WO2015115573A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2015115573A1
WO2015115573A1 PCT/JP2015/052591 JP2015052591W WO2015115573A1 WO 2015115573 A1 WO2015115573 A1 WO 2015115573A1 JP 2015052591 W JP2015052591 W JP 2015052591W WO 2015115573 A1 WO2015115573 A1 WO 2015115573A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
user terminal
control method
communication control
Prior art date
Application number
PCT/JP2015/052591
Other languages
English (en)
French (fr)
Inventor
真人 藤代
優志 長坂
智春 山▲崎▼
空悟 守田
童 方偉
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015560023A priority Critical patent/JP6042569B2/ja
Priority to EP15742558.8A priority patent/EP3101972A4/en
Publication of WO2015115573A1 publication Critical patent/WO2015115573A1/ja
Priority to US15/089,900 priority patent/US9936515B2/en
Priority to US15/089,940 priority patent/US20160219604A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a communication control method used in a mobile communication system.
  • a dual connection method (Dual connectivity) is scheduled to be introduced after Release 12 (see Non-Patent Document 1).
  • the user terminal establishes connections with a plurality of base stations simultaneously. Since the user terminal is assigned radio resources from each base station, the throughput is expected to be improved.
  • the double connection method only one base station (hereinafter referred to as “master base station”) among the plurality of base stations that establish a connection with the user terminal establishes an RRC connection with the user terminal.
  • master base station a base station among the plurality of base stations that establish a connection with the user terminal
  • secondary base stations other base stations among the plurality of base stations provide additional radio resources to the user terminal without establishing an RRC connection with the user terminal.
  • the double connection method may be referred to as inter-base station carrier aggregation (inter-eNB CA).
  • an object of the present invention is to provide a communication control method capable of appropriately performing double connection communication.
  • a communication control method includes a dual connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step in which the master base station receives a measurement report including a measurement result obtained for each cell in the user terminal, and an additional request for requesting resource allocation to the user terminal. Receiving the secondary base station from the master base station. In the step of receiving the addition request, the master base station transmits the measurement result for the cell of the secondary base station included in the measurement result included in the addition request.
  • a communication control method includes a dual connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step of transmitting an RRC reconfiguration message for performing RRC reconfiguration of the user terminal from the master base station to the user terminal, and an RRC reconfiguration notification for notifying the transmission of the RRC reconfiguration message. Transmitting from the master base station to the secondary base station.
  • a communication control method includes a dual connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step in which the master base station receives a measurement report including a measurement result obtained for each cell in the user terminal from the user terminal, and the secondary base station manages based on the measurement report. Selecting a special cell in which a physical uplink control channel of the user terminal is provided from among the plurality of cells being operated.
  • the communication control method determines whether or not at least one cell managed by the first base station has an ability to operate as a special cell in which a physical uplink control channel of a user terminal is provided. Cell information to be transmitted is transmitted from the first base station to the second base station.
  • a communication control method is a user terminal that establishes an RRC connection with a master base station and provides additional radio resources from a secondary base station in a mobile communication system that supports a dual connection scheme. It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method detects a radio link failure in the special cell, and when detecting a radio link failure in the special cell, transmits a measurement result for the cell of the secondary cell group to the master base station. Steps.
  • a communication control method is a master base station that establishes RRC connection with the user terminal, performing communication in a dual connection scheme with a secondary base station that provides additional radio resources to the user terminal It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method receives from the user terminal a failure notification for notifying a radio link failure in the special cell including a first measurement result for a cell other than the special cell in the secondary cell group; Transmitting a replacement request for requesting replacement of the special cell to the secondary base station.
  • the master base station includes the first measurement result received from the user terminal and transmits it in the replacement request.
  • a communication control method is a secondary base station that performs dual connection communication with a master base station that establishes an RRC connection with a user terminal and provides additional radio resources to the user terminal It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method receives a replacement request for requesting replacement of the special cell from the master base station together with a first measurement result for a cell other than the special cell in the secondary cell group; Determining whether or not to switch the special cell to another cell based on the first measurement result in response to receiving the switching request; and determining the result of the determination to the master base station. And a step of notifying.
  • the communication control method performs a double connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step in which the master base station receives a measurement report including a measurement result obtained for each cell in the user terminal, and an additional request for requesting resource allocation to the user terminal. Receiving the secondary base station from the master base station. In the step of receiving the addition request, the master base station transmits the measurement result for the cell of the secondary base station included in the measurement result included in the addition request.
  • the communication control method performs dual connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step of transmitting an RRC reconfiguration message for performing RRC reconfiguration of the user terminal from the master base station to the user terminal, and an RRC reconfiguration notification for notifying the transmission of the RRC reconfiguration message. Transmitting from the master base station to the secondary base station.
  • the transmission of the RRC reconfiguration notification is performed prior to the transmission of the RRC reconfiguration message.
  • the RRC reconfiguration notification includes the contents of the RRC reconfiguration.
  • the communication control method further includes a step in which the secondary base station that has received the RRC reconfiguration notification stops transmission to the user terminal based on the RRC reconfiguration notification.
  • the secondary base station stops transmission to the user terminal until a predetermined time elapses after receiving the RRC reconfiguration notification.
  • the predetermined time corresponds to a time from when the user terminal receives the RRC reconfiguration message until the RRC reconfiguration message is reflected.
  • the secondary base station resumes transmission to the user terminal after the predetermined time has elapsed.
  • the master base station receives an RRC reconfiguration completion message indicating that the RRC reconfiguration is completed from the user terminal, and receives the RRC reconfiguration completion message.
  • the transmission that the secondary base station stops in the stopping step is transmission on a user dedicated channel.
  • the communication control method performs a double connection communication using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal. It is a method for controlling.
  • the communication control method includes a step in which the master base station receives a measurement report including a measurement result obtained for each cell in the user terminal from the user terminal, and the secondary base station manages based on the measurement report. Selecting a special cell in which a physical uplink control channel of the user terminal is provided from among the plurality of cells being operated.
  • the step of selecting the special cell includes a step in which the master base station that has received the measurement report transfers the received measurement report to the secondary base station, and the transferred measurement report.
  • the secondary base station receiving the message selects the special cell.
  • the master base station that has received the measurement report notifies the secondary base station of the special cell candidate based on the received measurement report. And a step in which the secondary base station selects the special cell based on the notified candidate.
  • the step of selecting the special cell includes the step of the master base station receiving the measurement report selecting the special cell based on the received measurement report. Reporting a special cell from the master base station to the secondary base station.
  • the special cell in the step of selecting the special cell, is further selected based on the capability and / or load status of each of the plurality of cells managed by the secondary base station.
  • the communication control method includes information for controlling transmission of the measurement report based on the capability and / or load status of each of the plurality of cells managed by the secondary base station.
  • the method further includes a step of transmitting from the base station to the user terminal.
  • the communication control method reselects the special cell from a plurality of cells managed by the secondary base station based on a measurement report newly transmitted from the user terminal. It further has a step.
  • the communication control method determines whether or not at least one cell managed by the first base station has an ability to operate as a special cell in which a physical uplink control channel of a user terminal is provided. Cell information to be transmitted is transmitted from the first base station to the second base station.
  • the first base station transmits the setting update message related to the setting update of the first base station including the cell information.
  • the first base station transmits the cell information in a negative response to the request from the second base station.
  • a communication control method is a user terminal that establishes an RRC connection with a master base station and provides additional radio resources from a secondary base station in a mobile communication system that supports a dual connection scheme. It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method detects a radio link failure in the special cell, and when detecting a radio link failure in the special cell, transmits a measurement result for the cell of the secondary cell group to the master base station. Steps.
  • the user terminal When detecting a radio link failure in the special cell, in the transmitting step, the user terminal further transmits a measurement result for an adjacent cell to the master base station.
  • the measurement result is a measurement result for cells other than the special cell in the secondary cell group.
  • the communication control method includes a step of transmitting a failure notification for notifying the radio link failure to the master base station when a radio link failure in the special cell is detected.
  • the measurement result is included in the failure notification.
  • the communication control method includes a step of transmitting an event trigger type measurement report to the master base station when an event designated by the master base station occurs.
  • the event is a detection of a radio link failure in the special cell.
  • the measurement result is included in the event-triggered measurement report.
  • the communication control method performs dual connection communication with a secondary base station that provides additional radio resources to a user terminal, and establishes an RRC connection with the user terminal. It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method receives from the user terminal a failure notification for notifying a radio link failure in the special cell including a first measurement result for a cell other than the special cell in the secondary cell group; Transmitting a replacement request for requesting replacement of the special cell to the secondary base station.
  • the master base station includes the first measurement result received from the user terminal and transmits it in the replacement request.
  • the master base station transmits the first measurement result received from the user terminal in the replacement request.
  • the master base station further receives a second measurement result for the special cell from the user terminal.
  • the master base station includes the first measurement result and the second measurement result in the replacement request for transmission.
  • the communication control method performs a dual connection communication with a master base station that establishes an RRC connection with a user terminal, and provides an additional radio resource to the user terminal. It is a method in.
  • a secondary cell group including a special cell in which a physical uplink control channel of the user terminal is set is managed by the secondary base station.
  • the communication control method receives a replacement request for requesting replacement of the special cell from the master base station together with a first measurement result for a cell other than the special cell in the secondary cell group; Determining whether or not to switch the special cell to another cell based on the first measurement result in response to receiving the switching request; and determining the result of the determination to the master base station. And notifying.
  • the secondary base station receives a second measurement result for the special cell from the master base station together with the first measurement result.
  • the secondary base station makes the determination based on the first measurement result and the second measurement result.
  • the secondary base station When a new special cell is selected from the other cells, in the notification step, the secondary base station notifies the master base station of the new special cell.
  • the secondary base station When there is no appropriate cell as a new special cell among the other cells, in the notification step, the secondary base station notifies the master base station that the secondary cell group is to be released.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the SGW performs user data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit. Further, the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs priority control of data, retransmission processing by hybrid ARQ (HARQ), random access procedure at the time of establishing RRC connection, and the like.
  • HARQ hybrid ARQ
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • radio resources (time / frequency resources) allocated to the UE 100 frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining section of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting user data.
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the other part in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting user data.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the LTE system supports a double connection method.
  • the dual connection method is scheduled to be introduced after Release 12.
  • the UE 100 establishes connections with a plurality of eNBs 200 at the same time. Since radio resources are allocated from each eNB 200 to the UE 100, an improvement in throughput is expected.
  • the double connection method may be referred to as inter-eNB 200 carrier aggregation (inter-eNB CA).
  • FIG. 5 is a diagram for explaining the outline of the double connection method.
  • the master eNB (MeNB) 200-1 among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • the secondary eNB (SeNB) 200-2 among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100.
  • the MeNB 200-1 establishes not only a user plane connection but also a control plane connection with the UE 100.
  • the SeNB 200-2 establishes a user plane connection with the UE 100 without establishing a control plane connection with the UE 100.
  • An Xn interface is set between the MeNB 200-1 and the SeNB 200-2.
  • the Xn interface is an X2 interface or a new interface.
  • the UE 100 can perform carrier aggregation using N cells managed by the MeNB 200-1 and M cells managed by the SeNB 200-2 at the same time.
  • the maximum number of serving cells of the UE 100 that is, the maximum number of (N + M) is, for example, 5.
  • the group of N cells managed by MeNB 200-1 is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • a special cell in which the PUCCH of the UE 100 is provided is set in the SCG.
  • the special cell performs a part of the function of the primary cell (PCell) in the carrier aggregation.
  • the special cell is referred to as a “DC special cell”.
  • FIGS. 6 and 7 are diagrams for explaining a configuration method of a user data transfer path (data path) in the dual connection method.
  • data path There are mainly two types of user plane architectures (UP architectures) that constitute user data transfer paths (data paths) in the dual connection method.
  • UP architectures user plane architectures
  • FIG. 6 shows the first UP architecture.
  • the EPS bearer # 1 between the UE 100 and the P-GW passes through the S1-U interface between the MeNB 200-1 and the S-GW 300U.
  • the EPS bearer # 2 between the UE 100 and the P-GW passes through the S1-U interface between the SeNB 200-2 and the S-GW 300U.
  • the data path between the SeNB 200-2 and the S-GW 300U does not pass through the MeNB 200-1.
  • each of the MeNB 200-1 and the SeNB 200-2 performs processing of each layer of PDCP, RLC, and MAC.
  • FIG. 7 shows a second UP architecture.
  • the EPS bearer # 2 between the UE 100 and the P-GW is divided in the MeNB 200-1, and one of the divided bearers (split bearer) is Terminate at UE 100 via SeNB 200-2, and the other split (split bearer) terminates at UE 100 without going through SeNB 200-2.
  • the data path between the SeNB 200-2 and the S-GW 300U passes through the MeNB 200-1.
  • processing of each layer is performed by the PDCP of the MeNB 200-1 and the RLC and MAC of the SeNB 200-2.
  • the MeNB may be in charge of processing up to RLC (or a partial function of RLC).
  • FIG. 8 is a sequence diagram showing an operation for starting the double connection method.
  • the UE 100 has established an RRC connection with the MeNB 200-1.
  • the UE 100 transmits a measurement report including a measurement result obtained for each cell in the UE 100 to the MeNB 200-1.
  • the measurement result includes a combination of measurement cell identification information and reference signal received power (RSRP) / reference signal reception quality (RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal reception quality
  • step S12 the MeNB 200-1 that has received the measurement report determines to use the SeNB resource based on the received measurement report or other parameters.
  • the MeNB 200-1 transmits an SeNB addition request (SeNB Addition) for requesting resource allocation to the UE 100 to the SeNB 200-2.
  • the SeNB addition request includes various parameters related to the UE 100.
  • the SeNB 200-2 that has received the SeNB addition request determines whether to accept resource allocation for the UE 100 based on the received SeNB addition request.
  • the SeNB 200-2 sets a radio resource (for example, a DC special cell) for the UE 100.
  • the SeNB 200-2 may select a random access preamble to be assigned to the UE 100.
  • the SeNB 200-2 transmits an SeNB addition command for providing a new radio resource setting (for example, setting of a DC special cell, setting of a random access preamble) to the MeNB 200-1.
  • a new radio resource setting for example, setting of a DC special cell, setting of a random access preamble
  • step S16 the SeNB 200-2 sets a DC special cell (parameter) according to the new radio resource setting. Note that the order of step S15 and step S16 may be reversed.
  • step S17 the MeNB 200-1 that has received the SeNB addition command generates an RRC message to be transmitted to the UE 100 based on the received SeNB addition command.
  • step S18 the MeNB 200-1 transmits the generated RRC message (RRC reconfiguration message) to the UE 100.
  • step S19 the UE 100 that has received the RRC reconfiguration message generates a MAC entity corresponding to the SCG based on the received RRC reconfiguration message.
  • the DC special cell included in the SCG is in a valid state (Activate), and the other cells included in the SCG are in an invalid state (Deactivate).
  • step S21 the UE 100 transmits an RRC reconfiguration completion message indicating that the RRC reconfiguration has been completed to the MeNB 200-1.
  • step S22 the UE 100 performs random access to the SeNB 200-2.
  • step S23 the SeNB 200-2 detects synchronization with the UE 100, and transmits a notification (SeNB Addition Complete) indicating that a new radio resource setting is available to the MeNB 200-1.
  • a notification SeNB Addition Complete
  • step S24 the SeNB 200-2 uses the DC special cell to transmit a downlink control signal for the UE 100 on the PDCCH, and transmits downlink user data for the UE 100 on the PDSCH.
  • step S25 the SeNB 200-2 determines to start using another cell included in the SCG in the MAC layer.
  • step S26 the SeNB 200-2 transmits to the UE 100 a MAC control element indicating that another cell included in the SCG is to be activated (Activate).
  • step S27 the UE 100 that has received the MAC control element activates other cells included in the SCG based on the received MAC control element.
  • FIG. 9 is a sequence diagram illustrating an operation when the MeNB 200-1 performs RRC reconfiguration with respect to the UE 100.
  • the UE 100 has established a connection with the MeNB 200-1 and the SeNB 200-2 (step S101).
  • step S102 the MeNB 200-1 transmits to the UE 100 an RRC reconfiguration message for performing RRC reconfiguration of the UE 100.
  • RRC reconfiguration message For example, in the case of MCG: 3 cell and SCG: 2 cell, it is assumed that the RRC reconfiguration message is to change to MCG: 4 cell and SCG: 1 cell.
  • the time from when the UE 100 receives the RRC reconfiguration message until the RRC reconfiguration message is reflected is about 15 ms (step S103).
  • the MeNB 200-1 stops PDSCH allocation to the UE 100 until the RRC reconfiguration message is reflected (step S104).
  • the SeNB 200-2 since the SeNB 200-2 does not know that the UE 100 is performing RRC reconfiguration, the SeNB 200-2 continues PDSCH allocation to the UE 100, transmits a downlink control signal for the UE 100 on the PDCCH, and is a downlink user for the UE 100. Data is transmitted on the PDSCH (steps S105 to S108).
  • the UE 100 cannot receive the downlink control signal and the downlink user data from the SeNB 200-2, and therefore the allocation and transmission in steps S105 to S107 are wasted.
  • the communication control method includes a step of transmitting an RRC reconfiguration message for performing RRC reconfiguration of the UE 100 from the MeNB 200-1 to the UE 100, and an RRC reconfiguration notification for notifying the transmission of the RRC reconfiguration message. 1 to the SeNB 200-2.
  • the SeNB 200-2 that has received the RRC reconfiguration notification stops transmission to the UE 100 based on the RRC reconfiguration notification.
  • MeNB200-1 can grasp
  • the transmission in which the SeNB 200-2 stops is transmission on a user dedicated channel (for example, DTCH: Dedicated Traffic Channel, DCCH: Dedicated Control Channel). Therefore, the SeNB 200-2 may continue broadcast transmission such as paging even if it stops transmission of the user dedicated channel to the UE 100.
  • a user dedicated channel for example, DTCH: Dedicated Traffic Channel, DCCH: Dedicated Control Channel.
  • the transmission of the RRC reconfiguration notification is performed prior to the transmission of the RRC reconfiguration message.
  • the RRC reconfiguration notification includes the contents of RRC reconfiguration.
  • SeNB200-2 can grasp
  • the SeNB 200-2 stops transmission to the UE 100 until a predetermined time elapses after receiving the RRC reconfiguration notification.
  • the predetermined time corresponds to the time from when the UE 100 receives the RRC reconfiguration message until the RRC reconfiguration message is reflected.
  • the SeNB 200-2 resumes transmission to the UE 100 after a predetermined time has elapsed. Thereby, SeNB200-2 can restart transmission with respect to UE100 in accordance with completion of RRC reconfiguration of UE100.
  • the transmission may be resumed in response to a notification from the MeNB 200-1, instead of autonomously resuming the transmission by the SeNB 200-2.
  • the communication control method receives the RRC reconfiguration completion message from the UE 100 in response to the step of the MeNB 200-1 receiving the RRC reconfiguration completion message indicating that the RRC reconfiguration is completed, and the reception of the RRC reconfiguration completion message. From the MeNB 200-1 to the SeNB 200-2, and the SeNB 200-2 that has received the RRC reconfiguration completion notification restarts transmission to the UE 100 based on the RRC reconfiguration completion notification.
  • FIG. 10 is a sequence diagram showing an operation sequence according to the first embodiment.
  • the UE 100 is in a state where connection with the MeNB 200-1 and the SeNB 200-2 is established (step S151).
  • the MeNB 200-1 transmits an RRC reconfiguration notification (RRC Connection Reconfiguration Initiation) to the SeNB 200-2.
  • the RRC reconfiguration notification includes at least one of an RRC container that stores an RRC configuration (RRC Configuration) and a flag indicating start / end.
  • RRC Configuration RRC Configuration
  • the SeNB 200-2 can grasp the contents of the RRC setting, and therefore can determine whether or not to stop transmission based on the contents of the RRC setting.
  • the RRC reconfiguration notification may include a timer threshold used in step S156, which will be described later.
  • the RRC reconfiguration notification is transmitted at a timing earlier than the transmission timing of the RRC reconfiguration message by the transmission delay time of the backhaul (Xn interface).
  • step S153 the MeNB 200-1 transmits an RRC reconfiguration message to the UE 100.
  • the UE 100 that has received the RRC reconfiguration message starts RRC reconfiguration based on the received RRC reconfiguration message.
  • step S154 the MeNB 200-1 stops assigning PDSCH to the UE 100 until the RRC reconfiguration message is reflected.
  • step S155 the SeNB 200-2 that has received the RRC reconfiguration notification stops transmission to the UE 100 based on the received RRC reconfiguration notification.
  • step S156 the SeNB 200-2 starts a timer for measuring a predetermined time.
  • the predetermined time corresponds to the time from when the UE 100 receives the RRC reconfiguration message until the RRC reconfiguration message is reflected.
  • step S157 the UE 100 transmits an RRC reconfiguration completion message to the MeNB 200-1.
  • the MeNB 200-1 may transmit an RRC reconfiguration completion notification (RRC Connection Reconfiguration complete) to the SeNB 200-2 in response to reception of the RRC reconfiguration completion message.
  • RRC reconfiguration completion notification RRC Connection Reconfiguration complete
  • step S159 the SeNB 200-2 detects the expiration of the timer or the reception of the RRC reconfiguration completion notification.
  • step S160 the SeNB 200-2 that has detected the expiration of the timer or the reception of the RRC reconfiguration completion notification resumes transmission to the UE 100.
  • the DC special cell in which the PUCCH of the UE 100 is provided is set in the SCG.
  • the DC special cell is desired to be a cell having a better communication state than other cells of the SCG.
  • a cell having a good communication state is, for example, a cell with high received power of a desired wave, a cell with low interference power, or a cell with low load level. If the communication state is poor in the DC special cell, the uplink control signal is not normally transmitted, and it is difficult to appropriately carry out the double connection communication.
  • the MeNB 200-1 receives a measurement report including a measurement result obtained for each cell in the UE 100 from the UE 100, and the SeNB 200-2 manages the measurement report based on the measurement report.
  • the step of selecting the DC special cell includes the step of the MeNB 200-1 that has received the measurement report transferring the received measurement report to the SeNB 200-2, and the SeNB 200- that has received the transferred measurement report. 2 selecting a DC special cell.
  • the step of selecting the DC special cell includes a step in which the MeNB 200-1 that has received the measurement report notifies the SeNB 200-2 of a candidate for the DC special cell based on the received measurement report, and the SeNB 200-2 includes: Selecting a DC special cell based on the notified candidate.
  • the step of selecting the DC special cell includes a step in which the MeNB 200-1 that has received the measurement report selects the DC special cell based on the received measurement report, and the selected DC special cell from the MeNB 200-1. And notifying the SeNB 200-2.
  • the DC special cell in the step of selecting the DC special cell, may be selected based on the capability and / or load status of each of the plurality of cells managed by the SeNB 200-2.
  • information for controlling transmission of a measurement report is transmitted from the MeNB 200-1 to the UE 100 based on the capability and / or load status of each of a plurality of cells managed by the SeNB 200-2. There may be a step of transmitting.
  • the communication control method further includes a step of reselecting a DC special cell from a plurality of cells managed by the SeNB 200-2 based on a measurement report newly transmitted from the UE 100. May be.
  • FIG. 11 is a sequence diagram showing an operation pattern 1 of the second embodiment.
  • the UE 100 is in a state where an RRC connection with the MeNB 200-1 is established.
  • step S201 the UE 100 transmits a measurement report including a measurement result obtained for each cell in the UE 100 to the MeNB 200-1.
  • the measurement result includes a combination of measurement cell identification information and reference signal received power (RSRP) / reference signal reception quality (RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal reception quality
  • step S202 the MeNB 200-1 that has received the measurement report determines to use the SeNB resource based on the received measurement report.
  • step S203 the MeNB 200-1 transmits an SeNB addition request (SeNB Addition) to the SeNB 200-2.
  • SeNB Addition SeNB addition request
  • the MeNB 200-1 includes the measurement report received from the UE 100 in the SeNB addition request. That is, MeNB200-1 transfers the measurement report received from UE100 to SeNB200-2. MeNB200-1 may extract the measurement result about the cell of SeNB200-2 from the measurement results included in the measurement report received from UE100, and you may transfer to SeNB200-2.
  • the MeNB 200-1 extracts one or a plurality of cells of the SeNB 200-2 having a good communication state from the measurement results included in the measurement report received from the UE 100, and sets the extracted cell as a candidate cell. List) may be included in the SeNB addition request.
  • step S204 the SeNB 200-2 that has received the SeNB addition request determines whether to accept resource allocation for the UE 100 based on the received SeNB addition request.
  • the SeNB 200-2 selects a DC special cell based on information included in the SeNB addition request.
  • the SeNB 200-2 transmits an SeNB addition command for providing a new radio resource setting (for example, setting of a DC special cell, setting of a random access preamble) to the MeNB 200-1.
  • a new radio resource setting for example, setting of a DC special cell, setting of a random access preamble
  • FIG. 12 is a sequence diagram showing an operation pattern 2 of the second embodiment.
  • the UE 100 is in a state where an RRC connection with the MeNB 200-1 is established.
  • the SeNB 200-2 transmits information indicating the load level of each cell of the SeNB 200-2 to the MeNB 200-1.
  • the SeNB 200-2 transmits information indicating the class of each cell of the SeNB 200-2 to the MeNB 200-1.
  • the details of the cell class (type) will be described in the third embodiment.
  • steps S231 and S232 may be performed.
  • the MeNB 200-1 selects a cell to be measured by the UE 100 from the SeNB 200-2 cells. Based on the information received from the SeNB 200-2, the MeNB 200-1 may select a cell having a low load level or a cell capable of operating as a DC special cell from the SeNB 200-2 cells as a measurement target cell. Good.
  • the MeNB 200-1 transmits a measurement setting (Measurement Config.) For setting the measurement of the measurement target cell to the UE 100.
  • the UE 100 that has received the measurement setting performs measurement for each cell of the SeNB 200-2 based on the received measurement setting.
  • step S235 the UE 100 transmits a measurement report including the measurement result to the MeNB 200-1.
  • steps S231 to S235 can be applied to the operation pattern 1 described above.
  • the MeNB 200-1 that has received the measurement report determines to use the SeNB resource based on the received measurement report.
  • the MeNB 200-1 selects a cell of the SeNB 200-2 having a good communication state as a DC special cell from the measurement results included in the measurement report received from the UE 100.
  • the MeNB 200-1 transmits an SeNB addition request (SeNB Addition) to the SeNB 200-2.
  • SeNB Addition SeNB addition request
  • the MeNB 200-1 includes information on the selected DC special cell in the SeNB addition request.
  • the SeNB 200-2 that has received the SeNB addition request determines whether to accept resource allocation for the UE 100 based on the received SeNB addition request.
  • the SeNB 200-2 sets the DC special cell based on the information of the DC special cell included in the SeNB addition request.
  • the SeNB 200-2 transmits an SeNB addition command that provides a new radio resource setting (for example, DC special cell setting, random access preamble setting) to the MeNB 200-1.
  • a new radio resource setting for example, DC special cell setting, random access preamble setting
  • step S240 the MeNB 200-1 that has received the SeNB addition command transmits an RRC reconfiguration message to the UE 100.
  • the MeNB 200-1 may cancel the special measurement setting (Measurement Config.) Described above and perform a new measurement setting.
  • the MeNB 200-1 or the SeNB 200-2 selects a DC special cell, and then reselects the DC special cell based on a measurement report newly transmitted from the UE 100.
  • FIG. 13 is a sequence diagram showing an operation pattern 3 of the second embodiment.
  • the UE 100 is in a state where an RRC connection with the MeNB 200-1 is established.
  • the MeNB 200-1 transmits a measurement setting (Measurement Config.) For setting the measurement of the measurement target cell to the UE 100.
  • the UE 100 that has received the measurement setting performs measurement for each cell of the SeNB 200-2 based on the received measurement setting.
  • step S252 the UE 100 transmits the measurement report 1 including the measurement result to the MeNB 200-1.
  • the MeNB 200-1 that has received the measurement report 1 determines to use the SeNB resource based on the received measurement report 1. Also, the MeNB 200-1 selects the cell of the SeNB 200-2 having a good communication state as the DC special cell 1 from the measurement results included in the measurement report 1 received from the UE 100.
  • the MeNB 200-1 transmits an SeNB addition request (SeNB Addition) to the SeNB 200-2.
  • SeNB Addition SeNB addition request
  • the MeNB 200-1 includes the information of the selected DC special cell1 in the SeNB addition request.
  • step S255 the SeNB 200-2 that has received the SeNB addition request determines whether to accept resource allocation for the UE 100 based on the received SeNB addition request.
  • the SeNB 200-2 sets the DC special cell 1 based on the information of the DC special cell 1 included in the SeNB addition request.
  • the SeNB 200-2 transmits an SeNB addition command for providing a new radio resource setting (for example, setting of a DC special cell, setting of a random access preamble) to the MeNB 200-1.
  • a new radio resource setting for example, setting of a DC special cell, setting of a random access preamble
  • step S257 the UE 100 transmits the measurement report 2 including the measurement result to the MeNB 200-1.
  • step S258 the MeNB 200-1 that has received the measurement report 2 selects the cell of the SeNB 200-2 having a good communication state as the DC special cell 2 from the measurement results included in the received measurement report 2.
  • the MeNB 200-1 determines which of the DC special cell 1 selected last time and the DC special cell 2 selected this time is optimal as the DC special cell, and reselects the DC special cell.
  • the MeNB 200-1 transmits an SeNB addition request (SeNB Addition) to the SeNB 200-2.
  • SeNB Addition SeNB addition request
  • the MeNB 200-1 includes information on the selected DC special cell and other cells (SCell) in the SeNB addition request.
  • step S260 the SeNB 200-2 that has received the SeNB addition request sets the DC special cell based on the information of the DC special cell included in the received SeNB addition request.
  • the SeNB 200-2 transmits to the MeNB 200-1 an SeNB addition command that provides a new radio resource setting (for example, setting of a DC special cell, setting of a random access preamble).
  • a new radio resource setting for example, setting of a DC special cell, setting of a random access preamble.
  • Unlicensed band Unlicensed band, mainly used for best-effort communication
  • Shared license band A band with multiple operators in one band, mainly Used for best-effort type communication
  • White space A band that reuses the free time and place of license bands of other companies, and is mainly used for best-effort type communication.
  • the communication control method has an ability to operate as a cell (PCell, DC special cell) in which a physical uplink control channel of the UE 100 is provided for at least one cell managed by the first base station.
  • Cell information indicating whether or not is transmitted from the first base station to the second base station.
  • the first base station may be SeNB 200-2.
  • the second base station may be MeNB 200-1.
  • the first base station transmits the setting update message related to the setting update of the first base station including the cell information.
  • the cell information in the step of transmitting cell information, when the first base station transmits a negative response to the request from the second base station, the cell information is included in the negative response.
  • FIG. 14 is an operation sequence diagram according to the third embodiment.
  • step S300 does eNB1 have the capability to operate as a cell (PCell, DC special cell) that provides a physical uplink control channel of UE 100 for at least one cell managed by eNB1? Cell information indicating whether or not is transmitted to eNB2.
  • PCell PCell, DC special cell
  • the cell information (HO possible) may be included in the Served Cell Information in the eNB Configuration Update message related to the update of the eNB configuration or the X2 setup message for establishing the X2 interface.
  • the cell information may be included in the cause in the HO Preparation Failure, which is a negative response to the handover request, or in the SeNB Addition / Modification failure, which is a negative response to the SeNB Addition / Modification failure.
  • the eNB 2 that has received the Cause stores that the corresponding cell does not have the ability to operate as a PCell / DC special cell.
  • S-RLF which is a radio link failure (RLF) in SCG
  • RLF radio link failure
  • the UE 100 detects an RLF related to the DC special cell in the SCG. Even when the SCG includes a plurality of cells, the UE 100 detects only the RLF of the DC special cell among the plurality of cells.
  • the DC special cell is a special cell in the SCG in which the PUCCH of the UE 100 is provided.
  • the DC special cell performs a part of the function of the primary cell (PCell) in the carrier aggregation.
  • the DC special cell may be referred to as a primary / secondary cell (PSCell).
  • cells other than DC special cell among SCG may be called a secondary cell (SCell).
  • the UE 100 When the UE 100 detects the RLF of the DC special cell, the UE 100 transmits a failure notification that notifies the S-RLF to the MeNB 200-1.
  • S-RLF indication As the operation of the UE 100 after transmitting the S-RLF indication, the following two operation plans can be considered.
  • the first operation plan is an operation in which the UE 100 releases all secondary cells (ie, SCG) belonging to the SeNB 200-2.
  • the second operation plan is an operation in which the UE 100 waits for an RRC reconfiguration message (RRCConnectionReconfiguration message) from the MeNB 200-1 and follows the content of the RRC reconfiguration message.
  • the first operation plan has the following problems. Even when RLF occurs in the DC special cell, it can be assumed that the communication state of the secondary cells other than the DC special cell is good. However, it may not be optimal to release all secondary cells (SCGs) belonging to SeNB 200-2.
  • SCGs secondary cells
  • the second operation plan has the following problems.
  • the MeNB 200-1 determines whether the UE 100 should release all secondary cells (SCG) belonging to the SeNB 200-2 or should resume communication using another secondary cell. become.
  • the MeNB 200-1 does not have information for appropriately making the determination.
  • the UE 100 includes, for example, the latest measurement result or information corresponding to the S-RLF indication.
  • the MeNB 200-1 transfers the information to the SeNB 200-2, and asks the SeNB 200-2 to consider whether to exchange the DC special cell or to release the SCG.
  • MeNB 200-1 determines the operation of UE 100 and instructs UE 100.
  • the communication control method establishes an RRC connection with the MeNB 200-1 in the mobile communication system that supports the dual connection method, and at the UE 100 in which additional radio resources are provided from the SeNB 200-2. Is the method.
  • An SCG including a DC special cell in which the PUCCH of the UE 100 is set is managed by the SeNB 200-2.
  • the communication control method detects the S-RLF in the DC special cell, and when detecting the S-RLF in the DC special cell, the first measurement result for a cell other than the DC special cell in the SCG is sent to the MeNB 200-1. Transmitting.
  • the MeNB 200-1 can obtain information for determining whether to release all secondary cells (SCG) belonging to the SeNB 200-2 or to resume communication using other secondary cells.
  • the first measurement result may include a plurality of measurement results corresponding to a plurality of cells.
  • the UE 100 may further transmit the second measurement result for the DC special cell to the MeNB 200-1 when detecting the S-RLF in the DC special cell.
  • MeNB200-1 can grasp
  • the UE 100 when detecting an S-RLF in the DC special cell, transmits an S-RLF indication for notifying the S-RLF to the MeNB 200-1.
  • the first measurement result and the second measurement result are included in the S-RLF indication.
  • the UE 100 transmits an event trigger type measurement report to the MeNB 200-1.
  • the event is the detection of S-RLF in the DC special cell.
  • the first measurement result and the second measurement result are included in the event-triggered measurement report.
  • the MeNB 200-1 can grasp the occurrence of S-RLF and can grasp the radio status of each SCG cell.
  • the radio status of the DC special cell can be estimated by S-RLF indication or an event trigger type measurement report. Therefore, the second measurement result may not necessarily be included in the S-RLF indication or the event trigger type measurement report.
  • the communication control method is a method in the MeNB 200-1 that establishes an RRC connection with the UE 100, and performs communication in a double connection scheme with the SeNB 200-2 that provides additional radio resources to the UE 100. is there.
  • the communication control method includes the steps of receiving from the UE 100 the S-RLF indication for notifying the S-RLF, the first measurement result for a cell other than the DC special cell in the SCG, and receiving the S-RLF indication. And transmitting a replacement request for requesting replacement of the DC special cell to the SeNB 200-2 together with the first measurement result. Thereby, the SeNB 200-2 can appropriately determine whether or not the replacement of the DC special cell is possible.
  • the MeNB 200-1 may further receive from the UE 100 the second measurement result for the DC special cell.
  • the MeNB 200-1 may transmit the replacement request together with the first measurement result and the second measurement result to the SeNB 200-2.
  • the SeNB 200-2 may not be aware that the S-RLF has been detected by the UE 100. Therefore, by transmitting the second measurement result to the SeNB 200-2, the SeNB 200-2 can appropriately estimate the occurrence of S-RLF.
  • the communication control method is a method in the SeNB 200-2 that performs communication in a double connection scheme together with the MeNB 200-1 that establishes an RRC connection with the UE 100, and provides additional radio resources to the UE 100. is there.
  • the communication control method receives a replacement request for requesting replacement of a DC special cell from the MeNB 200-1 together with a first measurement result for a cell other than the DC special cell in the SCG, and according to reception of the replacement request. And determining whether or not to replace the DC special cell with another cell based on the first measurement result, and notifying the MeNB 200-1 of the determination result.
  • MeNB200-1 can grasp
  • the SeNB 200-2 may receive the second measurement result for the DC special cell from the MeNB 200-1 together with the first measurement result.
  • the SeNB 200-2 may make a determination based on the first measurement result and the second measurement result.
  • the SeNB 200-2 When the SeNB 200-2 selects a new DC special cell from other cells, the SeNB 200-2 notifies the MeNB 200-1 of the new DC special cell. The SeNB 200-2 notifies the MeNB 200-1 to release the SCG when there is no appropriate cell as a new DC special cell among other cells.
  • FIG. 15 is a sequence diagram illustrating an operation pattern 1 according to the fourth embodiment.
  • the UE 100 performs radio link monitoring (RLM) for the DC special cell. Further, the UE 100 performs SCG measurement (RSRP measurement, RSRQ measurement) for each cell based on the measurement setting (Measurement Config.) From the MeNB 200-1.
  • RLM radio link monitoring
  • SCG measurement RSRP measurement, RSRQ measurement
  • step S401 the UE 100 detects S-RLF.
  • the UE 100 may stop uplink transmission to the SCG in response to detection of S-RLF. Further, the UE 100 may stop monitoring the PDCCH for the SCG in response to the detection of the S-RLF.
  • the UE 100 transmits an S-RLF indication for notifying the S-RLF to the MeNB 200-1.
  • the UE 100 includes the measurement results (first measurement result and second measurement result) for SCG in the S-RLF indication.
  • the S-RLF indication may further include information indicating the type of S-RLF.
  • the UE 100 waits for an instruction from the MeNB 200-1 without resuming the connection with the SCG.
  • the MeNB 200-1 receives the S-RLF indication including the first measurement result and the second measurement result from the UE 100.
  • the MeNB 200-1 transmits a replacement request for requesting replacement of the DC special cell to the SeNB 200-2 in response to the reception of the S-RLF indication.
  • the replacement request is SCG-ConfigInfo, which is a new X2 message, or an information element thereof.
  • SCG-ConfigInfo includes measurement results (first measurement result and second measurement result) for SCG.
  • the SeNB 200-2 receives the SCG-ConfigInfo (replacement request) including the first measurement result and the second measurement result from the MeNB 200-1.
  • the SeNB 200-2 determines whether to replace the DC special cell with another secondary cell in response to the reception of the SCG-ConfigInfo (change request). For example, the SeNB 200-2 compares the first measurement result with a threshold value, and sets a cell corresponding to the first measurement result better than the threshold value as a new DC special cell candidate. Alternatively, the SeNB 200-2 compares the first measurement result with the second measurement result, and sets a cell corresponding to the first measurement result better than the second measurement result as a candidate for a new DC special cell. . Then, a new DC special cell is selected from those candidates in consideration of the cell load situation and the like.
  • the SeNB 200-2 may determine that all secondary cells (SCGs) are to be released when no suitable candidate exists as a new DC special cell.
  • SCGs secondary cells
  • Step S404 the SeNB 200-2 notifies the MeNB 200-1 of its own determination result.
  • the notification is SCG-Configuration that is a new X2 message or an information element thereof.
  • the MeNB 200-1 receives the SCG-Configuration (judgment result).
  • the MeNB 200-1 transmits an RRC reconfiguration message (RRCConnectionReconfiguration message) related to the update of the SCG configuration to the UE 100 based on the SCG-Configuration (judgment result).
  • the RRC reconfiguration message includes information specifying a new DC special cell.
  • the RRC reconfiguration message may include information designating release of the SCG.
  • the UE 100 applies RRC reconfiguration specified by the RRC reconfiguration message in response to reception of the RRC reconfiguration message. However, the UE 100 may determine to reject the RRC reconfiguration when at least part of the RRC reconfiguration specified by the RRC reconfiguration message cannot be performed. Here, the description will proceed on the assumption that the UE 100 can perform the RRC reconfiguration specified by the RRC reconfiguration message.
  • step S406 the UE 100 transmits an RRC reconfiguration completion message (RRCConnectionReconfigurationComplete) to the MeNB 200-1.
  • step S407 the MeNB 200-1 transmits an acknowledgment message (Inter eNB RRC message) for the SCG-Configuration (judgment result) to the SeNB 200-2.
  • an acknowledgment message (Inter eNB RRC message) for the SCG-Configuration (judgment result) to the SeNB 200-2.
  • FIG. 16 is a sequence diagram showing an operation pattern 2 of the fourth embodiment.
  • the UE 100 performs radio link monitoring (RLM) for the DC special cell.
  • RLM radio link monitoring
  • the MeNB 200-1 transmits a measurement setting (Measurement Config.) For setting an event trigger type measurement report to the UE 100.
  • the measurement setting includes information that specifies an event to be a trigger.
  • the specified event is an event that an S-RLF is detected in the DC special cell.
  • the UE 100 performs measurement (RSRP measurement, RSRQ measurement) for each cell with respect to the SCG based on the measurement setting.
  • step S412 the UE 100 detects S-RLF.
  • step S413 the UE 100 transmits an S-RLF indication for notifying the S-RLF to the MeNB 200-1.
  • the S-RLF indication may include information indicating the type of S-RLF.
  • step S414 the UE 100 transmits an event trigger type measurement report (Measurement Report) to the MeNB 200-1 in response to the specified event being satisfied.
  • UE100 includes the measurement result (the 1st measurement result and the 2nd measurement result) about SCG in a measurement report.
  • Step S413 and step S414 may be performed simultaneously.
  • the UE 100 waits for an instruction from the MeNB 200-1 without resuming the connection with the SCG.
  • the MeNB 200-1 receives the measurement report including the S-RLF indication and the first measurement result and the second measurement result from the UE 100.
  • step S415 the MeNB 200-1 transmits a replacement request for requesting replacement of the DC special cell to the SeNB 200-2 in response to the reception of the S-RLF indication.
  • the replacement request is SCG-ConfigInfo, which is a new X2 message, or an information element thereof.
  • SCG-ConfigInfo includes measurement results (first measurement result and second measurement result) for SCG. Subsequent operations (steps S416 to S419) are the same as those in the operation pattern 1.
  • the second embodiment includes an example of selecting or reselecting an SCG composed of a plurality of cells including a DC special cell based on the measurement report.
  • the second embodiment naturally includes an example of selecting or reselecting an SCG cell other than the DC special cell based on the measurement report.
  • the third embodiment described above can be applied not only to the double connection method but also to a normal handover.
  • the first measurement result for a cell other than the DC special cell in the SCG is transmitted to the MeNB 200-1.
  • the first measurement result may further include a measurement result of a cell (non-serving cell of UE 100) that is not included in the SCG among the cells of SeNB 200-2. That is, the first measurement result may be a measurement result for a cell having a frequency different from the frequency of the DC special cell.
  • the SeNB 200-2 selects a new DC special cell from secondary cells included in the SCG in response to reception of the SCG-ConfigInfo (change request).
  • the SeNB 200-2 may select a new DC special cell from its own cell (non-serving cell of the UE 100) that is not included in the SCG.
  • the LTE system has been described as an example of the mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • This appendix also considers whether the UE should include the latest measurement results in the S-RLF report.
  • the UE should perform special SCell (S-RLM) radio link monitoring for the purpose of L1 asynchronous detection.
  • S-RLM special SCell
  • the S-RLM specification should reuse the current RLM specification as much as possible.
  • the UE should report the S-RLF to the MeNB (triggered by RLM, RA or RLC) and indicate the satisfied trigger.
  • the UE should stop UL transmission to the SCG during S-RLF.
  • the UE detects the S-RLF, it does not need to monitor the PDCCH for SCG.
  • FIGS. 17 shows PSCell S-RLF triggered by interference from adjacent small cells on the same frequency layer while other cells in the SCG are not affected.
  • FIG. 18 shows PSCell S-RLF triggered by interference from MCG cells on the same frequency layer while other cells in the SCG are not affected.
  • the S-RLF is detected by the UE due to SCell (PSCell) interference, even though other cells in the SCG are not affected.
  • the MeNB has the option of reconfiguring the UE in order to resume double connection operation with the same SeNB. In order to avoid unnecessary complexity of establishing a new connection to the same SeNB, the UE should not release the resources associated with the SCG when S-RLF is triggered.
  • Proposal 1 UE should not release all resources related to SCG when S-RLF is triggered.
  • the MeNB releases the SCG for the UE as soon as it is notified of the S-RLF status Or you should have the option to resume.
  • the MeNB simply knows the cause of the S-RLF (ie, RLF, RLM or RACH anomaly) but is not given enough information to make an appropriate decision.
  • the measurement results should be known for proper determination by the MeNB.
  • ⁇ Proposal 2 MeNB should be given the measurement result of the serving cell in SCG during S-RLF.
  • Option 1 it is up to the MeNB to set the appropriate measurement event for the SCG cell to the UE and to assist the SCell (SeNB) in selecting the most appropriate PSCell to prevent S-RLF as much as possible.
  • the measurement report is also shared with the SeNB also depends on the MeNB. Since measurement and event reporting is based on timeToTrigger, the MeNB may not know the latest measurement results in relation to the S-RLF trigger.
  • the measurement result of the SCG serving cell is included as part of the S-RLF report sent to the MeNB. It may be further considered whether measurements from neighboring cells also need to be included. In this option, the latest measurement corresponding to the cause of the S-RLF is reported to the MeNB. This is also consistent with existing RLF reports for MCG that include the type of measurement as part of VarRLF-Report.
  • Option 2 provides a better advantage for MeNB to make an appropriate decision.
  • ⁇ Proposal 3 The latest measurement result from the SCG cell should be included in the S-RLF report triggered by the S-RLF.
  • the MeNB when requesting the SeNB to add an SCell or establish an SCG, the MeNB is allowed to give the latest measurement result of the SCG cell.
  • S-RLF it is beneficial for the SeNB to obtain the latest measurement results, especially when the MeNB chooses to resume operation of the UE with the same SCG. However, this does not fall into the category of adding SCells or establishing new SCGs. Therefore, it may need to be further clarified that the MeNB is allowed to give these S-RLF related measurements to the SeNB.
  • the MeNB may be beneficial for the MeNB to inform the SeNB of the cause for the S-RLF.
  • the S-RLF it may be beneficial for the S-RLF to know if the cause of the S-RLF is due to PRACH or RLM anomalies in order to assist the SeNB in selecting the most appropriate PSCell for the UE.
  • Proposal 4 When the MeNB selects to resume operation of the UE with the same SCG during S-RLF, the MeNB can give the latest measurement report and the cause of the S-RLF to the SeNB.
  • the MeNB should be an entity for determining whether the SCG is released or resumed for the UE. To assist in the proper determination of the MeNB, the latest measurement results should be given to the MeNB during S-RLF. If the MeNB chooses to resume UE operation with the same SCG, it is beneficial for the MeNB to give the SeNB a measurement report along with the cause for the S-RLF.
  • the MeNB may initiate a SeNB release request when it recognizes the occurrence of RLF.
  • RLF Radio Link
  • SCG SeNB release request
  • the SeNB may not be able to determine which one.
  • a basic question is whether this Cause value is necessary for the SeNB release request. This is because the SeNB release request cannot be rejected. Instead, if the SeNB can use the Cause value for parameter adjustment, the type of Cause value should be clarified.
  • a new Cause value such as “Loss of radio connection with SeNB terminal” (SeNB Radio Connection with UE Lost) can be introduced.
  • ⁇ Proposal 1 It should be discussed whether “Loss of wireless connection with terminal” is necessary for SeNB release request. If it is beneficial to the SeNB, the type of RLF should be clarified.
  • the terminal provides an SCG abnormality report to the MeNB along with the latest measurement result.
  • the MeNB can use the reported measurement results to determine whether the SeNB should be released or modified.
  • SCG anomaly reports also include detailed causes of SCG-RLF. That is, a physical layer problem, a random access error, or an RLC error. Such information is also used by the MeNB to determine whether the SeNB should be released or modified. Obviously, an operation in which the MeNB always decides to release the SeNB is not expected. Therefore, there is a need to provide measurement reports for all SCG cells.
  • the MeNB can decide to release the SeNB using the SeNB release procedure. Regardless of the indicated Cause value, the SeNB cannot reject the SeNB release request.
  • the MeNB may start SeNB modification for PSCell exchange.
  • the MeNB may start the SeNB modification preparation procedure.
  • the SeNB modification preparation procedure probably includes a request to add a new SCG cell as a candidate for a new PSCell.
  • the SeNB is permitted to reject the SeNB modification preparation request caused by the MeNB. Without knowing the reason for such a modification request (ie, without knowing that it is due to SCG-RLF), the SeNB may reject the modification request for an undesirable wrong reason.
  • the SeNB Even if the SeNB can detect the occurrence of SCG-RLF, the abnormality detection may not be quick without feedback from the terminal. This is exactly why the SCG anomaly report is quickly sent to the MeNB during SCG-RLF. Subsequently, the SeNB should be given the opportunity to receive a similar notification about this anomaly without delay.
  • ⁇ Proposal 2 When an SCG-RLF occurs, the SeNB modification preparation procedure caused by the MeNB should include the Cause value, “Loss of radio connection with the terminal”.
  • communication in the double connection method can be performed appropriately, which is useful in the mobile communication field.

