WO2015068783A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2015068783A1
WO2015068783A1 PCT/JP2014/079509 JP2014079509W WO2015068783A1 WO 2015068783 A1 WO2015068783 A1 WO 2015068783A1 JP 2014079509 W JP2014079509 W JP 2014079509W WO 2015068783 A1 WO2015068783 A1 WO 2015068783A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
heat exchanger
side wall
space
connection hole
Prior art date
Application number
PCT/JP2014/079509
Other languages
French (fr)
Japanese (ja)
Inventor
真 大石
高木 俊
祥啓 古賀
久保 修一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2015546683A priority Critical patent/JPWO2015068783A1/en
Publication of WO2015068783A1 publication Critical patent/WO2015068783A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a heat exchanger made of a ceramic honeycomb structure.
  • the honeycomb structure is composed of a large number of flow paths that are partitioned by inner walls. When a fluid passes through the flow path of the honeycomb structure, heat, a substance, and the like can be moved through the inner wall, so that it is widely used as a heat exchanger.
  • Patent Document 1 is a high-temperature heat exchanger including an element made of a porous silicon carbide sintered body that exchanges heat between a fluid flowing through the inside and a fluid existing outside.
  • a high temperature heat exchanger is described in which the element is a honeycomb structure having a plurality of cells extending in the longitudinal direction. It is described that a heat exchanger using such a honeycomb structure is excellent in strength and can efficiently exchange heat between fluids having different temperatures.
  • the ceramic is used in the honeycomb structure because the atoms constituting the material are strongly bonded by a covalent bond and have high strength, heat resistance, and corrosion resistance. On the other hand, the ceramic material becomes a hard and brittle material due to such a feature of the covalent bond. For this reason, the ceramic honeycomb structure is manufactured by a simple forming method such as extrusion, and has a simple shape in which flow paths are arranged in one direction. Because of this shape, the parts to which the honeycomb structure is applied are designed on the assumption that the flow paths are aligned in one direction, and the degree of freedom in designing a heat exchanger using the honeycomb structure is small.
  • the present invention exceeds the application range of such a conventional heat exchanger composed of a ceramic honeycomb structure, and has a honeycomb structure that can provide a new function to the honeycomb structure and handle a new fluid flow.
  • An object is to provide a heat exchanger.
  • the heat exchanger of the present invention for solving the above-mentioned problems has at least a first end face, a second end face, a first side wall, and a second side wall, and is partitioned by an inner wall from the first end face to the second end face.
  • a heat exchanger composed of a ceramic honeycomb structure having a plurality of extending flow paths, wherein a first opening formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening And a second opening for connecting a plurality of flow paths, and the flow path having the first opening or the second opening has the first end face and the second end face.
  • Each of the flow paths having the first or the second opening constitutes a first space by being connected by the connection hole, and the first opening and the first opening 2 without the opening is the first end face Constitutes a second space extending al the second end surface, said first space, said second space is characterized by being isolated from each other by the inner wall.
  • the flow path extends from the first end face toward the second end face.
  • the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
  • the heat exchanger composed of the honeycomb structure of the present invention unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in the direction across the honeycomb structure. Further, in such a honeycomb structure, since the first opening and the second opening are formed inside the first opening, not only the flow path located on the outermost periphery but also the flow path on the inner side. A fluid flow can be created. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently. A heat exchanger can be provided.
  • the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
  • the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented.
  • the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
  • the honeycomb structure of the present invention desirably has the following aspect.
  • the heat exchanger has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
  • connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
  • the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
  • the first space has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing the inlet and the outlet with a plurality of connection holes in the first space, the fluid flowing through the first space (first fluid) can be used continuously.
  • having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall.
  • the amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space.
  • the said heat exchanger has the said connection hole in the said 1st side wall and the said 2nd side wall, respectively.
  • the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.
  • the first opening and the second opening are configured in a slit shape, and the length of the first opening is longer than the length of the second opening.
  • the heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, the resistance of the first fluid in the first opening can be reduced while reducing the influence on the strength reduction of the entire heat exchanger, and the pressure can be reduced. Loss can be reduced efficiently.
  • the plurality of second openings become longer in order toward the first opening on the side wall.
  • the heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening.
  • the resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
  • the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both equal.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal.
  • connection holes are stacked with the second openings having five or more layers.
  • the heat exchanger of this invention can supply a 1st fluid to the 6th flow path counted from the 1st side wall side by stacking the 2nd opening of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.
  • connection hole the second openings having ten or more layers are stacked.
  • the heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall by stacking the second openings of five or more layers. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
  • the ceramic is made of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
  • the heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Can be provided.
  • the conventional ceramic honeycomb structure New functions can be added that are not found in heat exchangers made of body.
  • FIG. 1 shows a perspective view of the heat exchanger of Embodiment 1 which concerns on this invention. It is a perspective view of the modification of the heat exchanger of Embodiment 1 which concerns on this invention, (a) shows the honeycomb structure which has one slit-shaped connection hole, (b) has the 1st side wall. 1 shows a honeycomb structure in which slit-like connection holes are formed in a part of a facing channel.
  • 2A and 2B are cross-sectional views of the heat exchanger according to the first embodiment of the present invention, in which FIG. 1A is a cross-sectional view taken along the line A-A ′ of FIG. 1, and FIG. FIG.
  • FIG. 6 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention, corresponding to the cross-sectional view taken along the line AA ′ of FIG. 1, (a) having a V-shaped cross-sectional shape; A certain connection hole is shown, (b) shows the connection hole aligned so that one side of the 1st and 2nd opening becomes perpendicular, and (c) shows the length of the 1st opening and the 2nd opening Shows a connection hole penetrating the first side wall and the second side wall, and (d) is a connection hole formed from the first side wall and the second side wall, each sharing a bottom inner wall, (E) shows a connection hole whose inside is larger.
  • FIG. 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, (a) is a cross-sectional view taken along the line CC ′ of FIG. 5 (a), (b) is a cross-sectional view taken along the line EE ′ of FIG.
  • FIG. 5C is a sectional view taken along the line DD ′ of FIG.
  • FIG. 7A and 7B are cross-sectional views of a heat exchanger according to a second embodiment of the present invention, in which FIG. 7A is a cross-sectional view along GG ′ in FIG. 7A and FIG. 7B is a cross-sectional view along II ′ in FIG.
  • FIGS. 7C and 7C are a sectional view taken along line HH ′ in FIG. 7A and a sectional view taken along line JJ ′ in FIG.
  • connection hole which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention
  • a connection hole is an example comprised by 1st and 2nd opening of slit shape with the same length
  • a connection hole is slit shape, 1st opening is longer than 2nd opening, and 2nd opening is 1st. It becomes longer toward the opening.
  • connection hole is slit shape, 1st opening is longer than 2nd opening, and 2nd opening is 1st.
  • A shows a step of forming first and second openings having the same length
  • (b) shows a laser after the step (a). A process of scanning while appropriately tilting light is shown.
  • a connection hole is slit shape, 1st opening is shorter than 2nd opening, and 2nd opening is 1st.
  • (A) shows a process of forming first and second openings having the same length
  • (b) shows a laser after the process of (a).
  • a process of scanning while appropriately tilting light is shown.
  • It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger which concerns on this invention with a laser beam
  • (a) is the light-transmitting stick
  • devitrified glass is inserted in the flow path.
  • water is put in the flow path.
  • connection hole of the heat exchanger which consists of a honeycomb structure of the Example which concerns on this invention
  • explanatory drawing (b). It is explanatory drawing which shows in detail the cutting position and cutting
  • the cross section of the honeycomb structure indicates a cross section cut in the depth direction of the connection hole along the flow path.
  • FIG. 17 describes in detail the cutting position of FIG. 3, which is a cross-sectional view of FIG. 4 is a sectional view of FIG. 1
  • FIG. 6 is a sectional view of FIG. 5
  • FIG. 8 is a sectional view of FIG.
  • the pattern and size of the honeycomb of the heat exchanger of the present invention are not particularly limited.
  • a heat exchanger made of a honeycomb structure having an 8 ⁇ 8 grid-like flow path has been described.
  • a hexagonal flow path honeycomb a combination of octagonal and quadrangular flow paths is used.
  • honeycombs There are no particular limitations on honeycombs.
  • the shape of the heat exchanger of the present invention is not particularly limited. Other cylinders such as hexahedrons and hexagonal cylinders can also be applied. In the case of a cylinder, a region where a group of connection holes are formed in the side surface can be defined as a first side wall, and a region on the opposite side can be defined as a second side wall.
  • the heat exchanger of the present invention has at least a first end surface, a second end surface, a first side wall, and a second side wall, and has a plurality of flow paths partitioned by an inner wall and extending from the first end surface to the second end surface.
  • a heat exchanger composed of a ceramic honeycomb structure, wherein a plurality of flow paths are formed in a first opening formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening.
  • the flow path having the first or second opening has a sealing portion on each of the first end face and the second end face, and
  • the flow path having the first or second opening constitutes a first space by being connected by the connection hole, and the flow path without the first opening and the second opening has a first end face A second space extending from the first end surface to the second end surface, And between the second space are separated from each other by the inner wall.
  • the flow path extends from the first end face toward the second end face.
  • the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
  • a fluid flow can be created in the direction across the honeycomb structure.
  • a heat exchanger has the first opening and the second opening formed inside the first opening, not only the flow path located on the outermost periphery but also the inner flow path.
  • a fluid flow can be created.
  • the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently.
  • a honeycomb structure that can be provided can be provided.
  • the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
  • the first space has sealing portions on the first end surface and the second end surface, respectively, so that the fluid enters the first space from the first end surface and the second end surface side. Can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
  • the heat exchanger of the present invention is not particularly limited, but preferably has a plurality of connection holes. Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
  • connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
  • the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
  • the first space has a plurality of the connection holes. Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a plurality of connection holes in the first space, the fluid (first fluid) flowing through the first space can be continuously supplied.
  • having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall.
  • the amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space.
  • the heat exchanger of the present invention preferably has the connection holes on the first side wall and the second side wall, respectively.
  • the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the first fluid can be spread over the entire inner wall, it is possible to provide a honeycomb structure capable of efficiently performing heat transfer or mass transfer.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening. .
  • the first opening and the second opening are formed in a slit shape, whereby fluid can be efficiently supplied from the side of the elongated channel. Furthermore, by making the first opening larger than the second opening, it is possible to reduce the resistance of the first fluid in the first opening while reducing the influence on the strength reduction of the entire honeycomb structure, Pressure loss can be reduced efficiently.
  • the plurality of second openings become longer in order toward the first opening.
  • the heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening.
  • the resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
  • the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both Preferably equal.
  • the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal.
  • connection hole of the heat exchanger of the present invention is preferably formed by stacking five or more second openings.
  • the heat exchanger of this invention can supply a 1st fluid to the 6th flow path counted from the 1st side wall side by stacking the 2nd opening of five layers or more.
  • the area of the inner wall that separates the first space and the second space can be increased.
  • the aspect ratio between the diameter or width and depth of the connection hole formed by stacking the second openings of five layers or more is 6 or more if the channel is a square channel, and the channel in the deep position is connected to the connection hole. Can be connected.
  • connection hole of the heat exchanger of the present invention preferably has 10 or more layers of second openings stacked.
  • the heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall by stacking the second openings of five or more layers. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
  • the aspect ratio of the diameter or width and depth of the connection hole formed by stacking the second openings of 10 layers or more is 11 or more in the case of a square channel, and a channel at a deeper position is connected. Can be connected with holes.
  • the ceramic of the heat exchanger of the present invention is preferably made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
  • the heat exchanger of the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia, so that it has heat resistance and corrosion resistance and has a high strength honeycomb structure. Can be provided.
  • silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride When used in a heat exchanger, it is desirable to use silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride. These ceramics have high thermal conductivity and are suitable as heat exchangers.
  • the heat exchanger of the present invention can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. It can be obtained by forming the first and second openings. Connection holes can be formed in the honeycomb-shaped ceramic on the first side wall or the second side wall by laser processing.
  • the laser processing machine used for laser processing is not particularly limited.
