WO2015115875A1 - 금속 나노입자의 제조 방법 - Google Patents
금속 나노입자의 제조 방법 Download PDFInfo
- Publication number
- WO2015115875A1 WO2015115875A1 PCT/KR2015/001098 KR2015001098W WO2015115875A1 WO 2015115875 A1 WO2015115875 A1 WO 2015115875A1 KR 2015001098 W KR2015001098 W KR 2015001098W WO 2015115875 A1 WO2015115875 A1 WO 2015115875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- metal
- metal nanoparticles
- substituted
- solvent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
Definitions
- the present application relates to a method for preparing metal nanoparticles, and more particularly, to a method for preparing metal nanoparticles, including reacting a hydrazine-carbon dioxide binding compound with a metal oxide or metal ion compound.
- Nanomaterial technology is a cutting-edge fusion material technology that can be applied to various fields and industries because it can exhibit new functions and characteristics not obtained with existing materials.
- platinum nanocolloids are expected to be used in the future in cosmetics and dietary supplements.
- the reason is that the materials that were previously considered to have antioxidant activity can only remove certain free radicals from the seven kinds of free radicals in the body, and once they are removed they no longer work, whereas platinum nanocolloids This is because it has the effect of removing active oxygen and can act semipermanently while remaining in the colloidal form in the body. Therefore, if colloidal platinum nanoparticles manufactured without impurities using colloidal protection agent that is harmless to human body is expected to be expanded to the fields of catalysts, optoelectronics, sensors, conductive devices, biotechnology, and medical and health supplements, its marketability is expected to be very large. .
- nanomaterials are processed into various types of structures such as powder, tube, whisker, and thin film.
- the most common material forms are powder and thin film. While thin film manufacturing has been accumulated for a long time as a nanomaterial, the technology of powder nanomaterials has not been commercialized despite a lot of research and development because of difficulties in reproducing manufacturing methods and storage.
- the metal powder nanomaterial When the metal powder nanomaterial is reduced in size, the powder becomes unstable due to an increase in surface energy due to an increase in specific surface area. In addition, when the metal is less than the limit size, it is highly reactive and reacts with oxygen in the air, causing spontaneous ignition. Therefore, it can be said that efforts to manufacture nano-sized metal powders having large activities and to utilize them stably are urgently required.
- nanoparticles have been widely developed as a method of synthesizing particles having a diameter of less than 100 nm, and a method of preparing nanoparticles in the gas phase through aerosol method and evaporation / condensation.
- this gas phase synthesis method is difficult to mass-produce, 2) difficult to control particle size, separate process is required for separation, 3) high temperature process, 4) particle manufacturing cost is generally expensive, etc. Therefore, it is not yet widely used industrially.
- US Patent No. 5,498,446 discloses a method of making unaggregated nanoparticles by flame synthesis.
- This method is a side reaction of sodium chloride (NaCl) produced by introducing a vaporized metal such as sodium (Na) together when heating a halogen-containing precursor in the reaction zone of flame synthesis to synthesize metal or ceramic particles. ) Is prepared to coat metal or ceramic particles, and the aggregated nanoparticles are then dissolved with NaCl using water or a solvent to separate particles of 100 nanometers or less.
- NaCl sodium chloride
- hydrazine hydrate is used as a reducing agent when forming metal nanoparticles from a metal compound dissolved in a solution state.
- a solvent In the case of a solution process using a reducing agent such as hydrazine, a solvent must be used, and thus productivity is not high, and an excessive amount of hydrazine must be used.
- excessive unused hydrazine solution may be harmful to the human body, and additional treatment such as wastewater treatment is required to treat it.
- Hydrazine (N 2 H 4 ) has similar chemical properties to ammonia (NH 3 ) gas but is a transparent liquid at room temperature and has melting point, boiling point and density similar to water. As such, liquid hydrazine may cause pollution due to fire caused by leakage and rapid reaction with surrounding metals or substances, and most of them contain a large amount of water, and thus cannot be used when water-free conditions are required or due to water Because of the problems of side reactions, there are many limitations to the application.
- US Patent No. 6,203, 768 proposes a new method for producing nanoparticles by a mechanochemical method.
- a metal halide compound such as ferric chloride (FeCl 3 ) and a metal such as sodium (Na) are placed in a ball mill and reacted at a high temperature, and the resulting sodium chloride (NaCl) is dissolved in the iron (Fe) nanoparticles.
- the structure is formed around the surroundings, and sodium chloride (NaCl) is removed by dissolving or subliming to obtain separated nanoparticles.
- this method also requires a solvent removal step and has a problem that it is difficult to obtain particles of high purity.
- the present application is to provide a method for producing metal nanoparticles comprising the reaction of the hydrazine-carbon dioxide compound with a metal oxide or metal ion compound to obtain metal nanoparticles and metal nanoparticles prepared by the method .
- a metal nanoparticle is reacted by reacting a hydrazine-carbon dioxide-bonding compound represented by the following Chemical Formula I or I 'with a metal oxide represented by the following Chemical Formula II or a metal ion compound represented by the following Chemical Formula III or IV
- a metal nanoparticle is reacted by reacting a hydrazine-carbon dioxide-bonding compound represented by the following Chemical Formula I or I 'with a metal oxide represented by the following Chemical Formula II or a metal ion compound represented by the following Chemical Formula III or IV
- R 1 is hydrogen; Substituted or unsubstituted C 1-30 aliphatic hydrocarbon group, substituted or unsubstituted C 3-30 aliphatic ring group, substituted or unsubstituted C 3-30 heteroaliphatic ring group, substituted or unsubstituted C 5 -30 aromatic ring groups, and a substituted or unsubstituted C 5-30 hetero aromatic ring group; C 1-30 aliphatic hydrocarbon group containing at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; C 3-30 aliphatic ring groups containing at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; C 3-30 heteroaliphatic ring groups comprising at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; And C 5-30 heteroaromatic ring groups
- M contains a metal element
- X contains a halogen element
- a and b are positive integers.
- the second aspect of the present application provides metal nanoparticles, prepared according to the manufacturing method according to the first aspect of the present application.
- the method for preparing metal nanoparticles according to one embodiment of the present application may use a very small reaction vessel, and especially when using a metal oxide as a precursor, the product is quantitatively quantitatively containing little by-products except carbon dioxide, nitrogen and water. It can be obtained in the present invention, and can provide a solid or solvent-free reaction process, which can simplify the production equipment and production time. In addition, even when using a slurry solvent, by using the solvent at about 70% by weight or less with respect to the total product, it is possible to provide an efficient process with a faster reaction rate than when using an excess of solvent (> 80% by weight). have.
- Metal nanoparticles manufacturing method compared to the conventional liquid-based reaction process, because it does not require the installation of ancillary equipment, solvent separation costs, waste water treatment costs, etc., it is not only economically excellent and reduced manufacturing costs Rather, it is an environmentally friendly process technology that uses little solvent or does not use any solvent.
- the manufacturing method of the metal nanoparticles according to the embodiment of the present invention is a hydrazine-carbon dioxide-bonding compound and a metal precursor, such as a metal oxide, metal-halogen salt, or metal-acetate salt in a solid state, a solventless state or a slurry state
- a metal precursor such as a metal oxide, metal-halogen salt, or metal-acetate salt
- the method for preparing metal nanoparticles can provide the following effects: 1) many products in a very small reaction vessel by using no solvent or using only a minimum of solvent even in a slurry state It is possible to obtain high productivity, and 2) the reduction of metal at low temperature greatly reduces the energy cost. 3) After the reaction, materials other than metal particles require little additional separation process, and 4) control the amount of reducing agent. 1 equivalent to about 10 equivalents), the size of the metal particles can be controlled between about 1 nm and about 200 nm, 5) the yield of nanoparticles is almost 100%, which is very economical, and 6) waste water and by-products are minimized. Can be.
- XRD X-ray diffraction analysis
- 3 is an XRD pattern of palladium nanoparticles prepared according to one embodiment of the present application: the vertical bars below are the theoretical XRD patterns of Pd and (NH 4 ) Cl, respectively.
- the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of components described in the representation of a makushi form, It means to include one or more selected from the group consisting of the above components.
- aliphatic hydrocarbon group means a saturated or unsaturated hydrocarbon group having 1 to 30 carbon atoms, C 1-30 alkyl group, C 2-30 alkenyl group, C 2-30 alkynyl group, and the like It may include, but may not be limited thereto.
- an "alkyl group” may be one containing a substituted or unsubstituted linear or branched C 1-30 alkyl group, or C 1-10 alkyl group, or C 1-5 alkyl group, respectively.
- the carbon number of the substituent is not included in the carbon number of the alkyl group.
- alkenyl group refers to a linear or branched, substituted or unsubstituted unsaturated hydrocarbon group having 2 to 30, or 2 to 10, or 2 to 5 carbon atoms, for example, an ethenyl group , Vinyl group, propenyl group, allyl group, isopropenyl group, butenyl group, isobutenyl group, t-butenyl group, n-pentenyl group, n-hexenyl group and the like, but may not be limited thereto. .
- alkynyl group refers to a linear or branched, substituted or unsubstituted unsaturated hydrocarbon group having 2 to 30, or 2 to 10, or 2 to 5 carbon atoms, for example, an ethynyl group , Propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, noninyl group, or decinyl group, and the like, but may not be limited thereto.
- an "aliphatic ring group” refers to an unsaturated or saturated hydrocarbon group having 3 to 30 carbon atoms, or 3 to 10, or 3 to 6 carbon atoms, for example, a cycloalkyl group, or a cycloalke It may be, but not limited to, including a nil group.
- cycloalkyl group means a substituted or unsubstituted hydrocarbon ring group having 3 to 30, or 3 to 10, or 3 to 6 carbon atoms, for example, cyclopropyl group, cyclobutyl group, Cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group and the like.
- halogen or “halo” includes group VIIa elements such as chlorine (Cl), bromine (Br), fluorine (F), or iodine (I).
- an "amine group” or “amino group” includes one or more hydrocarbon groups covalently bonded to -NH 2 or a nitrogen atom.
- the functional groups listed above may be substituted by various substituents at various positions, and the functional groups may be, for example, halogen group, hydroxy group, nitro group, cyano group, C 1 -C 4 substitution or It may be substituted by an unsubstituted linear or branched alkyl group, or a C 1 -C 4 linear or branched alkoxy group, but may not be limited thereto.
- aromatic ring group includes an aryl group, a heteroaryl group, an aryl alkyl group, a conjugated aryl group, or the like having 6 to 30, or 6 to 20, or 6 to 12 carbon atoms.
- aryl group means a substituted or unsubstituted monocyclic or polycyclic carbon ring group, wholly or partially unsaturated.
- a C 6-30 aryl group means an aryl group having 6 to 30 carbon ring atoms, and when the C 6-30 aryl group is substituted, the carbon number of the substituent is not included in the carbon number.
- the aryl group may comprise a monoaryl group or a biaryl group.
- the monoaryl group may include those having 5 or 6 carbon atoms, and the nonaryl group may include those having 9 or 10 carbon atoms.
- the monoaryl group may include, for example, a substituted or unsubstituted phenyl group.
- substitution may be made by various substituents at various positions, and a halogen group, a hydroxyl group, a nitro group, a cyano group, a C 1 -C 4 substituted or unsubstituted linear group Or a branched alkyl group, or C 1 -C 4 linear or branched alkoxy group.
- a "heteroaryl group” is a heterocyclic aromatic group, which may include Si, O, S, Se, N, P, or As as a hetero atom.
- the C 3-30 heteroaryl group means a heteroaryl group having 3 to 30 carbon ring atoms, and when the C 3-30 heteroaryl group is substituted, the carbon number of the substituent is not included in the carbon number.
- the number of the hetero atoms included in the aromatic group may be 1 or 2.
- the aryl group may include a monoaryl group or a biaryl group, for example, may be a monoaryl group.
- the heteroaryl group may be substituted by various substituents at various positions, for example, a halogen group, a hydroxy group, a nitro group, a cyano group, a C 1 -C 4 substituted or unsubstituted linear or branched alkyl group, or C 1 And may be substituted by a -C 4 linear or branched alkoxy group.
- arylalkyl group means an alkyl group substituted with an aryl group.
- the C 6-30 arylalkyl group means an alkyl group having an aryl group having 6 to 30 carbon atoms. When the C 6-30 arylalkyl group is substituted, the carbon number of the substituent is not included in the carbon number.
- the aryl group may include a monoaryl group or a biaryl group, and the alkyl group may be a C 1-3 alkyl group, for example, a C 1 alkyl group.
- the aryl group may be substituted by various substituents at various positions, for example, a halogen group, a hydroxy group, a nitro group, a cyano group, a C 1 -C 4 substituted or unsubstituted linear or branched alkyl group, It may be substituted by a C 1 -C 4 linear or branched alkoxy group or a C 1 -C 4 linear or branched alkylcarboxylnitro group.
- fused aryl group means a fused multiple aryl ring group, for example, naphthalenyl group, phenanthrenyl group, anthracenyl group, benzo [a] pyrenyl group, benzo [ b] pyrenyl group, benzo [e] pyrenyl group, acenaphthalenyl group, acenaphthenyl group, benzo [b] fluoranthene, benzo [j] fluoranthenyl group, chrysenyl group, fluoranthenyl group, fluore And a aryl group or a pyrenyl group, which are substituted or unsubstituted conjugated aryl groups.
- the conjugated aryl group may be substituted by various substituents at various positions, for example, a halogen group, a hydroxy group, a nitro group, a cyano group, a C 1 -C 4 substituted or unsubstituted linear or branched alkyl group, or C It may be substituted by a 1 -C 4 linear or branched alkoxy group.
- a metal nanoparticle is reacted by reacting a hydrazine-carbon dioxide-bonding compound represented by the following Chemical Formula I or I 'with a metal oxide represented by the following Chemical Formula II or a metal ion compound represented by the following Chemical Formula III or IV
- a metal nanoparticle is reacted by reacting a hydrazine-carbon dioxide-bonding compound represented by the following Chemical Formula I or I 'with a metal oxide represented by the following Chemical Formula II or a metal ion compound represented by the following Chemical Formula III or IV
- R 1 is hydrogen; Substituted or unsubstituted C 1-30 aliphatic hydrocarbon group, substituted or unsubstituted C 3-30 aliphatic ring group, substituted or unsubstituted C 3-30 heteroaliphatic ring group, substituted or unsubstituted C 5 -30 aromatic ring groups, and a substituted or unsubstituted C 5-30 hetero aromatic ring group; C 1-30 aliphatic hydrocarbon group containing at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; C 3-30 aliphatic ring groups containing at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; C 3-30 heteroaliphatic ring groups comprising at least one selected from the group consisting of Si, O, S, Se, N, P, As, F, Cl, Br, and I; And C 5-30 heteroaromatic ring groups
- M contains a metal element
- X contains a halogen element
- a and b are positive integers.
- the hydrazine-carbon dioxide binding compound may generate hydrogen or ammonia by a decomposition reaction (see Schemes I to III), wherein the generated hydrogen or ammonia serves as a reducing agent:
- the generated hydrogen is converted to water by reacting with the oxygen of the metal oxide, and in the case of a metal-halogen salt, the generated ammonia reacts with the halogen of the metal-halogen salt to form an ammonium salt It serves to reduce.
- the generated hydrogen is converted into a hydrogen cation, and the metal-acetic acid salt is converted to acetic acid, and at the same time, it is determined that the metal is reduced to produce metal nanoparticles.
- hydrogen is used as the reducing agent for the metal oxide or metal ion compound, the metal oxide or metal ion compound is reduced while converting hydrogen into hydrogen cations.
- Hydrogen is a gas at room temperature and has a problem of using a container of a high pressure because it is very explosive, but the hydrazine-carbon dioxide combination used in one embodiment of the present application is a solid (Formula I) or a gel (Formula I). ') State, the stability is excellent, has the advantage that the field application is very easy.
- the method of preparing metal nanoparticles according to the exemplary embodiment of the present disclosure may not use a solvent, the simplest process may be used.
- the method according to the exemplary embodiment of the present application does not use a solvent or uses only a minimum solvent, and since the by-products are mostly harmless gases, they are naturally removed, so that the purification process is almost unnecessary. Therefore, the manufacturing method of the metal nanoparticles according to one embodiment of the present application is not only very environmentally friendly and economical, but also overcomes the disadvantages of the conventional production process, has the advantage that it is the most economical and does not require a separate production facility.
- water and carbon dioxide are generated in the reaction of the hydrazine-carbon dioxide compound and the metal oxide or metal ion compound, the carbon dioxide is dissociated that is included in the manufacturing process of the hydrazine-carbon dioxide compound As such, there is no production of additional carbon dioxide in the reaction.
- the metal nanoparticles prepared by the manufacturing method may have a size of about 1 nm to about 300 nm, but may not be limited thereto.
- the size of the metal nanoparticles is about 1 nm to about 300 nm, about 1 nm to about 250 nm, about 1 nm to about 200 nm, about 1 nm to about 150 nm, about 1 nm to about 130 nm , About 1 nm to about 100 nm, about 1 nm to about 80 nm, about 1 nm to about 50 nm, about 1 nm to about 30 nm, about 1 nm to about 10 nm, about 10 nm to about 300 nm, about 30 nm to about 300 nm, about 50 nm to about 300 nm, about 80 nm to about 300 nm, about 100 nm to about 300 nm, about 130 nm to about 300
- M may be one containing copper, silver, palladium, platinum, or gold, but may not be limited thereto.
- R 1 may include a C 1-10 alkyl group, C 6-20 aryl group, formyl group, or C 1-10 acyl group, but may not be limited thereto.
- R 1 is a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopen Tyl group, sec-pentyl group, tert-pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, phenyl group, biphenyl group, triphenyl group, benzyl group, naphthyl group, anthryl group, phenanthryl group, fortyl group It may be to include a push, acetyl group, or ethanoyl group, but may not be limited thereto.
- the temperature of the reaction of the hydrazine-carbon dioxide compound and the metal oxide or metal ion compound may be performed at a temperature of about 10 °C to about 200 °C, but may not be limited thereto.
- the temperature may range from about 10 ° C to about 200 ° C, about 30 ° C to about 200 ° C, about 50 ° C to about 200 ° C, about 80 ° C to about 200 ° C, about 110 ° C to about 200 ° C, and about 130 ° C.
- the reaction of the hydrazine-carbon dioxide compound and the metal oxide or metal ion compound may be performed in a solvent-free state without using a solvent, but may not be limited thereto.
- the reaction when the reactants are all solid, the reaction may proceed by grinding or contact between the solid powders, so that there is little need for separation or purification of the product and little byproduct formation.
- Environmentally friendly, solventless dry synthesis can be enabled.
- Method for producing metal nanoparticles according to an embodiment of the present application can increase the reaction rate and selectivity by performing a solvent-free reaction without using a solvent.
- the reaction of the hydrazine-carbon dioxide binding compound and the metal oxide or metal ion compound may be performed in the slurry state in the presence of a solvent, but may not be limited thereto.
- the amount of the solvent may be about 70% by weight or less based on the total weight of the metal nanoparticles, but may not be limited thereto.
- the amount of the solvent used may be about 70 wt% or less, about 60 wt% or less, about 50 wt% or less, about 40 wt% or less, about 30 wt% or less, about 20 wt%, based on the total weight of the metal nanoparticle as a product.
- 0.1 wt% to about 70 wt% Up to about 10 wt%, about 0.1 wt% to about 70 wt%, about 0.1 wt% to about 60 wt%, about 0.1 wt% to about 50 wt%, about 0.1 wt% to about 40 wt%, about 0.1 wt% to about 30 wt%, about 0.1 wt% to about 20 wt%, about 0.1 wt% to about 10 wt%, about 0.1 wt% to about 1 wt%, about 1 wt% to about 70 wt%, about 10 wt% to about 70 wt%, about 20 wt% to about 70 wt%, about 30 wt% to about 70 wt%, about 40 wt% to about 70 wt%, about 50 wt% to about 70 wt%, or About 60 wt% to about 70 wt%, but may not be limited thereto.
- the reaction rate and selectivity may be increased as compared with the conventional method using about 80 wt% to about 95 wt% of the solvent, but may not be limited thereto. .
- the solvent is selected from the group consisting of alcohols having 1 to 15 carbon atoms, ethers having 2 to 16 carbon atoms, aliphatic hydrocarbons having 5 to 15 carbon atoms, aromatic hydrocarbons having 6 to 15 carbon atoms, and combinations thereof. It may include the selected one, but may not be limited thereto.
- the alcohol when using the alcohol having 1 to 15 carbon atoms as a solvent, the alcohol is methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n- Pentanol, isopentanol, sec-pentanol, tert-pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, pentadecanol, ethylene glycol, glycerol, erythritol , Xylitol, mannitol, polyol, and combinations thereof may be selected from the group consisting of, but may not be limited thereto.
- the ether when the ether having 2 to 16 carbon atoms is used as the solvent, the ether includes one selected from the group consisting of dimethyl ether, diethyl ether, tetrahydrofuran, dioxin, and combinations thereof. It may be, but may not be limited thereto.
- the aliphatic hydrocarbon when using the aliphatic hydrocarbon having 5 to 15 carbon atoms as a solvent, the aliphatic hydrocarbon is pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane , Pentadecane, and combinations thereof may be selected from the group consisting of, but may not be limited thereto.
- the aromatic hydrocarbon when using the aromatic hydrocarbon having 6 to 15 carbon atoms as a solvent, is composed of benzene, toluene, phenol, benzoic acid, nitrobenzene, xylene, naphthalene, and combinations thereof It may include one selected from the group, but may not be limited thereto.
- the second aspect of the present application provides metal nanoparticles, prepared according to the manufacturing method according to the first aspect of the present application.
- the size of the metal nanoparticles may be about 1 nm to about 300 nm, but may not be limited thereto.
- the metal nanoparticles have a size of about 1 nm to about 300 nm, about 1 nm to about 250 nm, about 1 nm to about 200 nm, about 1 nm to about 150 nm, about 1 nm to about 130 nm.
- the metal nanoparticles according to the second aspect of the present application are manufactured according to the manufacturing method according to the first aspect of the present application, and detailed descriptions of portions overlapping with the first aspect of the present application are omitted, but the first aspect of the present application The description about may be equally applied even if the description is omitted in the second aspect of the present application.
- the metal nanoparticles according to the present embodiment can be synthesized without using any solvent at the time of preparation, and are about 70% by weight based on the total weight of the prepared metal oxide, metal-halogen salt, metal-acetate salt, or metal-alkoxide It can be synthesized using% or less alcohol having 1 to 15 carbon atoms, ether having 2 to 16 carbon atoms, aliphatic hydrocarbon having 5 to 15 carbon atoms, aromatic hydrocarbon having 6 to 15 carbon atoms, or a mixture thereof as a solvent.
- the yield of metal nanoparticles is 99% or more in both solid reactions and slurry phase reactions using solvents.
- Metal copper was obtained in the same manner as in Example 1 except that 4.00 g (50.0 mmol) of CuO was used, and the resulting metal copper was confirmed by XRD. As a result, it was found that metal copper was formed in a size of about 24 nm.
- Metal copper was obtained in the same manner as in Example 1, except that 1.00 g (12.5 mmol) of CuO was used, and the resulting metal copper was identified by XRD. As a result, it was found that metal copper was formed in a size of about 23 nm.
- Figure 2 is an XRD pattern of silver nanoparticles prepared according to the present embodiment, the vertical bar below shows the theoretical XRD pattern of Ag and N 2 H 5 Cl, respectively.
- Example 2 The same method as in Example 1, except that 8.35 g (50.0 mmol) of silver acetate (AgOAc) was used instead of CuO (25.0 mmol), and the time left in the oven was limited to 0.1 hour and the oven temperature was limited to 25 ° C. Metal silver was obtained, and the resulting metal silver was confirmed by XRD. As a result, it was observed that the average particle diameter of the metal silver was about 8 nm in size, and acetic acid was also present.
- AgOAc silver acetate
- Example 1 and 0.67 g (2.5 mmol) of PtCl 2 and 0.76 g (10.0 mmol) of solid hydrazine (H 3 N + NHCO 2 ⁇ ) were used, except that the time left in the oven was limited to 1 hour.
- the same reaction was carried out and the resulting metal particles were identified by XRD. As a result, it was observed that the average particle diameter of the metal platinum was about 6 nm, and it was also found that ammonium chloride was also present.
- Example 4 and 0.34 g (1.25 mmol) of PtCl 2 and 0.76 g (10.0 mmol) of solid hydrazine (H 3 N + NHCO 2 ⁇ ) were used, except that the time left in the oven was limited to 1 hour.
- the same reaction was carried out and the resulting metal particles were identified by XRD. As a result, it was observed that the average particle diameter of the metal platinum is about 4 nm, and ammonium chloride was also present.
- FIG. 5 is an XRD pattern of gold nanoparticles prepared according to the present example, and the vertical bars below represent theoretical XRD patterns of Au and N 2 H 5 Cl, respectively. As a result, it was observed that the average particle diameter of the metal gold was about 5 nm, and hydrazine chloride was also present.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본원은, 금속 나노입자의 제조 방법에 대한 것으로서, 구체적으로는 히드라진-이산화탄소 결합 화합물을 금속 산화물 또는 금속 이온 화합물과 반응시켜 금속 나노입자를 수득하는 것을 포함하는, 금속 나노입자의 제조 방법에 관한 것이다.
Description
본원은, 금속 나노입자의 제조 방법에 대한 것으로서, 구체적으로는 히드라진-이산화탄소 결합 화합물을 금속 산화물 또는 금속 이온 화합물과 반응시키는 것을 포함하는, 금속 나노입자의 제조 방법에 관한 것이다.
나노소재 기술은 기존 소재로는 얻을 수 없는 새로운 기능 및 특성들을 나타낼 수 있어 다양한 분야 및 산업에 적용할 수 있는 최첨단 융합 소재 기술이라 할 수 있다.
예를 들면, 백금 나노콜로이드는 화장품과 건강보조식품 분야에서 향후 활용 가능성이 높을 것으로 기대되고 있다. 그 이유는 기존에 항산화 작용이 있다고 여겨지던 소재들은 체내에 있는 일곱 종류의 활성산소 가운데 특정한 활성산소만을 제거할 수 있으며 일단 한번 활성산소를 제거하고 나면 더 이상 작용하지 않는 반면, 백금 나노콜로이드는 모든 활성산소를 제거하는 효과가 있고 체내에 콜로이드 형태로 잔류하는 동안은 반영구적으로 작용할 수 있기 때문이다. 따라서 인체에 무해한 콜로이드 보호제를 사용하여 불순물 없이 제조한 백금 나노입자를 콜로이드화 한다면 촉매, 광전자, 센서, 전도성 소자, 바이오 분야뿐만 아니라 의료 및 건강 보조식품 분야로 확대되어 그 시장성은 매우 클 것으로 기대된다.
이러한 나노기술 중에서 나노소재는 분말(powder), 튜브(tube), 휘스커(whisker), 박막(thin film) 등 다양한 형태의 구조체로 가공이 되어 응용된다. 이중 가장 보편화된 재료 형태는 분말과 박막 형태이다. 박막 형태의 제조는 사실상 오랜 기간 동안 나노소재로서 그 기술이 축적되어 있는데 반해, 분말 나노소재는 아직까지 재현적인 제조 방법 그리고 보관 등에서 어려움이 있어 많은 연구개발에도 불구하고 상용화된 사례가 적다.
금속 분말 나노소재는 분말의 크기를 줄이면 비표면적 증가에 따른 표면 에너지 증가로 분말이 불안정하게 된다. 또한 금속이 한계 크기 이하가 되면 반응성이 높아 공기 중에서도 산소와 반응해서 자연 발화를 일으킨다. 때문에 큰 활성을 갖는 나노크기의 금속분말을 제조하고 이를 안정하게 활용하기 위한 노력이 더욱 절실히 요구된다고 할 수 있다.
또한, 금속 나노입자의 공업적 중요성이 매우 크다는 사실이 점차적으로 확산되어, 이들을 친환경적이며 경제적으로 경쟁력이 있는 공정을 통해서 대량으로 제조하는 기술에 대한 요구가 매우 커지고 있는 상황이다. 이러한 나노입자 제조 방법은 여러 가지가 개발되었으며, 크게는 기체 상태에서 합성하는 기상 합성법(vapor phase synthesis)과 용액에 녹여서 결정을 성장하는 액상 합성법으로 나눌 수 있다. 일반적으로 기상 합성법은 고순도의 입자를 대량으로 만들 수 있는 방법으로 주목을 받아왔지만, 기상 합성법은 반응 공정 중에 생성된 일차 입자가 응집하여 클러스터 상태의 이차 입자를 형성하여 강하게 응집된 입자가 생성되기 때문에 100 나노미터 이하의 작은 나노입자를 균일한 크기로 제조하기가 어렵다.
이들 중 특히 직경 100 nm 이하의 입자를 합성하는 방법으로 크게 에어로졸 법과 증발/응축을 통해서 기상에서 나노입자를 제조하는 방법 등이 널리 개발되었다. 그러나 이러한 기상 합성법의 경우 1) 대량생산이 어렵고, 2) 입자 크기 조절이 어려워 분리를 위한 별도의 공정이 필요하고, 3) 고온 공정인 경우가 많으며, 4) 입자제조 비용이 일반적으로 비싼 단점 등 때문에 아직 산업적으로 많이 이용되고 있지는 않다. 나노입자들의 응집을 해결하기 위한 방법으로서 미국 등록특허 제5,498,446호에는 화염 합성법에 의해 미응집 나노입자를 만드는 방법이 제시되어 있다. 이 방법은 화염 합성의 반응 영역에서 할로겐 성분을 함유한 전구체(precursor)를 가열하여 금속 또는 세라믹 입자를 합성할 때 나트륨(Na)과 같은 기화된 금속을 함께 도입함으로써 생성된 부반응물인 염화나트륨(NaCl)이 금속 또는 세라믹 입자를 코팅하도록 제조하고, 이어서 응집된 나노입자를 물이나 용제를 사용하여 NaCl을 용해시켜 100 나노미터 이하의 입자를 분리한다. 그러나, 이 방법은 용제를 사용해야만 하기 때문에 제조 공정이 복잡한 문제점이 있다.