Abstract

 実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための通信制御方法である。前記通信制御方法は、前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、前記ユーザ端末に対するリソース割当を要求するための追加要求を前記マスタ基地局から前記セカンダリ基地局が受信するステップと、有する。前記追加要求を受信するステップにおいて、前記マスタ基地局は、前記測定結果に含まれる前記セカンダリ基地局のセルについての測定結果を前記追加要求に含めて送信する。

Description

通信制御方法
 本発明は、移動通信システムにおいて用いられる通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降において二重接続方式(Dual connectivity)の導入が予定されている(非特許文献1参照)。二重接続方式では、ユーザ端末は、複数の基地局との接続を同時に確立する。ユーザ端末には、各基地局から無線リソースが割り当てられるため、スループットの向上が見込まれる。
 二重接続方式では、ユーザ端末との接続を確立する複数の基地局のうち、1つの基地局(以下、「マスタ基地局」という)のみが当該ユーザ端末とのRRC接続を確立する。これに対し、当該複数の基地局のうち他の基地局(以下、「セカンダリ基地局」という)は、RRC接続をユーザ端末と確立せずに、追加的な無線リソースをユーザ端末に提供する。なお、二重接続方式は、基地局間キャリアアグリゲーション(inter-eNB CA)と称されることもある。
3GPP技術報告書 「TR 36.842 V12.0.0」  2014年1月7日
 二重接続方式の通信を適切に行うためには、基地局間の連携を強化する必要があると考えられる。
 そこで、本発明は、二重接続方式の通信を適切に行うことを可能とする通信制御方法を提供することを目的とする。
 第1の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、前記ユーザ端末に対するリソース割当を要求するための追加要求を前記マスタ基地局から前記セカンダリ基地局が受信するステップと、を有する。前記追加要求を受信するステップにおいて、前記マスタ基地局は、前記測定結果に含まれる前記セカンダリ基地局のセルについての測定結果を前記追加要求に含めて送信する。
 第2の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末のRRC再設定を行うRRC再設定メッセージを前記マスタ基地局から前記ユーザ端末に送信するステップと、前記RRC再設定メッセージの送信に関して通知するRRC再設定通知を前記マスタ基地局から前記セカンダリ基地局に送信するステップと、を有する。
 第3の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、前記測定報告に基づいて、前記セカンダリ基地局が管理している複数のセルの中から、前記ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルを選択するステップと、を有する。
 第4の特徴に係る通信制御方法は、第1の基地局が管理している少なくとも1つのセルについて、ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルとして動作する能力を有するか否かを示すセル情報を、前記第1の基地局から第2の基地局に送信するステップを有する。
 第5の特徴に係る通信制御方法は、二重接続方式をサポートする移動通信システムにおいて、マスタ基地局とのRRC接続を確立するとともに、セカンダリ基地局から追加的な無線リソースが提供されるユーザ端末における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記特別なセルにおける無線リンク障害を検知するステップと、前記特別なセルにおける無線リンク障害を検知した場合、前記セカンダリセルグループのセルに対する測定結果を前記マスタ基地局に送信するステップと、を有する。
 第6の特徴に係る通信制御方法は、ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末とのRRC接続を確立するマスタ基地局における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果を含む前記特別なセルにおける無線リンク障害を通知する障害通知を前記ユーザ端末から受信するステップと、前記特別なセルの交代を要求するための交代要求を前記セカンダリ基地局に送信するステップと、を有する。前記送信するステップにおいて、前記マスタ基地局は、前記ユーザ端末から受信した前記第1の測定結果を前記交代要求に含めて送信する。
 第7の特徴に係る通信制御方法は、ユーザ端末とのRRC接続を確立するマスタ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記特別なセルの交代を要求するための交代要求を、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果と共に前記マスタ基地局から受信するステップと、前記交代要求の受信に応じて、前記特別なセルを他のセルと交代するか否かの判断を前記第1の測定結果に基づいて行うステップと、前記判断の結果を前記マスタ基地局に通知するステップと、を有することを特徴とする。
第1実施形態乃至第3実施形態に係るLTEシステムの構成図である。 第1実施形態乃至第3実施形態に係るUEのブロック図である。 第1実施形態乃至第3実施形態に係るeNBのブロック図である。 第1実施形態乃至第3実施形態に係る無線インターフェイスのプロトコルスタック図である。 第1実施形態乃至第3実施形態に係る無線フレームの構成図である。 第1のUPアーキテクチャを示す図である。 第2のUPアーキテクチャを示す図である。 二重接続方式を開始する動作を示すシーケンス図である。 MeNB200-1がUE100に対してRRC再設定を行う場合の動作を示すシーケンス図である。 第1実施形態に係る動作シーケンスを示すシーケンス図である。 第2実施形態の動作パターン1を示すシーケンス図である。 第2実施形態の動作パターン2を示すシーケンス図である。 第2実施形態の動作パターン3を示すシーケンス図である。 第3実施形態に係る動作シーケンス図である。 第4実施形態の動作パターン1を示すシーケンス図である。 第4実施形態の動作パターン2を示すシーケンス図である。 SCG内の全てのセルに関連するリソースを解放することが好ましくないケースを説明するための図である。 SCG内の全てのセルに関連するリソースを解放することが好ましくないケースを説明するための図である。
 [実施形態の概要]
 第2実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、前記ユーザ端末に対するリソース割当を要求するための追加要求を前記マスタ基地局から前記セカンダリ基地局が受信するステップと、を有する。前記追加要求を受信するステップにおいて、前記マスタ基地局は、前記測定結果に含まれる前記セカンダリ基地局のセルについての測定結果を前記追加要求に含めて送信する。
 第1実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末のRRC再設定を行うRRC再設定メッセージを前記マスタ基地局から前記ユーザ端末に送信するステップと、前記RRC再設定メッセージの送信に関して通知するRRC再設定通知を前記マスタ基地局から前記セカンダリ基地局に送信するステップと、を有する。
 第1実施形態では、前記RRC再設定通知の送信は、前記RRC再設定メッセージの送信よりも先に行われる。
 第1実施形態では、前記RRC再設定通知は、前記RRC再設定の内容を含む。
 第1実施形態では、前記通信制御方法は、前記RRC再設定通知を受信した前記セカンダリ基地局が、当該RRC再設定通知に基づいて前記ユーザ端末に対する送信を停止するステップをさらに有する。
 第1実施形態では、前記セカンダリ基地局は、前記RRC再設定通知を受信してから所定時間が経過するまで、前記ユーザ端末に対する送信を停止する。前記所定時間は、前記ユーザ端末が前記RRC再設定メッセージを受信してから当該RRC再設定メッセージが反映されるまでの時間に対応する。前記セカンダリ基地局は、前記所定時間の経過後に前記ユーザ端末に対する送信を再開する。
 第1実施形態では、前記通信制御方法は、前記RRC再設定が完了したことを示すRRC再設定完了メッセージを前記ユーザ端末から前記マスタ基地局が受信するステップと、前記RRC再設定完了メッセージの受信に応じて、RRC再設定完了通知を前記マスタ基地局から前記セカンダリ基地局に送信するステップと、前記RRC再設定完了通知を受信した前記セカンダリ基地局が、当該RRC再設定完了通知に基づいて前記ユーザ端末に対する送信を再開するステップと、をさらに有する。
 第1実施形態では、前記停止するステップにおいて前記セカンダリ基地局が停止する前記送信は、ユーザ個別チャネル上での送信である。
 第2実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための方法である。前記通信制御方法は、前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、前記測定報告に基づいて、前記セカンダリ基地局が管理している複数のセルの中から、前記ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルを選択するステップと、を有する。
 第2実施形態では、前記特別なセルを選択するステップは、前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告を前記セカンダリ基地局に転送するステップと、前記転送された測定報告を受信した前記セカンダリ基地局が前記特別なセルを選択するステップと、を含む。
 第2実施形態では、前記特別なセルを選択するステップは、前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告に基づいて、前記特別なセルの候補を前記セカンダリ基地局に通知するステップと、前記セカンダリ基地局が、前記通知された候補に基づいて前記特別なセルを選択するステップと、を含む。
 第2実施形態では、前記特別なセルを選択するステップは、前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告に基づいて、前記特別なセルを選択するステップと、前記選択された特別なセルを前記マスタ基地局から前記セカンダリ基地局に通知するステップと、を含む。
 第2実施形態では、前記特別なセルを選択するステップにおいて、前記セカンダリ基地局が管理している前記複数のセルのそれぞれの能力及び/又は負荷状況にさらに基づいて前記特別なセルを選択する。
 第2実施形態では、前記通信制御方法は、前記セカンダリ基地局が管理している前記複数のセルのそれぞれの能力及び/又は負荷状況に基づいて、前記測定報告の送信を制御する情報を前記マスタ基地局から前記ユーザ端末に送信するステップをさらに有する。
 第2実施形態では、前記通信制御方法は、前記ユーザ端末から新たに送信された測定報告に基づいて、前記セカンダリ基地局が管理している複数のセルの中から前記特別なセルを再選択するステップをさらに有する。
 第3実施形態に係る通信制御方法は、第1の基地局が管理している少なくとも1つのセルについて、ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルとして動作する能力を有するか否かを示すセル情報を、前記第1の基地局から第2の基地局に送信するステップを有する。
 第3実施形態では、前記セル情報を送信するステップにおいて、前記第1の基地局は、当該第1の基地局の設定の更新に関する設定更新メッセージに前記セル情報を含めて送信する。
 第3実施形態では、前記セル情報を送信するステップにおいて、前記第1の基地局は、前記第2の基地局からの要求に対する否定応答に前記セル情報を含めて送信する。
 第4実施形態に係る通信制御方法は、二重接続方式をサポートする移動通信システムにおいて、マスタ基地局とのRRC接続を確立するとともに、セカンダリ基地局から追加的な無線リソースが提供されるユーザ端末における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記特別なセルにおける無線リンク障害を検知するステップと、前記特別なセルにおける無線リンク障害を検知した場合、前記セカンダリセルグループのセルに対する測定結果を前記マスタ基地局に送信するステップと、を有する。
 前記特別なセルにおける無線リンク障害を検知した場合、前記送信するステップにおいて、前記ユーザ端末は、隣接セルに対する測定結果を前記マスタ基地局にさらに送信する。
 前記測定結果は、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する測定結果である。
 前記通信制御方法は、前記特別なセルにおける無線リンク障害を検知した場合、前記無線リンク障害を通知する障害通知を前記マスタ基地局に送信するステップを有する。前記測定結果は、前記障害通知に含まれている。
 前記通信制御方法は、前記マスタ基地局から指定されたイベントが発生した場合、イベントトリガ型の測定報告を前記マスタ基地局に送信するステップを有する。前記イベントは、前記特別なセルにおける無線リンク障害を検知したことである。前記測定結果は、前記イベントトリガ型の測定報告に含まれている。
 第4実施形態に係る通信制御方法は、ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末とのRRC接続を確立するマスタ基地局における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果を含む前記特別なセルにおける無線リンク障害を通知する障害通知を前記ユーザ端末から受信するステップと、前記特別なセルの交代を要求するための交代要求を前記セカンダリ基地局に送信するステップと、を有する。前記送信するステップにおいて、前記マスタ基地局は、前記ユーザ端末から受信した前記第1の測定結果を前記交代要求に含めて送信する。
 前記送信するステップにおいて、前記マスタ基地局は、前記ユーザ端末から受信した前記第1の測定結果を前記交代要求に含めて送信する。
 前記受信するステップにおいて、前記マスタ基地局は、前記特別なセルに対する第2の測定結果を前記ユーザ端末からさらに受信する。前記送信するステップにおいて、前記マスタ基地局は、前記第1の測定結果及び前記第2の測定結果を前記交代要求に含めて送信する。
 第4実施形態に係る通信制御方法は、ユーザ端末とのRRC接続を確立するマスタ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局における方法である。前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されている。前記通信制御方法は、前記特別なセルの交代を要求するための交代要求を、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果と共に前記マスタ基地局から受信するステップと、前記交代要求の受信に応じて、前記特別なセルを他のセルと交代するか否かの判断を前記第1の測定結果に基づいて行うステップと、前記判断の結果を前記マスタ基地局に通知するステップと、を有する。
 前記受信するステップにおいて、前記セカンダリ基地局は、前記特別なセルに対する第2の測定結果を前記第1の測定結果と共に前記マスタ基地局から受信する。前記判断を行うステップにおいて、前記セカンダリ基地局は、前記第1の測定結果及び前記第2の測定結果に基づいて前記判断を行う。
 前記他のセルの中から新たな特別なセルを選択した場合、前記通知するステップにおいて、前記セカンダリ基地局は、前記新たな特別なセルを前記マスタ基地局に通知する。
 前記他のセルの中に新たな特別なセルとして適切なセルが存在しない場合、前記通知するステップにおいて、前記セカンダリ基地局は、前記セカンダリセルグループを解放することを前記マスタ基地局に通知する。
 [第1実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、第1実施形態に係るLTEシステムの構成図である。
 図1に示すように、第1実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。SGWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、制御部を構成する。また、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサとしてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びRRC接続確立時のランダムアクセス手順などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。また、各サブフレームの残りの区間は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける他の部分は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (二重接続方式)
 第1実施形態に係るLTEシステムは、二重接続方式をサポートする。二重接続方式は、リリース12以降において導入が予定されている。二重接続方式では、UE100は、複数のeNB200との接続を同時に確立する。UE100には、各eNB200から無線リソースが割り当てられるため、スループットの向上が見込まれる。なお、二重接続方式は、eNB200間キャリアアグリゲーション(inter-eNB CA)と称されることもある。
 図5は、二重接続方式の概要を説明するための図である。
 図5に示すように、二重接続方式では、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)200-1のみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)200-2は、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。言い換えると、MeNB200-1は、ユーザプレーン接続だけでなく制御プレーン接続をUE100と確立する。これに対し、SeNB200-2は、制御プレーン接続をUE100と確立せずに、ユーザプレーン接続をUE100と確立する。MeNB200-1とSeNB200-2との間にはXnインターフェイスが設定される。Xnインターフェイスは、X2インターフェイス又は新たなインターフェイスである。
 二重接続方式では、UE100は、MeNB200-1が管理するN個のセル及びSeNB200-2が管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。二重接続方式においてUE100のサービングセルの最大数、すなわち、(N+M)の最大数は、例えば5である。ここで、MeNB200-1が管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNB200-2が管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。SCGには、UE100のPUCCHを設ける特別なセルが設定される。特別なセルは、キャリアアグリゲーションにおけるプライマリセル(PCell)の機能の一部を遂行する。以下において、当該特別なセルを「DC special cell」と称する。
 図6及び図7は、二重接続方式におけるユーザデータの転送経路(データパス)の構成方式を説明するための図である。二重接続方式におけるユーザデータの転送経路(データパス)を構成するユーザプレーンアーキテクチャ(UPアーキテクチャ)は主に2通り存在する。
 図6は、第1のUPアーキテクチャを示す。図6(a)に示すように、第1のUPアーキテクチャでは、MeNB200-1とS-GW300Uとの間のS1-Uインターフェイスと、SeNB200-2とS-GW300Uとの間のS1-Uインターフェイスと、が利用される。UE100とP-GWとの間のEPSベアラ#1は、MeNB200-1とS-GW300Uとの間のS1-Uインターフェイスを経由する。UE100とP-GWとの間のEPSベアラ#2は、SeNB200-2とS-GW300Uとの間のS1-Uインターフェイスを経由する。このように、第1のUPアーキテクチャでは、SeNB200-2とS-GW300Uとの間のデータパスはMeNB200-1を経由しない。図6(b)に示すように、MeNB200-1及びSeNB200-2のそれぞれは、PDCP、RLC、MACの各層の処理を行う。
 図7は、第2のUPアーキテクチャを示す。図7(a)に示すように、第2のUPアーキテクチャでは、UE100とP-GWとの間のEPSベアラ#2は、MeNB200-1において分割されており、分割された一方(split bearer)はSeNB200-2を経由してUE100で終端し、分割された他方(split bearer)はSeNB200-2を経由せずにUE100で終端する。このように、第2のUPアーキテクチャでは、SeNB200-2とS-GW300Uとの間のデータパスはMeNB200-1を経由する。図7(b)に示すように、EPSベアラ#2における分割された一方(split bearer)については、MeNB200-1のPDCP、SeNB200-2のRLC及びMAC、により各層の処理を行う。なお、split bearerについては、RLC(又はRLCの一部機能)までの処理をMeNBが担当してもよい。
 図8は、二重接続方式を開始する動作を示すシーケンス図である。図8の初期状態において、UE100は、MeNB200-1とのRRC接続を確立した状態である。
 図8に示すように、ステップS11において、UE100は、UE100においてセル毎に求められた測定結果を含む測定報告をMeNB200-1に送信する。測定結果は、測定セルの識別情報と参照信号受信電力(RSRP)/参照信号受信品質(RSRQ)との組み合わせを含む。
 ステップS12において、測定報告を受信したMeNB200-1は、受信した測定報告又は他のパラメータに基づいて、SeNBリソースを使用することを決定する。
 ステップS13において、MeNB200-1は、UE100に対するリソース割り当てを要求するためのSeNB追加要求(SeNB Addition)をSeNB200-2に送信する。SeNB追加要求は、UE100に関する各種パラメータを含む。
 ステップS14において、SeNB追加要求を受信したSeNB200-2は、受信したSeNB追加要求に基づいて、UE100に対するリソース割り当てを承諾するか否かを判断する。UE100に対するリソース割り当てを承諾する場合、SeNB200-2は、UE100のための無線リソース(例えば、DC special cell)を設定する。SeNB200-2は、UE100に割り当てるランダムアクセスプリアンブルを選択してもよい。
 ステップS15において、SeNB200-2は、新たな無線リソース設定(例えば、DC special cellの設定、ランダムアクセスプリアンブル設定)を提供するSeNB追加指令をMeNB200-1に送信する。
 ステップS16において、SeNB200-2は、新たな無線リソース設定に応じて、DC special cell(のパラメータ)を設定する。なお、ステップS15及びステップS16の順序は逆であってもよい。
 ステップS17において、SeNB追加指令を受信したMeNB200-1は、受信したSeNB追加指令に基づいて、UE100に送信するRRCメッセージを生成する。
 ステップS18において、MeNB200-1は、生成したRRCメッセージ(RRC再設定メッセージ)をUE100に送信する。
 ステップS19において、RRC再設定メッセージを受信したUE100は、受信したRRC再設定メッセージに基づいて、SCGに対応するMACエンティティを生成する。ここで、SCGに含まれるDC special cellが有効な状態(Activate)であり、SCGに含まれる他のセルは無効な状態(Deactivate)である。
 ステップS21において、UE100は、RRC再設定が完了したことを示すRRC再設定完了メッセージをMeNB200-1に送信する。
 ステップS22において、UE100は、SeNB200-2に対するランダムアクセスを行う。
 ステップS23において、SeNB200-2は、UE100との同期を検出し、新たな無線リソース設定が使用可能になったことを示す通知(SeNB Addition complete)をMeNB200-1に送信する。
 ステップS24において、SeNB200-2は、DC special cellを用いて、UE100に対する下りリンク制御信号をPDCCH上で送信し、UE100に対する下りリンクユーザデータをPDSCH上で送信する。
 ステップS25において、SeNB200-2は、MAC層において、SCGに含まれる他のセルの使用を開始することを決定する。
 ステップS26において、SeNB200-2は、SCGに含まれる他のセルを有効化(Activate)することを示すMAC制御要素をUE100に送信する。
 ステップS27において、MAC制御要素を受信したUE100は、受信したMAC制御要素に基づいて、SCGに含まれる他のセルを有効化(Activate)する。
 (第1実施形態に係る通信制御方法)
 図9は、MeNB200-1がUE100に対してRRC再設定を行う場合の動作を示すシーケンス図である。UE100は、MeNB200-1及びSeNB200-2との接続を確立した状態である(ステップS101)。
 図9に示すように、ステップS102において、MeNB200-1は、UE100のRRC再設定を行うRRC再設定メッセージをUE100に送信する。例えば、MCG:3セル及びSCG:2セルである場合に、MCG:4セル及びSCG:1セルに変更する旨のRRC再設定メッセージであると仮定する。
 ここで、UE100がRRC再設定メッセージを受信してから当該RRC再設定メッセージが反映されるまでの時間は、15ms程度である(ステップS103)。MeNB200-1は、RRC再設定メッセージが反映されるまでは、UE100へのPDSCH割り当てを停止する(ステップS104)。
 一方、SeNB200-2は、UE100がRRC再設定中であることを把握していないため、UE100へのPDSCH割り当てを継続し、UE100に対する下りリンク制御信号をPDCCH上で送信し、UE100に対する下りリンクユーザデータをPDSCH上で送信する(ステップS105乃至S108)。
 しかしながら、UE100がRRC再設定中である期間においては、UE100は、SeNB200-2からの下りリンク制御信号及び下りリンクユーザデータを受信できないため、ステップS105乃至S107の割り当て及び送信が無駄になる。
 そこで、第1実施形態では、以下の方法により、上述したような問題を解決する。
 第1実施形態に係る通信制御方法は、UE100のRRC再設定を行うRRC再設定メッセージをMeNB200-1からUE100に送信するステップと、RRC再設定メッセージの送信に関して通知するRRC再設定通知をMeNB200-1からSeNB200-2に送信するステップと、を有する。RRC再設定通知を受信したSeNB200-2は、当該RRC再設定通知に基づいて、UE100に対する送信を停止する。これにより、MeNB200-1は、UE100がRRC再設定中であることを把握できるため、UE100に対して無駄な割り当て及び送信を行うことを防止できる。
 なお、SeNB200-2が停止する送信とは、ユーザ個別チャネル(例えば、DTCH:Dedicated Traffic CHannel、DCCH:Dedicated Control CHannel)上での送信である。よって、SeNB200-2は、UE100に対するユーザ個別チャネルの送信を停止しても、ページング等のブロードキャスト送信を継続してもよい。
 第1実施形態では、RRC再設定通知の送信は、RRC再設定メッセージの送信よりも先に行われる。これにより、バックホール(Xnインターフェイス)において伝送遅延が生じても、RRC再設定通知をSeNB200-2が受信するタイミングを、RRC再設定メッセージの送信タイミングに合わせることが可能となる。
 第1実施形態では、RRC再設定通知は、RRC再設定の内容を含む。これにより、SeNB200-2は、MeNB200-1がUE100に対して行うRRC再設定の内容を把握することができるため、適切な通信制御を行うことが可能となる。
 第1実施形態では、SeNB200-2は、RRC再設定通知を受信してから所定時間が経過するまで、UE100に対する送信を停止する。所定時間は、UE100がRRC再設定メッセージを受信してから当該RRC再設定メッセージが反映されるまでの時間に対応する。SeNB200-2は、所定時間の経過後にUE100に対する送信を再開する。これにより、UE100のRRC再設定の完了に合わせて、SeNB200-2がUE100に対する送信を再開することができる。
 或いは、SeNB200-2で自律的に送信を再開するのではなく、MeNB200-1からの通知に応じて送信を再開してもよい。この場合、通信制御方法は、RRC再設定が完了したことを示すRRC再設定完了メッセージをUE100からMeNB200-1が受信するステップと、RRC再設定完了メッセージの受信に応じて、RRC再設定完了通知をMeNB200-1からSeNB200-2に送信するステップと、RRC再設定完了通知を受信したSeNB200-2が、当該RRC再設定完了通知に基づいてUE100に対する送信を再開するステップと、を有する。
 (第1実施形態に係る動作シーケンス)
 図10は、第1実施形態に係る動作シーケンスを示すシーケンス図である。UE100は、MeNB200-1及びSeNB200-2との接続を確立した状態である(ステップS151)。
 図10に示すように、ステップS152において、MeNB200-1は、RRC再設定通知(RRC Connection Reconfiguration Initiation)をSeNB200-2に送信する。RRC再設定通知は、RRC設定(RRC Configuration)を格納するRRCコンテナ、開始/終了を示すフラグ、のうち少なくとも一方を含む。ここで、RRCコンテナにより、SeNB200-2は、RRC設定の内容を把握することができるため、RRC設定の内容に基づいて送信停止を行うべきか否かを判断することができる。RRC再設定通知は、後述するステップS156で使用するタイマの閾値を含んでもよい。
 RRC再設定通知は、RRC再設定メッセージの送信タイミングよりも、バックホール(Xnインターフェイス)の伝送遅延時間だけ前のタイミングで送信されることが好ましい。
 ステップS153において、MeNB200-1は、RRC再設定メッセージをUE100に送信する。RRC再設定メッセージを受信したUE100は、受信したRRC再設定メッセージに基づいてRRC再設定を開始する。
 ステップS154において、MeNB200-1は、RRC再設定メッセージが反映されるまで、UE100へのPDSCH割り当てを停止する。
 ステップS155において、RRC再設定通知を受信したSeNB200-2は、受信したRRC再設定通知に基づいて、UE100に対する送信を停止する。
 ステップS156において、SeNB200-2は、所定時間を計時するためのタイマを起動する。所定時間は、UE100がRRC再設定メッセージを受信してから当該RRC再設定メッセージが反映されるまでの時間に対応する。
 ステップS157において、UE100は、RRC再設定完了メッセージをMeNB200-1に送信する。
 ステップS158において、MeNB200-1は、RRC再設定完了メッセージの受信に応じて、RRC再設定完了通知(RRC Connection Reconfiguration complete)をSeNB200-2に送信してもよい。
 ステップS159において、SeNB200-2は、タイマの満了又はRRC再設定完了通知の受信を検知する。
 ステップS160において、タイマの満了又はRRC再設定完了通知の受信を検知したSeNB200-2は、UE100に対する送信を再開する。
 [第2実施形態]
 以下において、第2実施形態に係る通信制御方法について、第1実施形態との相違点を主として説明する。
 (第2実施形態に係る通信制御方法)
 上述したように、SCGには、UE100のPUCCHが設けられるDC special cellが設定される。ここで、DC special cellは、SCGの他のセルに比べて通信状態が良いセルであることが望まれる。通信状態が良いセルとは、例えば、所望波の受信電力が高いセル、干渉電力が低いセル、負荷レベルが低いセルである。DC special cellにおいて通信状態が悪いと、上りリンク制御信号が正常に伝送されず、二重接続方式の通信を適切に実施することが難しくなる。
 そこで、第2実施形態では、以下の方法により、上述したような問題を解決する。
 第2実施形態に係る通信制御方法は、UE100においてセル毎に求められた測定結果を含む測定報告をUE100からMeNB200-1が受信するステップと、測定報告に基づいて、SeNB200-2が管理している複数のセルの中から、UE100の物理上りリンク制御チャネルを設けるDC special cellを選択するステップと、を有する。これにより、UE100における通信状態が良いセルをDC special cellとして選択可能となり、二重接続方式の通信を適切に実施することができる。
 第2実施形態では、DC special cellを選択するステップは、測定報告を受信したMeNB200-1が、当該受信した測定報告をSeNB200-2に転送するステップと、転送された測定報告を受信したSeNB200-2がDC special cellを選択するステップと、を含む。
 或いは、DC special cellを選択するステップは、測定報告を受信したMeNB200-1が、当該受信した測定報告に基づいて、DC special cellの候補をSeNB200-2に通知するステップと、SeNB200-2が、通知された候補に基づいてDC special cellを選択するステップと、を含む。
 或いは、DC special cellを選択するステップは、測定報告を受信したMeNB200-1が、当該受信した測定報告に基づいて、DC special cellを選択するステップと、選択されたDC special cellをMeNB200-1からSeNB200-2に通知するステップと、を含む。
 第2実施形態では、DC special cellを選択するステップにおいて、SeNB200-2が管理している複数のセルのそれぞれの能力及び/又は負荷状況にさらに基づいてDC special cellを選択してもよい。
 第2実施形態に係る通信制御方法は、SeNB200-2が管理している複数のセルのそれぞれの能力及び/又は負荷状況に基づいて、測定報告の送信を制御する情報をMeNB200-1からUE100に送信するステップを有してもよい。
 第2実施形態に係る通信制御方法は、UE100から新たに送信された測定報告に基づいて、SeNB200-2が管理している複数のセルの中からDC special cellを再選択するステップをさらに有してもよい。
 (第2実施形態に係る動作)
 (1)動作パターン1
 第2実施形態の動作パターン1では、SeNB200-2がDC special cellを選択する。図11は、第2実施形態の動作パターン1を示すシーケンス図である。UE100は、MeNB200-1とのRRC接続を確立した状態である。
 図11に示すように、ステップS201において、UE100は、UE100においてセル毎に求められた測定結果を含む測定報告をMeNB200-1に送信する。測定結果は、測定セルの識別情報と参照信号受信電力(RSRP)/参照信号受信品質(RSRQ)との組み合わせを含む。
 ステップS202において、測定報告を受信したMeNB200-1は、受信した測定報告に基づいて、SeNBリソースを使用することを決定する。
 ステップS203において、MeNB200-1は、SeNB追加要求(SeNB Addition)をSeNB200-2に送信する。
 ここで、MeNB200-1は、UE100から受信した測定報告をSeNB追加要求に含める。すなわち、MeNB200-1は、UE100から受信した測定報告をSeNB200-2に転送する。MeNB200-1は、UE100から受信した測定報告に含まれる測定結果のうち、SeNB200-2のセルについての測定結果を抽出してSeNB200-2に転送してもよい。
 或いは、MeNB200-1は、UE100から受信した測定報告に含まれる測定結果のうち、通信状態が良いSeNB200-2のセルを1つ又は複数抽出し、抽出したセルを候補セルとして当該候補セル(のリスト)をSeNB追加要求に含めてもよい。
 ステップS204において、SeNB追加要求を受信したSeNB200-2は、受信したSeNB追加要求に基づいて、UE100に対するリソース割り当てを承諾するか否かを判断する。UE100に対するリソース割り当てを承諾する場合、SeNB200-2は、SeNB追加要求に含まれる情報に基づいて、DC special cellを選択する。
 ステップS205において、SeNB200-2は、新たな無線リソース設定(例えば、DC special cellの設定、ランダムアクセスプリアンブル設定)を提供するSeNB追加指令をMeNB200-1に送信する。
 (2)動作パターン2
 第2実施形態の動作パターン2では、MeNB200-1がDC special cellを選択する。図12は、第2実施形態の動作パターン2を示すシーケンス図である。UE100は、MeNB200-1とのRRC接続を確立した状態である。
 図12に示すように、ステップS231において、SeNB200-2は、SeNB200-2の各セルの負荷レベルを示す情報をMeNB200-1に送信する。
 ステップS232において、SeNB200-2は、SeNB200-2の各セルのクラスを示す情報をMeNB200-1に送信する。セルのクラス(種別)の詳細については第3実施形態で説明する。
 なお、ステップS231及びS232は何れか一方のみであってもよい。
 ステップS233において、MeNB200-1は、SeNB200-2のセルの中から、UE100の測定の対象とするセルを選択する。MeNB200-1は、SeNB200-2から受信した情報に基づいて、SeNB200-2のセルの中から、負荷レベルが低いセル、DC special cellとして動作する能力を有するセルを測定対象セルとして選択してもよい。
 ステップS234において、MeNB200-1は、測定対象セルの測定を設定するための測定設定(Measurement Config.)をUE100に送信する。測定設定を受信したUE100は、受信した測定設定に基づいて、SeNB200-2の各セルに対する測定を行う。
 ステップS235において、UE100は、測定結果を含む測定報告をMeNB200-1に送信する。
 なお、ステップS231乃至S235の手順は、上述した動作パターン1にも適用可能である。
 ステップS236において、測定報告を受信したMeNB200-1は、受信した測定報告に基づいて、SeNBリソースを使用することを決定する。また、MeNB200-1は、UE100から受信した測定報告に含まれる測定結果のうち、通信状態が良いSeNB200-2のセルをDC special cellとして選択する。
 ステップS237において、MeNB200-1は、SeNB追加要求(SeNB Addition)をSeNB200-2に送信する。ここで、MeNB200-1は、選択したDC special cellの情報をSeNB追加要求に含める。
 ステップS238において、SeNB追加要求を受信したSeNB200-2は、受信したSeNB追加要求に基づいて、UE100に対するリソース割り当てを承諾するか否かを判断する。UE100に対するリソース割り当てを承諾する場合、SeNB200-2は、SeNB追加要求に含まれるDC special cellの情報に基づいて、DC special cellを設定する。
 ステップS239において、SeNB200-2は、新たな無線リソース設定(例えば、DC special cellの設定、ランダムアクセスプリアンブル設定)を提供するSeNB追加指令をMeNB200-1に送信する。
 ステップS240において、SeNB追加指令を受信したMeNB200-1は、RRC再設定メッセージをUE100に送信する。ここで、MeNB200-1は、上述した特殊な測定設定(Measurement Config.)を解除し、新たな測定設定を行ってもよい。
 (3)動作パターン3
 第2実施形態の動作パターン3では、MeNB200-1又はSeNB200-2がDC special cellを選択した後、UE100から新たに送信された測定報告に基づいてDC special cellを再選択する。
 図13は、第2実施形態の動作パターン3を示すシーケンス図である。UE100は、MeNB200-1とのRRC接続を確立した状態である。
 ステップS251において、MeNB200-1は、測定対象セルの測定を設定するための測定設定(Measurement Config.)をUE100に送信する。測定設定を受信したUE100は、受信した測定設定に基づいて、SeNB200-2の各セルに対する測定を行う。
 ステップS252において、UE100は、測定結果を含む測定報告1をMeNB200-1に送信する。
 ステップS253において、測定報告1を受信したMeNB200-1は、受信した測定報告1に基づいて、SeNBリソースを使用することを決定する。また、MeNB200-1は、UE100から受信した測定報告1に含まれる測定結果のうち、通信状態が良いSeNB200-2のセルをDC special cell1として選択する。
 ステップS254において、MeNB200-1は、SeNB追加要求(SeNB Addition)をSeNB200-2に送信する。ここで、MeNB200-1は、選択したDC special cell1の情報をSeNB追加要求に含める。
 ステップS255において、SeNB追加要求を受信したSeNB200-2は、受信したSeNB追加要求に基づいて、UE100に対するリソース割り当てを承諾するか否かを判断する。UE100に対するリソース割り当てを承諾する場合、SeNB200-2は、SeNB追加要求に含まれるDC special cell1の情報に基づいて、DC special cell1を設定する。
 ステップS256において、SeNB200-2は、新たな無線リソース設定(例えば、DC special cellの設定、ランダムアクセスプリアンブル設定)を提供するSeNB追加指令をMeNB200-1に送信する。
 ステップS257において、UE100は、測定結果を含む測定報告2をMeNB200-1に送信する。
 ステップS258において、測定報告2を受信したMeNB200-1は、受信した測定報告2に含まれる測定結果のうち、通信状態が良いSeNB200-2のセルをDC special cell2として選択する。そして、MeNB200-1は、前回選択したDC special cell1及び今回選択したDC special cell2について、何れがDC special cellとして最適であるかを判断し、DC special cellを再選択する。
 ステップS259において、MeNB200-1は、SeNB追加要求(SeNB Addition)をSeNB200-2に送信する。ここで、MeNB200-1は、選択したDC special cell及び他のセル(SCell)の情報をSeNB追加要求に含める。
 ステップS260において、SeNB追加要求を受信したSeNB200-2は、受信したSeNB追加要求に含まれるDC special cellの情報に基づいて、DC special cellを設定する。
 ステップS261において、SeNB200-2は、新たな無線リソース設定(例えば、DC special cellの設定、ランダムアクセスプリアンブル設定)を提供するSeNB追加指令をMeNB200-1に送信する。
 [第3実施形態]
 以下において、第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
 (第3実施形態に係る通信制御方法)
 近年、以下に示すように、通常のバンド運用方法(例えば下りリンク・上りリンクペア構成)以外の特殊なバンド運用方法が検討されている。
 ・Supplemental DL:下りリンク専用バンド
 ・Unlicensed band:免許が不要なバンドであり、主にベストエフォート型の通信に用いる
 ・Shared license band:一つの帯域に複数のオペレータが存在するバンドであり、主にベストエフォート型の通信に用いる
 ・White space:他社のライセンスバンドの空き時間・場所を再利用するバンドであり、主にベストエフォート型の通信に用いる
 このような特殊バンドは、SCellとして用いられる事を前提に考えられている。つまり、以下のような問題がある。
 ・ハンドオーバ要求を行っても拒否される(PCellとならない)
 ・DC special cellに設定しようとしても拒否される
 そこで、第3実施形態では、以下の方法により、不必要な処理(reject)や、これに伴うRLF/HOF(Handover Failure)増加、QoE低下を回避する。
 第3実施形態に係る通信制御方法は、第1の基地局が管理している少なくとも1つのセルについて、UE100の物理上りリンク制御チャネルを設けるセル(PCell、DC special cell)として動作する能力を有するか否かを示すセル情報を、第1の基地局から第2の基地局に送信するステップを有する。第1の基地局は、SeNB200-2であってもよい。また、第2の基地局は、MeNB200-1であってもよい。
 第3実施形態では、セル情報を送信するステップにおいて、第1の基地局は、当該第1の基地局の設定の更新に関する設定更新メッセージにセル情報を含めて送信する。
 第3実施形態では、セル情報を送信するステップにおいて、第1の基地局は、第2の基地局からの要求に対する否定応答を送信する際に、該否定応答にセル情報を含める。
 (第3実施形態に係る動作シーケンス)
 図14は、第3実施形態に係る動作シーケンス図である。
 図14に示すように、ステップS300において、eNB1は、eNB1が管理している少なくとも1つのセルについて、UE100の物理上りリンク制御チャネルを設けるセル(PCell、DC special cell)として動作する能力を有するか否かを示すセル情報をeNB2に送信する。
 表1に示すように、セル情報(HO possible)は、eNBの設定の更新に関するeNB Configuration Updateメッセージ、又はX2インターフェイスを確立するためのX2 setupメッセージにおけるServed Cell Informationに含めてもよい。
Figure JPOXMLDOC01-appb-T000001
 
 或いは、表2に示すように、セル情報(HO possible)は、ハンドオーバ要求に対する否定応答であるHO Preparation Failure、又はSeNB Addition/Modificationに対する否定応答であるSeNB Addition/Modification failureにおけるCauseに含めてもよい。当該Causeを受信したeNB2は、該当するセルがPCell・DC special cellとして動作する能力を有しないことを記憶する。
Figure JPOXMLDOC01-appb-T000002
 
 [第4実施形態]
 以下において、第4実施形態について、第1実施形態乃至第3実施形態との相違点を主として説明する。第4実施形態は第2実施形態の変更例に関する実施形態であるため、第2実施形態との相違点を主として説明する。
 (第4実施形態に係る通信制御方法)
 上述した第2実施形態では、SCGにおける無線リンク障害(RLF)であるS-RLFについて特に触れなかった。第4実施形態では、S-RLF発生時の動作について主として説明する。
 第4実施形態では、UE100は、SCGのうちDC special cellに関するRLFを検知する。UE100は、SCGに複数のセルが含まれる場合でも、当該複数のセルのうちDC special cellのRLFのみを検知する。上述したように、DC special cellは、SCGのうち、UE100のPUCCHを設ける特別なセルである。DC special cellは、キャリアアグリゲーションにおけるプライマリセル(PCell)の機能の一部を遂行する。DC special cellは、プライマリ・セカンダリセル(PSCell)と称されてもよい。また、SCGのうちDC special cell以外のセルはセカンダリセル(SCell)と称されてもよい。
 UE100は、DC special cellのRLFを検知した場合、S-RLFを通知する障害通知をMeNB200-1に送信する。以下において、このような障害通知を「S-RLF indication」と称する。ここで、S-RLF indicationを送信した後のUE100の動作としては、以下の2通りの動作案が考えられる。第1の動作案は、UE100がSeNB200-2に属する全てのセカンダリセル(すなわち、SCG)を解放する動作である。第2の動作案は、UE100がMeNB200-1からのRRC再設定メッセージ(RRCConnectionReconfigurationメッセージ)を待ち、RRC再設定メッセージの内容に従う動作である。
 しかしながら、第1の動作案には、次のような問題がある。DC special cellにRLFが発生した場合でも、DC special cell以外のセカンダリセルの通信状態が良好であることが想定され得る。しかしながら、SeNB200-2に属する全てのセカンダリセル(SCG)を解放することが最適ではない可能性がある。
 第2の動作案には、次のような問題がある。第2の動作案では、UE100がSeNB200-2に属する全てのセカンダリセル(SCG)を解放するべきか、それとも他のセカンダリセルを用いて通信を再開すべきかをMeNB200-1が判断することが前提になる。しかしながら、MeNB200-1は、その判断を適切に行うための情報を有していない。
 そこで、第4実施形態では、UE100は、例えばS-RLF indicationに最新の測定結果又はそれに相当する情報を含める。MeNB200-1は、その情報をSeNB200-2に転送し、SeNB200-2にDC special cellを交換すべきか、それともSCGを解放すべきかを検討してもらう。その結果を受けて、MeNB200-1は、UE100の動作を決定し、UE100に指示する。
 第4実施形態に係る通信制御方法は、二重接続方式をサポートする移動通信システムにおいて、MeNB200-1とのRRC接続を確立するとともに、SeNB200-2から追加的な無線リソースが提供されるUE100における方法である。UE100のPUCCHが設定されるDC special cellを含むSCGが、SeNB200-2により管理されている。通信制御方法は、DC special cellにおけるS-RLFを検知するステップと、DC special cellにおけるS-RLFを検知した場合、SCGのうちDC special cell以外のセルに対する第1の測定結果をMeNB200-1に送信するステップと、を有する。これにより、MeNB200-1は、SeNB200-2に属する全てのセカンダリセル(SCG)を解放するべきか、それとも他のセカンダリセルを用いて通信を再開すべきかを判断するための情報を得ることができる。第1の測定結果は、複数のセルに対応する複数の測定結果を含んでもよい。
 第4実施形態では、UE100は、DC special cellにおけるS-RLFを検知した場合、DC special cellに対する第2の測定結果をMeNB200-1にさらに送信してもよい。これにより、MeNB200-1は、S-RLFの詳細について把握できる。
 第4実施形態の動作パターン1では、UE100は、DC special cellにおけるS-RLFを検知した場合、S-RLFを通知するS-RLF indicationをMeNB200-1に送信する。第1の測定結果及び第2の測定結果は、S-RLF indicationに含まれている。
 第4実施形態の動作パターン2では、UE100は、MeNB200-1から指定されたイベントが発生した場合、イベントトリガ型の測定報告をMeNB200-1に送信する。当該イベントは、DC special cellにおけるS-RLFを検知したことである。第1の測定結果及び第2の測定結果は、イベントトリガ型の測定報告に含まれている。
 このような動作パターン1又は2によれば、MeNB200-1は、S-RLFが発生したことを把握するとともに、SCGのセル毎の無線状況を把握できる。なお、S-RLF indication又はイベントトリガ型の測定報告により、DC special cellの無線状況を推定可能である。よって、第2の測定結果は、必ずしもS-RLF indication又はイベントトリガ型の測定報告に含まれていなくてもよい。
 第4実施形態に係る通信制御方法は、UE100に追加的な無線リソースを提供するSeNB200-2と共に二重接続方式の通信を行っており、UE100とのRRC接続を確立するMeNB200-1における方法である。通信制御方法は、S-RLFを通知するS-RLF indicationと、SCGのうちDC special cell以外のセルに対する第1の測定結果と、をUE100から受信するステップと、S-RLF indicationの受信に応じて、DC special cellの交代を要求するための交代要求を、第1の測定結果と共にSeNB200-2に送信するステップと、を有する。これにより、SeNB200-2は、DC special cellの交代が可能か否かを適切に判断できる。
 MeNB200-1は、DC special cellに対する第2の測定結果をUE100からさらに受信してもよい。MeNB200-1は、交代要求を、第1の測定結果及び第2の測定結果と共にSeNB200-2に送信してもよい。ここで、SeNB200-2は、S-RLFがUE100で検出されたことに気付いていないことがあり得る。よって、第2の測定結果をSeNB200-2に送信することにより、SeNB200-2がS-RLFの発生を適切に推定できる。
 第4実施形態に係る通信制御方法は、UE100とのRRC接続を確立するMeNB200-1と共に二重接続方式の通信を行っており、UE100に追加的な無線リソースを提供するSeNB200-2における方法である。通信制御方法は、DC special cellの交代を要求するための交代要求を、SCGのうちDC special cell以外のセルに対する第1の測定結果と共にMeNB200-1から受信するステップと、交代要求の受信に応じて、DC special cellを他のセルと交代するか否かの判断を第1の測定結果に基づいて行うステップと、判断の結果をMeNB200-1に通知するステップと、を有する。これにより、MeNB200-1は、SeNB200-2においてDC special cellの交換が可能か否かを把握できる。
 SeNB200-2は、DC special cellに対する第2の測定結果を第1の測定結果と共にMeNB200-1から受信してもよい。SeNB200-2は、第1の測定結果及び第2の測定結果に基づいて判断を行ってもよい。
 SeNB200-2は、他のセルの中から新たなDC special cellを選択した場合、新たなDC special cellをMeNB200-1に通知する。SeNB200-2は、他のセルの中に新たなDC special cellとして適切なセルが存在しない場合、SCGを解放することをMeNB200-1に通知する。
 (第4実施形態に係る動作シーケンス)
 以下において、第4実施形態に係る動作シーケンスの例について説明する。
 (1)動作パターン1
 第4実施形態の動作パターン1では、第1の測定結果及び第2の測定結果がS-RLF indicationに含まれる。図15は、第4実施形態の動作パターン1を示すシーケンス図である。
 本シーケンスの初期状態において、二重接続方式の通信が行われている。UE100は、DC special cellについて無線リンク監視(RLM)を行う。また、UE100は、MeNB200-1からの測定設定(Measurement Config.)に基づいて、SCGについてセルごとに測定(RSRP測定、RSRQ測定)を行う。
 図15に示すように、ステップS401において、UE100は、S-RLFを検知する。UE100は、S-RLFの検知に応じて、SCGへの上りリンク送信を停止してもよい。また、UE100は、S-RLFの検知に応じて、SCGについてのPDCCHの監視を停止してもよい。
 ステップS402において、UE100は、S-RLFを通知するS-RLF indicationをMeNB200-1に送信する。UE100は、SCGについての測定結果(第1の測定結果及び第2の測定結果)をS-RLF indicationに含める。S-RLF indicationには、S-RLFの種類を示す情報がさらに含まれてもよい。そして、UE100は、SCGとの接続を再開することなく、MeNB200-1からの指示を待つ。MeNB200-1は、第1の測定結果及び第2の測定結果を含むS-RLF indicationをUE100から受信する。
 ステップS403において、MeNB200-1は、S-RLF indicationの受信に応じて、DC special cellの交代を要求するための交代要求をSeNB200-2に送信する。ここでは、交代要求が、新たなX2メッセージであるSCG-ConfigInfo又はその情報要素である一例を説明する。SCG-ConfigInfoは、SCGについての測定結果(第1の測定結果及び第2の測定結果)を含む。
 SeNB200-2は、第1の測定結果及び第2の測定結果を含むSCG-ConfigInfo(交代要求)をMeNB200-1から受信する。SeNB200-2は、SCG-ConfigInfo(交代要求)の受信に応じて、DC special cellを他のセカンダリセルと交代するか否かの判断を行う。例えば、SeNB200-2は、第1の測定結果を閾値と比較し、閾値よりも良好な第1の測定結果に対応するセルを新たなDC special cellの候補とする。或いは、SeNB200-2は、第1の測定結果を第2の測定結果と比較し、第2の測定結果よりも良好な第1の測定結果に対応するセルを新たなDC special cellの候補とする。そして、それらの候補の中から、セル負荷状況等も考慮して新たなDC special cellを選択する。また、SeNB200-2は、新たなDC special cellとして適切な候補が存在しない場合に、全てのセカンダリセル(SCG)を解放すると判断してもよい。
 ステップS404において、SeNB200-2は、自身の判断結果をMeNB200-1に通知する。ここでは、当該通知が、新たなX2メッセージであるSCG-Configuration又はその情報要素である一例を説明する。MeNB200-1は、SCG-Configuration(判断結果)を受信する。
 ステップS405において、MeNB200-1は、SCG-Configuration(判断結果)に基づいて、SCG設定の更新に関するRRC再設定メッセージ(RRCConnectionReconfigurationメッセージ)をUE100に送信する。RRC再設定メッセージは、新たなDC special cellを指定する情報を含む。或いは、RRC再設定メッセージは、SCGの解放を指定する情報を含んでもよい。
 UE100は、RRC再設定メッセージの受信に応じて、RRC再設定メッセージにより指定されるRRC再設定を適用する。但し、UE100は、RRC再設定メッセージにより指定されるRRC再設定の少なくとも一部を行うことができない場合、RRC再設定を拒否すると判断してもよい。ここでは、UE100が、RRC再設定メッセージにより指定されるRRC再設定を行うことができると仮定して、説明を進める。
 ステップS406において、UE100は、RRC再設定完了メッセージ(RRCConnectionReconfigurationComplete)をMeNB200-1に送信する。
 ステップS407において、MeNB200-1は、SCG-Configuration(判断結果)に対する肯定応答メッセージ(Inter eNB RRC message)をSeNB200-2に送信する。
 (2)動作パターン2
 第4実施形態の動作パターン2について、動作パターン1との相違点を説明する。第4実施形態の動作パターン2では、第1の測定結果及び第2の測定結果がイベントトリガ型の測定報告に含まれる。図16は、第4実施形態の動作パターン2を示すシーケンス図である。
 本シーケンスの初期状態において、二重接続方式の通信が行われている。UE100は、DC special cellについて無線リンク監視(RLM)を行う。
 図16に示すように、ステップS411において、MeNB200-1は、イベントトリガ型の測定報告を設定するための測定設定(Measurement Config.)をUE100に送信する。測定設定は、トリガとなるイベントを指定する情報を含む。指定されるイベントは、DC special cellにおけるS-RLFを検知したというイベントである。UE100は、測定設定に基づいて、SCGについてセルごとに測定(RSRP測定、RSRQ測定)を行う。
 ステップS412において、UE100は、S-RLFを検知する。
 ステップS413において、UE100は、S-RLFを通知するS-RLF indicationをMeNB200-1に送信する。S-RLF indicationには、S-RLFの種類を示す情報が含まれてもよい。
 また、ステップS414において、UE100は、指定されたイベントが満たされたことに応じて、イベントトリガ型の測定報告(Measurement Report)をMeNB200-1に送信する。UE100は、SCGについての測定結果(第1の測定結果及び第2の測定結果)を測定報告に含める。ステップS413及びステップS414は、同時に行われてもよい。そして、UE100は、SCGとの接続を再開することなく、MeNB200-1からの指示を待つ。MeNB200-1は、S-RLF indication、及び、第1の測定結果及び第2の測定結果を含む測定報告をUE100から受信する。
 ステップS415において、MeNB200-1は、S-RLF indicationの受信に応じて、DC special cellの交代を要求するための交代要求をSeNB200-2に送信する。ここでは、交代要求が、新たなX2メッセージであるSCG-ConfigInfo又はその情報要素である一例を説明する。SCG-ConfigInfoは、SCGについての測定結果(第1の測定結果及び第2の測定結果)を含む。その後の動作(ステップS416乃至S419)については、動作パターン1と同様である。
 [その他の実施形態]
 上述した第1実施形態乃至第4実施形態は、別個独立に実施するのではなく、2以上の実施形態を組み合わせて実施することが好ましい。
 上述した第2実施形態では、測定報告に基づいてDC special cellを選択又は再選択する例を主として説明した。しかしながら、第2実施形態は、測定報告に基づいて、DC special cellを含む複数のセルからなるSCGを選択又は再選択する例を含むことは勿論である。また、第2実施形態は、測定報告に基づいて、DC special cell以外のSCGセルを選択又は再選択する例を含むことは勿論である。
 上述した第3実施形態は、二重接続方式に限らず、通常のハンドオーバにも適用することができる。
 上述した第4実施形態では、UE100が、S-RLFを検知した場合、SCGのうちDC special cell以外のセルに対する第1の測定結果をMeNB200-1に送信する一例を説明した。しかしながら、第1の測定結果は、SeNB200-2のセルのうちSCGに含まれないセル(UE100の非サービングセル)の測定結果をさらに含んでもよい。つまり、第1の測定結果は、DC special cellの周波数とは異なる周波数を有するセルについての測定結果であればよい。
 また、上述した第4実施形態では、SeNB200-2が、SCG-ConfigInfo(交代要求)の受信に応じて、SCGに含まれるセカンダリセルの中から新たなDC special cellを選択する一例を説明した。しかしながら、SeNB200-2は、SCGに含まれない自セル(UE100の非サービングセル)の中から新たなDC special cellを選択してもよい。
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 [付記1]
 (1)導入
 S-RLFを検出すると、UEは、MeNBに対してS-RLFの原因(RLM、 RA又はRLC異常)を報告し、SCGでのUL送信及びPDCCHの監視を中止しなければならない。UEからS-RLFを受信すると、MeNBは、SCGの解放又は同じSCG内でUEの運用を再開することによって、UEを再設定するという選択肢を有する。しかしながら、MeNBは、S-RLFの原因のみでは、適切な決定を行うこができるかどうかが不明である。
 この付記では、UEがS-RLF報告に最新の測定結果を含めるべきかについても考察する。
 (2)考察
 以下の内容が合意されている。
 1.UEは、L1非同期の検出を目的として特別なSCell(S-RLM)の無線リンク監視を実行すべきである。S-RLMの仕様は、現在のRLMの仕様をできる限り再利用すべきである。
  1a.UEは、(RLM、RA又はRLCによりトリガされ、)MeNBにS-RLFを報告し、満たされたトリガを示すべきである。
  1b.UEは、S-RLFの際にはSCGへのUL送信を中止すべきである。
 2.UEは、S-RLFを検出すると、SCGに関するPDCCHの監視をする必要ない。
 多くのケースにおいて、S-RLFが発生した場合、PSCell又はSCGさえも変更される必要があると説明されてきた。そして、S-RLFが検出された場合のUL送信の停止及びPDCCHの監視の停止とは対照的に、UEが、SCGに関連する全てのリソースを解放することによって、MCGに関するRLFと同じ振る舞いをすることがよりシンプルであろう。しかしながら、場合によっては、例えば、PSCellのみが悪化し、SCG内の他のSCellは十分に良好である場合、SCG内の全てのセルに関連するリソースを解放することが最良ではない。そのようなシナリオの例を図17及び図18に示す。図17は、SCG内の他のセルは影響を受けない一方、同一周波数レイヤ上の隣接小セルからの干渉をトリガとするPSCellのS-RLFを示す。図18は、SCG内の他のセルは影響を受けない一方で、同一周波数レイヤ上のMCGセルからの干渉をトリガとするPSCellのS-RLFを示す。
 両方のケースにおいて、SCG内の他のセルは影響を受けないにも関わらず、SCell(PSCell)の干渉のせいでS-RLFがUEによって検出される。MeNBは、同一のSeNBと二重接続動作を再開するためにUEを再設定するという選択肢を有する。同じSeNBへ新たな接続を確立するという不必要な複雑さを避けるために、UEは、S-RLFがトリガされた場合に、SCGに関連するリソースを解放すべきでない。
 ・提案1:UEは、S-RLFがトリガされた場合に、SCGに関連する全てのリソースを解放すべきでない。
 S-RLFがトリガされた場合にUEがUL送信及びPDCCHの監視を中止したままであると仮定した場合、MeNBは、S-RLF状況を通知されたらすぐに、UEのためにSCGを解放する又は再開するという選択肢を有すべきである。しかしながら、MeNBがSCGを再開するか解放するかを決定するために、どのSCG内のセルがPSCellの候補になり得るかを知る必要があるだろう。MeNBは、S-RLFの原因(すなわち、RLF、RLM又はRACH異常)を単に知っても、適切な決定をするための十分な情報が与えられていない。MeNBによる適切な決定のために測定結果を知るべきである。
 ・提案2:MeNBは、S-RLFの際にSCG内のサービングセルの測定結果が与えられるべきである。
 もし、提案2が合意可能である場合、MeNBがSCGの測定結果を取得するために2つの選択肢がある。
 1.既存のtimeToTrigger基準に基づく既存の測定報告メカニズムの再利用
 2.S-RLFをトリガとして、SCGセルから最新の測定結果をS-RLF報告内の内容の一部に含まなければならない。
 選択肢1では、SCGセルに関する適切な測定イベントをUEに設定することは、MeNB次第であり、S-RLFをできる限り防げるように最も適切なPSCellの選択においてSCell(SeNB)を補助するために、測定報告もSeNBと共有されるかどうかもまたMeNB次第である。測定及びイベントの報告は、timeToTriggerに基づくので、MeNBは、S-RLFのトリガに関連して最新の測定結果を知らないかもしれない。
 選択肢2では、SCGサービングセルの測定結果は、MeNBに送られるS-RLF報告の一部として含まれる。隣接セルからの測定も含める必要があるかどうかがさらに考察されてもよい。この選択肢では、S-RLFの原因に対応する最新の測定が、MeNBに報告される。これもまた、VarRLF-Reportの一部として測定のタイプを含むMCGに関する既存のRLF報告と一致している。
 上記比較に基づいて、選択肢2が、MeNBが適切な決定をするためにより良い利点をもたらす。
 ・提案3:S-RLFによってトリガされたS-RLF報告に、SCGセルからの最新の測定結果がRLF含まれるべきである。
 現在の合意に従えば、SCellの追加又はSCGの確立をSeNBに要求する際に、MeNBは、SCGセルの最新の測定結果を与えることが許されている。S-RLFのケースにおいて、特に、MeNBが同じSCGでUEの運用を再開することを選択した場合、SeNBが最新の測定結果を取得することは有益である。しかしながら、これは、SCellの追加又は新たなSCGの確立というカテゴリに該当しない。従って、MeNBが、これらのS-RLF関連の測定結果をSeNBに与えることを許可することがさらに明確化される必要があるかもしれない。さらに、MeNBが同じSCGでUEの運用を再開することを選択した場合、MeNBがSeNBにS-RLFに関する原因を知らせることは有益な可能性がある。特に、UEにとって最も適切なPSCellの選択においてSeNBを補助するために、S-RLFの原因がPRACH又はRLM異常に起因するかどうかをS-RLFが知ることは有益な可能性がある。
 ・提案4:S-RLFの際にMeNBが同じSCGでUEの運用を再開することを選択した場合、MeNBは、最新の測定報告とS-RLFの原因とをSeNBに与えることができる。
 (3)結論
 この付記では、UEがS-RLFの際にMeNBに追加情報を与える必要性を考察した。MeNBは、UEのためにSCGが解放されるか再開されるかどうかを決定するためのエンティティであるべきであることが提案されている。MeNBの適切な決定を補助するために、S-RLFの際にMeNBに最新の測定結果が与えられるべきである。MeNBが同じSCGでUEの運用を再開することを選択した場合、MeNBがSeNBにS-RLFに関する原因と共に、測定報告を与えることは有益である。
 [付記2]
 (1)導入
 二重接続方式におけるX2APのCause値にはS1APで使用されている既存のCause値から借用されたものもある(例えばハンドオーバに使用されているものが挙げられる)。しかしながら、既存のCause値の再利用の必要性と新規のCause値追加の可能性に関しては更なる議論を要する。特に、Cause値の一つである「端末との無線接続喪失」(Radio Connection with UE Lost)はより一層の明確化が必要である。すでに議論された提案によれば、このCause値はSeNB解放メッセージ(SeNB Release message)にのみ適用可能だと考えられるが、MCG-RLFとSCG-RLFのどちらか一方、もしくはその両方に適用可能なのかどうかは不明瞭である。加えて、SCG-RLFの際にMeNBがSeNBを解放しないと決断した場合において、MeNB起因のSeNB修正準備手順(SeNB Modification preparation procedure)においてもこのCause値を適用するかどうかについて更なる検討を行うべきである。
この付記では、X2APにおいてどのように「端末との無線接続喪失」を扱うべきかについて考察する。
 (2)考察
 (SeNB起因のSeNB解放)
 「端末との無線接続喪失」は他の基地局にRLFを伝達するために用いられるCause値である。MeNBにSCG-RLFを伝達するために、SeNBはこのCause値をSeNB起因のSeNB解放要求に入れることができる。しかしながら疑問なのは、このCause値が本当に必要かどうかという点である。というのも、SCG-RLFが発生した際、ただちに端末はSCG異常報告をMeNBに送信するからである。加えて「SCGのサービングセルについての異常をMeNBに知らせるための手段を、SeNBに提供する必要性はない」という合意に過去に至っている。つまり少なくとも、ある合意事項の観点からすれば「端末との無線接続喪失」はSeNB起因のSeNB解放要求には必要ないといえる。
 ・考察1: 端末がSCG-RLFの状態を既にMeNBに報告しているため「端末との無線接続喪失」はSeNB起因のSeNB解放要求には必要ない。
 (MeNB起因のSeNB解放)
 MeNBはRLFの発生を認識した場合にSeNB解放要求を開始するかもしれない。しかしながら、RLFには2つの種類がある。すなわち、MCGについてのRLFとSCGについてのRLFである。SeNBはどちらのことかを判断できないかもしれない。ここで基本的な疑問として、このCause値がSeNB解放要求に必要かどうかという点も挙げられる。というのもSeNB解放要求を拒絶はできないからである。そうではなくて、もしもSeNBがCause値をパラメータの調整などに活用できるのであれば、そのCause値の種類は明確化すべきである。最小限の拡張として、「SeNBの端末との無線接続喪失」(SeNB Radio Connection with UE Lost)といった新しいCause値を導入することも可能である。
 ・提案1: 「端末との無線接続喪失」がSeNB解放要求に必要かどうかを議論すべきである。もしSeNBにとって有益であるならば、RLFの種類は明確化されるべきである。
 (MeNB起因のSeNB修正準備)
 今の仕様によれば、端末は最新の測定結果と共にSCG異常報告をMeNBに提供する。そのMeNBは、SeNBが解放されるべきかそれとも修正されるべきかの判断に、報告された測定結果を活用できる。測定報告に加えて、SCG異常報告はSCG-RLFの詳細原因も含んでいる。つまり、物理層の問題、ランダムアクセス異常、もしくはRLC異常である。これらの情報もMeNBの、SeNBが解放されるべきかそれとも修正されるべきかの判断に利用される。明らかに、MeNBが常にSeNBの解放を決定するという動作は期待されていない。それゆえに全てのSCGセルに関する測定報告が提供される必要性があるとされているのだ。
 勿論、SCGセルの測定報告において無線状態が貧弱であれば、MeNBはSeNB解放手順を利用してSeNBを解放することを決定できる。指示されたCause値に関わらずSeNBはSeNB解放要求を拒絶できない。
 しかしながら、もしも一つかそれ以上のSCGセルが良好な無線状態にあれば、MeNBはPSCellを交換するためにSeNB修正準備を開始するという選択肢もある。なぜならばPSCellの交換はSCG交換手順でのみ実行可能であり、SCG交換手順はSeNB修正に対応付けられているからだ。
 ・考察2: 端末からのSCG異常報告のもと、PSCell交換のためにMeNBはSeNB修正を開始してよい。
 (SeNBに期待する動作)
 端末からのSCG異常報告のもと、MeNBがSeNBを解放しないと決定したと仮定して、MeNBはSeNB修正準備手順を開始してよい。そのSeNB修正準備手順にはおそらく新しいPSCellの候補として新規SCGセルの追加要求が含まれる。しかしながらSeNB解放要求の場合とは異なり、SeNBはMeNB起因のSeNB修正準備要求を拒絶することが許可されている。この様な修正要求の理由を知らなければ、(つまりSCG-RLFが原因だと知らずに)SeNBは望ましくない誤った理由で修正要求を拒絶してしまうかもしれない。
 SeNBがSCG-RLFの発生を検知することが可能だとしても、その異常検知は端末からのフィードバック抜きには迅速なものではないかもしれない。まさにこれが、SCG-RLFの際にSCG異常報告が迅速にMeNBに送信される理由である。続いて、SeNBもこの異常についての同様の通知を、遅延なしに受信する機会が与えられてしかるべきである。
 更に言えば、MeNB起因のSeNB修正手順の一部としてMeNBがSeNBにMCG-RLFを通達する必要性がなく、SCG-RLF発生時にしかありえないので、この手順におけるCause値、すなわち「端末との無線接続喪失」の再利用が曖昧さをまねくことはない。
 ・提案2:SCG-RLF発生時には、MeNB起因のSeNB修正準備手順にCause値、「端末との無線接続喪失」が含まれるべきである。
 (3)結論
 この付記では、SeNB解放要求におけるCause値、「端末との無線接続喪失」の明確化の必要性について着目した。つまり、MCG-RLFの発生、SCG-RLFの発生、もしくはその両方においてこのCause値を適用すべきかどうかという点についてである。特に、この付記ではMeNB起因のSeNB修正準備手順においても同Cause値が再利用されるべきだという理由についても言及している。以下の考察と提案に至った。
 なお、日本国特許出願第2014-017980号(2014年1月31日出願)及び米国仮出願第62/034678号(2014年8月7日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本実施形態に係る通信制御方法によれば、二重接続方式の通信を適切に行うことできるため、移動通信分野において有用である。

Claims (30)

  1.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための通信制御方法であって、
     前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、
     前記ユーザ端末に対するリソース割当を要求するための追加要求を前記マスタ基地局から前記セカンダリ基地局が受信するステップと、
    を有し、
     前記追加要求を受信するステップにおいて、前記マスタ基地局は、前記測定結果に含まれる前記セカンダリ基地局のセルについての測定結果を前記追加要求に含めて送信することを特徴とする通信制御方法。
  2.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための通信制御方法であって、
     前記ユーザ端末のRRC再設定を行うRRC再設定メッセージを前記マスタ基地局から前記ユーザ端末に送信するステップと、
     前記RRC再設定メッセージの送信に関して通知するRRC再設定通知を前記マスタ基地局から前記セカンダリ基地局に送信するステップと、
    を有することを特徴とする通信制御方法。
  3.  前記RRC再設定通知の送信は、前記RRC再設定メッセージの送信よりも先に行われることを特徴とする請求項2に記載の通信制御方法。
  4.  前記RRC再設定通知は、前記RRC再設定の内容を含むことを特徴とする請求項2に記載の通信制御方法。
  5.  前記RRC再設定通知を受信した前記セカンダリ基地局が、当該RRC再設定通知に基づいて前記ユーザ端末に対する送信を停止するステップをさらに有することを特徴とする請求項2に記載の通信制御方法。
  6.  前記セカンダリ基地局は、前記RRC再設定通知を受信してから所定時間が経過するまで、前記ユーザ端末に対する送信を停止し、
     前記所定時間は、前記ユーザ端末が前記RRC再設定メッセージを受信してから当該RRC再設定メッセージが反映されるまでの時間に対応しており、
     前記セカンダリ基地局は、前記所定時間の経過後に前記ユーザ端末に対する送信を再開することを特徴とする請求項5に記載の通信制御方法。
  7.  前記RRC再設定が完了したことを示すRRC再設定完了メッセージを前記ユーザ端末から前記マスタ基地局が受信するステップと、
     前記RRC再設定完了メッセージの受信に応じて、RRC再設定完了通知を前記マスタ基地局から前記セカンダリ基地局に送信するステップと、
     前記RRC再設定完了通知を受信した前記セカンダリ基地局が、当該RRC再設定完了通知に基づいて前記ユーザ端末に対する送信を再開するステップと、
    をさらに有することを特徴とする請求項5に記載の通信制御方法。
  8.  前記停止するステップにおいて前記セカンダリ基地局が停止する前記送信は、ユーザ個別チャネル上での送信であることを特徴とする請求項5に記載の通信制御方法。
  9.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式の通信を制御するための通信制御方法であって、
     前記ユーザ端末においてセル毎に求められた測定結果を含む測定報告を前記ユーザ端末から前記マスタ基地局が受信するステップと、
     前記測定報告に基づいて、前記セカンダリ基地局が管理している複数のセルの中から、前記ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルを選択するステップと、
    を有することを特徴とする通信制御方法。
  10.  前記特別なセルを選択するステップは、
     前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告を前記セカンダリ基地局に転送するステップと、
     前記転送された測定報告を受信した前記セカンダリ基地局が前記特別なセルを選択するステップと、
    を含むことを特徴とする請求項9に記載の通信制御方法。
  11.  前記特別なセルを選択するステップは、
     前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告に基づいて、前記特別なセルの候補を前記セカンダリ基地局に通知するステップと、
     前記セカンダリ基地局が、前記通知された候補に基づいて前記特別なセルを選択するステップと、
    を含むことを特徴とする請求項9に記載の通信制御方法。
  12.  前記特別なセルを選択するステップは、
     前記測定報告を受信した前記マスタ基地局が、当該受信した測定報告に基づいて、前記特別なセルを選択するステップと、
     前記選択された特別なセルを前記マスタ基地局から前記セカンダリ基地局に通知するステップと、
    を含むことを特徴とする請求項9に記載の通信制御方法。
  13.  前記特別なセルを選択するステップにおいて、前記セカンダリ基地局が管理している前記複数のセルのそれぞれの能力及び/又は負荷状況にさらに基づいて前記特別なセルを選択することを特徴とする請求項9に記載の通信制御方法。
  14.  前記セカンダリ基地局が管理している前記複数のセルのそれぞれの能力及び/又は負荷状況に基づいて、前記測定報告の送信を制御する情報を前記マスタ基地局から前記ユーザ端末に送信するステップをさらに有することを特徴とする請求項9に記載の通信制御方法。
  15.  前記ユーザ端末から新たに送信された測定報告に基づいて、前記セカンダリ基地局が管理している複数のセルの中から前記特別なセルを再選択するステップをさらに有することを特徴とする請求項9に記載の通信制御方法。
  16.  第1の基地局が管理している少なくとも1つのセルについて、ユーザ端末の物理上りリンク制御チャネルを設ける特別なセルとして動作する能力を有するか否かを示すセル情報を、前記第1の基地局から第2の基地局に送信するステップを有することを特徴とする通信制御方法。
  17.  前記セル情報を送信するステップにおいて、前記第1の基地局は、当該第1の基地局の設定の更新に関する設定更新メッセージに前記セル情報を含めて送信することを特徴とする請求項16に記載の通信制御方法。
  18.  前記セル情報を送信するステップにおいて、前記第1の基地局は、前記第2の基地局からの要求に対する否定応答を送信する際に、該否定応答に前記セル情報を含めることを特徴とする請求項15に記載の通信制御方法。
  19.  二重接続方式をサポートする移動通信システムにおいて、マスタ基地局とのRRC接続を確立するとともに、セカンダリ基地局から追加的な無線リソースが提供されるユーザ端末における通信制御方法であって、
     前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されており、
     前記特別なセルにおける無線リンク障害を検知するステップと、
     前記特別なセルにおける無線リンク障害を検知した場合、前記セカンダリセルグループのセルに対する測定結果を前記マスタ基地局に送信するステップと、
    を有することを特徴とする通信制御方法。
  20.  前記特別なセルにおける無線リンク障害を検知した場合、前記送信するステップにおいて、前記ユーザ端末は、隣接セルに対する測定結果を前記マスタ基地局にさらに送信することを特徴とする請求項19に記載の通信制御方法。
  21.  前記測定結果は、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する測定結果であることを特徴とする請求項19に記載の通信制御方法。
  22.  前記特別なセルにおける無線リンク障害を検知した場合、前記無線リンク障害を通知する障害通知を前記マスタ基地局に送信するステップを有し、
     前記測定結果は、前記障害通知に含まれていることを特徴とする請求項19に記載の通信制御方法。
  23.  前記マスタ基地局から指定されたイベントが発生した場合、イベントトリガ型の測定報告を前記マスタ基地局に送信するステップを有し、
     前記イベントは、前記特別なセルにおける無線リンク障害を検知したことであり、
     前記測定結果は、前記イベントトリガ型の測定報告に含まれていることを特徴とする請求項19に記載の通信制御方法。
  24.  ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末とのRRC接続を確立するマスタ基地局における通信制御方法であって、
     前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されており、
     前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果を含む前記特別なセルにおける無線リンク障害を通知する障害通知を前記ユーザ端末から受信するステップと、
     前記特別なセルの交代を要求するための交代要求を前記セカンダリ基地局に送信するステップと、を有し、
     前記送信するステップにおいて、前記マスタ基地局は、前記ユーザ端末から受信した前記第1の測定結果を前記交代要求に含めて送信することを特徴とする通信制御方法。
  25.  前記送信するステップにおいて、前記マスタ基地局は、前記特別なセルにおける無線リンク障害の原因を前記セカンダリ基地局に送信することを特徴とする請求項24に記載の通信制御方法。
  26.  前記受信するステップにおいて、前記マスタ基地局は、前記特別なセルに対する第2の測定結果を前記ユーザ端末からさらに受信し、
     前記送信するステップにおいて、前記マスタ基地局は、前記第1の測定結果及び前記第2の測定結果を前記交代要求に含めて送信することを特徴とする請求項24に記載の通信制御方法。
  27.  ユーザ端末とのRRC接続を確立するマスタ基地局と共に二重接続方式の通信を行っており、前記ユーザ端末に追加的な無線リソースを提供するセカンダリ基地局における通信制御方法であって、
     前記ユーザ端末の物理上りリンク制御チャネルが設定される特別なセルを含むセカンダリセルグループが、前記セカンダリ基地局により管理されており、
     前記特別なセルの交代を要求するための交代要求を、前記セカンダリセルグループのうち前記特別なセル以外のセルに対する第1の測定結果と共に前記マスタ基地局から受信するステップと、
     前記交代要求の受信に応じて、前記特別なセルを他のセルと交代するか否かの判断を前記第1の測定結果に基づいて行うステップと、
     前記判断の結果を前記マスタ基地局に通知するステップと、
    を有することを特徴とする通信制御方法。
  28.  前記受信するステップにおいて、前記セカンダリ基地局は、前記特別なセルに対する第2の測定結果を前記第1の測定結果と共に前記マスタ基地局から受信し、
     前記判断を行うステップにおいて、前記セカンダリ基地局は、前記第1の測定結果及び前記第2の測定結果に基づいて前記判断を行うことを特徴とする請求項27に記載の通信制御方法。
  29.  前記他のセルの中から新たな特別なセルを選択した場合、前記通知するステップにおいて、前記セカンダリ基地局は、前記新たな特別なセルを前記マスタ基地局に通知することを特徴とする請求項27に記載の通信制御方法。
  30.  前記他のセルの中に新たな特別なセルとして適切なセルが存在しない場合、前記通知するステップにおいて、前記セカンダリ基地局は、前記セカンダリセルグループを解放することを前記マスタ基地局に通知することを特徴とする請求項27に記載の通信制御方法。
PCT/JP2015/052591 2014-01-31 2015-01-29 通信制御方法 WO2015115573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015560023A JP6042569B2 (ja) 2014-01-31 2015-01-29 通信制御装置、マスタ基地局及びユーザ端末
EP15742558.8A EP3101972A4 (en) 2014-01-31 2015-01-29 Communication control method
US15/089,900 US9936515B2 (en) 2014-01-31 2016-04-04 Communication control method
US15/089,940 US20160219604A1 (en) 2014-01-31 2016-04-04 Communication control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014017980 2014-01-31
JP2014-017980 2014-01-31
US201462034678P 2014-08-07 2014-08-07
US62/034,678 2014-08-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/089,940 Continuation US20160219604A1 (en) 2014-01-31 2016-04-04 Communication control method
US15/089,900 Continuation US9936515B2 (en) 2014-01-31 2016-04-04 Communication control method

Publications (1)

Publication Number Publication Date
WO2015115573A1 true WO2015115573A1 (ja) 2015-08-06

Family

ID=53757143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052591 WO2015115573A1 (ja) 2014-01-31 2015-01-29 通信制御方法

Country Status (4)

Country Link
US (2) US9936515B2 (ja)
EP (1) EP3101972A4 (ja)
JP (2) JP6042569B2 (ja)
WO (1) WO2015115573A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061317A1 (ja) * 2015-10-06 2017-04-13 日本電気株式会社 デュアルコネクティビティに関連する装置
JP2018523427A (ja) * 2015-08-10 2018-08-16 華為技術有限公司Huawei Technologies Co.,Ltd. 無線リソーススケジューリング方法および関連デバイス
CN109155945A (zh) * 2016-07-01 2019-01-04 Oppo广东移动通信有限公司 传输数据的方法和装置
WO2019065243A1 (ja) * 2017-09-27 2019-04-04 株式会社Nttドコモ 基地局及び測定能力決定方法
CN109644521A (zh) * 2017-06-16 2019-04-16 瑞典爱立信有限公司 用于测量报告的方法和装置
WO2019187163A1 (ja) * 2018-03-30 2019-10-03 富士通株式会社 通信制御装置、無線装置、および無線通信システム
EP3442259A4 (en) * 2016-04-08 2019-10-09 NTT DoCoMo, Inc. BASE STATION AND TRANSMISSION CONTROL METHOD
US10659994B2 (en) 2015-11-27 2020-05-19 Huawei Technologies Co., Ltd. Network nodes, wireless communication system and methods thereof
WO2020170402A1 (ja) * 2019-02-21 2020-08-27 株式会社Nttドコモ ユーザ装置
US10863491B2 (en) 2014-05-07 2020-12-08 Kddi Corporation Base station apparatus, control method, and storage medium
JP2021502734A (ja) * 2017-11-10 2021-01-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ装置、ノード、及びその中で実行される方法
JP2021048642A (ja) * 2017-03-23 2021-03-25 株式会社Nttドコモ 無線通信システム及びユーザ装置
US20220046741A1 (en) * 2019-04-26 2022-02-10 Kyocera Corporation Communication control method
US11265704B2 (en) 2016-08-12 2022-03-01 Nec Corporation Security key generation for communications between base station and terminal based on beam selection
US11310852B2 (en) 2015-08-11 2022-04-19 Nec Corporation Apparatus and method related to dual connectivity
JP7341135B2 (ja) 2018-06-19 2023-09-08 三菱電機株式会社 ユーザ装置、基地局および通信システム

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833802B (zh) * 2012-08-15 2015-09-23 电信科学技术研究院 一种数据转发方法及设备
JP6259578B2 (ja) * 2013-03-25 2018-01-10 株式会社Nttドコモ 移動通信方法
KR102287928B1 (ko) * 2013-09-27 2021-08-10 삼성전자 주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
EP4181440A1 (en) * 2014-01-31 2023-05-17 Nokia Solutions and Networks Oy Backhaul errors in dual connectivity
EP3138320B1 (en) * 2014-04-30 2023-11-01 Nokia Solutions and Networks Oy A method, apparatus and system
ES2851236T3 (es) * 2014-08-06 2021-09-03 Alcatel Lucent Selección de celda especial en nodos de red secundarios que soportan conectividad dual
US9820332B2 (en) * 2014-08-07 2017-11-14 Lg Electronics Inc. Method for deactivating SCells during SCG change procedure and a device therefor
EP3836630B1 (en) * 2014-09-12 2022-10-26 NEC Corporation Radio station, radio terminal, and method for terminal measurement
US20160112924A1 (en) * 2014-10-15 2016-04-21 Qualcomm Incorporated Early radio link failure (rlf) declaration
AU2015337123B2 (en) * 2014-10-20 2018-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Prohibiting failure indications for secondary cell group failure
JP6804986B2 (ja) * 2015-01-30 2020-12-23 京セラ株式会社 ユーザ端末及び基地局
KR102460350B1 (ko) * 2015-11-06 2022-10-28 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 장치
US10848977B2 (en) * 2016-11-02 2020-11-24 Comcast Cable Communications, Llc Dual connectivity with licensed assisted access
CA3057044A1 (en) * 2017-03-21 2018-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, secondary network node and terminal
CN108633018B (zh) * 2017-03-23 2024-02-02 华为技术有限公司 配置方法、装置及系统
EP3603156A1 (en) 2017-03-23 2020-02-05 INTEL Corporation Systems, methods and devices for measurement configuration by a secondary node in en-dc
CN110431873B (zh) * 2017-03-23 2022-11-29 Lg 电子株式会社 在无线通信系统中指示用于下一个消息的承载类型的方法和设备
CN108924931A (zh) * 2017-03-24 2018-11-30 中兴通讯股份有限公司 一种无线资源配置方法、装置及用户设备、网络节点
US11160130B2 (en) 2017-05-04 2021-10-26 Nokia Technologies Oy User equipment measurements upon secondary radio link failure for long term evolution—new radio tight interworking
EP3607770B1 (en) * 2017-05-04 2023-08-02 Samsung Electronics Co., Ltd. Methods for reporting a secondary node failure in dual connectivity networks, user equipment and base station
EP3619947B1 (en) * 2017-05-04 2023-07-12 Nokia Technologies Oy Measurement configuration
CN117545105A (zh) * 2017-05-05 2024-02-09 华为技术有限公司 一种失败处理方法、切换方法及终端设备、网络设备
WO2018231136A1 (en) * 2017-06-16 2018-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Race condition avoidance between master base station initiated secondary base station release and secondary base station initiated secondary base station change procedures
KR102277322B1 (ko) 2017-07-27 2021-07-13 에프쥐 이노베이션 컴퍼니 리미티드 이차 노드 추가를 위한 방법들 및 관련된 디바이스들
CN109392135B (zh) * 2017-08-11 2021-02-23 华为技术有限公司 一种资源调度方法及装置
CN111108796B (zh) * 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
WO2019071528A1 (en) * 2017-10-12 2019-04-18 Nokia Solutions And Networks System Technology (Beijing) Co., Ltd. CARRIER DIVISION METHOD, USER EQUIPMENT AND BASE STATION
KR102083263B1 (ko) * 2017-10-30 2020-03-02 주식회사 소하이엔지 기류를 이용한 분체 혼합장치
CN111345088B (zh) * 2017-11-15 2024-03-08 株式会社Ntt都科摩 无线通信系统及无线基站
CN109803330B (zh) 2017-11-16 2021-01-15 维沃移动通信有限公司 无线承载的处理方法及网络设备
WO2019131985A1 (ja) * 2017-12-28 2019-07-04 三菱電機株式会社 通信システムおよび基地局
CN110198545B (zh) * 2018-02-24 2021-12-14 维沃移动通信有限公司 一种辅小区组添加方法、终端设备及主节点
US11452157B2 (en) * 2018-08-09 2022-09-20 Nokia Technologies Oy Communication connection control in a non-homogenous network scenario
KR20210078482A (ko) * 2018-10-26 2021-06-28 구글 엘엘씨 리소스 제어 상태 변경 및 다중 노드 연결의 효율적인 처리
JP7270649B2 (ja) 2019-01-10 2023-05-10 京セラ株式会社 通信制御方法
JP7305684B2 (ja) * 2019-02-13 2023-07-10 京セラ株式会社 通信制御方法
US11224082B2 (en) * 2019-02-14 2022-01-11 Mediatek Inc. Methods and apparatus to improve MR-DC SN addition procedure
US11252017B2 (en) * 2019-07-22 2022-02-15 At&T Intellectual Property I, L.P. Facilitating management of secondary cell group failures in fifth generation (5G) or other advanced networks
CN113329475B (zh) * 2019-09-30 2023-06-30 Oppo广东移动通信有限公司 Sn rrc消息的处理方法、装置、设备及存储介质
JP7141378B2 (ja) * 2019-10-03 2022-09-22 Kddi株式会社 条件付きハンドオーバを実行する端末装置、基地局装置、制御方法、及びプログラム
KR102625777B1 (ko) * 2020-02-19 2024-01-17 한국전자통신연구원 이동 통신 시스템에서 이중 연결 모드의 스몰셀 기지국의 셀 선택 방법 및 장치
US11265751B1 (en) * 2020-05-19 2022-03-01 Sprint Spectrum L.P. Dynamic air-interface reconfiguration based on inter-access-node data flow for dual-connectivity service
WO2022165704A1 (zh) * 2021-02-04 2022-08-11 深圳传音控股股份有限公司 连接建立方法、设备、系统及存储介质
US20220330105A1 (en) * 2021-04-07 2022-10-13 Apple Inc. Ultra reliable reporting of scg measurements while spcell degrades

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105167A1 (ja) * 2011-01-31 2012-08-09 パナソニック株式会社 端末及び品質送信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041498A1 (ja) * 2007-09-26 2009-04-02 Nec Corporation 無線通信システム及び方法
CN103188663B (zh) * 2011-12-27 2016-08-03 华为技术有限公司 基站间载波聚合的安全通讯方法及设备
WO2013168850A1 (ko) * 2012-05-09 2013-11-14 삼성전자 주식회사 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
CN107248906B (zh) * 2012-06-28 2023-03-10 华为技术有限公司 辅助主小区的调整方法以及基站
KR102044019B1 (ko) * 2012-08-03 2019-12-02 삼성전자주식회사 이동성 매개변수 조정 방법 및 장치
US9699825B2 (en) * 2013-01-16 2017-07-04 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
KR20140120806A (ko) * 2013-04-04 2014-10-14 주식회사 케이티 Small cell에서 RLF(Radio Link Failure)를 detection 하는 방법 및 장치
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
US20150133122A1 (en) * 2013-11-08 2015-05-14 Industrial Technology Research Institute Method of Handling Radio Link Failure
US9756678B2 (en) * 2013-12-13 2017-09-05 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
US10194425B2 (en) * 2014-01-17 2019-01-29 Samsung Electronics Co., Ltd. Method and system for handling of special Scell selection in dual connectivity
EP3101989A4 (en) * 2014-01-29 2017-10-11 Samsung Electronics Co., Ltd. Random access method and apparatus in mobile communication system
US10306695B2 (en) * 2014-01-31 2019-05-28 Qualcomm Incorporated Procedures for managing secondary eNB (SeNB) radio link failure (S-RLF) in dual connectivity scenarios
US9980159B2 (en) * 2014-09-26 2018-05-22 Mediatek Inc. RRC re-establishment on secondary eNodeB for dual connectivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105167A1 (ja) * 2011-01-31 2012-08-09 パナソニック株式会社 端末及び品質送信方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Presentation of Specification to TSG", 3GPP TSG-RAN#62 RP-131710, XP055217724, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_62/Docs/RP-131710.zip> *
"TR 36. 842 V12.0.0", 3GPP TECHNICAL REPORT, 7 January 2014 (2014-01-07)
CATT: "SCG Handover", 3GPP TSG-RAN WG2#85 R2- 140188, 29 January 2014 (2014-01-29), XP050737418, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_85/Docs/R2-140188.zip> *
HUAWEI: "Xn functions overview", 3GPP TSG-RAN WG3#81BIS R3-131654, XP050719843, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_81bis/Docs/R3-131654.zip> *
NOKIA CORPORATION: "Discussion on detailed C-plane procedures", 3GPP TSG-RAN WG2#83BIS R2- 133341, XP050718997, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Tsg_ran/WG2_RL2/TSGR2_83bis/Docs/R2-133341.zip> *
See also references of EP3101972A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863491B2 (en) 2014-05-07 2020-12-08 Kddi Corporation Base station apparatus, control method, and storage medium
JP2018523427A (ja) * 2015-08-10 2018-08-16 華為技術有限公司Huawei Technologies Co.,Ltd. 無線リソーススケジューリング方法および関連デバイス
US10779305B2 (en) 2015-08-10 2020-09-15 Huawei Technologies Co., Ltd. Radio resource scheduling method and related device
US11310852B2 (en) 2015-08-11 2022-04-19 Nec Corporation Apparatus and method related to dual connectivity
KR20180044979A (ko) * 2015-10-06 2018-05-03 닛본 덴끼 가부시끼가이샤 듀얼 커넥티비티에 관련된 장치
JPWO2017061317A1 (ja) * 2015-10-06 2018-06-14 日本電気株式会社 デュアルコネクティビティに関連する装置
US10873984B2 (en) 2015-10-06 2020-12-22 Nec Corporation Apparatus related to dual connectivity
WO2017061317A1 (ja) * 2015-10-06 2017-04-13 日本電気株式会社 デュアルコネクティビティに関連する装置
KR102075852B1 (ko) 2015-10-06 2020-03-02 닛본 덴끼 가부시끼가이샤 듀얼 커넥티비티에 관련된 장치
US10659994B2 (en) 2015-11-27 2020-05-19 Huawei Technologies Co., Ltd. Network nodes, wireless communication system and methods thereof
US10880777B2 (en) 2016-04-08 2020-12-29 Ntt Docomo, Inc. Base station and transmission control method
EP3442259A4 (en) * 2016-04-08 2019-10-09 NTT DoCoMo, Inc. BASE STATION AND TRANSMISSION CONTROL METHOD
JP2019526180A (ja) * 2016-07-01 2019-09-12 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
US11627512B2 (en) 2016-07-01 2023-04-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for transmitting data
KR102501217B1 (ko) 2016-07-01 2023-02-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터를 전송하는 방법 및 장치
KR20190025825A (ko) * 2016-07-01 2019-03-12 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터를 전송하는 방법 및 장치
CN109155945A (zh) * 2016-07-01 2019-01-04 Oppo广东移动通信有限公司 传输数据的方法和装置
CN109155945B (zh) * 2016-07-01 2021-03-09 Oppo广东移动通信有限公司 传输数据的方法和装置
US10959150B2 (en) 2016-07-01 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for transmitting data
US11265704B2 (en) 2016-08-12 2022-03-01 Nec Corporation Security key generation for communications between base station and terminal based on beam selection
JP2021048642A (ja) * 2017-03-23 2021-03-25 株式会社Nttドコモ 無線通信システム及びユーザ装置
JP7048712B2 (ja) 2017-03-23 2022-04-05 株式会社Nttドコモ 無線通信システム及びユーザ装置
CN109644521A (zh) * 2017-06-16 2019-04-16 瑞典爱立信有限公司 用于测量报告的方法和装置
CN109644521B (zh) * 2017-06-16 2021-04-20 瑞典爱立信有限公司 用于测量报告的方法、装置和计算机可读介质
US11190931B2 (en) 2017-09-27 2021-11-30 Ntt Docomo, Inc. Base station and measurement capability determination method
WO2019065243A1 (ja) * 2017-09-27 2019-04-04 株式会社Nttドコモ 基地局及び測定能力決定方法
JP7050914B2 (ja) 2017-11-10 2022-04-08 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ装置、ノード、及びその中で実行される方法
JP2021502734A (ja) * 2017-11-10 2021-01-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ装置、ノード、及びその中で実行される方法
US11638315B2 (en) 2017-11-10 2023-04-25 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, nodes and methods performed therein
WO2019187163A1 (ja) * 2018-03-30 2019-10-03 富士通株式会社 通信制御装置、無線装置、および無線通信システム
JP7341135B2 (ja) 2018-06-19 2023-09-08 三菱電機株式会社 ユーザ装置、基地局および通信システム
WO2020170402A1 (ja) * 2019-02-21 2020-08-27 株式会社Nttドコモ ユーザ装置
US20220046741A1 (en) * 2019-04-26 2022-02-10 Kyocera Corporation Communication control method

Also Published As

Publication number Publication date
JPWO2015115573A1 (ja) 2017-03-23
JP2016225998A (ja) 2016-12-28
JP6030264B1 (ja) 2016-11-24
EP3101972A4 (en) 2018-01-31
US20160219604A1 (en) 2016-07-28
JP6042569B2 (ja) 2016-12-14
EP3101972A1 (en) 2016-12-07
US20160219603A1 (en) 2016-07-28
US9936515B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
JP6030264B1 (ja) 通信制御方法、マスタ基地局及びセカンダリ基地局
JP6780051B2 (ja) 通信システム、基地局及びプロセッサ
JP6412887B2 (ja) 基地局、ユーザ端末、及び通信制御方法
JP6815427B2 (ja) 基地局及びユーザ端末
JP7335862B2 (ja) ユーザ端末及び基地局
JP6105184B1 (ja) マスタ基地局、セカンダリ基地局、及びプロセッサ
JP6280669B1 (ja) 基地局、方法、及びシステム
JP6272444B2 (ja) 通信方法、基地局、及びプロセッサ
JP6475887B2 (ja) 通信方法、無線端末、及びプロセッサ
WO2016190357A1 (ja) 通信制御方法、基地局、及びユーザ端末
WO2020090440A1 (ja) ハンドオーバ制御方法、及びユーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560023

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015742558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015742558

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE