JP2005118747A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2005118747A
JP2005118747A JP2003359235A JP2003359235A JP2005118747A JP 2005118747 A JP2005118747 A JP 2005118747A JP 2003359235 A JP2003359235 A JP 2003359235A JP 2003359235 A JP2003359235 A JP 2003359235A JP 2005118747 A JP2005118747 A JP 2005118747A
Authority
JP
Japan
Prior art keywords
honeycomb structure
volume
hole
holes
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359235A
Other languages
Japanese (ja)
Other versions
JP4471621B2 (en
Inventor
Atsushi Kudo
篤史 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003359235A priority Critical patent/JP4471621B2/en
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to PCT/JP2004/015505 priority patent/WO2005037405A1/en
Priority to EP04792673A priority patent/EP1676621A4/en
Priority to PCT/JP2004/015507 priority patent/WO2005037406A1/en
Priority to PL04792671T priority patent/PL1676620T5/en
Priority to DE602004011971T priority patent/DE602004011971T3/en
Priority to AT04792671T priority patent/ATE386581T1/en
Priority to EP04792671A priority patent/EP1676620B2/en
Priority to ES04792671T priority patent/ES2302042T5/en
Publication of JP2005118747A publication Critical patent/JP2005118747A/en
Priority to US11/340,591 priority patent/US7556782B2/en
Priority to US11/341,507 priority patent/US7785695B2/en
Application granted granted Critical
Publication of JP4471621B2 publication Critical patent/JP4471621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure capable of depositing particulates and ash in large quantities, and capable of carrying a large quantity of catalysts without significantly increasing pressure loss. <P>SOLUTION: The pillar-shaped honeycomb structure has a number of perforated holes, separated with partition walls and placed in parallel in the longitudinal direction. The perforated holes comprise a group of large volume perforated holes the one ends of which are sealed so that the total sum of the areas of the longitudinally perpendicular sections may become relatively large, and a group of small volume perforated holes the other ends of which are sealed so that the total sum of the areas of the sections may become relatively small. The partition walls constituting the group of the large volume perforated holes and separating adjacent perforated holes are characteristically provided with selective catalyst carrier parts for selectively carrying the catalysts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディーゼルエンジン等の内燃機関から排出される排気ガス中のパティキュレート等を除去するフィルタや、触媒担持体等として用いられるハニカム構造体に関する。 The present invention relates to a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, and a honeycomb structure used as a catalyst carrier.

バス、トラック等の車両や建設機械等の内燃機関から排出される排気ガス中に含有されるスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となっている。
そこで、排気ガス中のパティキュレートを捕集して、排気ガスを浄化することができるフィルタとして多孔質セラミックからなるハニカム構造体が種々提案されている。
Recently, it has become a problem that particulates such as soot contained in exhaust gas discharged from internal combustion engines such as vehicles such as buses and trucks and construction machinery cause harm to the environment and the human body.
Thus, various honeycomb structures made of porous ceramics have been proposed as filters that can collect particulates in exhaust gas and purify the exhaust gas.

従来、このようなハニカム構造体として、容積の大きな貫通孔(以下、大容積貫通孔ともいう)と、容積の小さな貫通孔(以下、小容積貫通孔ともいう)の2種類の貫通孔を設け、大容積貫通孔は、一端部で封止材により封止するとともに、小容積貫通孔は、大容積貫通孔の場合と反対の端部で封止材により封止したものがある。また、上記ハニカム構造体であって、大容積貫通孔をフィルタのガス流入側が開口するようにし、小容積貫通孔をフィルタのガス流出側が開口するように技術が開示されている。(例えば、特許文献1〜12参照)。 Conventionally, as such a honeycomb structure, there are provided two types of through-holes: a large-volume through-hole (hereinafter also referred to as a large-volume through-hole) and a small-volume through-hole (hereinafter also referred to as a small-volume through-hole). The large-volume through hole is sealed with a sealing material at one end, and the small-volume through hole is sealed with a sealing material at an end opposite to the large-volume through hole. Further, in the honeycomb structure, a technique is disclosed in which a large volume through hole is opened on the gas inflow side of the filter and a small volume through hole is opened on the gas outflow side of the filter. (For example, refer patent documents 1-12).

また、ガス流入側が開口するように構成された貫通孔(以下、入口側貫通孔という)の数をガス流出側が開口するように構成された貫通孔(以下、出口側貫通孔という)の数よりも多くすることにより、入口側貫通孔の表面積の総量を出口側貫通孔の表面積の総量に比べて相対的に大きくしたフィルタ等も知られている(例えば、特許文献5の図3参照)。 Further, the number of through holes (hereinafter referred to as “inlet side through holes”) configured to open on the gas inflow side is determined from the number of through holes (hereinafter referred to as “outlet side through holes”) configured to open on the gas outflow side. In addition, a filter or the like in which the total amount of the surface area of the inlet-side through hole is relatively larger than the total surface area of the outlet-side through hole is also known (see, for example, FIG. 3 of Patent Document 5).

これらのハニカム構造体は、端面から見ると、大容積貫通孔群(貫通孔の表面積/断面積の総量が相対的に大きい)と小容積貫通孔群(貫通孔の表面積/断面積の総量が相対的に小さい)の2種類に別けられており、大容積貫通孔群をガス流入側にし、小容積貫通孔群をガス流出側にすることで、入口側貫通孔の表面積の総量と出口側貫通孔の表面積の総量とが等しいハニカム構造体と比較して、捕集したパティキュレートの堆積層の厚さを薄くすることができ、その結果、パティキュレート捕集時の圧力損失の上昇を抑制したり、パティキュレートの捕集限界量を多くしたりすることができる。 When viewed from the end face, these honeycomb structures have a large volume through-hole group (the total surface area / cross-sectional area of the through-hole is relatively large) and a small volume through-hole group (the total surface area / cross-sectional area of the through-holes). (Relatively small), the large volume through-hole group is made the gas inflow side, and the small volume through-hole group is made the gas outflow side. Compared to a honeycomb structure with the same total surface area of the through-holes, the thickness of the collected particulate deposit layer can be reduced, and as a result, an increase in pressure loss during particulate collection is suppressed. Or increase the limit of particulate collection.

しかしながら、入口側貫通孔の表面積の総量が相対的に大きいハニカム構造体では、基材自体の圧力損失が高いため、排気ガス中のパティキュレートや、HC、CO等の有害ガス成分を除去する目的で触媒を多量に担持させると、ハニカム構造体の圧力損失が高くなり過ぎてしまうという問題があった。ハニカム構造体には、将来的に、NOxを除去する触媒等を担持させることが求められており、入口側貫通孔の表面積の総量を大きく確保した上で、圧力損失の上昇を抑えつつ、触媒の担持量の増量を可能にする技術が求められていた。 However, in the honeycomb structure having a relatively large total surface area of the inlet-side through holes, the pressure loss of the base material itself is high, so the purpose is to remove particulates in the exhaust gas and harmful gas components such as HC and CO. However, when a large amount of catalyst is supported, the pressure loss of the honeycomb structure becomes too high. In the future, the honeycomb structure is required to carry a catalyst or the like for removing NOx, and while ensuring a large total surface area of the inlet-side through-holes, the catalyst can be prevented while suppressing an increase in pressure loss. There has been a demand for a technique that enables an increase in the amount of the supported carbon.

特開昭56−124418号公報JP 56-124418 A 特開昭62−96717号公報、特開昭62−96717号公報JP 62-96717 A, JP 62-96717 A 実開昭58−92409号公報Japanese Utility Model Publication No. 58-92409 米国特許第4416676号明細書U.S. Pat. No. 4,416,676 特開昭58−196820号公報JP 58-196820 A 米国特許第4420316号明細書US Pat. No. 4,420,316 特開昭58−150015号公報JP-A-58-150015 特開平5−68828号公報Japanese Patent Laid-Open No. 5-68828 仏国特許発明第2789327号明細書French patent invention No. 2789327 国際公開第02/100514A1号パンフレットInternational Publication No. 02 / 100514A1 Pamphlet 国際公開第02/10562A1号パンフレットInternational Publication No. 02 / 10562A1 Pamphlet 国際公開第03/20407A1号パンフレットInternational Publication No. 03 / 20407A1 Pamphlet

本発明は、このような課題を解決するためになされたものであり、パティキュレートやアッシュを多量に堆積させることができ、かつ、圧力損失を大きく上昇させることなく、触媒を多量に担持させることができるハニカム構造体を提供することを目的とするものである。 The present invention has been made to solve such a problem, and can deposit a large amount of particulates and ash, and can carry a large amount of catalyst without greatly increasing pressure loss. An object of the present invention is to provide a honeycomb structure that can be manufactured.

本発明の発明者は、鋭意検討した結果、入口側貫通孔同士を隔てる隔壁は、排気ガスが流れ込みにくくなっているので、その形状、触媒の担持量等を変更しても、圧力損失への影響が小さいことを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention have made it difficult for the exhaust gas to flow into the partition walls that separate the inlet-side through-holes. The inventors have found that the influence is small and have completed the present invention.

即ち、第一の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であって、
上記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大きくなるように一端部で封止されてなる大容積貫通孔群と、上記断面における面積の総和が相対的に小さくなるように他端部で封止されてなる小容積貫通孔群とからなり、
上記大容積貫通孔群を構成し、かつ、隣り合う貫通孔同士を隔てる上記隔壁に、触媒を選択的に担持させるための選択的触媒担持部が設けられていることを特徴とする。
That is, the honeycomb structure of the first aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
The large number of through-holes have a large-capacity through-hole group sealed at one end so that the total area in the cross section perpendicular to the longitudinal direction is relatively large, and the total area in the cross section is relatively It consists of a small volume through-hole group sealed at the other end so as to become smaller,
A selective catalyst supporting portion for selectively supporting a catalyst is provided on the partition wall that constitutes the large-volume through-hole group and separates adjacent through-holes.

第一の本発明のハニカム構造体では、少なくとも選択的触媒担持部に触媒が担持されていることが望ましく、上記選択的触媒担持部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁に設けられた凸部及び/又は凹部であることが望ましい。
第一の本発明のハニカム構造体では、上記選択的触媒担持部に設けられた凸部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜6倍の高さを有することが望ましく、選択的触媒担持部に設けられた凹部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜0.4倍の深さを有することが望ましい。
In the honeycomb structure according to the first aspect of the present invention, it is desirable that the catalyst is supported at least on the selective catalyst supporting portion, and the selective catalyst supporting portion includes through holes constituting adjacent large-volume through-hole groups. It is desirable that they are convex portions and / or concave portions provided in the partition walls.
In the honeycomb structure according to the first aspect of the present invention, the convex portion provided on the selective catalyst supporting portion has a thickness of 0.02 to 6 that is a partition wall thickness that separates through-holes constituting adjacent large-volume through-hole groups. It is desirable that the concave portion provided in the selective catalyst supporting part is 0.02 to 0.4 times the thickness of the partition wall separating the through holes constituting the adjacent large volume through hole group. It is desirable to have a depth of

第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、多角形であることが望ましい。
第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、八角形であり、小容積貫通孔群を構成する貫通孔の上記断面の形状は、四角形であることが望ましい。
第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における面積の総和と、小容積貫通孔群を構成する貫通孔の上記断面における面積の総和との比が1.5〜2.7であることが望ましい。
第一の本発明のハニカム構造体では、長手方向に垂直な断面における隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う上記大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁との交わる角の少なくとも1つが鈍角であることが望ましい。
第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の角部の近傍が曲線により構成されていることが望ましい。
第一の本発明のハニカム構造体では、隣り合う大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を構成する貫通孔の上記断面における重心間距離とが等しいことが望ましい。
In the honeycomb structure according to the first aspect of the present invention, the shape of the cross section perpendicular to the longitudinal direction of the through hole constituting the large volume through hole group and / or the small volume through hole group is a polygon. Is desirable.
In the honeycomb structure according to the first aspect of the present invention, the shape of the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group is an octagon, and the above cross section of the through holes constituting the small volume through hole group The shape of is preferably a quadrangle.
In the honeycomb structure of the first aspect of the present invention, the sum of the areas in the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group and the area in the cross section of the through holes constituting the small volume through hole group are as follows. It is desirable that the ratio to the sum is 1.5 to 2.7.
In the honeycomb structure of the first aspect of the present invention, partition walls that separate through-hole groups that constitute adjacent large-volume through-hole groups in a cross section perpendicular to the longitudinal direction, and through-holes that form adjacent large-volume through-hole groups It is desirable that at least one of the angles intersecting with the partition walls separating the through holes constituting the small volume through hole group is an obtuse angle.
In the honeycomb structure of the first aspect of the present invention, the vicinity of the corner portion of the cross section perpendicular to the longitudinal direction of the through hole constituting the large volume through hole group and / or the through hole constituting the small volume through hole group is constituted by a curve. It is desirable that
In the honeycomb structure of the first aspect of the present invention, the distance between the centroids in the cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups and the above-described through-holes constituting the adjacent small-volume through-hole groups It is desirable that the distance between the centers of gravity in the cross section is equal.

第二の本発明のハニカム構造体は、第一の本発明のハニカム構造体がシール材層を介して複数個組み合わされてなるハニカムブロックの外周面に、上記ハニカム構造体よりも気体を通過させにくい材質からなるシール材層が形成されてなることを特徴とする。
なお、第一の本発明のハニカム構造体は、第二の本発明のハニカム構造体の構成部材として用いられる場合のほか、1個のみでフィルタとして用いられてもよい。
以下においては、第一の本発明のハニカム構造体のような、全体が一体として形成された構造を有するハニカム構造体を一体型ハニカム構造体ともいい、第二の本発明のハニカム構造体のような、セラミック部材がシール材層を介して複数個組み合わされた構造を有するハニカム構造体を集合体型ハニカム構造体ともいう。また、一体型ハニカム構造体と集合体型ハニカム構造体とを特に区別しない場合に、ハニカム構造体という。
A honeycomb structure according to the second aspect of the present invention allows gas to pass through the outer peripheral surface of a honeycomb block formed by combining a plurality of honeycomb structures according to the first aspect of the present invention via a sealing material layer. A sealing material layer made of a difficult material is formed.
In addition to the case where the honeycomb structure of the first invention is used as a constituent member of the honeycomb structure of the second invention, only one may be used as a filter.
In the following, a honeycomb structure having a structure formed as a whole, such as the honeycomb structure of the first invention, is also referred to as an integral honeycomb structure, as in the honeycomb structure of the second invention. A honeycomb structure having a structure in which a plurality of ceramic members are combined through a sealing material layer is also referred to as an aggregate-type honeycomb structure. In addition, when there is no particular distinction between an integral honeycomb structure and an aggregated honeycomb structure, it is called a honeycomb structure.

第一又は第二の本発明のハニカム構造体は、車両の排気ガス浄化装置に使用されることが望ましい。 The honeycomb structure of the first or second aspect of the present invention is preferably used in an exhaust gas purification device for a vehicle.

第一の本発明のハニカム構造体によれば、隣り合う貫通孔群を構成する貫通孔同士を隔てる隔壁に選択的触媒担持部が設けられているので、触媒が多く担持される隔壁(以下、隔壁Aという)と、その他の隔壁(以下、隔壁Bという)とで機能を分離させることが可能になる。すなわち、隔壁Aは、排気ガス中のHC、CO等の触媒を介した酸化反応により発生する熱によりフィルタに熱を供給して温度を上昇させる機能(熱供給機能)を有し、一方、隔壁Bは、パティキュレートの堆積時、及び、その燃焼時の両方を通じて排気ガスを通過させ、フィルタの圧力損失が上昇することを抑制する機能(圧力損失上昇抑制機能)を有する。ここで、隔壁Aは、もともと排気ガスを通過させにくい隔壁であることから、NOx吸蔵触媒等の大量に担持する必要がある触媒を担持させたとしても、圧力損失の上昇は生じにくい。さらに、パティキュレートが燃焼してアッシュが生成した際、隔壁Aでは、触媒上でパティキュレートの燃焼が起こりやすいために、アッシュは、隔壁A上に付着したままの状態で堆積しやすい。しかしながら、隔壁Aは、上述したように、圧力損失の上昇の原因となりにくい隔壁であるため、アッシュが堆積したとしても圧力損失の上昇は起こりにくい。
また、隔壁A上に堆積したアッシュは、同時に、隔壁A上における温度低下を防止し、熱供給機能を担保する役目も果たす。一方、隔壁Bで、隔壁Aから供給された熱によるパティキュレートの燃焼により生じたアッシュは、隔壁Bの表面に付着している触媒が少ないために剥がれやすく、通過する排気ガスにより、フィルタ後方へと飛散して堆積しやすく、隔壁Bに起因する圧力損失の上昇が抑制される。
According to the honeycomb structure of the first aspect of the present invention, since the selective catalyst supporting portion is provided on the partition walls that separate the through holes constituting the adjacent through hole group, the partition walls (hereinafter, referred to as “catalysts”) in which a large amount of catalyst is supported. The function can be separated between the partition walls A and other partition walls (hereinafter referred to as partition walls B). That is, the partition wall A has a function of increasing the temperature by supplying heat to the filter by heat generated by an oxidation reaction via a catalyst such as HC or CO in the exhaust gas (heat supply function). B has a function (pressure loss increase suppression function) that allows the exhaust gas to pass through both during the accumulation of particulates and during the combustion thereof, and suppresses an increase in the pressure loss of the filter. Here, since the partition wall A is originally a partition wall through which exhaust gas hardly passes, even if a catalyst that needs to be supported in a large amount, such as a NOx storage catalyst, is supported, an increase in pressure loss hardly occurs. Further, when particulates burn and ash is generated, particulates are likely to burn on the catalyst in the partition wall A, so the ash is likely to be deposited on the partition wall A. However, since the partition wall A is a partition wall that is unlikely to cause an increase in pressure loss as described above, even if ash is deposited, the pressure loss is unlikely to increase.
Further, the ash deposited on the partition wall A also serves to prevent a temperature drop on the partition wall A and secure a heat supply function. On the other hand, the ash generated by the burning of the particulates due to the heat supplied from the partition wall A in the partition wall B is easy to peel off due to the small amount of catalyst adhering to the surface of the partition wall B. It is easy to scatter and accumulate, and an increase in pressure loss due to the partition wall B is suppressed.