한편 액상 합성법의 경우 제조 공정이 간단하고 경제적이나 얻어지는 입자의 크기를 나노미터 범위로 제한하는데 한계가 있으며, 용매 및 환원제를 사용해야 하기 때문에 환경 문제를 유발할 수 있다. 입자 제조 후 용액으로부터 나노입자를 분리해서 정제하는 추가적인 공정이 필요하여 대량 생산에 큰 어려움이 있다. 또한 유기 용매와 환원제를 함께 사용하는 경우에는 용매 사용에 의한 VOCs (volatile organic chemicals) 등이 발생할 수 있으며, 이에 따른 유독한 폐수 발생도 필연적이었다. 또한 반응물을 대부분 중량 비가 낮은 5 중량% 내지 20 중량% 정도로 사용하므로 생성물의 양에 비해 상대적으로 매우 커다란 반응기 및 부대 장치를 사용하여야만 하는 단점이 있다. 또한, 이들로부터 생성물을 얻기 위한 분리 및 정제를 위한 공정 장치 등이 필요하므로, 제조 공정이 복잡해지고 제조단가가 증가하게 된다.
한편, 히드라진 수화물은 용액 상태에 녹아 있는 금속 화합물으로부터 금속 나노입자를 만들 때 환원제로서 사용되고 있다. 히드라진과 같은 환원제를 사용하는 용액 공정의 경우, 용매를 사용해야 하므로 생산성이 높지 않으며, 과량의 히드라진을 사용해야만 하는 등의 단점이 있다. 또한 과량의 미사용된 히드라진 용액은 인체에 유해할 수 있으며, 이를 처리하기 위해 폐수 처리 등의 추가 과정이 필요하다.
히드라진(N2H4)은 암모니아(NH3) 기체와 비슷한 화학적 성질을 갖지만 상온에서 투명한 액체로서 물과 비슷한 녹는점, 끓는점, 밀도를 갖는다. 이와 같이 액체 히드라진은 누출로 인한 화재 발생 및 주변 금속이나 물질과의 급격한 반응으로 오염을 야기할 수 있으며, 대부분은 다량의 수분을 포함하고 있어 수분이 없는 조건이 필요한 경우 등에 사용할 수 없거나 물에 의한 부반응의 문제들 때문에 그 응용에 많은 제한이 따른다.
액체 히드라진이 가지고 있는 이러한 문제점들을 줄이기 위한 한 방편으로서, 액체 히드라진을 황산 또는 염산과 반응시켜서 만든 고체 히드라진 염(hydrazinium salt)을 만들어 액체 히드라진 대용으로 사용하는 것이 제안되었다. 그러나 이 또한 반응성이 떨어지고 반응 후 남은 음이온 제거 등과 같은 단점들로 인해서, 히드라진 염들은 그 종류가 다양하게 많이 개발되었음에도 불구하고 응용이 아주 제한적으로만 이루어지고 있다.
한편, 미국 등록특허 제6,203,768호에는 기계화학적 방법(mechanochemical method)에 의한 새로운 나노입자의 생산 방식이 제안되어 있다. 이 방법에서는 염화제이철(FeCl3)과 같은 메탈 할라이드(metal halide) 화합물과 나트륨(Na)과 같은 금속을 볼 밀에 넣고 고온에서 반응시키면, 생성된 염화나트륨(NaCl)이 철(Fe) 나노입자의 주변을 감싼 구조로 형성되게 되며, 이를 용해하거나 승화 등의 방법에 의해 염화나트륨(NaCl)을 제거하여 분리된 나노입자를 얻게 된다. 그러나 이 방법 역시 용제의 제거 공정이 필요하고 고순도의 입자를 얻기 어려운 문제점이 있다.
이 두 방법의 대안으로 초음파 이용법, 마이크로에멀전 이용법, 캐비테이션 과정(cavitation processing)과 고에너지 볼 밀링(high energy ball milling) 등 여러 다양한 방법이 보고되고 있으나, 금속 나노입자를 대량으로 제조하는데 있어서 한계와 제조 단가 문제로 보편적으로 이용되지 못하고 있다.
이에, 본원은, 히드라진-이산화탄소 결합 화합물을 금속 산화물 또는 금속 이온 화합물과 반응시켜 금속 나노입자를 수득하는 것을 포함하는 금속 나노입자의 제조 방법 및 상기 제조 방법에 의해 제조되는 금속 나노입자를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 하기 화학식 I 또는 I'로서 표시되는 히드라진-이산화탄소 결합 화합물을, 하기 화학식 II로서 표시되는 금속 산화물 또는 하기 화학식 III 또는 IV 로서 표시되는 금속 이온 화합물과 반응시켜 금속 나노입자를 수득하는 것을 포함하는, 금속 나노입자의 제조 방법을 제공한다:
[화학식 I]
[화학식 I']
[화학식 II]
MaOb;
[화학식 III]
MaXb;
[화학식 IV]
Ma(OR1)b;
상기 식들에서,
R1은, 수소; 치환 또는 비치환된 C1-30 지방족(aliphatic) 탄화수소기, 치환 또는 비치환된 C3-30 지방족 고리기, 치환 또는 비치환된 C3-30 헤테로 지방족 고리기, 치환 또는 비치환된 C5-30 방향족(aromatic) 고리기, 및 치환 또는 비치환된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C1-30 지방족 탄화수소기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 지방족 고리기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 헤테로 지방족 고리기; 및, Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것을 포함하고,
M은 금속 원소를 포함하고,
X는 할로겐 원소를 포함하며,
a 및 b는 양의 정수임.
본원의 제 2 측면은, 본원의 제 1 측면에 따른 제조 방법에 따라 제조되는, 금속 나노입자를 제공한다.
본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 매우 작은 소형의 반응 용기를 사용할 수 있으며, 특히 금속 산화물을 전구체로 사용하는 경우에 있어서는 이산화탄소, 질소 및 물을 제외한 부산물이 거의 없이 생성물을 정량적으로 얻을 수 있고, 고체 또는 무용매 반응 공정을 제공할 수 있어, 생산 장비 및 생산 시간을 간소화할 수 있다. 아울러, 슬러리 용매를 사용하는 경우에 있어서도, 총 생성물에 대하여 약 70 중량% 이하로 용매를 사용함으로써, 과량의 용매(> 80 중량%)를 사용하는 경우보다 반응 속도가 빠른 효율적 공정을 제공할 수 있다. 본원의 일 구현예에 따른 금속 나노입자의 제조 방법은, 종래 액상 기반 반응 공정과 비교하여, 부수 장비 설치, 용매 분리 비용, 폐수 처리 비용 등이 필요 없기 때문에 경제성이 우수하고 제조 비용이 절감될 뿐만 아니라, 용매를 거의 사용하지 않거나, 일체의 용매를 사용하지 않는 친환경 공정 기술이다.
특히, 본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 히드라진-이산화탄소 결합 화합물과 금속 산화물, 금속-할로겐염, 또는 금속-아세트산염 등의 금속 전구체를 고체 상태, 무용매 상태 또는 슬러리 상태의 저온(200℃ 이하)에서 반응시키는 것으로서, 추가적인 열처리 과정 없이, 거의 100% 수율로 금속 나노입자를 제조할 수 있다.
따라서 본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 하기와 같은 효과를 제공할 수 있다: 1) 용매를 사용하지 않거나, 슬러리 상태에 있어서도 최소한의 용매만 사용함으로써 매우 작은 반응 용기로 많은 생성물을 얻을 수 있기 때문에 생산성이 높고, 2) 저온에서 금속 환원을 하므로 에너지 비용이 크게 절감되며, 3) 반응 후에 금속 입자 외의 물질은 추가적인 분리 과정이 거의 필요 없으며, 4) 환원제의 양을 조절(약 1 당량 내지 약 10 당량) 함으로써 금속 입자의 크기를 약 1 nm 내지 약 200 nm 사이에서 조절이 가능하고, 5) 나노입자의 수율이 거의 100% 이므로 경제성이 매우 높고, 6) 폐수 및 부산물이 최소화될 수 있음.
도 1은 본원의 일 실시예에 따라 제조된 구리 나노입자의 X-선 회절 분석 (XRD) 패턴이다: 밑의 수직 막대는 각각 Cu와 CuO의 이론적인 XRD 패턴임.
도 2는 본원의 일 실시예에 따라 제조된 은 나노입자의 XRD 패턴이다: 밑의 수직 막대는 각각 Ag와 (N2H5)Cl의 이론적인 XRD 패턴임.
도 3은 본원의 일 실시예에 따라 제조된 팔라듐 나노입자의 XRD 패턴이다: 밑의 수직 막대는 각각 Pd와 (NH4)Cl의 이론적인 XRD 패턴임.
도 4 는 본원의 일 실시예에 따라 제조된 백금 나노입자의 XRD 패턴이다: 밑의 수직 막대는 각각 Pt, (NH4)Cl, 및 (N2H5)Cl의 이론적인 XRD 패턴임.
도 5는 본원의 일 실시예에 따라 제조된 금 나노입자의 XRD 패턴이다: 밑의 수직 막대는 각각 Au와 (N2H5)Cl의 이론적인 XRD 패턴임.
아래에서는 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 상에 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군으로부터 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군으로부터 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
본원의 명세서 전체에 있어서, "지방족(aliphatic) 탄화수소기"는 탄소수 1 내지 30의 포화 또는 불포화 탄화수소기를 의미하고, C1-30 알킬기, C2-30 알케닐기, 또는 C2-30 알키닐기 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 명세서 전체에 있어서, "알킬기"는 각각, 치환 또는 비치환된 선형 또는 분지형의, C1-30 알킬기, 또는 C1-10 알킬기, 또는 C1-5 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 운데실기, 도데실기, 트리데실기, 테트라데실기, 펜타데실기, 헥사데실기, 헵타데실기, 옥타데실기, 노나데실기, 또는 에이코사닐기 등, 및 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, C1-30 알킬기가 치환된 경우 치환체의 탄소수는 상기 알킬기의 탄소수에 포함되지 않은 것이다.
본원의 명세서 전체에 있어서, "알케닐기"는 탄소수 2 내지 30, 또는 2 내지 10, 또는 2 내지 5를 가지는 선형 또는 분지형의, 치환 또는 비치환된 불포화 탄화수소기를 나타내며, 예를 들어, 에테닐기, 비닐기, 프로페닐기, 알릴기, 이소프로페닐기, 부테닐기, 이소부테닐기, t-부테닐기, n-펜테닐기, 또는 n-헥세닐기 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 명세서 전체에 있어서, "알키닐기"는 탄소수 2 내지 30, 또는 2 내지 10, 또는 2 내지 5를 가지는 선형 또는 분지형의, 치환 또는 비치환된 불포화 탄화수소기를 나타내며, 예를 들어, 에티닐기, 프로피닐기, 부티닐기, 펜티닐기, 헥시닐기, 헵티닐기, 옥티닐기, 노니닐기, 또는 데시닐기 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 명세서 전체에 있어서, "지방족(aliphatic) 고리기"는 탄소수 3 내지 30, 또는 3 내지 10, 또는 3 내지 6의 불포화 또는 포화 탄소수소 고리기를 나타내며, 예를 들어, 시클로알킬기, 또는 시클로알케닐기 등을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 명세서 전체에 있어서, "시클로알킬기"는 탄소수 3 내지 30, 또는 3 내지 10, 또는 3 내지 6을 가지는 치환 또는 비치환 탄화수소 고리기를 의미하며, 예를 들어, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 시클로노닐기, 또는 시클로데킬기 등을 포함한다.
본원의 명세서 전체에 있어서, "할로겐" 또는 "할로"는 VIIa 족 원소, 예를 들어, 염소(Cl), 브롬(Br), 불소(F), 또는 요오드(I)를 포함한다.
본원의 명세서 전체에 있어서, "아민기" 또는 "아미노기"는 -NH2 또는 질소 원자에 하나 이상의 탄화수소기가 공유 결합된 것을 포함한다.
상기 열거한 작용기들이 치환되는 경우, 상기 작용기들은 다양한 위치에서 다양한 치환체에 의해 치환이 이루어질 수 있으며, 상기 작용기들은 예를 들어, 할로겐기, 히드록시기, 니트로기, 시아노기, C1-C4 치환 또는 비치환된 선형 또는 분지형 알킬기, 또는 C1-C4 선형 또는 분지형 알콕시기에 의해 치환될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 명세서 전체에 있어서, "방향족 고리기"는 탄소수 6 내지 30, 또는 6 내지 20, 또는 6 내지 12의, 아릴기, 헤테로 아릴기, 아릴 알킬기, 또는 접합 아릴기 등을 포함하는 것이다.
본원의 명세서 전체에 있어서, "아릴기"는 전체적으로 또는 부분적으로 불포화된, 치환 또는 비치환 모노사이클릭 또는 폴리사이클릭 탄소 고리기를 의미한다. 예를 들어, C6-30 아릴기는 탄소수 6 내지 30의 탄소 고리 원자를 가지는 아릴기를 의미하며, C6-30 아릴기가 치환된 경우 상기 탄소수에 치환체의 탄소수는 포함되지 않은 것이다. 예를 들어, 아릴기는 모노아릴기 또는 비아릴기를 포함할 수 있다. 상기 모노아릴기는 탄소수 5 또는 6을 갖는 것을 포함할 수 있으며, 상기 비아릴기는 탄소수 9 또는 10을 갖는 것을 포함할 수 있다. 상기 모노아릴기는 예를 들어, 치환 또는 비치환된 페닐기를 포함할 수 있다. 모노아릴기, 예를 들어, 페닐기가 치환되는 경우에는, 다양한 위치에서 다양한 치환체에 의해 치환이 이루어질 수 있으며, 할로겐기, 히드록시기, 니트로기, 시아노기, C1-C4 치환 또는 비치환된 선형 또는 분지형 알킬기, 또는 C1-C4 선형 또는 분지형 알콕시기에 의해 치환될 수 있다.
본원의 명세서 전체에 있어서, "헤테로아릴기"는 헤테로사이클릭 방향족기로서, 상기 방향족기는 헤테로 원자로서 Si, O, S, Se, N, P, 또는 As을 포함할 수 있다. C3-30 헤테로아릴기는 탄소수 3 내지 30의 탄소 고리 원자를 가지는 헤테로아릴기를 의미하며, C3-30 헤테로아릴기가 치환된 경우 상기 탄소수에 치환체의 탄소수는 포함되지 않은 것이다. 상기 방향족기에 포함되는 상기 헤테로 원자의 개수는 1 또는 2일 수 있다. 상기 헤테로아릴기에서 상기 아릴기는 모노아릴기 또는 비아릴기를 포함할 수 있고, 예를 들어 모노아릴기일 수 있다. 상기 헤테로아릴기는 다양한 위치에서 다양한 치환체에 의해 치환될 수 있으며, 예를 들어, 할로겐기, 히드록시기, 니트로기, 시아노기, C1-C4 치환 또는 비치환된 선형 또는 분지형 알킬기, 또는 C1-C4 선형 또는 분지형 알콕시기에 의해 치환될 수 있다.
본원의 명세서 전체에 있어서, "아릴알킬기"는 아릴기로 치환된 알킬기를 의미한다. C6-30 아릴알킬기는 탄소수 6 내지 30의 아릴기를 가지는 알킬기을 의미하며, C6-30 아릴알킬기가 치환된 경우 상기 탄소수에 치환체의 탄소수는 포함되지 않은 것이다. 상기 아릴알킬기에서 상기 아릴기는 모노아릴기 또는 비아릴기를 포함할 수 있고, 상기 알킬기는 C1-3 알킬기, 예를 들어 C1 알킬기일 수 있다. 상기 아릴알킬기에서 상기 아릴기는 다양한 위치에서 다양한 치환체에 의해 치환될 수 있으며, 예를 들어, 할로겐기, 히드록시기, 니트로기, 시아노기, C1-C4 치환 또는 비치환된 선형 또는 분지형 알킬기, C1-C4 선형 또는 분지형 알콕시기 또는 C1-C4 선형 또는 분지형 알킬카르복실니트로기에 의해 치환될 수 있다.
본원의 명세서 전체에 있어서, "접합 아릴기"는 접합(fused)된 다중 아릴 고리기를 의미하며, 예를 들어, 나프탈레닐기, 페난트레닐기, 안트라세닐기, 벤조[a]피레닐기, 벤조[b]피레닐기, 벤조[e]피레닐기, 아세나프탈레닐기, 아세나프테닐기, 벤조[b]플루오란센, 벤조[j]플루오란테닐기, 크리세닐기, 플루오란테닐기, 플루오레닐기, 또는 피레닐기 등이 있으며, 이는 치환 또는 비치환된 접합아릴기이다. 상기 접합 아릴기는 다양한 위치에서 다양한 치환체에 의해 치환이 이루어질 수 있으며, 예를 들어, 할로겐기, 히드록시기, 니트로기, 시아노기, C1-C4 치환 또는 비치환된 선형 또는 분지형 알킬기, 또는 C1-C4 선형 또는 분지형 알콕시기에 의해 치환될 수 있다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 하기 화학식 I 또는 I'로서 표시되는 히드라진-이산화탄소 결합 화합물을, 하기 화학식 II로서 표시되는 금속 산화물 또는 하기 화학식 III 또는 IV 로서 표시되는 금속 이온 화합물과 반응시켜 금속 나노입자를 수득하는 것을 포함하는, 금속 나노입자의 제조 방법을 제공한다:
[화학식 I]
[화학식 I']
[화학식 II]
MaOb;
[화학식 III]
MaXb;
[화학식 IV]
Ma(OR1)b;
상기 식들에서,
R1은, 수소; 치환 또는 비치환된 C1-30 지방족(aliphatic) 탄화수소기, 치환 또는 비치환된 C3-30 지방족 고리기, 치환 또는 비치환된 C3-30 헤테로 지방족 고리기, 치환 또는 비치환된 C5-30 방향족(aromatic) 고리기, 및 치환 또는 비치환된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C1-30 지방족 탄화수소기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 지방족 고리기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 헤테로 지방족 고리기; 및, Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것을 포함하고,
M은 금속 원소를 포함하고,
X는 할로겐 원소를 포함하며,
a 및 b는 양의 정수임.
본원의 일 구현예에 있어서, 상기 히드라진-이산화탄소 결합 화합물은 분해 반응 (반응식 I 내지 III 참조)에 의해 수소 또는 암모니아를 발생시킬 수 있으며, 상기 발생된 수소 또는 암모니아가 환원제 역할을 한다:
[반응식 I]
[반응식 II]
[반응식 III]
본원의 일 구현예에 있어서, 상기 발생된 수소가 상기 금속 산화물의 산소와 반응하여 물로 전환되고, 금속-할로겐염의 경우에는 상기 발생된 암모니아가 금속-할로겐염의 할로겐과 반응하여 암모늄 염을 형성함으로써 금속을 환원시키는 역할을 한다. 또한, 금속-아세트산염의 경우에는 상기 발생된 수소가 수소 양이온으로 변환되면서 금속-아세트산염을 아세트산으로 변환시키고, 동시에 금속을 환원시켜 금속 나노입자를 생성하는 것으로 판단된다. 수소가 상기 금속 산화물 또는 금속 이온 화합물을 위한 환원제로서 사용되는 경우, 상기 금속 산화물 또는 금속 이온 화합물은 수소를 수소 양이온으로 변환시키면서 환원된다. 수소는 상온에서 기체이며, 폭발성이 매우 높으므로 고압의 용기를 사용해야 하는 등의 문제가 있으나, 본원의 일 구현예에 이용되는 상기 히드라진-이산화탄소 결합물은 고체이거나 (화학식 I) 또는 젤 (화학식 I') 상태이므로, 안정성이 우수하여, 현장 적용이 매우 용이하다는 장점을 가진다.
본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 용매를 사용하지 않을 수 있게 되므로, 가장 단순한 공정을 이용할 수 있다. 또한, 본원의 일 구현예에 따른 방법은 용매를 사용하지 않거나 최소한의 용매만을 사용하고, 부산물이 대부분 무해한 기체이므로 자연히 제거되므로, 정제 과정이 거의 불필요하다. 따라서, 본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 매우 친환경적이고 경제성이 높을 뿐만 아니라, 종래 생산 공정의 단점을 극복하여, 가장 경제적이며, 생산 시설이 별도로 필요하지 않은 장점을 갖는다.
본원의 일 구현예에 있어서, 상기 히드라진-이산화탄소 결합 화합물과 상기 금속 산화물 또는 금속 이온 화합물의 반응에서는 물과 이산화탄소가 발생되지만, 상기 이산화탄소는, 상기 히드라진-이산화탄소 결합 화합물의 제조 공정에 포함된 것이 해리된 것으로서, 상기 반응에서 추가적인 이산화탄소의 생성은 없는 것이다.
비제한적 예로서, 본원의 일 구현예에 있어서, 상기 제조 방법에 의해 제조되는 금속 나노입자는, 그 크기가 약 1 nm 내지 약 300 nm인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 금속 나노입자의 크기는 약 1 nm 내지 약 300 nm, 약 1 nm 내지 약 250 nm, 약 1 nm 내지 약 200 nm, 약 1 nm 내지 약 150 nm, 약 1 nm 내지 약 130 nm, 약 1 nm 내지 약 100 nm, 약 1 nm 내지 약 80 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 10 nm, 약 10 nm 내지 약 300 nm, 약 30 nm 내지 약 300 nm, 약 50 nm 내지 약 300 nm, 약 80 nm 내지 약 300 nm, 약 100 nm 내지 약 300 nm, 약 130 nm 내지 약 300 nm, 약 150 nm 내지 약 300 nm, 약 200 nm 내지 약 300 nm, 약 250 nm 내지 약 300 nm, 약 30 nm 내지 약 100 nm, 또는 약 50 nm 내지 약 200 nm일 수 있으나, 이에 제한되지 않을 수 있다.
본원에 따른 일 구현예에 있어서, 상기 M은 구리, 은, 팔라듐, 백금, 또는 금을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원에 따른 일 구현예에 있어서, 상기 R1은 C1-10 알킬기, C6-20 아릴기, 포르밀기, 또는 C1-10 아실기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원에 따른 일 구현예에 있어서, 상기 R1은 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 이소펜틸기, sec-펜틸기, tert-펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 페닐기, 비페닐기, 트리페닐기, 벤질기, 나프틸기, 안트릴기, 페난트릴기, 포르밀기, 아세틸기, 또는 에타노일기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 히드라진-이산화탄소 결합 화합물과 상기 금속 산화물 또는 금속 이온 화합물의 반응의 온도는 약 10℃ 내지 약 200℃의 온도에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 온도는 약 10℃ 내지 약 200℃, 약 30℃ 내지 약 200℃, 약 50℃ 내지 약 200℃, 약 80℃ 내지 약 200℃, 약 110℃ 내지 약 200℃, 약 130℃ 내지 약 200℃, 약 150℃ 내지 약 200℃, 약 170℃ 내지 약 200℃, 약 10℃ 내지 약 170℃, 약 30℃ 내지 약 170℃, 약 50℃ 내지 약 170℃, 약 80℃ 내지 약 170℃, 약 110℃ 내지 약 170℃, 약 130℃ 내지 약 170℃, 약 150℃ 내지 약 170℃, 약 10℃ 내지 약 150℃, 약 30℃ 내지 약 150℃, 약 50℃ 내지 약 150℃, 약 80℃ 내지 약 150℃, 약 110℃ 내지 약 150℃, 약 130℃ 내지 약 150℃, 약 10℃ 내지 약 130℃, 약 30℃ 내지 약 130℃, 약 50℃ 내지 약 130℃, 약 80℃ 내지 약 130℃, 약 110℃ 내지 약 130℃, 약 10℃ 내지 약 110℃, 약 30℃ 내지 약 110℃, 약 50℃ 내지 약 110℃, 약 70℃ 내지 약 110℃, 약 90℃ 내지 약 110℃, 약 10℃ 내지 약 90℃, 약 30℃ 내지 약 90℃, 약 50℃ 내지 약 90℃, 약 10℃ 내지 약 30℃, 또는 약 10℃ 내지 약 50℃일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 히드라진-이산화탄소 결합 화합물과 상기 금속 산화물 또는 금속 이온 화합물의 반응은 용매를 사용하지 않고 무용매 상태에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 반응에서, 반응물이 모두 고체인 경우 고체 분말 간의 그라인딩(grinding) 또는 접촉(contact)에 의해서 반응이 진행될 수 있어, 생성물의 분리 또는 정제 과정이 거의 필요 없으며, 부산물 생성이 거의 없어 친환경적인 무용매 건식 합성을 가능하게 할 수 있다. 본원의 일 구현예에 따른 금속 나노입자의 제조 방법은 용매를 사용하지 않는 무용매 반응을 수행함으로써, 반응 속도 및 선택성을 증가시킬 수 있다.
본원의 일 구현예에 있어서, 상기 히드라진-이산화탄소 결합 화합물과 상기 금속 산화물 또는 금속 이온 화합물의 반응은 용매의 존재 하의 슬러리 상태에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 반응이 용매 존재 하에 수행되는 경우, 상기 용매의 사용량이 금속 나노입자의 총 중량에 대하여 약 70 중량% 이하일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 용매 사용량은 생성물인 금속 나노입자의 총중량에 대해 약 70 중량% 이하, 약 60 중량% 이하, 약 50 중량% 이하, 약 40 중량% 이하, 약 30 중량% 이하, 약 20 중량% 이하, 약 10 중량% 이하, 약 0.1 중량% 내지 약 70 중량%, 약 0.1 중량% 내지 약 60 중량%, 약 0.1 중량% 내지 약 50 중량%, 약 0.1 중량% 내지 약 40 중량%, 약 0.1 중량% 내지 약 30 중량%, 약 0.1 중량% 내지 약 20 중량%, 약 0.1 중량% 내지 약 10 중량%, 약 0.1 중량% 내지 약 1 중량%, 약 1 중량% 내지 약 70 중량%, 약 10 중량% 내지 약 70 중량%, 약 20 중량% 내지 약 70 중량%, 약 30 중량% 내지 약 70 중량%, 약 40 중량% 내지 약 70 중량%, 약 50 중량% 내지 약 70 중량%, 또는 약 60 중량% 내지 약 70 중량% 일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 용매를 약 70 중량% 이하로 사용할 경우, 약 80 중량% 내지 약 95 중량%의 용매를 사용하는 종래 방법에 비해 반응 속도와 선택성을 증가시킬 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 용매는 탄소수 1 내지 15의 알코올, 탄소수 2 내지 16의 에테르, 탄소수 5 내지 15의 지방족 탄화수소, 탄소수 6 내지 15의 방향족 탄화수소, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 탄소수 1 내지 15의 알코올을 용매로서 사용하는 경우, 상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로판올, n-부탄올, 이소부탄올, sec-부탄올, tert-부탄올, n-펜탄올, 이소펜탄올, sec-펜탄올, tert-펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올, 펜타데칸올, 에틸렌글리콜, 글리세롤, 에리쓰리톨, 자일리톨, 만니톨, 폴리올, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 탄소수 2 내지 16의 에테르를 용매로서 사용하는 경우, 상기 에테르는 디메틸에테르, 디에틸에테르, 테트라히드로푸란, 다이옥신, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 탄소수 5 내지 15의 지방족 탄화수소를 용매로서 사용하는 경우, 상기 지방족 탄화수소는 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 운데칸, 도데칸, 트리데칸, 테트라데칸, 펜타데칸, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 탄소수 6 내지 15의 방향족 탄화수소를 용매로서 사용하는 경우, 상기 방향족 탄화수소는 벤젠, 톨루엔, 페놀, 벤조산, 니트로벤젠, 자일렌, 나프탈렌, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면은, 본원의 제 1 측면에 따른 제조 방법에 따라 제조되는, 금속 나노입자를 제공한다.
본원의 일 구현예에 있어서, 상기 금속 나노입자의 크기가 약 1 nm 내지 약 300 nm일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 금속 나노입자의 크기가 약 1 nm 내지 약 300 nm, 약 1 nm 내지 약 250 nm, 약 1 nm 내지 약 200 nm, 약 1 nm 내지 약 150 nm, 약 1 nm 내지 약 130 nm, 약 1 nm 내지 약 100 nm, 약 1 nm 내지 약 80 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 10 nm, 약 10 nm 내지 약 300 nm, 약 30 nm 내지 약 300 nm, 약 50 nm 내지 약 300 nm, 약 80 nm 내지 약 300 nm, 약 100 nm 내지 약 300 nm, 약 130 nm 내지 약 300 nm, 약 150 nm 내지 약 300 nm, 약 200 nm 내지 약 300 nm, 약 250 nm 내지 약 300 nm, 약 30 nm 내지 약 100 nm, 또는 약 50 nm 내지 약 200 nm일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면에 따른 금속 나노입자는 상기 본원의 제 1 측면에 따른 제조 방법에 따라 제조되는 것으로서, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
본 실시예에 따른 금속 나노입자들은, 제조 시 용매를 전혀 사용하지 않고 합성될 수 있으며, 제조된 금속 산화물, 금속-할로겐염, 금속-아세트산염, 또는 금속-알콕사이드의 총 중량에 대하여 약 70 중량% 이하의, 탄소수 1 내지 15의 알코올, 탄소수 2 내지 16의 에테르, 탄소수 5 내지 15의 지방족 탄화수소, 탄소수 6 내지 15의 방향족 탄화수소, 또는 이들의 혼합물을 용매로서 사용해서 합성될 수 있다. 고체 반응 또는 용매를 사용한 슬러리상 반응 모두 금속 나노입자의 수율은 99% 이상이다.
실시예 1
고체 히드라진 (H3N+NHCO2
-) 7.6 g (100.0 mmol)과 구리(II) 산화물 (CuO) 1.99 g (25.0 mmol)을 용매 없이 모르타르에서 10 분간 혼합하고, 그 혼합물을 80℃ 오븐에 넣은 후 12 시간 후 생성물을 XRD (X-ray powder diffraction) 로 확인하였다. 상기 XRD 분석 결과는 도 1에 나타내었다.
도 1은 본 실시예에 따라 제조된 구리 나노입자의 XRD 패턴이으로서, 밑의 수직 막대는 각각 Cu와 CuO의 이론적인 XRD 패턴을 나타낸다. 확인 결과 다른 부생성물의 존재 없이 전구체인 구리 산화물이 모두 금속 구리(Copper metal)로 전환되었음을 확인하였으며 생성된 금속 구리의 평균 입자 직경은 약 25 nm인 것으로 관찰되었다.
실시예 2
상기 실시예 1과 동일한 조건으로 고체 히드라진과 CuO를 혼합하여, 그 혼합물을 100℃ 오븐에 넣은 후 1 시간 후 생성물을 XRD로 확인하였다. 확인 결과 금속 구리가 약 35 nm 크기로 생성되었음을 알 수 있었다.
실시예 3
상기 실시예 1과 동일한 조건으로 고체 히드라진과 CuO를 혼합하여, 그 혼합물을 150℃ 오븐에 넣은 후 0.1 시간 후 생성물을 XRD로 확인하였다. 확인 결과 금속 구리가 약 42 nm 크기로 생성되었음을 알 수 있었다.
실시예 4
상기 실시예 1과 동일한 조건으로 고체 히드라진과 CuO를 혼합하여, 그 혼합물을 50℃ 오븐에 넣은 후 72 시간 후 생성물을 XRD로 확인하였다. 확인 결과 금속 구리가 약 19 nm 크기로 생성되었음을 알 수 있었다.
실시예 5
CuO 4.00 g (50.0 mmol)을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 금속 구리를 수득하였으며, 생성된 금속 구리를 XRD로 확인하였다. 확인 결과 금속 구리가 약 24 nm 크기로 생성되었음을 알 수 있었다.
실시예 6
CuO 1.00 g (12.5 mmol)을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 금속 구리를 수득하였으며, 생성된 금속 구리를 XRD로 확인하였다. 확인 결과 금속 구리가 약 23 nm 크기로 생성되었음을 알 수 있었다.
실시예 7
CuO (25.0 mmol) 대신에 구리(II) 아세테이트-모노하이드레이트 (Cu(OAc)2·H2O) 19.96 g (100.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 금속 구리를 수득하였으며, 생성된 금속 구리를 XRD로 확인하였다. 확인 결과 금속 구리가 약 15 nm 크기로 생성되었음을 알 수 있었다.
실시예 8
CuO (25.0 mmol) 대신에 구리(II) 클로라이드-디하이드레이트 (CuCl2·2H2O) 8.52 g (50.0 mmol) 사용하고, 오븐에 방치한 시간을 3 시간으로 제한한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 금속 구리를 수득하였으며, 생성된 금속 구리를 XRD로 확인하였다. 확인 결과 금속 구리가 약 30 nm 크기로 생성되었음이 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 9
CuO (25.0 mmol) 대신에 은 염화물 (AgCl) 7.17 g (50.0 mmol)을 사용하고, 오븐에 방치한 시간을 3시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 상기 XRD 분석 결과는 도 2에 나타내었다.
도 2는 본 실시예에 따라 제조된 은 나노입자의 XRD 패턴으로서, 밑의 수직 막대는 각각 Ag와 N2H5Cl의 이론적인 XRD 패턴을 나타낸다. 확인 결과, 반응 후 전구체인 은 염화물이 모두 금속 은(silver metal)으로 전환되었음을 알 수 있었고, 은 입자의 평균 직경이 약 10 nm인 것으로 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 10
CuO (25.0 mmol) 대신에 은 아세테이트 (AgOAc) 8.35 g (50.0 mmol)을 사용하고, 오븐에 방치한 시간을 0.1 시간, 오븐 온도를 25℃로 제한한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 금속 은을 수득하였으며, 생성된 금속 은을 XRD로 확인하였다. 확인 결과 금속 은의 평균 입자 직경이 약 8 nm 크기로 생성되었음이 관찰되었으며, 아세트산도 함께 존재함을 알 수 있었다.
실시예 11
CuO (25.0 mmol) 대신에 팔라듐(II) 염화물 (PdCl2) 8.87 g (50.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 상기 XRD 분석 결과는 도 3에 나타내었다.
도 3은 본 실시예에 따라 제조된 팔라듐 나노입자의 XRD 패턴으로서, 밑의 수직 막대는 각각 Pd와 (NH4)Cl의 이론적인 XRD 패턴을 나타낸다. 확인 결과 전구체인 PdCl2가 금속 팔라듐 (palladium metal)으로 전환되었음을 확인하였으며 생성된 금속 팔라듐의 평균 입자 직경이 5 nm 인 것으로 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 12
CuO (25.0 mmol) 대신에 팔라듐(II) 아세테이트 [Pd(OAc)2] 11.2 g (50.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과, 생성된 금속 팔라듐의 평균 입자 직경이 약 5 nm 인 것으로 관찰되었으며, 아세트산도 함께 존재함을 알 수 있었다.
실시예 13
CuO (25.0 mmol) 대신에 팔라듐(II) 산화물 (PdO) 6.12 g (50.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과, 생성된 금속 팔라듐의 평균 입자 직경이 약 5 nm 인 것으로 관찰되었다.
실시예 14
백금(II) 염화물 (PtCl2) 1.33 g (5.0 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 상기 XRD 분석 결과는 도 4에 나타내었다.
도 4 는 본 실시예에 따라 제조된 백금 나노입자의 XRD 패턴으로서, 밑의 수직 막대는 각각 Pt, (NH4)Cl, 및 (N2H5)Cl의 이론적인 XRD 패턴을 나타낸다. 분석 결과, 전구체인 PtCl2가 모두 금속 백금 (platinium metal)으로 전환되었음을 확인하였으며 생성된 백금의 평균 입자 직경이 약 8 nm 인 것으로 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 15
PtCl2 0.67 g (2.5 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과, 금속 백금의 평균 입자 직경이 약 6 nm 인 것으로 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 16
PtCl2 0.34 g (1.25 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과, 금속 백금의 평균 입자 직경이 약 4 nm 인 것으로 관찰되었으며, 염화암모늄도 함께 존재함을 알 수 있었다.
실시예 17
백금(IV) 산화물 (PtO2, Adam's catalyst) 1.135 g (5.0 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 0.5 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과, 금속 백금의 평균 입자 직경이 약 5 nm 인 것으로 관찰되었다.
실시예 18
금(III) 염화물 (AuCl3) 1.52 g (5.0 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 0.1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 상기 XRD 분석 결과는 도 5에 나타내었다.
도 5는 본 실시예에 따라 제조된 금 나노입자의 XRD 패턴으로서, 밑의 수직 막대는 각각 Au와 N2H5Cl의 이론적인 XRD 패턴을 나타낸다. 확인 결과, 금속 금 (metal gold)의 평균 입자 직경이 약 5 nm 인 것으로 관찰되었으며, 히드라진 염화물도 함께 존재함을 알 수 있다.
실시예 19
금(I) 아세테이트 (AuOAc) 1.28 g (5.0 mmol)과, 고체 히드라진 (H3N+NHCO2
-) 0.76 g (10.0 mmol)을 사용하고, 오븐에 방치한 시간을 0.1 시간으로 제한한 것을 제외하고 상기 실시예 1과 동일한 반응을 수행하였으며, 생성된 금속 입자를 XRD로 확인하였다. 확인 결과 금속 금의 평균 입자 직경이 약 5 nm 인 것으로 관찰되었으며, 아세트산도 함께 존재함을 알 수 있었다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
Claims (13)
- 하기 화학식 I 또는 I'로서 표시되는 히드라진-이산화탄소 결합 화합물을, 하기 화학식 II로서 표시되는 금속 산화물 또는 하기 화학식 III 또는 IV 로서 표시되는 금속 이온 화합물과 반응시켜 금속 나노입자를 수득하는 것을 포함하는, 금속 나노입자의 제조 방법:[화학식 I][화학식 I'][화학식 II]MaOb;[화학식 III]MaXb;[화학식 IV]Ma(OR1)b;상기 식들에서,R1은, 수소; 치환 또는 비치환된 C1-30 지방족(aliphatic) 탄화수소기, 치환 또는 비치환된 C3-30 지방족 고리기, 치환 또는 비치환된 C3-30 헤테로 지방족 고리기, 치환 또는 비치환된 C5-30 방향족(aromatic) 고리기, 및 치환 또는 비치환된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C1-30 지방족 탄화수소기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 지방족 고리기; Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C3-30 헤테로 지방족 고리기; 및, Si, O, S, Se, N, P, As, F, Cl, Br, 및 I로 이루어진 군으로부터 선택된 것이 하나 이상 포함된 C5-30 헤테로 방향족 고리기로 이루어진 군으로부터 선택된 것을 포함하고,M은 금속 원소를 포함하고,X는 할로겐 원소를 포함하며,a 및 b는 양의 정수임.
- 제 1 항에 있어서,상기 M은 구리, 은, 팔라듐, 백금, 또는 금을 포함하는 것인, 금속 나노입자의 제조 방법
- 제 1 항에 있어서,상기 R1은 C1-10 알킬기, C6-20 아릴기, 포르밀기, 또는 C1-10 아실기를 포함하는 것인, 금속 나노입자의 제조 방법.
- 제 1 항에 있어서,상기 R1은 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 이소펜틸기, sec-펜틸기, tert-펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 페닐기, 비페닐기, 트리페닐기, 벤질기, 나프틸기, 안트릴기, 페난트릴기, 포르밀기, 아세틸기, 또는 에타노일기를 포함하는 것인, 금속 나노입자의 제조 방법.
- 제 1 항에 있어서,상기 반응은 10℃ 내지 200℃의 온도에서 수행되는 것인, 금속 나노입자의 제조 방법.
- 제 1 항에 있어서,상기 반응은 용매를 사용하지 않은 무용매 상태에서 수행되는 것인, 금속 나노입자의 제조 방법.
- 제 1 항에 있어서,상기 반응은 용매의 존재 하의 슬러리 상태에서 수행되는 것인, 금속 나노입자의 제조 방법.
- 제 7 항에 있어서,상기 용매는 탄소수 1 내지 15의 알코올, 탄소수 2 내지 16의 에테르, 탄소수 5 내지 15의 지방족 탄화수소, 탄소수 6 내지 15의 방향족 탄화수소, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 금속 나노입자의 제조 방법.
- 제 7 항에 있어서,상기 용매의 사용량이 금속 나노입자 총 중량에 대하여 70 중량% 이하인, 금속 나노입자의 제조 방법.
- 제 8 항에 있어서,상기 알코올은, 메탄올, 에탄올, 프로판올, 이소프로판올, n-부탄올, 이소부탄올, sec-부탄올, tert-부탄올, n-펜탄올, 이소펜탄올, sec-펜탄올, tert-펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올, 펜타데칸올, 에틸렌글리콜, 글리세롤, 에리쓰리톨, 자일리톨, 만니톨, 폴리올, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 금속 나노입자의 제조 방법.
- 제 8 항에 있어서,상기 에테르는 디메틸에테르, 디에틸에테르, 테트라히드로푸란, 다이옥신, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 금속 나노입자의 제조 방법.
- 제 1 항 내지 제 11 항 중 어느 한 항에 따른 제조 방법에 따라 제조되는, 금속 나노입자.
- 제 12 항에 있어서,상기 금속 나노입자의 크기가 1 nm 내지 300 nm인, 금속 나노입자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/263,740 US10350685B2 (en) | 2014-02-03 | 2016-09-13 | Method for preparing metal nanoparticles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0012084 | 2014-02-03 | ||
KR1020140012084A KR101691501B1 (ko) | 2014-02-03 | 2014-02-03 | 금속 나노입자 제조 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/263,740 Continuation US10350685B2 (en) | 2014-02-03 | 2016-09-13 | Method for preparing metal nanoparticles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115875A1 true WO2015115875A1 (ko) | 2015-08-06 |
Family
ID=53757378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/001098 WO2015115875A1 (ko) | 2014-02-03 | 2015-02-03 | 금속 나노입자의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10350685B2 (ko) |
KR (1) | KR101691501B1 (ko) |
WO (1) | WO2015115875A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018063382A1 (en) * | 2016-09-30 | 2018-04-05 | Intel Corporation | Ligand-capped main group nanoparticles as high absorption extreme ultraviolet lithography resists |
WO2023083706A1 (de) * | 2021-11-10 | 2023-05-19 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Verfahren für die synthese von nanopartikeln aus mindestens einem element aus der gruppe, welche gebildet ist aus der gruppe der unedlen metalle und antimon und nanopartikel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100019372A (ko) * | 2008-08-07 | 2010-02-18 | 제록스 코포레이션 | 은 나노입자 공정 |
KR20110020966A (ko) * | 2009-08-25 | 2011-03-04 | 주식회사 동진쎄미켐 | 금속 나노입자의 제조방법, 이에 의해 제조된 금속 나노입자 및 이를 포함하는 금속 잉크 조성물 |
KR20130097981A (ko) * | 2012-02-27 | 2013-09-04 | 서강대학교산학협력단 | 고체 히드라진을 이용한 아진 및 아진 고분자 제조 방법 |
KR20130103979A (ko) * | 2012-03-12 | 2013-09-25 | 서강대학교산학협력단 | 히드라진 유도체들과 이산화탄소의 반응 생성물 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498446A (en) | 1994-05-25 | 1996-03-12 | Washington University | Method and apparatus for producing high purity and unagglomerated submicron particles |
US6203768B1 (en) | 1995-08-28 | 2001-03-20 | Advanced Nano Technologies Pty Ltd | Process for the production of ultrafine particles |
US7036228B2 (en) * | 2002-08-06 | 2006-05-02 | Jiunn-Liang Chen | Multifunctional knife device |
KR100965373B1 (ko) * | 2003-06-10 | 2010-06-22 | 삼성전자주식회사 | 감광성 금속 나노입자 및 이를 이용한 도전성 패턴형성방법 |
KR100790458B1 (ko) * | 2006-07-10 | 2008-01-02 | 삼성전기주식회사 | 구리 나노입자 및 그 제조방법 |
WO2008047572A1 (fr) * | 2006-09-28 | 2008-04-24 | Pioneer Corporation | Matériau à base d'oxyde, substrat à motifs, procédé de formation de motifs, procédé de fabrication d'une matrice de transfert pour impression, procédé de fabrication d'un support d'enregistrement, matrice de transfert pour impression et support d'enregistrement |
US20090148600A1 (en) * | 2007-12-05 | 2009-06-11 | Xerox Corporation | Metal Nanoparticles Stabilized With a Carboxylic Acid-Organoamine Complex |
WO2010099466A2 (en) * | 2009-02-26 | 2010-09-02 | The Regents Of The University Of California | A supramolecular approach for preparation of size controllable nanoparticles |
US20130052368A1 (en) * | 2010-03-19 | 2013-02-28 | Sigma-Aldrich Co. Llc | Methods for preparing thin films by atomic layer deposition using hydrazines |
-
2014
- 2014-02-03 KR KR1020140012084A patent/KR101691501B1/ko active IP Right Grant
-
2015
- 2015-02-03 WO PCT/KR2015/001098 patent/WO2015115875A1/ko active Application Filing
-
2016
- 2016-09-13 US US15/263,740 patent/US10350685B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100019372A (ko) * | 2008-08-07 | 2010-02-18 | 제록스 코포레이션 | 은 나노입자 공정 |
KR20110020966A (ko) * | 2009-08-25 | 2011-03-04 | 주식회사 동진쎄미켐 | 금속 나노입자의 제조방법, 이에 의해 제조된 금속 나노입자 및 이를 포함하는 금속 잉크 조성물 |
KR20130097981A (ko) * | 2012-02-27 | 2013-09-04 | 서강대학교산학협력단 | 고체 히드라진을 이용한 아진 및 아진 고분자 제조 방법 |
KR20130103979A (ko) * | 2012-03-12 | 2013-09-25 | 서강대학교산학협력단 | 히드라진 유도체들과 이산화탄소의 반응 생성물 |
Non-Patent Citations (1)
Title |
---|
LEE ET AL.: "Isolation and structural characterization of the elusive 1: 1 adduct of hydrazine and carbon dioxide.", CHEMICAL COMMUNICATIONS, vol. 47, no. 40, 2011, pages 11219 - 11221, XP055216976 * |
Also Published As
Publication number | Publication date |
---|---|
KR101691501B1 (ko) | 2016-12-30 |
US10350685B2 (en) | 2019-07-16 |
KR20150091634A (ko) | 2015-08-12 |
US20160375496A1 (en) | 2016-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Basavegowda et al. | Sonochemical green synthesis of yttrium oxide (Y 2 O 3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1, 3-thiazolidin-4-ones | |
EP1712556B1 (en) | Azithromycin monohydrate | |
Wang et al. | Cupric oxide nanowires on three-dimensional copper foam for application in click reaction | |
Zhang et al. | Nano CuO-catalyzed C–H functionalization of 1, 3-azoles with bromoarenes and bromoalkenes | |
CN108047107B (zh) | 二苯基二硒醚类化合物的制备方法 | |
Nasseri et al. | Nickel oxide nanoparticles: a green and recyclable catalytic system for the synthesis of diindolyloxindole derivatives in aqueous medium | |
Borah et al. | Copper oxide nanoparticles as a mild and efficient catalyst for N-arylation of imidazole and aniline with boronic acids at room temperature | |
WO2015115875A1 (ko) | 금속 나노입자의 제조 방법 | |
Khalili et al. | Copper aluminate spinel in click chemistry: An efficient heterogeneous nanocatalyst for the highly regioselective synthesis of triazoles in water | |
CN113957461A (zh) | 一种1,1′-联萘类化合物的电化学合成方法 | |
WO2010085018A1 (en) | Method of regenerating heteropolyacid catalyst used in the direct process of preparing dichloropropanol by reacting glycerol and chlorinating agent, method of preparing dichloropropanol comprising the method of regenerating heteropolyacid catalyst and method of preparing epichlorohydrin comprising the method of preparing dichloropropanol | |
KR100551926B1 (ko) | 시로스타졸의 제조 방법 | |
Huang et al. | A Facile Reduction Procedure for Nitroarenes with Cp2TiCl2/Sm System | |
WO2016035945A1 (ko) | 코어-쉘 나노 입자, 그 제조방법 및 이를 이용한 과산화수소 생산방법 | |
Zhang et al. | Solvent dependent preparation of cui nanocrystals and the catalysis in sonogashira coupling reaction | |
WO2016149608A1 (en) | Methods for the chemical synthesis of pyrrole-linked bivalent compounds, and compositions thereof | |
NEJADSHAFIEE et al. | Nanocomposite copper metal as an efficient heterogeneous catalyst in click synthesis of 1, 2, 3-triazoles in aqueous media | |
Soleiman-Beigi et al. | Synthesis of Symmetrical Triaryl Amines by Nano-CuO Catalyzed Buchwald-Hartwig Cross-coupling Reaction: NH2-Thiadiazole as a New N-source | |
Hakimelahi et al. | The synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones using zinc oxide nanotubes modified by sio2 as a catalyst with recyclable effect | |
Chang et al. | Mild Method to Synthesize TATB by Amination of 1, 3, 5-Trialkoxy-2, 4, 6-Trinitrobenzene under Phase Transfer Catalysis Conditions | |
Kanhe et al. | Micron-particulate crystalline hexagonal aluminium nitride: a novel, efficient and versatile heterogeneous catalyst for the synthesis of some heterocyclic compounds | |
US5041654A (en) | Preparation of monosubstituted dithiooxamide compounds | |
JP3884063B2 (ja) | セフカペンピボキシルのメタンスルホン酸塩 | |
CN114632552B (zh) | Buchwald预催化剂及其制备方法与应用 | |
WO2022158713A1 (ko) | 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15743348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15743348 Country of ref document: EP Kind code of ref document: A1 |