que se use como cátodo, que generalmente es de plata o aluminio [Méndez, et al., Rev. Col. Fis., 2010, 42, 397- 401].
Por otra parte, dentro del campo de la electrónica orgánica, mejorar la eficiencia cuántica de la emisión de los OLED es un objetivo en el que, actualmente, se presenta una gran actividad científica, debido a que muchas de las potenciales aplicaciones tecnológicas (pantallas planas, lámparas, televisores, láseres orgánicos, etc.) de los OLED dependen, fundamentalmente, de la capacidad de desarrollar metodologías que permitan aumentar dicha eficiencia cuántica externa. Sin embargo, inherente al diseño de los OLED, se observa que hay una gran pérdida de la radiación emitida por el elemento activo (MDMO-PPV) debido a la re-absorción de la radiación por parte de los materiales constituyentes del dispositivo y, además, al poco control que se tiene en el direccionamiento de la luz dentro de las diferentes capas y, en particular, en las interfaces.
La radiación emitida por la región activa (MDMO-PPV), se puede clasificar en tres modos principales (Fig. 1 ): El modo de guía de onda, en el que la radiación es atrapada en la región formada por las capas de METAL/MDMO-PPV/PEDOT:PSS/ITO debido a fenómenos de reflexión total interna, principalmente, en la interface ITO/substrato y METAL/MDMO-PPV. El modo de substrato, cuando la radiación es atrapada, dentro del substrato, debido a las interfaces ITO/substrato y substrato/aire. El modo aire, cuando la radiación emitida por la región activa sale del dispositivo al aire. Desde el punto de vista de la óptica clásica, debido a procesos de refracción- reflexión entre las diferentes capas que constituyen el PPV-OLED, la eficiencia de extracción de la luz del dispositivo es, aproximadamente, tan solo del 20%, teniendo en cuenta que la eficiencia de la extracción de la luz del OLED se define como la razón entre la intensidad de la radiación de modo aire y la intensidad de la radiación total emitida por el elemento activo del dispositivo [F. Masayuki et al., Japanese Journal of Applied Physics 2005; 44, 3669-3677]. Es así como, recientemente, se han propuesto una gran cantidad de técnicas que tienen como objetivo resolver el problema de la re-absorción de radiación en los OLED. Uno de los métodos más simples para extraer del substrato algunos modos de guías de onda, es el uso de una superficie rugosa mediante la aplicación de un chorro de arena de un lado del sustrato de vidrio y la fabricación del OLED en el otro lado. Debido a la rugosidad del sustrato de los modos de ondas guiadas en la frontera cristal-aire se acoplan fuera en el espacio de aire, y la eficiencia de acoplamiento se incrementa con la rugosidad del sustrato. Por otra parte, se propone la extracción de la luz del OLED mediante la utilización de cristales fotónicos (PhC, Photonic Crystals) dispuestos de diferentes formas dentro de la estructura del OLED. [K. Saxena et al., Optical Materials, 2009, 32, 221-233]
De esta forma, la solicitud de patente WO2007141364 enseña un procedimiento de preparación de láminas delgadas de cristal coloidal que incluye las etapas de: a) preparar una suspensión coloidal conteniendo las partículas del compuesto a depositar como lámina delgada de cristal coloidal, mediante la dispersión de dichas partículas en un medio líquido volatilizable durante el proceso de deposición por centrifugado (spin-coating) y agitación de dicha suspensión durante un periodo de tiempo comprendido entre 5 minutos y 24 horas, b) aplicación de la suspensión coloidal obtenida en la etapa anterior sobre un sustrato, previamente tratado ó no, en cantidad suficiente para cubrir dicho sustrato, y c) giro del sustrato (spin-coating) con el compuesto aplicado en la etapa anterior a velocidades comprendidas entre 1 revolución por segundo y 200 revoluciones por segundo durante un periodo de tiempo comprendido entre 1 segundo y 1.200 segundos.
Diversos documentos de patente muestran técnicas para el desarrollo de dispositivos OLED, así por ejemplo, el documento de patente No. WO2006110926, se refiere a un dispositivo OLED que usa una capa de polímero emisivo (MEH-PPV) ubicada entre dos electrodos semitransparente, donde al menos uno de los electrodos es perforado y el polímero semiconductor orgánico es un derivado soluble Poly[p-fenileno-vinileno] (PPV).
El documento de patente de Estados Unidos No. US6403238 enseña un proceso para producir un OLED que comprende una o más capas activas emisoras de luz, ubicadas entre dos capas inyectoras de contacto recubiertas sobre un substrato, donde, al menos, una del las capas activas están constituidas por Poli[2-metoxi-5-(2-etil- hexiloxi)-1 ,4-fenileno-vinileno-1 ,2-etenileno-2,5.dimetoxi-1 ,4-fenileno-1 ,2-etileno] (M3EH-PPV). Donde el M3EH-PPV opcionalmente puede mezclarse con otros materiales eléctricamente activos y aplicarse en una solución en forma de película sobre el sustrato.
La solicitud Colombiana No. CO6470853 se refiere a un material compuesto que comprende cuando menos dos componentes, en donde al menos un componente está presente en la forma de nano-partículas, que consiste de al menos tres metales y al menos un no-metal y el diámetro del cual es menos que un micrómetro, de preferencia menor a 200 nm. El material compuesto de acuerdo con la invención está particularmente bien adecuado para la producción de capas fotoactivas.
El documento US8329505 enseña un método para la deposición del cátodo para la estructura de un diodo OLED. La invención comprende un número de potenciales ventajas como un menor tiempo de fabricación del dispositivo, menos consumo de materiales y menos equipamiento El documento de patente EP 1929533 se refiere a un método de fabricación de una pantalla OLED que tiene una pluralidad de dispositivos OLED. El método incluye proporcionar una pluralidad de dispositivos OLED en un sustrato y compartiendo un electrodo común transmisor de la luz, de esta manera se forma una estructura de capa conductora estampada sobre el electrodo común de transmisión de luz.
La patente coreana No.KR100873517 se refiere a un dispositivo OLED-PhC y su método de fabricación. En la patente se enseña un dispositivo y un método que mejora la eficiencia cuántica del OLED por medio de una capa de PhC. Sin embargo no se especifica el tipo de PhC. Podría ser un 2D-PhC por litografía o un cristal coloidal. Tampoco se especifica que polímero se usa. La presente invención plantea un método de fabricación de la región activa a partir de una sola capa constituida por un cristal coloidal (esferas de SÍ02 de 250nm de diámetro con estructura fcc) y el polímero luminiscente (MDMO-PPV).
La patente japonesa No. JP4533041 propone mejorar la eficiencia cuántica de un OLED haciendo un tratamiento químico al substrato para volverlo poroso, sin especificar el tamaño de los poros, ni el tipo de substrato.
La solicitud de patente coreana No. KR20030026450enseña un dispositivo orgánico de emisión de luz que mejora la eficiencia cuántica en un OLED agregando una capa de PhC en la capa superior del dispositivo (estructura cóncavo-convexa). Sin embargo este documento tampoco especifica qué tipo de PhC se utiliza.
La patente No. CN 101000949 plantea un método para mejorar la mono-cromaticidad de OLEDs usando una capa de cristal coloidal. En el método se deposita una capa del polímero luminiscente (sin especificar cuál) sobre una capa de esferas de Si02, sin especificar el método como se deposita esta capa. La presente invención plantea sintetizar estas dos capas en un solo procedimiento mediante un método tipo deposición por centrifugado (spin-coating). La patente china No. CN 101409331 se refiere a un dispositivo electroluminiscente que mejora la extracción de luz colocando un cristal fotónico (no especifica cuál) en la parte superior de la estructura. El dispositivo de visualización mejorado puede ser fabricado utilizando una película donante de transferencia térmica para adherir la capa de cristal fotónico a la estructura.
La solicitud de patente No. US20080284320 plantea un método para el mejoramiento de la eficiencia cuántica de OLED mediante la utilización de un sustrato con un cristal fotónico, este cristal comprende una estructura de película sobre un sustrato producido usando una combinación de materiales de alto y bajo índice de refracción.
El documento de patente No. US2010148158 se refiere al mejoramiento de la eficiencia cuántica de OLED que tiene excelente solubilidad y estabilidad térmica mediante la incorporación de una capa de Si02 en nano-polvo (nanopowder) mediante recubrimiento por goteo (dip-coating).
De igual manera en diversos artículos de investigación trabajan sobre la optimización de los dispositivos electroluminiscentes. Por ejemplo Wang B. et. ,al. aborda el mejoramiento de la eficiencia cuántica de OLED mediante litografía de nano-esferas (Journal of Crystal Growth, Volume 288, Issue 1 , 2 February 2006, Pages 119-122). De igual manera Kim M. et., al, en su artículo titulado Enhanced performance of organic light-emitting diodes using two-dimensional zinc sulfide photonic crystals, se refieren al mejoramiento de la eficiencia cuántica de OLED medíante PhC de ZnS crecido sobre el substrato de vidrio (Journal of Applied Physics, Volume: 106 , Issue: 1 1 ).
Puzzo D. et al, reporta un proceso para el mejoramiento de la eficiencia cuántica de OLED mediante 1 D-PhC de TIN dopado con antimonio (Nano Lett., 201 1 , 1 1 (4), pp 1457-1462). Así mismo Quang-Cherng H. se refiere a la fabricación de la estructura de un cristal fotónico usando nano-impresión, lo cual mejora sustancialmente la eficiencia cuántica de PMMA-OLED mediante 2D-PhC por litografía (Microelectronic Engineering Volume 91 , March 2012, Pages 178-184).
Como se puede ver, aun cuando la incorporación de cristales fotónicos a la estructura de los OLED ha mostrado ser una alternativa viable para resolver el problema de reabsorción, aún no son claras las características específicas en cuanto a dimensión, material y estructura del cristal, ni en qué parte de la estructura debe situarse para obtener una eficiencia óptima de la estructura electroluminiscente.
Descripción de la Invención
Para resolver los problemas anteriores, y bajo la hipótesis fundamental de que la eficiencia del dispositivo combinado OLED-crístal coloidal se incrementa cuando hay un acoplamiento óptico entre la absorción del polímero luminiscente y la absorbancia del cristal coloidal (mediante la condición de Bragg), en esta invención se describe el proceso de fabricación de un cristal coloidal con estructura fcc formado por esferas de sílice de 250 nm de diámetro infiltrado por el polímero luminiscente MDMO-PPV mediante la técnica de deposición por centrifugado (spin-coating) para, posteriormente, ser implementado dentro de la estructura típica de un OLED (Fig. 1 ) con el fin de mejorar la eficiencia cuántica del dispositivo. De esta manera, el objeto de la presente invención es el procedimiento de fabricación, rápido, sencillo y reproducible, usando la técnica de deposición por centrifugado (spin-coating) para obtener una película delgada formada por un cristal coloidal infiltrado con MDMO-PPV.
La configuración del dispositivo OLED comprende una secuencia de capas orgánicas ubicadas entre dos electrodos, un ánodo para la inyección de huecos y un cátodo para la inyección de electrones. Los portadores de carga se mueven a través de las capas de transporte y se encuentran en la capa de emisión (EML, Emission Layer), donde se forman excitones que presentan una cierta probabilidad de decaer radiativamente. Para lograr mayores eficiencias, la capa de inyección de huecos (HIL, Hole Injection Layer) tiene que facilitar la inyección de huecos desde el ánodo a la capa de transporte de huecos (HTL). Esto puede lograrse eligiendo el nivel energético del orbital molecular ocupado más alto (HOMO, High Occupied Molecular Orbital) de forma que esté entre el HOMO de la HTL y el potencial de ionización del ánodo. La transmisión de todas las capas orgánicas debe ser alta en la región de la longitud de onda de emisión. Las posiciones de los orbitales HOMO y LUMO (Low Unoccupied Molecular Orbital) de la capa de emisión (EML) deben posibilitar la inyección de huecos y electrones desde las capas vecinas. Las propiedades de las capas de transporte de electrones (ETL) y de inyección de electrones (EIL, Electron Injection Layer) serían complementarias a las ya vistas para las capas HIL y HTL. El ánodo tiene un potencial de ionización alto para inyectar huecos en el HOMO de la HIL. Por consiguiente, el cátodo debe ser un metal con una función de trabajo baja. Finalmente, al menos un electrodo debe ser transparente para lograr una alta eficiencia de extracción de la luz. Por esta razón, en la mayor parte de los casos se utiliza ITO (óxido de estaño-indio) como ánodo transparente.
El dispositivo OLED cuenta con menos capas de las mencionadas, dado que algunos materiales orgánicos reúnen varias de las propiedades mencionadas anteriormente en una capa. En el caso más sencillo, como ocurre en algunos OLED basados en polímeros, una sola capa debe cumplir todas las tareas necesarias. Esto sólo puede llevar a eficiencias cuánticas altas si esta única capa es capaz de inyectar y transportar huecos y electrones con la misma facilidad.
Las barreras de inyección de portadores en las distintas interfaces y las movilidades determinan la posición de la zona de recombinación y el rendimiento del dispositivo, afectando a los voltajes de funcionamiento y la eficiencia de la luminiscencia. La interacción entre el electrodo y la capa orgánica también tiene una influencia sustancial en las propiedades electrónicas de la interfaz, que a su vez determinan las propiedades del OLED. Para optimizar el rendimiento se minimizan las barreras para la inyección de carga eligiendo electrodos con funciones de trabajo bien ajustadas a las bandas del polímero. Por este motivo, los materiales utilizados en la presente invención son para el ánodo ITO y PEDOT:PSS, los cuales tienen la propiedad de ser transparentes, permitiendo que la luz pueda salir del dispositivo.
Para el cátodo, el material utilizado es un metal con una inyección mejorada de electrones tal como el aluminio o la plata. Sin embargo estos materiales son reactivos con el oxígeno, por lo cual el dispositivo debe ser herméticamente sellado para prolongar su vida. Es posible alcanzar una inyección mejorada de electrones desde estos metales, recubriendo el electrodo con una monocapa polar auto-ensamblada.
Dentro del marco del diseño y técnicas de fabricación de dispositivos opto- electrónicos, los polímeros luminiscentes muestran diferentes ventajas respecto a los semiconductores inorgánicos tradicionales, debido, principalmente, a que presentan un alto grado de solubilidad. Esta propiedad permite el uso de las llamadas técnicas de fabricación húmedas (wet techniques) cuya particularidad principal es que no requieren sistemas de alto vacío, lo que las convierte en técnicas de fabricación de dispositivos opto-electrónicos más baratas y versátiles.
Una de las técnicas húmedas más ampliamente usadas es la de deposición por centrifugado (spin-coating) en el que se deposita una capa delgada y uniforme del polímero luminiscente sobre un substrato, generalmente un vidrio de cal sodada, por deposición por centrifugación de una solución polímero-etanol, Además, la luminiscencia de este tipo de polímeros los hace muy atractivos para el diseño de diodos emisores de luz orgánicos (OLED). Es así como el polímero luminiscente Poli [p-fenilleno venileno] (PPV), y sus compuestos conjugados, han sido históricamenté los más ampliamente usados en la fabricación de este tipo de dispositivos lumínicos.
Los aspectos relevantes y las ventajas de la presente invención serán mejor entendidos con relación a las siguientes figuras. Descripción de las Figuras
Fig. 1 Diagrama esquemático de un OLED típico. Se indican los modos ópticos del dispositivo.
Fig 2. Diagrama esquemático de un OLED fabricado a partir del polímero electroluminiscente MDMO-PPV en donde se muestran las diferentes capas que conforman el dispositivo.
Fig 3. Diagrama esquemático de la estructura de capas en un MDMO-PPV OLED.
Fig 4. Espectros de transmitancia y de reflectancia de una capa de MDMO-PPV
Fig 5. Espectro de transmitancia en función del ángulo de incidencia de un cristal coloidal con estructura FCC
Fig 6. Espectro de fotoluminiscencia de una capa de MDMO-PPV obtenida por deposición por centrifugado (spin-coating).
Fig 7. Imagen SEM de un cristal coloidal obtenido a partir de una solución 15:85 p/p de esferas de Si02 de 250 nm de diámetro y ciclohexanona del 1 % p/p.
Fig 8. Imagen SEM de un cristal coloidal obtenido a partir de una solución 17:83 p/p de esferas de Si02 de 250 nm de diámetro y ciclohexanona del 1 % p/p.
Fig 9. Espectro de transmitancia de un cristal coloidal formado por esferas de Si02 de 250 nm de diámetro e infiltrado con MDMO-PPV.
Descripción detallada de la invención La estructura de un dispositivo OLED posee una configuración en capas y su fabricación es de forma secuencial. El ánodo ITO consiste en un soporte transparente de vidrio o un polímero flexible, sobre el que se deposita una mezcla de óxidos de indio y estaño que forman una capa conductora. A continuación, se depositan de forma secuencial la película o películas orgánicas. La forma de depositar estas capas está en función de la naturaleza de las propias sustancias químicas, que pueden ser polímeros o moléculas pequeñas. Finalmente, y una vez que todas las películas han sido depositadas, el dispositivo se cierra con el cátodo, que está constituido por un metal o aleación de metales de baja función trabajo (aluminio, plata u oro), y que se deposita mediante técnicas de evaporación en alto vacío.
Un dispositivo OLED fabricado a partir de polímero electroluminiscente, comprende diferentes capas que se alinean según los diferentes niveles de energía de la heteroestructura. Un OLED fabricado a partir del polímero MDMO-PPV (PPV-OLED) tiene la estructura ITO/PEDOT:PSS/MDMO-PPV/Metal que se muestra en la figura 2. Como ánodo se usa una capa delgada de óxido de estaño dopado con Indio ITO (1 ) que es un semiconductor degenerado tipo p altamente transparente (transmitancia mayor al 90%) en el rango visible que, dentro de la estructura del OLED, funciona como contacto inyector de huecos que suministra cargas positivas al MDMO-PPV en función de la diferencia entre el máximo de la banda de valencia (VBM, Valence Band Máximum) del ITO y la energía del más alto orbital molecular ocupado (HOMO) de la capa orgánica MDMO-PPV. La electroluminiscencia es producida por la capa orgánica de MDMO-PPV (3) debido a la recombinación radiativa de pares electrón-hueco. Con el fin de aumentar la probabilidad de inyección de huecos a la capa de MDMO-PPV (3), se introduce una capa orgánica conductora y transparente PEDOT:PSS (2) que facilita el transporte de huecos desde el ITO (1) hasta el polímero luminiscente, debido a que posee un nivel de energía intermedio entre la banda de valencia del ITO y el HOMO del polímero. De ahí que se le denomine al PEDOT:PSS como capa de transporte de huecos (HTL). Como cátodo (4) se pueden usar diferentes metales que inyectan electrones a la capa electroluminiscente para que se recombinen radíativamente con los huecos inyectados desde el ITO (ánodo). La eficiencia de la inyección de electrones está fuertemente influenciada por la función trabajo del metal que se use como cátodo (1) que generalmente es de aluminio, plata u oro.
A pesar de que las características electroluminiscentes del sistema MDMO-PPV dependen intrínsecamente de los materiales constituyentes, los cuales determinan el alineamiento de sus niveles de energía, la densidad de huecos, y la eficiencia de inyección de electrones desde el cátodo, es claro que la eficiencia del dispositivo es afectada por factores geométricos y por parámetros de fabricación, tales como el grosor de las capas de MDMO-PPV (3), PEDOSPSS (2) e ITO (1 ) y, sobre todo, por la calidad de sus interfaces. Es así como, recientemente se han estudiado intensivamente diferentes maneras de aumentar significativamente la intensidad de radiación que se extrae de los OLED, tales como: i) la incorporación de centros dispersores en la estructura, ii) el uso de micro-lentes, iii) La incorporación de materiales con bajo índice de refracción, iv) la utilización de refractores de Bragg, v) la incorporación de nano-partículas en la estructura y vi) el patronamiento del substrato.
En particular, la incorporación de centros dispersores a la estructura es uno de los métodos más eficientes para mejorar la extracción de luz de los OLED para aplicaciones generales de iluminación. Si una monocapa hexagonal compacta (hcp) de esferas de S1O2 coloidales es incorporada en la región del modo de guía de onda, la eficiencia del dispositivo aumenta considerablemente debido a que la estructura ordenada se comporta como una rejilla de difracción bidimensional. Los PhC bidimensionales, han sido usados intensivamente para aumentar la extracción de luz en OLED formando estructuras conocidas como ITO/Organico/PhC. Por otra parte, haciendo un patronamiento por fotolitografía sobre la superficie del ITO en forma de red cuadrada bidimensional con periodicidad de 300 nm se ha demostrado que, cuando se satisface la condición de Bragg, la radiación emitida en la región activa se acopla a la radiación del modo aire.
En general, la radiación emitida por la región activa MDMO-PPV, se puede clasificar en tres modos principales que se muestran en la figura 3. El modo de guía de onda (5), en el que la radiación es atrapada en la región formada por las capas de ETL/MDMO-PPV/PEDOT:PSS/ITO debido a fenómenos de reflexión total interna, principalmente, en la interface ITO/substrato y ETL/MDMO-PPV. El modo de substrato (6), cuando la radiación es atrapada, dentro del substrato, debido a las interfaces ITO/substrato y substrato/aire. El modo aire (7), cuando la radiación emitida por la región activa sale del dispositivo al aire. La radiación producida en la región activa sufre diferentes procesos de reflexión-refracción, dependiente de los índices de refracción, en la interface entre las diferentes capas de la estructura, esto se representa en la figura mediante las flechas en las interfaces.
Desde el punto de vista de la óptica clásica, debido a procesos de refracción-reflexión entre las diferentes capas que constituyen el PPV-OLED, la eficiencia de extracción de la luz del dispositivo es tan solo del 20%, teniendo en cuenta que la eficiencia de la extracción de la luz del OLED se define como la razón entre la intensidad de la radiación de modo aire y la intensidad de la radiación total emitida por el elemento activo del dispositivo.
Para lograr que la eficiencia del dispositivo combinado OLED-cristal coloidal se incremente, se debe asegurar el acoplamiento entre la absorción del polímero luminiscente y la absorbancia del cristal coloidal mediante la condición de Bragg. En consecuencia, la presente invención desarrolla un método de fabricación, por la técnica de deposición por centrifugado (spin-coating), de un cristal coloidal formado por esferas de sílice de alrededor de 250 nm de diámetro con estructura cúbica centrada en las caras (fcc) e infiltrado con el polímero luminiscente MDMO-PPV para aplicación en el aumento de la extracción de luz de OLED.
El proceso de fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV formado a partir de esferas de sílice (Si02), con estructura cúbica centrada en las caras (fcc) incluye las siguientes etapas:
1. Síntesis de esferas de Si02 mono-dispersas i)Síntesis de esferas de Si02 de 250 nm de diámetro por el método de Stóber (Stóber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 1968: 26(1): 62-69). Este método es adecuado para sintetizar esferas de entre 100 y 2000 nm, dependiendo del tiempo de la reacción y de la concentración relativa entre agua, amoniaco, etanol y tetraetil- ortosilicato (Si(OC2H5)4), abreviado teos. Se deja la reacción el tiempo necesario, del orden de una hora aproximadamente, dependiendo del diámetro de las esferas de S1O2 que se requiera. ii) Se sedimenta al menos tres veces una mezcla de agua y las esferas de Si02 obtenidas en el paso anterior con el fin de obtener una solución mono-dispersa de esferas de S1O2. iii) Finalmente, se seca la suspensión mediante centrifugado a la velocidad y tiempo necesarios para que las esferas se separen del solvente con el fin de obtener esferas de S1O2 en polvo, se calienta a temperatura y tiempo necesarios para que el solvente se evapore completamente.
2. Preparación de la suspensión coloidal i) Preparación de una suspensión viscosa de esferas de Si02 del diámetro requerido y un solvente orgánico adecuado a las concentraciones adecuadas para obtener una suspensión con la suficiente cantidad de esferas de Si02 para cubrir toda el área del substrato. La condición para el solvente orgánico es que sea lo suficientemente viscoso (viscosidad - 2.0 mPa-s) y que el polímero luminiscente sea solvente en él. ii) Con el fin de separar posibles aglomerados, producto del secado de las esferas de Si02, se somete la suspensión a ultrasonido durante el tiempo necesario, del orden de media hora, para garantizar que dichos aglomerados sean destruidos y, de esta forma, obtener una suspensión uniforme. iii) Se agrega el polímero luminiscente a la suspensión obtenida en el paso anterior de modo que se obtenga una mezcla, con valores adecuados de viscosidad y densidad, entre el polímero luminiscente, el solvente orgánico y las esferas de S1O2. iv) Con el fin de obtener una mezcla uniforme, se somete a agitación magnética durante el tiempo y, temperatura necesarios para que polímero luminiscente se disuelva uniformemente en la suspensión.
3. Tratamiento químico del substrato i) Con el fin de que el substrato tenga propiedades hidrofílicas, se introduce un substrato de cal de soda en solución crómica (mezcla de dicromato de potasio, ácido sulfúrico y agua en proporciones adecuadas) durante el tiempo necesario como para obtener dicho efecto. Se retira el substrato de la solución crómica y se juaga múltiples veces con agua desionizada y se seca bajo flujo de un gas inerte (argón o nitrógeno).
4. Síntesis de la película delgada i) Se deposita el volumen de la mezcla necesario para cubrir el área total del substrato en el substrato previamente hidrofílizado y se procesa por medio del método de deposición por centrifugado (spin-coating) a la velocidad y tiempo apropiados para obtener una película uniforme en la que se observe la formación de un cristal coloidal infiltrado por un polímero luminiscente.
5. Caracterización de las películas delgadas obtenidas.
Las películas delgadas obtenidas se caracterizan, estructuralmente, por medio de la técnica de microscopía electrónica de barrido (JEOL JSM 6490) y, ópticamente, por absorbancia UV-VIS resuelta en ángulo (Ocean optics QE65000 Scientific-grade Spectrometer) y fotoluminiscencia (Acton research 270 monochromator, Hamamatsu photomultiplier tube, Standford research systems SR830 Amplifier lock-in).
Una de las principales características del método desarrollado es que la preparación de la solución coloidal de esferas de S1O2 requiere de un solvente orgánico de alta viscosidad que además permita la disolución del polímero. Por tal motivo el solvente se elige entre la familia de componentes orgánicos tales como la ciclohexanona. De igual manera el presente método contempla el paso de introducir una cantidad de polímero orgánico en la solución coloidal, de modo que se obtenga un cristal coloidal de Si02 infiltrado con un polímero luminiscente. El efecto que logran incluir estas características está en que gracias al uso de un solvente de alta viscosidad, se logra la obtención de una preparación de solución coloidal combinada. Igualmente, la eficiencia del dispositivo combinado OLED-cristal coloidal se incrementa cuando hay un acoplamiento entre la absorción del polímero luminiscente y la absorbancia del cristal coloidal.
Dado que la hipótesis básica de la invención es el acoplamiento óptico entre la absorción del MDMO-PPV y la absorción del cristal coloidal, que depende del tamaño de las esferas, de la simetría de empaquetamiento (fcc), y del índice de refracción del MDMO-PPV y de las esferas de Si02 (que depende, a su vez, del tamaño de las esferas) según la relación (difracción de Bragg)
Figure imgf000019_0001
con
Figure imgf000019_0002
Donde h = ) es el factor de empaquetamiento (para empaquetamiento compacto fcc), f - d(V(2/3), d es el diámetro de las esferas, ns¡02 - 1-43 y HMDMO-PPV = 1.8. En la figura 4 se muestran los espectros de transmítancia (8) y de reflectancia (9) de una capa de MDMO-PPV obtenida por deposición por centrifugado (spin- coating) a 7000 RPM a partir de una mezcla de Ciciohexanona y MDMO-PPV al 1 % p/p, se puede ver que, a incidencia normal ( = 0), λ = 500 nm, por lo cual el diámetro de las esferas debe ser de, aproximadamente, 250 nm.
Este cálculo se comprueba mediante el espectro de transmisión, en función del ángulo, tal como se enseña en la figura 5 donde se muestra el espectro de transmitancia en función del ángulo de incidencia de un cristal coloidal formado por esferas de S1O2 de 250 nm de diámetro con empaquetamiento compacto fcc.
El espectro de fotoluminiscencia del MDMO-PPV se muestra en la figura 6 en el que se evidencia que la longitud de onda de emisión del MDMO-PPV, disuelto en ciciohexanona al 1 % p/p es de, aproximadamente, 565 nm (10). Aparece otro pico de emisión de menor intensidad a los 665 nm (1 1 ).
El estudio estructural por SEM de las películas obtenidas se muestra en la figura 7. Claramente la tendencia a obtener películas con empaquetamiento compacto fcc en el que la superficie de la película define un plano (1 1 1 ) de la estructura cubica. En la figura también se observa el grosor de la película. Dependiendo de la velocidad en el proceso de deposición por centrifugado y de la concentración de S1O2, se puede variar el grosor de la película. A 8400 RPM se obtiene una película de, al menos, 5 monocapas (1.2 μηη). Para obtener un recubrimiento uniforme se deben usar concentraciones adecuadas de Si02 (típicamente > 15% p/p), de lo contrario la película no quedará uniformemente cubierta tal como aparece en la figura 8.
El estudio óptico de las películas delgadas obtenidas muestra el acoplamiento óptico del MDMO-PPV con la película coloidal como puede observarse en la figura 9. En el espectro de transmisión de la película coloidal de S1O2 infiltrado con MDMO-PPV se observan, simultáneamente, la absorción y los picos de luminiscencia (12 y 13, en la figura 9). A incidencia normal, como se muestra en las Figs. 4 y 5, la absorción del MDMO-PPV y del cristal coloidal están en 500 nm, aproximadamente. En la figura 9 se ve claramente la superposición de la absorción de ambos sistemas. A un ángulo de incidencia de 30°, de acuerdo con la Fig. 5, hay un corrimiento de la absorción del cristal coloidal a 470 nm, mientras que, la absorción del MDMO-PPV sigue inalterada y, por lo tanto, se observa la superposición de los dos picos de absorbancia.
Este hecho demuestra que, efectivamente, en el sistema MDMO-PPV/cristal coloidal la absorbancia es la superposición de la absorbancia de cada uno de los sistemas, mientras que la película coloidal es "transparente" a la luminiscencia del MDMO-PPV. Es por esta razón que la luminiscencia se puede detectar, incluso, en los espectros de transmitancia.
Se considera no necesario hacer más extensa esta descripción para que un experto en la materia comprenda el alcance y las ventajas de la invención. Todos los términos técnicos y científicos aquí empleados tienen el mismo significado tal como comúnmente los entienden aquellos expertos en la técnica.

Claims

Reivindicaciones
1. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV formado a partir de esferas de sílice (S1O2), con estructura cúbica centrada en las caras (fcc) caracterizado por las siguientes etapas: a) Sintetizar esferas de Si02 mono-dispersas
b) Preparar una suspensión viscosa de esferas de Si02 de entre 200 y 450 nm de diámetro, dependiendo del índice de refracción del polímero luminiscente que se use, y un solvente orgánico en el cuál el polímero luminiscente sea soluble y, además, que tenga alta viscosidad (>2.0mPa-s) a una concentración entre el 80 y 90% p/p para obtener una suspensión con una adecuada cantidad de esferas de Si02 para cubrir toda el área del substrato.
c) Someter la suspensión a un limpiador ultrasónico (50-300 kHz) hasta separar posibles aglomerados de esferas.
d) Agregar el polímero luminiscente a la suspensión obtenida en el paso anterior de modo que se obtenga una mezcla entre el 1 y 2% p/p de viscosidad y densidad, entre el polímero luminiscente, el solvente orgánico y las esferas de Si02.
e) Someter la mezcla a agitación magnética durante un tiempo comprendido entre 0.5 y una hora y a temperatura ambiente para que el polímero luminiscente se disuelva uniformemente en la suspensión.
f) Introducir un substrato de cal de soda en solución crómica durante una hora para que el substrato adquiera propiedades hidrofílicas
g) Retirar el substrato de la solución crómica y enjuagar tres veces con agua desionizada, para luego secar bajo el flujo de un gas inerte.
h) Con el fin de obtener una película uniforme en la que se observe la formación de un cristal coloidal infiltrado con un polímero luminiscente, se depositan 200 μΙ_ de la mezcla sobre el substrato previamente hidrofílizado y se procesa por medio del método de recubrimiento por centrifugado (spin-coating) a velocidades de entre 5000 y 8000 RPM durante un tiempo de entre 1 y 2 minutos.
2. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV de acuerdo a la reivindicación 1 , donde la etapa de sintetizar esferas de SÍO2 mono-dispersas se realiza por el método de Stóber el cual consiste en sedimentar, al menos tres veces, una mezcla de agua desionizada y las esferas de Si02 obtenidas anteriormente con el fin de obtener una solución mono-dispersa de esferas de Si02. Secar la suspensión mediante centrifugado a velocidad de entre 4.000 y 6.000 RPM durante 5 minutos para que las esferas se separen del solvente. Calentar las esferas de Si02 en polvo para separar el solvente mediante evaporación.
3. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV de acuerdo a la reivindicación 1 donde el solvente orgánico es ciclohexanona con una viscosidad de 2.02 mPa-s.
4. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV de acuerdo a la reivindicación 1 , donde en la etapa de preparación de la suspensión coloidal se preparan entre 600 y 800 μΙ_ de suspensión y se mezclan entre 100 y 155 mg de S1O2 con un volumen de entre 650 y 788 μΙ_ de ciclohexanona.
5. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV de acuerdo a la reivindicación 1 , donde en la etapa de agregar el polímero luminiscente MDMO- PPV se agregan entre 5.0 y 8.0 mg de polímero a la suspensión descrita.
6. Un método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente MDMO-PPV de acuerdo a la reivindicación 1 , donde la solución crómica comprende dicromato de potasio, ácido sulfúrico y agua.
7. Un dispositivo OLED fabricado a partir del polímero luminiscente MDMO-PPV formado a partir de esferas de sílice (S1O2), con estructura cúbica centrada en las caras (fcc), caracterizado porque comprende un ánodo conformado por una capa delgada de óxido de estaño dopado con Indio, ITO (1 ), una capa orgánica de MDMO-PPV (3) que se introduce en una capa orgánica conductora y transparente PEDOT:PSS (2), un cátodo (4) formado de material metálico y una monocapa hexagonal compacta de esferas de S¡02 coloidal (PhC).
8. Un dispositivo OLED fabricado a partir del polímero electroluminiscente MDMO- PPV de acuerdo a la reivindicación 6 donde el ánodo corresponde a un semiconductor degenerado tipo p con una transmitancia mayor a 90% en el rango 335-900 nm.
9. Un dispositivo OLED fabricado a partir del polímero electroluminiscente MDMO- PPV de acuerdo a la reivindicación 6 donde el material que conforma el cátodo (1) es de plata o aluminio.
10. Un dispositivo OLED fabricado a partir del polímero electroluminiscente MDMO- PPV de acuerdo a la reivindicación 6 donde los cristales fotoiónicos PhC bidimensionales forman estructuras ITO/Organico/PhC.
PCT/IB2015/000120 2014-02-07 2015-02-06 Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2), con estructura cúbica centrada en las caras (fcc) WO2015118402A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167024764A KR20160119204A (ko) 2014-02-07 2015-02-06 면심입방정계(fcc)를 갖고, 실리카(sio2) 구체로 이루어진 발광 mdmo-ppv 폴리머가 침윤된 콜로이드 결정으로 구성되는 박막을 제조하는 방법
US15/117,313 US9859497B2 (en) 2014-02-07 2015-02-06 Method for manufacturing a thin film consisting of a colloidal crystal infiltrated with the luminescent MDMO-PPV polymer made of silica (SiO2) spheres, having a face-centered cubic system (FCC)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO14025971A CO6870008A1 (es) 2014-02-07 2014-02-07 Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2) con estructura cubica centrada en las caras (fcc)
CO14025971 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015118402A1 true WO2015118402A1 (es) 2015-08-13

Family

ID=50239323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/000120 WO2015118402A1 (es) 2014-02-07 2015-02-06 Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2), con estructura cúbica centrada en las caras (fcc)

Country Status (4)

Country Link
US (1) US9859497B2 (es)
KR (1) KR20160119204A (es)
CO (1) CO6870008A1 (es)
WO (1) WO2015118402A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024112A (zh) * 2016-07-14 2016-10-12 信阳师范学院 透明导电薄膜的制备方法
CN107418580A (zh) * 2017-07-31 2017-12-01 南京工业大学 一种提高上转换发光薄膜的制备方法
CN107983967A (zh) * 2017-11-06 2018-05-04 江苏精研科技股份有限公司 一种AgW电触头的注射成形制备方法
CN108516698A (zh) * 2018-07-06 2018-09-11 苏州新吴光电科技有限公司 一种二氧化硅膜及其制备方法
CN108550706A (zh) * 2018-04-12 2018-09-18 华中科技大学 一种量子点光电探测器的制备方法
CN111384305A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 量子点发光二极管的后处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112956028A (zh) 2018-11-07 2021-06-11 瑞典爱立信有限公司 有机发光二极管(oled)显示器以及生产oled显示器的方法
CN109585666A (zh) * 2018-12-04 2019-04-05 惠科股份有限公司 一种显示面板、显示面板的制造方法和显示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400235A (en) * 2003-04-03 2004-10-06 Qinetiq Ltd Optoelectronic device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19832644C1 (de) 1998-07-10 2000-04-06 Samsung Display Devices Co Ltd Organische lichtemittierende Dioden (OLED) mit Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylen-1,2-ethenylen-2,5-dimethoxy-1,4-phenylen-1,2-ethenylen] als Elektrolumineszenzmaterial
KR100437886B1 (ko) 2001-09-25 2004-06-30 한국과학기술원 고발광효율 광결정 유기발광소자
JP4533041B2 (ja) 2003-08-28 2010-08-25 キヤノン株式会社 光素子の製造方法
KR100563059B1 (ko) 2003-11-28 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 디스플레이 장치 및 이의 제조에 사용되는레이저 열전사용 도너 필름
US8686627B2 (en) 2005-04-15 2014-04-01 University Of Utah Research Foundation Perforated-electrode organic light-emitting diodes
US10690847B2 (en) 2005-06-15 2020-06-23 Braggone Oy Method of making a photonic crystal device and photonic crystal device
US20070077349A1 (en) 2005-09-30 2007-04-05 Eastman Kodak Company Patterning OLED device electrodes and optical material
CN101000949B (zh) 2006-01-09 2010-05-12 北京交通大学 利用光子晶体多层膜提高有机电致发光器件色纯度的方法
ES2288129B1 (es) 2006-06-07 2008-12-01 Consejo Superior Investigacion Procedimiento de preparacion de laminas delgadas de cristal coloidal y producto asi obtenido.
KR100873517B1 (ko) 2007-11-21 2008-12-15 한국기계연구원 유기발광소자
KR101609275B1 (ko) 2008-12-16 2016-04-06 삼성디스플레이 주식회사 유기 화합물 및 이를 포함하는 유기 발광 소자
AT508283A1 (de) 2009-06-02 2010-12-15 Isovoltaic Gmbh Kompositmaterial umfassend nanopartikel sowie herstellung von photoaktiven schichten enthaltend quaternäre, pentanäre und höher zusammengesetzte halbleiternanopartikel
EP2497130B1 (en) * 2009-11-06 2018-01-24 Nano-C, Inc. Fullerene-functionalized particles, methods for making the same and their use in bulkheterojunction organic photovoltaic devices
US8329505B2 (en) 2010-01-29 2012-12-11 Lock Haven University Of Pennsylvania Method for deposition of cathodes for polymer optoelectronic devices
JP6223417B2 (ja) * 2012-03-19 2017-11-01 ネクスドット 異方性平坦コロイド半導体ナノ結晶を含む発光素子およびその製造方法
CN103247666A (zh) * 2013-04-25 2013-08-14 深圳市华星光电技术有限公司 一种红外oled显示装置及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400235A (en) * 2003-04-03 2004-10-06 Qinetiq Ltd Optoelectronic device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. V. TUNC ET AL.: "Silica nanoparticles for enhanced carrier transport in polymer-based short cannel transistors", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 117, 2013, pages 22613 - 22618, XP055219273 *
C-Y. LIU ET AL.: "Hybrid solar cells from MDMO-PPV and silicon nanocrystals", NANOSCALE, vol. 4, 2012, pages 3963 - 3968, XP055219274 *
H. A. MENDEZ-PINZON ET AL.: "Analysis of the current-voltage characteristics of polymer-based organic light-emitting diodes (OLEDs) deposited by spin coating", UNIVERSITAS SCIENTIARUM, vol. 15, no. 1, 2010, pages 68 - 76, XP055219276 *
J. P . LIU ET AL.: "Fabrication of ZnO and its enhancement of charge injection and transport in hybrid organic/inorganic light emitting devices", APPLIED SURFACE SCIENCE, vol. 253, 2007, pages 7506 - 7509, XP022107423 *
O. A. CASTANEDA-URIBE ET AL.: "Fabrication and optical characterization of a high-quality fcc-opal-based photonic crystal grown by the vertical convective self-assembly method", UNIVERSITAS SCIENTIARUM, vol. 15, no. 2, 2010, pages 150 - 158, XP055219281 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024112A (zh) * 2016-07-14 2016-10-12 信阳师范学院 透明导电薄膜的制备方法
CN106024112B (zh) * 2016-07-14 2017-11-24 信阳师范学院 透明导电薄膜的制备方法
CN107418580A (zh) * 2017-07-31 2017-12-01 南京工业大学 一种提高上转换发光薄膜的制备方法
CN107983967A (zh) * 2017-11-06 2018-05-04 江苏精研科技股份有限公司 一种AgW电触头的注射成形制备方法
CN108550706A (zh) * 2018-04-12 2018-09-18 华中科技大学 一种量子点光电探测器的制备方法
CN108550706B (zh) * 2018-04-12 2020-02-21 华中科技大学 一种量子点光电探测器的制备方法
CN108516698A (zh) * 2018-07-06 2018-09-11 苏州新吴光电科技有限公司 一种二氧化硅膜及其制备方法
CN111384305A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 量子点发光二极管的后处理方法
CN111384305B (zh) * 2018-12-29 2021-07-02 Tcl科技集团股份有限公司 量子点发光二极管的后处理方法

Also Published As

Publication number Publication date
US9859497B2 (en) 2018-01-02
US20160343948A1 (en) 2016-11-24
KR20160119204A (ko) 2016-10-12
CO6870008A1 (es) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2015118402A1 (es) Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2), con estructura cúbica centrada en las caras (fcc)
Liang et al. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites
Chen et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles
Mir et al. Organic-inorganic hybrid functional materials: An integrated platform for applied technologies
Chen et al. Highly efficient perovskite light-emitting diodes incorporating full film coverage and bipolar charge injection
Liang et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates
Liang et al. Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes
Le et al. Halide perovskite quantum dots for light‐emitting diodes: properties, synthesis, applications, and outlooks
Ji et al. 1, 2-Ethanedithiol treatment for AgIn5S8/ZnS quantum dot light-emitting diodes with high brightness
Nguyen Polymer-based nanocomposites for organic optoelectronic devices. A review
TWI618924B (zh) Metal-based particle assembly, metal-based particle assembly film-layered substrate, and optical element including metal-based particle assembly
KR102086860B1 (ko) 금속계 입자 집합체
KR101140309B1 (ko) 양자점 다층 박막을 포함한 전기발광소자
US20180006257A1 (en) Carbon dot multicolor phosphors
TW201418003A (zh) 金屬系粒子集合體
JP2005340195A (ja) ナノ結晶の多層薄膜製造方法およびこれを用いた有機・無機ハイブリッドエレクトロルミネッセンス素子
Yu et al. Molding hemispherical microlens arrays on flexible substrates for highly efficient inverted quantum dot light emitting diodes
CN103140950A (zh) 光电转换元件
KR20140026425A (ko) 금속계 입자 집합체
Veca et al. Electroluminescence of carbon ‘quantum’dots–from materials to devices
Son et al. White light-emitting diodes fabricated utilizing hybrid polymer–colloidal ZnO quantum dots
Han et al. Random organic nano-textured microstructures formed by photoexcitation for light extraction of blue OLEDs
Song et al. Bicolor light-emitting diode based on zinc oxide nanorod arrays and poly (2-methoxy, 5-octoxy)-1, 4-phenylenevinylene
Soran-Erdem et al. High-stability, high-efficiency organic monoliths made of oligomer nanoparticles wrapped in organic matrix
Sun et al. Multilayer assemblies of colloidal ZnS doped with silver and polyelectrolytes based on electrostatic interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746852

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15117313

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167024764

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15746852

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 07-03-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15746852

Country of ref document: EP

Kind code of ref document: A1