また、触媒の担持量が増加するため、上記機能と併せて排気ガスの浄化性能が向上し、触媒の担持量によっては、高温で再生処理を行わなくても、パティキュレートを燃焼除去することが可能となり、パティキュレート捕集時の圧力損失の上昇を抑制することが可能となる。 In addition, since the amount of catalyst supported increases, the exhaust gas purification performance is improved in combination with the above functions, and depending on the amount of catalyst supported, the particulates can be burned and removed without performing regeneration treatment at a high temperature. It becomes possible, and it becomes possible to suppress an increase in pressure loss during particulate collection.

また、上記選択的触媒担持部が、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁に設けられた凸部及び/又は凹部であると、上記選択的触媒担持部に選択的に触媒を担持させやすく、上記選択的触媒担持部に設けられた凸部が隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜6倍の高さを有するか、上記選択的触媒担持部に設けられた凹部が、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜0.4倍の深さを有すると、上記選択的触媒担持部に選択的に触媒を担持させやすく、かつ、排気ガスの圧力等により凸部が破損したり、隔壁が破損してしまうのを防止することができる。 Further, when the selective catalyst supporting part is a convex part and / or a concave part provided in a partition wall that separates through holes constituting adjacent large-volume through hole groups, the selective catalyst supporting part is selectively used as the selective catalyst supporting part. The catalyst is easily supported, and the convex portion provided on the selective catalyst supporting portion has a height of 0.02 to 6 times the thickness of the partition wall that separates the through holes constituting the adjacent large volume through hole group. Or when the concave portion provided in the selective catalyst supporting part has a depth of 0.02 to 0.4 times the thickness of the partition wall separating the through holes constituting the adjacent large volume through hole group, It is easy to selectively support the catalyst on the selective catalyst supporting portion, and it is possible to prevent the convex portion from being damaged or the partition wall from being damaged due to the pressure of the exhaust gas.

第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状が多角形であると、圧力損失を下げるために長手方向に垂直な断面における隔壁の面積を減少させて開口率を高くしても、耐久性に優れ、長寿命のハニカム構造体を実現することができる。さらに、大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状が八角形であり、小容積貫通孔群を構成する貫通孔の上記断面の形状が四角形であると、より耐久性に優れ、長寿命のハニカム構造体を実現することができる。 In the honeycomb structure according to the first aspect of the present invention, when the shape of the cross section perpendicular to the longitudinal direction of the through hole constituting the large volume through hole group and / or the through hole constituting the small volume through hole group is a polygon, Even if the area of the partition wall in the cross section perpendicular to the longitudinal direction is reduced to reduce the pressure loss and the aperture ratio is increased, a honeycomb structure having excellent durability and a long life can be realized. Furthermore, when the shape of the cross section perpendicular to the longitudinal direction of the through holes constituting the large-volume through-hole group is an octagon, and the shape of the cross-section of the through-hole constituting the small-volume through-hole group is a quadrangle, it is more durable And a long-life honeycomb structure can be realized.

第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における面積の総和と、小容積貫通孔群を構成する貫通孔の上記断面における面積の総和との比が1.5〜2.7であると、入口側の開口率を相対的に大きくして、パティキュレート捕集時の圧力損失の上昇を抑制することができるとともに、パティキュレート捕集前の圧力損失が高くなり過ぎることも防止することができる。 In the honeycomb structure of the first aspect of the present invention, the sum of the areas in the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group and the area in the cross section of the through holes constituting the small volume through hole group are as follows. When the ratio to the sum is 1.5 to 2.7, the opening ratio on the inlet side can be relatively increased to suppress an increase in pressure loss at the time of particulate collection, and the particulate trapping can be performed. It is possible to prevent the pressure loss before collection from becoming too high.

第一の本発明のハニカム構造体では、長手方向に垂直な断面における隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う上記大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁との交わる角の少なくとも1つが鈍角であると、圧力損失を低減することができる。 In the honeycomb structure of the first aspect of the present invention, partition walls that separate through-hole groups that constitute adjacent large-volume through-hole groups in a cross section perpendicular to the longitudinal direction, and through-holes that form adjacent large-volume through-hole groups Pressure loss can be reduced when at least one of the intersecting angles with the partition walls separating the through holes constituting the small volume through hole group is an obtuse angle.

第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の角部の近傍が曲線により構成されていると、貫通孔の角部に応力が集中することを防止することができ、クラックの発生を防止することができ、また、圧力損失を低減することができる。 In the honeycomb structure of the first aspect of the present invention, the vicinity of the corner portion of the cross section perpendicular to the longitudinal direction of the through hole constituting the large volume through hole group and / or the through hole constituting the small volume through hole group is constituted by a curve. If it is done, it can prevent that stress concentrates on the corner | angular part of a through-hole, generation | occurrence | production of a crack can be prevented, and pressure loss can be reduced.

第一の本発明のハニカム構造体では、隣り合う大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を構成する貫通孔の上記断面における重心間距離とが等しいと、再生時に熱が均一に拡散して温度分布が均一になりやすく、長期間繰り返し使用しても、熱応力に起因するクラック等が発生しにくい耐久性に優れたものとなる。 In the honeycomb structure of the first aspect of the present invention, the distance between the centroids in the cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups and the above-described through-holes constituting the adjacent small-volume through-hole groups If the distance between the centers of gravity in the cross section is the same, heat will diffuse evenly during reproduction and the temperature distribution will tend to be uniform, and even if used repeatedly over a long period of time, it will have excellent durability against cracks caused by thermal stress. It will be.

第二の本発明のハニカム構造体によれば、第一の本発明のハニカム構造体がシール材層を介して複数個組み合わされてなるため、上記シール材層により熱応力を低減して耐熱性を向上させること、及び、第一の本発明のハニカム構造体の個数を増減させることで自由にその大きさを調整すること等が可能となる。 According to the honeycomb structure of the second aspect of the present invention, a plurality of honeycomb structures of the first aspect of the present invention are combined through the sealing material layer. It is possible to freely adjust the size and the like by increasing the number of honeycomb structures of the first invention of the present invention.

第一又は第二の本発明のハニカム構造体は、車両の排気ガス浄化装置に使用されると、排気ガスの浄化性能を向上させること、パティキュレート捕集時の圧力損失の上昇を抑制して再生までの期間を長期化させること、耐熱性を向上させること、及び、自由にその大きさを調整すること等が可能となる。 The honeycomb structure according to the first or second aspect of the present invention, when used in an exhaust gas purification device for a vehicle, improves exhaust gas purification performance and suppresses an increase in pressure loss during particulate collection. It is possible to prolong the period until reproduction, improve heat resistance, and freely adjust its size.

第一の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であって、
上記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大きくなるように一端部で封止されてなる大容積貫通孔群と、上記断面における面積の総和が相対的に小さくなるように他端部で封止されてなる小容積貫通孔群とからなり、
上記大容積貫通孔群を構成し、かつ、隣り合う貫通孔同士を隔てる上記隔壁に、触媒を選択的に担持させるための選択的触媒担持部が設けられていることを特徴とする。
The honeycomb structure of the first aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
The large number of through-holes have a large-capacity through-hole group sealed at one end so that the total area in the cross section perpendicular to the longitudinal direction is relatively large, and the total area in the cross section is relatively It consists of a small volume through-hole group sealed at the other end so as to become smaller,
A selective catalyst supporting portion for selectively supporting a catalyst is provided on the partition wall that constitutes the large-volume through-hole group and separates adjacent through-holes.

上記大容積貫通孔群と上記小容積貫通孔群との組み合わせとしては、(1)大容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群を構成する個々の貫通孔とで、長手方向に垂直な断面の面積が同じであって、大容積貫通孔群を構成する貫通孔の数が多い場合、(2)大容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群を構成する個々の貫通孔とで、上記断面の面積が異なり、両者の貫通孔の数も異なる場合、(3)大容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群を構成する個々の貫通孔とで、大容積貫通孔群を構成する貫通孔の上記断面の面積が大きく、両者の貫通孔の数が同じ場合が含まれる。 The combination of the large volume through hole group and the small volume through hole group includes (1) individual through holes constituting the large volume through hole group and individual through holes constituting the small volume through hole group. When the cross-sectional area perpendicular to the longitudinal direction is the same and the number of through-holes constituting the large-volume through-hole group is large, (2) individual through-holes constituting the large-volume through-hole group and small volumes When the cross-sectional areas are different and the numbers of the through-holes are different between the individual through-holes constituting the through-hole group, (3) the individual through-holes constituting the large-volume through-hole group and the small-volume through holes The individual through-holes constituting the hole group include a case where the cross-sectional area of the through-hole constituting the large-volume through-hole group is large and the number of both through-holes is the same.

また、大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔は、その形状や長手方向に垂直な断面の面積等が同じ1種の貫通孔からそれぞれ構成されていてもよく、その形状や長手方向に垂直な断面の面積等が異なる2種以上の貫通孔からそれぞれ構成されていてもよい。 The through-holes constituting the large-volume through-hole group and / or the through-holes constituting the small-volume through-hole group are each composed of one type of through-hole having the same shape, cross-sectional area perpendicular to the longitudinal direction, and the like. It may be configured by two or more types of through-holes having different shapes and cross-sectional areas perpendicular to the longitudinal direction.

図1(a)は、本発明の一体型ハニカム構造体の一例を模式的に示した斜視図であり、(b)は、(a)に示した本発明の一体型ハニカム構造体のA−A線断面図であり、(c)は、本発明の一体型ハニカム構造体の別の一例を模式的に示した正面図である。 Fig. 1 (a) is a perspective view schematically showing an example of the integral honeycomb structure of the present invention, and Fig. 1 (b) is an A- view of the integral honeycomb structure of the present invention shown in (a). It is A line sectional drawing, (c) is the front view which showed typically another example of the integrated honeycomb structure of this invention.

図1(a)〜(c)に示した一体型ハニカム構造体20、30では、大容積貫通孔群と小容積貫通孔群との組み合わせを考えると、上記(3)に相当する。すなわち、大容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群を構成する個々の貫通孔とを比較すると、大容積貫通孔群を構成する貫通孔の上記断面の面積が大きく、両者の貫通孔の数が同じである。
以下においては、大容積貫通孔群を構成する貫通孔を、単に大容量貫通孔といい、小容積貫通孔群を構成する貫通孔を単に小容積貫通孔ともいうこととする。
The integrated honeycomb structures 20 and 30 shown in FIGS. 1A to 1C correspond to the above (3) when a combination of a large volume through hole group and a small volume through hole group is considered. That is, when the individual through holes constituting the large volume through hole group are compared with the individual through holes constituting the small volume through hole group, the area of the cross section of the through hole constituting the large volume through hole group is large. The number of through holes in both is the same.
Hereinafter, the through holes constituting the large volume through hole group are simply referred to as large capacity through holes, and the through holes constituting the small volume through hole group are also referred to simply as small volume through holes.

図1(a)、(b)に示したように、一体型ハニカム構造体20は、略四角柱状であり、その長手方向に多数の貫通孔21が隔壁23を隔てて並設されている。貫通孔21は、一体型ハニカム構造体20のガスの出口側の端部で封止材22により封止されてなる大容積貫通孔21aと、一体型ハニカム構造体20のガスの入口側の端部で封止材22により封止されてなる小容積貫通孔21bとの2種類の貫通孔からなり、大容積貫通孔21aは、長手方向に垂直な断面における面積が小容積貫通孔21bに対して相対的に大きくなっており、これらの貫通孔21同士を隔てる隔壁23がフィルタとして機能するようになっている。即ち、大容積貫通孔21aに流入した排気ガスは、必ず隔壁23を通過した後、小容積貫通孔21bから流出するようになっている。
この一体型ハニカム構造体20では、隣り合う大容積貫通孔21a同士を隔てる隔壁23bに、凸部24からなる選択的触媒担持部が設けられている。
As shown in FIGS. 1A and 1B, the integrated honeycomb structure 20 has a substantially quadrangular prism shape, and a large number of through holes 21 are arranged in parallel in the longitudinal direction with partition walls 23 therebetween. The through-hole 21 includes a large-volume through-hole 21a that is sealed with a sealing material 22 at an end portion on the gas outlet side of the integrated honeycomb structure 20 and an end portion on the gas inlet side of the integrated honeycomb structure 20. The large-capacity through-hole 21a has an area in a cross section perpendicular to the longitudinal direction of the small-volume through-hole 21b. The partition wall 23 that separates the through holes 21 functions as a filter. That is, the exhaust gas that has flowed into the large volume through hole 21a always passes through the partition wall 23 and then flows out from the small volume through hole 21b.
In the integrated honeycomb structure 20, a selective catalyst support portion including a convex portion 24 is provided on a partition wall 23 b that separates adjacent large-volume through holes 21 a.

また、図1(c)に示したように、別の実施形態に係る一体型ハニカム構造体30では、やはり、その長手方向に多数の貫通孔31が隔壁33を隔てて並設されており、貫通孔31は、ガスの出口側の端部で封止材32により封止されてなる大容積貫通孔31aと、ガスの入口側の端部で封止材32により封止されてなる小容積貫通孔31bとの2種類の貫通孔からなる。そして、大容積貫通孔31aは、長手方向に垂直な断面における面積が小容積貫通孔31bに対して相対的に大きくなっており、これらの貫通孔31同士を隔てる隔壁33がフィルタとして機能するようになっている。即ち、大容積貫通孔31aに流入した排気ガスは、必ず隔壁33を通過した後、小容積貫通孔31bから流出するようになっている。
一方、この一体型ハニカム構造体30では、隣り合う大容積貫通孔31a同士を隔てる隔壁33bに、凹部34からなる選択的触媒担持部が設けられている。
In addition, as shown in FIG. 1C, in the integrated honeycomb structure 30 according to another embodiment, a large number of through holes 31 are arranged in parallel with the partition wall 33 in the longitudinal direction. The through-hole 31 has a large-capacity through-hole 31a that is sealed by a sealing material 32 at an end portion on the gas outlet side, and a small volume that is sealed by a sealing material 32 at an end portion on the gas inlet side. It consists of two types of through-holes with the through-hole 31b. The large-volume through-hole 31a has a relatively large area in a cross section perpendicular to the longitudinal direction relative to the small-volume through-hole 31b, and the partition wall 33 that separates these through-holes 31 functions as a filter. It has become. That is, the exhaust gas flowing into the large-volume through hole 31a always passes through the partition wall 33 and then flows out from the small-volume through hole 31b.
On the other hand, in this integrated honeycomb structure 30, a selective catalyst support portion including a recess 34 is provided in a partition wall 33b separating adjacent large-volume through holes 31a.

このように、本発明の一体型ハニカム構造体20、30では、隣り合う大容積貫通孔同士21a、31aを隔てる隔壁に、触媒を選択的に担持させるための選択的触媒担持部が設けられているが、上記選択的触媒担持部としては、触媒を選択的に(集中的に)担持させる目的で隣り合う大容積貫通孔21a、31a同士を隔てる隔壁23b、33bに形成されたものであれば特に限定されず、例えば、図1(a)、(b)に示したような凸部24であってもよく、図1(c)に示したような凹部34であってもよく、隔壁23b、33bの面粗度を大きくした粗化面等であってもよい。 As described above, in the integrated honeycomb structures 20 and 30 of the present invention, the selective catalyst supporting portion for selectively supporting the catalyst is provided on the partition wall that separates the adjacent large volume through holes 21a and 31a. However, the selective catalyst supporting portion may be formed in the partition walls 23b and 33b that separate the adjacent large-volume through holes 21a and 31a for the purpose of selectively (intensively) supporting the catalyst. There is no particular limitation, and for example, the convex portion 24 as shown in FIGS. 1A and 1B may be used, or the concave portion 34 as shown in FIG. , 33b may be a roughened surface having a larger surface roughness.

隔壁23bに凸部24が設けられていると、触媒又は触媒原料を含有する溶液にハニカム構造体の基材を含浸させて取り出した際に、上記溶液の表面張力を利用して、凸部24の周囲に液滴を保持させることができ、その後、加熱乾燥することによって、凸部24及びその近傍に多量の触媒を担持させることができる。 When the projecting portion 24 is provided on the partition wall 23b, when the honeycomb structure base material is impregnated with a solution containing the catalyst or the catalyst raw material and taken out, the projecting portion 24 is utilized by utilizing the surface tension of the solution. The liquid droplets can be held around the substrate, and then a large amount of catalyst can be supported on the convex portion 24 and the vicinity thereof by heating and drying.

隣り合う大容積貫通孔21a同士を隔てる隔壁23bに設けられる凸部24の形状としては特に限定されないが、液滴を保持しやすい形状であるとともに、ある程度の強度を確保することができる形状であることが望ましく、具体的には、末広がり形状であることが望ましい。末広がり形状の凸部は、細長く伸びた形状の凸部よりも高い強度を得やすいからである。また、一体型ハニカム構造体20の入口側の端部から出口側の端部まで連続的に形成されたものであることが望ましい。高い強度を得ることができるとともに、押出成形により形成することが可能となるからである。 The shape of the convex portion 24 provided on the partition wall 23b that separates the adjacent large-volume through-holes 21a is not particularly limited. However, the shape is a shape that can easily hold a droplet and can secure a certain level of strength. Specifically, it is desirable that it has a divergent shape. This is because the projecting portion having the end-spread shape can easily obtain higher strength than the projecting portion having an elongated shape. In addition, it is desirable that the monolithic honeycomb structure 20 is continuously formed from the end portion on the inlet side to the end portion on the outlet side. This is because high strength can be obtained and it can be formed by extrusion.

凸部24の高さとしては特に限定されないが、隣り合う大容積貫通孔21a同士を隔てる隔壁23bの厚さに対して、望ましい下限は0.02倍であり、望ましい上限は6.0倍である。0.02倍未満であると、凸部24及びその近傍に充分な量の触媒を担持させることができないことがある。6.0倍を超えると、凸部24の強度が不充分となり、排気ガスの圧力等により破損してしまうことがある。 Although it does not specifically limit as the height of the convex part 24, A desirable minimum is 0.02 times with respect to the thickness of the partition 23b which separates adjacent large-volume through-holes 21a, and a desirable upper limit is 6.0 times is there. If it is less than 0.02 times, a sufficient amount of catalyst may not be supported on the convex portion 24 and its vicinity. If it exceeds 6.0 times, the strength of the convex portion 24 becomes insufficient and may be damaged by the pressure of the exhaust gas.

凸部24の数としては特に限定されず、それぞれの隣り合う大容積貫通孔21a同士を隔てる隔壁23bに対して、1つずつ設けてもよいし、複数設けてもよい。なかでも、それぞれの隣り合う大容積貫通孔21a同士を隔てる隔壁23bに対して、多数の凸部を設けて隔壁23bの表面を波形にすると、それぞれの隔壁23b上に保持させる液滴の量を多くすることができ、充分な量の触媒を担持させることができる。 It does not specifically limit as the number of the convex parts 24, You may provide one each with respect to the partition 23b which separates each adjacent large volume through-hole 21a, and may provide two or more. In particular, if a large number of protrusions are provided on the partition walls 23b separating the adjacent large-volume through holes 21a and the surface of the partition walls 23b is corrugated, the amount of liquid droplets retained on each partition wall 23b is reduced. It can be increased and a sufficient amount of catalyst can be supported.

隔壁33bに、凹部34が設けられていると、触媒又は触媒原料を含有する溶液にハニカム構造体の基材を含浸させて取り出した際に、表面張力等により凹部(溝)34の内部に液滴を保持させることができ、その後、加熱乾燥することによって、凹部34に多量の触媒を担持させることができる。 When the partition wall 33b is provided with a recess 34, when the honeycomb structure base material is impregnated with a solution containing the catalyst or the catalyst raw material and taken out, the liquid is placed inside the recess (groove) 34 due to surface tension or the like. Drops can be held, and then a large amount of catalyst can be supported in the recesses 34 by heating and drying.

凹部34の形状としては特に限定されないが、液滴を保持しやすい形状であることが望ましく、具体的には、窪み形状や溝形状であることが望ましい。また、一体型ハニカム構造体20の入口側の端部から出口側の端部まで連続的に形成された溝状のものであることが望ましい。押出成形により形成することが可能となるからである。 The shape of the recess 34 is not particularly limited, but is preferably a shape that can easily hold a droplet, and specifically, a recess shape or a groove shape. In addition, it is desirable that the monolithic honeycomb structure 20 has a groove shape continuously formed from the end portion on the inlet side to the end portion on the outlet side. This is because it can be formed by extrusion.

凹部34の深さとしては特に限定されないが、隣り合う大容積貫通孔31a同士を隔てる隔壁33aの厚さに対して、望ましい下限は0.02倍であり、望ましい上限は0.4倍である。0.02倍未満であると、凸部24及びその近傍に充分な量の触媒を担持させることができないことがある。0.4倍を超えると、隔壁33aの強度が不充分となり、排気ガスの圧力等により破損してしまうことがある。 The depth of the recess 34 is not particularly limited, but the desirable lower limit is 0.02 times and the desirable upper limit is 0.4 times the thickness of the partition wall 33a separating adjacent large-volume through holes 31a. . If it is less than 0.02 times, a sufficient amount of catalyst may not be supported on the convex portion 24 and its vicinity. If it exceeds 0.4 times, the strength of the partition wall 33a becomes insufficient, and it may be damaged by the pressure of the exhaust gas.

凹部34の数としては特に限定されず、それぞれの隣り合う大容積貫通孔31a同士を隔てる隔壁33aに対して、1つずつ設けてもよいし、複数設けてもよい。 It does not specifically limit as the number of the recessed parts 34, You may provide one each with respect to the partition 33a which separates each adjacent large volume through-holes 31a, and you may provide two or more.

隣り合う大容積貫通孔21a、31a同士を隔てる隔壁23b、33bの厚さは特に限定されないが、望ましい下限は0.2mmであり、望ましい上限は1.2mmである。0.2mm未満であると、隣り合う大容積貫通孔21a、31a同士を隔てる隔壁23b、33bに触媒を充分に担持させることができなかったり、一体型ハニカム構造体20、30の強度が充分でないことがある。一方、1.2mmを超えると、隣り合う大容積貫通孔21a同士を隔てる隔壁23bの通気性が低下し、排気ガスの浄化能力が低下したり、一体型ハニカム構造体20、30の圧力損失が上昇してしまうことがある。 The thicknesses of the partition walls 23b and 33b separating the adjacent large-volume through holes 21a and 31a are not particularly limited, but a desirable lower limit is 0.2 mm and a desirable upper limit is 1.2 mm. If it is less than 0.2 mm, the partition walls 23b and 33b separating the adjacent large-volume through-holes 21a and 31a cannot be sufficiently supported, and the integrated honeycomb structures 20 and 30 are not strong enough. Sometimes. On the other hand, if it exceeds 1.2 mm, the air permeability of the partition wall 23b separating adjacent large-volume through-holes 21a decreases, the exhaust gas purification ability decreases, and the pressure loss of the integrated honeycomb structures 20 and 30 decreases. May rise.

また、隣り合う大容積貫通孔21a、31aと小容積貫通孔21b、31bとを隔てる隔壁23a、33aの厚さは特に限定されないが、望ましい下限は0.2mmであり、望ましい上限は1.2mmである。0.2mm未満であると、隣り合う大容積貫通孔21a、31aと小容積貫通孔21b、31bとを隔てる隔壁23a、33aに触媒を充分に担持させることができなかったり、一体型ハニカム構造体20、30の強度が充分でないことがある。一方、1.2mmを超えると、隣り合う大容積貫通孔21a、31aと小容積貫通孔21b、31bとを隔てる隔壁23a、33aの通気性が低下し、排気ガスの浄化能力が低下したり、一体型ハニカム構造体20、30の圧力損失が上昇してしまうことがある。 Further, the thickness of the partition walls 23a and 33a separating the adjacent large volume through holes 21a and 31a and the small volume through holes 21b and 31b is not particularly limited, but the desirable lower limit is 0.2 mm, and the desirable upper limit is 1.2 mm. It is. If it is less than 0.2 mm, the catalyst cannot be sufficiently supported on the partition walls 23a and 33a separating the adjacent large-volume through-holes 21a and 31a and the small-volume through-holes 21b and 31b. The strength of 20, 30 may not be sufficient. On the other hand, if it exceeds 1.2 mm, the air permeability of the partition walls 23a and 33a separating the adjacent large volume through-holes 21a and 31a and the small volume through-holes 21b and 31b decreases, and the exhaust gas purification capacity decreases. The pressure loss of the integrated honeycomb structures 20 and 30 may increase.

なお、隣り合う大容積貫通孔21a、31a同士を隔てる隔壁23b、33bは、隣り合う大容積貫通孔21a、31aと小容積貫通孔21b、31bとを隔てる隔壁23a、33aよりも厚く形成されることが望ましい。隔壁23b、33bを厚くすることで、隔壁23b、33bに多量の触媒を担持させることが可能となるが、入口側貫通孔同士を隔てる隔壁である隔壁23b、33bは、その厚さを厚くし、多量の触媒を担持させても、圧力損失への影響が小さいからである。 The partition walls 23b and 33b separating the adjacent large volume through holes 21a and 31a are formed thicker than the partition walls 23a and 33a separating the adjacent large volume through holes 21a and 31a and the small volume through holes 21b and 31b. It is desirable. By increasing the thickness of the partition walls 23b and 33b, it is possible to support a large amount of catalyst on the partition walls 23b and 33b. However, the partition walls 23b and 33b, which are the partition walls separating the inlet-side through holes, are made thicker. This is because even if a large amount of catalyst is supported, the influence on the pressure loss is small.

本発明の一体型ハニカム構造体では、隣り合う上記大容積貫通孔同士を隔てる上記隔壁に、触媒を選択的に担持させるための選択的触媒担持部が設けられているため、排気ガスは、まず最初に、選択的触媒担持部が設けられていない隔壁、すなわち隣り合う大容積貫通孔と小容積貫通孔とを隔てる隔壁(隔壁B)に流入し、その隔壁にパティキュレートが堆積する。
そして、隣り合う大容積貫通孔と小容積貫通孔とを隔てる隔壁(隔壁B)にパティキュレートがある程度堆積すると、圧力損失が高くなるため、隣り合う大容積貫通孔同士を隔てる隔壁(隔壁A)にも排気ガスが流入するようになり、特にフィルタの再生時には、排気ガス中のHC、CO等が酸化され、酸化反応により熱が発生してフィルタの温度が上昇し、堆積したパティキュレートが燃えやすくなる。
パティキュレートが燃焼すると、圧力損失が低くなるため、隔壁Bに排気ガスが流入し、その後、上記した過程を繰り返す。
In the monolithic honeycomb structure of the present invention, since the selective catalyst supporting part for selectively supporting the catalyst is provided on the partition walls separating the adjacent large-volume through holes, the exhaust gas is first First, it flows into a partition wall in which the selective catalyst support portion is not provided, that is, a partition wall (partition wall B) separating adjacent large-volume through holes and small-volume through holes, and particulates accumulate on the partition walls.
When a certain amount of particulate is deposited on the partition wall (partition B) that separates the adjacent large-volume through-holes from the small-volume through-hole, pressure loss increases. Exhaust gas also flows into the exhaust gas, and especially during filter regeneration, HC, CO, etc. in the exhaust gas are oxidized, heat is generated by the oxidation reaction, the temperature of the filter rises, and the accumulated particulates burn. It becomes easy.
When the particulates burn, the pressure loss becomes low, so the exhaust gas flows into the partition wall B, and then the above process is repeated.

従って、隔壁Aは、フィルタに熱を供給して温度を上昇させる機能(熱供給機能)を有し、一方、隔壁Bは、パティキュレートの堆積時、及び、その燃焼時の両方を通じて排気ガスを通過させ、フィルタの圧力損失が上昇することを抑制する機能(圧力損失上昇抑制機能)を有する。ここで、隔壁Aは、もともと排気ガスを通過させにくい隔壁であることから、NOx吸蔵触媒等の大量に担持する必要がある触媒を担持させたとしても、圧力損失の上昇は生じにくい。さらに、パティキュレートが燃焼してアッシュが生成した際、隔壁Aでは、触媒上でパティキュレートの燃焼が起こりやすいために、アッシュは、隔壁A上に付着したままの状態で堆積しやすい。しかしながら、隔壁Aは、上述したように、圧力損失の上昇の原因となりにくい隔壁であるため、アッシュが堆積したとしても圧力損失の上昇は起こりにくい。
また、隔壁A上に堆積したアッシュは、同時に、隔壁A上における温度低下を防止し、熱供給機能を担保する役目も果たす。一方、隔壁Bで、隔壁Aから供給された熱によるパティキュレートの燃焼により生じたアッシュは、隔壁Bの表面に付着している触媒が少ないために剥がれやすく、通過する排気ガスにより、フィルタ後方へと飛散して堆積しやすく、隔壁Bに起因する圧力損失の上昇が抑制される。
Therefore, the partition wall A has a function of increasing the temperature by supplying heat to the filter (heat supply function), while the partition wall B emits exhaust gas both during particulate deposition and during combustion. It has a function of suppressing the pressure loss of the filter from increasing (pressure loss increase suppressing function). Here, since the partition wall A is originally a partition wall through which exhaust gas hardly passes, even if a catalyst that needs to be supported in a large amount, such as a NOx storage catalyst, is supported, an increase in pressure loss hardly occurs. Further, when particulates burn and ash is generated, particulates are likely to burn on the catalyst in the partition wall A, so the ash is likely to be deposited on the partition wall A. However, since the partition wall A is a partition wall that is unlikely to cause an increase in pressure loss as described above, even if ash is deposited, the pressure loss is unlikely to increase.
Further, the ash deposited on the partition wall A also serves to prevent a temperature drop on the partition wall A and secure a heat supply function. On the other hand, the ash generated by the burning of the particulates due to the heat supplied from the partition wall A in the partition wall B is easy to peel off due to the small amount of catalyst adhering to the surface of the partition wall B. It is easy to scatter and accumulate, and an increase in pressure loss due to the partition wall B is suppressed.

本発明の一体型ハニカム構造体には、少なくとも上記選択的触媒担持部に触媒が担持されている。勿論、上記選択的触媒担持部以外に触媒が担持されていてもよく、大容積貫通孔内の隔壁に触媒が担持されていることが望ましい。
上記触媒としては特に限定されないが、パティキュレートの燃焼の活性化エネルギーを低下させるものや、CO、HC及びNOx等の排気ガス中の有害なガス成分を浄化することができるもの等が望ましく、例えば、白金、パラジウム、ロジウム等の貴金属等を挙げることができる。なかでも、白金、パラジウム、ロジウムからなる、いわゆる三元触媒が望ましい。また、貴金属に加えて、アルカリ金属(元素周期表1族)、アルカリ土類金属(元素周期表2族)、希土類元素(元素周期表3族)、遷移金属元素等を担持させてもよい。
In the integral honeycomb structure of the present invention, a catalyst is supported on at least the selective catalyst supporting portion. Of course, a catalyst may be supported in addition to the selective catalyst support, and it is desirable that the catalyst be supported on the partition wall in the large-volume through hole.
The catalyst is not particularly limited, but a catalyst that lowers the activation energy of particulate combustion, a catalyst that can purify harmful gas components in exhaust gas such as CO, HC, and NOx is desirable. , Noble metals such as platinum, palladium and rhodium. Among these, a so-called three-way catalyst composed of platinum, palladium, and rhodium is desirable. In addition to the noble metal, an alkali metal (element periodic table group 1), an alkaline earth metal (element periodic table group 2), a rare earth element (element periodic table group 3), a transition metal element, or the like may be supported.

上記触媒は、隔壁内部の気孔の表面に担持されていてもよいし、隔壁上にある厚みをもって担持されていてもよい。また、上記触媒は、隔壁の表面及び/又は気孔の表面に均一に担持されていてもよいし、ある一定の場所に偏って担持されていてもよい。なお、上記選択的触媒担持部を構成する隔壁についても同様である。 The catalyst may be supported on the surface of pores inside the partition walls, or may be supported with a certain thickness on the partition walls. Further, the catalyst may be uniformly supported on the surface of the partition wall and / or the surface of the pores, or may be supported unevenly at a certain place. The same applies to the partition walls constituting the selective catalyst support.

なかでも、上記触媒は、隔壁の表面に担持されていることが望ましく、上記選択的触媒担持部の表面に多量に担持されていることが望ましい。上記触媒とパティキュレートとが接触しやすいため、排気ガスの浄化を効率よく行うことができるからである。 Among these, the catalyst is desirably supported on the surface of the partition wall, and is desirably supported in a large amount on the surface of the selective catalyst supporting portion. This is because the catalyst and the particulates are easily in contact with each other, so that exhaust gas can be purified efficiently.

また、一体型ハニカム構造体に上記触媒を付与する際には、予めその表面をアルミナ等のサポート材により被覆した後に、上記触媒を付与することが望ましい。これにより、比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすことができる。また、サポート材によって触媒金属のシンタリングを防止することができるので、触媒の耐熱性も向上する。加えて、圧力損失を下げることを可能にする。 In addition, when applying the catalyst to the integral honeycomb structure, it is desirable to apply the catalyst after the surface is previously coated with a support material such as alumina. Thereby, a specific surface area can be enlarged, the dispersion degree of a catalyst can be improved, and the reaction site | part of a catalyst can be increased. Moreover, since the sintering of the catalyst metal can be prevented by the support material, the heat resistance of the catalyst is also improved. In addition, it is possible to reduce the pressure loss.

このような触媒が担持されていることで、一体型ハニカム構造体は、排気ガス中のパティキュレートを捕集するフィルタとして機能するとともに、排気ガスに含有されるCO、HC及びNOx等を浄化するための触媒コンバータとして機能することができる。
なお、本発明の一体型ハニカム構造体は、従来公知の触媒付DPF(ディーゼル・パティキュレート・フィルタ)と同様のガス浄化装置として機能するものである。従って、ここでは、本発明の一体型ハニカム構造体の触媒担持体としての機能に関する詳しい説明を省略する。
By supporting such a catalyst, the integral honeycomb structure functions as a filter that collects particulates in the exhaust gas, and purifies CO, HC, NOx, and the like contained in the exhaust gas. Can function as a catalytic converter.
The integral honeycomb structure of the present invention functions as a gas purification device similar to a conventionally known DPF with a catalyst (diesel particulate filter). Therefore, the detailed description about the function as a catalyst carrier of the integral honeycomb structure of the present invention is omitted here.

一体型ハニカム構造体は、主として多孔質セラミックからなることが望ましく、その材料としては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージュライト、ムライト、シリカ等の酸化物セラミック等を挙げることができる。また、一体型ハニカム構造体20は、シリコンと炭化珪素との複合体、チタン酸アルミニウムといった2種類以上の材料から形成されているものであってもよい。 The monolithic honeycomb structure is preferably mainly composed of a porous ceramic, and examples of the material thereof include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, silicon carbide, zirconium carbide, titanium carbide, Examples thereof include carbide ceramics such as tantalum carbide and tungsten carbide, and oxide ceramics such as alumina, zirconia, cordierite, mullite, and silica. The integral honeycomb structure 20 may be formed of two or more kinds of materials such as a composite of silicon and silicon carbide and aluminum titanate.

一体型ハニカム構造体を製造する際に使用するセラミックの粒径としては特に限定されないが、後の焼成工程で収縮が少ないものが望ましく、例えば、0.3〜50μm程度の平均粒径を有する粉末100重量部と、0.1〜1.0μm程度の平均粒径を有する粉末5〜65重量部とを組み合わせたものが望ましい。上記粒径のセラミック粉末を上記配合で混合することで、多孔質セラミックからなる一体型ハニカム構造体を製造することができる。 The particle size of the ceramic used for manufacturing the monolithic honeycomb structure is not particularly limited, but it is desirable that the particle size is small in the subsequent firing step, for example, a powder having an average particle size of about 0.3 to 50 μm. A combination of 100 parts by weight and 5 to 65 parts by weight of powder having an average particle diameter of about 0.1 to 1.0 μm is desirable. By mixing the ceramic powder having the above particle diameter with the above composition, an integrated honeycomb structure made of porous ceramic can be manufactured.

なお、一体型ハニカム構造体を構成する封止材と隔壁とは、同じ多孔質セラミックからなることがより望ましい。これにより、両者の接着強度を高くすることができるとともに、封止材の気孔率を隔壁と同様に調整することで、隔壁の熱膨張率と封止材の熱膨張率との整合を図ることができ、製造時や使用時の熱応力によって封止材と隔壁との間に隙間が生じたり、封止材や封止材に接触する部分の隔壁にクラックが発生したりすることを防止することができる。 It is more desirable that the sealing material and the partition walls constituting the integral honeycomb structure are made of the same porous ceramic. As a result, the adhesive strength between the two can be increased, and the porosity of the sealing material can be adjusted in the same manner as that of the partition wall so that the thermal expansion coefficient of the partition wall can be matched with the thermal expansion coefficient of the sealing material. It can prevent gaps between the sealing material and the partition due to thermal stress during manufacturing and use, and cracks in the partition in contact with the sealing material and the sealing material. be able to.

一体型ハニカム構造体の気孔率は特に限定されないが、望ましい下限は20%であり、望ましい上限は80%である。20%未満であると、一体型ハニカム構造体20がすぐに目詰まりを起こすことがあり、一方、80%を超えると、一体型ハニカム構造体の強度が低下して容易に破壊されることがある。
なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡(SEM)による測定等の従来公知の方法により測定することができる。
The porosity of the monolithic honeycomb structure is not particularly limited, but a desirable lower limit is 20% and a desirable upper limit is 80%. If it is less than 20%, the integrated honeycomb structure 20 may be clogged immediately. On the other hand, if it exceeds 80%, the strength of the integrated honeycomb structure may be reduced and easily broken. is there.
The porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).

一体型ハニカム構造体の平均気孔径の望ましい下限は1μmであり、望ましい上限は100μmである。1μm未満であると、パティキュレートが容易に目詰まりを起こすことがある。一方、100μmを超えると、パティキュレートが気孔を通り抜けてしまい、該パティキュレートを捕集することができず、フィルタとして機能しないことがある。 The desirable lower limit of the average pore diameter of the monolithic honeycomb structure is 1 μm, and the desirable upper limit is 100 μm. If it is less than 1 μm, the particulates may easily clog. On the other hand, if it exceeds 100 μm, the particulates pass through the pores, and the particulates cannot be collected and may not function as a filter.

図1に示した一体型ハニカム構造体は、略四角柱状であるが、本発明の一体型ハニカム構造体の形状は柱状体であれば特に限定されず、例えば、長手方向に垂直な断面の形状が多角形、円形、楕円形、扇形等からなる柱状体を挙げることができる。 The integrated honeycomb structure shown in FIG. 1 has a substantially quadrangular prism shape, but the shape of the integrated honeycomb structure of the present invention is not particularly limited as long as it is a columnar body. For example, the shape of a cross section perpendicular to the longitudinal direction Can be mentioned columnar bodies made of polygons, circles, ellipses, sectors and the like.

また、本発明の一体型ハニカム構造体では、貫通孔は、長手方向に垂直な断面の面積が相対的に大きく、かつ、本発明の一体型ハニカム構造体の入口側の端部で封止されてなる大容積貫通孔と、上記断面の面積が相対的に小さく、かつ、本発明の一体型ハニカム構造体の出口側の端部で封止されてなる小容積貫通孔との2種類の貫通孔からなる。 In the integrated honeycomb structure of the present invention, the through-hole has a relatively large cross-sectional area perpendicular to the longitudinal direction, and is sealed at the end portion on the inlet side of the integrated honeycomb structure of the present invention. Two types of through-holes, ie, a large-volume through-hole and a small-volume through-hole having a relatively small cross-sectional area and sealed at the end portion on the outlet side of the integrated honeycomb structure of the present invention It consists of holes.

パティキュレートを捕集して圧力損失が上昇した排気ガス浄化用フィルタを再生する際には、パティキュレートを燃焼させるが、パティキュレート中には、燃焼して消滅する炭素等のほかに、燃焼して酸化物となる金属等が含まれており、これらが排気ガス浄化用フィルタ中にアッシュとして残留する。アッシュは、通常、排気ガス浄化用フィルタの出口に近いところに残留するので、排気ガス浄化用フィルタを構成する貫通孔は、出口に近いところからアッシュが充填されていき、アッシュが充填された部分の容積が次第に大きくなるとともに、排気ガス浄化用フィルタとして機能する部分の容積(面積)が次第に小さくなっていく。そして、アッシュの蓄積量が多くなりすぎると、もはやフィルタとして機能しなくなり、排気管から取り出して逆洗浄を行ってアッシュを排気ガス浄化用フィルタから取り除くか、排気ガス浄化用フィルタを廃棄することとなる。 When regenerating an exhaust gas purification filter that has collected particulates and has increased pressure loss, the particulates are burned, but in addition to carbon that burns and disappears, the particulates also burn. Thus, oxides and other metals are contained, and these remain as ash in the exhaust gas purification filter. Since ash usually remains near the outlet of the exhaust gas purification filter, the through holes constituting the exhaust gas purification filter are filled with ash from the vicinity of the outlet, and the portion filled with ash The volume (area) of the portion that functions as the exhaust gas purifying filter gradually decreases. And if the amount of accumulated ash becomes too large, it will no longer function as a filter, and it will be removed from the exhaust pipe and backwashed to remove the ash from the exhaust gas purification filter, or the exhaust gas purification filter will be discarded. Become.

本発明の一体型ハニカム構造体は、入口側貫通孔の容積と出口側貫通孔の容積とが同じものと比べると、アッシュが蓄積しても、排気ガス浄化用フィルタとして機能する部分の容積(面積)は減少比率が小さく、アッシュに起因する圧力損失も小さくなる。また、パティキュレートが燃焼してアッシュが生成した際、隔壁Aでは、触媒上でパティキュレートの燃焼が起こりやすいために、アッシュは、隔壁A上に付着したままの状態で堆積しやすい。しかしながら、隔壁Aは、圧力損失の上昇の原因となりにくい隔壁であるため、アッシュの堆積に伴う圧力損失の上昇は起こりにくい。
また、隔壁A上に堆積したアッシュは、同時に、隔壁A上における温度低下を防止し、熱供給機能を担保する役目も果たす。一方、隔壁Bで、隔壁Aから供給された熱によるパティキュレートの燃焼により生じたアッシュは、隔壁Bの表面に付着している触媒が少ないために剥がれやすく、通過する排気ガスにより、フィルタ後方へと飛散して堆積しやすく、隔壁Bに起因する圧力損失の上昇が抑制される。
このように、本発明の一体型ハニカム構造体では、逆洗浄等を必要とするまでの期間も長くなり、排気ガス浄化用フィルタとしての寿命を長くすることができる。その結果、逆洗や交換等により必要となるメンテナンス費用を大幅に削減することができる。
The integrated honeycomb structure of the present invention has a volume of a portion that functions as an exhaust gas purifying filter even if ash is accumulated (compared with the same volume of the inlet side through hole and the outlet side through hole) ( (Area) has a small reduction ratio, and pressure loss due to ash is also small. In addition, when particulates burn and ash is generated, particulates are likely to burn on the catalyst in the partition wall A, so the ash is likely to be deposited on the partition wall A. However, since the partition wall A is a partition wall that is unlikely to cause an increase in pressure loss, the increase in pressure loss due to ash deposition hardly occurs.
Further, the ash deposited on the partition wall A also serves to prevent a temperature drop on the partition wall A and secure a heat supply function. On the other hand, the ash generated by the burning of the particulates due to the heat supplied from the partition wall A in the partition wall B is easy to peel off due to the small amount of catalyst adhering to the surface of the partition wall B. It is easy to scatter and accumulate, and an increase in pressure loss due to the partition wall B is suppressed.
As described above, in the integral honeycomb structure of the present invention, the period until the reverse cleaning or the like is required is extended, and the life as the exhaust gas purifying filter can be extended. As a result, maintenance costs required for backwashing and replacement can be greatly reduced.

また、近年、触媒を担持したハニカム構造体では、触媒のコート層の上に、アッシュが堆積する現象が報告されている。このようなアッシュの堆積状態であっても、本発明の一体型ハニカム構造体では、もともと圧力損失が増加しにくい隔壁にアッシュが担持されているため、アッシュの堆積による圧力損失の上昇を抑制することができる。 In recent years, in a honeycomb structure carrying a catalyst, a phenomenon in which ash is deposited on the coat layer of the catalyst has been reported. Even in such an ash accumulation state, in the integrated honeycomb structure of the present invention, the ash is originally supported on the partition walls in which the pressure loss is unlikely to increase, so that an increase in the pressure loss due to the ash accumulation is suppressed. be able to.

図1に示したような構成からなる本発明の一体型ハニカム構造体では、大容積貫通孔及び/又は小容積貫通孔の長手方向に垂直な断面の形状は、多角形であることが望ましい。多角形にすることにより、ハニカム構造体の長手方向に垂直な断面における隔壁の面積を減少させて開口率を高くしても、耐久性に優れるとともに、長寿命のハニカム構造体を実現することができるからである。なかでも、4角形以上の多角形がより望ましく、その角の少なくとも1つが鈍角であることがさらに望ましい。ガスが貫通孔を通過する際の摩擦に起因する圧力損失を低減することができるからである。なお、大容積貫通孔のみの上記断面の形状を四角形、五角形、台形、八角形等の多角形としてもよく、小容積貫通孔のみの上記断面の形状を多角形としてもよく、両方を多角形としてもよい。特に、大容積貫通孔の長手方向に垂直な断面の形状が八角形であり、小容積貫通孔の上記断面の形状が四角形であることが望ましい。 In the monolithic honeycomb structure of the present invention having the configuration shown in FIG. 1, the cross-sectional shape perpendicular to the longitudinal direction of the large volume through hole and / or the small volume through hole is preferably a polygon. By making it polygonal, it is possible to achieve a long-life honeycomb structure with excellent durability even when the partition area in the cross section perpendicular to the longitudinal direction of the honeycomb structure is reduced to increase the aperture ratio. Because it can. Among them, a polygon having a quadrangular shape or more is more preferable, and at least one of the corners is more preferably an obtuse angle. It is because the pressure loss resulting from the friction at the time of gas passing through a through-hole can be reduced. In addition, the shape of the cross-section only for the large-volume through hole may be a polygon such as a quadrangle, pentagon, trapezoid, octagon, etc. The shape of the cross-section only for the small-volume through-hole may be a polygon, and both are polygons It is good. In particular, it is desirable that the cross-sectional shape perpendicular to the longitudinal direction of the large-volume through hole is an octagon, and the cross-sectional shape of the small-volume through hole is a quadrangle.

本発明の一体型ハニカム構造体では、大容積貫通孔の長手方向に垂直な断面における面積の総和と、小容積貫通孔の上記断面における面積の総和との比(大容積貫通孔総断面積/小容積貫通孔総断面積;以下、開口率比ともいう)の望ましい下限は1.5であり、望ましい上限は2.7である。上記面積比が1.5未満であると、殆ど大容積貫通孔と小容積貫通孔とを設けた効果を得ることができないことがある。一方、上記面積比が2.7を超えると、小容積貫通孔の容積が小さすぎるため、パティキュレート捕集前の圧力損失が大きくなり過ぎることがある。 In the integrated honeycomb structure of the present invention, the ratio of the total area in the cross section perpendicular to the longitudinal direction of the large volume through hole and the total area in the cross section of the small volume through hole (total cross section area of the large volume through hole / The desirable lower limit of the total cross-sectional area of the small volume through-hole; hereinafter referred to as the aperture ratio is 1.5, and the desirable upper limit is 2.7. If the area ratio is less than 1.5, the effect of providing a large volume through hole and a small volume through hole may not be obtained. On the other hand, when the area ratio exceeds 2.7, the volume of the small-volume through hole is too small, and thus the pressure loss before the particulate collection may become too large.

本発明の一体型ハニカム構造体では、大容積貫通孔及び/又は小容積貫通孔の長手方向に垂直な断面の角部近傍は、曲線により構成されていることが望ましい。曲線にすることにより、貫通孔の角部に応力が集中することを防止して、クラックの発生を防止することができ、また、貫通孔を通過する際の摩擦に起因する圧力損失を低減することができる。 In the integrated honeycomb structure of the present invention, it is desirable that the vicinity of the corner of the cross section perpendicular to the longitudinal direction of the large volume through hole and / or the small volume through hole is constituted by a curve. By making it a curve, it is possible to prevent stress from concentrating on the corners of the through hole, prevent the generation of cracks, and reduce pressure loss caused by friction when passing through the through hole. be able to.

本発明の一体型ハニカム構造体では、隣り合う大容積貫通孔の長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔の上記断面における重心間距離とが等しいことが望ましい。これにより、再生時に熱が均一に拡散する結果、温度分布が均一になりやすく、長期間繰り返し使用しても、熱応力に起因するクラック等が発生しにくい耐久性に優れたハニカム構造体となる。
なお、本発明において、「隣り合う大容積貫通孔の長手方向に垂直な断面の重心間距離」とは、一の大容積貫通孔の長手方向に垂直な断面における重心と、他の大容積貫通孔の上記断面における重心との最小の距離のことを意味し、一方、「隣り合う小容積貫通孔の上記断面の重心間距離」とは、一の小容積貫通孔の長手方向に垂直な断面における重心と、他の小容積貫通孔の上記断面における重心との最小の距離のことを意味する。
In the integrated honeycomb structure of the present invention, it is desirable that the distance between the centroids in the cross section perpendicular to the longitudinal direction of the adjacent large-volume through holes is equal to the distance between the centroids in the cross-section of the adjacent small-volume through holes. As a result, the heat is evenly diffused during regeneration, so that the temperature distribution is likely to be uniform, and a honeycomb structure having excellent durability in which cracks and the like due to thermal stress are unlikely to occur even after repeated use over a long period of time. .
In the present invention, “the distance between the centroids of the cross-sections perpendicular to the longitudinal direction of adjacent large-volume through holes” refers to the centroid of the cross-section perpendicular to the longitudinal direction of one large-volume through hole and the other large-volume through-holes. It means the minimum distance from the center of gravity in the cross section of the hole, while the “distance between the centers of gravity of the cross sections of adjacent small volume through holes” is a cross section perpendicular to the longitudinal direction of one small volume through hole. Means the minimum distance between the center of gravity and the center of gravity of the other small-volume through hole in the cross section.

また、図1に示した一体型ハニカム構造体10において、大容積貫通孔21aと小容積貫通孔21bとは、隔壁23を隔てて上下方向及び左右方向に交互に並設されており、各方向における大容積貫通孔21aの長手方向に垂直な断面の重心と小容積貫通孔21bの長手方向に垂直な断面の重心とは、一直線上に存在する。
従って、上記「隣り合う大容積貫通孔の長手方向に垂直な断面における重心間距離」及び「隣り合う小容積貫通孔の上記断面における重心間距離」とは、一体型ハニカム構造体10の長手方向に垂直な断面において、互いに斜めに隣り合う大容積貫通孔21a及び小容積貫通孔21bの重心間の距離をいう。
In the integrated honeycomb structure 10 shown in FIG. 1, the large-volume through-holes 21a and the small-volume through-holes 21b are alternately arranged in the vertical direction and the horizontal direction across the partition wall 23. The center of gravity of the cross section perpendicular to the longitudinal direction of the large volume through hole 21a and the center of gravity of the cross section perpendicular to the longitudinal direction of the small volume through hole 21b are in a straight line.
Therefore, the “distance between centroids in the cross section perpendicular to the longitudinal direction of the adjacent large-volume through-holes” and “distance between centroids in the cross-section of the adjacent small-volume through-holes” are the longitudinal direction of the integrated honeycomb structure 10. The distance between the centers of gravity of the large-volume through-holes 21a and the small-volume through-holes 21b that are obliquely adjacent to each other in a cross section perpendicular to the vertical axis.

本発明の一体型ハニカム構造体では、大容積貫通孔及び小容積貫通孔の数は特に限定されないが、実質的に同数であることが望ましい。このような構成にすると、排気ガスの濾過に関与しにくい隔壁を最小限にすることができ、入口側貫通孔を通過する際の摩擦及び/又は出口側貫通孔を通過する際の摩擦に起因する圧力損失が必要以上に上昇することを抑えることが可能である。例えば、図2に示すような貫通孔の数が実質的に大容積貫通孔101と小容積貫通孔102とで1:2であるハニカム構造体100と比較すると、貫通孔の数が実質的に同数である場合では、出口側貫通孔を通過する際の摩擦による圧力損失が低いため、ハニカム構造体全体としての圧力損失が低くなる。 In the integrated honeycomb structure of the present invention, the numbers of the large volume through holes and the small volume through holes are not particularly limited, but are desirably substantially the same. With such a configuration, it is possible to minimize the partition wall that is not easily involved in exhaust gas filtration, and is caused by friction when passing through the inlet side through hole and / or friction when passing through the outlet side through hole. It is possible to suppress the pressure loss to increase more than necessary. For example, when compared with the honeycomb structure 100 in which the number of through holes as shown in FIG. 2 is substantially 1: 2 between the large volume through holes 101 and the small volume through holes 102, the number of through holes is substantially equal. In the case of the same number, the pressure loss due to friction when passing through the outlet side through hole is low, so the pressure loss of the entire honeycomb structure is low.

次に、本発明の一体型ハニカム構造体の長手方向に垂直な断面における大容積貫通孔及び小容積貫通孔の構成の具体例について説明する。
図3(a)〜(d)及び図4(a)〜(f)は、本発明の一体型ハニカム構造体における長手方向に垂直な断面を模式的に示した断面図であり、図3(e)は、従来の一体型ハニカム構造体における長手方向に垂直な断面を模式的に示した断面図である。
Next, a specific example of the configuration of the large volume through hole and the small volume through hole in a cross section perpendicular to the longitudinal direction of the integral honeycomb structure of the present invention will be described.
FIGS. 3A to 3D and FIGS. 4A to 4F are cross-sectional views schematically showing a cross section perpendicular to the longitudinal direction in the integral honeycomb structure of the present invention. e) is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction in a conventional integrated honeycomb structure.

図3(a)に示した一体型ハニカム構造体110は、上記開口率比がほぼ1.55、図3(b)に示した一体型ハニカム構造体120は、ほぼ2.54、図3(c)に示した一体型ハニカム構造体130は、ほぼ4.45、図3(d)に示した一体型ハニカム構造体140は、ほぼ6.00である。また、図4(a)、(c)、(e)は、上記開口率比がすべてほぼ4.45であり、図4(b)、(d)、(f)は、すべてほぼ6.00である。
なお、図3(d)に示した一体型ハニカム構造体140のように、上記開口率比が大きいと、小容積貫通孔141bの容積が小さすぎるため、初期の圧力損失が大きくなりすぎることがある。
The integrated honeycomb structure 110 shown in FIG. 3A has an aperture ratio of approximately 1.55, and the integrated honeycomb structure 120 shown in FIG. 3B has approximately 2.54, FIG. The integrated honeycomb structure 130 shown in c) is approximately 4.45, and the integrated honeycomb structure 140 shown in FIG. 3D is approximately 6.00. 4 (a), (c), and (e) all have an aperture ratio of about 4.45, and FIGS. 4 (b), (d), and (f) all have about 6.00. It is.
Note that, as in the integrated honeycomb structure 140 shown in FIG. 3D, if the ratio of the aperture ratio is large, the volume of the small-volume through-hole 141b is too small, and the initial pressure loss may be too large. is there.

図3(a)〜(d)に示す一体型ハニカム構造体110、120、130、140では、大容積貫通孔111a、121a、131a、141a同士を隔てる隔壁に凸部114、124、134、144が設けられており、大容積貫通孔111a、121a、131a、141aの凸部114、124、134、144を除く上記断面形状は8角形であり、小容積貫通孔111b、121b、131b、141bの上記断面形状は4角形であり、大容積貫通孔111a、121a、131a、141aと小容積貫通孔111b、121b、131b、141bとが交互に配列されている。なお、図3(a)〜(d)に示す一体型ハニカム構造体では、小容積貫通孔の断面積を変化させ、大容積貫通孔の断面形状を少し変化させることにより、上記開口率比を任意に変動させることが容易にできる。同様に、図4に示す一体型ハニカム構造体に関しても任意にその開口率比を変動させることができる。また、図3(a)〜(d)に示したように、本発明の一体型ハニカム構造体の外周の角部には、面取りが施されていることが望ましい。
なお、図3(e)に示した一体型ハニカム構造体150は、入口側貫通孔152a及び出口側貫通孔152bの上記断面形状はともに4角形であり、それぞれが交互に配列されている。
In the integrated honeycomb structures 110, 120, 130, and 140 shown in FIGS. 3A to 3D, the convex portions 114, 124, 134, and 144 are formed on the partition walls that separate the large-volume through holes 111a, 121a, 131a, and 141a. The cross-sectional shape excluding the convex portions 114, 124, 134, 144 of the large-volume through holes 111a, 121a, 131a, 141a is an octagon, and the small-volume through holes 111b, 121b, 131b, 141b The cross-sectional shape is a quadrangle, and large-volume through holes 111a, 121a, 131a, 141a and small-volume through holes 111b, 121b, 131b, 141b are alternately arranged. In addition, in the integrated honeycomb structure shown in FIGS. 3A to 3D, the opening ratio is changed by changing the cross-sectional area of the small-volume through hole and slightly changing the cross-sectional shape of the large-volume through hole. It can be easily changed arbitrarily. Similarly, the aperture ratio of the integrated honeycomb structure shown in FIG. 4 can be arbitrarily changed. Further, as shown in FIGS. 3A to 3D, it is desirable that the corners on the outer periphery of the integrated honeycomb structure of the present invention be chamfered.
In the integrated honeycomb structure 150 shown in FIG. 3E, the cross-sectional shapes of the inlet-side through holes 152a and the outlet-side through holes 152b are both quadrangles, and they are alternately arranged.

図4(a)〜(b)に示す一体型ハニカム構造体160、260では、大容積貫通孔161a、261a同士を隔てる隔壁に凸部164、264が設けられており、大容積貫通孔161a、261aの凸部164、264を除く上記断面形状は5角形であり、そのうちの3つの角がほぼ直角となっており、小容積貫通孔161b、261bの上記断面形状は4角形で、それぞれ大きな四角形の斜めに対向する部分を占めるように構成されている。図4(c)〜(d)に示す一体型ハニカム構造体170、270では、大容積貫通孔171a、271a同士を隔てる隔壁に凸部174、274が設けられている。なお、図4(c)〜(d)に示す一体型ハニカム構造体170、270の上記断面形状は、図3(a)〜(d)に示す上記断面形状を変形したものであって、大容積貫通孔171a、271aと小容積貫通孔171b、271bとが共有する隔壁を小容積貫通孔側にある曲率を持って広げた形状である。この曲率は任意のものであってよく、例えば、隔壁を構成する曲線が1/4円に相当するものであってもよい。この場合、その上記開口率比は3.66となる。従って、図4(c)〜(d)に示す一体型ハニカム構造体170、270では、隔壁を構成する曲線が1/4円に相当するものよりも、さらに小容積貫通孔171b、271bの上記断面の面積が小さくなっている。図4(e)〜(f)に示す一体型ハニカム構造体180、280では、大容積貫通孔181a、281a同士を隔てる隔壁に凸部184、284が設けられており、大容積貫通孔181a、281aの凸部184、284を除く上記断面形状、及び、小容積貫通孔281b、281bの上記断面形状は4角形(長方形)であり、2つの大容積貫通孔と2つの小容積貫通孔を組み合わせると、ほぼ正方形となるように構成されている。 In the integral honeycomb structures 160 and 260 shown in FIGS. 4A to 4B, the partition walls separating the large volume through holes 161a and 261a are provided with convex portions 164 and 264, and the large volume through holes 161a, The cross-sectional shape excluding the convex portions 164 and 264 of 261a is a pentagon, and three corners thereof are substantially perpendicular, and the cross-sectional shapes of the small-volume through-holes 161b and 261b are quadrangular, each having a large square shape. It is comprised so that the part which diagonally faces may be occupied. In the integrated honeycomb structures 170 and 270 shown in FIGS. 4C to 4D, convex portions 174 and 274 are provided on the partition walls that separate the large-volume through holes 171a and 271a. The cross-sectional shapes of the integrated honeycomb structures 170 and 270 shown in FIGS. 4C to 4D are obtained by modifying the cross-sectional shapes shown in FIGS. The partition walls shared by the volume through-holes 171a and 271a and the small volume through-holes 171b and 271b are widened with a curvature on the small volume through-hole side. This curvature may be arbitrary, for example, the curve which comprises a partition may correspond to 1/4 circle. In this case, the aperture ratio is 3.66. Therefore, in the integrated honeycomb structures 170 and 270 shown in FIGS. 4C to 4D, the small volume through-holes 171 b and 271 b described above are more than those in which the curves constituting the partition walls correspond to ¼ circle. The cross-sectional area is small. In the integrated honeycomb structures 180 and 280 shown in FIGS. 4E to 4F, convex portions 184 and 284 are provided on the partition walls separating the large-volume through-holes 181a and 281a, and the large-volume through-holes 181a and 281a, The cross-sectional shape excluding the convex portions 184 and 284 of 281a and the cross-sectional shape of the small-volume through holes 281b and 281b are quadrangular (rectangular), and two large-volume through holes and two small-volume through-holes are combined. And it is comprised so that it may become a substantially square.

本発明の一体型ハニカム構造体の長手方向に垂直な断面における大容積貫通孔及び小容積貫通孔の構成のその他の具体例としては、例えば、図5に示した一体型ハニカム構造体190における大容積貫通孔191a、小容積貫通孔191b及び凸部194を設けた構成等を挙げることができる。 As another specific example of the configuration of the large volume through-holes and the small volume through-holes in the cross section perpendicular to the longitudinal direction of the integral honeycomb structure of the present invention, for example, the large size in the integral honeycomb structure 190 shown in FIG. The structure etc. which provided the volume through-hole 191a, the small volume through-hole 191b, and the convex part 194 can be mentioned.

本発明の一体型ハニカム構造体は、1個のみで一体型フィルタとして用いられてもよいが、シール材層を介して複数個結束されて集合体型フィルタとして用いられることが望ましい。上記集合体型フィルタとすることにより、上記シール材層により熱応力を低減してフィルタの耐熱性を向上させること、及び、本発明の一体型ハニカム構造体の個数を増減させることで自由にその大きさを調整すること等が可能となるからである。
なお、一体型フィルタと集合体型フィルタとは、同様の機能を有するものである。
Although the single unitary honeycomb structure of the present invention may be used as a single unit filter, it is desirable that a plurality of unitary honeycomb structures are bound together via a sealing material layer and used as an aggregate type filter. By using the aggregate filter, the thermal stress is reduced by the sealing material layer to improve the heat resistance of the filter, and the size can be freely increased by increasing or decreasing the number of integral honeycomb structures of the present invention. This is because it is possible to adjust the thickness.
The integral filter and the aggregate filter have the same function.

なお、本発明の一体型ハニカム構造体からなる一体型フィルタでは、その材料として、通常、コージェライト等の酸化物セラミックが使用される。安価に製造することができるとともに、比較的熱膨張係数が小さいため、製造中及び使用中に熱応力によってフィルタが破損する恐れが少ないからである。 In the integrated filter comprising the integrated honeycomb structure of the present invention, an oxide ceramic such as cordierite is usually used as the material. This is because the filter can be manufactured at a low cost and has a relatively small coefficient of thermal expansion, so that the filter is less likely to be damaged by thermal stress during manufacture and use.

また、図1には示していないが、本発明の一体型ハニカム構造体からなる一体型フィルタでは、下述の本発明の集合体型ハニカム構造体と同様に、外周面に本発明の一体型ハニカム構造体よりも気体を通過させにくい材質からなるシール材層が形成されていることが望ましい。上記シール材層が外周面に形成されることにより、上記シール材層により本発明の一体型ハニカム構造体を圧縮することができ、強度を向上し、クラックの発生に伴うセラミック粒子の脱粒を防止することができる。 Although not shown in FIG. 1, in the integral filter comprising the integral honeycomb structure of the present invention, the integral honeycomb structure of the present invention is formed on the outer peripheral surface as in the aggregated honeycomb structure of the present invention described below. It is desirable that a sealing material layer made of a material that hardly allows gas to pass through than the structure is formed. By forming the sealing material layer on the outer peripheral surface, the integral honeycomb structure of the present invention can be compressed by the sealing material layer, and the strength is improved and the ceramic particles are prevented from degranulating due to the occurrence of cracks. can do.

本発明の集合体型ハニカム構造体は、本発明の一体型ハニカム構造体がシール材層を介して複数個組み合わされてなるハニカムブロックの外周面に、本発明の一体型ハニカム構造体よりも気体を通過させにくい材質からなるシール材層が形成されてなるものであり、集合体型フィルタとして機能する。 The aggregated honeycomb structure of the present invention has a gas that is more gas than the integrated honeycomb structure of the present invention on the outer peripheral surface of a honeycomb block in which a plurality of the integrated honeycomb structures of the present invention are combined through a sealing material layer. A sealing material layer made of a material that is difficult to pass through is formed, and functions as an aggregate filter.

図6は、本発明の集合体型ハニカム構造体の一例を模式的に示した斜視図である。
図6に示したように、集合体型ハニカム構造体10は、排気ガス浄化用フィルタとして用いられるものであり、一体型ハニカム構造体20がシール材層14を介して複数個結束されてハニカムブロック15を構成し、このハニカムブロック15の周囲に、排気ガスの漏洩を防止するためのシール材層13が形成されているものである。なお、シール材層13は、一体型ハニカム構造体20よりも気体を通過させにくい材質からなる。
FIG. 6 is a perspective view schematically showing an example of the aggregated honeycomb structure of the present invention.
As shown in FIG. 6, the aggregated honeycomb structure 10 is used as an exhaust gas purifying filter, and a plurality of integrated honeycomb structures 20 are bundled through a sealing material layer 14 to form a honeycomb block 15. The sealing material layer 13 for preventing leakage of exhaust gas is formed around the honeycomb block 15. Note that the sealing material layer 13 is made of a material that is less likely to allow gas to pass than the integrated honeycomb structure 20.

なお、集合体型ハニカム構造体10では、一体型ハニカム構造体20を構成する材料として、熱伝導性、耐熱性、機械的特性及び耐薬品性等に優れた炭化珪素が望ましい。 In the aggregated honeycomb structure 10, silicon carbide having excellent thermal conductivity, heat resistance, mechanical characteristics, chemical resistance, and the like is desirable as a material constituting the integrated honeycomb structure 20.

集合体型ハニカム構造体10において、シール材層14は、一体型セラミック構造体20間に形成されたものであり、複数個の一体型セラミック構造体20同士を結束する接着剤として機能することが望ましい。一方、シール材層13は、ハニカムブロック15の外周面に形成され、集合体型ハニカム構造体10を内燃機関の排気通路に設置した際、ハニカムブロック15の外周面から貫通孔を通過する排気ガスが漏れ出すことを防止するための封止材として機能するものである。
なお、集合体型ハニカム構造体10において、シール材層13とシール材層14とは、同じ材料からなるものであってもよく、異なる材料からなるものであってもよい。さらに、シール材層13及びシール材層14が同じ材料からなるものである場合、その材料の配合比は同じであってもよく、異なっていてもよい。
In the aggregated honeycomb structure 10, the sealing material layer 14 is formed between the integrated ceramic structures 20, and preferably functions as an adhesive that binds the plurality of integrated ceramic structures 20 together. . On the other hand, the sealing material layer 13 is formed on the outer peripheral surface of the honeycomb block 15, and when the aggregated honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine, the exhaust gas passing through the through hole from the outer peripheral surface of the honeycomb block 15 is formed. It functions as a sealing material for preventing leakage.
In the aggregated honeycomb structure 10, the sealing material layer 13 and the sealing material layer 14 may be made of the same material or different materials. Furthermore, when the sealing material layer 13 and the sealing material layer 14 are made of the same material, the blending ratio of the materials may be the same or different.

ただし、シール材層14は、緻密体からなるものであってもよく、その内部への排気ガスの流入が可能なように、多孔質体からなるものであってもよいが、シール材層13は、緻密体からなるものであることが望ましい。シール材層13は、集合体型ハニカム構造体10を内燃機関の排気通路に設置した際、ハニカムブロック15の外周面から排気ガスが漏れ出すことを防止する目的で形成されているからである。 However, the sealing material layer 14 may be made of a dense body, or may be made of a porous body so that exhaust gas can flow into the inside thereof, but the sealing material layer 13 Is preferably a dense body. This is because the sealing material layer 13 is formed for the purpose of preventing the exhaust gas from leaking from the outer peripheral surface of the honeycomb block 15 when the aggregated honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine.

シール材層13及びシール材層14を構成する材料としては特に限定されず、例えば、無機バインダー、有機バインダー、無機繊維、及び/又は、無機粒子からなるもの等を挙げることができる。 It does not specifically limit as a material which comprises the sealing material layer 13 and the sealing material layer 14, For example, what consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle etc. can be mentioned.

上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機バインダーのなかでは、シリカゾルが望ましい。 Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica sol is desirable.

上記有機バインダーとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記有機バインダーのなかでは、カルボキシメチルセルロースが望ましい。 Examples of the organic binder include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the organic binders, carboxymethyl cellulose is desirable.

上記無機繊維としては、例えば、シリカ−アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機繊維のなかでは、シリカ−アルミナファイバーが望ましい。 Examples of the inorganic fiber include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the inorganic fibers, silica-alumina fibers are desirable.

上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には、炭化珪素、窒化珪素、窒化硼素等からなる無機粉末又はウィスカー等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機粒子のなかでは、熱伝導性に優れる炭化珪素が望ましい。 Examples of the inorganic particles include carbides and nitrides, and specific examples include inorganic powders or whiskers made of silicon carbide, silicon nitride, boron nitride, or the like. These may be used alone or in combination of two or more. Of the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.

なお、上述したように、本発明の一体型ハニカム構造体をそのまま排気ガス浄化用フィルタとして用いる場合には、本発明の集合体型ハニカム構造体と同様のシール材層が本発明の一体型ハニカム構造体の外周面に設けられてもよい。 As described above, when the integrated honeycomb structure of the present invention is used as it is as an exhaust gas purification filter, the same sealing material layer as that of the aggregated honeycomb structure of the present invention is used. It may be provided on the outer peripheral surface of the body.

図6に示した集合体型ハニカム構造体10は、円柱状であるが、本発明の集合体型ハニカム構造体の形状としては、柱状体であれば特に限定されず、例えば、長手方向に垂直な断面の形状が多角形、楕円形等からなる柱状体を挙げることができる。
本発明の集合体型ハニカム構造体は、本発明の一体型ハニカム構造体を複数個結束させた後、長手方向に垂直な断面の形状が多角形、円形又は楕円形等となるように外周部を加工してもよいし、予め本発明の一体型ハニカム構造体の上記断面形状を加工した後に、それらを接着剤により結束させることによって、長手方向に垂直な断面の形状を多角形、円形又は楕円形等としてもよく、例えば、長手方向に垂直な断面の形状が円を4分割した扇形である柱状の本発明の一体型ハニカム構造体を4個結束させて円柱状の本発明の集合体型ハニカム構造体を製造することができる。
The aggregate-type honeycomb structure 10 shown in FIG. 6 has a columnar shape, but the shape of the aggregate-type honeycomb structure of the present invention is not particularly limited as long as it is a columnar body, and for example, a cross section perpendicular to the longitudinal direction A columnar body whose shape is a polygon, an ellipse or the like can be mentioned.
The aggregated honeycomb structure of the present invention is formed by binding a plurality of the integral honeycomb structures of the present invention, and then forming an outer peripheral portion so that the cross-sectional shape perpendicular to the longitudinal direction is a polygon, a circle, an ellipse, or the like. The cross-sectional shape perpendicular to the longitudinal direction may be polygonal, circular, or elliptical by processing the cross-sectional shape of the integral honeycomb structure of the present invention in advance and binding them with an adhesive. For example, the column-shaped aggregate-type honeycomb of the present invention may be formed by bundling four columnar integral honeycomb structures of the present invention having a sector shape in which a cross-section perpendicular to the longitudinal direction is divided into four circles. A structure can be manufactured.

次に、上述した本発明のハニカム構造体の製造方法の一例について説明する。
本発明のハニカム構造体が、その全体が一の焼結体から構成された一体型フィルタである場合、まず、上述したようなセラミックを主成分とする原料ペーストを用いて押出成形を行い、上記選択的触媒担持部が形成され、本発明の一体型ハニカム構造体と略同形状のセラミック成形体を作製する。なお、上記選択的触媒担持部の形状は、上記押出成形に使用するダイの開口部形状を変更することにより、調整することができる。
Next, an example of a method for manufacturing the above-described honeycomb structure of the present invention will be described.
When the honeycomb structure of the present invention is an integral filter composed entirely of a single sintered body, first, extrusion molding is performed using a raw material paste mainly composed of ceramic as described above, A selective catalyst supporting portion is formed, and a ceramic molded body having substantially the same shape as the integral honeycomb structure of the present invention is manufactured. In addition, the shape of the selective catalyst support can be adjusted by changing the shape of the opening of the die used for the extrusion molding.

上記原料ペーストとしては特に限定されないが、製造後の本発明の一体型ハニカム構造体の気孔率が20〜80%となるものが望ましく、例えば、上述したようなセラミックからなる粉末に、バインダー及び分散媒液等を加えたものを挙げることができる。 The raw material paste is not particularly limited, but it is desirable that the porosity of the integrated honeycomb structure of the present invention after manufacture is 20 to 80%. For example, a binder and a dispersion in a powder made of ceramic as described above. The thing which added the liquid medium etc. can be mentioned.

上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末100重量部に対して、1〜10重量部程度が望ましい。
The binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
In general, the amount of the binder is desirably about 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.

上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール等のアルコール、水等を挙げることができる。
上記分散媒液は、上記原料ペーストの粘度が一定範囲内となるように適量配合される。
The dispersion medium liquid is not particularly limited, and examples thereof include organic solvents such as benzene, alcohols such as methanol, and water.
An appropriate amount of the dispersion medium liquid is blended so that the viscosity of the raw material paste falls within a certain range.

これらセラミック粉末、バインダー及び分散媒液は、アトライター等で混合し、ニーダー等で充分に混練した後、押出成形される。 These ceramic powder, binder and dispersion medium liquid are mixed with an attritor or the like, sufficiently kneaded with a kneader or the like, and then extruded.

また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を挙げることができる。
Moreover, you may add a shaping | molding adjuvant to the said raw material paste as needed.
The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like.

さらに、上記原料ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等を挙げることができる。これらのなかでは、フライアッシュバルーンが望ましい。
Furthermore, a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite may be added to the raw material paste as necessary.
The balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Among these, a fly ash balloon is desirable.

次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次いで、大容積貫通孔の出口側の端部、及び、小容積貫通孔の入口側の端部に、封止材となる封止材ペーストを所定量充填し、貫通孔を目封じする。 Next, the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body. Next, a predetermined amount of a sealing material paste serving as a sealing material is filled into the end portion on the outlet side of the large-volume through hole and the end portion on the inlet side of the small-volume through hole, and the through holes are sealed.

上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材の気孔率が20〜80%となるものが望ましく、例えば、上記原料ペーストと同様のものを用いることができるが、上記原料ペーストで用いたセラミック粉末に、潤滑剤、溶剤、分散剤、バインダー等を添加したものであることがより望ましい。上記封止処理の途中で封止材ペースト中のセラミック粒子等が沈降することを防止することができるからである。 Although it does not specifically limit as said sealing material paste, The thing from which the porosity of the sealing material manufactured through a post process becomes 20 to 80% is desirable, For example, the thing similar to the said raw material paste can be used. However, it is more desirable to add a lubricant, a solvent, a dispersant, a binder and the like to the ceramic powder used in the raw material paste. This is because it is possible to prevent the ceramic particles and the like in the sealing material paste from being settled during the sealing process.

次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱脂、焼成を行う。
上記セラミック乾燥体の脱脂及び焼成の条件は、従来から多孔質セラミックからなるフィルタを製造する際に用いられている条件を適用することができる。
Next, the ceramic dry body filled with the sealing material paste is degreased and fired under predetermined conditions.
Conventionally used conditions for producing a filter made of porous ceramics can be applied to the degreasing and firing conditions of the ceramic dried body.

次に、焼成して得られたセラミック焼成体の表面に高い比表面積のアルミナ膜を形成し、このアルミナ膜の表面に白金等の触媒を付与することにより、表面に触媒が担持された多孔質セラミックからなり、その全体が一の焼結体から構成された本発明の一体型ハニカム構造体を製造することができる。 Next, an alumina film having a high specific surface area is formed on the surface of the ceramic fired body obtained by firing, and a catalyst such as platinum is applied to the surface of the alumina film, whereby the catalyst is supported on the surface. An integral honeycomb structure of the present invention, which is made of ceramic and is entirely composed of one sintered body, can be manufactured.

上記セラミック焼成体の表面にアルミナ膜を形成する方法としては、例えば、Al(NO等のアルミニウムを含有する金属化合物の溶液をセラミック焼成体に含浸させて加熱する方法、γ−アルミナを粉砕した高い表面積を有するγ−アルミナ粉末を含有するスラリー溶液をセラミック焼成体に含浸させて加熱する方法等を挙げることができる。
上記アルミナ膜に助触媒等を付与する方法としては、例えば、Ce(NO等の希土類元素等を含有する金属化合物の溶液をセラミック焼成体に含浸させて加熱する方法等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸溶液([Pt(NH(NO]HNO)等をセラミック焼成体に含浸させて加熱する方法等を挙げることができる。
As a method of forming an alumina film on the surface of the ceramic fired body, for example, a method in which a ceramic fired body is impregnated with a solution of a metal compound containing aluminum such as Al (NO 3 ) 3 and heated, γ-alumina is used. Examples include a method in which a ceramic fired body is impregnated with a slurry solution containing pulverized γ-alumina powder having a high surface area and heated.
Examples of the method for imparting a promoter or the like to the alumina film include a method in which a ceramic fired body is impregnated with a solution of a metal compound containing a rare earth element such as Ce (NO 3 ) 3 and heated. it can.
Examples of a method for imparting a catalyst to the alumina membrane include a method in which a ceramic fired body is impregnated with a dinitrodiammine platinum nitrate solution ([Pt (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 ) and heated. Can be mentioned.

また、本発明のハニカム構造体が、図6に示したような、本発明の一体型ハニカム構造体20がシール材層14を介して複数個結束されて構成された集合体型ハニカム構造体10である場合、シール材層14となる接着剤ペーストを均一な厚さで塗布し、接着剤ペーストが塗布された他の一体型ハニカム構造体20を、順次積層していく工程を繰り返し、所定の大きさの角柱状の一体型ハニカム構造体20の積層体を作製する。
なお、上記接着剤ペーストを構成する材料としては、既に説明しているのでここではその説明を省略する。
In addition, the honeycomb structure of the present invention is an aggregate type honeycomb structure 10 in which a plurality of integrated honeycomb structures 20 of the present invention are bundled through a sealing material layer 14 as shown in FIG. In some cases, the process of applying the adhesive paste to be the sealing material layer 14 with a uniform thickness and sequentially stacking the other integrated honeycomb structure 20 to which the adhesive paste has been applied is repeated to a predetermined size. A laminated body of the prismatic integrated honeycomb structure 20 is produced.
In addition, since it has already demonstrated as a material which comprises the said adhesive paste, the description is abbreviate | omitted here.

次に、この一体型ハニカム構造体20の積層体を加熱して接着剤ペースト層を乾燥、固化させてシール材層14とし、その後、ダイヤモンドカッター等を用いて、その外周部を図6に示したような形状に切削することで、ハニカムブロック15を作製する。
そして、ハニカムブロック15の外周に上記接着剤ペーストを用いてシール材層13を形成することで、一体型ハニカム構造体20がシール材層14を介して複数個結束されて構成された本発明の集合体型フィルタ10を製造することができる。
なお、本発明の集合体型フィルタ10を製造する場合には、アルミナ膜の形成、触媒の付与等を、上記セラミック焼成体の作製後に行わず、ハニカムブロック15の作製後に行ってもよい。
Next, the laminated body of the integrated honeycomb structure 20 is heated to dry and solidify the adhesive paste layer to form the sealing material layer 14, and then the outer peripheral portion is shown in FIG. 6 using a diamond cutter or the like. The honeycomb block 15 is manufactured by cutting into a shape like this.
Then, by forming the sealing material layer 13 on the outer periphery of the honeycomb block 15 using the above-mentioned adhesive paste, a plurality of the integrated honeycomb structures 20 are bound through the sealing material layer 14. The aggregate filter 10 can be manufactured.
When manufacturing the aggregate filter 10 of the present invention, the formation of the alumina film, the application of the catalyst, etc. may not be performed after the ceramic fired body is manufactured, but may be performed after the honeycomb block 15 is manufactured.

本発明のハニカム構造体の用途は特に限定されないが、車両の排気ガス浄化装置に用いることが望ましい。
図7は、本発明のハニカム構造体が設置された車両の排気ガス浄化装置の一例を模式的に示した断面図である。
The application of the honeycomb structure of the present invention is not particularly limited, but it is desirable to use it for an exhaust gas purification device of a vehicle.
FIG. 7 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the honeycomb structure of the present invention is installed.

図7に示したように、排気ガス浄化装置600は、主に、ハニカム構造体60、ハニカム構造体60の外方を覆うケーシング630、ハニカム構造体60とケーシング630との間に配置される保持シール材620、及び、ハニカム構造体60の排気ガス流入側に設けられた加熱手段610から構成されており、ケーシング630の排気ガスが導入される側の端部には、エンジン等の内燃機関に連結された導入管640が接続されており、ケーシング630の他端部には、外部に連結された排出管650が接続されている。なお、図7中、矢印は排気ガスの流れを示している。
また、図7において、ハニカム構造体60は、図1に示した一体型ハニカム構造体20であってもよく、図6に示した集合体型ハニカム構造体10であってもよい。
As shown in FIG. 7, the exhaust gas purification apparatus 600 mainly includes a honeycomb structure 60, a casing 630 that covers the outside of the honeycomb structure 60, and a holding member that is disposed between the honeycomb structure 60 and the casing 630. It is composed of a sealing material 620 and heating means 610 provided on the exhaust gas inflow side of the honeycomb structure 60, and an end of the casing 630 on the side where the exhaust gas is introduced is connected to an internal combustion engine such as an engine. A connected introduction pipe 640 is connected, and a discharge pipe 650 connected to the outside is connected to the other end of the casing 630. In FIG. 7, arrows indicate the flow of exhaust gas.
In FIG. 7, the honeycomb structure 60 may be the integrated honeycomb structure 20 shown in FIG. 1 or the aggregated honeycomb structure 10 shown in FIG. 6.

このような構成からなる排気ガス浄化装置600では、エンジン等の内燃機関から排出された排気ガスは、導入管640を通ってケーシング630内に導入され、大容積貫通孔21aからハニカム構造体60内に流入し、隔壁23を通過して、この隔壁23でパティキュレートが捕集されて浄化された後、小容積貫通孔21bからハニカム構造体60外に排出され、排出管650を通って外部へ排出されることとなる。 In the exhaust gas purifying apparatus 600 having such a configuration, exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and is passed through the large volume through hole 21a into the honeycomb structure 60. Then, after passing through the partition wall 23, the particulates are collected and purified by the partition wall 23, and then discharged from the small volume through hole 21 b to the outside of the honeycomb structure 60 and to the outside through the discharge pipe 650. Will be discharged.

また、排気ガス浄化装置600では、ハニカム構造体60の隔壁に大量のパティキュレートが堆積し、圧力損失が高くなると、ハニカム構造体60の再生処理が行われる。
上記再生処理では、加熱手段610を用いて加熱されたガスをハニカム構造体60の貫通孔の内部へ流入させることで、ハニカム構造体60を加熱し、隔壁に堆積したパティキュレートを燃焼除去する。また、ポストインジェクション方式を用いてパティキュレートを燃焼除去してもよい。そのほか、ケーシング630の手前の導入管640の部分に酸化触媒を付与したフィルタを設置してもよく、ケーシング630の内部であって、加熱手段610より排気ガス流入側に酸化触媒を付与したフィルタを設置してもよい。
Further, in the exhaust gas purification apparatus 600, when a large amount of particulates accumulates on the partition walls of the honeycomb structure 60 and the pressure loss increases, the regeneration process of the honeycomb structure 60 is performed.
In the regeneration process, the gas heated using the heating means 610 is caused to flow into the through holes of the honeycomb structure 60, whereby the honeycomb structure 60 is heated and the particulates deposited on the partition walls are removed by combustion. Further, the particulates may be burned and removed using a post-injection method. In addition, a filter provided with an oxidation catalyst may be provided in a portion of the introduction pipe 640 in front of the casing 630, and a filter provided with an oxidation catalyst on the exhaust gas inflow side from the heating means 610 inside the casing 630. May be installed.

以下に実施例を掲げ、図面を参照して本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to the drawings with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)平均粒径10μmのα型炭化珪素粉末60重量%と、平均粒径0.5μmのβ型炭化珪素粉末40重量%とを湿式混合し、得られた混合物100重量部に対して、有機バインダー(メチルセルロース)を5重量部、水を10重量部加えて混練して混合組成物を得た。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練した後、押出成形を行い、図3(a)に示した断面形状と略同様の断面形状で、入口側の開口率が37.97%、開口率比が1.55の生成形体を作製した。なお、隣り合う大容積貫通孔と小容積貫通孔とを隔てる隔壁の厚さを0.3mm、隣り合う大容積貫通孔同士を隔てる隔壁の厚さを0.6mm、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さを0.1mmとした。
(Example 1)
(1) Wet-mixing α-type silicon carbide powder 60% by weight with an average particle size of 10 μm and 40% by weight β-type silicon carbide powder with an average particle size of 0.5 μm, and with respect to 100 parts by weight of the resulting mixture, 5 parts by weight of an organic binder (methylcellulose) and 10 parts by weight of water were added and kneaded to obtain a mixed composition. Next, after adding a small amount of a plasticizer and a lubricant to the mixed composition and further kneading, extrusion molding is performed, and the opening on the inlet side has a cross-sectional shape substantially the same as the cross-sectional shape shown in FIG. A shaped product having a rate of 37.97% and an aperture ratio of 1.55 was produced. In addition, the thickness of the partition that separates the adjacent large-volume through-holes from the small-volume through-hole is 0.3 mm, the thickness of the partition that separates the adjacent large-volume through-holes is 0.6 mm, and the adjacent large-volume through-holes The height of the projections provided on the partition walls separating each other was set to 0.1 mm.

次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とした後、上記生成形体と同様の組成の封止材ペーストを所定の貫通孔に充填した。
次いで、再び乾燥機を用いて乾燥させた後、400℃で脱脂し、常圧のアルゴン雰囲気下2200℃、3時間で焼成を行うことにより、気孔率が42%、平均気孔径が9μm、その大きさが34.3mm×34.3mm×150mm、貫通孔の数が28個/cm(大容積貫通孔:14個/cm、小容積貫通孔:14個/cm)で、炭化珪素焼結体からなる一体型ハニカム構造体を製造した。
なお、一体型ハニカム構造体では、出口側の端面において、大容積貫通孔のみを封止材により封止し、入口側の端面において、小容積貫通孔のみを封止材により封止した。
Next, the generated shaped body was dried using a microwave dryer or the like to form a ceramic dried body, and then a predetermined through-hole was filled with a sealing material paste having the same composition as the generated shaped body.
Next, after drying again using a dryer, degreasing at 400 ° C., and firing at 2200 ° C. for 3 hours under an atmospheric pressure of argon atmosphere, the porosity is 42%, the average pore diameter is 9 μm, The size is 34.3 mm × 34.3 mm × 150 mm, the number of through holes is 28 / cm 2 (large volume through holes: 14 / cm 2 , small volume through holes: 14 / cm 2 ), silicon carbide An integrated honeycomb structure made of a sintered body was produced.
In the integrated honeycomb structure, only the large-volume through holes were sealed with a sealing material on the end face on the outlet side, and only the small-volume through holes were sealed on the end face on the inlet side with the sealing material.

(2)次に、得られた一体型ハニカム構造体を用いて集合型ハニカム構造体を製造した。
繊維長0.2mmのアルミナファイバー30重量%、平均粒径0.6μmの炭化珪素粒子21重量%、シリカゾル15重量%、カルボキシメチルセルロース5.6重量%、及び、水28.4重量%を含む耐熱性のシール材ペーストを用いて、一体型ハニカム構造体20を、多数結束させ、続いて、ダイヤモンドカッターを用いて切断することにより、直径144mm×長さ150mmの円柱状のハニカムブロックを作製した。
このとき、一体型ハニカム構造体20を結束するシール材層14の厚さが1.0mmとなるように調整した。
(2) Next, a collective honeycomb structure was manufactured using the obtained integral honeycomb structure.
Heat resistance comprising 30% by weight of alumina fiber having a fiber length of 0.2 mm, 21% by weight of silicon carbide particles having an average particle diameter of 0.6 μm, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% by weight of water A cylindrical honeycomb block having a diameter of 144 mm and a length of 150 mm was manufactured by binding a large number of the integrated honeycomb structure 20 using a conductive sealing material paste and then cutting the honeycomb structure 20 using a diamond cutter.
At this time, the thickness of the sealing material layer 14 for binding the integral honeycomb structure 20 was adjusted to 1.0 mm.

(3)次に、無機繊維としてアルミナシリケートからなるセラミックファイバー(ショット含有率:3%、繊維長:0.1〜100mm)23.3重量%、無機粒子として平均粒径0.3μmの炭化珪素粉末30.2重量%、無機バインダーとしてシリカゾル(ゾル中のSiOの含有率:30重量%)7重量%、有機バインダーとしてカルボキシメチルセルロース0.5重量%、及び、水39重量%を混合、混練してシール材ペーストを調製した。 (3) Next, ceramic fibers made of alumina silicate as inorganic fibers (shot content: 3%, fiber length: 0.1 to 100 mm) 23.3% by weight, silicon carbide having an average particle diameter of 0.3 μm as inorganic particles Mixing and kneading 30.2% by weight of powder, 7% by weight of silica sol (content of SiO 2 in the sol: 30% by weight) as inorganic binder, 0.5% by weight of carboxymethyl cellulose and 39% by weight of water as organic binder Thus, a sealing material paste was prepared.

次に、上記シール材ペーストを用いて、ハニカムブロックの外周面に厚さ1.0mmのシール材ペースト層を形成した。そして、このシール材ペースト層を120℃で乾燥して、円柱形状で排気ガス浄化用ハニカムフィルタとして機能する集合体型ハニカム構造体を製造した。 Next, a sealing material paste layer having a thickness of 1.0 mm was formed on the outer peripheral surface of the honeycomb block using the sealing material paste. Then, this sealing material paste layer was dried at 120 ° C. to produce an aggregated honeycomb structure that has a cylindrical shape and functions as an exhaust gas purifying honeycomb filter.

(4)次に、γ−アルミナを、水と分散剤である硝酸溶液と混合し、さらにボールミルで90min−1で24時間粉砕して、粒径2μmのアルミナスラリーを調製し、次に、得られたスラリーを、一体型ハニカム構造体、及び、集合体型ハニカム構造体に流し込み、200℃で乾燥させた。
上記工程をアルミナ層が60g/Lの量に達するまで繰り返し、600℃で焼成した。
(4) Next, γ-alumina is mixed with water and a nitric acid solution that is a dispersant, and further ground by a ball mill at 90 min −1 for 24 hours to prepare an alumina slurry having a particle size of 2 μm. The resulting slurry was poured into an integral honeycomb structure and an aggregated honeycomb structure and dried at 200 ° C.
The above process was repeated until the alumina layer reached an amount of 60 g / L and baked at 600 ° C.

Ce(NOをエチレングリコール中に投入し、90℃で5時間攪拌することによりCe(NOを6重量%含有するエチレングリコール溶液を作製した。このエチレングリコール溶液中に上記アルミナ層が形成された一体型ハニカム構造体及び集合体型ハニカム構造体を浸漬した後、150℃で2時間、窒素雰囲気中650℃で2時間加熱して、上記セラミック焼成体の表面に触媒を担持させるための希土類酸化物含有アルミナ層を形成した。 Ce (NO 3 ) 3 was put into ethylene glycol and stirred at 90 ° C. for 5 hours to prepare an ethylene glycol solution containing 6% by weight of Ce (NO 3 ) 3 . The integral honeycomb structure and the aggregated honeycomb structure in which the alumina layer is formed in this ethylene glycol solution are immersed, and then heated at 150 ° C. for 2 hours and at 650 ° C. in a nitrogen atmosphere for 2 hours to fire the ceramic A rare earth oxide-containing alumina layer for supporting the catalyst on the surface of the body was formed.

白金濃度4.53重量%のジニトロジアンミン白金硝酸([Pt(NH(NO]HNO)を蒸留水で希釈し、上記希土類酸化物含有アルミナ層が形成された上記セラミック焼成体を浸漬した後、110℃で2時間、窒素雰囲気中500℃で1時間加熱して、上記セラミック焼成体の表面に、平均粒子直径2nmの白金触媒を2g/L担持させ、触媒を担持した一体型ハニカム構造体及び集合体型ハニカム構造体の製造を終了した。 The above-mentioned ceramic firing in which dinitrodiammine platinum nitric acid ([Pt (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 ) having a platinum concentration of 4.53 wt% is diluted with distilled water to form the rare earth oxide-containing alumina layer. After the body was immersed, it was heated at 110 ° C. for 2 hours and at 500 ° C. for 1 hour in a nitrogen atmosphere to support 2 g / L of a platinum catalyst having an average particle diameter of 2 nm on the surface of the ceramic fired body, thereby supporting the catalyst. The production of the integrated honeycomb structure and the aggregated honeycomb structure was completed.

(実施例2〜28)
表1に示したように、長手方向に垂直な断面形状、及び、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さや幅を変更したほかは、実施例1と同様にして一体型ハニカム構造体及び集合型ハニカム構造体を製造した。
なお、一体型ハニカム構造体の長手方向に垂直な断面形状、及び、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さは、混合組成物の押出成形を行う際のダイの形状を変更することにより調整した。
(Examples 2 to 28)
As shown in Table 1, except that the cross-sectional shape perpendicular to the longitudinal direction and the height and width of the protrusions provided on the partition walls separating adjacent large-volume through holes were changed, the same as in Example 1. An integral honeycomb structure and a collective honeycomb structure were manufactured.
Note that the cross-sectional shape perpendicular to the longitudinal direction of the integral honeycomb structure and the height of the protrusions provided on the partition walls separating adjacent large-volume through-holes are the same as those of the die when the mixed composition is extruded. Adjustment was made by changing the shape.

(参考例1〜4)
長手方向に垂直な断面形状を、表1に示したような形状に変更するとともに、大容積貫通孔同士を隔てる隔壁に図1(c)に示すような深さ0.1mmの凹部を形成したほかは、実施例1と同様にして一体型ハニカム構造体及び集合型ハニカム構造体を製造した。
なお、一体型ハニカム構造体の長手方向に垂直な断面形状、及び、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凹部の深さは、混合組成物の押出成形を行う際のダイの形状を変更することにより調整した。
(Reference Examples 1-4)
The cross-sectional shape perpendicular to the longitudinal direction was changed to the shape shown in Table 1, and a recess having a depth of 0.1 mm as shown in FIG. Otherwise, the integrated honeycomb structure and the aggregated honeycomb structure were manufactured in the same manner as in Example 1.
Note that the cross-sectional shape perpendicular to the longitudinal direction of the integral honeycomb structure and the depth of the recesses provided in the partition walls separating adjacent large-volume through-holes are the shape of the die when the mixed composition is extruded. Adjusted by changing.

(参考例5〜8)
表1に示したように、長手方向に垂直な断面形状、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さ、及び、アルミナコート層の量を変更したほかは、実施例1と同様にして一体型ハニカム構造体及び集合型ハニカム構造体を製造した。
なお、一体型ハニカム構造体の長手方向に垂直な断面形状、及び、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さは、混合組成物の押出成形を行う際のダイの形状を変更することにより調整した。
(Reference Examples 5-8)
As shown in Table 1, except that the cross-sectional shape perpendicular to the longitudinal direction, the height of the convex portions provided on the partition walls separating adjacent large-volume through holes, and the amount of the alumina coat layer were changed. The monolithic honeycomb structure and the aggregated honeycomb structure were manufactured in the same manner as in Example 1.
Note that the cross-sectional shape perpendicular to the longitudinal direction of the integral honeycomb structure and the height of the protrusions provided on the partition walls separating adjacent large-volume through-holes are the same as those of the die when the mixed composition is extruded. Adjustment was made by changing the shape.

(比較例1〜7)
表1に示したように、隣り合う大容積貫通孔同士を隔てる隔壁に凸部や凹部を設けない態様で、一体型ハニカム構造体の長手方向に垂直な断面形状を変更したほかは、実施例1と同様にして一体型ハニカム構造体及び集合型ハニカム構造体を製造した。
なお、一体型ハニカム構造体の長手方向に垂直な断面形状、及び、隣り合う大容積貫通孔同士を隔てる隔壁に設けた凸部の高さは、混合組成物の押出成形を行う際のダイの形状を変更することにより調整した。
(Comparative Examples 1-7)
As shown in Table 1, the embodiment is the same as the embodiment except that the partition wall separating adjacent large-volume through-holes is not provided with a convex portion or a concave portion, and the cross-sectional shape perpendicular to the longitudinal direction of the integrated honeycomb structure is changed. The monolithic honeycomb structure and the aggregated honeycomb structure were manufactured in the same manner as in Example 1.
Note that the cross-sectional shape perpendicular to the longitudinal direction of the integral honeycomb structure and the height of the protrusions provided on the partition walls separating adjacent large-volume through-holes are the same as those of the die when the mixed composition is extruded. Adjustment was made by changing the shape.

(評価1;圧力損失)
図7に示したように、各実施例、参考例及び比較例に係る集合型ハニカム構造体をエンジンの排気通路に配設して排気ガス浄化装置とし、上記エンジンを回転数3000min−1、トルク50N・mで運転し、集合型ハニカム構造体にパティキュレートを8g/L捕集させ、その後、集合型ハニカム構造体の圧力損失を測定した。その結果を表2に示した。
(Evaluation 1: Pressure loss)
As shown in FIG. 7, the aggregated honeycomb structure according to each of the examples, reference examples, and comparative examples is disposed in the exhaust passage of the engine to form an exhaust gas purification device, and the engine has a rotational speed of 3000 min −1 , torque Operating at 50 N · m, 8 g / L of particulate was collected in the aggregated honeycomb structure, and then the pressure loss of the aggregated honeycomb structure was measured. The results are shown in Table 2.

(評価2;CO−Light off温度、HC−Light off温度)
各実施例、参考例及び比較例に係る一体型ハニカム構造体を反応試験機に設置し、模擬ガスの成分濃度を、C(200ppm)、CO(300ppm)、NO(160ppm)、SO(8ppm)、CO(0.038%)、HO(10%)、O(13%)含有するものとし、空間速度(SV) 45000/hで上記成分の模擬ガスを一体型ハニカム構造体に導入し、模擬ガス温度を徐々に上昇させ、ハニカム構造体に入る前後のガス濃度を分析し、CO、HCの浄化率が50%になる温度を、それぞれCO−Light off温度、HC−Light off温度とした。その結果を表2に示した。
(Evaluation 2; CO-Light off temperature, HC-Light off temperature)
The integrated honeycomb structure according to each example, reference example and comparative example is installed in a reaction tester, and the component concentration of the simulated gas is C 3 H 6 (200 ppm), CO (300 ppm), NO X (160 ppm), It is assumed to contain SO X (8 ppm), CO 2 (0.038%), H 2 O (10%), O 2 (13%), and the simulated gas of the above components is kept at a space velocity (SV) of 45000 / h. It is introduced into the body-type honeycomb structure, the simulated gas temperature is gradually increased, the gas concentration before and after entering the honeycomb structure is analyzed, and the temperature at which the purification rate of CO and HC becomes 50% is set to the CO-Light off temperature, respectively. HC-Light off temperature. The results are shown in Table 2.

(評価3;フィルタ再生試験)
図7に示したように、各実施例、参考例及び比較例に係る集合型ハニカム構造体をエンジンの排気通路に配設して排気ガス浄化装置とし、上記エンジンを運転して、集合型ハニカム構造体にパティキュレートを7g/L捕集させた。次に、パティキュレートを捕集させた集合型ハニカム構造体を反応試験機内に設置し、上記集合型ハニカム構造体に窒素ガスを130L/minの流量で導入しながら、上記集合型ハニカム構造体を200℃に保持した。
次に、パティキュレートを含有していないこと以外はディーゼルエンジンの排気ガスとほぼ同じ組成の模擬ガスを上記集合型ハニカム構造体内に、温度650℃、圧力8kPa、時間7分間の条件で導入し、パティキュレートを燃焼させた。なお、この際、上記集合型ハニカム構造体より模擬ガス流入側に、市販のコージェライトからなるハニカム構造の触媒担持体(直径144mm、長さ100mm、セル密度400セル/inch、白金5g/L)を設置し、このハニカム構造の担持体を通過した模擬ガスを上記集合型ハニカム構造体に導入した。
最後に、集合型ハニカム構造体の重量を測定して、7g/L捕集させたパティキュレートのうち、燃焼したパティキュレートの割合(フィルタ再生率)を求め、パティキュレートの浄化性能を評価した。その結果を表2に示した。
なお、上記模擬ガスは、Cを6540ppm、COを5000ppm、NOxを160、SOxを8ppm、COを0.038%、HOを10%、Oを10%含有するものとした。また、上記模擬ガスの導入により、上記集合型ハニカム構造体は、600℃程度まで昇温した。
(Evaluation 3: Filter regeneration test)
As shown in FIG. 7, the aggregated honeycomb structure according to each of the examples, the reference examples, and the comparative example is disposed in the exhaust passage of the engine to form an exhaust gas purification device, and the engine is operated to collect the honeycomb Particulate was collected at 7 g / L in the structure. Next, the aggregated honeycomb structure in which the particulates are collected is placed in a reaction tester, and the aggregated honeycomb structure is introduced while introducing nitrogen gas into the aggregated honeycomb structure at a flow rate of 130 L / min. Maintained at 200 ° C.
Next, a simulated gas having almost the same composition as the exhaust gas of a diesel engine except that it does not contain particulates is introduced into the aggregated honeycomb structure at a temperature of 650 ° C., a pressure of 8 kPa, and a time of 7 minutes, The particulate was burned. At this time, a catalyst carrier having a honeycomb structure made of commercially available cordierite (diameter: 144 mm, length: 100 mm, cell density: 400 cells / inch, platinum: 5 g / L) on the simulated gas inflow side from the aggregated honeycomb structure. The simulated gas that passed through the honeycomb structure carrier was introduced into the aggregated honeycomb structure.
Finally, the weight of the aggregated honeycomb structure was measured to determine the ratio of the burned particulates (filter regeneration rate) out of the particulates collected at 7 g / L, and the particulate purification performance was evaluated. The results are shown in Table 2.
The simulated gas contains 6540 ppm of C 3 H 6 , 5000 ppm of CO, 160 ppm of NOx, 8 ppm of SOx, 0.038% of CO 2 , 10% of H 2 O, and 10% of O 2. did. The aggregated honeycomb structure was heated to about 600 ° C. by introducing the simulated gas.

Figure 2005118747
Figure 2005118747

Figure 2005118747
Figure 2005118747

表1及び表2に示したように、隣り合う大容積貫通孔同士を隔てる隔壁に選択的触媒担持部である凸部又は凹部を設けた各実施例に係る集合型ハニカム構造体は、隣り合う大容積貫通孔同士を隔てる隔壁に凸部又は凹部を設けなかった比較例に係る集合型ハニカム構造体に比べて、パティキュレートを一定量捕集しても圧力損失が低く、フィルタの再生率も増加している。
また、隣り合う大容積貫通孔同士を隔てる隔壁に選択的触媒担持部である凸部又は凹部を設けた各実施例に係る一体型ハニカム構造体は、隣り合う大容積貫通孔同士を隔てる隔壁に凸部又は凹部を設けなかった比較例に係る一体型ハニカム構造体に比べて、CO−Light off温度、HC−Light off温度が若干低くなっている。
As shown in Tables 1 and 2, the aggregated honeycomb structures according to the respective examples in which convex portions or concave portions that are selective catalyst supporting portions are provided on the partition walls separating adjacent large-volume through holes are adjacent to each other. Compared to the aggregate type honeycomb structure according to the comparative example in which the partition walls separating the large volume through holes are not provided with a convex portion or a concave portion, the pressure loss is low even when a certain amount of particulates are collected, and the regeneration rate of the filter is also high. It has increased.
In addition, the integrated honeycomb structure according to each example in which the convex portions or the concave portions that are selective catalyst supporting portions are provided in the partition walls that separate the adjacent large-volume through-holes is formed in the partition walls that separate the adjacent large-volume through-holes. The CO-Light off temperature and the HC-Light off temperature are slightly lower than those of the integrated honeycomb structure according to the comparative example in which no convex portion or concave portion is provided.

(a)は、本発明の一体型ハニカム構造体の一例を模式的に示した斜視図であり、(b)は、(a)に示した本発明の一体型ハニカム構造体のA−A線断面図である。(A) is the perspective view which showed typically an example of the integral honeycomb structure of this invention, (b) is the AA line of the integral honeycomb structure of this invention shown to (a). It is sectional drawing. 貫通孔の数が実質的に大容積貫通孔101と小容積貫通孔102とで1:2となるように構成されたハニカム構造体の長手方向に垂直な断面を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of a honeycomb structure configured such that the number of through holes is substantially 1: 2 between the large volume through holes 101 and the small volume through holes 102; is there. (a)〜(d)は、本発明の一体型ハニカム構造体における長手方向に垂直な断面を模式的に示した断面図であり、(e)は、従来の一体型ハニカム構造体における長手方向に垂直な断面を模式的に示した断面図である。(A)-(d) is sectional drawing which showed typically the cross section perpendicular | vertical to the longitudinal direction in the integrated honeycomb structure of this invention, (e) is the longitudinal direction in the conventional integrated honeycomb structure. FIG. (a)〜(f)は、本発明の一体型ハニカム構造体における長手方向に垂直な断面の一部を模式的に示した断面図である。(A)-(f) is sectional drawing which showed typically a part of cross section perpendicular | vertical to the longitudinal direction in the integral-type honeycomb structure of this invention. 本発明の一体型ハニカム構造体における長手方向に垂直な断面の一例を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a cross section perpendicular to the longitudinal direction in the integral honeycomb structure of the present invention. 本発明の集合体型ハニカム構造体の一例を模式的に示した斜視図である。1 is a perspective view schematically showing an example of an aggregated honeycomb structure of the present invention. 本発明のハニカム構造体が設置された車両の排気ガス浄化装置の一例を模式的に示した断面図である。1 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which a honeycomb structure of the present invention is installed.

符号の説明Explanation of symbols

10 集合体型ハニカム構造体
13、14 シール材層
15 ハニカムブロック
20 一体型ハニカム構造体
21 貫通孔
21a 大容積貫通孔
21b 小容積貫通孔
22 封止材
23 隔壁
23a 隣り合う大容積貫通孔21aと小容積貫通孔21bとを隔てる隔壁
23b 隣り合う大容積貫通孔21a同士を隔てる隔壁
24 凸部
10 Aggregate Type Honeycomb Structures 13 and 14 Sealing Material Layer 15 Honeycomb Block 20 Integrated Honeycomb Structure 21 Through Hole 21a Large Volume Through Hole 21b Small Volume Through Hole 22 Sealing Material 23 Partition Wall 23a Adjacent Large Volume Through Hole 21a and Small Partition wall 23b separating volume through hole 21b Adjacent partition wall 24 separating large volume through hole 21a

Claims (13)

多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であって、
前記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大きくなるように一端部で封止されてなる大容積貫通孔群と、前記断面における面積の総和が相対的に小さくなるように他端部で封止されてなる小容積貫通孔群とからなり、
前記大容積貫通孔群を構成し、かつ、隣り合う貫通孔同士を隔てる前記隔壁に、触媒を選択的に担持させるための選択的触媒担持部が設けられていることを特徴とするハニカム構造体。
A columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction across a partition wall,
The large number of through holes have a large volume through hole group sealed at one end so that the total area in the cross section perpendicular to the longitudinal direction is relatively large, and the total area in the cross section is relatively It consists of a small volume through-hole group sealed at the other end so as to become smaller,
A honeycomb structure having a selective catalyst supporting portion for selectively supporting a catalyst on the partition wall constituting the large-volume through-hole group and separating adjacent through-holes .
少なくとも選択的触媒担持部に触媒が担持されている請求項1に記載のハニカム構造体。 The honeycomb structure according to claim 1, wherein a catalyst is supported on at least the selective catalyst support. 選択的触媒担持部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁に設けられた凸部及び/又は凹部である請求項1又は2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2, wherein the selective catalyst supporting part is a convex part and / or a concave part provided in a partition wall that separates through-holes constituting adjacent large-volume through-hole groups. 選択的触媒担持部に設けられた凸部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜6倍の高さを有する請求項1〜3のいずれか1に記載のハニカム構造体。 The convex part provided in the selective catalyst support part has a height of 0.02 to 6 times the thickness of the partition wall separating the through holes constituting the adjacent large volume through hole group. The honeycomb structure according to any one of the above. 選択的触媒担持部に設けられた凹部は、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の厚さの0.02〜0.4倍の深さを有する請求項1〜3のいずれか1に記載のハニカム構造体。 The recessed part provided in the selective catalyst carrying | support part has a depth of 0.02-0.4 times the thickness of the partition which separates the through-holes which comprise adjacent large-volume through-hole groups. The honeycomb structure according to any one of the above. 大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、多角形である請求項1〜5のいずれか1に記載のハニカム構造体。 The shape of the cross section perpendicular | vertical to the longitudinal direction of the through-hole which comprises a large volume through-hole group and / or the through-hole which comprises a small volume through-hole group is a polygon. Honeycomb structure. 大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、八角形であり、小容積貫通孔群を構成する貫通孔の前記断面の形状は、四角形である請求項1〜7のいずれか1に記載のハニカム構造体。 The shape of the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group is an octagon, and the shape of the cross section of the through holes constituting the small volume through hole group is a quadrangle. 8. The honeycomb structure according to any one of 7 above. 大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における面積の総和と、小容積貫通孔群を構成する貫通孔の前記断面における面積の総和との比が1.5〜2.7である請求項1〜7のいずれか1に記載のハニカム構造体。 The ratio of the total area in the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group to the total area in the cross section of the through holes constituting the small volume through hole group is 1.5-2. The honeycomb structure according to any one of claims 1 to 7, which is 7. 長手方向に垂直な断面における隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う前記大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる前記隔壁との交わる角の少なくとも1つが鈍角である請求項1〜8のいずれか1に記載のハニカム構造体。 A partition that separates through-holes constituting adjacent large-volume through-hole groups in a cross section perpendicular to the longitudinal direction, and a through-hole that constitutes the adjacent large-volume through-hole groups and a through-hole that constitutes a small-volume through-hole group; The honeycomb structure according to any one of claims 1 to 8, wherein at least one of the intersecting angles with the partition walls is an obtuse angle. 大容積貫通孔群を構成する貫通孔及び/又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の角部の近傍が曲線により構成されている請求項1〜9のいずれか1に記載のハニカム構造体。 The vicinity of the corner | angular part of the cross section perpendicular | vertical to the longitudinal direction of the through-hole which comprises a large volume through-hole group and / or the through-hole which comprises a small volume through-hole group is comprised by the curve. 2. The honeycomb structure according to 1. 隣り合う大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を構成する貫通孔の前記断面における重心間距離とが等しい請求項1〜10に記載のハニカム構造体。 The distance between the centroids in a cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups is equal to the distance between the centroids in the cross-section of the through-holes constituting the adjacent small-volume through-hole groups. To 10 honeycomb structures. 請求項1〜11のいずれか1に記載のハニカム構造体がシール材層を介して複数個組み合わされてなるハニカムブロックの外周面に、前記ハニカム構造体よりも気体を通過させにくい材質からなるシール材層が形成されてなるハニカム構造体。 A seal made of a material that prevents gas from passing through the outer peripheral surface of a honeycomb block in which a plurality of honeycomb structures according to any one of claims 1 to 11 are combined with a sealing material layer interposed therebetween. A honeycomb structure in which a material layer is formed. 車両の排気ガス浄化装置に使用される請求項1〜12のいずれか1に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 12, which is used in an exhaust gas purification device for a vehicle.
JP2003359235A 2003-10-20 2003-10-20 Honeycomb structure Expired - Fee Related JP4471621B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2003359235A JP4471621B2 (en) 2003-10-20 2003-10-20 Honeycomb structure
ES04792671T ES2302042T5 (en) 2003-10-20 2004-10-20 Honeycomb structure
PCT/JP2004/015507 WO2005037406A1 (en) 2003-10-20 2004-10-20 Honeycomb structure
PL04792671T PL1676620T5 (en) 2003-10-20 2004-10-20 Honeycomb structure
DE602004011971T DE602004011971T3 (en) 2003-10-20 2004-10-20 hONEYCOMB STRUCTURE
AT04792671T ATE386581T1 (en) 2003-10-20 2004-10-20 HONEYCOMB STRUCTURE
PCT/JP2004/015505 WO2005037405A1 (en) 2003-10-20 2004-10-20 Honeycomb structure
EP04792673A EP1676621A4 (en) 2003-10-20 2004-10-20 Honeycomb structure
EP04792671A EP1676620B2 (en) 2003-10-20 2004-10-20 Honeycomb structure
US11/340,591 US7556782B2 (en) 2003-10-20 2006-01-27 Honeycomb structured body
US11/341,507 US7785695B2 (en) 2003-10-20 2006-01-30 Honeycomb structured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359235A JP4471621B2 (en) 2003-10-20 2003-10-20 Honeycomb structure

Publications (2)

Publication Number Publication Date
JP2005118747A true JP2005118747A (en) 2005-05-12
JP4471621B2 JP4471621B2 (en) 2010-06-02

Family

ID=34615533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359235A Expired - Fee Related JP4471621B2 (en) 2003-10-20 2003-10-20 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP4471621B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054822A (en) * 2005-06-24 2007-03-08 Ibiden Co Ltd Honeycomb structure, and exhaust gas purifying apparatus
FR2902348A1 (en) * 2006-06-19 2007-12-21 Ceramiques Tech Ind Sa Sa Monolithic porous body for use as catalyzed particle filter, has input channels surrounded by output channels so that no porous partition of one of input channels is common with porous partition of other of input channels
FR2912069A1 (en) * 2007-02-05 2008-08-08 Saint Gobain Ct Recherches Honeycomb-type gas filtering structure for exhaust line of e.g. oil engine, has walls connecting crowns of channel, separating channel from adjacent channel, and including concavities and convexity with respect to center of former channel
WO2008126329A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Honeycomb filter
WO2008129671A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2009148742A (en) * 2007-04-17 2009-07-09 Ibiden Co Ltd Honeycomb carrying catalyst and its preparing method
EP2219758A1 (en) * 2007-08-02 2010-08-25 Robert Bosch GmbH Filter element for filtering exhaust gases of an internal combustion engine
WO2015022937A1 (en) * 2013-08-14 2015-02-19 住友化学株式会社 Particulate filter
JP2015186789A (en) * 2014-03-27 2015-10-29 日本碍子株式会社 honeycomb structure
KR20160128343A (en) 2014-03-03 2016-11-07 스미또모 가가꾸 가부시끼가이샤 Honeycomb filter, and method for manufacturing honeycomb filter
JP2017176939A (en) * 2016-03-28 2017-10-05 株式会社豊田中央研究所 Honeycomb catalyst

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054822A (en) * 2005-06-24 2007-03-08 Ibiden Co Ltd Honeycomb structure, and exhaust gas purifying apparatus
JP4753784B2 (en) * 2005-06-24 2011-08-24 イビデン株式会社 Honeycomb structure and exhaust gas purification device
FR2902348A1 (en) * 2006-06-19 2007-12-21 Ceramiques Tech Ind Sa Sa Monolithic porous body for use as catalyzed particle filter, has input channels surrounded by output channels so that no porous partition of one of input channels is common with porous partition of other of input channels
FR2912069A1 (en) * 2007-02-05 2008-08-08 Saint Gobain Ct Recherches Honeycomb-type gas filtering structure for exhaust line of e.g. oil engine, has walls connecting crowns of channel, separating channel from adjacent channel, and including concavities and convexity with respect to center of former channel
WO2008104665A1 (en) * 2007-02-05 2008-09-04 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gas filtration structure with undulated wall
JPWO2008126329A1 (en) * 2007-03-30 2010-07-22 イビデン株式会社 Honeycomb filter
WO2008126329A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Honeycomb filter
JP2014057951A (en) * 2007-04-17 2014-04-03 Ibiden Co Ltd Catalyst support honeycomb
KR100962450B1 (en) * 2007-04-17 2010-06-14 이비덴 가부시키가이샤 Catalyst supported honeycomb and method for manufacturing the same
WO2008129671A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2009148742A (en) * 2007-04-17 2009-07-09 Ibiden Co Ltd Honeycomb carrying catalyst and its preparing method
US7867944B2 (en) 2007-04-17 2011-01-11 Ibiden Co., Ltd. Catalyst supporting honeycomb and method of manufacturing the same
EP2219758A1 (en) * 2007-08-02 2010-08-25 Robert Bosch GmbH Filter element for filtering exhaust gases of an internal combustion engine
WO2015022937A1 (en) * 2013-08-14 2015-02-19 住友化学株式会社 Particulate filter
US9540977B2 (en) 2013-08-14 2017-01-10 Sumitomo Chemical Company, Limited Particulate filter
JPWO2015022937A1 (en) * 2013-08-14 2017-03-02 住友化学株式会社 Particulate filter
KR20160128343A (en) 2014-03-03 2016-11-07 스미또모 가가꾸 가부시끼가이샤 Honeycomb filter, and method for manufacturing honeycomb filter
JP2015186789A (en) * 2014-03-27 2015-10-29 日本碍子株式会社 honeycomb structure
JP2017176939A (en) * 2016-03-28 2017-10-05 株式会社豊田中央研究所 Honeycomb catalyst

Also Published As

Publication number Publication date
JP4471621B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4439236B2 (en) Honeycomb structure
US7785695B2 (en) Honeycomb structured body
JP4969103B2 (en) Honeycomb structure
JP5202693B2 (en) filter
KR101046899B1 (en) Honeycomb Structure
JP5142532B2 (en) Honeycomb structure
JP6219796B2 (en) Honeycomb filter
JP5142529B2 (en) Honeycomb structure
JPWO2004024295A1 (en) Honeycomb structure
JP4471622B2 (en) Honeycomb structure
JP5270879B2 (en) Honeycomb structure
JPWO2005002709A1 (en) Honeycomb structure
JP2006223983A (en) Honeycomb structure
JPWO2006035823A1 (en) Honeycomb structure
JPWO2006106785A1 (en) Honeycomb structure
JP2011104524A (en) Catalyst-carrying filter and exhaust gas cleaning system
EP2108448B1 (en) Honeycomb catalyst body
JPWO2007086182A1 (en) Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification device
JP4471621B2 (en) Honeycomb structure
JP6507016B2 (en) Honeycomb structure and exhaust gas purification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees