WO2015115256A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2015115256A1
WO2015115256A1 PCT/JP2015/051446 JP2015051446W WO2015115256A1 WO 2015115256 A1 WO2015115256 A1 WO 2015115256A1 JP 2015051446 W JP2015051446 W JP 2015051446W WO 2015115256 A1 WO2015115256 A1 WO 2015115256A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
opening
space
side wall
end surface
Prior art date
Application number
PCT/JP2015/051446
Other languages
French (fr)
Japanese (ja)
Inventor
真 大石
高木 俊
祥啓 古賀
久保 修一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2015115256A1 publication Critical patent/WO2015115256A1/en

Links

Images

Classifications

    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat exchanger using a ceramic honeycomb structure.
  • the honeycomb structure is composed of a large number of flow paths that are partitioned by inner walls. When a fluid passes through the flow path of the honeycomb structure, heat, a substance, and the like can be moved through the inner wall, so that it is widely used as a heat exchanger.
  • Patent Document 1 is a high-temperature heat exchanger including an element made of a porous silicon carbide sintered body that exchanges heat between a fluid flowing through the inside and a fluid existing outside.
  • a high temperature heat exchanger is described in which the element is a honeycomb structure having a plurality of cells extending in the longitudinal direction. It is described that a heat exchanger using such a honeycomb structure is excellent in strength and can efficiently exchange heat between fluids having different temperatures.
  • the ceramic is used in the honeycomb structure because the atoms constituting the material are strongly bonded by a covalent bond and have high strength, heat resistance, and corrosion resistance. On the other hand, the ceramic material becomes a hard and brittle material due to such a feature of the covalent bond. For this reason, the ceramic honeycomb structure is manufactured by a simple forming method such as extrusion, and has a simple shape in which flow paths are arranged in one direction. Because of this shape, the parts to which the honeycomb structure is applied are designed on the assumption that the flow paths are aligned in one direction, and the degree of freedom in designing a heat exchanger using the honeycomb structure is small.
  • a honeycomb structure that exceeds the scope of application of a heat exchanger using such a conventional honeycomb structure made of ceramic, gives a new function to the honeycomb structure, and can handle a new fluid flow. It aims at providing the used heat exchanger.
  • the heat exchanger of the present invention for solving the above-mentioned problems has at least a first end face, a second end face, a first side wall, and a second side wall, and is partitioned by an inner wall from the first end face to the second end face.
  • a heat exchanger using a ceramic honeycomb structure having a plurality of flow paths extending, a first opening formed in the first side wall or the second side wall, and a plurality of faces facing the first opening
  • a connection hole formed on the inner wall and connecting a plurality of the flow paths, and the flow path having the first opening or the second opening includes the first end surface and the second flow path.
  • Each of the second end faces has a sealing portion, and the flow path having the first opening or the second opening constitutes a first space by being connected by the connection hole, and the first opening And the flow path without the second opening is A second space extending from the first end surface to the second end surface is formed, and the first space and the second space are separated from each other by the inner wall, and the first space or the A catalyst layer is provided on the inner surface of the second space.
  • the flow path extends from the first end face toward the second end face.
  • the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
  • a fluid flow can be created in the direction across the honeycomb structure.
  • the first opening and the second opening are formed inside the first opening, not only the flow path located on the outermost periphery but also the flow path on the inner side.
  • a fluid flow can be created.
  • the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently.
  • a heat exchanger can be provided.
  • the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
  • the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented.
  • the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
  • the catalyst layer is provided on the inner surface of the first space or the second space, a function of purifying harmful gas contained in the exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
  • the heat exchanger of the present invention has the following aspect. (1)
  • the heat exchanger has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
  • connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
  • the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
  • the first space has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing the inlet and the outlet with a plurality of connection holes in the first space, the fluid flowing through the first space (first fluid) can be used continuously.
  • having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall.
  • the amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space.
  • the heat exchanger has the connection holes on the first side surface and the second side surface, respectively.
  • the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening.
  • the heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, the resistance of the first fluid in the first opening can be reduced while reducing the influence on the strength reduction of the entire heat exchanger, and the pressure can be reduced. Loss can be reduced efficiently.
  • the plurality of second openings are longer in order toward the first opening.
  • the heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening.
  • the resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
  • the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both equal.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal.
  • connection hole is characterized in that the second openings having five or more layers are stacked.
  • the heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more.
  • connection hole is characterized in that the second openings of 10 layers or more are stacked.
  • the heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
  • the ceramic is characterized by comprising any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
  • the heat exchanger of the present invention has heat resistance, corrosion resistance, and high strength when the honeycomb structure is made of any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Heat exchanger can be provided.
  • the conventional ceramic honeycomb structure A new function not provided in the heat exchanger using the body can be added. Moreover, since it has a catalyst layer in the inner surface of 1st space or 2nd space, the function which purifies the harmful gas contained in exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
  • FIG. 1A is a cross-sectional view taken along the line A-A ′ of FIG. 1
  • FIG. (A)-(e) is sectional drawing of the modification of the connection hole of the heat exchanger of 1st Embodiment which concerns on this invention, and is a figure equivalent to Fig.3 (a).
  • FIG. 5A is a cross-sectional view of a modification of the heat exchanger of FIGS. 5A to 5C
  • FIG. 5A is a cross-sectional view taken along the line CC ′ of FIG. 5A
  • FIG. 5B is an E view of FIG.
  • FIG. 5C is a cross-sectional view taken along the line DD ′ in FIG. 5A and the cross-sectional view taken along the line FF ′ in FIG. 5B.
  • FIGS. 7A to 7C are cross-sectional views of a heat exchanger according to a second embodiment of the present invention
  • FIG. 7A is a cross-sectional view taken along the line GG ′ of FIG. 7A
  • FIG. 7B is a cross-sectional view taken along the line II ′ of FIG. 7B
  • FIG. 7C is a cross-sectional view taken along the line HH ′ of FIG.
  • (A) And (b) is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. It is explanatory drawing which shows another example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention.
  • (A) And (b) is process drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention.
  • (A) And (b) is process drawing which shows another example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention.
  • FIG. 19 is a cross-sectional view of a heat exchanger according to a third embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 18 and (b) is a LL ′ cross-sectional view of FIG. 18 (b). . It is a perspective view of the heat exchanger of 4th Embodiment which concerns on this invention.
  • FIG. 21 is a cross-sectional view of a heat exchanger according to a fourth embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 20 and (b) is a LL ′ cross-sectional view of FIG. 20 (b). . It is a perspective view of the heat exchanger of 5th Embodiment which concerns on this invention.
  • FIG. 23 is a cross-sectional view of a heat exchanger according to a fifth embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 22 and (b) is a LL ′ cross-sectional view of FIG. 22 (b). .
  • the cross section of the honeycomb structure indicates a cross section cut in the depth direction of the connection hole along the flow path.
  • FIG. 17 describes in detail the cutting position of FIG. 3, which is a cross-sectional view of FIG. 4 is a sectional view of FIG. 1
  • FIG. 6 is a sectional view of FIG. 5
  • FIG. 8 is a sectional view of FIG.
  • the pattern and size of the honeycomb of the heat exchanger of the present invention are not particularly limited.
  • a heat exchanger using a honeycomb structure having an 8 ⁇ 8 lattice flow path has been described.
  • a hexagonal flow path honeycomb a combination of octagonal and quadrangular flow paths is used.
  • the honeycomb is not particularly limited.
  • the shape of the heat exchanger of the present invention is not particularly limited. Other cylinders such as hexahedrons and hexagonal cylinders can also be applied. In the case of a cylinder, a region where a group of connection holes are formed in the side surface can be defined as a first side wall, and a region on the opposite side can be defined as a second side wall.
  • the heat exchanger of the present invention has at least a first end surface, a second end surface, a first side wall, and a second side wall, and has a plurality of flow paths partitioned by an inner wall and extending from the first end surface to the second end surface.
  • a plurality of first openings formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening are formed.
  • a connection hole comprising a second opening for connecting the flow path, and the flow path having the first opening or the second opening is sealed to the first end face and the second end face, respectively.
  • the flow path having the first opening or the second opening constitutes a first space by being connected by the connection hole, and the first opening and the second opening
  • the flow path without an opening is formed from the first end surface to the first flow path.
  • a second space extending to an end surface is formed, and the first space and the second space are separated from each other by the inner wall, and a catalyst is formed on the inner surface of the first space or the second space.
  • the flow path extends from the first end face toward the second end face.
  • the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
  • a fluid flow can be created in the direction across the honeycomb structure.
  • a heat exchanger has the first opening and the second opening formed inside the first opening, not only the flow path located on the outermost periphery but also the inner flow path.
  • a fluid flow can be created.
  • the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently.
  • a honeycomb structure that can be provided can be provided.
  • the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, the fluid can be handled even in a severe environment such as a high temperature environment or a corrosive environment. Moreover, since it has a catalyst layer in the inner surface of 1st space or 2nd space, the function to purify the noxious gas contained in exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
  • the first space has sealing portions on the first end surface and the second end surface, respectively, so that the fluid enters the first space from the first end surface and the second end surface side. Can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
  • the heat exchanger of the present invention it is preferable that the heat exchanger has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
  • connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
  • the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
  • the first space has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a plurality of connection holes in the first space, the fluid (first fluid) flowing through the first space can be continuously supplied.
  • having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall.
  • the amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space.
  • the heat exchanger of the present invention preferably has the connection holes on the first side surface and the second side surface, respectively.
  • the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the first fluid can be spread over the entire inner wall, it is possible to provide a honeycomb structure capable of efficiently performing heat transfer or mass transfer.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening. .
  • the heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, it is possible to reduce the resistance of the first fluid in the first opening while reducing the influence on the strength reduction of the entire honeycomb structure, Pressure loss can be reduced efficiently.
  • the length of the opening is the length in the direction of the flow path.
  • the plurality of second openings become longer in order toward the first opening.
  • the heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening.
  • the resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
  • the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are any Are also preferably equal.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal.
  • connection holes have the second openings of five layers or more stacked.
  • the heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more.
  • the area of the inner wall that separates the first space and the second space can be increased.
  • the aspect ratio between the diameter or width and depth of the connection hole formed by stacking the second openings of five layers or more is 6 or more if the channel is a square channel, and the channel in the deep position is connected to the connection hole. Can be connected.
  • connection hole has the second openings of 10 layers or more stacked.
  • the heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
  • the aspect ratio of the diameter or width and depth of the connection hole formed by stacking the second openings of 10 layers or more is 11 or more in the case of a square channel, and a channel at a deeper position is connected. Can be connected with holes.
  • the ceramic is preferably made of any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
  • the heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia, so that it has heat resistance and corrosion resistance and has a high strength honeycomb structure. Can be provided.
  • silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride When used in a heat exchanger, it is desirable to use silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride. These ceramics have high thermal conductivity and are suitable as heat exchangers.
  • the heat exchanger of the present invention can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. It can be obtained by forming the first and second openings. Connection holes can be formed in the honeycomb-shaped ceramic on the first side wall or the second side wall by laser processing.
  • the laser processing machine used for laser processing is not particularly limited.
  • a honeycomb-shaped ceramic can be processed by using a widely used high-power laser beam.
  • the wavelength and output of the laser beam of the laser processing machine can be appropriately selected according to the honeycomb ceramic. Further, it is possible to perform processing more efficiently by using a laser processing machine combined with a water flow of a water jet that has recently been used.
  • the laser processing method combined with the water jet water flow guides the laser light into the water jet water flow and can guide it to the processing point while totally reflecting it, so that the laser light passes through a thin water flow without diffusing.
  • the depth of focus is deep, and it has higher processing performance than a processing machine using only laser light.
  • the heat exchanger of the present invention can be obtained by processing without penetrating the bottom of the connection hole by using a laser processing machine combined with a water flow of a high processing performance water jet. Processing while leaving the bottom of the connection hole can be realized by scattering laser light at a predetermined location and dispersing light energy. By inserting the light diffusing medium at a predetermined location, the laser light is weakened below and cannot be processed.
  • the light diffusion medium is not particularly limited as long as light can be dispersed.
  • a light-transmitting rod having a curved surface such as a glass rod, devitrified glass, glass having bubbles inside, water, and the like can be used. A light-transmitting substance is not heated by laser light, and light is scattered on a curved surface, so that the ability to process laser light can be reduced, and the bottom of the connection hole can be formed without penetrating. Can be processed.
  • devitrified glass has a phase-separated interior even if the surface is not curved, so that light is easily scattered, the ability to process laser light can be reduced, and the bottom is formed without penetrating. be able to. Moreover, it can process by leaving the bottom of a connection hole by filling water in a predetermined location. When filled with water, a large amount of bubbles are generated by boiling water heated by mixing and processing with a water jet stream. For this reason, the laser beam is rapidly attenuated in the filled water, and processing can be performed while leaving the bottom of the connection hole.
  • the heat exchanger of the present invention can be processed by tilting or scanning the laser beam according to the shape, although there are various modifications of the connection holes.
  • connection hole having a desired shape can be formed by appropriately changing the length of the light diffusion medium inserted into each flow path.
  • the sealing part of the heat exchanger of the present invention may be formed in any way and is not particularly limited.
  • a plug made of the same ceramic material as that constituting the inner wall may be inserted.
  • silicon powder may be applied to the plug as an adhesive and then fired. Silicon melts and functions as an adhesive. Further, for example, it can be obtained by injecting and baking a paste in which an inorganic binder, an organic binder, and inorganic particles are mixed.
  • alumina sol, silica sol or the like can be used.
  • organic binder polyvinyl alcohol, phenol resin or the like can be used.
  • silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, zirconia or the like can be used.
  • the first embodiment has a sealing portion on the first end surface and the second end surface of the flow path constituting the first space, and a connection hole is formed on the first side wall to constitute the first space. It is a heat exchanger with which the 1st end surface and 2nd end surface of 2 space are open
  • connection holes are alternately formed in the plurality of channels facing the first side wall, and the bottoms of the connection holes reach the second end surface.
  • the connection hole does not penetrate the second end face.
  • the first end face and the second end face of the flow path having the first opening and the second opening each have a sealing portion, thereby constituting a first space.
  • the flow path without the first opening and the second opening constitutes a second space extending from the first end surface to the second end surface, and the first space and the second space are separated from each other by the inner wall. .
  • the first space has connection holes on the first and second side walls. Four independent spaces constitute the first space, and 32 4 ⁇ 8 independent flow paths constitute the second space.
  • the third to fifth embodiments are heat exchangers having a catalyst layer on the inner surface of the first space or the second space.
  • FIG. 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention.
  • 3 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 1
  • FIG. 3B is a cross-sectional view taken along the line BB ′ in FIG. is there.
  • FIG. 4 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention.
  • 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, where (a) is a cross-sectional view along CC ′ in FIG. 5 (a), and (b) is a cross-sectional view along EE ′ in FIG. 5 (b).
  • FIG. 5C is a sectional view taken along the line DD ′ of FIG. 5A and a sectional view taken along the line FF ′ of FIG.
  • the heat exchanger (1000) of the first embodiment includes eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 ⁇ 8 flow paths.
  • four connection holes 30 are provided alternately.
  • each connection hole 30 includes a first opening 31 formed in the first side wall 21 and a plurality of second openings 32 formed in the inner wall 50.
  • the first opening 31 and the second opening 32 have a slit shape, and the lengths of the first opening 31 and the second opening 32 are the same.
  • the cross section of the row adjacent to the row where the connection hole 30 is formed does not have a hole in the inner wall 50.
  • connection holes 30 are not particularly limited. 2 and 5 are modified examples in which the position and surface shape of the connection hole 30 are different.
  • FIG. 2A shows a honeycomb structure 1000 (heat exchanger) having one slit-like connection hole 30, and FIG. 2B shows a part of the channel 60 facing the first side wall 21. A slit-like connection hole 30 is formed. Each connection hole 30 is also formed in a slit shape.
  • FIG. 5A shows that four circular connection holes 30 are alternately arranged among the eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure 1000 having the 8 ⁇ 8 flow paths 60.
  • a honeycomb structure 1000 (heat exchanger) is shown.
  • connection holes 30 includes a hole 30 and is a honeycomb structure 1000 (heat exchanger) including five circular connection holes 30.
  • FIG. 5C shows a honeycomb structure 1000 (heat exchanger) having one circular connection hole 30.
  • connection hole 30 in the depth direction is not particularly limited.
  • FIG. 4 shows a modification of the connection hole 30, is a cross-sectional view of the connection hole 30 in the flow path direction, and shows a cross-section A-A ′ of FIG. 1.
  • FIG. 4A shows a connection hole 30 having a V-shaped cross section.
  • the first opening 31 is longer than the second opening 32, and a plurality of second openings 32 are formed in the first opening 31. It is comprised so that it may become long in order.
  • FIG. 4B shows the connection hole 30 aligned so that one side of the first opening 31 and the second opening 32 is vertical, and the first opening 31 is longer than the second opening 32 and includes a plurality of holes.
  • the second opening 32 is configured to become longer in order toward the first opening 31, and the connection hole 30 has a trapezoidal cross section.
  • FIG. 4C shows a connection hole 30 in which the first opening 31 and the second opening 32 have the same length and penetrate the first side wall 21 and the second side wall 22.
  • FIG. 4D shows the connection hole 30 in which the connection hole 30 is formed from the first side wall 21 and the second side wall 22 and shares the inner wall 50 serving as the bottom.
  • FIG. 4 (e) shows the connection hole 30 that is larger in the inside, the first opening 31 is shorter than the second opening 32, and the plurality of second openings 32 are sequentially directed toward the first opening 31. It is configured to be shorter.
  • honeycomb pattern and size of the honeycomb structure 1000 are not particularly limited.
  • the honeycomb structure 1000 (heat exchanger) having the 8 ⁇ 8 lattice-like flow paths 60 has been described.
  • the honeycombs of the hexagonal flow paths 60, the octagonal and the quadrangular flow paths There are no particular limitations such as 60 honeycombs.
  • the heat exchanger 1000 of this embodiment can be obtained by forming the connection holes 30 in the first side wall 21 or the second side wall 22 of the honeycomb-shaped ceramic.
  • the first opening 31 and the second opening 32 are formed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80 as shown in FIG. Can be processed.
  • the connection hole 30 having a desired shape can be obtained by appropriately changing the insertion length of the light diffusion medium 90 as shown in FIG.
  • the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it.
  • the heat exchanger 1000 of the present embodiment can be processed by inserting the light diffusion medium 90 and leaving the bottom of the connection hole 30.
  • FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90.
  • FIGS. 13A, 13B, and 13C show only the laser beam 80
  • FIGS. 14A, 14B, and 14C show processing by combining the laser beam 80 and the water flow 82.
  • FIGS. . As a processing machine in which the laser beam 80 and the water flow 82 are combined, for example, an MCS300 type laser processing machine manufactured by Makino Milling Co. can be used.
  • FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
  • FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
  • FIGS. 13C and 14C are explanatory diagrams in which water 93 is used for the light diffusing medium 90, and the laser light 80 is diffused by heat due to processing and turbulent reflection of bubbles generated by the turbulent flow of the water 93. Processing can be performed leaving the bottom of the connection hole 30.
  • FIG.7 is a perspective view of the heat exchanger of 2nd Embodiment which concerns on this invention.
  • A is a perspective view of the modification of the heat exchanger of 2nd Embodiment which concerns on this invention.
  • 8A and 8B are cross-sectional views of the heat exchanger according to the second embodiment of the present invention, in which FIG. 8A is a cross-sectional view taken along the line GG ′ of FIG. 7A, and FIG. FIG. 7C is a cross-sectional view taken along line I-H 'in FIG. 7A and a cross-sectional view taken along line JJ ′ in FIG. 7B.
  • connection holes 30 are alternately formed in the plurality of flow paths 60 facing the first side wall 21, and the bottom of the connection holes 30 reaches the second side wall 22. Yes.
  • the connection hole 30 does not penetrate the second side wall 22.
  • the first end face 11 and the second end face 12 of the flow path 60 having the first opening 31 and the second opening 32 each have a sealing portion 70, thereby forming a first space 41.
  • the channel 60 without the first opening 31 and the second opening 32 constitutes a second space 42 extending from the first end surface 11 to the second end surface 12, and the first space 41 and the second space 42.
  • the first space 41 has a connection hole 30 on the first side wall 21 and the second side wall 22 side.
  • the first space 41 is composed of four independent spaces, and 32 independent 4 ⁇ 8 flow paths 60 form the second space 42.
  • the first space 41 can create a fluid flow from the first side wall 21 to the second side wall 22 (and vice versa).
  • the second space 42 can also create a fluid flow from the first end surface 11 to the second end surface 12 (and vice versa). Since the first space 41 and the second space 42 are separated by the inner wall 50, the amount of heat can be moved through the inner wall 50 without being mixed with each other. This effect can be suitably used as a heat exchanger.
  • the heat exchanger 1000 of this embodiment can be obtained by forming the connection holes 30 in the first side wall 21 or the second side wall 22 of the honeycomb-shaped ceramic.
  • the first opening 31 and the second opening 32 are formed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80 as shown in FIG. Can be processed.
  • the connection hole 30 having a desired shape can be obtained by appropriately changing the insertion length of the light diffusion medium 90 as shown in FIG.
  • the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it.
  • the heat exchanger 1000 of the present embodiment can be processed by inserting the light diffusion medium 90 and leaving the bottom of the connection hole 30.
  • FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90. 13 (a), (b), and (c) show only processing with the laser beam 80, and FIGS. 14 (a), (b), and (c) show processing with the laser beam 80 in combination with a water jet (water flow 82). Show.
  • a laser processing machine used in combination with a water jet an MCS300 laser processing machine manufactured by Makino Milling Co. can be used.
  • FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
  • FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
  • FIGS. 13C and 14C are explanatory diagrams in which water 93 is used for the light diffusing medium 90, and the laser light 80 is diffused by heat due to processing and turbulent reflection of bubbles generated by the turbulent flow of the water 93. Processing can be performed leaving the bottom of the connection hole 30.
  • honeycomb structure (heat exchanger) 1000 is formed using a honeycomb-shaped ceramic made of silicon carbide of 34 mm ⁇ 34 mm ⁇ 130 mm, having 24 ⁇ 24, a total of 576 square channels 60. Produced.
  • the end surface in the longitudinal direction has a channel opening and is a first end surface 11 and a second end surface 12.
  • the four surfaces other than the first end surface 11 and the second end surface 12 are side walls, of which the surface forming the connection hole 30 is the first side wall 21, and the opposite surface is the second side wall 22.
  • the inner wall 50 has a thickness of 0.25 mm, and the first side wall 21 and the second side wall 22 have a thickness of 0.3 mm.
  • the size of the channel 60 is a square having a side of 1.14 mm.
  • connection holes 30 were formed in this honeycomb-shaped ceramic.
  • the connection hole 30 was formed.
  • the bottom of the connection hole 30 is the second side wall 22, and the second openings 32 are formed in all the inner walls 50.
  • the distance between the first opening 31 and the second opening 32 and the first end surface 11 is 10 mm
  • the first opening 31 extends from the first end surface 11 to a position of 40 mm
  • the second opening 32 in the lowermost layer is One end surface 11 extends to a position of 25 mm.
  • the second opening 32 becomes longer toward the first opening 31 in order, and the connection hole 30 has a trapezoidal cross section.
  • the width of the first opening 31 is 0.6 mm.
  • FIG. Processing was performed at a laser wavelength of 532 nm, an output of 80 W, a nozzle diameter of the water flow 82 of ⁇ 80 ⁇ m, and a scanning speed of 300 mm / min.
  • connection hole 30 had a trapezoidal cross section, the inner wall 50 penetrated all, the first opening 31 had a length of 30 mm, and the lowermost second opening 32 had a length of 15 mm.
  • the method of forming the connection holes 30 in the honeycomb structure (heat exchanger) 1000 is not limited to the laser beam 80 using the water flow 82, and the water flow 82 is used in combination as long as it takes time and is a high-power laser processing machine. Can be processed without any problems.
  • connection holes 30 can be selected as appropriate.
  • FIG. 18 is a perspective view of a heat exchanger according to a third embodiment of the present invention.
  • 19 is a cross-sectional view of the heat exchanger according to the third embodiment of the present invention.
  • FIG. 19A is a cross-sectional view taken along the line KK ′ of FIG. 18, and
  • FIG. 19B is a cross-sectional view taken along the line LL ′ of FIG. FIG.
  • the catalyst layer 43 is provided on the inner surface of the first space 41, and the inner surface of the second space 42 is provided on the inner surface. There is no catalyst layer (see FIG. 19B).
  • supported by the catalyst layer 43 For example, noble metals, such as Pt, Rh, Pd, Ce, Cu, V, Fe, Au, Ag, etc. are mentioned. Of these, Pt is most preferred.
  • the said noble metal etc. can be used independently, you may use 2 or more types together.
  • the catalyst layer may be composed of only the catalytically active component, but may be one in which the catalytically active component is supported on the catalyst support material layer.
  • the catalyst support material layer preferably has, for example, a large specific surface area and a function of increasing the contact area between the gas and the catalyst.
  • the material of the catalyst carrier constituting the catalyst layer and supporting the catalytic active component is not particularly limited, and examples thereof include alumina, titania, silica, ceria, zirconia and the like. Among these, alumina is most preferable from the viewpoint of heat resistance and chemical stability. Among aluminas, ⁇ -alumina has a high specific surface area and can be suitably used as a catalyst support material.
  • the heat exchanger 1000 of the present invention may carry a catalytic active component such as an alkali metal or an alkaline earth metal in addition to the catalytic active component as long as the object of the present invention is not impaired. .
  • a catalytic active component such as an alkali metal or an alkaline earth metal
  • NOx contained in the exhaust gas can be purified.
  • an inorganic binder is added to alumina and mixed, and pulverized to produce a fine powder.
  • alumina for example, ⁇ -alumina can be used.
  • ⁇ -alumina can be adjusted by a sol-gel method or the like.
  • an inorganic binder although it does not specifically limit, a hydrated alumina etc. can be used, for example.
  • the fine powder is combined with pure water and stirred using a stirrer or the like to prepare a slurry.
  • the slurry is attached by spraying slurry on the inner surface of the honeycomb structure 1000 which is a ceramic block, or by immersing the honeycomb structure 1000 in the slurry and performing so-called wash coating.
  • the honeycomb structure 1000 coated with the slurry is dried and fired at a predetermined temperature to form a catalyst support material layer on the inner surface of the honeycomb structure 1000.
  • a solution of an aluminum-containing metal compound that becomes a catalyst support material layer is prepared.
  • a metal compound such as a metal inorganic compound or a metal organic compound can be used.
  • the metal inorganic compound for example, Al (NO 3 ) 3 , AlCl 3 , AlOCl, AlPO 4 , Al 2 (SO 4 ) 3 , Al 2 O 3 , Al (OH) 3 or the like can be used.
  • Al (NO 3 ) 3 and AlCl 3 are more preferable because they are easily dissolved in solvents such as alcohol and water and are easy to handle.
  • metal organic compound for example, metal alkoxide, metal acetyl cetonate, metal carboxylate and the like can be used. Specifically, Al (OCH 3 ) 3 , Al (OC 2 H 3 ) 3 , Al (iso-OC 3 H 7 ) 3, or the like can be used.
  • solvent for example, water, alcohol, diol, polyhydric alcohol, ethylene glycol, ethylene oxide, triethanolamine, xylene and the like can be used. These solvents are used by mixing at least one kind in consideration of dissolution of the metal compound.
  • catalysts such as hydrochloric acid, a sulfuric acid, nitric acid, an acetic acid, and a hydrofluoric acid.
  • a simple substance or a compound of Li, K, Ca, Sr, Ba, La, Pr, Nd, Si, and Zr may be added together with the metal compound.
  • a predetermined inner surface of the honeycomb structure 1000 is impregnated with the solution of the aluminum-containing metal compound by a sol-gel method.
  • a method of filling the solution and degassing the honeycomb structure 1000 in a container for example, it is desirable to employ a method of pouring the solution from one side of the honeycomb structure 1000 and deaeration from the other side.
  • the deaerator for example, an aspirator, a vacuum pump, or the like can be used.
  • the honeycomb structure 1000 is heated at 120 to 170 ° C. for about 2 hours to evaporate and remove the solution to be gelled and fixed on the surface of the ceramic particles, and the excess solution is removed and 300 to 500 is removed. Temporary baking is performed by heating to about ° C.
  • hydrothermal treatment is performed at 50 to 100 ° C. for 1 hour or longer. By performing this hydrothermal treatment, the alumina thin film formed on the surface of the ceramic particles grows in the form of fibrils (needle-like particles), exhibits a so-called flocked structure, and becomes a thin film with a rough surface.
  • the catalyst support material layer is formed on the inner surface of the honeycomb structure 1000 by firing at 500 to 1000 ° C. for about 5 to 20 hours.
  • the catalyst layer is formed by supporting the catalyst active component on the catalyst support material layer formed by any one of the above methods, and the heat exchanger 1000 of this embodiment can be manufactured.
  • the method for supporting the catalytically active component is not particularly limited, and examples thereof include an impregnation method, an evaporation to dryness method, an equilibrium adsorption method, an incipient wetness method, and a spray method.
  • the catalytically active component may be supported in any form.
  • the form of the catalytically active component at the time of carrying can be a fine powder such as a metal or an alloy, or a compound. Examples of the compound include metal complexes. These forms of catalytically active components can be supported by using a dispersed or dissolved liquid.
  • the catalyst active component was supported after the catalyst support material layer was formed, but the supporting process is not particularly limited, and the catalyst active component is further added to the fine powder and water that are raw materials of the catalyst support material layer, It may be supported simultaneously with the formation of the catalyst support material layer.
  • FIG. 19A shows the case where the catalyst layer 43 is provided on the entire top, bottom, left, and right of all the flow paths 60 in the first space 41, but this is not restrictive. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
  • the shape of the first space 41 is not limited to that shown in FIG. 19A, and the first space 41 having various shapes can be employed.
  • FIG. 20 is a perspective view of a heat exchanger according to the fourth embodiment of the present invention.
  • 21 is a cross-sectional view of the heat exchanger according to the fourth embodiment of the present invention, where (a) is a cross-sectional view taken along the line KK ′ of FIG. 20, and (b) is a cross-sectional view taken along the line LL ′ of FIG. FIG.
  • the heat exchanger (1000) of the fourth embodiment has a catalyst layer 43 on the inner surface of the second space 42, and the inner surface of the first space 41. Does not have a catalyst layer (see FIG. 21A). Since the supported catalyst layer 43 and the method for supporting the catalytically active component are the same as in the case of the third embodiment described above, description thereof is omitted.
  • FIG. 21B shows the case where the catalyst layers 43 are provided on the entire upper, lower, left, and right sides of all the flow paths 60 in the second space 42, but the present invention is not limited to this. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
  • the shape of the first space 41 is not limited to that shown in FIG. 21A, and the first space 41 having various shapes can be employed.
  • FIG. 22 is a perspective view of a heat exchanger according to the fifth embodiment of the present invention.
  • 23 is a cross-sectional view of a heat exchanger according to a fifth embodiment of the present invention, where (a) is a cross-sectional view taken along the line KK ′ of FIG. 22, and (b) is a cross-sectional view taken along the line LL ′ of FIG. FIG.
  • the catalyst layer 43 is provided on the inner surface of the first space 41 and the inner surface of the second space 42.
  • the catalyst layer 43 and the catalyst active component loading method and the like are the same as in the third embodiment described above, and a description thereof will be omitted.
  • the catalyst layer 43 is provided in the first space 41 and the second space 42 of the honeycomb structure 1000, the first space 41 or Before the exhaust gas flowing through the second space 42 is cooled, a function of purifying harmful gas contained in the exhaust gas can be provided. In addition, a function of efficiently purifying harmful gas can be provided by heating the exhaust gas having a low temperature by heat exchange.
  • 23A and 23B show the case where the catalyst layers 43 are provided on the entire upper, lower, left, and right sides of all the flow paths 60 in the first space 41 and the second space 42. Not limited to. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
  • the shape of the first space 41 is not limited to that shown in FIG. 23A, and the first space 41 having various shapes can be employed.
  • the heat exchanger of the present invention can be used as a heat exchanger for an internal combustion engine, a combustion furnace, or the like.

Abstract

Provided is a heat exchanger that uses a honeycomb structure for which a new function can be imparted to the honeycomb structure, and the flow of a new fluid can be handled. This heat exchanger (1000) has a first end surface (11), a second end surface (12), a first side wall (21), and a second side wall (22), and has multiple flow paths (60) extending from the first end surface (11) to the second end surface (12) and partitioned by inner walls (50). Connecting holes (30) have a first aperture (31), which is formed in the first side wall (21) or the second side wall (22), and a second aperture (32), which is formed in multiple inner walls (50) opposing the first apertures (31), and connects multiple flow paths (60). The flow paths (60) having a first aperture (31) or a second aperture (32) have a sealed part (70) on the first end surface (11) and the second end surface (12) respectively, thereby forming first spaces (41). The other flow paths (60) form second spaces (42) extending from the first end surface (11) to the second end surface (12). The first spaces (41) and the second spaces (42) are isolated from each other by the inner walls (50). A catalyst layer (43) is supported on the inner surface of the first spaces (41) or the second spaces (42), thereby imparting a function of purifying harmful gases included in an exhaust gas.

Description

熱交換器Heat exchanger
 本発明は、セラミック製のハニカム構造体を用いた熱交換器に関する。 The present invention relates to a heat exchanger using a ceramic honeycomb structure.
 ハニカム構造体は、内部が内壁によって仕切られた多数の流路で構成されている。ハニカム構造体の流路を流体が通過する際に、内壁を介して熱、物質などを移動させることができるので、熱交換器として広く利用されている。 The honeycomb structure is composed of a large number of flow paths that are partitioned by inner walls. When a fluid passes through the flow path of the honeycomb structure, heat, a substance, and the like can be moved through the inner wall, so that it is widely used as a heat exchanger.
 中でもセラミック製のハニカム構造体は、耐熱性、化学的安定性に優れるので、高い温度、腐食性環境下で使用される熱交換器に用いられている。
 特許文献1には、内側を貫流する流体と外側に存在する流体との間で熱量の交換を行わせる多孔質炭化珪素焼結体製のエレメントを備えた高温用熱交換器であって、前記エレメントは長手方向に延びた複数のセルを有するハニカム構造体であることを特徴とした高温用熱交換器が記載されている。このようなハニカム構造体を用いた熱交換器によれば強度に優れると共に、温度の異なる流体間での熱量の交換を効率良く行わせることができることが記載されている。
Among them, ceramic honeycomb structures are excellent in heat resistance and chemical stability, and are therefore used in heat exchangers used under high temperature and corrosive environments.
Patent Document 1 is a high-temperature heat exchanger including an element made of a porous silicon carbide sintered body that exchanges heat between a fluid flowing through the inside and a fluid existing outside. A high temperature heat exchanger is described in which the element is a honeycomb structure having a plurality of cells extending in the longitudinal direction. It is described that a heat exchanger using such a honeycomb structure is excellent in strength and can efficiently exchange heat between fluids having different temperatures.
特開平6-345555号公報JP-A-6-345555
 セラミックがハニカム構造体に用いられるのは、材料を構成する原子が共有結合で強く結合し、高強度、耐熱性、耐腐食性を有しているからである。一方、このような共有結合の特長によって、セラミック材料は、硬く、脆い材料となる。
 このため、セラミック製のハニカム構造体は、押出成形など単純な成形方法によって製造され、一方向に流路が並んだ単純な形状である。このような形状であるため、ハニカム構造体を適用する部品は一方向に並んだ流路を前提に設計され、ハニカム構造体を用いた熱交換器の設計の自由度は小さい。
The ceramic is used in the honeycomb structure because the atoms constituting the material are strongly bonded by a covalent bond and have high strength, heat resistance, and corrosion resistance. On the other hand, the ceramic material becomes a hard and brittle material due to such a feature of the covalent bond.
For this reason, the ceramic honeycomb structure is manufactured by a simple forming method such as extrusion, and has a simple shape in which flow paths are arranged in one direction. Because of this shape, the parts to which the honeycomb structure is applied are designed on the assumption that the flow paths are aligned in one direction, and the degree of freedom in designing a heat exchanger using the honeycomb structure is small.
 本発明では、このような従来のセラミック製のハニカム構造体を用いた熱交換器の適用範囲を超え、ハニカム構造体に新しい機能を付与し、新しい流体の流れを扱うことのできるハニカム構造体を用いた熱交換器を提供することを目的とする。 In the present invention, there is provided a honeycomb structure that exceeds the scope of application of a heat exchanger using such a conventional honeycomb structure made of ceramic, gives a new function to the honeycomb structure, and can handle a new fluid flow. It aims at providing the used heat exchanger.
 前記課題を解決するための本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体を用いた熱交換器において、前記第1側壁または前記第2側壁に形成された第1の開口と、前記第1の開口に対向する複数の前記内壁に形成され複数の前記流路を接続する第2の開口と、からなる接続孔を有し、前記第1の開口または前記第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1の開口または前記第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、前記第1の開口および前記第2の開口のない前記流路は、前記第1端面から前記第2端面に延びる第2の空間を構成し、前記第1の空間と、前記第2の空間とは前記内壁で互いに隔離されているとともに、前記第1の空間または前記第2の空間の内面に触媒層を有することを特徴とする。 The heat exchanger of the present invention for solving the above-mentioned problems has at least a first end face, a second end face, a first side wall, and a second side wall, and is partitioned by an inner wall from the first end face to the second end face. In a heat exchanger using a ceramic honeycomb structure having a plurality of flow paths extending, a first opening formed in the first side wall or the second side wall, and a plurality of faces facing the first opening A connection hole formed on the inner wall and connecting a plurality of the flow paths, and the flow path having the first opening or the second opening includes the first end surface and the second flow path. Each of the second end faces has a sealing portion, and the flow path having the first opening or the second opening constitutes a first space by being connected by the connection hole, and the first opening And the flow path without the second opening is A second space extending from the first end surface to the second end surface is formed, and the first space and the second space are separated from each other by the inner wall, and the first space or the A catalyst layer is provided on the inner surface of the second space.
 本発明の熱交換器は、第1端面から第2端面に向かって流路が延びている。また、ハニカム構造体の側面は、第1側壁と第2側壁を有し、第2側壁は、第1側壁の反対に位置する。 In the heat exchanger of the present invention, the flow path extends from the first end face toward the second end face. Moreover, the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
 本発明のハニカム構造体を用いた熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このようなハニカム構造体は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する流路のみならず、内側の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができる熱交換器を提供することができる。 According to the heat exchanger using the honeycomb structure of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in the direction across the honeycomb structure. Further, in such a honeycomb structure, since the first opening and the second opening are formed inside the first opening, not only the flow path located on the outermost periphery but also the flow path on the inner side. A fluid flow can be created. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently. A heat exchanger can be provided.
 また、本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。
 さらに、本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。
In addition, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
Furthermore, in the heat exchanger according to the present invention, the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
 また、第1の空間または第2の空間の内面に触媒層を有するので、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。さらに、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。 Further, since the catalyst layer is provided on the inner surface of the first space or the second space, a function of purifying harmful gas contained in the exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
 さらに、本発明の熱交換器は、以下の態様であることが望ましい。
(1)前記熱交換器は、前記接続孔を複数有することを特徴とする。
 本発明の熱交換器は、接続孔を複数有することによって、より多くの流体をハニカム構造体の流路を横切る方向に流体を流すことができる。
Furthermore, it is desirable that the heat exchanger of the present invention has the following aspect.
(1) The heat exchanger has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
(2)前記接続孔は、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることを特徴とする。
 本発明の熱交換器は、接続孔が前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる流体(第1の流体)を隔てる内壁の面積を大きくとることができる。
(2) The connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
In the heat exchanger according to the present invention, the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
(3)前記第1の空間は、複数の前記接続孔を有することを特徴とする。
 本発明の熱交換器は、第1の空間に複数の接続孔を有することにより、複数の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に複数の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に使用することができる。
(3) The first space has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing the inlet and the outlet with a plurality of connection holes in the first space, the fluid flowing through the first space (first fluid) can be used continuously.
 また、第1の空間に複数の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。 Also, having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.
(4)前記熱交換器は、前記接続孔を前記第1側面および前記第2側面にそれぞれ有することを特徴とする。
 本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできる熱交換器を提供することができる。
(4) The heat exchanger has the connection holes on the first side surface and the second side surface, respectively.
In the heat exchanger of the present invention, the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.
(5)前記第1の開口および前記第2の開口は、スリット状に構成され、前記第1の開口の長さは、前記第2の開口の長さよりも長いことを特徴とする。
 本発明の熱交換器は、第1の開口および第2の開口をスリット状に構成することによって、細長い流路の横から効率良く流体を供給することができる。さらに第1の開口を第2の開口よりも大きくすることによって、熱交換器全体の強度低下への影響を小さくしながら第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失を効率良く低減させることができる。
(5) The first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening.
The heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, the resistance of the first fluid in the first opening can be reduced while reducing the influence on the strength reduction of the entire heat exchanger, and the pressure can be reduced. Loss can be reduced efficiently.
(6)複数の前記第2の開口は、前記第1の開口に向かって順に長くなっていることを特徴とする。
 本発明の熱交換器は、第2の開口は、第1の開口に向かって順に長くなるように構成することによって、ハニカム構造体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失をさらに効率良く低減させることができる。
(6) The plurality of second openings are longer in order toward the first opening.
The heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening. The resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
(7)前記第1の開口および前記第2の開口は、スリット状に構成され、前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しいことを特徴とする。
 本発明の熱交換器は、第1の開口および第2の開口が、スリット状に形成され、第1の開口の長さおよび、複数の第2の開口の長さが、いずれも等しくなるように構成することにより、第1の開口および第2の開口で形成される接続孔の容積を大きくすることができる。接続孔の容積を大きくすることによって、接続孔につながるそれぞれの流路で発生する抵抗に応じて効率良く第1の流体を分配することができる。
(7) The first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both equal. And
In the heat exchanger of the present invention, the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal. By configuring in this manner, the volume of the connection hole formed by the first opening and the second opening can be increased. By increasing the volume of the connection hole, the first fluid can be efficiently distributed according to the resistance generated in each flow path connected to the connection hole.
(8)前記接続孔は5層以上の前記第2の開口が積み重なっていることを特徴とする。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
(8) The connection hole is characterized in that the second openings having five or more layers are stacked.
The heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.
(9)前記接続孔は、10層以上の前記第2の開口が積み重なっていることを特徴とする。
 本発明の熱交換器は、10層以上の第2の開口を積み重ねることによって第1側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
(9) The connection hole is characterized in that the second openings of 10 layers or more are stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
(10)前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることを特徴とする。
 本発明の熱交換器は、ハニカム構造体が炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度な熱交換器を提供することができる。
(10) The ceramic is characterized by comprising any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger of the present invention has heat resistance, corrosion resistance, and high strength when the honeycomb structure is made of any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Heat exchanger can be provided.
 本発明によれば、熱交換器を構成するハニカム構造体の内壁によって形成される流路のみならず、流路を横切る方向に流体の流れを引き出すことができるので、従来のセラミック製のハニカム構造体を用いた熱交換器にない新しい機能を付与することができる。また、第1の空間または第2の空間の内面に触媒層を有するので、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。さらに、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。 According to the present invention, since the flow of the fluid can be drawn not only in the flow path formed by the inner wall of the honeycomb structure constituting the heat exchanger but also in the direction crossing the flow path, the conventional ceramic honeycomb structure A new function not provided in the heat exchanger using the body can be added. Moreover, since it has a catalyst layer in the inner surface of 1st space or 2nd space, the function which purifies the harmful gas contained in exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
本発明に係る第1実施形態の熱交換器の斜視図である。It is a perspective view of the heat exchanger of a 1st embodiment concerning the present invention. (a)は本発明に係る第1実施形態の熱交換器の変形例の斜視図であり、(b)は別の変形例の斜視図である。(A) is a perspective view of the modification of the heat exchanger of 1st Embodiment which concerns on this invention, (b) is a perspective view of another modification. 本発明に係る第1実施形態の熱交換器の断面図であり、(a)は、図1のA-A’断面図、(b)は図1のB-B’断面図である。2A and 2B are cross-sectional views of the heat exchanger according to the first embodiment of the present invention, in which FIG. 1A is a cross-sectional view taken along the line A-A ′ of FIG. 1, and FIG. (a)~(e)は、本発明に係る第1実施形態の熱交換器の接続孔の変形例の断面図であり、図3(a)相当図である。(A)-(e) is sectional drawing of the modification of the connection hole of the heat exchanger of 1st Embodiment which concerns on this invention, and is a figure equivalent to Fig.3 (a). (a)~(c)は、本発明に係る第1実施形態の熱交換器の変形例の斜視図である。(A)-(c) is a perspective view of the modification of the heat exchanger of 1st Embodiment which concerns on this invention. 図5(a)~(c)の熱交換器の変形例の断面図であり、(a)は図5(a)のC-C’断面図、(b)は図5(b)のE-E’断面図、(c)は図5(a)のD-D’および図5(b)のF-F’断面図である。5A is a cross-sectional view of a modification of the heat exchanger of FIGS. 5A to 5C, FIG. 5A is a cross-sectional view taken along the line CC ′ of FIG. 5A, and FIG. 5B is an E view of FIG. FIG. 5C is a cross-sectional view taken along the line DD ′ in FIG. 5A and the cross-sectional view taken along the line FF ′ in FIG. 5B. (a)は本発明に係る第2実施形態の熱交換器の斜視図であり、(b)は本発明に係る第2実施形態の熱交換器の変形例の斜視図である。(A) is a perspective view of the heat exchanger of 2nd Embodiment which concerns on this invention, (b) is a perspective view of the modification of the heat exchanger of 2nd Embodiment which concerns on this invention. (a)~(c)は本発明に係る第2実施形態の熱交換器の断面図であり、(a)は図7(a)のG-G’断面図、(b)は図7(b)のI-I’断面図、(c)は図7(a)のH-H’および図7(b)のJ-J’断面図である。FIGS. 7A to 7C are cross-sectional views of a heat exchanger according to a second embodiment of the present invention, FIG. 7A is a cross-sectional view taken along the line GG ′ of FIG. 7A, and FIG. FIG. 7B is a cross-sectional view taken along the line II ′ of FIG. 7B, and FIG. 7C is a cross-sectional view taken along the line HH ′ of FIG. (a)および(b)は本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図である。(A) And (b) is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の接続孔の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. (a)および(b)は本発明に係る熱交換器の接続孔の製造方法の一例を示す工程図である。(A) And (b) is process drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. (a)および(b)は本発明に係る熱交換器の接続孔の製造方法の別の例を示す工程図である。(A) And (b) is process drawing which shows another example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の接続孔を、レーザー光によって製造する方法の一例を示す説明図であり、(a)は流路内に曲面を有する光透過性のある棒が挿入されている場合、(b)は流路内に失透ガラスが挿入されている場合、(c)は流路内に水が入れられている場合である。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger which concerns on this invention with a laser beam, (a) is the case where the light-transmitting stick | rod which has a curved surface in the flow path is inserted (B) shows the case where devitrified glass is inserted in the flow path, and (c) shows the case where water is put in the flow path. 本発明に係るハニカム構造体を用いた熱交換器の接続孔を、水流(ウォータージェット)によって導かれたレーザー光によって製造する方法の一例を示す説明図であり、(a)は流路内に曲面を有する光透過性のある棒が挿入されている場合、(b)は流路内に失透ガラスが挿入されている場合、(c)は流路内に水が入れられている場合である。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger using the honeycomb structure which concerns on this invention with the laser beam guided by the water flow (water jet), (a) is in a flow path. When a light-transmitting rod having a curved surface is inserted, (b) is when devitrified glass is inserted in the flow path, and (c) is when water is put in the flow path. is there. (a)は本発明に係る実施例のハニカム構造体を用いた熱交換器の外観写真であり、(b)はその説明図である。(A) is the external appearance photograph of the heat exchanger using the honeycomb structure of the Example which concerns on this invention, (b) is the explanatory drawing. (a)は本発明に係る実施例のハニカム構造体を用いた熱交換器の接続孔の断面写真であり、(b)はその説明図である。(A) is the cross-sectional photograph of the connection hole of the heat exchanger using the honeycomb structure of the Example which concerns on this invention, (b) is the explanatory drawing. 図1の断面図である図3の切断位置および切断方向を詳しく示す説明図である。It is explanatory drawing which shows the cutting position and cutting direction of FIG. 3 which are sectional drawings of FIG. 1 in detail. 本発明に係る第3実施形態の熱交換器の斜視図である。It is a perspective view of the heat exchanger of 3rd Embodiment which concerns on this invention. 本発明に係る第3実施形態の熱交換器の断面図であり、(a)は図18のK-K’断面図、(b)は図18(b)のL-L’断面図である。FIG. 19 is a cross-sectional view of a heat exchanger according to a third embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 18 and (b) is a LL ′ cross-sectional view of FIG. 18 (b). . 本発明に係る第4実施形態の熱交換器の斜視図である。It is a perspective view of the heat exchanger of 4th Embodiment which concerns on this invention. 本発明に係る第4実施形態の熱交換器の断面図であり、(a)は図20のK-K’断面図、(b)は図20(b)のL-L’断面図である。FIG. 21 is a cross-sectional view of a heat exchanger according to a fourth embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 20 and (b) is a LL ′ cross-sectional view of FIG. 20 (b). . 本発明に係る第5実施形態の熱交換器の斜視図である。It is a perspective view of the heat exchanger of 5th Embodiment which concerns on this invention. 本発明に係る第5実施形態の熱交換器の断面図であり、(a)は図22のK-K’断面図、(b)は図22(b)のL-L’断面図である。FIG. 23 is a cross-sectional view of a heat exchanger according to a fifth embodiment of the present invention, where (a) is a KK ′ cross-sectional view of FIG. 22 and (b) is a LL ′ cross-sectional view of FIG. 22 (b). .
 本明細書において、ハニカム構造体の断面は、流路に沿って接続孔の深さ方向に切断された断面を示す。例えば、図17に図1の断面図である図3の切断位置が詳しく記載されている。図1の断面図である図4、図5の断面図である図6、図7の断面図である図8も同様に断面図が作成されている。
 本発明の熱交換器のハニカムのパターン、大きさは特に限定されない。本実施形態では、8×8の格子状の流路を有するハニカム構造体を用いた熱交換器について説明したが、例えば6角形状の流路のハニカム、8角形と4角形の流路の組合せのハニカムなど特に限定されない。
In the present specification, the cross section of the honeycomb structure indicates a cross section cut in the depth direction of the connection hole along the flow path. For example, FIG. 17 describes in detail the cutting position of FIG. 3, which is a cross-sectional view of FIG. 4 is a sectional view of FIG. 1, FIG. 6 is a sectional view of FIG. 5, and FIG. 8 is a sectional view of FIG.
The pattern and size of the honeycomb of the heat exchanger of the present invention are not particularly limited. In the present embodiment, a heat exchanger using a honeycomb structure having an 8 × 8 lattice flow path has been described. For example, a hexagonal flow path honeycomb, a combination of octagonal and quadrangular flow paths is used. The honeycomb is not particularly limited.
 本発明の熱交換器の形状は、特に限定されない。6面体、6角柱などの角柱の他円柱なども適用できる。円柱の場合、側面のうち、一群の接続孔の形成されている領域を第1側壁、その反対側の領域を第2側壁と定義できる。 The shape of the heat exchanger of the present invention is not particularly limited. Other cylinders such as hexahedrons and hexagonal cylinders can also be applied. In the case of a cylinder, a region where a group of connection holes are formed in the side surface can be defined as a first side wall, and a region on the opposite side can be defined as a second side wall.
 本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体を用いた熱交換器において、前記第1側壁または前記第2側壁に形成された第1の開口と、前記第1の開口に対向する複数の前記内壁に形成され複数の前記流路を接続する第2の開口と、からなる接続孔を有し、前記第1の開口または前記第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1の開口または前記第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、前記第1の開口および前記第2の開口のない前記流路は、前記第1端面から前記第2端面に延びる第2の空間を構成し、前記第1の空間と、前記第2の空間とは前記内壁で互いに隔離されているとともに、前記第1の空間または前記第2の空間の内面に触媒層を有する。 The heat exchanger of the present invention has at least a first end surface, a second end surface, a first side wall, and a second side wall, and has a plurality of flow paths partitioned by an inner wall and extending from the first end surface to the second end surface. In a heat exchanger using a ceramic honeycomb structure, a plurality of first openings formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening are formed. A connection hole comprising a second opening for connecting the flow path, and the flow path having the first opening or the second opening is sealed to the first end face and the second end face, respectively. The flow path having the first opening or the second opening constitutes a first space by being connected by the connection hole, and the first opening and the second opening The flow path without an opening is formed from the first end surface to the first flow path. A second space extending to an end surface is formed, and the first space and the second space are separated from each other by the inner wall, and a catalyst is formed on the inner surface of the first space or the second space. Has a layer.
 本発明の熱交換器のハニカム構造体は、第1端面から第2端面に向かって流路が延びている。また、ハニカム構造体の側面は、第1側壁と第2側壁を有し、第2側壁は、第1側壁の反対に位置する。 In the honeycomb structure of the heat exchanger of the present invention, the flow path extends from the first end face toward the second end face. Moreover, the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
 本発明の熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このような熱交換器は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する流路のみならず、内側の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができるハニカム構造体を提供することができる。 According to the heat exchanger of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in the direction across the honeycomb structure. In addition, since such a heat exchanger has the first opening and the second opening formed inside the first opening, not only the flow path located on the outermost periphery but also the inner flow path. A fluid flow can be created. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently. A honeycomb structure that can be provided can be provided.
 さらに、本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。
 また、第1の空間または第2の空間の内面に、触媒層を有するので、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。さらに、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。
Furthermore, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, the fluid can be handled even in a severe environment such as a high temperature environment or a corrosive environment.
Moreover, since it has a catalyst layer in the inner surface of 1st space or 2nd space, the function to purify the noxious gas contained in exhaust gas can be provided. Furthermore, it is possible to provide a function of efficiently purifying harmful gas by heating the exhaust gas having a low temperature by heat exchange.
 本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。 In the heat exchanger according to the present invention, the first space has sealing portions on the first end surface and the second end surface, respectively, so that the fluid enters the first space from the first end surface and the second end surface side. Can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
 本発明の熱交換器は、前記熱交換器は、前記接続孔を複数有することが好ましい。
 本発明の熱交換器は、接続孔を複数有することによって、より多くの流体をハニカム構造体の流路を横切る方向に流体を流すことができる。
In the heat exchanger of the present invention, it is preferable that the heat exchanger has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
 本発明の熱交換器では、前記接続孔は、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることが好ましい。
 本発明の熱交換器は、接続孔が前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる流体(第1の流体)を隔てる内壁の面積を大きくとることができる。
In the heat exchanger according to the present invention, it is preferable that the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
In the heat exchanger according to the present invention, the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
 本発明の熱交換器では、前記第1の空間は、複数の前記接続孔を有することが好ましい。
 本発明の熱交換器は、第1の空間に複数の接続孔を有することにより、複数の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に複数の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に供給することができる。
In the heat exchanger according to the present invention, it is preferable that the first space has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a plurality of connection holes in the first space, the fluid (first fluid) flowing through the first space can be continuously supplied.
 また、第1の空間に複数の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。 Also, having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.
 本発明の熱交換器は、前記接続孔を前記第1側面および前記第2側面にそれぞれ有することが好ましい。
 本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできるハニカム構造体を提供することができる。
The heat exchanger of the present invention preferably has the connection holes on the first side surface and the second side surface, respectively.
In the heat exchanger of the present invention, the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the first fluid can be spread over the entire inner wall, it is possible to provide a honeycomb structure capable of efficiently performing heat transfer or mass transfer.
 本発明の熱交換器は、前記第1の開口および前記第2の開口は、スリット状に構成され、前記第1の開口の長さは、前記第2の開口の長さよりも長いことが好ましい。
 本発明の熱交換器は、第1の開口および第2の開口をスリット状に構成することによって、細長い流路の横から効率良く流体を供給することができる。さらに第1の開口を第2の開口よりも大きくすることによって、ハニカム構造体全体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失を効率良く低減させることができる。
 本明細書において、開口の長さとは、流路の方向の長さである。
In the heat exchanger according to the present invention, it is preferable that the first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening. .
The heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, it is possible to reduce the resistance of the first fluid in the first opening while reducing the influence on the strength reduction of the entire honeycomb structure, Pressure loss can be reduced efficiently.
In the present specification, the length of the opening is the length in the direction of the flow path.
 本発明の熱交換器は、複数の前記第2の開口は、前記第1の開口に向かって順に長くなっていることが好ましい。
 本発明の熱交換器は、第2の開口は、第1の開口に向かって順に長くなるように構成することによって、ハニカム構造体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失をさらに効率良く低減させることができる。
In the heat exchanger according to the present invention, it is preferable that the plurality of second openings become longer in order toward the first opening.
The heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening. The resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
 本発明の熱交換器は、前記第1の開口および前記第2の開口は、スリット状に構成され、前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しいことが好ましい。
 本発明の熱交換器は、第1の開口および第2の開口が、スリット状に形成され、第1の開口の長さおよび、複数の第2の開口の長さが、いずれも等しくなるように構成することにより、第1の開口および第2の開口で形成される接続孔の容積を大きくすることができる。接続孔の容積を大きくすることによって、接続孔につながるそれぞれの流路で発生する抵抗に応じて効率良く第1の流体を分配することができる。
In the heat exchanger of the present invention, the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are any Are also preferably equal.
In the heat exchanger of the present invention, the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal. By configuring in this manner, the volume of the connection hole formed by the first opening and the second opening can be increased. By increasing the volume of the connection hole, the first fluid can be efficiently distributed according to the resistance generated in each flow path connected to the connection hole.
 本発明の熱交換器では、前記接続孔は5層以上の前記第2の開口が積み重なっていることが好ましい。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
 また、5層以上の第2の開口を積み重ねることにより形成される接続孔の径または幅と深さとのアスペクト比は正方形の流路であれば6以上となり、深い位置にある流路を接続孔でつなぐことができる。
In the heat exchanger according to the present invention, it is preferable that the connection holes have the second openings of five layers or more stacked.
The heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.
In addition, the aspect ratio between the diameter or width and depth of the connection hole formed by stacking the second openings of five layers or more is 6 or more if the channel is a square channel, and the channel in the deep position is connected to the connection hole. Can be connected.
 本発明の熱交換器では、前記接続孔は、10層以上の前記第2の開口が積み重なっていることが好ましい。
 本発明の熱交換器は、10層以上の第2の開口を積み重ねることによって第1側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
 また、10層以上の第2の開口を積み重ねることにより形成される接続孔の径または幅と深さとのアスペクト比は正方形の流路であれば11以上となり、さらに深い位置にある流路を接続孔でつなぐことができる。
In the heat exchanger according to the present invention, it is preferable that the connection hole has the second openings of 10 layers or more stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
In addition, the aspect ratio of the diameter or width and depth of the connection hole formed by stacking the second openings of 10 layers or more is 11 or more in the case of a square channel, and a channel at a deeper position is connected. Can be connected with holes.
 本発明の熱交換器では、前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることが好ましい。
 本発明の熱交換器は、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度なハニカム構造体を提供することができる。
 熱交換器に用いる場合、炭化珪素、シリコンを含浸した炭化珪素、窒化アルミニウム、窒化珪素を用いることが望ましい。これらのセラミックは熱伝導率が高く、熱交換器として好適である。
In the heat exchanger of the present invention, the ceramic is preferably made of any of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia, so that it has heat resistance and corrosion resistance and has a high strength honeycomb structure. Can be provided.
When used in a heat exchanger, it is desirable to use silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride. These ceramics have high thermal conductivity and are suitable as heat exchangers.
 本発明の熱交換器は、ハニカム状のセラミックの第1側壁または第2側壁に接続孔を形成することにより得ることができる。第1および第2の開口を形成することにより得ることができる。ハニカム状のセラミックに第1側壁または第2側壁にレーザー加工によって接続孔を形成することができる。レーザー加工に用いるレーザー加工機は特に限定されない。広く使用される高出力のレーザー光を用いることによってハニカム状のセラミックを加工することができる。レーザー加工機のレーザー光の波長、出力は、ハニカム状のセラミックに応じて適宜選択することができる。
 また、近年利用されるようになったウォータージェットの水流を併用したレーザー加工機を利用するとより効率良く加工することができる。ウォータージェットの水流を併用したレーザー加工法は、ウォータージェットの水流中にレーザー光を導き、全反射させながら加工点に導くことができ、レーザー光が拡散することなく、細い水流中を通過するので、焦点の深度が深く、レーザー光だけの加工機よりも高い加工性能を有している。
The heat exchanger of the present invention can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. It can be obtained by forming the first and second openings. Connection holes can be formed in the honeycomb-shaped ceramic on the first side wall or the second side wall by laser processing. The laser processing machine used for laser processing is not particularly limited. A honeycomb-shaped ceramic can be processed by using a widely used high-power laser beam. The wavelength and output of the laser beam of the laser processing machine can be appropriately selected according to the honeycomb ceramic.
Further, it is possible to perform processing more efficiently by using a laser processing machine combined with a water flow of a water jet that has recently been used. The laser processing method combined with the water jet water flow guides the laser light into the water jet water flow and can guide it to the processing point while totally reflecting it, so that the laser light passes through a thin water flow without diffusing. The depth of focus is deep, and it has higher processing performance than a processing machine using only laser light.
 本発明の熱交換器は、高い加工性能のウォータージェットの水流を併用したレーザー加工機を用いて、接続孔の底を貫通させることなく加工することによって得ることができる。
 接続孔の底を残して加工するには、レーザー光を所定の箇所で散乱させ、光エネルギーを分散させることにより実現できる。所定の箇所に光拡散媒体を挿入することによりそれより下側ではレーザー光が弱められ、加工することができない。光拡散媒体は光を分散させることができれば特に限定されない。例えば、ガラス棒などの曲面を有する光透過性のある棒、失透ガラス、気泡を内部に有するガラス、水などが利用できる。光透過性のある物質は、レーザー光で加熱されることがない上に、曲面で光が散乱されるので、レーザー光の加工の能力を低下させることができ、貫通させることなく接続孔の底を残して加工することができる。
The heat exchanger of the present invention can be obtained by processing without penetrating the bottom of the connection hole by using a laser processing machine combined with a water flow of a high processing performance water jet.
Processing while leaving the bottom of the connection hole can be realized by scattering laser light at a predetermined location and dispersing light energy. By inserting the light diffusing medium at a predetermined location, the laser light is weakened below and cannot be processed. The light diffusion medium is not particularly limited as long as light can be dispersed. For example, a light-transmitting rod having a curved surface such as a glass rod, devitrified glass, glass having bubbles inside, water, and the like can be used. A light-transmitting substance is not heated by laser light, and light is scattered on a curved surface, so that the ability to process laser light can be reduced, and the bottom of the connection hole can be formed without penetrating. Can be processed.
 また、失透ガラスは、表面が曲面でなくても内部が相分離しているので、光が散乱しやすく、レーザー光の加工の能力を低下させることができ、貫通させることなく底を形成することができる。また、水を所定の箇所に充填することにより接続孔の底を残して加工することができる。水を充填すると、ウォータージェットの水流との混合および加工により加熱された水の沸騰により、大量の気泡を発生させる。このため、充填された水の中でレーザー光が急速に減衰し、接続孔の底を残して加工することができる。なお、水を充填していない場合でも、レーザー光とともに水流によって水が供給されるが、水流に用いられる水は量が少なくレーザー光がセラミックを加工する箇所(加工点)近傍で速やか飛散するので、レーザー光を弱めるほど区間に気泡を形成することができない。 In addition, devitrified glass has a phase-separated interior even if the surface is not curved, so that light is easily scattered, the ability to process laser light can be reduced, and the bottom is formed without penetrating. be able to. Moreover, it can process by leaving the bottom of a connection hole by filling water in a predetermined location. When filled with water, a large amount of bubbles are generated by boiling water heated by mixing and processing with a water jet stream. For this reason, the laser beam is rapidly attenuated in the filled water, and processing can be performed while leaving the bottom of the connection hole. Even when water is not filled, water is supplied by the water flow along with the laser light, but the amount of water used for the water flow is small and the laser light scatters quickly near the place where the ceramic is processed (processing point). As the laser beam is weakened, bubbles cannot be formed in the section.
 本発明の熱交換器は、様々な接続孔の変形例があるが、形状に応じてレーザー光を、傾斜させたり、走査することにより加工することができる。 The heat exchanger of the present invention can be processed by tilting or scanning the laser beam according to the shape, although there are various modifications of the connection holes.
 また、レーザー光を走査しながら加工する際に、それぞれの流路に挿入する光拡散媒体の長さを適宜変更することにより目的の形状の接続孔を形成することもできる。
 本発明の熱交換器の封止部はどのように形成してもよく特に限定されない。例えば内壁を構成する材料と同じセラミック材料からなる栓を挿入してもよい。例えば、ハニカム構造体が炭化珪素、窒化珪素、シリコン含浸した炭化珪素からなる場合は、シリコンの粉末を接着材として栓に塗布したのち、焼成しても良い。シリコンが溶融し、接着材として機能する。
 また、例えば、無機バインダと有機バインダと無機粒子の混合したペーストを注入し、焼成することによって得ることもできる。無機バインダは、アルミナゾル、シリカゾルなどが利用でき、有機バインダは、ポリビニールアルコール、フェノール樹脂などが利用でき、無機粒子は炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウム、ジルコニアなどが利用できる。
Further, when processing while scanning with laser light, the connection hole having a desired shape can be formed by appropriately changing the length of the light diffusion medium inserted into each flow path.
The sealing part of the heat exchanger of the present invention may be formed in any way and is not particularly limited. For example, a plug made of the same ceramic material as that constituting the inner wall may be inserted. For example, when the honeycomb structure is made of silicon carbide, silicon nitride, or silicon carbide impregnated with silicon, silicon powder may be applied to the plug as an adhesive and then fired. Silicon melts and functions as an adhesive.
Further, for example, it can be obtained by injecting and baking a paste in which an inorganic binder, an organic binder, and inorganic particles are mixed. As the inorganic binder, alumina sol, silica sol or the like can be used. As the organic binder, polyvinyl alcohol, phenol resin or the like can be used. As the inorganic particles, silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, zirconia or the like can be used.
 次に、本発明の実施形態について、説明する。
 第1実施形態及び第2実施形態では、主に触媒層を形成する前のハニカム構造体について説明する。
Next, an embodiment of the present invention will be described.
In the first embodiment and the second embodiment, a honeycomb structure before mainly forming a catalyst layer will be described.
 第1実施形態は、第1の空間を構成する流路の第1端面および第2端面に封止部を有し、第1側壁に接続孔が形成され第1の空間を構成するとともに、第2の空間の第1端面および第2端面が開放している熱交換器である。 The first embodiment has a sealing portion on the first end surface and the second end surface of the flow path constituting the first space, and a connection hole is formed on the first side wall to constitute the first space. It is a heat exchanger with which the 1st end surface and 2nd end surface of 2 space are open | released.
 第2実施形態は、以下形態の熱交換器である。
 第1側壁が面する複数の流路に交互に接続孔が形成され、接続孔の底は第2端面まで達している。なお、接続孔は第2端面を貫通していない。第1の開口および第2の開口を有する流路の第1端面および第2端面はそれぞれ封止部を有することにより、第1の空間を構成している。
 また第1の開口および第2の開口のない流路は、第1端面から第2端面に延びる第2の空間を構成し、第1の空間と第2の空間は内壁で互いに隔離されている。第1の空間は、第1側壁および第2側壁の側に接続孔を有している。4つの独立した空間が第1の空間を構成し、4×8の独立した流路32本が第2の空間を構成する。
2nd Embodiment is a heat exchanger of the following forms.
Connection holes are alternately formed in the plurality of channels facing the first side wall, and the bottoms of the connection holes reach the second end surface. The connection hole does not penetrate the second end face. The first end face and the second end face of the flow path having the first opening and the second opening each have a sealing portion, thereby constituting a first space.
The flow path without the first opening and the second opening constitutes a second space extending from the first end surface to the second end surface, and the first space and the second space are separated from each other by the inner wall. . The first space has connection holes on the first and second side walls. Four independent spaces constitute the first space, and 32 4 × 8 independent flow paths constitute the second space.
 第3実施形態ないし第5実施形態は、第1の空間または第2の空間の内面に、触媒層を有する熱交換器である。 The third to fifth embodiments are heat exchangers having a catalyst layer on the inner surface of the first space or the second space.
<第1実施形態>
 第1実施形態の熱交換器について、図を用いながら説明する。
 図1は本発明に係る第1実施形態の熱交換器の斜視図である。図2は本発明に係る第1実施形態の熱交換器の変形例の斜視図である。図3は本発明に係る第1実施形態の熱交換器の断面図であり、(a)は、図1のA-A’断面図、(b)は図1のB-B’断面図である。図4は本発明に係る第1実施形態の熱交換器の接続孔の変形例の断面図である。図1のA-A’の断面図に相当する。図5は本発明に係る第1実施形態の熱交換器の変形例の斜視図である。図6は図5の熱交換器の変形例の断面図であり、(a)は図5(a)のC-C’断面図、(b)は図5(b)のE-E’断面図、(c)は図5(a)のD-D’断面図および図5(b)のF-F’断面図である。
<First Embodiment>
The heat exchanger of 1st Embodiment is demonstrated using a figure.
FIG. 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention. FIG. 2 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention. 3 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention. FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line BB ′ in FIG. is there. FIG. 4 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention. This corresponds to a cross-sectional view taken along the line AA ′ of FIG. FIG. 5 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention. 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, where (a) is a cross-sectional view along CC ′ in FIG. 5 (a), and (b) is a cross-sectional view along EE ′ in FIG. 5 (b). FIG. 5C is a sectional view taken along the line DD ′ of FIG. 5A and a sectional view taken along the line FF ′ of FIG.
 第1実施形態の熱交換器(1000)は、図1に示すように、8×8の流路を有するハニカム構造体1000(熱交換器)の第1側壁21に接する8本の流路60のうち、交互になるように接続孔30を4本有している。図3(a)に示すように、それぞれの接続孔30は、第1側壁21に形成された第1の開口31および内壁50に形成された複数の第2の開口32により構成される。図3(a)に示されるように第1の開口31および第2の開口32は、スリット状の形状であり、第1の開口31および第2の開口32の長さは同一である。図3(b)に示されるように、接続孔30の形成されている列の隣の列の断面は、内壁50に孔を有していない。 As shown in FIG. 1, the heat exchanger (1000) of the first embodiment includes eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 × 8 flow paths. Of these, four connection holes 30 are provided alternately. As shown in FIG. 3A, each connection hole 30 includes a first opening 31 formed in the first side wall 21 and a plurality of second openings 32 formed in the inner wall 50. As shown in FIG. 3A, the first opening 31 and the second opening 32 have a slit shape, and the lengths of the first opening 31 and the second opening 32 are the same. As shown in FIG. 3B, the cross section of the row adjacent to the row where the connection hole 30 is formed does not have a hole in the inner wall 50.
 接続孔30の位置、形状、数は特に限定されない。図2および図5は、接続孔30の位置、表面形状の異なる変形例である。図2(a)は1個のスリット状の接続孔30を有するハニカム構造体1000(熱交換器)を示し、図2(b)は、第1側壁21が面する流路60の一部にスリット状の接続孔30が形成されている。いずれの接続孔30もスリット状に形成されている。図5(a)は、8×8の流路60を有するハニカム構造体1000の第1側壁21に接する8本の流路60のうち、交互になるように4個の円形の接続孔30を有するハニカム構造体1000(熱交換器)を示している。図5(b)は、8×8の流路を有するハニカム構造体1000(熱交換器)の第1側壁21に接する8本の流路60のうち、交互になるように4つの群の接続孔30を有し、1つの群の接続孔30は、円形の接続孔30が5個で構成されるハニカム構造体1000(熱交換器)である。図5(c)は、1個の円形の接続孔30を有するハニカム構造体1000(熱交換器)を示す。 The position, shape, and number of the connection holes 30 are not particularly limited. 2 and 5 are modified examples in which the position and surface shape of the connection hole 30 are different. FIG. 2A shows a honeycomb structure 1000 (heat exchanger) having one slit-like connection hole 30, and FIG. 2B shows a part of the channel 60 facing the first side wall 21. A slit-like connection hole 30 is formed. Each connection hole 30 is also formed in a slit shape. FIG. 5A shows that four circular connection holes 30 are alternately arranged among the eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure 1000 having the 8 × 8 flow paths 60. A honeycomb structure 1000 (heat exchanger) is shown. FIG. 5B shows the connection of four groups so as to alternate among the eight channels 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 × 8 channels. Each group of connection holes 30 includes a hole 30 and is a honeycomb structure 1000 (heat exchanger) including five circular connection holes 30. FIG. 5C shows a honeycomb structure 1000 (heat exchanger) having one circular connection hole 30.
 接続孔30の深さ方向の形状も特に限定されない。図4は、接続孔30の変形例を示し、接続孔30の流路方向の断面図であり、図1のA-A’断面を示す。図4(a)は、断面形状がV字状である接続孔30を示し、第1の開口31が第2の開口32よりも長く、複数の第2の開口32が第1の開口31に向かって順に長くなるように構成されている。図4(b)は、第1の開口31および第2の開口32の片側が垂直になるように揃った接続孔30を示し、第1の開口31が第2の開口32よりも長く、複数の第2の開口32が第1の開口31に向かって順に長くなるように構成され接続孔30の断面が台形である。図4(c)は、第1の開口31および第2の開口32の長さが同一で第1側壁21および第2側壁22を貫通した接続孔30を示す。図4(d)は、第1側壁21および第2側壁22から接続孔30が形成され、それぞれ底となる内壁50を共有する接続孔30を示す。図4(e)は、内部の方が大きい接続孔30を示し、第1の開口31が第2の開口32よりも短く、複数の第2の開口32が第1の開口31に向かって順に短くなるように構成されている。 The shape of the connection hole 30 in the depth direction is not particularly limited. FIG. 4 shows a modification of the connection hole 30, is a cross-sectional view of the connection hole 30 in the flow path direction, and shows a cross-section A-A ′ of FIG. 1. FIG. 4A shows a connection hole 30 having a V-shaped cross section. The first opening 31 is longer than the second opening 32, and a plurality of second openings 32 are formed in the first opening 31. It is comprised so that it may become long in order. FIG. 4B shows the connection hole 30 aligned so that one side of the first opening 31 and the second opening 32 is vertical, and the first opening 31 is longer than the second opening 32 and includes a plurality of holes. The second opening 32 is configured to become longer in order toward the first opening 31, and the connection hole 30 has a trapezoidal cross section. FIG. 4C shows a connection hole 30 in which the first opening 31 and the second opening 32 have the same length and penetrate the first side wall 21 and the second side wall 22. FIG. 4D shows the connection hole 30 in which the connection hole 30 is formed from the first side wall 21 and the second side wall 22 and shares the inner wall 50 serving as the bottom. FIG. 4 (e) shows the connection hole 30 that is larger in the inside, the first opening 31 is shorter than the second opening 32, and the plurality of second openings 32 are sequentially directed toward the first opening 31. It is configured to be shorter.
 ハニカム構造体1000(熱交換器)のハニカムのパターン、大きさは特に限定されない。本実施形態では、8×8の格子状の流路60を有するハニカム構造体1000(熱交換器)について説明したが、例えば6角形状の流路60のハニカム、8角形と4角形の流路60の組合せのハニカムなど特に限定されない。 The honeycomb pattern and size of the honeycomb structure 1000 (heat exchanger) are not particularly limited. In the present embodiment, the honeycomb structure 1000 (heat exchanger) having the 8 × 8 lattice-like flow paths 60 has been described. For example, the honeycombs of the hexagonal flow paths 60, the octagonal and the quadrangular flow paths There are no particular limitations such as 60 honeycombs.
 本実施形態の熱交換器1000は、ハニカム状のセラミックの第1側壁21または第2側壁22に接続孔30を形成することにより得ることができる。第1の開口31および第2の開口32を形成する方法は、図9に示すように第2側壁22に面する流路60に光拡散媒体90を挿入し、レーザー光80を走査することによって加工することができる。接続孔30の形状によっては、図10のように光拡散媒体90の挿入する長さを適宜変えることによって目的の形状の接続孔30を得ることができる。また、図11、図12に示されるようにレーザー光80を適宜傾斜させながら走査することにより、目的の形状の接続孔30を得てもよい。 The heat exchanger 1000 of this embodiment can be obtained by forming the connection holes 30 in the first side wall 21 or the second side wall 22 of the honeycomb-shaped ceramic. The first opening 31 and the second opening 32 are formed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80 as shown in FIG. Can be processed. Depending on the shape of the connection hole 30, the connection hole 30 having a desired shape can be obtained by appropriately changing the insertion length of the light diffusion medium 90 as shown in FIG. In addition, as shown in FIGS. 11 and 12, the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it.
 本実施形態の熱交換器1000は、光拡散媒体90を挿入することによって接続孔30の底を残して加工することできる。図13、図14は、光拡散媒体90によってレーザー光80が拡散する様子を示している。図13(a)、(b)、(c)は、レーザー光80のみ、図14(a)、(b)、(c)は、レーザー光80と水流82との複合による加工を示している。レーザー光80と水流82との複合した加工機は、例えば牧野フライス社製MCS300型レーザー加工機を利用することができる。 The heat exchanger 1000 of the present embodiment can be processed by inserting the light diffusion medium 90 and leaving the bottom of the connection hole 30. FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90. FIGS. 13A, 13B, and 13C show only the laser beam 80, and FIGS. 14A, 14B, and 14C show processing by combining the laser beam 80 and the water flow 82. FIGS. . As a processing machine in which the laser beam 80 and the water flow 82 are combined, for example, an MCS300 type laser processing machine manufactured by Makino Milling Co. can be used.
 図13(a)、図14(a)は、光拡散媒体90にガラス棒91を用いた説明図であり、ガラスの凸面によるレーザー光80の拡散によって接続孔30の底を残して加工することができる。
 図13(b)、図14(b)は、光拡散媒体90に失透ガラス92を用いた説明図であり、ガラス内部の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
 図13(c)、図14(c)は、光拡散媒体90に水93を用いた説明図であり、加工による熱、水93の乱流によって発生した気泡の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
FIGS. 13C and 14C are explanatory diagrams in which water 93 is used for the light diffusing medium 90, and the laser light 80 is diffused by heat due to processing and turbulent reflection of bubbles generated by the turbulent flow of the water 93. Processing can be performed leaving the bottom of the connection hole 30.
<第2実施形態>
 第2実施形態の熱交換器について、図を用いながら説明する。
 なお、前述した第1実施形態に係る熱交換器(1000)と共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図7(a)は本発明に係る第2実施形態の熱交換器の斜視図である。(a)は本発明に係る第2実施形態の熱交換器の変形例の斜視図。図8は本発明に係る第2実施形態の熱交換器の断面図であり、(a)は図7(a)のG-G’断面図、(b)は図7(b)のI-I’断面図、(c)は図7(a)のH-H’断面図、および図7(b)のJ-J’断面図である。
Second Embodiment
The heat exchanger of 2nd Embodiment is demonstrated using a figure.
In addition, the same code | symbol is attached | subjected to the site | part which is common in the heat exchanger (1000) which concerns on 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted.
Fig.7 (a) is a perspective view of the heat exchanger of 2nd Embodiment which concerns on this invention. (A) is a perspective view of the modification of the heat exchanger of 2nd Embodiment which concerns on this invention. 8A and 8B are cross-sectional views of the heat exchanger according to the second embodiment of the present invention, in which FIG. 8A is a cross-sectional view taken along the line GG ′ of FIG. 7A, and FIG. FIG. 7C is a cross-sectional view taken along line I-H 'in FIG. 7A and a cross-sectional view taken along line JJ ′ in FIG. 7B.
 第2実施形態のハニカム構造体1000(熱交換器)は第1側壁21が面する複数の流路60に交互に接続孔30が形成され、接続孔30の底は第2側壁22まで達している。なお、接続孔30は第2側壁22を貫通していない。第1の開口31および第2の開口32を有する流路60の第1端面11および第2端面12にはそれぞれ封止部70を有することにより、第1の空間41を構成している。 In the honeycomb structure 1000 (heat exchanger) of the second embodiment, the connection holes 30 are alternately formed in the plurality of flow paths 60 facing the first side wall 21, and the bottom of the connection holes 30 reaches the second side wall 22. Yes. The connection hole 30 does not penetrate the second side wall 22. The first end face 11 and the second end face 12 of the flow path 60 having the first opening 31 and the second opening 32 each have a sealing portion 70, thereby forming a first space 41.
 また第1の開口31および第2の開口32のない流路60は、第1端面11から第2端面12に延びる第2の空間42を構成し、第1の空間41と第2の空間42は内壁50で互いに隔離されている。第1の空間41は、第1側壁21および第2側壁22の側に接続孔30を有している。第1の空間41は4つの独立した空間で構成され、4×8の独立した32本の流路60が第2の空間42を構成する。
 第1の空間41は、第1側壁21から、第2側壁22への(およびその逆の)流体の流れを作ることができる。また第2の空間42は、第1端面11から、第2端面12への(およびその逆の)流体の流れを作ることができる。第1の空間41と第2の空間42は内壁50で隔てられているので、互いに混ざり合うことがなく、内壁50を通じて熱量の移動をさせることができる。この効果は熱交換器として好適に利用することができる。
The channel 60 without the first opening 31 and the second opening 32 constitutes a second space 42 extending from the first end surface 11 to the second end surface 12, and the first space 41 and the second space 42. Are separated from each other by an inner wall 50. The first space 41 has a connection hole 30 on the first side wall 21 and the second side wall 22 side. The first space 41 is composed of four independent spaces, and 32 independent 4 × 8 flow paths 60 form the second space 42.
The first space 41 can create a fluid flow from the first side wall 21 to the second side wall 22 (and vice versa). The second space 42 can also create a fluid flow from the first end surface 11 to the second end surface 12 (and vice versa). Since the first space 41 and the second space 42 are separated by the inner wall 50, the amount of heat can be moved through the inner wall 50 without being mixed with each other. This effect can be suitably used as a heat exchanger.
 本実施形態の熱交換器1000は、ハニカム状のセラミックの第1側壁21または第2側壁22に接続孔30を形成することにより得ることができる。第1の開口31および第2の開口32を形成する方法は、図9に示すように第2側壁22に面する流路60に光拡散媒体90を挿入し、レーザー光80を走査することによって加工することができる。接続孔30の形状によっては、図10のように光拡散媒体90の挿入する長さを適宜変えることによって目的の形状の接続孔30を得ることができる。また、図11、図12に示されるようにレーザー光80を適宜傾斜させながら走査することにより、目的の形状の接続孔30を得てもよい。 The heat exchanger 1000 of this embodiment can be obtained by forming the connection holes 30 in the first side wall 21 or the second side wall 22 of the honeycomb-shaped ceramic. The first opening 31 and the second opening 32 are formed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80 as shown in FIG. Can be processed. Depending on the shape of the connection hole 30, the connection hole 30 having a desired shape can be obtained by appropriately changing the insertion length of the light diffusion medium 90 as shown in FIG. In addition, as shown in FIGS. 11 and 12, the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it.
 本実施形態の熱交換器1000は、光拡散媒体90を挿入することによって接続孔30の底を残して加工することできる。図13、図14は、光拡散媒体90によってレーザー光80が拡散する様子を示している。図13(a)、(b)、(c)は、レーザー光80のみ、図14(a)、(b)、(c)は、ウォータージェット(水流82)を併用したレーザー光80による加工を示している。ウォータージェットを併用したレーザー加工機は、牧野フライス社製MCS300型レーザー加工機を利用することができる。 The heat exchanger 1000 of the present embodiment can be processed by inserting the light diffusion medium 90 and leaving the bottom of the connection hole 30. FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90. 13 (a), (b), and (c) show only processing with the laser beam 80, and FIGS. 14 (a), (b), and (c) show processing with the laser beam 80 in combination with a water jet (water flow 82). Show. As a laser processing machine used in combination with a water jet, an MCS300 laser processing machine manufactured by Makino Milling Co. can be used.
 図13(a)、図14(a)は、光拡散媒体90にガラス棒91を用いた説明図であり、ガラスの凸面によるレーザー光80の拡散によって接続孔30の底を残して加工することができる。
 図13(b)、図14(b)は、光拡散媒体90に失透ガラス92を用いた説明図であり、ガラス内部の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
 図13(c)、図14(c)は、光拡散媒体90に水93を用いた説明図であり、加工による熱、水93の乱流によって発生した気泡の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
FIGS. 13C and 14C are explanatory diagrams in which water 93 is used for the light diffusing medium 90, and the laser light 80 is diffused by heat due to processing and turbulent reflection of bubbles generated by the turbulent flow of the water 93. Processing can be performed leaving the bottom of the connection hole 30.
 本実施例では、実際に多孔質の炭化珪素からなるハニカム状のセラミックに台形の断面を有する接続孔30を形成し、本発明に係るハニカム構造体(熱交換器)1000を製造した結果について、図15、図16を用いて説明する。
 24×24個、計576個の正方形の流路60を有し、34mm×34mm×130mmの炭化珪素からなるハニカム状のセラミックを用いて、本発明に係るハニカム構造体(熱交換器)1000を製作した。なお、長手方向の端面は、流路の開口を有し、第1端面11および第2端面12である。第1端面11および第2端面12以外の4つの面は側壁であり、そのうち接続孔30を形成する面が第1側壁21、その反対側の面が第2側壁22となる。内壁50の厚さは0.25mm、第1側壁21および第2側壁22の厚さは、0.3mmである。流路60の大きさは、一辺が1.14mmの正方形である。
In this example, the result of manufacturing the honeycomb structure (heat exchanger) 1000 according to the present invention by forming the connection hole 30 having a trapezoidal cross section in the honeycomb-shaped ceramic actually made of porous silicon carbide, This will be described with reference to FIGS. 15 and 16.
A honeycomb structure (heat exchanger) 1000 according to the present invention is formed using a honeycomb-shaped ceramic made of silicon carbide of 34 mm × 34 mm × 130 mm, having 24 × 24, a total of 576 square channels 60. Produced. In addition, the end surface in the longitudinal direction has a channel opening and is a first end surface 11 and a second end surface 12. The four surfaces other than the first end surface 11 and the second end surface 12 are side walls, of which the surface forming the connection hole 30 is the first side wall 21, and the opposite surface is the second side wall 22. The inner wall 50 has a thickness of 0.25 mm, and the first side wall 21 and the second side wall 22 have a thickness of 0.3 mm. The size of the channel 60 is a square having a side of 1.14 mm.
 図15に示すように、このハニカム状のセラミックに接続孔30を形成した。第1側壁21に面する24本の流路60のうち、交互となるよう12本の流路60に第1の開口31を形成し、さらに第2の開口32を形成することにより、12個の接続孔30を形成した。接続孔30の底は、第2側壁22であり、全ての内壁50には第2の開口32が形成されている。第1の開口31および第2の開口32と第1端面11との距離は10mm、第1の開口31は第1端面11から40mmの位置まで延び、最下層の第2の開口32は、第1端面11から25mmの位置まで延びている。第2の開口32は第1の開口31に向かって順に長くなり、接続孔30の断面は、台形である。また、第1の開口31の幅は、0.6mmである。 As shown in FIG. 15, connection holes 30 were formed in this honeycomb-shaped ceramic. By forming the first openings 31 in the twelve channels 60 out of the twenty-four channels 60 facing the first side wall 21 and further forming the second openings 32, 12 The connection hole 30 was formed. The bottom of the connection hole 30 is the second side wall 22, and the second openings 32 are formed in all the inner walls 50. The distance between the first opening 31 and the second opening 32 and the first end surface 11 is 10 mm, the first opening 31 extends from the first end surface 11 to a position of 40 mm, and the second opening 32 in the lowermost layer is One end surface 11 extends to a position of 25 mm. The second opening 32 becomes longer toward the first opening 31 in order, and the connection hole 30 has a trapezoidal cross section. The width of the first opening 31 is 0.6 mm.
 詳しい加工方法は以下に説明する。接続孔30を形成する際、第2側壁22に面する流路60には、流路60よりも長い円形のガラス棒91を挿入し、その他の流路60には、台形の流域以外の部分まで円形のガラス棒91を挿入した。
 次に第1側壁21に面する流路60に沿って牧野フライス社製MCS300型レーザー加工機を用いて加工した。レーザーの波長は532nm、出力80W、水流82のノズル径はφ80μm、走査速度は300mm/minで加工した。
A detailed processing method will be described below. When forming the connection hole 30, a circular glass rod 91 longer than the flow path 60 is inserted into the flow path 60 facing the second side wall 22, and the other flow paths 60 have portions other than the trapezoidal basin. A circular glass rod 91 was inserted up to.
Next, it processed using the MCS300 type | mold laser processing machine by Makino milling company along the flow path 60 which faces the 1st side wall 21. FIG. Processing was performed at a laser wavelength of 532 nm, an output of 80 W, a nozzle diameter of the water flow 82 of φ80 μm, and a scanning speed of 300 mm / min.
 このように加工して得られたハニカム構造体(熱交換器)1000を接続孔30に沿って切断し、接続孔30を確認した。図16に示すように接続孔30の断面は台形であり、内壁50は全て貫通し、第1の開口31が長さ30mm、最下層の第2の開口32が長さ15mmであった。
 このように水流82を用いたレーザー加工機で接続孔30を形成できることが確認でできた。ハニカム構造体(熱交換器)1000に接続孔30を形成する方法は水流82を用いたレーザー光80に限定されず、時間をかけ、高出力のレーザー加工機であれば、水流82を併用することなく加工することができる。
The honeycomb structure (heat exchanger) 1000 obtained by processing in this way was cut along the connection holes 30 to confirm the connection holes 30. As shown in FIG. 16, the connection hole 30 had a trapezoidal cross section, the inner wall 50 penetrated all, the first opening 31 had a length of 30 mm, and the lowermost second opening 32 had a length of 15 mm.
Thus, it was confirmed that the connection hole 30 can be formed by a laser processing machine using the water flow 82. The method of forming the connection holes 30 in the honeycomb structure (heat exchanger) 1000 is not limited to the laser beam 80 using the water flow 82, and the water flow 82 is used in combination as long as it takes time and is a high-power laser processing machine. Can be processed without any problems.
 また、接続孔30の大きさ、配置、数は適宜選択することができる。 Also, the size, arrangement, and number of the connection holes 30 can be selected as appropriate.
<第3実施形態>
 第3実施形態の熱交換器について、図を用いながら説明する。
 なお、前述した第1実施形態に係る熱交換器(1000)および第2実施形態に係る熱交換器(1000)と共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図18は、本発明に係る第3実施形態の熱交換器の斜視図である。また、図19は、本発明に係る第3実施形態の熱交換器の断面図であり、(a)は図18のK-K’断面図、(b)は図18のL-L’断面図である。
<Third Embodiment>
The heat exchanger of 3rd Embodiment is demonstrated using a figure.
In addition, the same code | symbol is attached | subjected to the site | part which is common in the heat exchanger (1000) which concerns on 1st Embodiment mentioned above, and the heat exchanger (1000) which concerns on 2nd Embodiment, and the overlapping description is abbreviate | omitted. To do.
FIG. 18 is a perspective view of a heat exchanger according to a third embodiment of the present invention. 19 is a cross-sectional view of the heat exchanger according to the third embodiment of the present invention. FIG. 19A is a cross-sectional view taken along the line KK ′ of FIG. 18, and FIG. 19B is a cross-sectional view taken along the line LL ′ of FIG. FIG.
 図18および図19(a)に示すように、第3実施形態の熱交換器(1000)では、第1の空間41の内面に触媒層43を有し、第2の空間42の内面には触媒層がない(図19(b)参照)。
 触媒層43に担持される触媒活性成分としては、特に限定するものではないが、例えば、Pt、Rh、Pd、Ce、Cu、V、Fe、Au、Ag等の貴金属等が挙げられる。これらの中では、Ptが最も好適である。また、上記貴金属等は、単独で用いることができるが、2種以上を併用しても良い。
 これらの触媒活性成分により、例えば排気ガス中に含まれるHC、COを浄化することができる。
As shown in FIGS. 18 and 19A, in the heat exchanger (1000) of the third embodiment, the catalyst layer 43 is provided on the inner surface of the first space 41, and the inner surface of the second space 42 is provided on the inner surface. There is no catalyst layer (see FIG. 19B).
Although it does not specifically limit as a catalyst active component carry | supported by the catalyst layer 43, For example, noble metals, such as Pt, Rh, Pd, Ce, Cu, V, Fe, Au, Ag, etc. are mentioned. Of these, Pt is most preferred. Moreover, although the said noble metal etc. can be used independently, you may use 2 or more types together.
By these catalytically active components, for example, HC and CO contained in the exhaust gas can be purified.
 上記触媒層は、触媒活性成分のみからなっても良いが、触媒サポート材層に触媒活性成分が担持されたものであっても良い。触媒サポート材層は、例えば比表面積が大きく、ガスと触媒との接触面積を大きくする機能を有するものであることが好ましい。
 上記触媒層を構成し、触媒活性成分を担持する触媒担体の材料としては、特に限定するものではないが、例えば、アルミナ、チタニア、シリカ、セリア、ジルコニア等を挙げることができる。中でも、耐熱性、化学的安定性の観点からアルミナが最も好適である。また、アルミナの中でもγ-アルミナは比表面積が高く触媒サポート材として好適に利用できる。
 また、本発明の熱交換器1000には、本発明の目的を阻害しない範囲で、上記触媒活性成分のほかに、例えば、アルカリ金属、アルカリ土類金属等の触媒活性成分を担持しても良い。これらの触媒活性成分を用いることにより、排気ガス中に含まれるNOxを浄化することができる。
The catalyst layer may be composed of only the catalytically active component, but may be one in which the catalytically active component is supported on the catalyst support material layer. The catalyst support material layer preferably has, for example, a large specific surface area and a function of increasing the contact area between the gas and the catalyst.
The material of the catalyst carrier constituting the catalyst layer and supporting the catalytic active component is not particularly limited, and examples thereof include alumina, titania, silica, ceria, zirconia and the like. Among these, alumina is most preferable from the viewpoint of heat resistance and chemical stability. Among aluminas, γ-alumina has a high specific surface area and can be suitably used as a catalyst support material.
In addition, the heat exchanger 1000 of the present invention may carry a catalytic active component such as an alkali metal or an alkaline earth metal in addition to the catalytic active component as long as the object of the present invention is not impaired. . By using these catalytically active components, NOx contained in the exhaust gas can be purified.
 次に、上述した触媒層を形成する方法について説明する。なお、以下の説明においては、触媒サポート材層としてアルミナを用いる場合について説明するが、その他の触媒サポート材層を用いても同様である。
 まず、アルミナに無機質バインダを添加して混合するとともに、粉砕して微粉体を作製する。アルミナとしては、例えば、γ-アルミナを用いることができる。γ-アルミナは、ゾル-ゲル法等により調整することができる。また、無機質バインダとしては、特に限定するものではないが、例えば、水和アルミナ等を用いることができる。
Next, a method for forming the above-described catalyst layer will be described. In the following description, a case where alumina is used as the catalyst support material layer will be described, but the same applies to the case where other catalyst support material layers are used.
First, an inorganic binder is added to alumina and mixed, and pulverized to produce a fine powder. As alumina, for example, γ-alumina can be used. γ-alumina can be adjusted by a sol-gel method or the like. Moreover, as an inorganic binder, although it does not specifically limit, a hydrated alumina etc. can be used, for example.
 次に、微粉体を純水と合わせ、スターラ等を用いて攪拌することで、スラリーを調製する。
 そして、セラミックブロックであるハニカム構造体1000の内面にスラリーを吹き付けたり、スラリー中にハニカム構造体1000を浸漬し、いわゆるウォッシュコートすることによりスラリーを付着させる。
 次いで、スラリーをウォッシュコートしたハニカム構造体1000を、所定の温度で乾燥、焼成することにより、ハニカム構造体1000の内面に触媒サポート材層を形成する。
Next, the fine powder is combined with pure water and stirred using a stirrer or the like to prepare a slurry.
Then, the slurry is attached by spraying slurry on the inner surface of the honeycomb structure 1000 which is a ceramic block, or by immersing the honeycomb structure 1000 in the slurry and performing so-called wash coating.
Next, the honeycomb structure 1000 coated with the slurry is dried and fired at a predetermined temperature to form a catalyst support material layer on the inner surface of the honeycomb structure 1000.
 また、別の担持方法によりハニカム構造体1000に触媒活性成分を担持する場合には、まず、触媒サポート材層となるアルミニウム含有金属化合物の溶液を調製する。
 アルミニウム含有金属化合物の原料としては、金属無機化合物や金属有機化合物等の金属化合物を用いることができる。
 金属無機化合物としては、例えば、Al(NO、AlCl、AlOCl、AlPO、Al(SO、Al、Al(OH)等を用いることができる。なかでも、Al(NOやAlClは、アルコール、水等の溶媒に溶解しやすく取り扱いが容易なので一層好ましい。
When a catalytically active component is supported on the honeycomb structure 1000 by another supporting method, first, a solution of an aluminum-containing metal compound that becomes a catalyst support material layer is prepared.
As a raw material of the aluminum-containing metal compound, a metal compound such as a metal inorganic compound or a metal organic compound can be used.
As the metal inorganic compound, for example, Al (NO 3 ) 3 , AlCl 3 , AlOCl, AlPO 4 , Al 2 (SO 4 ) 3 , Al 2 O 3 , Al (OH) 3 or the like can be used. Among these, Al (NO 3 ) 3 and AlCl 3 are more preferable because they are easily dissolved in solvents such as alcohol and water and are easy to handle.
 金属有機化合物としては、例えば、金属アルコキシド、金属アセチルセトネート、金属カルボキシレート等を用いることができる。具体的には、Al(OCH、Al(OC、Al(iso-OC等を用いることができる。
 溶媒としては、例えば、水、アルコール、ジオール、多価アルコール、エチレングリコール、エチレンオキシド、トリエタノールアミン、キシレン等を用いることができる。これらの溶媒は、上記金属化合物の溶解を考慮して、少なくとも1種以上を混合して用いる。
 また、上記溶液を調製する際に、塩酸、硫酸、硝酸、酢酸、フッ酸等の触媒を添加しても良い。さらに、アルミナの耐熱性を向上させるために、Li、K、Ca、Sr、Ba、La、Pr、Nd、Si、Zrの単体または化合物を上記金属化合物とともに添加しても良い。
As the metal organic compound, for example, metal alkoxide, metal acetyl cetonate, metal carboxylate and the like can be used. Specifically, Al (OCH 3 ) 3 , Al (OC 2 H 3 ) 3 , Al (iso-OC 3 H 7 ) 3, or the like can be used.
As the solvent, for example, water, alcohol, diol, polyhydric alcohol, ethylene glycol, ethylene oxide, triethanolamine, xylene and the like can be used. These solvents are used by mixing at least one kind in consideration of dissolution of the metal compound.
Moreover, when preparing the said solution, you may add catalysts, such as hydrochloric acid, a sulfuric acid, nitric acid, an acetic acid, and a hydrofluoric acid. Furthermore, in order to improve the heat resistance of alumina, a simple substance or a compound of Li, K, Ca, Sr, Ba, La, Pr, Nd, Si, and Zr may be added together with the metal compound.
 次に、上記アルミニウム含有金属化合物の溶液をゾル-ゲル法により、ハニカム構造体1000の所定の内面に含浸させる。このとき、上記溶液をハニカム構造体1000の各セラミック粒子間の間隙である総ての気孔内に行き渡らせるため、例えば、容器内にハニカム構造体1000を入れて上記溶液を満たして脱気する方法や、ハニカム構造体1000の一方から上記溶液を流し込み、他方より脱気する方法等を採用することが望ましい。
上記脱気する装置としては、例えば、アスピレータ、真空ポンプ等を用いることができる。
Next, a predetermined inner surface of the honeycomb structure 1000 is impregnated with the solution of the aluminum-containing metal compound by a sol-gel method. At this time, in order to spread the solution into all the pores that are gaps between the ceramic particles of the honeycomb structure 1000, for example, a method of filling the solution and degassing the honeycomb structure 1000 in a container Alternatively, it is desirable to employ a method of pouring the solution from one side of the honeycomb structure 1000 and deaeration from the other side.
As the deaerator, for example, an aspirator, a vacuum pump, or the like can be used.
 次に、ハニカム構造体1000を120~170℃で2時間程度加熱することで、上記溶液を蒸発除去してゲル化させてセラミック粒子表面に固定するとともに、余分な溶液を除去し、300~500℃程度に加熱することで仮焼成する。
 次に、50~100℃1時間以上で熱水処理を行う。この熱水処理を行うことで、セラミック粒子の表面に形成したアルミナ薄膜が小繊維状(針状粒子)となって林立し、いわゆる植毛構造を呈して粗い表面の薄膜となる。
 そして、500~1000℃、5~20時間程度の条件で焼成することで、ハニカム構造体1000の内面に触媒サポート材層を形成する。
Next, the honeycomb structure 1000 is heated at 120 to 170 ° C. for about 2 hours to evaporate and remove the solution to be gelled and fixed on the surface of the ceramic particles, and the excess solution is removed and 300 to 500 is removed. Temporary baking is performed by heating to about ° C.
Next, hydrothermal treatment is performed at 50 to 100 ° C. for 1 hour or longer. By performing this hydrothermal treatment, the alumina thin film formed on the surface of the ceramic particles grows in the form of fibrils (needle-like particles), exhibits a so-called flocked structure, and becomes a thin film with a rough surface.
Then, the catalyst support material layer is formed on the inner surface of the honeycomb structure 1000 by firing at 500 to 1000 ° C. for about 5 to 20 hours.
 次に、上記いずれかの方法により形成した触媒サポート材層に触媒活性成分を担持させることにより触媒層を形成し、本実施形態の熱交換器1000を製造することができる。
 上記触媒活性成分を担持させる方法としては、特に限定されず、例えば、含浸法、蒸発乾固法、平衡吸着法、インシピアント・ウェットネス法あるいはスプレー法等が挙げられる。また、触媒活性成分をどのような形態で担持させても良い。担持する際の触媒活性成分の形態は、金属、合金などの微粉末のほか、化合物などが利用できる。化合物としては、金属錯体などが挙げられる。これらの形態の触媒活性成分が分散あるいは溶解した液体を用いて担持させることができる。
 尚、触媒活性成分の担持は、触媒サポート材層を形成した後に行ったが、担持する工程は特に限定されず、触媒サポート材層の原料である微粉体と水に更に触媒活性成分を加え、触媒サポート材層の形成と同時に担持しても良い。
Next, the catalyst layer is formed by supporting the catalyst active component on the catalyst support material layer formed by any one of the above methods, and the heat exchanger 1000 of this embodiment can be manufactured.
The method for supporting the catalytically active component is not particularly limited, and examples thereof include an impregnation method, an evaporation to dryness method, an equilibrium adsorption method, an incipient wetness method, and a spray method. Further, the catalytically active component may be supported in any form. The form of the catalytically active component at the time of carrying can be a fine powder such as a metal or an alloy, or a compound. Examples of the compound include metal complexes. These forms of catalytically active components can be supported by using a dispersed or dissolved liquid.
The catalyst active component was supported after the catalyst support material layer was formed, but the supporting process is not particularly limited, and the catalyst active component is further added to the fine powder and water that are raw materials of the catalyst support material layer, It may be supported simultaneously with the formation of the catalyst support material layer.
 以上説明したように、第3実施形態の熱交換器では、ハニカム構造体1000の第1の空間41に触媒層43を担持することにより、第1の空間41を通る排気ガスが冷却される前に、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。また、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。
 なお、図19(a)においては、第1の空間41における全ての流路60の上下左右の全面に触媒層43を設けた場合を示したが、これに限らない。例えば、所定の流路60のみに設けても良いし、所定の面のみに設けることも可能である。
 また、第1の空間41の形状は、図19(a)に示すものに限定されず、種々の形状の第1の空間41を採用することができる。
As described above, in the heat exchanger according to the third embodiment, by supporting the catalyst layer 43 in the first space 41 of the honeycomb structure 1000, the exhaust gas passing through the first space 41 is cooled. In addition, a function of purifying harmful gas contained in the exhaust gas can be provided. In addition, a function of efficiently purifying harmful gas can be provided by heating the exhaust gas having a low temperature by heat exchange.
FIG. 19A shows the case where the catalyst layer 43 is provided on the entire top, bottom, left, and right of all the flow paths 60 in the first space 41, but this is not restrictive. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
The shape of the first space 41 is not limited to that shown in FIG. 19A, and the first space 41 having various shapes can be employed.
<第4実施形態>
 第4実施形態の熱交換器について、図を用いながら説明する。
 なお、前述した第1実施形態に係る熱交換器(1000)ないし第3実施形態に係る熱交換器(1000)と共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図20は、本発明に係る第4実施形態の熱交換器の斜視図である。また、図21は、本発明に係る第4実施形態の熱交換器の断面図であり、(a)は図20のK-K’断面図、(b)は図20のL-L’断面図である。
<Fourth embodiment>
The heat exchanger of 4th Embodiment is demonstrated using a figure.
In addition, the same code | symbol is attached | subjected to the site | part which is common in the heat exchanger (1000) which concerns on 1st Embodiment mentioned above thru | or the heat exchanger (1000) which concerns on 3rd Embodiment, and the overlapping description is abbreviate | omitted. To do.
FIG. 20 is a perspective view of a heat exchanger according to the fourth embodiment of the present invention. 21 is a cross-sectional view of the heat exchanger according to the fourth embodiment of the present invention, where (a) is a cross-sectional view taken along the line KK ′ of FIG. 20, and (b) is a cross-sectional view taken along the line LL ′ of FIG. FIG.
 図20および図21(b)に示すように、第4実施形態の熱交換器(1000)では、第2の空間42の内面に触媒層43を有しており、第1の空間41の内面には触媒層を有していない(図21(a)参照)。
 なお、担持される触媒層43および触媒活性成分の担持方法等については、前述した第3実施形態の場合と同様なので、説明は省略する。
As shown in FIGS. 20 and 21B, the heat exchanger (1000) of the fourth embodiment has a catalyst layer 43 on the inner surface of the second space 42, and the inner surface of the first space 41. Does not have a catalyst layer (see FIG. 21A).
Since the supported catalyst layer 43 and the method for supporting the catalytically active component are the same as in the case of the third embodiment described above, description thereof is omitted.
 以上説明したように、第4実施形態の熱交換器では、ハニカム構造体1000の第2の空間42に触媒層43を有しているので、第2の空間42を流れる排気ガスが冷却される前に、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。また、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。
 なお、図21(b)においては、第2の空間42における全ての流路60の上下左右の全面に触媒層43を設けた場合を示したが、これに限らない。例えば、所定の流路60のみに設けても良いし、所定の面のみに設けることも可能である。
 また、第1の空間41の形状は、図21(a)に示すものに限定されず、種々の形状の第1の空間41を採用することができる。
As described above, in the heat exchanger according to the fourth embodiment, since the catalyst layer 43 is provided in the second space 42 of the honeycomb structure 1000, the exhaust gas flowing through the second space 42 is cooled. Before, a function of purifying harmful gas contained in the exhaust gas can be imparted. In addition, a function of efficiently purifying harmful gas can be provided by heating the exhaust gas having a low temperature by heat exchange.
FIG. 21B shows the case where the catalyst layers 43 are provided on the entire upper, lower, left, and right sides of all the flow paths 60 in the second space 42, but the present invention is not limited to this. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
The shape of the first space 41 is not limited to that shown in FIG. 21A, and the first space 41 having various shapes can be employed.
<第5実施形態>
 第5実施形態の熱交換器について、図を用いながら説明する。
 なお、前述した第1実施形態に係る熱交換器(1000)ないし第4実施形態に係る熱交換器(1000)と共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図22は、本発明に係る第5実施形態の熱交換器の斜視図である。また、図23は、本発明に係る第5実施形態の熱交換器の断面図であり、(a)は図22のK-K’断面図、(b)は図22のL-L’断面図である。
<Fifth Embodiment>
The heat exchanger of 5th Embodiment is demonstrated using a figure.
In addition, the same code | symbol is attached | subjected to the site | part which is common in the heat exchanger (1000) which concerns on 1st Embodiment mentioned above thru | or the heat exchanger (1000) which concerns on 4th Embodiment, and the overlapping description is abbreviate | omitted. To do.
FIG. 22 is a perspective view of a heat exchanger according to the fifth embodiment of the present invention. 23 is a cross-sectional view of a heat exchanger according to a fifth embodiment of the present invention, where (a) is a cross-sectional view taken along the line KK ′ of FIG. 22, and (b) is a cross-sectional view taken along the line LL ′ of FIG. FIG.
 図22、図23(a)および(b)に示すように、第5実施形態の熱交換器(1000)では、第1の空間41の内面および第2の空間42の内面に触媒層43を有している。
 なお、触媒層43および触媒活性成分の担持方法等については、前述した第3実施形態の場合と同様なので、説明は省略する。
As shown in FIGS. 22, 23 (a) and (b), in the heat exchanger (1000) of the fifth embodiment, the catalyst layer 43 is provided on the inner surface of the first space 41 and the inner surface of the second space 42. Have.
Note that the catalyst layer 43 and the catalyst active component loading method and the like are the same as in the third embodiment described above, and a description thereof will be omitted.
 以上、説明したように、第5実施形態の熱交換器では、ハニカム構造体1000の第1の空間41および第2の空間42に触媒層43を有しているので、第1の空間41または第2の空間42を流れる排気ガスが冷却される前に、排気ガス中に含まれている有害ガスを浄化する機能を付与することができる。また、温度の低い排気ガスを熱交換によって加熱することにより効率良く有害ガスを浄化する機能を付与することもできる。
 なお、図23(a)および(b)においては、第1の空間41および第2の空間42における全ての流路60の上下左右の全面に触媒層43を設けた場合を示したが、これに限らない。例えば、所定の流路60のみに設けても良いし、所定の面のみに設けることも可能である。
 また、第1の空間41の形状は、図23(a)に示すものに限定されず、種々の形状の第1の空間41を採用することができる。
As described above, in the heat exchanger of the fifth embodiment, since the catalyst layer 43 is provided in the first space 41 and the second space 42 of the honeycomb structure 1000, the first space 41 or Before the exhaust gas flowing through the second space 42 is cooled, a function of purifying harmful gas contained in the exhaust gas can be provided. In addition, a function of efficiently purifying harmful gas can be provided by heating the exhaust gas having a low temperature by heat exchange.
23A and 23B show the case where the catalyst layers 43 are provided on the entire upper, lower, left, and right sides of all the flow paths 60 in the first space 41 and the second space 42. Not limited to. For example, it may be provided only in the predetermined flow path 60, or may be provided only on a predetermined surface.
The shape of the first space 41 is not limited to that shown in FIG. 23A, and the first space 41 having various shapes can be employed.
 本発明の熱交換器は、内燃機関、燃焼炉などの熱交換器として利用することができる。 The heat exchanger of the present invention can be used as a heat exchanger for an internal combustion engine, a combustion furnace, or the like.
 11 第1端面
 12 第2端面
 21 第1側壁
 22 第2側壁
 30 接続孔
 31 第1の開口
 32 第2の開口
 41 第1の空間
 42 第2の空間
 43 触媒層
 50 内壁
 60 流路
 70 封止部
 80 レーザー光
 82 水流(ウォータジェット)
 85 レーザー源
 90 光拡散媒体
 91 ガラス棒
 92 失透ガラス
 93 水
 1000 ハニカム構造体(熱交換器)
DESCRIPTION OF SYMBOLS 11 1st end surface 12 2nd end surface 21 1st side wall 22 2nd side wall 30 Connection hole 31 1st opening 32 2nd opening 41 1st space 42 2nd space 43 Catalyst layer 50 Inner wall 60 Flow path 70 Sealing Part 80 Laser light 82 Water flow (water jet)
85 Laser source 90 Light diffusion medium 91 Glass rod 92 Devitrified glass 93 Water 1000 Honeycomb structure (heat exchanger)

Claims (11)

  1.  少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体を用いた熱交換器において、
     前記第1側壁または前記第2側壁に形成された第1の開口と、
     前記第1の開口に対向する複数の前記内壁に形成され複数の前記流路を接続する第2の開口と、からなる接続孔を有し、
     前記第1の開口または前記第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1の開口または前記第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、
     前記第1の開口および前記第2の開口のない前記流路は、前記第1端面から前記第2端面に延びる第2の空間を構成し、
     前記第1の空間と、前記第2の空間とは前記内壁で互いに隔離されているとともに、前記第1の空間または前記第2の空間の内面に触媒層を有することを特徴とする熱交換器。
    A ceramic honeycomb structure having at least a first end surface, a second end surface, a first side wall, and a second side wall, and having a plurality of flow paths partitioned by an inner wall and extending from the first end surface to the second end surface is used. In the heat exchanger
    A first opening formed in the first sidewall or the second sidewall;
    A plurality of second openings that are formed in the plurality of inner walls facing the first openings and connect the plurality of flow paths;
    The flow path having the first opening or the second opening has a sealing portion on each of the first end face and the second end face, and the flow having the first opening or the second opening. The road constitutes the first space by being connected by the connection hole,
    The flow path without the first opening and the second opening constitutes a second space extending from the first end face to the second end face,
    The first space and the second space are separated from each other by the inner wall and have a catalyst layer on the inner surface of the first space or the second space. .
  2.  前記熱交換器は、前記接続孔を複数有することを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the heat exchanger has a plurality of the connection holes.
  3.  前記接続孔は、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the connection holes are alternately formed in a plurality of the flow paths facing the first side wall or the second side wall.
  4.  前記第1の空間は、複数の前記接続孔を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the first space has a plurality of the connection holes.
  5.  前記熱交換器は、前記接続孔を前記第1側面および前記第2側面にそれぞれ有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger has the connection holes on the first side surface and the second side surface, respectively.
  6.  前記第1の開口および前記第2の開口は、スリット状に構成され、
     前記第1の開口の長さは、前記第2の開口の長さよりも長いことを特徴とする請求項1ないし請求項5のいずれか1項に記載の熱交換器。
    The first opening and the second opening are configured in a slit shape,
    6. The heat exchanger according to claim 1, wherein a length of the first opening is longer than a length of the second opening.
  7.  複数の前記第2の開口は、前記第1の開口に向かって順に長くなっていることを特徴とする請求項6に記載の熱交換器。 The heat exchanger according to claim 6, wherein the plurality of second openings are sequentially longer toward the first opening.
  8.  前記第1の開口および前記第2の開口は、スリット状に構成され、
     前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しいことを特徴とする請求項1ないし請求項5のいずれか1項に記載の熱交換器。
    The first opening and the second opening are configured in a slit shape,
    6. The heat exchanger according to claim 1, wherein the length of the first opening and the length of the plurality of second openings are all equal. 6.
  9.  前記接続孔は5層以上の前記第2の開口が積み重なっていることを特徴とする請求項1ないし請求項8のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 8, wherein the connection holes are stacked with the second openings having five or more layers.
  10.  前記接続孔は、10層以上の前記第2の開口が積み重なっていることを特徴とする請求項9に記載の熱交換器。 10. The heat exchanger according to claim 9, wherein the connection hole has the second openings of 10 layers or more stacked.
  11.  前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることを特徴とする請求項1ないし請求項10のいずれか1項に記載の熱交換器。 11. The ceramic according to claim 1, wherein the ceramic is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Heat exchanger.
PCT/JP2015/051446 2014-01-28 2015-01-21 Heat exchanger WO2015115256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013447 2014-01-28
JP2014013447A JP2015140959A (en) 2014-01-28 2014-01-28 heat exchanger

Publications (1)

Publication Number Publication Date
WO2015115256A1 true WO2015115256A1 (en) 2015-08-06

Family

ID=53756833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051446 WO2015115256A1 (en) 2014-01-28 2015-01-21 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2015140959A (en)
WO (1) WO2015115256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423328A (en) * 2015-12-16 2016-03-23 上海浩用工业炉有限公司 Fuel gas preheating and desulfurizing refiner for tubular heater
CN110711446A (en) * 2019-11-07 2020-01-21 华北电力大学 A ceramic membrane subassembly for desorption flue gas particulate matter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061155A1 (en) * 2016-09-29 2018-04-05 日本碍子株式会社 Heat pipe
JP2019074265A (en) * 2017-10-17 2019-05-16 イビデン株式会社 Heat exchanger
JP6826969B2 (en) * 2017-10-17 2021-02-10 イビデン株式会社 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041591A (en) * 1976-02-24 1977-08-16 Corning Glass Works Method of fabricating a multiple flow path body
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element
JPS6091969U (en) * 1983-11-24 1985-06-24 川崎重工業株式会社 Ceramic honeycomb heat exchanger
JPS60141541A (en) * 1983-12-29 1985-07-26 Nippon Soken Inc Manufacture of block-type heat exchanger elements
KR100885499B1 (en) * 2002-07-15 2009-02-26 한라공조주식회사 Heat exchanger
WO2010110238A1 (en) * 2009-03-23 2010-09-30 株式会社Ihi Ceramic heat exchanger and method for manufacturing same
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041591A (en) * 1976-02-24 1977-08-16 Corning Glass Works Method of fabricating a multiple flow path body
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element
JPS6091969U (en) * 1983-11-24 1985-06-24 川崎重工業株式会社 Ceramic honeycomb heat exchanger
JPS60141541A (en) * 1983-12-29 1985-07-26 Nippon Soken Inc Manufacture of block-type heat exchanger elements
KR100885499B1 (en) * 2002-07-15 2009-02-26 한라공조주식회사 Heat exchanger
WO2010110238A1 (en) * 2009-03-23 2010-09-30 株式会社Ihi Ceramic heat exchanger and method for manufacturing same
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423328A (en) * 2015-12-16 2016-03-23 上海浩用工业炉有限公司 Fuel gas preheating and desulfurizing refiner for tubular heater
CN110711446A (en) * 2019-11-07 2020-01-21 华北电力大学 A ceramic membrane subassembly for desorption flue gas particulate matter
CN110711446B (en) * 2019-11-07 2021-02-12 华北电力大学 A ceramic membrane subassembly for desorption flue gas particulate matter

Also Published As

Publication number Publication date
JP2015140959A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2015115256A1 (en) Heat exchanger
US8038955B2 (en) Catalyst supporting honeycomb and method of manufacturing the same
JP5916242B2 (en) Filter device with porous ceramic plate
EP1440722A1 (en) Honeycomb filter
EP1920838A1 (en) Honeycomb structure and honeycomb catalytic substance
JP5368776B2 (en) Honeycomb structure
JP5317959B2 (en) Honeycomb structure
KR20090092291A (en) Improved soot filter
JP2009148742A (en) Honeycomb carrying catalyst and its preparing method
WO2015115257A1 (en) Heat exchanger
WO2015115254A1 (en) Heat exchanger
WO2015115255A1 (en) Honeycomb structure
WO2015115258A1 (en) Heat exchanger
WO2015068780A1 (en) Honeycomb structure
JP2005118747A (en) Honeycomb structure
JP2010188231A (en) Honeycomb structure
WO2018123654A1 (en) Porous honeycomb filter
EP2203238B1 (en) Improved thermal shock resistant soot filter
JP2015157730A (en) honeycomb structure
JP5052401B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
WO2015068782A1 (en) Method for producing honeycomb structure
JP2012232240A (en) Honeycomb structure, and gas treatment apparatus provided with the same
WO2011067823A1 (en) Honeycomb filter and exhaust gas purification device
WO2015068783A1 (en) Heat exchanger
JP2018008232A (en) Honeycomb structural body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743838

Country of ref document: EP

Kind code of ref document: A1