  • a honeycomb-shaped ceramic can be processed by using a widely used high-power laser beam.
  • the wavelength and output of the laser beam of the laser processing machine can be appropriately selected according to the honeycomb ceramic. Further, it is possible to perform processing more efficiently by using a laser processing machine combined with a water flow of a water jet that has recently been used.
  • the laser processing method combined with the water jet water flow can guide the laser beam into the water jet water flow and guide it to the processing point while totally reflecting it, and the laser beam passes through the thin water flow without diffusing.
  • the depth of focus is deep, and it has higher processing performance than a processing machine using only laser light.
  • the heat exchanger of the present invention can be obtained by processing without penetrating the bottom of the connection hole by using a laser processing machine combined with a water flow of a high processing performance water jet. Processing while leaving the bottom of the connection hole can be realized by scattering laser light at a predetermined location and dispersing light energy. By inserting the light diffusing medium at a predetermined location, the laser light is weakened below and cannot be processed.
  • the light diffusion medium is not particularly limited as long as light can be dispersed.
  • a light-transmitting rod having a curved surface such as a glass rod, devitrified glass, glass having bubbles inside, water, and the like can be used. A light-transmitting substance is not heated by laser light, and light is scattered on a curved surface, so that the ability to process laser light can be reduced, and the bottom of the connection hole can be formed without penetrating. Can be processed.
  • devitrified glass has a phase-separated interior even if the surface is not curved, so that light is easily scattered, the ability to process laser light can be reduced, and the bottom is formed without penetrating. be able to. Moreover, it can process by leaving the bottom of a connection hole by filling water in a predetermined location. When filled with water, a large amount of bubbles are generated by boiling water heated by mixing and processing with a water jet stream. For this reason, the laser beam is rapidly attenuated in the filled water, and processing can be performed while leaving the bottom of the connection hole.
  • the heat exchanger of the present invention can be processed by tilting or scanning the laser beam according to the shape, although there are various modifications of the connection holes.
  • connection hole having a desired shape can be formed by appropriately changing the length of the light diffusion medium inserted into each flow path.
  • the sealing part of the heat exchanger of the present invention may be formed in any way and is not particularly limited.
  • a plug made of the same ceramic material as that constituting the inner wall may be inserted.
  • silicon powder may be applied to the plug as an adhesive and then fired. Silicon melts and functions as an adhesive. Further, for example, it can be obtained by injecting and baking a paste in which an inorganic binder, an organic binder, and inorganic particles are mixed.
  • Alumina sol, silica sol, etc. can be used as the inorganic binder
  • polyvinyl alcohol, phenol resin, etc. can be used as the organic binder
  • silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, zirconia, etc. can be used as the inorganic particles.
  • Embodiment 1 and Embodiment 2 of the present invention will be described.
  • the first embodiment has sealing portions on the first end surface and the second end surface of the flow path constituting the first space, and a connection hole is formed on the first side wall to constitute the first space, and the second It is a heat exchanger with which the 1st end surface and 2nd end surface of this space are open
  • Embodiment 2 is a heat exchanger of the following form.
  • Connection holes are alternately formed in the plurality of channels facing the first side wall, and the bottoms of the connection holes reach the second end surface.
  • the connection hole does not penetrate the second end face.
  • the first end face and the second end face of the flow path having the first opening and the second opening each have a sealing portion, thereby constituting a first space.
  • the flow path without the first opening and the second opening constitutes a second space extending from the first end surface to the second end surface, and the first space and the second space are separated from each other by the inner wall. .
  • the first space has connection holes on the first and second side walls. Four independent spaces constitute the first space, and 32 4 ⁇ 8 independent flow paths constitute the second space.
  • FIG. 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention.
  • 3 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 1
  • FIG. 3B is a cross-sectional view taken along the line BB ′ in FIG.
  • FIG. 4 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention.
  • 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, where (a) is a cross-sectional view along CC ′ in FIG. 5 (a), and (b) is a cross-sectional view along EE ′ in FIG. 5 (b).
  • FIG. 5C is a sectional view taken along the line DD ′ of FIG. 5A and a sectional view taken along the line FF ′ of FIG.
  • the heat exchanger according to Embodiment 1 includes eight channels 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 ⁇ 8 channels.
  • the four connection holes 30 are provided.
  • each connection hole 30 includes a first opening 31 formed in the first side wall 21 and a plurality of second openings 32 formed in the inner wall 50.
  • the first opening 31 and the second opening 32 have a slit shape, and the lengths of the first opening 31 and the second opening 32 are the same.
  • the cross section of the row adjacent to the row where the connection hole 30 is formed does not have a hole in the inner wall 50.
  • connection holes 30 are not particularly limited. 2 and 5 are modified examples in which the position and surface shape of the connection hole 30 are different.
  • FIG. 2A shows a honeycomb structure 1000 (heat exchanger) having one slit-like connection hole 30, and FIG. 2B shows a part of the channel 60 facing the first side wall 21. A slit-like connection hole 30 is formed. Each connection hole 30 is also formed in a slit shape.
  • FIG. 5A shows four circular connection holes 30 that are alternately arranged among the eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure having the 8 ⁇ 8 flow paths 60.
  • a honeycomb structure 1000 (heat exchanger) is shown.
  • connection holes 30 includes a hole 30 and is a honeycomb structure 1000 (heat exchanger) including five circular connection holes 30.
  • FIG. 5C shows a honeycomb structure 1000 (heat exchanger) having one circular connection hole 30.
  • connection hole 30 in the depth direction is not particularly limited.
  • FIG. 4 shows a modification of the connection hole 30, is a cross-sectional view of the connection hole 30 in the flow path direction, and shows a cross-section A-A ′ of FIG. 1.
  • A shows the connection hole whose cross-sectional shape is V-shaped, the first opening 31 is longer than the second opening 32, and the plurality of second openings 32 are sequentially directed toward the first opening 31. It is configured to be long.
  • (B) shows the connection holes aligned so that one side of the first and second openings is vertical.
  • the first opening 31 is longer than the second opening 32, and the plurality of second openings 32 are The connection hole is configured to become longer in order toward the first opening 31, and the connection hole has a trapezoidal cross section.
  • C shows the connection hole 30 having the same length of the first opening 31 and the second opening 32 and penetrating the first side wall 21 and the second side wall 22.
  • D shows the connection hole 30 in which the connection hole 30 is formed from the 1st side wall 21 and the 2nd side wall 22, and each shares the inner wall used as a bottom.
  • (E) shows the connection hole 30 having a larger inside, the first opening 31 is shorter than the second opening 32, and the plurality of second openings 32 become shorter toward the first opening 31 in order. It is configured as follows.
  • honeycomb pattern and size of the honeycomb structure 1000 are not particularly limited.
  • the honeycomb structure 1000 (heat exchanger) having the 8 ⁇ 8 grid-like flow paths 60 has been described.
  • a hexagonal flow path honeycomb, octagonal and quadrangular flow paths are used.
  • the honeycomb structure (heat exchanger) of the present embodiment can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. As shown in FIG. 9, the first and second openings are formed by inserting the light diffusion medium 90 into the flow path 60 facing the second side wall 22 and moving the laser source 85 to scan the laser light 80. Can be processed. Depending on the shape of the connection hole 30, the connection hole 30 having a desired shape can be obtained by appropriately changing the length of insertion of the light diffusion medium as shown in FIG. In addition, as shown in FIGS. 11 and 12, the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it. First, similarly to the example of FIG.
  • FIG. 12B scanning is performed while the laser beam 80 is appropriately inclined.
  • the first opening is longer than the second opening, and the second opening is sequentially longer toward the first opening.
  • the first opening is the second opening. The second opening is shorter toward the first opening in order.
  • the honeycomb structure 1000 (heat exchanger) of the present embodiment can be processed by leaving the bottom of the connection hole 30 by inserting the light diffusion medium 90.
  • FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90.
  • FIGS. 13A, 13B, and 13C show only the laser beam 80
  • FIGS. 14A, 14B, and 14C show processing by combining the laser beam 80 and the water flow 82.
  • FIGS. As a processing machine in which the laser beam 80 and the water flow 82 are combined, for example, an MCS300 type laser processing machine manufactured by Makino Milling Co. can be used.
  • FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
  • FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
  • FIGS. 13 (c) and 14 (c) are explanatory views using water 93 as the light diffusion medium 90.
  • the laser light 80 is diffused and connected by the turbulent reflection of bubbles generated by heat and water turbulence due to processing. Processing can be performed leaving the bottom of the hole 30.
  • FIG.7 (a) is a perspective view of the heat exchanger of Embodiment 2 which concerns on this invention.
  • (B) is a perspective view of the modification of the heat exchanger of Embodiment 2 which concerns on this invention.
  • 8A and 8B are cross-sectional views of the heat exchanger according to the second embodiment of the present invention.
  • FIG. 8A is a cross-sectional view taken along the line GG ′ of FIG. 7A
  • FIG. 8B is a cross-sectional view taken along II of FIG. 'Cross sectional view
  • (c) is a HH' sectional view of FIG. 7 (a) and JJ 'sectional view of FIG. 7 (b).
  • connection holes 30 are alternately formed in the plurality of flow paths 60 facing the first side wall 21, and the bottoms of the connection holes 30 reach the second side wall 22. .
  • the connection hole 30 does not penetrate the second side wall 22.
  • Each of the first end surface 11 and the second end surface 12 of the flow path having the first opening and the second opening has a sealing portion 70, thereby forming a first space.
  • the flow path without the first opening and the second opening constitutes a second space extending from the first end surface 11 to the second end surface 12, and the first space and the second space are separated from each other by the inner wall. ing.
  • the first space has connection holes on the first and second side walls.
  • the first space is composed of four independent spaces, and 32 4 ⁇ 8 independent flow paths constitute the second space.
  • the first space can create a fluid flow from the first side wall 21 to the second side wall 22 (and vice versa).
  • the second space can also create a fluid flow from the first end surface 11 to the second end surface 12 (and vice versa). Since the first space and the second space are separated by the inner wall, they do not mix with each other, and the amount of heat can be moved through the inner wall. This effect can be suitably used as a heat exchanger.
  • the honeycomb structure (heat exchanger) of the present embodiment can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic.
  • the first and second openings can be processed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80. it can.
  • the connection hole having a desired shape can be obtained by appropriately changing the length of insertion of the light diffusion medium 90 as shown in FIG.
  • a connection hole having a desired shape may be obtained by scanning while appropriately tilting the laser beam 80. .
  • the honeycomb structure (heat exchanger) of the present embodiment can be processed while leaving the bottom of the connection hole by inserting a light diffusion medium.
  • 13 and 14 show how the laser light is diffused by the light diffusion medium 90.
  • FIGS. 13A, 13B, and 13C show processing using only laser light
  • FIGS. 14A, 14B, and 14C show processing using laser light that also uses a water jet.
  • a laser processing machine used in combination with a water jet an MCS300 laser processing machine manufactured by Makino Milling Co. can be used.
  • FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusing medium 90, and processing is performed by diffusing the laser light 80 by the convex surface of the glass, leaving the bottom of the connection hole. it can.
  • FIG. 13B and FIG. 14B are explanatory diagrams in which a devitrifying glass 92 is used for the light diffusion medium 90, and the laser light 80 is diffused by irregular reflection inside the glass so as to leave the bottom of the connection hole. be able to.
  • FIGS. 13 (c) and 14 (c) are explanatory views using water 93 as the light diffusion medium 90.
  • the laser light 80 is diffused and connected by the turbulent reflection of bubbles generated by heat and water turbulence due to processing. It can be processed leaving the bottom of the hole.
  • FIG. 1000 a result of manufacturing a honeycomb structure (heat exchanger) according to the present invention by forming connection holes having a trapezoidal cross section in a honeycomb-shaped ceramic actually made of porous silicon carbide is shown in FIG.
  • a honeycomb structure 1000 (heat exchanger) according to the present invention is formed using a honeycomb-shaped ceramic made of silicon carbide of 34 mm ⁇ 34 mm ⁇ 130 mm, having 24 ⁇ 24, a total of 576 square flow paths 60.
  • the end surface in the longitudinal direction has a channel opening and is a first end surface 11 and a second end surface 12.
  • the four surfaces other than the first end surface 11 and the second end surface 12 are side walls, of which the surface forming the connection hole 30 is the first side wall 21, and the opposite surface is the second side wall 22.
  • the inner wall has a thickness of 0.25 mm, and the first and second side walls have a thickness of 0.3 mm.
  • the size of the flow path is a square having a side of 1.14 mm.
  • connection holes were formed in this honeycomb-shaped ceramic. Twelve connection holes 30 are formed by forming first openings in twelve flow paths alternately among the twenty-four flow paths facing the first side wall, and further forming second openings. did.
  • the bottom of the connection hole 30 is the second side wall 22, and the second opening is formed in all the inner walls.
  • the distance between the first opening and the second opening and the first end face is 10 mm
  • the first opening 31 extends from the first end face 11 to a position of 40 mm
  • the second opening 32 in the lowermost layer is the first end face 11.
  • the second opening 32 becomes longer toward the first opening 31 in order
  • the connection hole 30 has a trapezoidal cross section.
  • the width of the first opening is 0.6 mm.
  • connection hole When forming the connection hole, a circular glass rod longer than the flow path is inserted into the flow path facing the second side wall 22, and the circular glass up to a portion other than the trapezoidal basin is inserted into the other flow path. Inserted a stick. Next, it processed using the MCS300 type
  • connection hole 30 had a trapezoidal cross section
  • the inner wall 50 penetrated all
  • the first opening 31 had a length of 30 mm
  • the lowermost second opening 32 had a length of 15 mm.
  • the method of forming the connection hole 30 in the honeycomb structure 1000 (heat exchanger) is not limited to the laser beam using the water flow 82. If the laser processing machine takes time and has a high output, the water flow is not used together. Can be processed.
  • connection holes 30 can be selected as appropriate.
  • the heat exchanger of the present invention can be used as a heat exchanger for an internal combustion engine, a combustion furnace, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger comprising a ceramic honeycomb structure having at least a first end surface, a second end surface, a first sidewall, a second sidewall, and a plurality of channels extending from the first end surface to the second end surface and partitioned by inner walls, wherein: the honeycomb structure also has a connecting hole comprising a first opening formed in the first sidewall or the second sidewall, and a second opening for connecting the plurality of channels and formed in the plurality of inner walls facing the first opening; the channels having the first or second openings also have a sealing part on each of the first and second end surfaces; the channels having the first or second openings form a first space by being connected via the connecting hole, and the channels not having the first or second openings form a second space extending from the first end surface to the second end surface; and the first space and the second space are separated from one another by the inner walls.

Description

熱交換器Heat exchanger
 本発明は、セラミック製のハニカム構造体からなる熱交換器に関する。 The present invention relates to a heat exchanger made of a ceramic honeycomb structure.
 ハニカム構造体は、内部が内壁によって仕切られた多数の流路で構成されている。ハニカム構造体の流路を流体が通過する際に、内壁を介して熱、物質などを移動させることができるので、熱交換器として広く利用されている。 The honeycomb structure is composed of a large number of flow paths that are partitioned by inner walls. When a fluid passes through the flow path of the honeycomb structure, heat, a substance, and the like can be moved through the inner wall, so that it is widely used as a heat exchanger.
 中でもセラミック製のハニカム構造体は、耐熱性、化学的安定性に優れるので、高い温度、腐食性環境下で使用される熱交換器に用いられている。
 特許文献1には、内側を貫流する流体と外側に存在する流体との間で熱量の交換を行わせる多孔質炭化珪素焼結体製のエレメントを備えた高温用熱交換器であって、前記エレメントは長手方向に延びた複数のセルを有するハニカム構造体であることを特徴とした高温用熱交換器が記載されている。このようなハニカム構造体を用いた熱交換器によれば強度に優れると共に、温度の異なる流体間での熱量の交換を効率良く行わせることができることが記載されている。 
Among them, ceramic honeycomb structures are excellent in heat resistance and chemical stability, and are therefore used in heat exchangers used under high temperature and corrosive environments.
Patent Document 1 is a high-temperature heat exchanger including an element made of a porous silicon carbide sintered body that exchanges heat between a fluid flowing through the inside and a fluid existing outside. A high temperature heat exchanger is described in which the element is a honeycomb structure having a plurality of cells extending in the longitudinal direction. It is described that a heat exchanger using such a honeycomb structure is excellent in strength and can efficiently exchange heat between fluids having different temperatures.
日本国特開平6-345555号公報Japanese Unexamined Patent Publication No. 6-345555
 セラミックがハニカム構造体に用いられるのは、材料を構成する原子が共有結合で強く結合し、高強度、耐熱性、耐腐食性を有しているからである。一方、このような共有結合の特長によって、セラミック材料は、硬く、脆い材料となる。
 このため、セラミック製のハニカム構造体は、押出成形など単純な成形方法によって製造され、一方向に流路が並んだ単純な形状である。このような形状であるため、ハニカム構造体を適用する部品は一方向に並んだ流路を前提に設計され、ハニカム構造体を用いた熱交換器の設計の自由度は小さい。
The ceramic is used in the honeycomb structure because the atoms constituting the material are strongly bonded by a covalent bond and have high strength, heat resistance, and corrosion resistance. On the other hand, the ceramic material becomes a hard and brittle material due to such a feature of the covalent bond.
For this reason, the ceramic honeycomb structure is manufactured by a simple forming method such as extrusion, and has a simple shape in which flow paths are arranged in one direction. Because of this shape, the parts to which the honeycomb structure is applied are designed on the assumption that the flow paths are aligned in one direction, and the degree of freedom in designing a heat exchanger using the honeycomb structure is small.
 本発明では、このような従来のセラミック製のハニカム構造体からなる熱交換器の適用範囲を超え、ハニカム構造体に新しい機能を付与し、新しい流体の流れを扱いことのできるハニカム構造体からなる熱交換器を提供することを目的とする。 The present invention exceeds the application range of such a conventional heat exchanger composed of a ceramic honeycomb structure, and has a honeycomb structure that can provide a new function to the honeycomb structure and handle a new fluid flow. An object is to provide a heat exchanger.
 前記課題を解決するための本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体からなる熱交換器において、前記第1側壁または前記第2側壁に形成された第1の開口と、前記第1の開口に対向する複数の内壁に形成され複数の流路を接続する第2の開口と、からなる接続孔を有し、前記第1の開口または前記第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1または前記第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、前記第1の開口および前記第2の開口のない前記流路は、前記第1端面から前記第2端面に延びる第2の空間を構成し、前記第1の空間と、前記第2の空間は前記内壁で互いに隔離されていることを特徴とする。 The heat exchanger of the present invention for solving the above-mentioned problems has at least a first end face, a second end face, a first side wall, and a second side wall, and is partitioned by an inner wall from the first end face to the second end face. A heat exchanger composed of a ceramic honeycomb structure having a plurality of extending flow paths, wherein a first opening formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening And a second opening for connecting a plurality of flow paths, and the flow path having the first opening or the second opening has the first end face and the second end face. Each of the flow paths having the first or the second opening constitutes a first space by being connected by the connection hole, and the first opening and the first opening 2 without the opening is the first end face Constitutes a second space extending al the second end surface, said first space, said second space is characterized by being isolated from each other by the inner wall.
 本発明の熱交換器は、第1端面から第2端面に向かって流路が延びている。また、ハニカム構造体の側面は、第1側壁と第2側壁を有し、第2側壁は、第1側壁の反対に位置する。 In the heat exchanger of the present invention, the flow path extends from the first end face toward the second end face. Moreover, the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
 本発明のハニカム構造体からなる熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このようなハニカム構造体は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する流路のみならず、内側の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができる熱交換器を提供することができる。 According to the heat exchanger composed of the honeycomb structure of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in the direction across the honeycomb structure. Further, in such a honeycomb structure, since the first opening and the second opening are formed inside the first opening, not only the flow path located on the outermost periphery but also the flow path on the inner side. A fluid flow can be created. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently. A heat exchanger can be provided.
 また、本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。
 さらに、本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。
In addition, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
Furthermore, in the heat exchanger according to the present invention, the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
 さらに、本発明のハニカム構造体は、以下の態様であることが望ましい。
(1)前記熱交換器は、前記接続孔を複数有する。
 本発明の熱交換器は、接続孔を複数有することによって、より多くの流体をハニカム構造体の流路を横切る方向に流体を流すことができる。
Furthermore, the honeycomb structure of the present invention desirably has the following aspect.
(1) The heat exchanger has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
(2)前記接続孔は、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されている。
 本発明の熱交換器は、接続孔が前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる流体(第1の流体)を隔てる内壁の面積を大きくとることができる。
(2) The connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
In the heat exchanger according to the present invention, the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
(3)前記第1の空間は、複数の前記接続孔を有する。
 本発明の熱交換器は、第1の空間に複数の接続孔を有することにより、複数の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に複数の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に使用することができる。
(3) The first space has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing the inlet and the outlet with a plurality of connection holes in the first space, the fluid flowing through the first space (first fluid) can be used continuously.
 また、第1の空間に複数の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。 Also, having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.
(4)前記熱交換器は、前記接続孔を前記第1側壁および前記第2側壁にそれぞれ有することが好ましい。
 本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできる熱交換器を提供することができる。
(4) It is preferable that the said heat exchanger has the said connection hole in the said 1st side wall and the said 2nd side wall, respectively.
In the heat exchanger of the present invention, the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.
(5)前記第1の開口および前記第2の開口は、スリット状に構成され、前記第1の開口の長さは、前記第2の開口の長さよりも長い。
 本発明の熱交換器は、第1の開口および第2の開口をスリット状に構成することによって、細長い流路の横から効率良く流体を供給することができる。さらに第1の開口を第2の開口よりも大きくすることによって、熱交換器全体の強度低下への影響を小さくしながら第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失を効率良く低減させることができる。
(5) The first opening and the second opening are configured in a slit shape, and the length of the first opening is longer than the length of the second opening.
The heat exchanger of the present invention can efficiently supply fluid from the side of the elongated channel by configuring the first opening and the second opening in a slit shape. Furthermore, by making the first opening larger than the second opening, the resistance of the first fluid in the first opening can be reduced while reducing the influence on the strength reduction of the entire heat exchanger, and the pressure can be reduced. Loss can be reduced efficiently.
(6)複数の前記第2の開口は、側壁第1の開口に向かって順に長くなっている。
 本発明の熱交換器は、第2の開口は、第1の開口に向かって順に長くなるように構成することによって、ハニカム構造体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失をさらに効率良く低減させることができる。
(6) The plurality of second openings become longer in order toward the first opening on the side wall.
The heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening. The resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
(7)前記第1の開口および第2の開口は、スリット状に構成され、前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しい。
 本発明の熱交換器は、第1の開口および第2の開口が、スリット状に形成され、第1の開口の長さおよび、複数の第2の開口の長さが、いずれも等しくなるように構成することにより、第1の開口および第2の開口で形成される接続孔の容積を大きくすることができる。接続孔の容積を大きくすることによって、接続孔につながるそれぞれの流路で発生する抵抗に応じて効率良く第1の流体を分配することができる。
(7) The first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both equal.
In the heat exchanger of the present invention, the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal. By configuring in this manner, the volume of the connection hole formed by the first opening and the second opening can be increased. By increasing the volume of the connection hole, the first fluid can be efficiently distributed according to the resistance generated in each flow path connected to the connection hole.
(8)前記接続孔は5層以上の前記第2の開口が積み重なっている。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1の側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
(8) The connection holes are stacked with the second openings having five or more layers.
The heat exchanger of this invention can supply a 1st fluid to the 6th flow path counted from the 1st side wall side by stacking the 2nd opening of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.
(9)前記接続孔は、10層以上の前記第2の開口が積み重なっている。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1の側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
(9) In the connection hole, the second openings having ten or more layers are stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall by stacking the second openings of five or more layers. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
(10)前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなる。
 本発明の熱交換器は、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度な熱交換器を提供することができる。
(10) The ceramic is made of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Can be provided.
 本発明によれば、熱交換器を構成するハニカム構造体の内壁によって形成される流路のみならず、流路を横切る方向に流体の流れを引き出すことができるので、従来のセラミック製のハニカム構造体からなる熱交換器にない新しい機能を付与することができる。 According to the present invention, since the flow of the fluid can be drawn not only in the flow path formed by the inner wall of the honeycomb structure constituting the heat exchanger but also in the direction crossing the flow path, the conventional ceramic honeycomb structure New functions can be added that are not found in heat exchangers made of body.
本発明に係る実施形態1の熱交換器の斜視図。The perspective view of the heat exchanger of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱交換器の変形例の斜視図であり、(a)は、1個のスリット状の接続孔を有するハニカム構造体を示し、(b)は、第1側壁が面する流路の一部にスリット状の接続孔が形成されたハニカム構造体を示す。It is a perspective view of the modification of the heat exchanger of Embodiment 1 which concerns on this invention, (a) shows the honeycomb structure which has one slit-shaped connection hole, (b) has the 1st side wall. 1 shows a honeycomb structure in which slit-like connection holes are formed in a part of a facing channel. 本発明に係る実施形態1の熱交換器の断面図であり、(a)は、図1のA-A’断面図、(b)は図1のB-B’断面図である。2A and 2B are cross-sectional views of the heat exchanger according to the first embodiment of the present invention, in which FIG. 1A is a cross-sectional view taken along the line A-A ′ of FIG. 1, and FIG. 本発明に係る実施形態1の熱交換器の接続孔の変形例の断面図であって、図1のA-A’の断面図に相当し、(a)は、断面形状がV字状である接続孔を示し、(b)は、第1および第2の開口の片側が垂直になるように揃った接続孔を示し、(c)は、第1の開口および第2の開口の長さが同一で第1側壁および第2側壁を貫通した接続孔を示し、(d)は、第1側壁および第2側壁から接続孔が形成され、それぞれ底となる内壁を共有する接続孔を示し、(e)は、内部の方が大きい接続孔を示す。FIG. 6 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention, corresponding to the cross-sectional view taken along the line AA ′ of FIG. 1, (a) having a V-shaped cross-sectional shape; A certain connection hole is shown, (b) shows the connection hole aligned so that one side of the 1st and 2nd opening becomes perpendicular, and (c) shows the length of the 1st opening and the 2nd opening Shows a connection hole penetrating the first side wall and the second side wall, and (d) is a connection hole formed from the first side wall and the second side wall, each sharing a bottom inner wall, (E) shows a connection hole whose inside is larger. 本発明に係る実施形態1の熱交換器の変形例の斜視図であり、(a)は、4個の円形の接続孔を有するハニカム構造体を示し、(b)は、4つの群の接続孔を有し、1つの群の接続孔は円形の接続孔が5個で構成されるハニカム構造体を示し、(c)は、1個の円形の接続孔を有するハニカム構造体を示す。It is a perspective view of the modification of the heat exchanger of Embodiment 1 which concerns on this invention, (a) shows the honeycomb structure which has four circular connection holes, (b) is a connection of four groups. A group of connection holes has a honeycomb structure including five circular connection holes, and (c) shows a honeycomb structure having one circular connection hole. 図5の熱交換器の変形例の断面図であり、(a)は図5(a)のC-C’断面図、(b)は図5(b)のE-E’断面図、(c)は図5(a)のD-D’断面図および図5(b)のF-F’断面図である。FIG. 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, (a) is a cross-sectional view taken along the line CC ′ of FIG. 5 (a), (b) is a cross-sectional view taken along the line EE ′ of FIG. FIG. 5C is a sectional view taken along the line DD ′ of FIG. 5A and a sectional view taken along the line FF ′ of FIG. (a)は本発明に係る実施形態2の熱交換器の斜視図。(b)は本発明に係る実施形態2の熱交換器の変形例の斜視図。(A) is a perspective view of the heat exchanger of Embodiment 2 which concerns on this invention. (B) is a perspective view of the modification of the heat exchanger of Embodiment 2 which concerns on this invention. 本発明に係る実施形態2の熱交換器の断面図であり、(a)は図7(a)のG-G’断面図、(b)は図7(b)のI-I’断面図、(c)は図7(a)のH-H’断面図、および図7(b)のJ-J’断面図である。7A and 7B are cross-sectional views of a heat exchanger according to a second embodiment of the present invention, in which FIG. 7A is a cross-sectional view along GG ′ in FIG. 7A and FIG. 7B is a cross-sectional view along II ′ in FIG. FIGS. 7C and 7C are a sectional view taken along line HH ′ in FIG. 7A and a sectional view taken along line JJ ′ in FIG. 本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図であり、接続孔は長さの同じスリット状の第1および第2の開口によって構成される例であって、(a)は、断面図を用いた説明図を示し、(b)は、側面図を用いた説明図を示す。It is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention, and a connection hole is an example comprised by 1st and 2nd opening of slit shape with the same length, (a ) Shows an explanatory diagram using a cross-sectional view, and (b) shows an explanatory diagram using a side view. 本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図であり、接続孔はスリット状であり、第1の開口は第2の開口よりも長く、第2の開口は第1の開口に向かって順に長くなっている。It is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention, a connection hole is slit shape, 1st opening is longer than 2nd opening, and 2nd opening is 1st. It becomes longer toward the opening. 本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図であり、接続孔はスリット状であり、第1の開口は第2の開口よりも長く、第2の開口は第1の開口に向かって順に長くなっている例であって、(a)は長さの同じ第1および第2の開口を形成する工程を示し、(b)は(a)の工程の後、レーザー光を適宜傾斜させながら走査する工程を示す。It is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention, a connection hole is slit shape, 1st opening is longer than 2nd opening, and 2nd opening is 1st. (A) shows a step of forming first and second openings having the same length, and (b) shows a laser after the step (a). A process of scanning while appropriately tilting light is shown. 本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図であり、接続孔はスリット状であり、第1の開口は第2の開口よりも短く、第2の開口は第1の開口に向かって順に短くなっている例であって、(a)は長さの同じ第1および第2の開口を形成する工程を示し、(b)は(a)の工程の後、レーザー光を適宜傾斜させながら走査する工程を示す。It is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention, a connection hole is slit shape, 1st opening is shorter than 2nd opening, and 2nd opening is 1st. (A) shows a process of forming first and second openings having the same length, and (b) shows a laser after the process of (a). A process of scanning while appropriately tilting light is shown. 本発明に係る熱交換器の接続孔を、レーザー光によって製造する方法の一例を示す説明図であり、(a)は、流路内に曲面を有する光透過性のある棒が挿入されている。(b)は、流路内に失透ガラスが挿入されている。(c)は、流路内に水が入れられている。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger which concerns on this invention with a laser beam, (a) is the light-transmitting stick | rod which has a curved surface in the flow path. . In (b), devitrified glass is inserted in the flow path. In (c), water is put in the flow path. 本発明に係るハニカム構造体よりなる熱交換器の接続孔を、水流(ウォータージェット)によって導かれたレーザー光によって製造する方法の一例を示す説明図であり、(a)は、流路内に曲面を有する光透過性のある棒が挿入されている。(b)は、流路内に失透ガラスが挿入されている。(c)は、流路内に水が入れられている。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger consisting of the honeycomb structure which concerns on this invention with the laser beam guide | induced by the water flow (water jet), (a) is in a flow path. A light-transmitting rod having a curved surface is inserted. In (b), devitrified glass is inserted in the flow path. In (c), water is put in the flow path. 本発明に係る実施例のハニカム構造体よりなる熱交換器の外観写真(a)およびその説明図(b)である。It is the external appearance photograph (a) of the heat exchanger which consists of a honeycomb structure of the Example which concerns on this invention, and its explanatory drawing (b). 本発明に係る実施例のハニカム構造体よりなる熱交換器の接続孔の断面写真(a)およびその説明図(b)である。It is a cross-sectional photograph (a) of the connection hole of the heat exchanger which consists of a honeycomb structure of the Example which concerns on this invention, and its explanatory drawing (b). 図1の断面図である図3の切断位置、および切断方向を詳しく示す説明図である。It is explanatory drawing which shows in detail the cutting position and cutting | disconnection direction of FIG. 3 which are sectional drawings of FIG.
 本明細書において、ハニカム構造体の断面は、流路に沿って接続孔の深さ方向に切断された断面を示す。例えば、図17に図1の断面図である図3の切断位置が詳しく記載されている。図1の断面図である図4、図5の断面図である図6、図7の断面図である図8も同様に断面図が作成されている。
 本発明の熱交換器のハニカムのパターン、大きさは特に限定されない。本実施形態では、8×8の格子状の流路を有するハニカム構造体よりなる熱交換器について説明したが、例えば6角形状の流路のハニカム、8角形と4角形の流路の組合せのハニカムなど特に限定されない。
In the present specification, the cross section of the honeycomb structure indicates a cross section cut in the depth direction of the connection hole along the flow path. For example, FIG. 17 describes in detail the cutting position of FIG. 3, which is a cross-sectional view of FIG. 4 is a sectional view of FIG. 1, FIG. 6 is a sectional view of FIG. 5, and FIG. 8 is a sectional view of FIG.
The pattern and size of the honeycomb of the heat exchanger of the present invention are not particularly limited. In the present embodiment, a heat exchanger made of a honeycomb structure having an 8 × 8 grid-like flow path has been described. For example, a hexagonal flow path honeycomb, a combination of octagonal and quadrangular flow paths is used. There are no particular limitations on honeycombs.
 本発明の熱交換器の形状は、特に限定されない。6面体、6角柱などの角柱の他円柱なども適用できる。円柱の場合、側面のうち、一群の接続孔の形成されている領域を第1側壁、その反対側の領域を第2側壁と定義できる。 The shape of the heat exchanger of the present invention is not particularly limited. Other cylinders such as hexahedrons and hexagonal cylinders can also be applied. In the case of a cylinder, a region where a group of connection holes are formed in the side surface can be defined as a first side wall, and a region on the opposite side can be defined as a second side wall.
 本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体からなる熱交換器において、前記第1側壁または前記第2側壁に形成された第1の開口と、前記第1の開口に対向する複数の内壁に形成され複数の流路を接続する第2の開口と、からなる接続孔を有し、前記第1または第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1または第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、第1の開口および第2の開口のない前記流路は、第1端面から第2端面に延びる第2の空間を構成し、前記第1の空間と、前記第2の空間は前記内壁で互いに隔離されている。 The heat exchanger of the present invention has at least a first end surface, a second end surface, a first side wall, and a second side wall, and has a plurality of flow paths partitioned by an inner wall and extending from the first end surface to the second end surface. A heat exchanger composed of a ceramic honeycomb structure, wherein a plurality of flow paths are formed in a first opening formed in the first side wall or the second side wall and a plurality of inner walls facing the first opening. And the flow path having the first or second opening has a sealing portion on each of the first end face and the second end face, and The flow path having the first or second opening constitutes a first space by being connected by the connection hole, and the flow path without the first opening and the second opening has a first end face A second space extending from the first end surface to the second end surface, And between the second space are separated from each other by the inner wall.
 本発明の熱交換器のハニカム構造体は、第1端面から第2端面に向かって流路が延びている。また、ハニカム構造体の側面は、第1側壁と第2側壁を有し、第2側壁は、第1側壁の反対に位置する。 In the honeycomb structure of the heat exchanger of the present invention, the flow path extends from the first end face toward the second end face. Moreover, the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.
 本発明の熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このような熱交換器は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する流路のみならず、内側の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができるハニカム構造体を提供することができる。 According to the heat exchanger of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in the direction across the honeycomb structure. In addition, since such a heat exchanger has the first opening and the second opening formed inside the first opening, not only the flow path located on the outermost periphery but also the inner flow path. A fluid flow can be created. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved to the flow path inside the second opening in the shortest distance, and the fluid flows efficiently. A honeycomb structure that can be provided can be provided.
 さらに本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。 Furthermore, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
 本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。 In the heat exchanger according to the present invention, the first space has sealing portions on the first end surface and the second end surface, respectively, so that the fluid enters the first space from the first end surface and the second end surface side. Can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.
 本発明の熱交換器は、特に限定されないが、接続孔を複数有することが好ましい。
 本発明の熱交換器は、接続孔を複数有することによって、より多くの流体をハニカム構造体の流路を横切る方向に流体を流すことができる。
The heat exchanger of the present invention is not particularly limited, but preferably has a plurality of connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes, a larger amount of fluid can flow in the direction crossing the flow path of the honeycomb structure.
 本発明の熱交換器は、前記接続孔が、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることが好ましい。
 本発明の熱交換器は、接続孔が前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる流体(第1の流体)を隔てる内壁の面積を大きくとることができる。
In the heat exchanger of the present invention, it is preferable that the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall.
In the heat exchanger according to the present invention, the connection holes are alternately formed in the plurality of flow paths facing the first side wall or the second side wall, whereby the flow in the direction crossing the flow path of the honeycomb structure is performed. Can be placed in alternating flow paths. For this reason, the area of the inner wall separating the fluid flowing along the flow path (second fluid) and the fluid flowing in the direction crossing the flow path (first fluid) can be increased.
 本発明の熱交換器は、前記第1の空間は、複数の前記接続孔を有することが好ましい。
 本発明の熱交換器は、第1の空間に複数の接続孔を有することにより、複数の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に複数の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に供給することができる。
In the heat exchanger according to the present invention, it is preferable that the first space has a plurality of the connection holes.
Since the heat exchanger of the present invention has a plurality of connection holes in the first space, the plurality of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a plurality of connection holes in the first space, the fluid (first fluid) flowing through the first space can be continuously supplied.
 また、第1の空間に複数の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。 Also, having a plurality of connection holes in the first space has an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.
 本発明の熱交換器は、前記接続孔を前記第1側壁および前記第2側壁にそれぞれ有することが好ましい。
 本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできるハニカム構造体を提供することができる。
The heat exchanger of the present invention preferably has the connection holes on the first side wall and the second side wall, respectively.
In the heat exchanger of the present invention, the first fluid that connects the inlet and the outlet flows through the same distance by passing through any flow path by having connection holes in the first and second side walls, respectively. it can. For this reason, since the first fluid can be spread over the entire inner wall, it is possible to provide a honeycomb structure capable of efficiently performing heat transfer or mass transfer.
 本発明の熱交換器は、前記第1の開口および前記第2の開口が、スリット状に構成され、前記第1の開口の長さは、前記第2の開口の長さよりも長いことが好ましい。
 本発明のハニカム構造体は、第1の開口および第2の開口をスリット状に構成することによって、細長い流路の横から効率良く流体を供給することができる。さらに第1の開口を第2の開口よりも大きくすることによって、ハニカム構造体全体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失を効率良く低減させることができる。
In the heat exchanger according to the present invention, it is preferable that the first opening and the second opening are formed in a slit shape, and the length of the first opening is longer than the length of the second opening. .
In the honeycomb structured body of the present invention, the first opening and the second opening are formed in a slit shape, whereby fluid can be efficiently supplied from the side of the elongated channel. Furthermore, by making the first opening larger than the second opening, it is possible to reduce the resistance of the first fluid in the first opening while reducing the influence on the strength reduction of the entire honeycomb structure, Pressure loss can be reduced efficiently.
 本発明の熱交換器は、複数の前記第2の開口は、第1の開口に向かって順に長くなっていることが好ましい。
 本発明の熱交換器は、第2の開口は、第1の開口に向かって順に長くなるように構成することによって、ハニカム構造体の強度低下への影響を小さくしながら、第1の開口における第1の流体の抵抗を小さくすることができ、圧力損失をさらに効率良く低減させることができる。
In the heat exchanger according to the present invention, it is preferable that the plurality of second openings become longer in order toward the first opening.
The heat exchanger of the present invention is configured such that the second opening becomes longer in order toward the first opening, thereby reducing the influence on the strength reduction of the honeycomb structure, while reducing the influence on the first opening. The resistance of the first fluid can be reduced, and the pressure loss can be reduced more efficiently.
 本発明の熱交換器は、前記第1の開口および第2の開口は、スリット状に構成され、前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しいことが好ましい。
 本発明の熱交換器は、第1の開口および第2の開口が、スリット状に形成され、第1の開口の長さおよび、複数の第2の開口の長さが、いずれも等しくなるように構成することにより、第1の開口および第2の開口で形成される接続孔の容積を大きくすることができる。接続孔の容積を大きくすることによって、接続孔につながるそれぞれの流路で発生する抵抗に応じて効率良く第1の流体を分配することができる。
In the heat exchanger of the present invention, the first opening and the second opening are configured in a slit shape, and the length of the first opening and the length of the plurality of second openings are both Preferably equal.
In the heat exchanger of the present invention, the first opening and the second opening are formed in a slit shape, and the length of the first opening and the lengths of the plurality of second openings are both equal. By configuring in this manner, the volume of the connection hole formed by the first opening and the second opening can be increased. By increasing the volume of the connection hole, the first fluid can be efficiently distributed according to the resistance generated in each flow path connected to the connection hole.
 本発明の熱交換器の前記接続孔は5層以上の第2の開口が積み重なっているが好ましい。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1の側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
 また、5層以上の第2の開口を積み重ねることにより形成される接続孔の径または幅と深さとのアスペクト比は正方形の流路であれば6以上となり、深い位置にある流路を接続孔でつなぐことができる。
The connection hole of the heat exchanger of the present invention is preferably formed by stacking five or more second openings.
The heat exchanger of this invention can supply a 1st fluid to the 6th flow path counted from the 1st side wall side by stacking the 2nd opening of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.
In addition, the aspect ratio between the diameter or width and depth of the connection hole formed by stacking the second openings of five layers or more is 6 or more if the channel is a square channel, and the channel in the deep position is connected to the connection hole. Can be connected.
 本発明の熱交換器の前記接続孔は、10層以上の第2の開口が積み重なっていることが好ましい。
 本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1の側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
 また、10層以上の第2の開口を積み重ねることにより形成される接続孔の径または幅と深さとのアスペクト比は正方形の流路であれば11以上となり、さらに深い位置にある流路を接続孔でつなぐことができる。
The connection hole of the heat exchanger of the present invention preferably has 10 or more layers of second openings stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall by stacking the second openings of five or more layers. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.
In addition, the aspect ratio of the diameter or width and depth of the connection hole formed by stacking the second openings of 10 layers or more is 11 or more in the case of a square channel, and a channel at a deeper position is connected. Can be connected with holes.
 本発明の熱交換器のセラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることが好ましい。
 本発明の熱交換器は、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度なハニカム構造体を提供することができる。
 熱交換器に用いる場合、炭化珪素、シリコンを含浸した炭化珪素、窒化アルミニウム、窒化珪素を用いることが望ましい。これらのセラミックは熱伝導率が高く、熱交換器として好適である。
The ceramic of the heat exchanger of the present invention is preferably made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger of the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia, so that it has heat resistance and corrosion resistance and has a high strength honeycomb structure. Can be provided.
When used in a heat exchanger, it is desirable to use silicon carbide, silicon carbide impregnated with silicon, aluminum nitride, or silicon nitride. These ceramics have high thermal conductivity and are suitable as heat exchangers.
 本発明の熱交換器は、ハニカム状のセラミックの第1側壁または第2側壁に接続孔を形成することにより得ることができる。第1および第2の開口を形成することにより得ることができる。ハニカム状のセラミックに第1側壁または第2側壁にレーザー加工によって接続孔を形成することができる。レーザー加工に用いるレーザー加工機は特に限定されない。広く使用される高出力のレーザー光を用いることによってハニカム状のセラミックを加工することができる。レーザー加工機のレーザー光の波長、出力は、ハニカム状のセラミックに応じて適宜選択することができる。
 また、近年利用されるようになったウォータージェットの水流を併用したレーザー加工機を利用するとより効率良く加工することができる。ウォータージェットの水流を併用したレーザー加工法は、ウォータージェットの水流中にレーザー光を導き、全反射させながら加工点に導くことができ、レーザー光が拡散することなく,細い水流中を通過するので、焦点の深度が深く、レーザー光だけの加工機よりも高い加工性能を有している。
The heat exchanger of the present invention can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. It can be obtained by forming the first and second openings. Connection holes can be formed in the honeycomb-shaped ceramic on the first side wall or the second side wall by laser processing. The laser processing machine used for laser processing is not particularly limited. A honeycomb-shaped ceramic can be processed by using a widely used high-power laser beam. The wavelength and output of the laser beam of the laser processing machine can be appropriately selected according to the honeycomb ceramic.
Further, it is possible to perform processing more efficiently by using a laser processing machine combined with a water flow of a water jet that has recently been used. The laser processing method combined with the water jet water flow can guide the laser beam into the water jet water flow and guide it to the processing point while totally reflecting it, and the laser beam passes through the thin water flow without diffusing. The depth of focus is deep, and it has higher processing performance than a processing machine using only laser light.
 本発明の熱交換器は、高い加工性能のウォータージェットの水流を併用したレーザー加工機を用いて、接続孔の底を貫通させることなく加工することによって得ることができる。
 接続孔の底を残して加工するには、レーザー光を所定の箇所で散乱させ、光エネルギーを分散させることにより実現できる。所定の箇所に光拡散媒体を挿入することによりそれより下側ではレーザー光が弱められ、加工することができない。光拡散媒体は光を分散させることができれば特に限定されない。例えば、ガラス棒などの曲面を有する光透過性のある棒、失透ガラス、気泡を内部に有するガラス、水などが利用できる。光透過性のある物質は、レーザー光で加熱されることがない上に、曲面で光が散乱されるので、レーザー光の加工の能力を低下させることができ、貫通させることなく接続孔の底を残して加工することができる。
The heat exchanger of the present invention can be obtained by processing without penetrating the bottom of the connection hole by using a laser processing machine combined with a water flow of a high processing performance water jet.
Processing while leaving the bottom of the connection hole can be realized by scattering laser light at a predetermined location and dispersing light energy. By inserting the light diffusing medium at a predetermined location, the laser light is weakened below and cannot be processed. The light diffusion medium is not particularly limited as long as light can be dispersed. For example, a light-transmitting rod having a curved surface such as a glass rod, devitrified glass, glass having bubbles inside, water, and the like can be used. A light-transmitting substance is not heated by laser light, and light is scattered on a curved surface, so that the ability to process laser light can be reduced, and the bottom of the connection hole can be formed without penetrating. Can be processed.
 また、失透ガラスは、表面が曲面でなくても内部が相分離しているので、光が散乱しやすく、レーザー光の加工の能力を低下させることができ、貫通させることなく底を形成することができる。また、水を所定の箇所に充填することにより接続孔の底を残して加工することができる。水を充填すると、ウォータージェットの水流との混合および加工により加熱された水の沸騰により、大量の気泡を発生させる。このため、充填された水の中でレーザー光が急速に減衰し、接続孔の底を残して加工することができる。なお、水を充填していない場合でも、レーザー光とともに水流によって水が供給されるが、水流に用いられる水は量が少なくレーザー光がセラミックを加工する箇所(加工点)近傍で速やか飛散するので、レーザー光を弱めるほど区間に気泡を形成することができない。 In addition, devitrified glass has a phase-separated interior even if the surface is not curved, so that light is easily scattered, the ability to process laser light can be reduced, and the bottom is formed without penetrating. be able to. Moreover, it can process by leaving the bottom of a connection hole by filling water in a predetermined location. When filled with water, a large amount of bubbles are generated by boiling water heated by mixing and processing with a water jet stream. For this reason, the laser beam is rapidly attenuated in the filled water, and processing can be performed while leaving the bottom of the connection hole. Even when water is not filled, water is supplied by the water flow along with the laser light, but the amount of water used for the water flow is small and the laser light scatters quickly near the place where the ceramic is processed (processing point). As the laser beam is weakened, bubbles cannot be formed in the section.
 本発明の熱交換器は、様々な接続孔の変形例があるが、形状に応じてレーザー光を、傾斜させたり、走査することにより加工することができる。 The heat exchanger of the present invention can be processed by tilting or scanning the laser beam according to the shape, although there are various modifications of the connection holes.
 また、レーザー光を走査しながら加工する際に、それぞれの流路に挿入する光拡散媒体の長さを適宜変更することにより目的の形状の接続孔を形成することもできる。
 本発明の熱交換器の封止部はどのように形成してもよく特に限定されない。例えば内壁を構成する材料と同じセラミック材料からなる栓を挿入してもよい。例えば、ハニカム構造体が炭化珪素、窒化珪素、シリコン含浸した炭化珪素からなる場合は、シリコンの粉末を接着材として栓に塗布したのち、焼成しても良い。シリコンが溶融し、接着材として機能する。
 また、例えば、無機バインダと有機バインダと無機粒子の混合したペーストを注入し、焼成することによって得ることもできる。無機バインダは、アルミナゾル、シリカゾルなどが利用でき、有機バインダは、ポリビニールアルコール、フェノール樹脂などが利用でき、無機粒子は炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウム、ジルコニアなどが利用できる。
Further, when processing while scanning with laser light, the connection hole having a desired shape can be formed by appropriately changing the length of the light diffusion medium inserted into each flow path.
The sealing part of the heat exchanger of the present invention may be formed in any way and is not particularly limited. For example, a plug made of the same ceramic material as that constituting the inner wall may be inserted. For example, when the honeycomb structure is made of silicon carbide, silicon nitride, or silicon carbide impregnated with silicon, silicon powder may be applied to the plug as an adhesive and then fired. Silicon melts and functions as an adhesive.
Further, for example, it can be obtained by injecting and baking a paste in which an inorganic binder, an organic binder, and inorganic particles are mixed. Alumina sol, silica sol, etc. can be used as the inorganic binder, polyvinyl alcohol, phenol resin, etc. can be used as the organic binder, and silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, zirconia, etc. can be used as the inorganic particles.
 次に、本発明の実施形態1、実施形態2について、説明する。 Next, Embodiment 1 and Embodiment 2 of the present invention will be described.
 実施形態1は、第1の空間を構成する流路の第1端面および第2端面に封止部を有し、第1側壁に接続孔が形成され第1の空間を構成するとともに、第2の空間の第1端面および第2端面が開放している熱交換器である。 The first embodiment has sealing portions on the first end surface and the second end surface of the flow path constituting the first space, and a connection hole is formed on the first side wall to constitute the first space, and the second It is a heat exchanger with which the 1st end surface and 2nd end surface of this space are open | released.
 実施形態2は、以下形態の熱交換器である。
 第1側壁が面する複数の流路に交互に接続孔が形成され、接続孔の底は第2端面まで達している。なお、接続孔は第2端面を貫通していない。第1の開口および第2の開口を有する流路の第1端面および第2端面はそれぞれ封止部を有することにより、第1の空間を構成している。
 また第1の開口および第2の開口のない流路は、第1端面から第2端面に延びる第2の空間を構成し、第1の空間と第2の空間は内壁で互いに隔離されている。第1の空間は、第1側壁および第2側壁の側に接続孔を有している。4つの独立した空間が第1の空間を構成し、4×8の独立した流路32本が第2の空間を構成する。
Embodiment 2 is a heat exchanger of the following form.
Connection holes are alternately formed in the plurality of channels facing the first side wall, and the bottoms of the connection holes reach the second end surface. The connection hole does not penetrate the second end face. The first end face and the second end face of the flow path having the first opening and the second opening each have a sealing portion, thereby constituting a first space.
The flow path without the first opening and the second opening constitutes a second space extending from the first end surface to the second end surface, and the first space and the second space are separated from each other by the inner wall. . The first space has connection holes on the first and second side walls. Four independent spaces constitute the first space, and 32 4 × 8 independent flow paths constitute the second space.
<実施形態1>
 実施形態1の熱交換器について、図を用いながら説明する。
 図1は本発明に係る実施形態1の熱交換器の斜視図。図2は本発明に係る実施形態1の熱交換器の変形例の斜視図。図3は本発明に係る実施形態1の熱交換器の断面図であり、(a)は、図1のA-A’断面図、(b)は図1のB-B’断面図である。図4は本発明に係る実施形態1の熱交換器の接続孔の変形例の断面図である。図1のA-A’の断面図に相当する。図5は本発明に係る実施形態1の熱交換器の変形例の斜視図。図6は図5の熱交換器の変形例の断面図であり、(a)は図5(a)のC-C’断面図、(b)は図5(b)のE-E’断面図、(c)は図5(a)のD-D’断面図および図5(b)のF-F’断面図である。
<Embodiment 1>
The heat exchanger of Embodiment 1 is demonstrated using a figure.
FIG. 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention. FIG. 2 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention. 3 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention. FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line BB ′ in FIG. . FIG. 4 is a cross-sectional view of a modification of the connection hole of the heat exchanger according to the first embodiment of the present invention. This corresponds to a cross-sectional view taken along the line AA ′ of FIG. FIG. 5 is a perspective view of a modification of the heat exchanger according to the first embodiment of the present invention. 6 is a cross-sectional view of a modification of the heat exchanger of FIG. 5, where (a) is a cross-sectional view along CC ′ in FIG. 5 (a), and (b) is a cross-sectional view along EE ′ in FIG. 5 (b). FIG. 5C is a sectional view taken along the line DD ′ of FIG. 5A and a sectional view taken along the line FF ′ of FIG.
 実施形態1の熱交換器は、図1に示すように、8×8の流路を有するハニカム構造体1000(熱交換器)の第1側壁21に接する8本の流路60の内、交互になるように接続孔30を4本有している。図3(a)に示すように、それぞれの接続孔30は、第1側壁21に形成された第1の開口31および内壁50に形成された複数の第2の開口32により構成される。図3(a)に示されるように第1の開口31および第2の開口32は、スリット状の形状であり、第1の開口31および第2の開口32の長さは同一である。図3(b)に示されるように、接続孔30の形成されている列の隣の列の断面は、内壁50に孔を有していない。 As shown in FIG. 1, the heat exchanger according to Embodiment 1 includes eight channels 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 × 8 channels. The four connection holes 30 are provided. As shown in FIG. 3A, each connection hole 30 includes a first opening 31 formed in the first side wall 21 and a plurality of second openings 32 formed in the inner wall 50. As shown in FIG. 3A, the first opening 31 and the second opening 32 have a slit shape, and the lengths of the first opening 31 and the second opening 32 are the same. As shown in FIG. 3B, the cross section of the row adjacent to the row where the connection hole 30 is formed does not have a hole in the inner wall 50.
 接続孔30の位置、形状、数は特に限定されない。図2および図5は、接続孔30の位置、表面形状の異なる変形例である。図2(a)は1個のスリット状の接続孔30を有するハニカム構造体1000(熱交換器)を示し、図2(b)は、第1側壁21が面する流路60の一部にスリット状の接続孔30が形成されている。いずれの接続孔30もスリット状に形成されている。図5(a)は、8×8の流路60を有するハニカム構造体の第1側壁21に接する8本の流路60の内、交互になるように4個の円形の接続孔30を有するハニカム構造体1000(熱交換器)を示している。図5(b)は、8×8の流路を有するハニカム構造体1000(熱交換器)の第1側壁21に接する8本の流路60の内、交互になるように4つの群の接続孔30を有し、1つの群の接続孔30は、円形の接続孔30が5個で構成されるハニカム構造体1000(熱交換器)である。図5(c)は、1個の円形の接続孔30を有するハニカム構造体1000(熱交換器)を示す。 The position, shape, and number of the connection holes 30 are not particularly limited. 2 and 5 are modified examples in which the position and surface shape of the connection hole 30 are different. FIG. 2A shows a honeycomb structure 1000 (heat exchanger) having one slit-like connection hole 30, and FIG. 2B shows a part of the channel 60 facing the first side wall 21. A slit-like connection hole 30 is formed. Each connection hole 30 is also formed in a slit shape. FIG. 5A shows four circular connection holes 30 that are alternately arranged among the eight flow paths 60 in contact with the first side wall 21 of the honeycomb structure having the 8 × 8 flow paths 60. A honeycomb structure 1000 (heat exchanger) is shown. FIG. 5B shows the connection of four groups so as to alternate among the eight channels 60 in contact with the first side wall 21 of the honeycomb structure 1000 (heat exchanger) having 8 × 8 channels. Each group of connection holes 30 includes a hole 30 and is a honeycomb structure 1000 (heat exchanger) including five circular connection holes 30. FIG. 5C shows a honeycomb structure 1000 (heat exchanger) having one circular connection hole 30.
 接続孔30の深さ方向の形状も特に限定されない。図4は、接続孔30の変形例を示し、接続孔30の流路方向の断面図であり、図1のA-A’断面を示す。(a)は、断面形状がV字状である接続孔を示し、第1の開口31が第2の開口32よりも長く、複数の第2の開口32が第1の開口31に向かって順に長くなるように構成されている。(b)は、第1および第2の開口の片側が垂直になるように揃った接続孔を示し、第1の開口31が第2の開口32よりも長く、複数の第2の開口32が第1の開口31に向かって順に長くなるように構成され接続孔の断面が台形である。(c)は、第1の開口31および第2の開口32の長さが同一で第1側壁21および第2側壁22を貫通した接続孔30を示す。(d)は、第1側壁21および第2側壁22から接続孔30が形成され、それぞれ底となる内壁を共有する接続孔30を示す。(e)は、内部の方が大きい接続孔30を示し、第1の開口31が第2の開口32よりも短く、複数の第2の開口32が第1の開口31に向かって順に短くなるように構成されている。 The shape of the connection hole 30 in the depth direction is not particularly limited. FIG. 4 shows a modification of the connection hole 30, is a cross-sectional view of the connection hole 30 in the flow path direction, and shows a cross-section A-A ′ of FIG. 1. (A) shows the connection hole whose cross-sectional shape is V-shaped, the first opening 31 is longer than the second opening 32, and the plurality of second openings 32 are sequentially directed toward the first opening 31. It is configured to be long. (B) shows the connection holes aligned so that one side of the first and second openings is vertical. The first opening 31 is longer than the second opening 32, and the plurality of second openings 32 are The connection hole is configured to become longer in order toward the first opening 31, and the connection hole has a trapezoidal cross section. (C) shows the connection hole 30 having the same length of the first opening 31 and the second opening 32 and penetrating the first side wall 21 and the second side wall 22. (D) shows the connection hole 30 in which the connection hole 30 is formed from the 1st side wall 21 and the 2nd side wall 22, and each shares the inner wall used as a bottom. (E) shows the connection hole 30 having a larger inside, the first opening 31 is shorter than the second opening 32, and the plurality of second openings 32 become shorter toward the first opening 31 in order. It is configured as follows.
 ハニカム構造体1000(熱交換器)のハニカムのパターン、大きさは特に限定されない。本実施形態では、8×8の格子状の流路60を有するハニカム構造体1000(熱交換器)について説明したが、例えば6角形状の流路のハニカム、8角形と4角形の流路の組合せのハニカムなど特に限定されない。 The honeycomb pattern and size of the honeycomb structure 1000 (heat exchanger) are not particularly limited. In the present embodiment, the honeycomb structure 1000 (heat exchanger) having the 8 × 8 grid-like flow paths 60 has been described. For example, a hexagonal flow path honeycomb, octagonal and quadrangular flow paths are used. There are no particular limitations on the honeycomb of the combination.
 本実施形態のハニカム構造体(熱交換器)は、ハニカム状のセラミックの第1側壁または第2側壁に接続孔を形成することにより得ることができる。第1および第2の開口を形成する方法は、図9に示すように第2側壁22に面する流路60に光拡散媒体90を挿入し、レーザー源85を移動させてレーザー光80を走査することによって加工することができる。接続孔30の形状によっては、図10のように光拡散媒体の挿入する長さを適宜変えることによって目的の形状の接続孔30を得ることができる。また、図11、図12に示されるようにレーザー光80を適宜傾斜させながら走査することにより、目的の形状の接続孔30を得てもよい。まず、図9の例と同様、図11(a)、図12(a)に示すように長さの同じスリット状の第1および第2の開口31、32を形成した後、図11(b)、図12(b)に示すように、レーザー光80を適宜傾斜させながら走査する。図11の例では、第1の開口は第2の開口よりも長く、第2の開口は第1の開口に向かって順に長くなっており、図12の例では、第1の開口は第2の開口よりも短く、第2の開口は第1の開口に向かって順に短くなっている。 The honeycomb structure (heat exchanger) of the present embodiment can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. As shown in FIG. 9, the first and second openings are formed by inserting the light diffusion medium 90 into the flow path 60 facing the second side wall 22 and moving the laser source 85 to scan the laser light 80. Can be processed. Depending on the shape of the connection hole 30, the connection hole 30 having a desired shape can be obtained by appropriately changing the length of insertion of the light diffusion medium as shown in FIG. In addition, as shown in FIGS. 11 and 12, the connection hole 30 having a desired shape may be obtained by scanning the laser beam 80 while appropriately tilting it. First, similarly to the example of FIG. 9, after forming the slit-like first and second openings 31 and 32 having the same length as shown in FIGS. 11A and 12A, FIG. As shown in FIG. 12B, scanning is performed while the laser beam 80 is appropriately inclined. In the example of FIG. 11, the first opening is longer than the second opening, and the second opening is sequentially longer toward the first opening. In the example of FIG. 12, the first opening is the second opening. The second opening is shorter toward the first opening in order.
 本実施形態のハニカム構造体1000(熱交換器)は、光拡散媒体90を挿入することによって接続孔30の底を残して加工することできる。図13、図14は、光拡散媒体90によってレーザー光80が拡散する様子を示している。図13(a)、(b)、(c)は、レーザー光80のみ、図14(a)、(b)、(c)は、レーザー光80と水流82との複合による加工を示している。レーザー光80と水流82との複合した加工機は、例えば牧野フライス社製MCS300型レーザー加工機を利用することができる。 The honeycomb structure 1000 (heat exchanger) of the present embodiment can be processed by leaving the bottom of the connection hole 30 by inserting the light diffusion medium 90. FIGS. 13 and 14 show how the laser light 80 is diffused by the light diffusion medium 90. FIGS. 13A, 13B, and 13C show only the laser beam 80, and FIGS. 14A, 14B, and 14C show processing by combining the laser beam 80 and the water flow 82. FIGS. . As a processing machine in which the laser beam 80 and the water flow 82 are combined, for example, an MCS300 type laser processing machine manufactured by Makino Milling Co. can be used.
 図13(a)、図14(a)は、光拡散媒体90にガラス棒91を用いた説明図であり、ガラスの凸面によるレーザー光80の拡散によって接続孔30の底を残して加工することができる。
 図13(b)、図14(b)は、光拡散媒体90に失透ガラス92を用いた説明図であり、ガラス内部の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
 図13(c)、図14(c)は、光拡散媒体90に水93を用いた説明図であり、加工による熱、水の乱流によって発生した気泡の乱反射によってレーザー光80を拡散させ接続孔30の底を残して加工することができる。
FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusion medium 90, and processing is performed leaving the bottom of the connection hole 30 by diffusion of the laser light 80 by the convex surface of the glass. Can do.
FIG. 13B and FIG. 14B are explanatory diagrams using a devitrified glass 92 for the light diffusion medium 90, and processing is performed by diffusing the laser light 80 by irregular reflection inside the glass and leaving the bottom of the connection hole 30. can do.
FIGS. 13 (c) and 14 (c) are explanatory views using water 93 as the light diffusion medium 90. The laser light 80 is diffused and connected by the turbulent reflection of bubbles generated by heat and water turbulence due to processing. Processing can be performed leaving the bottom of the hole 30.
<実施形態2>
 実施形態2の熱交換器について、図を用いながら説明する。
 図7(a)は本発明に係る実施形態2の熱交換器の斜視図。(b)は本発明に係る実施形態2の熱交換器の変形例の斜視図。図8は本発明に係る実施形態2の熱交換器の断面図であり、(a)は図7(a)のG-G’断面図、(b)は図7(b)のI-I’断面図、(c)は図7(a)のH-H’断面図、および図7(b)のJ-J’断面図である。
<Embodiment 2>
The heat exchanger of Embodiment 2 is demonstrated using a figure.
Fig.7 (a) is a perspective view of the heat exchanger of Embodiment 2 which concerns on this invention. (B) is a perspective view of the modification of the heat exchanger of Embodiment 2 which concerns on this invention. 8A and 8B are cross-sectional views of the heat exchanger according to the second embodiment of the present invention. FIG. 8A is a cross-sectional view taken along the line GG ′ of FIG. 7A, and FIG. 8B is a cross-sectional view taken along II of FIG. 'Cross sectional view, (c) is a HH' sectional view of FIG. 7 (a) and JJ 'sectional view of FIG. 7 (b).
 実施形態2のハニカム構造体1000(熱交換器)は第1側壁21が面する複数の流路60に交互に接続孔30が形成され、接続孔30の底は第2側壁22まで達している。なお、接続孔30は第2側壁22を貫通していない。第1の開口および第2の開口を有する流路の第1端面11および第2端面12にはそれぞれ封止部70を有することにより、第1の空間を構成している。 In the honeycomb structure 1000 (heat exchanger) of the second embodiment, the connection holes 30 are alternately formed in the plurality of flow paths 60 facing the first side wall 21, and the bottoms of the connection holes 30 reach the second side wall 22. . The connection hole 30 does not penetrate the second side wall 22. Each of the first end surface 11 and the second end surface 12 of the flow path having the first opening and the second opening has a sealing portion 70, thereby forming a first space.
 また第1の開口および第2の開口のない流路は、第1端面11から第2端面12に延びる第2の空間を構成し、第1の空間と第2の空間は内壁で互いに隔離されている。第1の空間は、第1側壁および第2側壁の側に接続孔を有している。第1の空間は4つの独立した空間で構成され、4×8の独立した流路32本が第2の空間を構成する。
 第1の空間は、第1側壁21から、第2側壁22への(およびその逆の)流体の流れを作ることができる。また第2の空間は、第1端面11から、第2端面12への(およびその逆の)流体の流れを作ることができる。第1の空間と第2の空間は内壁で隔てられているので、互いに混ざり合うことがなく、内壁を通じて熱量の移動をさせることができる。
この効果は熱交換器として好適に利用することができる。
The flow path without the first opening and the second opening constitutes a second space extending from the first end surface 11 to the second end surface 12, and the first space and the second space are separated from each other by the inner wall. ing. The first space has connection holes on the first and second side walls. The first space is composed of four independent spaces, and 32 4 × 8 independent flow paths constitute the second space.
The first space can create a fluid flow from the first side wall 21 to the second side wall 22 (and vice versa). The second space can also create a fluid flow from the first end surface 11 to the second end surface 12 (and vice versa). Since the first space and the second space are separated by the inner wall, they do not mix with each other, and the amount of heat can be moved through the inner wall.
This effect can be suitably used as a heat exchanger.
 本実施形態のハニカム構造体(熱交換器)は、ハニカム状のセラミックの第1側壁または第2側壁に接続孔を形成することにより得ることができる。第1および第2の開口を形成する方法は、図9に示すように第2側壁22に面する流路60に光拡散媒体90を挿入し、レーザー光80を走査することによって加工することができる。接続孔の形状によっては、図10のように光拡散媒体90の挿入する長さを適宜変えることによって目的の形状の接続孔を得ることができる。また、図11、図12に示されるようにレーザー光80を適宜傾斜させながら走査することにより、目的の形状の接続孔を得てもよい。     The honeycomb structure (heat exchanger) of the present embodiment can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. As shown in FIG. 9, the first and second openings can be processed by inserting a light diffusion medium 90 into a flow path 60 facing the second side wall 22 and scanning with laser light 80. it can. Depending on the shape of the connection hole, the connection hole having a desired shape can be obtained by appropriately changing the length of insertion of the light diffusion medium 90 as shown in FIG. Further, as shown in FIG. 11 and FIG. 12, a connection hole having a desired shape may be obtained by scanning while appropriately tilting the laser beam 80. .
 本実施形態のハニカム構造体(熱交換器)は、光拡散媒体を挿入することによって接続孔の底を残して加工することできる。図13、図14は、光拡散媒体90によってレーザー光が拡散する様子を示している。図13(a)、(b)、(c)は、レーザー光のみ、図14(a)、(b)、(c)は、ウォータージェットを併用したレーザー光による加工を示している。ウォータージェットを併用したレーザー加工機は、牧野フライス社製MCS300型レーザー加工機を利用することができる。 The honeycomb structure (heat exchanger) of the present embodiment can be processed while leaving the bottom of the connection hole by inserting a light diffusion medium. 13 and 14 show how the laser light is diffused by the light diffusion medium 90. FIGS. 13A, 13B, and 13C show processing using only laser light, and FIGS. 14A, 14B, and 14C show processing using laser light that also uses a water jet. As a laser processing machine used in combination with a water jet, an MCS300 laser processing machine manufactured by Makino Milling Co. can be used.
 図13(a)、図14(a)は、光拡散媒体90にガラス棒91を用いた説明図であり、ガラスの凸面によるレーザー光80の拡散によって接続孔の底を残して加工することができる。
 図13(b)、図14(b)は、光拡散媒体90に失透ガラス92を用いた説明図であり、ガラス内部の乱反射によってレーザー光80を拡散させ接続孔の底を残して加工することができる。
 図13(c)、図14(c)は、光拡散媒体90に水93を用いた説明図であり、加工による熱、水の乱流によって発生した気泡の乱反射によってレーザー光80を拡散させ接続孔の底を残して加工することができる。
FIGS. 13 (a) and 14 (a) are explanatory views using a glass rod 91 for the light diffusing medium 90, and processing is performed by diffusing the laser light 80 by the convex surface of the glass, leaving the bottom of the connection hole. it can.
FIG. 13B and FIG. 14B are explanatory diagrams in which a devitrifying glass 92 is used for the light diffusion medium 90, and the laser light 80 is diffused by irregular reflection inside the glass so as to leave the bottom of the connection hole. be able to.
FIGS. 13 (c) and 14 (c) are explanatory views using water 93 as the light diffusion medium 90. The laser light 80 is diffused and connected by the turbulent reflection of bubbles generated by heat and water turbulence due to processing. It can be processed leaving the bottom of the hole.
 本実施例では、実際に多孔質の炭化珪素からなるハニカム状のセラミックに台形の断面を有する接続孔を形成し、本発明に係るハニカム構造体(熱交換器)を製造した結果について、図15、図16を用いて説明する。
 24×24個、計576個の正方形の流路60を有し、34mm×34mm×130mmの炭化珪素からなるハニカム状のセラミックを用いて、本発明に係るハニカム構造体1000(熱交換器)を製作した。なお、長手方向の端面は、流路の開口を有し、第1端面11および第2端面12である。第1端面11および第2端面12以外の4つの面は側壁であり、そのうち接続孔30を形成する面が第1側壁21、その反対側の面が第2側壁22となる。内壁の厚さは0.25mm、第1および第2の側壁の厚さは、0.3mmである。流路の大きさは、一辺が1.14mmの正方形である。
In this example, a result of manufacturing a honeycomb structure (heat exchanger) according to the present invention by forming connection holes having a trapezoidal cross section in a honeycomb-shaped ceramic actually made of porous silicon carbide is shown in FIG. This will be described with reference to FIG.
A honeycomb structure 1000 (heat exchanger) according to the present invention is formed using a honeycomb-shaped ceramic made of silicon carbide of 34 mm × 34 mm × 130 mm, having 24 × 24, a total of 576 square flow paths 60. Produced. In addition, the end surface in the longitudinal direction has a channel opening and is a first end surface 11 and a second end surface 12. The four surfaces other than the first end surface 11 and the second end surface 12 are side walls, of which the surface forming the connection hole 30 is the first side wall 21, and the opposite surface is the second side wall 22. The inner wall has a thickness of 0.25 mm, and the first and second side walls have a thickness of 0.3 mm. The size of the flow path is a square having a side of 1.14 mm.
 図15に示すように、このハニカム状のセラミックに接続孔を形成した。第1側壁に面する流路24本の内、交互となるよう12本の流路に第1の開口を形成し、さらに第2の開口を形成することにより、12個の接続孔30を形成した。接続孔30の底は、第2側壁22であり、全ての内壁には第2の開口が形成されている。第1の開口および第2の開口と第1端面との距離は10mm、第1の開口31は第1端面11から40mmの位置まで延び、最下層の第2の開口32は、第1端面11から25mmの位置まで延びている。第2の開口32は第1の開口31に向かって順に長くなり、接続孔30の断面は、台形である。また、第1の開口の幅は、0.6mmである。 As shown in FIG. 15, connection holes were formed in this honeycomb-shaped ceramic. Twelve connection holes 30 are formed by forming first openings in twelve flow paths alternately among the twenty-four flow paths facing the first side wall, and further forming second openings. did. The bottom of the connection hole 30 is the second side wall 22, and the second opening is formed in all the inner walls. The distance between the first opening and the second opening and the first end face is 10 mm, the first opening 31 extends from the first end face 11 to a position of 40 mm, and the second opening 32 in the lowermost layer is the first end face 11. To 25 mm. The second opening 32 becomes longer toward the first opening 31 in order, and the connection hole 30 has a trapezoidal cross section. The width of the first opening is 0.6 mm.
 詳しい加工方法は以下に説明する。接続孔を形成する際、第2側壁22に面する流路には、流路よりも長い円形のガラス棒を挿入し、その他の流路には、前記台形の流域以外の部分まで円形のガラス棒を挿入した。
 次に第1側壁に面する流路に沿って牧野フライス社製MCS300型レーザー加工機を用いて加工した。レーザーの波長は532nm、出力80W、水流82のノズル径はφ80μm、走査速度は300mm/minで加工した。
A detailed processing method will be described below. When forming the connection hole, a circular glass rod longer than the flow path is inserted into the flow path facing the second side wall 22, and the circular glass up to a portion other than the trapezoidal basin is inserted into the other flow path. Inserted a stick.
Next, it processed using the MCS300 type | mold laser processing machine by Makino milling company along the flow path which faces a 1st side wall. Processing was performed at a laser wavelength of 532 nm, an output of 80 W, a nozzle diameter of the water flow 82 of φ80 μm, and a scanning speed of 300 mm / min.
 このように加工して得られたハニカム構造体1000(熱交換器)を接続孔30に沿って切断し、接続孔30を確認した。図16に示すように接続孔30の断面は台形であり、内壁50は全て貫通し、第1の開口31が長さ30mm、最下層の第2の開口32が長さ15mmであった。
 このように水流を用いたレーザー加工機で接続孔を形成できることが確認でできた。ハニカム構造体1000(熱交換器)に接続孔30を形成する方法は水流82を用いたレーザー光に限定されず、時間をかけ、高出力のレーザー加工機であれば、水流を併用することなく加工することができる。
The honeycomb structure 1000 (heat exchanger) obtained by processing in this way was cut along the connection holes 30 to confirm the connection holes 30. As shown in FIG. 16, the connection hole 30 had a trapezoidal cross section, the inner wall 50 penetrated all, the first opening 31 had a length of 30 mm, and the lowermost second opening 32 had a length of 15 mm.
Thus, it was confirmed that the connection hole can be formed by a laser processing machine using a water flow. The method of forming the connection hole 30 in the honeycomb structure 1000 (heat exchanger) is not limited to the laser beam using the water flow 82. If the laser processing machine takes time and has a high output, the water flow is not used together. Can be processed.
 また、接続孔30の大きさ、配置、数は適宜選択することができる。 Also, the size, arrangement, and number of the connection holes 30 can be selected as appropriate.
 本出願は、2013年11月6日出願の日本特許出願、特願2013-230359に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-230359 filed on November 6, 2013, the contents of which are incorporated herein by reference.
 本発明の熱交換器は、内燃機関、燃焼炉などの熱交換器として利用することができる。 The heat exchanger of the present invention can be used as a heat exchanger for an internal combustion engine, a combustion furnace, or the like.
11 第1端面
12 第2端面
21 第1側壁
22 第2側壁
30 接続孔
31 第1の開口
32 第2の開口
50 内壁
60 流路
70 封止部
80 レーザー光
82 水流(ウォータジェット)
85 レーザー源
90 光拡散媒体
91 ガラス棒
92 失透ガラス
93 水
1000 ハニカム構造体(熱交換器)
DESCRIPTION OF SYMBOLS 11 1st end surface 12 2nd end surface 21 1st side wall 22 2nd side wall 30 Connection hole 31 1st opening 32 2nd opening 50 Inner wall 60 Flow path 70 Sealing part 80 Laser beam 82 Water flow (water jet)
85 Laser source 90 Light diffusion medium 91 Glass rod 92 Devitrified glass 93 Water 1000 Honeycomb structure (heat exchanger)

Claims (11)

  1.  少なくとも第1端面と第2端面と第1側壁と第2側壁とを有し、内壁によって仕切られ前記第1端面から前記第2端面に延びる複数の流路を有するセラミック製のハニカム構造体からなる熱交換器において、
     前記第1側壁または前記第2側壁に形成された第1の開口と、
     前記第1の開口に対向する複数の内壁に形成され複数の流路を接続する第2の開口と、
    からなる接続孔を有し、
     前記第1の開口または前記第2の開口を有する前記流路は前記第1端面および前記第2端面にそれぞれ封止部を有し、前記第1または第2の開口を有する前記流路は前記接続孔で接続されることにより第1の空間を構成するとともに、
     前記第1の開口および前記第2の開口のない前記流路は、前記第1端面から前記第2端面に延びる第2の空間を構成し、
     前記第1の空間と、前記第2の空間は前記内壁で互いに隔離されていることを特徴とするハニカム構造体からなる熱交換器。
    A ceramic honeycomb structure having at least a first end face, a second end face, a first side wall, and a second side wall and having a plurality of flow paths partitioned by an inner wall and extending from the first end face to the second end face. In the heat exchanger,
    A first opening formed in the first sidewall or the second sidewall;
    A second opening formed on a plurality of inner walls facing the first opening and connecting a plurality of flow paths;
    A connection hole made of
    The flow path having the first opening or the second opening has a sealing portion on each of the first end face and the second end face, and the flow path having the first or second opening is While constituting the first space by being connected by the connection hole,
    The flow path without the first opening and the second opening constitutes a second space extending from the first end face to the second end face,
    The heat exchanger comprising a honeycomb structure, wherein the first space and the second space are separated from each other by the inner wall.
  2.  前記熱交換器は、前記接続孔を複数有することを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the heat exchanger has a plurality of the connection holes.
  3.  前記接続孔は、前記第1側壁または前記第2側壁が面する複数の前記流路に交互に形成されていることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the connection holes are alternately formed in a plurality of the flow paths facing the first side wall or the second side wall.
  4.  前記第1の空間は、複数の前記接続孔を有する請求項1から3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the first space has a plurality of the connection holes.
  5.  前記熱交換器は、前記接続孔を前記第1側壁および前記第2側壁にそれぞれ有することを特徴とする請求項1から4のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger has the connection holes in the first side wall and the second side wall, respectively.
  6.  前記第1の開口および前記第2の開口は、スリット状に構成され、
     前記第1の開口の長さは、前記第2の開口の長さよりも長いことを特徴とする請求項1から5のいずれか一項に記載の熱交換器。
    The first opening and the second opening are configured in a slit shape,
    6. The heat exchanger according to claim 1, wherein a length of the first opening is longer than a length of the second opening.
  7.  複数の前記第2の開口は、前記第1の開口に向かって順に長くなっていることを特徴とする請求項6に記載の熱交換器。 The heat exchanger according to claim 6, wherein the plurality of second openings are sequentially longer toward the first opening.
  8.  前記第1の開口および前記第2の開口は、スリット状に構成され、
     前記第1の開口の長さおよび、複数の前記第2の開口の長さは、いずれも等しいことを特徴とする請求項1から7のいずれか一項に記載の熱交換器。 
    The first opening and the second opening are configured in a slit shape,
    8. The heat exchanger according to claim 1, wherein a length of the first opening and a plurality of the second openings are equal to each other. 9.
  9.  前記接続孔は5層以上の前記第2の開口が積み重なっていることを特徴とする請求項1から8のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 8, wherein the connection hole has five or more layers of the second openings stacked.
  10.  前記接続孔は、10層以上の前記第2の開口が積み重なっていることを特徴とする請求項9に記載の熱交換器。 10. The heat exchanger according to claim 9, wherein the connection hole has the second openings of 10 layers or more stacked.
  11.  前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることを特徴とする請求項1から10のいずれか一項に記載の熱交換器。 The heat exchange according to any one of claims 1 to 10, wherein the ceramic is made of silicon carbide, silicon carbide impregnated with silicon, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. vessel.
PCT/JP2014/079509 2013-11-06 2014-11-06 Heat exchanger WO2015068783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546683A JPWO2015068783A1 (en) 2013-11-06 2014-11-06 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013230359 2013-11-06
JP2013-230359 2013-11-06

Publications (1)

Publication Number Publication Date
WO2015068783A1 true WO2015068783A1 (en) 2015-05-14

Family

ID=53041558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079509 WO2015068783A1 (en) 2013-11-06 2014-11-06 Heat exchanger

Country Status (2)

Country Link
JP (1) JPWO2015068783A1 (en)
WO (1) WO2015068783A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693695U (en) * 1980-11-27 1981-07-25
JPS6124997A (en) * 1984-07-12 1986-02-03 Ngk Insulators Ltd Heat exchanging body made of ceramics
JPS6183897A (en) * 1984-09-28 1986-04-28 Asahi Glass Co Ltd Ceramic heat exchanging unit
JPS61213497A (en) * 1985-03-19 1986-09-22 Asahi Glass Co Ltd Heat exchanging body applied with coating
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2436958A2 (en) * 1978-09-22 1980-04-18 Ceraver PROCESS FOR THE MANUFACTURE OF AN INDIRECT HEAT EXCHANGE ELEMENT IN CERAMIC MATERIAL, AND ELEMENT OBTAINED BY THIS PROCESS
JPS6091969U (en) * 1983-11-24 1985-06-24 川崎重工業株式会社 Ceramic honeycomb heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693695U (en) * 1980-11-27 1981-07-25
JPS6124997A (en) * 1984-07-12 1986-02-03 Ngk Insulators Ltd Heat exchanging body made of ceramics
JPS6183897A (en) * 1984-09-28 1986-04-28 Asahi Glass Co Ltd Ceramic heat exchanging unit
JPS61213497A (en) * 1985-03-19 1986-09-22 Asahi Glass Co Ltd Heat exchanging body applied with coating
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device

Also Published As

Publication number Publication date
JPWO2015068783A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015115254A1 (en) Heat exchanger
WO2015115257A1 (en) Heat exchanger
WO2015115258A1 (en) Heat exchanger
EP1379787B1 (en) Porous microfluidic valves
WO2015115255A1 (en) Honeycomb structure
CN108966583B (en) Heat sink and communication device
JP2015140959A (en) heat exchanger
WO2015068780A1 (en) Honeycomb structure
RU2010130572A (en) MICRORACTOR ASSEMBLY INCLUDING A CONNECTING BASIS
CN1411393A (en) Spiral cut honeycomb body for fluid mixing
WO2015068783A1 (en) Heat exchanger
EP2714255A1 (en) Twist flow microfluidic mixer and module
WO2018062186A1 (en) Honeycomb structure and method for manufacturing same, and exhaust gas purification filter
KR20160093616A (en) Heat exchanging plate with varying pitch
WO2015068782A1 (en) Method for producing honeycomb structure
CN104203516B (en) Extruded body devices including sheet material hole masking
US8192832B1 (en) Structured packing with interleaved heat-transfer surfaces
ES2333593T3 (en) STACKABLE MOLDED BODY AND ITS USE.
RU2006105793A (en) CERAMIC NOZZLE ELEMENT AND ITS APPLICATION
CN104279894A (en) Stacked heat exchanger
WO2016017697A1 (en) Heat exchanger
WO2018123654A1 (en) Porous honeycomb filter
JP2015157730A (en) honeycomb structure
WO2004099103A1 (en) Honeycomb structure and method of manufacturing the same
EP2108434B1 (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859470

Country of ref document: EP

Kind code of ref document: A1