WO2015115304A1 - 複合材料構造体の成形方法および複合材料構造体 - Google Patents

複合材料構造体の成形方法および複合材料構造体 Download PDF

Info

Publication number
WO2015115304A1
WO2015115304A1 PCT/JP2015/051725 JP2015051725W WO2015115304A1 WO 2015115304 A1 WO2015115304 A1 WO 2015115304A1 JP 2015051725 W JP2015051725 W JP 2015051725W WO 2015115304 A1 WO2015115304 A1 WO 2015115304A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
composite material
material structure
molding
layer
Prior art date
Application number
PCT/JP2015/051725
Other languages
English (en)
French (fr)
Inventor
耕大 下野
拓真 近藤
暁 野岡
剛 大川原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2015115304A1 publication Critical patent/WO2015115304A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/006Degassing moulding material or draining off gas during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3002Superstructures characterized by combining metal and plastics, i.e. hybrid parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to a method for forming a composite material structure in which a net-like or foil-like metal layer is laminated on a fiber reinforced resin layer such as CFRP or GFRP, and a composite material structure.
  • a surface protective layer (protection) is disclosed as disclosed in, for example, Patent Document 1 in order to improve lightning resistance.
  • a surface protective layer 2 such as a resin film is placed on the molding surface 1a of the mold 1, and a metal such as a metal mesh 3a or a metal foil 3b is formed thereon. Layers are stacked. Further, a plurality of fiber reinforced resin layers 4 such as prepregs are laminated thereon, and these are heated, evacuated and pressurized by an autoclave or the like to be molded into a composite material structure having a predetermined shape.
  • the molding method in which the molding surface of the mold is vibrated with a vibration exciter as described above merely promotes the bubble to escape naturally, and does not necessarily guarantee complete deaeration.
  • the installation of the vibrator causes the mold structure to become complicated, which also increases the unit manufacturing cost of the molded product.
  • An object of the present invention is to provide a method for forming a composite material structure and a composite material structure.
  • the present invention employs the following means.
  • a surface protective layer, a metal layer, and a fiber reinforced resin layer are sequentially laminated on a molding surface of a mold
  • a plurality of deaeration grooves communicating to the outer peripheral edge are formed, and bubbles remaining between the molding surface and the metal layer are degassed from the deaeration grooves during the pressurization and heating.
  • the surface protective layer, the metal layer, and the fiber reinforced resin layer laminated on the molding surface of the mold are pressure-molded while being heated, the surface protective layer Bubbles contained between the metal layer and the metal layer are easily discharged to the outside through the deaeration groove. That is, the bubbles flow in the material of the surface protective layer that is softened during molding, and reach the deaeration groove formed on at least one of the molding surface of the mold and the surface of the metal layer. Since the deaeration groove communicates from the bubble generating area to the outer peripheral edge of the molding surface or the metal layer surface, the bubble is pushed out from the end of the deaeration groove to the outside by the pressure during molding. As described above, bubbles remain between the surface protective layer and the metal layer constituting the composite material structure by a very simple method of forming a deaeration groove on the molding surface of the mold or the surface of the metal layer. This can be effectively prevented.
  • the deaeration groove may be formed simultaneously with the rolling process of the metal layer or the surface treatment after the rolling process.
  • a surface protective layer, a metal layer, and a fiber reinforced resin layer are sequentially laminated on a molding surface of a curved mold, and these are added.
  • the metal layer placed on the molding surface of the curved mold via the surface protective layer is curved in accordance with the curved shape of the molding surface of the mold. Therefore, the metal layer is well adapted to the molding surface of the mold, and bubbles are prevented from remaining between the surface protective layer and the metal layer after molding. In this way, it is possible to prevent bubbles from remaining between the surface protective layer and the metal layer by a very simple method of bending the metal layer in advance according to the curved shape of the mold forming surface. .
  • the curvature of the metal layer may be set smaller than the curvature of the forming surface. In this way, when the surface protective layer, the metal layer, and the fiber reinforced resin layer are pressed, the metal layer having a smaller curvature than the molding surface of the mold is formed on the surface from the central portion toward both sides. Adheres to the protective layer. For this reason, it becomes difficult for bubbles to remain between the surface protective layer and the metal layer.
  • the composite material structure according to the present invention is characterized by being formed by the composite material structure forming method according to any one of the above aspects. According to this composite material structure, since no bubbles remain between the surface protective layer and the metal layer, there are no defects that cause pits (micro holes) or voids (voids) between layers on the outer surface, and good strength. And appearance can be obtained.
  • FIG. 1 is a perspective view of a mold, a surface protective layer, a metal layer, and a fiber reinforced resin layer showing a first embodiment of a method for forming a composite material structure according to the present invention. It is a perspective view of a metal mold
  • FIG. 1 is a perspective view of a mold 1, a surface protective layer 2, a metal layer 3, and a fiber reinforced resin layer 4 showing a first embodiment of a method for forming a composite material structure according to the present invention.
  • a surface protective layer 2 such as a resin film is placed on the molding surface 1a of the mold 1 and a foil-like metal layer 3 is laminated thereon, as in FIG. .
  • a plurality of fiber reinforced resin layers 4 such as prepregs are laminated thereon, and these are heated, evacuated, and pressurized by an autoclave or the like to form a composite material structure 10A having a predetermined shape.
  • deaeration grooves 5 are formed on the molding surface 1 a of the mold 1. These deaeration grooves 5 are formed in a straight line that communicates from the area (for example, the central region) where air bubbles easily occur on the molding surface 1a to the outer peripheral edge, but pass through the area where air bubbles easily occur and the molding surface 1a. It is preferable to form so as to communicate from one end to the other end. Further, the deaeration groove 5 may be a curved or random groove. The deaeration groove 5 is formed over the entire molding surface 1a by machining, chemical processing such as etching, or the like.
  • the depth of the deaeration groove 5 is desirably about 0.05 mm, and if the depth is greater than that, there is a concern that a defect such as swell may occur in the composite material structure 10A after completion of molding.
  • channel 5 can illustrate about 2 mm, for example, it can set suitably according to conditions, such as a magnitude
  • the composite material structure 10A is molded by pressurizing and heating the surface protective layer 2, the metal layer 3, and the fiber reinforced resin layer 4, between the molding surface 1a of the mold 1 and the metal layer 3, that is, Air bubbles remaining on both surfaces of the surface protective layer 2 are degassed from the deaeration groove 5.
  • the bubbles flow through the material of the surface protective layer 2 that is softened during molding, and are pushed out into the deaeration grooves 5 formed on the molding surface 1 a of the mold 1. Since the deaeration groove 5 communicates from the area (for example, the central area) where bubbles are easily generated on the molding surface 1a to the outer peripheral edge, the air bubbles pushed out to the deaeration groove 5 flow along the deaeration groove 5 and are removed. The air is discharged from the end of the air groove 5 to the outside.
  • FIG. 2 is a perspective view of a mold 1, a surface protective layer 2, a metal layer 3, and a fiber reinforced resin layer 4 showing a second embodiment of the method for forming a composite material structure according to the present invention.
  • the deaeration groove 5 is formed on the molding surface 1a of the mold 1, but in this second embodiment, the surface of the metal layer 3 on the molding surface 1a side (here, the lower surface). ), A plurality of deaeration grooves 5 having a depth of about 0.05 mm are formed. Since the other configuration is the same as that of the first embodiment (FIG. 1), the same reference numerals are given to the respective parts and the description thereof is omitted.
  • the deaeration groove 5 is formed in a straight line on the lower surface of the metal layer 3 so as to communicate from an area where bubbles are likely to be generated (for example, a central region) to an outer peripheral edge. 3 is preferably formed so as to communicate from one end to the other end of the lower surface.
  • the deaeration groove 5 may be curved or random.
  • the deaeration groove 5 is formed on the lower surface of the metal layer 3 by machining or chemical processing such as etching. Or you may make it form the deaeration groove
  • the depth of the deaeration groove 5 is preferably about 0.05 mm.
  • channel 5 can illustrate about 2 mm, for example.
  • the very simple configuration of forming the deaeration groove 5 in the metal layer 3 prevents bubbles from remaining between the surface protective layer 2 and the metal layer 3 constituting the composite material structure 10B. can do.
  • the deaeration groove 5 by forming the deaeration groove 5 at the same time when the metal layer 3 is rolled, a dedicated process for forming the deaeration groove 5 in the metal layer 3 can be omitted, and the surface protection layer 2 and the metal can be formed with a simple configuration. It is possible to prevent bubbles from remaining between the layer 3 and the layer 3.
  • FIG. 3 is a side view of a mold 11, a surface protective layer 2, a metal layer 3, a fiber reinforced resin layer 4 and the like showing a third embodiment of the method for molding a composite material structure according to the present invention.
  • the mold 11 shown here has a molding surface 11a curved in a concave shape, and molds the curved composite material structure 10C.
  • a surface protective layer 2 such as a resin film is placed on the molding surface 11a of the mold 11, a foil-like metal layer 3 is laminated thereon, and a plurality of fibers such as prepregs are laminated thereon.
  • the reinforced resin layer 4 is laminated, and these are heated, evacuated, and pressurized by an autoclave or the like to be molded into a composite material structure 10C having a predetermined curved shape.
  • the metal layer 3 is pulled out from the roll 30 and cut into a predetermined size by the cutter 6, the metal layer 3 is matched with the curved shape of the molding surface 11 a of the mold 11 by, for example, a roller-type curved molding machine 7 or manual work. Then, the film is preliminarily curved and laminated on the surface protective layer 2.
  • the metal layer 3 is preliminarily curved according to the curved shape of the molding surface 11a of the mold 11, and then laminated on the surface protective layer 2, so that the metal layer 3 is well adapted to the molding surface 11a. Therefore, bubbles are prevented from remaining between the surface protective layer 2 and the metal layer 3 after molding.
  • the metal layer 3 is curved in advance, the surface protection layer 2, the metal layer 3, and the fiber reinforced resin layer 4 are pressure-molded by setting the curvature rate R2 to be smaller than the curvature rate R1 of the molding surface 11a. In doing so, the metal layer 3 is in close contact with the surface protective layer 2 from the central portion toward both sides (left and right as viewed in FIG. 3). For this reason, it becomes the aspect by which the bubble interposed between the surface protective layer 2 and the metal layer 3 is extruded on both sides, and a bubble becomes difficult to remain.
  • the present invention is not limited to the configuration of the embodiment described above, and can be appropriately modified or improved within the scope not departing from the gist of the present invention.
  • the form is also included in the scope of the right of the present invention.
  • it may be a molding method in which the first to third embodiments are appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明に係る複合材料構造体の成形方法は、金型(1)の成形面(1a)上に、表面保護層(2)と、金属層(3)と、繊維強化樹脂層(4)とを順に積層し、これらを加圧および加熱して複合材料構造体(10A)を成形するものであって、金型(1)の成形面(1a)または金属層(3)の成形面(1a)側の面の少なくとも一方に、該成形面(1a)または該金属層(3)の面の、気泡が生じるエリアから外周縁部まで連通する複数の脱気溝(5)を形成し、前記加圧および加熱時に、成形面(1a)と金属層(3)との間に残留する気泡を脱気溝(5)から脱気させることを特徴とする。

Description

複合材料構造体の成形方法および複合材料構造体
 本発明は、CFRPやGFRP等の繊維強化樹脂層に網状やフォイル状の金属層が積層される複合材料構造体の成形方法および複合材料構造体に関するものである。
 航空機や風車等の建造物の外表面に用いられる繊維強化樹脂を用いた複合材料構造体において、耐落雷性を高めるべく、例えば特許文献1に開示されているように、その表面保護層(保護用の樹脂フィルム等)の近くに金属メッシュや金属フォイル等を積層したものが知られている。
 具体的には、図4、図5に示すように、金型1の成形面1a上に樹脂フィルム等の表面保護層2が載置され、その上から金属メッシュ3aまたは金属フォイル3b等の金属層が積層される。さらに、その上から複数枚のプリプレグ等の繊維強化樹脂層4が積層され、これらがオートクレーブ等で加熱・真空引き・加圧されて所定の形状の複合材料構造体に成形される。
 このように成形された複合材料構造体に落雷した場合には、落雷電流が金属層3a,3bを通って所定の避雷部材に導かれ、繊維強化樹脂4の破損が防止される。
特開2006-219078号公報
 しかしながら、前記のように複数の層が積層されて成形される場合、オートクレーブ等における真空引きまたは硬化時の加圧のみでは、表面保護層2と金属層3a,3bとの間に含まれる気泡を完全に除去することは困難である。その結果、複合材料構造体の外表面にピット(微小穴)または層間のボイド(空隙)を生じて、強度低下や外観性が劣化する不具合が起きる。特にフォイル状の金属層3bの場合は、網状の金属層3aと異なり、気泡が金属層3bを通過することができないため、気泡が金属層3bと表面保護層2との間に残留する可能性が高くなる。
 このような不具合を解決するため、例えば特開平5-192949号公報に記載されているように、樹脂を含浸させた繊維よりなる複合材料構造体の成形時および硬化時に、金型の成形面(フェーシングシート)を可振器により振動させるようにした成形方法が知られている。
 しかしながら、上記のように金型の成形面を可振器により振動させる成形方法は、気泡が自然に抜けるのを促進させているに過ぎず、必ずしも完全な脱気を約束するものではない。しかも、可振器の設置によって金型構造の複雑化を招き、成形品の製造単価を上昇させる原因にもなる。
 本発明は、このような事情に鑑みてなされたものであって、簡素な構成により、複合材料構造体を構成する表面保護層と金属層との間に気泡が残留することを防止することのできる複合材料構造体の成形方法および複合材料構造体を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明に係る複合材料構造体の成形方法の第1の態様は、金型の成形面上に、表面保護層と、金属層と、繊維強化樹脂層とを順に積層し、これらを加圧および加熱して複合材料構造体を成形する方法であって、前記成形面または前記金属層の前記成形面側の面の少なくとも一方に、該成形面または該金属層の面の、気泡が生じるエリアから外周縁部まで連通する複数の脱気溝を形成し、前記加圧および加熱時に、前記成形面と前記金属層との間に残留する気泡を前記脱気溝から脱気させることを特徴とする。
 前記第1の態様に係る成形方法によれば、金型の成形面上に積層された表面保護層と金属層と繊維強化樹脂層とが加熱されながら加圧成形される際に、表面保護層と金属層との間に含まれる気泡が脱気溝を通って外部に排出され易くなる。つまり、気泡は成形時に軟化する表面保護層の材料中を流動し、金型の成形面または金属層の面の少なくとも一方に形成された脱気溝に到達する。脱気溝は成形面または金属層の面の、気泡が生じるエリアから外周縁部まで連通しているため、成形時の圧力によって気泡は脱気溝の端部から外部に押し出される。
 このように、金型の成形面または金属層の面に脱気溝を形成するという非常に簡素な方法により、複合材料構造体を構成する表面保護層と金属層との間に気泡が残留することを効果的に防止することができる。
 前記第1の態様に係る成形方法において、前記脱気溝は、前記金属層の圧延加工時、または圧延加工後の表面処理時に同時に形成するようにしてもよい。
 こうすることにより、金属層に脱気溝を形成する専用の工程を省くことができ、簡素な構成によって表面保護層と金属層との間に気泡が残留することを防止することができる。
 本発明に係る複合材料構造体の成形方法の第2の態様は、湾曲した金型の成形面上に、表面保護層と、金属層と、繊維強化樹脂層とを順に積層し、これらを加圧および加熱して複合材料構造体を成形する方法であって、前記金属層を、前記成形面の湾曲形状に合わせて予め湾曲させてから前記表面保護層の上に積層することを特徴とする。
 前記第2の態様に係る成形方法によれば、湾曲した金型の成形面上に表面保護層を介して載置される金属層が、金型の成形面の湾曲形状に合わせて湾曲しているので、金属層が金型の成形面に良く馴染み、成形後に表面保護層と金属層との間に気泡が残留することが防止される。
 このように、金属層を、金型成形面の湾曲形状に合わせて予め湾曲させるという非常に簡素な方法により、表面保護層と金属層との間に気泡が残留することを防止することができる。
 前記第2の態様に係る成形方法において、金属層の湾曲率は、前記成形面の湾曲率よりも小さく設定することとしてもよい。
 こうすることにより、表面保護層と金属層と繊維強化樹脂層とが加圧される際に、金型の成形面よりも小さな湾曲率を持つ金属層は、その中央部から両側に向かって表面保護層に密着する。このため、表面保護層と金属層との間に気泡が残留しにくくなる。
 また、本発明に係る複合材料構造体は、前記いずれかの態様の複合材料構造体の成形方法によって成形されたことを特徴とする。
 この複合材料構造体によれば、その表面保護層と金属層との間に気泡が残留しないため、外表面にピット(微小穴)または層間のボイド(空隙)を生じる不具合が無く、良好な強度および外観性を得ることができる。
 以上のように、本発明に係る複合材料構造体の成形方法によれば、簡素な構成により、複合材料構造体を構成する表面保護層と金属層との間に気泡が残留することを防止することができる。
 また、本発明に係る複合材料構造体によれば、表面保護層と金属層との間に気泡が残留せず、外表面にピット(微小穴)または層間のボイド(空隙)を生じる不具合が無く、良好な強度および外観性を得ることができる。
本発明に係る複合材料構造体の成形方法の第1実施形態を示す金型、表面保護層、金属層、繊維強化樹脂層の斜視図である。 本発明に係る複合材料構造体の成形方法の第2実施形態を示す金型、表面保護層、金属層、繊維強化樹脂層の斜視図である。 本発明に係る複合材料構造体の成形方法の第3実施形態を示す金型、表面保護層、金属層、繊維強化樹脂層等の側面図である。 従来の技術を示す金型、表面保護層、金属層、繊維強化樹脂層の斜視図である。 従来の技術を示す金型、表面保護層、金属層、繊維強化樹脂層の斜視図である。
 以下、本発明の実施形態について説明する。
[第1実施形態]
 図1は、本発明に係る複合材料構造体の成形方法の第1実施形態を示す金型1、表面保護層2、金属層3、繊維強化樹脂層4の斜視図である。この実施形態では、従来の技術を示す図5と同様に、金型1の成形面1aに樹脂フィルム等の表面保護層2が載置され、その上からフォイル状の金属層3が積層される。さらに、その上から複数枚のプリプレグ等の繊維強化樹脂層4が積層され、これらがオートクレーブ等で加熱・真空引き・加圧されて所定の形状の複合材料構造体10Aに成形される。
 従来の技術と異なるのは、金型1の成形面1aに複数の脱気溝5が形成されている点である。これらの脱気溝5は、成形面1aの気泡が生じやすいエリア(例えば中央領域)から外周縁部まで連通する直線状に形成されているが、気泡が生じやすいエリアを通り、且つ成形面1aの一端から他端まで連通するように形成するのが好ましい。また、脱気溝5は、曲線状や、ランダムな溝であってもよい。この脱気溝5は、機械加工や、エッチング等の化学加工等により、成形面1aの全面に亘って形成される。
 脱気溝5の深さは、0.05mm程度であることが望ましく、それ以上の深さになると、成形完了後の複合材料構造体10Aにうねり等の不良が発生する懸念がある。また、脱気溝5の間隔(ピッチ)は、例えば2mm程度を例示することができるが、成形品の大きさや厚さ、あるいは加圧圧力、加熱温度等の条件によって適宜設定することができる。
 そして、表面保護層2と金属層3と繊維強化樹脂層4とを加圧および加熱して複合材料構造体10Aを成形する時には、金型1の成形面1aと金属層3との間、即ち表面保護層2の両面に残留する気泡を脱気溝5から脱気させる。
 即ち、気泡は成形時に軟化する表面保護層2の材料中を流動し、金型1の成形面1aに形成された脱気溝5に押し出される。脱気溝5は成形面1aの気泡が生じやすいエリア(例えば中央領域)から外周縁部まで連通しているため、脱気溝5に押し出された気泡は脱気溝5に沿って流れ、脱気溝5の端部から外部に排出される。
 このように、金型1の成形面1aに脱気溝5を形成するという非常に簡素な方法により、複合材料構造体10Aを構成する表面保護層2と金属層3との間に気泡が残留することを効果的に防止することができる。
 そして、このようにして成形された複合材料構造体10Aは、その表面保護層2と金属層3との間に気泡が残留しないため、外表面(表面保護層2の外面)にピット(微小穴)または層間のボイド(空隙)を生じる不具合が無く、良好な強度および外観性を得ることができる。
[第2実施形態]
 図2は、本発明に係る複合材料構造体の成形方法の第2実施形態を示す金型1、表面保護層2、金属層3、繊維強化樹脂層4の斜視図である。前述の第1実施形態においては、金型1の成形面1aに脱気溝5が形成されていたが、この第2実施形態においては、金属層3の成形面1a側の面(ここでは下面)に、深さ0.05mm程度の脱気溝5が複数本形成されている。それ以外の構成は第1実施形態(図1)と同様であるため、各部に同符号を付して説明を省略する。
 脱気溝5は、金属層3の下面の、気泡が生じやすいエリア(例えば中央領域)から外周縁部まで連通する直線状に形成されているが、気泡が生じやすいエリアを通り、且つ金属層3の下面の一端から他端まで連通するように形成するのが好ましい。また、脱気溝5は、曲線状やランダム状であってもよい。
 この脱気溝5は、機械加工や、エッチング等の化学加工等によって金属層3の下面に形成される。あるいは、金属層3の圧延加工時や、圧延加工後の表面処理時に脱気溝5を同時に形成するようにしてもよい。脱気溝5の深さは、0.05mm程度であることが望ましい。また、脱気溝5の間隔(ピッチ)は、例えば2mm程度を例示することができる。
 表面保護層2と金属層3と繊維強化樹脂層4とを加圧および加熱して複合材料構造体10Bを成形する時には、金型1の成形面1aと金属層3との間、即ち表面保護層2の両面に残留する気泡が、成形時に軟化する表面保護層2の材料中を流動し、金属層3の下面に形成された脱気溝5に押し出される。脱気溝5は金属層3の下面の、気泡が生じやすいエリア(例えば中央領域)から外周縁部まで連通しているため、脱気溝5に押し出された気泡は脱気溝5に沿って流れ、脱気溝5の端部から外部に排出される。
 このように、金属層3に脱気溝5を形成するという非常に簡素な構成により、複合材料構造体10Bを構成する表面保護層2と金属層3との間に気泡が残留することを防止することができる。
 なお、金属層3の圧延加工時に脱気溝5を同時に形成することにより、金属層3に脱気溝5を形成する専用の工程を省くことができ、簡素な構成によって表面保護層2と金属層3との間に気泡が残留することを防止することができる。
 そして、このようにして成形された複合材料構造体10Bは、その表面保護層2と金属層3との間に気泡が残留しないため、外表面にピット(微小穴)または層間のボイド(空隙)を生じる不具合が無く、良好な強度および外観性を得ることができる。
[第3実施形態]
 図3は、本発明に係る複合材料構造体の成形方法の第3実施形態を示す金型11、表面保護層2、金属層3、繊維強化樹脂層4等の側面図である。ここに示す金型11は、その成形面11aが凹状に湾曲しており、湾曲した複合材料構造体10Cを成形するものである。
 即ち、金型11の成形面11aの上に樹脂フィルム等の表面保護層2が載置され、その上からフォイル状の金属層3が積層され、さらに、その上から複数枚のプリプレグ等の繊維強化樹脂層4が積層され、これらがオートクレーブ等で加熱・真空引き・加圧されて所定の湾曲形状を有する複合材料構造体10Cに成形される。
 金属層3は、ロール30から引き出されてカッター6で所定の寸法に切断された後、例えばローラー式の湾曲成形機7や、手作業等により、金型11の成形面11aの湾曲形状に合わせて予め湾曲成形されてから表面保護層2の上に積層される。ここで、成形面11aの湾曲率R1よりも金属層3の湾曲率R2を少し小さく設定するのが好ましい。
 上記のように、金属層3を、金型11の成形面11aの湾曲形状に合わせて予め湾曲させてから表面保護層2の上に積層することにより、金属層3が成形面11aに良く馴染むため、成形後に表面保護層2と金属層3との間に気泡が残留することが防止される。
 このように、金属層3を、成形面11aの湾曲形状に合わせて予め湾曲させるという非常に簡素な方法により、表面保護層2と金属層3との間に気泡が残留することを防止することができる。
 また、金属層3を予め湾曲させる時に、その湾曲率R2を成形面11aの湾曲率R1よりも小さく設定することにより、表面保護層2と金属層3と繊維強化樹脂層4とが加圧成形される際に、金属層3は、その中央部から両側(図3に向かって左右方向)に向かって表面保護層2に密着していく。このため、表面保護層2と金属層3との間に介在する気泡が両側に押し出される態様となり、気泡が残留しにくくなる。
 かくして、第1~第3実施形態に係る複合材料構造体の成形方法によって成形された複合材料構造体10A,10B,10Cは、その表面保護層2と金属層3との間に気泡が残留しないため、外表面にピット(微小穴)または層間のボイド(空隙)を生じる不具合が無く、良好な強度および外観性を得ることができる。
 なお、本発明は、上記実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、第1~第3実施形態を適宜組み合わせた成形方法としてもよい。
1,11 金型
1a,11a 成形面
2 表面保護層
3 金属層
4 繊維強化樹脂層
5 脱気溝
6 カッター
7 湾曲成形機
10A,10B,10C 複合材料構造体
30 ロール
R1 成形面の湾曲率
R2 金属層の湾曲率

Claims (5)

  1.  金型の成形面上に、表面保護層と、金属層と、繊維強化樹脂層とを順に積層し、これらを加圧および加熱して複合材料構造体を成形する方法であって、
     前記成形面または前記金属層の前記成形面側の面の少なくとも一方に、該成形面または該金属層の面の、気泡が生じるエリアから外周縁部まで連通する複数の脱気溝を形成し、
     前記加圧および加熱時に、前記成形面と前記金属層との間に残留する気泡を前記脱気溝から脱気させる複合材料構造体の成形方法。
  2.  前記脱気溝は、前記金属層の圧延加工時、または圧延加工後の表面処理時に同時に形成する請求項1に記載の複合材料構造体の成形方法。
  3.  湾曲した金型の成形面上に、表面保護層と、金属層と、繊維強化樹脂層とを順に積層し、これらを加圧および加熱して複合材料構造体を成形する方法であって、
     前記金属層を、前記成形面の湾曲形状に合わせて予め湾曲させてから前記表面保護層の上に積層する複合材料構造体の成形方法。
  4.  前記金属層の湾曲率を、前記成形面の湾曲率よりも小さく設定する請求項3に記載の複合材料構造体の成形方法。
  5.  請求項1から4のいずれか1項に記載の複合材料構造体の成形方法によって成形された複合材料構造体。
     
PCT/JP2015/051725 2014-01-28 2015-01-22 複合材料構造体の成形方法および複合材料構造体 WO2015115304A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013476 2014-01-28
JP2014013476A JP2015139932A (ja) 2014-01-28 2014-01-28 複合材料構造体の成形方法および複合材料構造体

Publications (1)

Publication Number Publication Date
WO2015115304A1 true WO2015115304A1 (ja) 2015-08-06

Family

ID=53756880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051725 WO2015115304A1 (ja) 2014-01-28 2015-01-22 複合材料構造体の成形方法および複合材料構造体

Country Status (2)

Country Link
JP (1) JP2015139932A (ja)
WO (1) WO2015115304A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102272327B1 (ko) * 2020-06-15 2021-07-02 엘아이지넥스원 주식회사 낙뢰방지 및 안테나 간 전자파 간섭 방지 기능을 갖춘 통합마스트용 메타물질 흡수체 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034831A (ja) * 1996-07-18 1998-02-10 Mitsuboshi Belting Ltd 複合シート,複合防水材および複合防水工法
JP2005324531A (ja) * 2004-05-12 2005-11-24 Nissei Engineering Kk 大気圧によるサンドイッチ構造体の接着接合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034831A (ja) * 1996-07-18 1998-02-10 Mitsuboshi Belting Ltd 複合シート,複合防水材および複合防水工法
JP2005324531A (ja) * 2004-05-12 2005-11-24 Nissei Engineering Kk 大気圧によるサンドイッチ構造体の接着接合方法

Also Published As

Publication number Publication date
JP2015139932A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
KR101630584B1 (ko) 섬유 강화 복합 재료 성형품의 제조 방법 및 섬유 강화 복합 재료 성형품
EP2271478B1 (en) A consolidated composite pre-form
JP2010500932A (ja) 繊維複合材料からなる被加工材の製造方法および全長にわたって変化する断面輪郭を有する異形材の形状の繊維複合部品
JP2012192751A (ja) 車両用防音材
JP6538311B2 (ja) 連続圧縮成形用ツーリングダイの、ずらして配置された斜面
JP5550537B2 (ja) 複合材製造方法
WO2016194676A1 (ja) 樹脂複合材料の硬化装置、硬化方法、および樹脂成形品
JP6136381B2 (ja) 繊維強化熱可塑性樹脂成形体の製造方法
JP2015051629A (ja) 積層基材の製造方法、及び積層基材
JP6112178B2 (ja) サンドイッチパネルおよびサンドイッチパネルの製造方法
JP2017121785A (ja) 繊維強化複合材料成形品の製造方法及びそれに用いるプレス用金型
US20080226818A1 (en) Method for Through Repair of a Composite Structure Comprising Three Skins and Two Core Layers
JP6084069B2 (ja) 繊維強化樹脂成形品及びその成形方法
JP7396825B2 (ja) 連続圧縮成形プロセスを使用して形成される、多孔質コアを有する複合積層構造
JP5861448B2 (ja) サンドイッチパネルの製造方法
JP5322594B2 (ja) 断面の異なる複合材型材の連続成形方法
US20140373350A1 (en) Method for the Production of a Circuit Board Involving the Removal of a Subregion thereof, and Use of such a Method
WO2016151394A3 (fr) Procede de fabrication d'un composant micromecanique anisotropique
WO2015115304A1 (ja) 複合材料構造体の成形方法および複合材料構造体
JP2004188965A (ja) 繊維強化樹脂構造体の製造方法及び、その製造装置
KR102199038B1 (ko) 서로 교차하는 중공 보강 구조체들을 생산하기 위한 방법
JP6573308B2 (ja) 繊維強化樹脂構造体の製造方法
JP5684536B2 (ja) 中空構造板及びその製造方法
JP2002337094A (ja) 航空機エンジンナセル吸音パネル用多孔板の孔明け方法、製造方法
JP4965295B2 (ja) プリフォームおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743033

Country of ref document: EP

Kind code of ref document: A1