WO2015115815A1 - 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 - Google Patents

표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015115815A1
WO2015115815A1 PCT/KR2015/000936 KR2015000936W WO2015115815A1 WO 2015115815 A1 WO2015115815 A1 WO 2015115815A1 KR 2015000936 W KR2015000936 W KR 2015000936W WO 2015115815 A1 WO2015115815 A1 WO 2015115815A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
coated
fibrous carbon
Prior art date
Application number
PCT/KR2015/000936
Other languages
English (en)
French (fr)
Inventor
장욱
이상영
조승범
박장훈
김주명
Original Assignee
주식회사 엘지화학
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 주식회사 엘지화학
Priority to EP15742875.6A priority Critical patent/EP3101717B1/en
Priority to CN201580006270.6A priority patent/CN106165163B/zh
Priority to CN201910113724.XA priority patent/CN110010848B/zh
Priority to US15/039,730 priority patent/US20170040647A1/en
Priority claimed from KR1020150013392A external-priority patent/KR101637983B1/ko
Publication of WO2015115815A1 publication Critical patent/WO2015115815A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a surface-coated positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the present invention relates to a positive electrode active material surface-coated with a nano-film including polyimide (PI) and a fibrous carbon material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • PI polyimide
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged, and they are developing remarkably, and the demand for lithium secondary battery as a power source to drive these portable electronic information communication devices increases day by day. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged.
  • these cathode active material surfaces can be coated with oxides such as Al 2 O 3 , ZrO 2 , and AlPO 4 on the surface of the cathode active material. It is also established that the coating layer improves the safety characteristics of the positive electrode active material.
  • the oxide coating layer is finely dispersed in the form of nano-sized particles rather than entirely covering the surface of the positive electrode active material.
  • the surface modification effect of the positive electrode active material by the oxide coating layer was limited to be limited.
  • the oxide coating layer is a kind of ion insulating layer that is difficult to move lithium ions, and may cause a decrease in ion conductivity.
  • the present invention has been made to solve the above problems.
  • the technical problem to be solved by the present invention is to coat the entire surface of the positive electrode active material with a nano-film capable of lithium ion migration, to prevent side reactions between the positive electrode active material and the electrolyte, and excellent life characteristics not only at normal voltage, but also at high temperature and high voltage conditions It is to provide a positive electrode active material having a high conductivity.
  • this invention is positive electrode active material; And a nano coating coated on the surface of the positive electrode active material, wherein the nano coating provides a surface coated positive electrode active material comprising polyimide (PI) and a fibrous carbon material.
  • PI polyimide
  • the present invention comprises the steps of preparing a mixed solution in which the fibrous carbon material is mixed and dispersed in an organic solvent in which the polyamic acid is diluted; Dispersing a cathode active material in the mixed solution to form a film including a polyamic acid and a fibrous carbon material on a surface of the cathode active material; And it provides a method for producing a surface-coated positive electrode active material comprising the step of imidizing the positive electrode active material including the coating.
  • the present invention provides a positive electrode including the surface-coated positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the surface of the positive electrode active material is coated with a nano-film containing a polyimide and a fibrous carbon material
  • a nano-film containing a polyimide and a fibrous carbon material by preventing direct contact of the positive electrode active material with the electrolyte, side reaction between the positive electrode active material and the electrolyte is prevented This can be suppressed, which can significantly improve the life characteristics of the secondary battery. In particular, it is possible to improve the life characteristics and conductivity at high temperature and high voltage conditions.
  • Example 1 is an electron micrograph (FE-SEM) photograph of the surface of the positive electrode active material surface-coated with a nano-film comprising a polyimide and a fibrous carbon material prepared in Example 1 of the present invention.
  • FE-SEM electron micrograph
  • FIG. 2 is an electron microscope (FE-SEM) photograph of the surface of the uncoated positive electrode active material prepared in Comparative Example 1.
  • FIG. 2 is an electron microscope (FE-SEM) photograph of the surface of the uncoated positive electrode active material prepared in Comparative Example 1.
  • Surface-coated positive electrode active material is a positive electrode active material; And a nano coating coated on the surface of the positive electrode active material, wherein the nano coating includes a polyimide (PI) and a fibrous carbon material.
  • PI polyimide
  • the nanofilm included in the surface-coated positive electrode active material according to an embodiment of the present invention is a polyimide and a fibrous carbon material capable of moving lithium ions, not an ion insulating layer, such as an inorganic oxide coating layer which has been generally surface coated. It may include.
  • the nano-film By coating the nano-film on the surface of the positive electrode active material, it is possible to improve the life characteristics of the secondary battery by preventing side reactions between the positive electrode active material and the electrolyte.
  • the nano-film is characterized in that the entire surface of the positive electrode active material is coated in a thin film form.
  • the surface-coated positive electrode active material may further improve not only general voltage conditions but also life characteristics and conductivity, particularly under high temperature and high voltage conditions.
  • the polyimide included in the nano-film may serve as a protective film to prevent the positive electrode active material from directly contacting the electrolyte.
  • the fibrous carbon material included with the polyimide in the nano-film is a high crystalline carbon-based, very excellent electrical conductivity and conductivity of lithium ions to provide a path that can react with lithium ions in the electrode Therefore, the cycle characteristics can be greatly improved by keeping the current and voltage distribution in the electrode uniform during the charge and discharge cycle.
  • carbon nanotubes have very good strength and high resistance to breakage, it is possible to prevent the repetition of charging and discharging or deformation of the current collector due to external force, and to collect the battery in abnormal battery environments such as high temperature and overcharge. Since oxidation of the whole surface can be prevented, battery safety can be improved significantly.
  • the polyimide has excellent ion conductivity and shows excellent bonding strength with the fibrous carbon material having high electrical conductivity, thereby preventing the direct contact between the active material and the electrolyte together with the fibrous carbon material, while the lithium ion conductivity and / or It is possible to improve the electrical conductivity and to form a solid nanofilm.
  • the cathode active material in which the nanofilm is formed may be complementary to electrical conductivity and ion conductivity by simultaneously including polyimide having excellent ion conductivity and fibrous carbon material having excellent electrical conductivity in the nanofilm.
  • the fibrous carbon material may be carbon nanotubes (CNT), carbon nanofibers, or mixtures thereof. That is, the fibrous carbon material may be used as a concept including a form having a diameter in the nanometer scale range and having a small aspect ratio. It may also include both straight or shaped that may be curved or bent over, for example, the entire length or a portion thereof.
  • CNT carbon nanotubes
  • carbon nanofibers or mixtures thereof. That is, the fibrous carbon material may be used as a concept including a form having a diameter in the nanometer scale range and having a small aspect ratio. It may also include both straight or shaped that may be curved or bent over, for example, the entire length or a portion thereof.
  • the average diameter of the fibrous carbon material is 5 nm to 100 nm, preferably 20 nm to 80 nm, more preferably 10 to 50 nm.
  • the average long axis length of the fibrous carbon material may be 0.1 ⁇ m to 5 ⁇ m, preferably 0.5 ⁇ m to 3 ⁇ m.
  • the fibrous carbon material may have an aspect ratio of 1 to 1000, preferably 1 to 300 or 6 to 300, more preferably 1 to 150, 6 to 150, or 10 to 150.
  • the aspect ratio of the fibrous carbon material is less than 1, there is a risk of detachment due to poor adhesion on the active material to form the nanofilm together with the polyimide.
  • the aspect ratio exceeds 1000, the fibrous form at the time of forming the nanofilm Since the carbon material is not well dispersed, it may be difficult to uniformly distribute the fibrous carbon material throughout the coating.
  • the content of the polyimide and the fibrous carbon material included in the nano-film may be included in a 1: 1 to 10 weight ratio.
  • the content of the polyimide and the fibrous carbon material is less than 1: 1, it may be difficult to obtain sufficient electrical conductivity, and when it exceeds 1:10, there may be a problem that the fibrous carbon material is detached from the nano-film.
  • the content of the fibrous carbon material may be 0.05% to 5% by weight, preferably 0.2% to 2% by weight based on 100% by weight of the total surface-coated positive electrode active material.
  • the thickness of the nano-film may be 1 nm to 200 nm, preferably 5 nm to 50 nm.
  • the thickness of the nanofilm is less than 1 nm, the side reaction effect of the positive electrode active material and the electrolyte due to the nanofilm and the synergistic effect of the electrical conductivity may be insignificant.
  • the thickness of the nano-film exceeds 200 nm, the thickness of the nano-film is excessively increased, the mobility of the lithium ions is hindered, the resistance may increase.
  • the cathode active material may be applied to a general voltage or a high voltage, and may be used without limitation as long as it is a compound capable of reversibly intercalating / deintercalating lithium.
  • the surface-coated positive electrode active material according to an embodiment of the present invention is a spinel lithium transition metal oxide having a hexagonal layered rock salt structure, olivine structure, cubic structure having a high capacity characteristics, in addition to V 2 O 5 , TiS , MoS may include any one selected from the group consisting of two or more of these complex oxides.
  • the cathode active material may include any one selected from the group consisting of oxides of Formulas 1 to 3, and V 2 O 5 , TiS, and MoS, or a mixture of two or more thereof:
  • M is at least one element selected from the group consisting of Ni, Co, Fe, P, S, Zr, Ti and Al, 0 ⁇ x ⁇ 2;
  • M is one or more elements selected from the group consisting of Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y
  • X is F , S and N, at least one element selected from the group consisting of -0.5 ⁇ a ⁇ + 0.5, 0 ⁇ x ⁇ 0.5, and 0 ⁇ b ⁇ 0.1.
  • the present invention can provide a method for producing the surface-coated positive electrode active material.
  • Method for producing a positive electrode active material comprises the steps of preparing a mixed solution in which the fibrous carbon material is mixed and dispersed in an organic solvent in which polyamic acid is diluted (step i); Dispersing a positive electrode active material in the mixed solution to form a film including a polyamic acid and a fibrous carbon material on the surface of the positive electrode active material (step ii); And imidating the positive electrode active material including the film (step iii).
  • the step i) is a step of preparing a mixed solution in which the fibrous carbon material is mixed and dispersed in an organic solvent in which polyamic acid is diluted. It may include.
  • the polyamic acid may be prepared using aromatic anhydrides and diamines by conventional methods used in the art.
  • the polyamic acid may be prepared by reacting aromatic anhydride and diamine in the same equivalent weight.
  • aromatic anhydride for example, phthalic anhydride, pyromellitic dihydride, 3,3'4,4'-biphenyltetracarboxylic dionhydride, 4'4-oxydiphthalic anhydride, 3, 3'4,4'-benzophenonetetracarboxylic dianhydride, trimellitic ethylene glycol, 4,4 '-(4'4-isopropylbiphenoxy) biphthalic anhydride and trimellitic ionic It may include any one selected from the group consisting of hydrides, or a mixture of two or more thereof.
  • diamine for example, 4,4'-oxydianiline (4,4'-oxydianiline), p-phenyl diamine, 2,2-bis (4- (4-aminophenoxy) -phenyl) Propane, p-methylenedianiline, propyltetramethyldisiloxane, polyaromatic amine, 4,4'-diaminodiphenyl sulfone, 2,2'-bis (trifluoromethyl) -4,4'-diamino It may include any one selected from the group consisting of biphenyl and 3,5-diamino-1,2,4-triazole, or a mixture of two or more thereof.
  • the polyamic acid may comprise a four-component polyamic acid, the four-component polyamic acid is pyromellitic dianhydride, biphenyl dianhydride, biphenyl dianhydride, It is preferably a polyamic acid comprising phenylenediamine and oxydianiline.
  • the polyamic acid may be diluted in an amount of 0.1 parts by weight to 1 part by weight with respect to 100 parts by weight of an organic solvent.
  • the organic solvent is not particularly limited as long as it is a solvent capable of dissolving the polyamic acid, but is preferably a group consisting of cyclohexane, carbon tetrachloride, chloroform, methylene chloride, dimethylformamide, dimethylacetamide and N-methylpyrrolidone It may include any one selected from or a mixture of two or more thereof.
  • the fibrous carbon material may have an aspect ratio of 1 to 1000, preferably 1 to 300, or 6 to 300, more preferably 1 to 150, 6 to 150 or 10 to 150.
  • the fibrous carbon material having such an aspect ratio may be one having a relatively small aspect ratio as compared with that generally used in the art.
  • the fibrous carbon material when the fibrous carbon material is dispersed in an organic solvent in which polyamic acid is diluted, the fibrous carbon material has a strong tendency to agglomerate with each other naturally, and thus there is a problem in that the fibrous carbon material is not dispersed well.
  • the surface treatment may be applied using a plasma method or a method of bonding functional groups such as carboxyl groups, hydroxy groups, and amine groups to the surface of the fibrous carbon material, and when such surface treatment is performed, cohesive tendency of the fibrous carbon material.
  • a plasma method or a method of bonding functional groups such as carboxyl groups, hydroxy groups, and amine groups to the surface of the fibrous carbon material, and when such surface treatment is performed, cohesive tendency of the fibrous carbon material.
  • the dispersion may be further included.
  • the dispersing agent is not particularly limited as long as the fibrous carbon material and the organic solvent in which the polyamic acid is diluted are mixed with each other and may serve to help the fiber-like carbon material to be uniformly dispersed in the organic solvent.
  • block polymers such as styrene-butadiene-styrene block polymer or styrene-butadiene-ethylene-styrene block polymer may be applied as a dispersant.
  • the mixed dispersion of the fibrous carbon material and the organic solvent in which the polyamic acid is diluted may be performed using a mixer that can be driven at a rotational speed of 10,000 rpm or more at normal temperature (about 15 to 30 ° C.).
  • the temperature range and the rotational speed range may be a condition in which the fibrous carbon material may be smoothly dispersed in the organic solvent in which the polyamic acid is diluted. If the temperature is excessively high, the polyimide reaction converts the polyamic acid to polyimide. There is a risk of this happening early.
  • the fibrous carbon material is 0.05 part by weight to 5 parts by weight, preferably based on 100 parts by weight of the positive electrode active material used in step ii). Can be used in an amount of 0.2 to 2 parts by weight.
  • the step ii) is a polyamic acid and a fibrous carbon material on the surface of the positive electrode active material by dispersing the positive electrode active material in the mixed solution prepared in step i) It may include the step of forming a film comprising a.
  • Dispersion of the positive electrode active material is preferably dispersed for 1 hour or more using a high speed stirrer after the positive electrode active material is added to the mixed solution for uniform dispersion. After confirming uniform dispersion of the positive electrode active material, when the solvent is removed by heating and concentrating, it is possible to obtain a positive electrode active material coated on a surface containing a polyamic acid and a fibrous carbon material.
  • the step iii) may include a step of imidizing the positive electrode active material including the film obtained in step ii).
  • the positive electrode active material including the film obtained in step ii) is heated to a rate of 3 ° C./min at intervals of 50 ° C. to 100 ° C. to about 300 ° C. to 400 ° C., and is in a range of 300 ° C. to 400 ° C. By holding for 10 to 120 minutes.
  • the temperature is raised at intervals of 50 to 100 ° C., for example, it may be maintained for 10 minutes to 120 minutes, and then heated again.
  • the positive electrode active material including the coating is heated at a rate of 3 ° C./minute at 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively, at 60 ° C. for 30 minutes, at 120 ° C. for 30 minutes,
  • the imidization reaction may be advanced by maintaining at 200 ° C. for 60 minutes, at 300 ° C. for 60 minutes, and at 400 ° C. for 10 minutes.
  • the surface of the positive electrode active material obtained in step ii) may form a nanofilm including polyimide and a fibrous carbon material on the surface of the positive electrode active material by step iii).
  • a positive electrode active material a positive electrode active material; And a surface-coated positive electrode active material including a nano-film including a polyimide and a fibrous carbon material on the surface of the positive electrode active material to suppress the reaction of the positive electrode active material with the electrolyte directly, thereby improving life characteristics in both the general voltage and the high leaf region. It is possible to improve, and in particular, the effect of improving the life characteristics in high temperature and high voltage conditions can be greater.
  • general voltage refers to the case where the charging voltage of the lithium secondary battery is in the range of 3.0V to less than 4.2V
  • high voltage is the region of the charge voltage is 4.2V to 5.0V range It may mean a case
  • high temperature may mean a range of 45 °C to 65 °C.
  • the present invention provides a positive electrode including the surface-coated positive electrode active material.
  • the positive electrode can be prepared by conventional methods known in the art. For example, a slurry is prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant, if necessary, on the surface-coated positive electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the positive electrode. Can be prepared.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the positive electrode active material is a metal that can be easily adhered.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Various kinds of binder polymers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or various copolymers can be used. Can be.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the present invention provides a secondary battery including a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder and the conductive agent used in the negative electrode can be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • Step i) preparing a mixed solution in which the polyamic acid and the CNT are dispersed
  • CNT carbon nanotubes
  • Step ii) forming a film on the surface of the positive electrode active material
  • step i) 20 g of LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles were added to the mixed solution obtained in step i) as a positive electrode active material, followed by stirring using a high speed stirrer for 1 hour.
  • the positive electrode active material was coated on the surface of the film containing polyamic acid and CNT by evaporating the solvent by raising the temperature to the boiling point of the solvent while continuing stirring.
  • the cathode active material coated on the surface containing the surface polyamic acid and the CNT obtained in step ii) was heated to 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C. at a rate of 3 ° C./min, respectively, and 60 ° C. 30 minutes at 120 ° C, 60 minutes at 200 ° C, 60 minutes at 300 ° C, and 10 minutes at 400 ° C to proceed with the imidization reaction.
  • a surface-coated LiNi0.6Mn0.2Co0.2O2 positive electrode active material including a nano-film including polyimide and CNT was prepared. At this time, the weight ratio of polyimide and CNT in the nano-film was 1: 1.
  • step i) of Preparation Example 1 except that the weight ratio of polyimide and CNT was 1: 2 in the final nanofilm by controlling the weight ratio of polyamic acid and CNT, A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • step i) of Preparation Example 1 except that the weight ratio of polyamic acid and CNT was adjusted to be 1: 5 by controlling the weight ratio of polyamic acid and CNT, A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • step i) of Preparation Example 1 except that the weight ratio of polyimide and CNT was 1: 7 in the final nanofilm by adjusting the weight ratio of polyamic acid and CNT, A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • step i) of Preparation Example 1 except that the weight ratio of polyamic acid and CNT was adjusted to 1:10 by the weight ratio of polyamic acid and CNT, the polyimide was prepared in the same manner as in Preparation Example 1 except that A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode active material was prepared by the same method as in Example 1 to the surface-coated with a polyimide.
  • LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode active material was prepared by the same method as Preparation Example 1, except that the nanofilm including polyimide and ketjen black was formed using Ketjenblack (KB) instead of CNT. It was.
  • step i) of Preparation Example 1 except that the weight ratio of polyimide and CNT was 1: 0.5 in the final nanofilm by adjusting the weight ratio of polyamic acid and CNT, A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • step i) of Preparation Example 1 except that the weight ratio of polyamic acid and CNT was adjusted to be 1:12 by controlling the weight ratio of polyamic acid and CNT, A surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 positive electrode active material including a nanofilm including mid and CNT was prepared.
  • the positive electrode active material carbon black as a conductive agent, polyvinylidene fluoride (PVdF) as a binder is mixed in a weight ratio of 95: 3: 2, and added to a N-methyl-2-pyrrolidone (NMP) solvent.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried at 130 ° C. for 2 hours to prepare a positive electrode, followed by roll press to prepare a positive electrode. It was.
  • Lithium metal foil was used as the negative electrode.
  • LiPF 6 non-aqueous electrolyte was prepared by adding LiPF 6 to a non-aqueous electrolyte solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 2 as an electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a nonaqueous electrolyte was injected to prepare a lithium secondary battery in the form of a coin cell.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active materials of Preparation Examples 2 to 5 were used, respectively.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active materials of Comparative Preparation Examples 1 to 6 were used, respectively.
  • Figure 1 is a result of observing the surface of the surface-coated LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles comprising a nano-film comprising a polyimide and CNT prepared in Preparation Example 1 of the present invention, the coated On the surface of LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles, nanofilms with a thickness of several nanometers in which polyimide and CNT are well dispersed are formed.
  • Figure 2 Comparative Production Example 1 of LiNi 0.6 Mn 0.2 Co 0.2 O as the second particle Fine uncoated surface LiNi and 0.6 Mn 0.2 Co 0.2 O 2 particles
  • Figure 3 is a surface coated with the polyimide prepared in Comparative Preparation Example 2 As the LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles, no CNTs were observed.
  • Example 1 The lithium secondary batteries (4.3 mAh battery capacity) of Example 1 and Comparative Examples 1 to 4 were charged and discharged at 0.5C in a voltage section of 3 to 4.4V at 55 ° C.
  • C-rate is the ratio of the capacity when the battery charged at 0.5C charged at 0.1C and the capacity when discharged at 2C as shown in Equation 1 below:
  • the lithium secondary battery of Example 1 was similar to the initial charge and discharge capacity compared to the lithium secondary batteries of Comparative Examples 1 to 4, but the rate-rate characteristics (C-rate) and the 50th capacity retention rate It can be seen that it is remarkably excellent.
  • the lithium secondary battery of Example 1 showed a difference of about 2 to 17% compared to the lithium secondary batteries of Comparative Examples 1 to 4.
  • the lithium secondary battery of Example 1 using the positive electrode active material in which the nano-film including CNTs and polyimide was formed has a rate rate characteristic of up to 3% and initial efficiency as compared with Comparative Examples 1 to 4. The difference was about 1%.
  • the performance of the lithium secondary battery is improved compared to not including any one of the two materials. Overall improvement could be seen.
  • the lithium secondary batteries of Examples 1 to 5 the initial charge and discharge capacity was similar compared to the lithium secondary batteries of Comparative Examples 5 and 6, but the rate-rate characteristics (C-rate) and the 50th capacity It can be seen that the retention rate is remarkably excellent.
  • the lithium secondary batteries of Examples 1 to 5 in which the ratio of the polyimide and the fibrous carbon material are properly adjusted the lithium secondary batteries of Comparative Examples 5 and 6 in which the ratio adjustment is not appropriate.
  • the difference was about 2 to 13% compared to the battery.
  • lithium secondary batteries of Examples 1 to 5 showed a maximum rate difference of about 3% compared to Comparative Examples 5 and 6.

Abstract

본 발명은, 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 나노피막을 포함하며, 상기 나노피막은 폴리이미드(PI) 및 섬유형 탄소재를 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질 및 이의 제조방법을 제공한다. 본 발명의 일 실시예에 따르면, 양극 활물질을 폴리이미드와 섬유형 탄소재를 포함하는 나노피막으로 표면 코팅할 경우, 양극 활물질의 전해액과의 직접적인 접촉을 방지함으로써, 양극 활물질과 전해액과의 부반응을 억제시킬 수 있고, 이로 인해 이차전지의 수명 특성을 현저히 개선시킬 수 있다. 특히, 고온 및 고전압 조건에서의 수명 특성 및 도전성을 향상시킬 수 있다.

Description

표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
본 발명은 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다. 보다 구체적으로, 폴리이미드(PI) 및 섬유형 탄소재를 포함하는 나노피막으로 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다.
이러한 수명 특성 저하는 양극과 전해액과의 부반응에 기인하며, 이러한 현상은 고전압 및 고온의 상태에서 더욱 심각해질 수 있다.
따라서, 고전압용 이차전지의 개발이 필요하며, 이를 위해서는 양극 활물질과 전해액과의 부반응 또는 전극 계면 반응을 제어하는 기술이 매우 중요하다.
이러한 문제점을 해결하기 위해 양극 활물질의 표면에 Mg, Al, Co, K, Na, 또는 Ca 등을 포함하는 금속산화물을 코팅하는 기술이 개발되었다.
특히, 이들 양극 활물질 표면을 Al2O3, ZrO2, 및 AlPO4 등의 산화물을 양극 활물질 표면에 코팅시킬 수 있다는 것은 일반적으로 알려져 있다. 상기 코팅층이 양극 활물질의 안전성 특성을 향상시킨다는 것 역시 정설이다.
그러나, 상기 산화물 코팅층을 이용한 표면 코팅의 경우, 상기 산화물 코팅층이 양극 활물질 표면을 전체적으로 덮고 있기 보다는 나노 크기의 입자 형태로 잘게 분산되어 있는 형태를 취하고 있다.
이로 인해, 산화물 코팅층에 의한 양극 활물질의 표면 개질 효과가 제한적일 수 밖에 없는 한계를 보였다. 또한, 상기 산화물 코팅층은 리튬 이온 이동이 어려운 일종의 이온 절연층으로서, 이온 전도도의 저하를 초래할 수 있다.
따라서, 본 발명은 위와 같은 문제들을 해결하기 위해 안출된 것이다.
본 발명의 해결하고자 하는 기술적 과제는 리튬 이온 이동이 가능한 나노피막으로 양극 활물질 표면 전체를 코팅함으로써, 양극 활물질과 전해액과의 부반응을 방지함으로써, 일반 전압뿐만 아니라, 특히 고온 및 고전압 조건에서 우수한 수명 특성을 가지며, 도전성이 우수한 양극 활물질을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은, 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 나노피막을 포함하며, 상기 나노피막은 폴리이미드(PI) 및 섬유형 탄소재를 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질을 제공한다.
또한, 본 발명은, 폴리아믹산이 희석된 유기 용매에 섬유형 탄소재를 혼합 분산시킨 혼합 용액을 제조하는 단계; 상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 섬유형 탄소재를 포함하는 피막을 형성하는 단계; 및 상기 피막을 포함하는 양극 활물질을 이미드화 반응시키는 단계를 포함하는 표면 코팅된 양극 활물질의 제조방법을 제공한다.
아울러, 본 발명은 상기 표면 코팅된 양극 활물질을 포함하는 양극을 제공한다.
나아가, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따르면, 양극 활물질을 폴리이미드와 섬유형 탄소재를 포함하는 나노피막으로 표면 코팅할 경우, 양극 활물질의 전해액과의 직접적인 접촉을 방지함으로써, 양극 활물질과 전해액과의 부반응을 억제시킬 수 있고, 이로 인해 이차전지의 수명 특성을 현저히 개선시킬 수 있다. 특히, 고온 및 고전압 조건에서의 수명 특성 및 도전성을 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 실시예 1에서 제조된 폴리이미드와 섬유형 탄소재를 포함하는 나노피막으로 표면 코팅된 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.
도 2는 비교예 1에서 제조된 표면 코팅되지 않은 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.
도 3은 비교예 2에서 제조된 폴리이미드로 표면 코팅된 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 나노피막을 포함하며, 상기 나노피막은 폴리이미드(PI) 및 섬유형 탄소재를 포함한다.
본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질에 포함된 나노피막은, 기존의 일반적으로 표면 코팅되었던 무기 산화물 코팅층과 같이 이온 절연층이 아닌, 리튬 이온 이동이 가능한 폴리이미드와 섬유형 탄소재를 포함할 수 있다.
상기 나노피막이 양극 활물질 표면에 코팅됨으로써, 양극 활물질과 전해액과의 부반응을 방지함으로써 이차 전지의 수명 특성을 향상시킬 수 있다. 특히, 상기 나노피막은 박막 형태로 양극 활물질 표면 전체를 덮어 코팅됨을 특징으로 한다. 이로 인해, 상기 표면 코팅된 양극 활물질은 일반전압 조건뿐만 아니라, 특히, 고온 및 고전압 조건에서의 수명 특성 및 도전성을 더욱 향상시킬 수 있다.
구체적으로 살펴보면, 상기 나노피막에 포함되는 폴리이미드는 양극 활물질이 전해액과 직접 접촉하는 것을 방지하는 보호막 역할을 할 수 있다.
또한, 상기 나노피막에 폴리이미드와 함께 포함되는 섬유형 탄소재는 고결정질 탄소계이고, 전기 전도도 및 리튬 이온의 전도성이 매우 우수하여 전극 내의 리튬 이온과 반응할 수 있는 경로(path)를 제공하는 역할을 할 수 있으므로 충방전 사이클 동안 전극 내의 전류 및 전압 분포를 균일하게 유지시켜 사이클 특성을 크게 향상시킬 수 있다. 특히, 탄소나노튜브는 매우 우수한 강도를 가지고, 파괴에 대한 높은 저항성을 가지므로, 충방전의 반복이나 외력에 의한 집전체의 변형을 방지할 수 있고, 고온, 과충전 등의 비정상적인 전지 환경에서의 집전체 표면의 산화를 방지할 수 있으므로, 전지 안전성을 크게 향상시킬 수 있다.
나아가, 상기 폴리이미드는 이온 전도성이 우수하여 전기 전도성이 높은 섬유형 탄소재와 우수한 결합력을 나타내고, 그에 따라 섬유형 탄소재와 더불어 활물질이 전해액과 직접 접촉하는 것은 방지하면서도, 리튬 이온 전도성 및/또는 전기 전도성을 향상시킬 수 있으며, 견고한 나노피막을 형성할 수 있다. 이와 같이, 상기 나노피막이 형성된 양극 활물질은, 상기 나노피막에 이온 전도성이 우수한 폴리이미드와 전기 전도성이 우수한 섬유형 탄소재를 동시에 포함시켜 전기 전도성 및 이온 전도성의 상호 보완이 가능할 수 있다.
상기 섬유형 탄소재는 탄소 나노튜브(CNT), 탄소 나노섬유, 또는 이들의 혼합물일 수 있다. 즉, 상기 섬유형 탄소재는 직경(diameter)이 나노미터 스케일 범위에 속하며 작은 종횡비(aspect ratio)를 가지는 형태를 포함하는 개념으로 사용될 수 있다. 또한, 직선형 또는 예컨대, 전체 길이 또는 그 일부분에 걸쳐 만곡 또는 굴곡될 수 있는 형태 모두를 포함할 수 있다.
상기 섬유형 탄소재의 평균 직경은 5 nm 내지 100 nm이고, 바람직하게는 20 nm 내지 80 nm이며, 더 바람직하게는 10 내지 50 nm일 수 있다. 또한, 상기 섬유형 탄소재의 평균 장축 길이는 0.1 ㎛ 내지 5 ㎛, 바람직하게는 0.5 ㎛ 내지 3 ㎛ 인 것일 수 있다.
또한, 상기 섬유형 탄소재는 종횡비가 1 내지 1000, 바람직하게 1 내지 300 또는 6 내지 300, 더 바람직하게 1 내지 150, 6 내지 150, 또는 10 내지 150 일 수 있다. 상기 섬유형 탄소재의 종횡비가 1 미만인 경우, 폴리이미드와 함께 나노피막을 형성하는 데에 활물질 상에 접착이 잘 되지 않아 탈리될 우려가 있고, 종횡비가 1000을 초과하면, 나노피막 형성시 섬유형 탄소재가 분산이 잘 되지 않아 피막 전체에 섬유형 탄소재를 균일하게 분포시키기가 어려울 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 나노피막에 포함되는 상기 폴리이미드와 섬유형 탄소재의 함량은 1:1 내지 10 중량비로 포함될 수 있다. 상기 폴리이미드와 섬유형 탄소재의 함량이 1:1 미만인 경우, 충분한 전기 전도도를 얻기 어려울 수 있으며, 1:10을 초과하는 경우, 섬유형 탄소재가 나노피막으로부터 탈리되는 문제가 있을 수 있다.
또한, 상기 섬유형 탄소재의 함량은 표면 코팅된 양극 활물질 전체 100 중량%에 대해 0.05 중량% 내지 5 중량%, 바람직하게는 0.2 중량% 내지 2 중량%일 수 있다.
본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질에 있어서, 상기 나노피막의 두께는 1 nm 내지 200 nm, 바람직하게는 5 nm 내지 50 nm 일 수 있다. 상기 나노피막의 두께가 1 nm 미만인 경우 상기 나노피막으로 인한 양극 활물질과 전해액과의 부반응 효과 및 전기 전도도의 상승 효과가 미미할 수 있다. 또한, 상기 나노피막의 두께가 200 nm를 초과하는 경우 나노피막의 두께가 지나치게 증가하여 리튬 이온의 이동성이 장애가 되어 저항이 증가할 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 일반전압 또는 고전압에 적용할 수 있고, 리튬을 가역적으로 인터칼레이션/디인터칼레이션 할 수 있는 화합물이면 제한되지 않고 사용될 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질은 고용량 특성을 갖는 육방정계 층상 암염 구조, 올리빈 구조, 큐빅구조를 갖는 스피넬의 리튬 전이금속 산화물, 그 외에 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 복합 산화물을 포함할 수 있다.
더욱 구체적으로, 상기 양극 활물질은 하기 화학식 1 내지 화학식 3의 산화물, 및 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다:
<화학식 1>
Li1+x[NiaCobMnc]O2
상기 화학식 1에서, -0.5 ≤ x ≤ 0.6, 0 ≤ a, b, c ≤ 1, x+a+b+c=1 이고;
<화학식 2>
LiMn2-xMxO4
상기 화학식 2에서, M은 Ni, Co, Fe, P, S, Zr, Ti 및 Al로 이루어진 군에서 선택되는 하나 이상의 원소이며, 0 ≤ x ≤ 2 이고;
<화학식 3>
Li1+aFe1-xMx(PO4-b)Xb
상기 화학식 3에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 하나 이상의 원소이고, X는 F, S 및 N로 이루어진 군에서 선택되는 하나 이상의 원소이며, -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, 0 ≤ b ≤ 0.1 이다.
더욱 구체적으로, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li[NiaCobMnc]O2 (0 < a, b, c ≤ 1, a+b+c=1이고) 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
한편, 본 발명은 상기 표면 코팅된 양극 활물질의 제조방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은, 폴리아믹산이 희석된 유기 용매에 섬유형 탄소재를 혼합 분산시킨 혼합 용액을 제조하는 단계(단계 i); 상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 섬유형 탄소재를 포함하는 피막을 형성하는 단계(단계 ii); 및 상기 피막을 포함하는 양극 활물질을 이미드화 반응시키는 단계(단계 iii)를 포함할 수 있다.
구체적으로 살펴보면, 본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질의 제조방법에 있어서, 상기 단계 i)은 폴리아믹산이 희석된 유기 용매에 섬유형 탄소재를 혼합 분산시킨 혼합 용액을 제조하는 단계를 포함할 수 있다.
상기 폴리아믹산은 당 분야에서 사용되는 통상적인 방법으로 방향족 무수물과 다이아민을 이용하여 제조될 수 있다.
더욱 구체적으로, 상기 폴리아믹산은 방향족 무수물과 다이아민을 동일 당량으로 반응시켜 제조될 수 있다.
방향족 무수물로서는 예를 들어 프탈릭 언하이드라이드, 피로멜리틱 디언하이드리드, 3,3'4,4'-바이페닐테트라카복실릭 디언하이드라이드, 4'4-옥시디프탈릭 언하이드라이드, 3,3'4,4'-벤조페논테트라카르복실릭 디언하이드라이드, 트리멜리틱 에틸렌 글리콜, 4,4'-(4'4-이소프로필바이페녹시)바이프탈릭 언하이드라이드 및 트리멜리틱 언하이드라이드로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
또한, 다이아민으로서는 예를 들어, 4,4'-옥시다이아닐린(4,4'-oxydianiline), p-페닐 다이아민, 2,2-비스(4-(4-아미노페녹시)-페닐)프로판, p-메틸렌다이아닐린, 프로필테트라메틸다이실록산, 폴리아로매틱 아민, 4,4'-다이아미노다이페닐 설폰, 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐 및 3,5-다이아미노-1,2,4-트리아졸로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 폴리아믹산은 4 성분계 폴리아믹산을 포함할 수 있으며, 상기 4 성분계 폴리아믹산은 피로멜리틱 디언하이드리드(pyromellitic dianhydride), 바이페닐 디언하이드리드(biphenyl dianhydride), 페닐렌다이아민(phenylenediamine) 및 옥시다이아닐린(oxydianiline)을 포함하는 폴리아믹산인 것이 바람직하다.
상기 폴리아믹산은 유기 용매 100 중량부에, 0.1 중량부 내지 1 중량부의 양으로 희석된 것을 사용할 수 있다.
상기 유기 용매는 상기 폴리아믹산을 용해할 수 있는 용매라면 특별히 한정되지는 않지만, 바람직하게는 시클로헥산, 사염화탄소, 클로로포름, 메틸렌클로라이드, 디메틸포름아마이드, 디메틸아세트아마이드 및 N-메틸피롤리돈으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
상기 섬유형 탄소재는 종횡비가 1 내지 1000, 바람직하게 1 내지 300, 또는 6 내지 300, 더 바람직하게 1 내지 150, 6 내지 150 또는 10 내지 150인 것을 사용할 수 있다. 이와 같은 종횡비를 갖는 섬유형 탄소재는 일반적으로 당업계에서 사용되는 것과 비교하였을 때 상대적으로 작은 종횡비를 갖는 것일 수 있다.
한편, 상기 섬유형 탄소재를 폴리아믹산이 희석된 유기용매에 분산시킬 때에, 섬유형 탄소재는 원천적으로 서로 응집하고자 하는 성질이 강하여, 섬유형 탄소재의 분산이 잘 이루어지지 않는 문제가 있었다. 그러나, 본 발명에서는 섬유형 탄소재의 응집 성질로 인한 나노피막 내에서의 분산성 저하 문제를 해결하고자 하였으며, 상기 섬유형 탄소재를 표면 처리 함으로써 나노피막 내에서의 분산성 문제를 해결할 수 있었다.
상기 표면 처리는 플라즈마를 이용한 방법 또는 섬유형 탄소재의 표면에 카르복실기, 히드록시기, 아민기 등의 작용기를 접합하는 방법 등이 적용될 수 있으며, 이러한 표면 처리를 수행할 경우, 섬유형 탄소재의 응집 성향을 저감시킬 수 있고, 이렇게 표면 처리된 섬유형 탄소재를 사용하면, 상기 폴리아믹산이 희석된 유기용매에 균일하게 분산시킬 수 있다.
상기 단계 i에서 섬유형 탄소재와 폴리아믹산이 희석된 유기용매의 혼합 분산시, 분산제를 더 포함하여 분산이 수행될 수 있다. 상기 분산제는 상기 섬유형 탄소재와 폴리아믹산이 희석된 유기용매가 혼합되어 상기 유기용매 내에서 섬유형 탄소재가 전체적으로 균일하게 분산될 수 있도록 도와주는 역할을 할 수 있는 화합물이라면 특별히 제한되지 않으며, 예를 들면, 스티렌-부타디엔-스티렌 블록 폴리머(SBS block polymer) 또는 스티렌-부타디엔-에틸렌-스티렌 블록 폴리머(SBES block polymer) 등의 블록 폴리머가 분산제로서 적용될 수 있다.
상기 단계 i에서 섬유형 탄소재와 폴리아믹산이 희석된 유기용매의 혼합 분산은, 보통 상온(약 15 내지 30℃)에서 회전속도 10,000 rpm 이상으로 구동 가능한 믹서를 이용하여 수행될 수 있다. 상기 온도 범위와 회전속도 범위는 폴리아믹산이 희석된 유기용매 내에서 섬유형 탄소재가 원활하게 분산될 수 있는 조건일 수 있으며, 온도가 과도하게 높을 경우 폴리아믹산이 폴리이미드로 전환되는 폴리이미드화 반응이 조기에 진행될 우려가 있다.
또한, 본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질의 제조방법에 있어서, 상기 섬유형 탄소재는 상기 단계 ii)에서 사용되는 양극 활물질 100 중량부를 기준으로 0.05 중량부 내지 5 중량부, 바람직하게는 0.2 중량부 내지 2 중량부의 양으로 사용될 수 있다.
본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질의 제조방법에 있어서, 상기 단계 ii)는 상기 단계 i)에서 제조된 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 섬유형 탄소재를 포함하는 피막을 형성하는 단계를 포함할 수 있다.
상기 양극 활물질의 분산은, 상기 혼합 용액에 균일한 분산을 위해 양극 활물질을 투입한 후 고속 교반기를 이용하여 1시간 이상 분산시키는 것이 바람직하다. 상기 양극 활물질의 균일한 분산을 확인한 후, 가열, 농축함으로써 용매를 제거하였을 때 폴리아믹산 및 섬유형 탄소재를 포함하는 피막이 표면에 코팅된 양극 활물질을 얻을 수 있다.
본 발명의 일 실시예에 따른 표면 코팅된 양극 활물질의 제조방법에 있어서, 상기 단계 iii)은 상기 단계 ii)에서 얻은 상기 피막을 포함하는 양극 활물질을 이미드화 반응시키는 단계를 포함할 수 있다.
상기 이미드화 반응은 상기 단계 ii)에서 얻은 상기 피막을 포함하는 양극 활물질을 약 300℃ 내지 400℃까지 50 내지 100℃ 간격으로 3℃/분의 속도로 승온시키고, 300℃ 내지 400℃의 범위에서 10분 내지 120분 동안 유지함으로써 이루어질 수 있다. 또한, 50 내지 100℃ 간격으로 승온 후, 예를 들어 10분 내지 120분 동안 유지시킨 후, 다시 승온시킬 수 있다. 더욱 구체적으로, 상기 피막을 포함하는 양극 활물질을 60℃, 120℃, 200℃, 300℃, 400℃로 각각 3℃/분의 속도로 승온시키고, 60℃에서 30분, 120℃에서 30분, 200℃에서 60분, 300 ℃에서 60분, 400℃에서 10분 동안 유지시켜, 이미드화 반응을 진행시킬 수 있다.
상기 단계 ii)에서 얻은 양극 활물질 표면은 단계 iii)에 의해 양극 활물질 표면에 폴리이미드 및 섬유형 탄소재를 포함하는 나노피막을 형성할 수 있다.
본 발명의 일 실시예에 따라, 양극 활물질; 및 상기 양극 활물질 표면에 폴리이미드 및 섬유형 탄소재를 포함하는 나노피막을 포함하는 표면 코팅된 양극 활물질은 양극 활물질의 직접적인 전해액과의 반응을 억제함으로써, 일반전압 및 고전엽 영역 모두에서 수명 특성을 향상시킬 수 있으며, 특히 고온 및 고전압 조건에서의 수명 특성의 개선 효과가 더 커질 수 있다.
본 명세서에서 사용되는 용어 "일반전압"은 리튬 이차 전지의 충전 전압이 3.0V 내지 4.2V 미만 범위의 영역인 경우를 의미하고, 용어 "고전압"은 충전 전압이 4.2V 내지 5.0V 범위의 영역인 경우를 의미할 수 있으며, 용어 "고온"은 45 ℃ 내지 65 ℃의 범위를 의미할 수 있다.
또한, 본 발명은 상기 표면 코팅된 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 상기 표면 코팅된 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
또한, 본 발명은 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막를 포함하는 이차전지를 제공한다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
음극에 사용되는 바인더 및 도전제는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
또한, 분리막로는 종래에 분리막로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<표면 코팅된 양극 활물질의 제조>
제조예 1
단계 i) 폴리아믹산과 CNT가 분산된 혼합 용액을 제조하는 단계
유기 용매로서 디메틸아세트아마이드에 폴리아믹산이 0.5 중량%의 농도가 되도록 희석시킨 용액 20 g에 평균 직경이 50 nm이고, 평균 장축 길이가 1 ㎛인 탄소 나노튜브(CNT)를 0.1 g을 첨가하여 균일하게 분산시킨 혼합 용액을 제조하였다.
단계 ii) 양극 활물질 표면에 피막을 형성하는 단계
상기 단계 i)에서 얻은 혼합 용액에 양극 활물질로 LiNi0.6Mn0.2Co0.2O2 입자 20 g을 투입한 후, 1시간 동안 고속 교반기를 이용하여 교반하였다. 교반을 지속하면서 용매의 끓는 점까지 온도를 상승시켜 용매를 증발시킴으로써 폴리아믹산과 CNT를 포함하는 피막이 표면에 코팅된 양극 활물질을 제조하였다.
단계 iii) 이미드화 반응시켜 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 양극 활물질을 제조하는 단계
상기 단계 ii)에서 얻은 표면 폴리아믹산과 CNT를 포함하는 피막이 표면에 코팅된 양극 활물질을 60℃, 120℃, 200℃, 300℃, 400℃로 각각 3℃/분의 속도로 승온시키고, 60℃에서 30분, 120℃에서 30분, 200℃에서 60분, 300℃에서 60분, 400℃에서 10분 동안 유지시켜, 이미드화 반응을 진행시켰다. 상기 이미드화 반응이 완료되면서 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다. 이 때 상기 나노피막에서 폴리이미드와 CNT의 중량비는 1:1 이었다.
제조예 2
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:2가 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
제조예 3
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:5가 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
제조예 4
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:7이 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
제조예 5
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:10이 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
비교제조예 1
상기 제조예 1과 달리, 표면 코팅되지 않은 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 사용하였다.
비교제조예 2
상기 제조예 1에서 CNT를 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드로 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
비교제조예 3
폴리아믹산을 첨가하지 않은 유기용매를 사용하여 이미드화 반응을 하지 않고 CNT만으로 나노피막을 형성한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
비교제조예 4
CNT 대신 케첸블랙(KB)을 이용하여 폴리이미드와 케첸블랙을 포함하는 나노피막을 형성한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
비교제조예 5
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:0.5가 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
비교제조예 6
상기 제조예 1의 단계 i)에서, 폴리아믹산과 CNT의 중량비 조절을 통해, 최종 나노피막에 폴리이미드와 CNT의 중량비가 1:12가 되도록 한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 제조하였다.
<리튬 이차전지의 제조>
실시예 1
양극 제조
상기 제조예 1에서 제조된 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 양극 활물질을 사용하였다.
상기 양극 활물질, 도전제로 카본 블랙(carbon black), 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 95:3:2의 중량비로 혼합하고, N-메틸-2-피롤리돈(NMP) 용매에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 130℃에서 2시간 동안 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 제조
음극으로 리튬 금속 호일(foil)을 사용하였다.
전해액 제조
전해질로서 에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)를 1:2의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
리튬 이차전지 제조
이와 같이 제조된 양극과 음극을 폴리에틸렌 분리막(도넨사, F2OBHE, 두께 =20 ㎛)을 이용하고, 전해액과 폴리프로필렌의 혼합 분리막를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 코인셀 형태의 리튬 이차전지를 제조하였다.
실시예 2 내지 5
각각 제조예 2 내지 5의 양극활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1 내지 6
각각 비교제조예 1 내지 6의 양극활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예 1: SEM 현미경 사진
상기 제조예 1, 및 비교제조예 1과 2에서 제조된 양극 활물질에 대한 모폴로지를 전자현미경(FE-SEM)을 이용하여 분석하였다. 그 결과를 각각 도 1 내지 3에 나타내었다.
구체적으로 살펴보면, 도 1은 본 발명의 제조예 1에서 제조된 폴리이미드와 CNT를 포함하는 나노피막을 포함하는 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 입자의 표면을 관찰한 결과로서, 코팅된 LiNi0.6Mn0.2Co0.2O2 입자 표면에 폴리이미드와 CNT가 잘 분산된 수 나노미터 두께를 지닌 나노피막이 형성되었음을 알 수 있다.
도 2는 비교제조예 1의 LiNi0.6Mn0.2Co0.2O2 입자로서 표면에 코팅되지 않은 순수 LiNi0.6Mn0.2Co0.2O2 입자이고, 도 3은 비교제조예 2에서 제조된 폴리이미드로 표면 코팅된 LiNi0.6Mn0.2Co0.2O2 입자로서, CNT가 관찰되지 않았다.
실험예 2: 나노피막의 구성 성분 변화에 따른 충방전 용량 및 효율 특성 평가
실시예 1과 비교예 1 내지 4의 리튬 이차전지(전지용량 4.3 mAh)를 55℃에서 3 내지 4.4V의 전압 구간에서 0.5C로 충방전을 수행하였다. C-rate는 하기 수학식 1과 같이 0.5C로 충전된 전지를 0.1C로 방전했을 때의 용량과 2C로 방전했을 때의 용량의 비이다:
[수학식 1]
Figure PCTKR2015000936-appb-I000001
표 1
나노피막 성분 1회째충전용량(mAh/g) 1회째방전용량(mAh/g) 1회째효율(%) 1C 방전용량(mAh/g) C-rate(%) 50회째용량보유율(%)
실시예 1 PI+CNT 220.5 195.8 88.8 182.1 89.5 92
비교예 1 - 221.5 195.8 88.4 183.7 89.5 75
비교예 2 PI 220.3 193.3 87.7 180.7 86.6 90
비교예 3 CNT 220.5 196.0 88.9 182.1 89.5 80
비교예 4 PI+KB 220.4 193.3 87.7 180.7 88.0 90
상기 표 1에서 알 수 있는 바와 같이, 실시예 1의 리튬 이차전지는 비교예 1 내지 4의 리튬 이차전지와 비교하여 초기 충방 용량은 유사하였으나, 율속 특성(C-rate) 및 50회째 용량 보유율이 현저히 우수함을 확인할 수 있다.
구체적으로 살펴보면, 50회째 용량 보유율의 경우, 실시예 1의 리튬 이차전지는 비교예 1 내지 4의 리튬 이차전지에 비해 약 2 내지 17% 정도 차이를 보였다.
또한, 표면 코팅된 양극 활물질이더라도, CNT 및 폴리이미드를 함께 포함하는 나노피막이 형성된 양극 활물질을 사용한 실시예 1의 리튬 이차전지는, 비교예 1 내지 4에 비해 율속 특성이 최대 3%, 초기 효율이 약 1%의 차이를 보였다.
따라서, 이를 종합적으로 보건대, 폴리이미드와 섬유형 탄소재를 필수적으로 포함시킨 나노피막이 코팅된 양극 활물질을 리튬 이차전지에 적용한다면, 두 물질 중 어느 하나라도 포함시키지 않은 것에 비하여 리튬 이차전지의 성능이 전반적으로 향상될 수 있다는 것을 확인할 수 있었다.
실험예 3: 폴리이미드와 섬유형 탄소재의 중량비 변화에 따른 충방전 용량 및 효율 특성 평가
실시예 2 내지 5와 비교예 5 및 6의 리튬 이차전지(전지용량 4.3mAh)를 상기 실험예 2와 동일한 조건하에서 충방전 용량 및 효율 특성을 평가하였고, 그 결과를 하기 표 2에 나타내었다.
표 2
PI:CNT 1회째 충전용량(mAh/g) 1회째 방전용량(mAh/g) 1회째 효율(%) 1C 방전용량(mAh/g) C-rate(%) 50회째용량보유율(%)
실시예 1 1:1 220.5 195.8 88.8 182.1 89.5 92
실시예 2 1:2 220.3 195.8 88.9 181.8 89.6 93
실시예 3 1:5 220.5 195.7 88.8 182.4 89.7 92
실시예 4 1:7 221.5 195.9 88.7 182.5 89.5 93
실시예 5 1:10 220.5 195.8 88.8 182.1 89.5 92
비교예 5 1:0.5 220.5 195.8 88.8 182.1 87.0 90
비교예 6 1:12 220.5 195.8 88.8 182.5 89.5 80
상기 표 2에서 알 수 있는 바와 같이, 실시예 1 내지 5의 리튬 이차전지는 비교예 5 및 6의 리튬 이차전지와 비교하여 초기 충방 용량은 유사하였으나, 율속 특성(C-rate) 및 50회째 용량 보유율이 현저히 우수함을 확인할 수 있다.
구체적으로 살펴보면, 50회째 용량 보유율의 경우, 폴리이미드와 섬유형 탄소재의 비율을 적절하게 조절한 실시예 1 내지 5의 리튬 이차전지는, 비율 조절이 적절하지 못한 비교예 5 및 6의 리튬 이차전지에 비해 약 2 내지 13% 정도 차이를 보였다.
또한, 실시예 1 내지 5의 리튬 이차전지는, 비교예 5 및 6에 비해 율속 특성이 최대 3% 가량 차이를 보였다.
따라서, 이를 종합적으로 보건대, 나노피막에 포함되는 폴리이미드와 섬유형 탄소재의 혼합 비율을 적절하게 조절한다면, 리튬 이차전지의 성능이 전반적으로 향상될 수 있다는 것을 확인할 수 있었다.

Claims (26)

  1. 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 나노피막;을 포함하며,
    상기 나노피막은 폴리이미드(PI) 및 섬유형 탄소재를 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질.
  2. 제 1 항에 있어서.
    상기 섬유형 탄소재는 탄소 나노튜브(CNT), 탄소 나노섬유, 또는 이들의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질.
  3. 제 1 항에 있어서.
    상기 나노피막의 두께는 1 nm 내지 200 nm의 범위인 것을 특징으로 하는 표면 코팅된 양극 활물질.
  4. 제 1 항에 있어서.
    상기 폴리이미드와 섬유형 탄소재는 1:1 내지 1:10 중량비로 포함되는 것을 특징으로 하는 표면 코팅된 양극 활물질.
  5. 제 1 항에 있어서.
    상기 섬유형 탄소재의 함량은, 표면 코팅된 양극 활물질 총 중량 대비, 0.05 중량% 내지 5 중량%인 것을 특징으로 하는 표면 코팅된 양극 활물질.
  6. 제 1 항에 있어서.
    상기 섬유형 탄소재는 5 nm 내지 100 nm의 평균 직경 및 0.1 ㎛ 내지 5 ㎛의 평균 장축 길이를 갖는 것을 특징으로 하는 표면 코팅된 양극 활물질.
  7. 제 1 항에 있어서.
    상기 섬유형 탄소재는 종횡비가 1 내지 1000인 것을 특징으로 하는 표면 코팅된 양극 활물질.
  8. 제 1 항에 있어서
    상기 양극 활물질은 하기 화학식 1 내지 화학식 3의 산화물, 및 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질:
    <화학식 1>
    Li1+x[NiaCobMnc]O2 (-0.5 ≤ x ≤ 0.6, 0 ≤ a, b, c ≤ 1, x+a+b+c=1임);
    <화학식 2>
    LiMn2-xMxO4 (M=Ni, Co, Fe, P, S, Zr, Ti 및 Al로 이루어진 군에서 선택되는 하나 이상의 원소, 0 ≤ x ≤ 2);
    <화학식 3>
    Li1+aFe1-xMx(PO4-b) Xb (M=Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 하나 이상의 원소이고, X는 F, S 및 N로 이루어진 군에서 선택되는 하나 이상의 원소이며, -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, 0 ≤ b ≤ 0.1임)
  9. 제 8 항에 있어서
    상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li[NiaCobMnc]O2 (0 < a, b, c ≤ 1, a+b+c=1이고) 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질.
  10. 폴리아믹산이 희석된 유기 용매에 섬유형 탄소재를 혼합 분산시킨 혼합 용액을 제조하는 단계;
    상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 섬유형 탄소재를 포함하는 피막을 형성하는 단계; 및
    상기 피막을 포함하는 양극 활물질을 이미드화 반응시키는 단계를 포함하는 표면 코팅된 양극 활물질의 제조방법.
  11. 제 10 항에 있어서,
    상기 이미드화 반응은 300℃ 내지 400℃의 범위에서 10분 내지 120분 동안 유지시키는 단계를 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  12. 제 11 항에 있어서,
    상기 이미드화 반응은 상기 유지 온도 이전에 300℃ 내지 400℃까지 50 내지 100℃ 간격으로 3℃/분의 속도로 승온시키는 단계를 더 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  13. 제 10 항에 있어서,
    상기 섬유형 탄소재는 탄소 나노튜브(CNT), 탄소 나노섬유, 또는 이들의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  14. 제 10 항에 있어서,
    상기 섬유형 탄소재는 5 nm 내지 100 nm의 평균 직경 및 0.1 ㎛ 내지 5 ㎛의 평균 장축 길이를 갖는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  15. 제 10 항에 있어서.
    상기 섬유형 탄소재는 종횡비가 1 내지 1000인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  16. 제 10 항에 있어서,
    상기 섬유형 탄소재는 양극 활물질 100 중량부를 기준으로 0.05 중량부 내지 5 중량부의 양으로 사용되는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  17. 제 10 항에 있어서,
    상기 폴리아믹산은 유기 용매 100 중량부에, 0.1 중량부 내지 1 중량부의 양으로 희석되는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  18. 제 10 항에 있어서,
    상기 폴리아믹산은 방향족 무수물과 다이아민을 동일 당량으로 반응시켜 제조된 것임을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  19. 제 18 항에 있어서,
    상기 방향족 무수물은 프탈릭 언하이드라이드, 피로멜리틱 디언하이드리드, 3,3'4,4'-바이페닐테트라카복실릭 디언하이드라이드, 4'4-옥시디프탈릭 언하이드라이드, 3,3'4,4'-벤조페논테트라카르복실릭 디언하이드라이드, 트리멜리틱 에틸렌 글리콜, 4,4'-(4'4-이소프로필바이페녹시)바이프탈릭 언하이드라이드 및 트리멜리틱 언하이드라이드로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  20. 제 18 항에 있어서,
    상기 다이아민은 4,4'-옥시다이아닐린(4,4'-oxydianiline), p-페닐 다이아민, 2,2-비스(4-(4-아미노페녹시)-페닐)프로판, p-메틸렌다이아닐린, 프로필테트라메틸다이실록산, 폴리아로매틱 아민, 4,4'-다이아미노다이페닐 설폰, 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐 및 3,5-다이아미노-1,2,4-트리아졸로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  21. 제 10 항에 있어서,
    상기 폴리아믹산은 4 성분계 폴리아믹산을 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  22. 제 21 항에 있어서,
    상기 4 성분계 폴리아믹산은 피로멜리틱 디언하이드리드(pyromellitic dianhydride), 바이페닐 디언하이드리드(biphenyl dianhydride), 페닐렌다이아민(phenylenediamine) 및 옥시다이아닐린(oxydianiline)을 포함하는 폴리아믹산인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  23. 제 10 항에 있어서,
    상기 유기 용매는 시클로헥산, 사염화탄소, 클로로포름, 메틸렌클로라이드, 디메틸포름아마이드, 디메틸아세트아마이드 및 N-메틸피롤리돈으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.
  24. 제 1 항의 표면 코팅된 양극 활물질을 포함하는 양극.
  25. 제 24 항의 양극을 포함하는 리튬 이차전지.
  26. 제 25 항에 있어서,
    상기 리튬 이차전지의 충전 전압은 4.2V 내지 5.0V인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2015/000936 2014-01-28 2015-01-28 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 WO2015115815A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15742875.6A EP3101717B1 (en) 2014-01-28 2015-01-28 Surface-coated cathode active material, method for preparing same, and lithium secondary battery including same
CN201580006270.6A CN106165163B (zh) 2014-01-28 2015-01-28 表面涂布的正极活性材料、其制备方法以及包含其的锂二次电池
CN201910113724.XA CN110010848B (zh) 2014-01-28 2015-01-28 表面涂布的正极活性材料、其制备方法以及包含其的正极和锂二次电池
US15/039,730 US20170040647A1 (en) 2014-01-28 2015-01-28 Surface-coated positive electrode active material, method of preparing the same, and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0010008 2014-01-28
KR20140010008 2014-01-28
KR10-2015-0013392 2015-01-28
KR1020150013392A KR101637983B1 (ko) 2014-01-28 2015-01-28 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2015115815A1 true WO2015115815A1 (ko) 2015-08-06

Family

ID=53757338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000936 WO2015115815A1 (ko) 2014-01-28 2015-01-28 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2015115815A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071387A (ko) * 2007-01-30 2008-08-04 재단법인서울대학교산학협력재단 탄소나노튜브 복합체 및 그 제조 방법
KR20100081947A (ko) * 2009-01-06 2010-07-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR20110126418A (ko) * 2010-05-17 2011-11-23 강원대학교산학협력단 화학가교고분자전해질을 이용하여 표면 개질된 양극 활물질 및 이를 포함하는 리튬이차전지
KR20130139711A (ko) * 2012-06-13 2013-12-23 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071387A (ko) * 2007-01-30 2008-08-04 재단법인서울대학교산학협력재단 탄소나노튜브 복합체 및 그 제조 방법
KR20100081947A (ko) * 2009-01-06 2010-07-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR20110126418A (ko) * 2010-05-17 2011-11-23 강원대학교산학협력단 화학가교고분자전해질을 이용하여 표면 개질된 양극 활물질 및 이를 포함하는 리튬이차전지
KR20130139711A (ko) * 2012-06-13 2013-12-23 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, JANG-HOON ET AL.: "Polyimide gel polymer electrolyte-nanoencapsulated LiCo02 cathode materials for high-voltage Li-ion batteries", ELECTROCHEMISTRY COMMUNICATIONS, vol. 12, no. 8, 2 June 2010 (2010-06-02), pages 1099 - 1102, XP027137114 *

Similar Documents

Publication Publication Date Title
WO2017164624A1 (ko) 표면 코팅된 양극 활물질 입자 및 이를 포함하는 이차 전지
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2017099456A1 (ko) 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2019035669A2 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2011145871A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
KR101777917B1 (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020036392A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019066129A2 (ko) 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지
WO2017171372A1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
WO2017171494A1 (ko) 안전성이 개선된 양극 및 이를 포함하는 리튬이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2023008953A1 (ko) 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019147093A1 (ko) 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
WO2020040613A1 (ko) 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지
WO2016032222A1 (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039730

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015742875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015742875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE