JP2017176939A - Honeycomb catalyst - Google Patents
Honeycomb catalyst Download PDFInfo
- Publication number
- JP2017176939A JP2017176939A JP2016064594A JP2016064594A JP2017176939A JP 2017176939 A JP2017176939 A JP 2017176939A JP 2016064594 A JP2016064594 A JP 2016064594A JP 2016064594 A JP2016064594 A JP 2016064594A JP 2017176939 A JP2017176939 A JP 2017176939A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- layer
- honeycomb
- cell
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 512
- 239000000463 material Substances 0.000 claims abstract description 164
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 129
- 239000010948 rhodium Substances 0.000 claims description 100
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 48
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052703 rhodium Inorganic materials 0.000 claims description 16
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910000510 noble metal Inorganic materials 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 7
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 71
- 238000002156 mixing Methods 0.000 abstract description 15
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 309
- 239000007789 gas Substances 0.000 description 56
- 239000002002 slurry Substances 0.000 description 51
- 239000000843 powder Substances 0.000 description 48
- 238000002360 preparation method Methods 0.000 description 37
- 239000011268 mixed slurry Substances 0.000 description 36
- 230000002093 peripheral effect Effects 0.000 description 30
- 239000002245 particle Substances 0.000 description 27
- 238000000746 purification Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002131 composite material Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 7
- 238000002296 dynamic light scattering Methods 0.000 description 7
- 229910052746 lanthanum Inorganic materials 0.000 description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 7
- 229910052878 cordierite Inorganic materials 0.000 description 6
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910015372 FeAl Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000013618 particulate matter Substances 0.000 description 3
- 238000007581 slurry coating method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000012494 Quartz wool Substances 0.000 description 2
- RCITVHFNWJIDNA-UHFFFAOYSA-K [NH4+].[NH4+].[NH4+].[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O Chemical compound [NH4+].[NH4+].[NH4+].[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O RCITVHFNWJIDNA-UHFFFAOYSA-K 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- -1 brown Substances 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010987 cubic zirconia Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、ハニカム状基材の各セルの内壁に2種以上の触媒層が配置されているハニカム状触媒に関する。 The present invention relates to a honeycomb catalyst in which two or more types of catalyst layers are arranged on the inner wall of each cell of a honeycomb substrate.
自動車等に用いられる排ガス浄化用触媒としては、例えば、複数の貫通孔を有するハニカム状基材と、このハニカム状基材のセルの内壁に塗布された触媒材料からなる触媒層とを備えるハニカム状触媒が知られている。このようなハニカム状触媒の触媒層においては、従来、1種類の触媒材料が用いられていたが、近年、触媒性能の向上のために、複数の触媒材料が併用されている。しかしながら、複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒は、触媒性能が必ずしも十分なものではなかった。 Examples of exhaust gas purification catalysts used in automobiles include, for example, a honeycomb-shaped substrate including a honeycomb-shaped substrate having a plurality of through holes and a catalyst layer made of a catalyst material applied to the inner wall of a cell of the honeycomb-shaped substrate. Catalysts are known. In the catalyst layer of such a honeycomb-shaped catalyst, conventionally, one type of catalyst material has been used, but in recent years, a plurality of catalyst materials have been used in combination for improving the catalyst performance. However, a honeycomb catalyst including a mixed catalyst layer formed by mixing a plurality of catalyst materials has not always had sufficient catalyst performance.
また、複数の触媒材料を併用した触媒層としては、組成が異なる複数の触媒層が、排ガスの流れ方向(セルの長軸方向)に分離して配置されている流れ方向分離型の触媒層や排ガスの流れ方向に垂直な方向(セルの短軸方向又は半径方向)に分離して配置されている多層の触媒層が知られている。 In addition, as a catalyst layer using a plurality of catalyst materials in combination, a plurality of catalyst layers having different compositions are separated in the exhaust gas flow direction (long axis direction of the cell), A multi-layered catalyst layer is known that is disposed separately in a direction (short axis direction or radial direction of a cell) perpendicular to the flow direction of exhaust gas.
例えば、特開2007−268484号公報(特許文献1)には、ハニカム基材のセル隔壁の表面に、複数のスラリーをハニカム基材の軸方向及び径方向の少なくとも一方で異なる分布パターンをもつようにコートする方法であって、前記分布パターンと略同一パターンとなるように複数のスラリーを筒状のコート治具に区画して充填し、このコート治具をハニカム基材の一端面に当接させ、前記コート治具の端面からスラリーをセル通路に導入するコート方法が記載されている。 For example, in Japanese Patent Application Laid-Open No. 2007-268484 (Patent Document 1), a plurality of slurries have different distribution patterns in at least one of the axial direction and the radial direction of the honeycomb substrate on the surface of the cell partition walls of the honeycomb substrate. A plurality of slurries are partitioned and filled into a cylindrical coating jig so as to be substantially the same pattern as the distribution pattern, and the coating jig is brought into contact with one end surface of the honeycomb substrate. And a coating method in which slurry is introduced into the cell passage from the end face of the coating jig.
また、国際公開第2010/114132号(特許文献2)には、複数の吐出口が設けられているノズルと、このノズルに接続されている流体供給装置とを備える排ガス浄化用触媒の製造装置が記載されている。また、特許文献2には、触媒層の原料を含んだ流体を前記ノズルからモノリスハニカム基材の一方の端面に吐出させて触媒層を形成し、次いで、異なる触媒層の原料を含んだ流体を前記ノズルからモノリスハニカム基材の他方の端面に吐出させて異なる触媒層を形成することによって、モノリスハニカム基材の上流部と下流部に異なる組成の触媒層が形成された排ガス浄化用触媒が得られることが記載されている。 In addition, International Publication No. 2010/114132 (Patent Document 2) includes an apparatus for producing an exhaust gas purification catalyst including a nozzle provided with a plurality of discharge ports and a fluid supply device connected to the nozzle. Have been described. Patent Document 2 discloses that a fluid containing a catalyst layer material is discharged from the nozzle onto one end face of a monolith honeycomb substrate to form a catalyst layer, and then a fluid containing a different catalyst layer material is used. By discharging the nozzle from the nozzle to the other end surface of the monolith honeycomb substrate to form different catalyst layers, an exhaust gas purifying catalyst having catalyst layers having different compositions at the upstream and downstream portions of the monolith honeycomb substrate is obtained. It is described that
さらに、特開2010−133332号公報(特許文献3)には、1つのハニカム担体に光発熱材のコート層と排ガス浄化用触媒の触媒層を塗り分けることによって、排気上流側又は下流側に光発熱体、下流側又は上流側に排ガス浄化用触媒が配置されている触媒装置が得られることが記載されている。 Further, in JP 2010-133332 A (Patent Document 3), a light emitting material coating layer and an exhaust gas purifying catalyst layer are separately applied to one honeycomb carrier, whereby light is emitted upstream or downstream of the exhaust. It is described that a catalyst device in which an exhaust gas purifying catalyst is arranged on the heating element, downstream side or upstream side is obtained.
また、特開2014−188466号公報(特許文献4)には、ハニカム構造部の入口セル側の隔壁表面に、微細原料粒子を塗布し、焼成して、複数の細孔を有する表面捕集層を形成し、ハニカム構造部の出口セル側の隔壁表面に、排ガス浄化用触媒を含むスラリーを塗工し、乾燥させて、前記排ガス浄化用触媒を担持させる排ガス浄化フィルターの製造方法が記載されている。 In addition, JP-A-2014-188466 (Patent Document 4) discloses a surface collection layer having a plurality of pores by applying fine raw material particles to the surface of the partition wall on the inlet cell side of the honeycomb structure portion and firing it. A method for manufacturing an exhaust gas purification filter is described in which a slurry containing an exhaust gas purification catalyst is applied to the partition wall surface on the outlet cell side of the honeycomb structure portion and dried to support the exhaust gas purification catalyst. Yes.
さらに、特開2016−2534号公報(特許文献5)には、シリンジ先端から、ウォールスルー型のフィルター基体のガス流入通路の封止端側の隔壁表面に粒子状物質酸化触媒の前駆体である触媒スラリーを圧入し、さらに、ガス流入通路の開口端側の隔壁表面にNOx浄化触媒の前駆体である触媒スラリーを圧入し、その後、乾燥、焼成を施す排ガス浄化用触媒の製造方法が記載されている。 Further, JP-A-2006-2534 (Patent Document 5) discloses a precursor of a particulate matter oxidation catalyst from the syringe tip to the partition wall surface on the sealing end side of the gas inflow passage of the wall-through filter base. A method for producing an exhaust gas purifying catalyst is described in which a catalyst slurry is press-fitted, and further, a catalyst slurry that is a precursor of a NOx purifying catalyst is press-fitted into the surface of the partition wall on the opening end side of the gas inflow passage, and then dried and fired. ing.
しかしながら、特許文献1〜2、4〜5に記載の方法によって得られるハニカム状触媒や特許文献3に記載の触媒装置は、複数の触媒層がハニカム状基材のセルの長軸方向や半径方向に分布した状態に配置されているものであり、複数の触媒層がセルの内周に沿った方向に分布した状態で配置されているハニカム状触媒については知られていなかった。 However, the honeycomb catalyst obtained by the methods described in Patent Documents 1 to 2, and 4 to 5 and the catalyst device described in Patent Document 3 have a plurality of catalyst layers in the major axis direction or radial direction of cells of the honeycomb substrate. A honeycomb catalyst in which a plurality of catalyst layers are arranged in a direction along the inner periphery of the cell has not been known.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、複数の触媒材料を併用した触媒層を備えており、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示すハニカム状触媒を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and includes a catalyst layer in which a plurality of catalyst materials are used in combination, and a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials. An object of the present invention is to provide a honeycomb-shaped catalyst exhibiting superior catalyst performance as compared with the provided honeycomb-shaped catalyst.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、複数の触媒材料をハニカム状基材の各セルの内壁にセルの内周に沿った方向に分離した状態に塗布することによって、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示すハニカム状触媒が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors apply a plurality of catalyst materials to the inner wall of each cell of the honeycomb substrate in a state separated in the direction along the inner periphery of the cell. Has found that a honeycomb-shaped catalyst exhibiting superior catalytic performance compared to a honeycomb-shaped catalyst having a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials can be obtained, and the present invention has been completed. .
すなわち、本発明のハニカム状触媒は、ハニカム状基材と、該ハニカム状基材の各セルの内壁にセルの内周に沿った方向に分離して配置されている2種以上の触媒層とを備えていることを特徴とするものである。 That is, the honeycomb-shaped catalyst of the present invention includes a honeycomb-shaped base material, and two or more types of catalyst layers arranged separately on the inner wall of each cell of the honeycomb-shaped base material in the direction along the inner periphery of the cell. It is characterized by having.
本発明のハニカム状触媒において、前記2種以上の触媒層は、それぞれ組成が前記セルの長軸方向に均一であることが好ましい。また、前記2種以上の触媒層が、ロジウムを含有する触媒層とパラジウムを含有する触媒層の組み合わせ、ロジウムを含有する触媒層と白金を含有する触媒層の組み合わせ、ロジウムを含有する触媒層とセリアを含有する触媒層の組み合わせ、ロジウムを含有する触媒層と酸化鉄を含有する触媒層の組み合わせ、セリアを含有する触媒層と酸化鉄を含有する触媒層の組み合わせ、アルミナを含有する触媒層と酸化鉄を含有する触媒層の組み合わせ、チタニアを含有する触媒層とアルミナを含有する触媒層の組み合わせ、貴金属を含有する触媒層とシリカを含有する触媒層の組み合わせ、貴金属を含有する触媒層とゼオライトを含有する触媒層の組み合わせ、並びに塩基性材料を含有する触媒層と貴金属を含有する触媒層の組み合わせのうちの少なくとも1つの組み合わせを含有するものであることが好ましい。 In the honeycomb-shaped catalyst of the present invention, it is preferable that the two or more types of catalyst layers have a uniform composition in the major axis direction of the cell. The two or more types of catalyst layers may be a combination of a rhodium-containing catalyst layer and a palladium-containing catalyst layer, a combination of a rhodium-containing catalyst layer and a platinum-containing catalyst layer, a rhodium-containing catalyst layer, A combination of a catalyst layer containing ceria, a combination of a catalyst layer containing rhodium and a catalyst layer containing iron oxide, a combination of a catalyst layer containing ceria and a catalyst layer containing iron oxide, a catalyst layer containing alumina Combination of catalyst layer containing iron oxide, combination of catalyst layer containing titania and catalyst layer containing alumina, combination of catalyst layer containing noble metal and catalyst layer containing silica, catalyst layer containing noble metal and zeolite A combination of a catalyst layer containing a catalyst and a combination of a catalyst layer containing a basic material and a catalyst layer containing a noble metal It preferably contains one combination even without.
なお、本発明のハニカム状触媒が、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来の複数の触媒材料を混合して形成された混合触媒層においては、複数の触媒材料が互いに近接して共存しているため、酸化/還元の高温熱処理によって触媒材料が拡散・固溶・反応・シンタリング(粒成長)し、各触媒材料の性能が阻害され、十分な触媒性能が発揮されないと推察される。一方、本発明のハニカム状触媒においては、2種以上の触媒層がハニカム状基材の各セルの内壁にセルの内周に沿った方向に分離して配置されているため、酸化/還元の高温熱処理を施しても触媒材料が拡散・固溶・反応・シンタリング(粒成長)しにくくなり、各触媒材料の性能が十分に発現する。その結果、本発明のハニカム状触媒は、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示すものになると推察される。 The reason why the honeycomb catalyst of the present invention exhibits superior catalyst performance as compared with a honeycomb catalyst having a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials is not necessarily clear. They guess as follows. That is, in a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials, a plurality of catalyst materials coexist in close proximity to each other, so that the catalyst materials are diffused and dissolved by high-temperature oxidation / reduction heat treatment.・ Reaction and sintering (grain growth) impedes the performance of each catalyst material, and it is assumed that sufficient catalyst performance is not exhibited. On the other hand, in the honeycomb-shaped catalyst of the present invention, two or more kinds of catalyst layers are separately disposed on the inner wall of each cell of the honeycomb-shaped base material in the direction along the inner periphery of the cell. Even if high temperature heat treatment is applied, the catalyst material is less likely to diffuse, dissolve, react, and sinter (grain growth), and the performance of each catalyst material is fully expressed. As a result, the honeycomb catalyst of the present invention is presumed to exhibit superior catalyst performance as compared with a honeycomb catalyst having a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials.
本発明によれば、複数の触媒材料を併用した触媒層を備えており、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示すハニカム状触媒を得ることが可能となる。 According to the present invention, it has a catalyst layer using a plurality of catalyst materials in combination, and exhibits superior catalyst performance compared to a honeycomb catalyst having a mixed catalyst layer formed by mixing a plurality of conventional catalyst materials. A honeycomb catalyst can be obtained.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
本発明のハニカム状触媒は、ハニカム状基材と、このハニカム状基材の各セルの内壁にセルの内周に沿った方向に分離して配置されている2種以上の触媒層とを備えているものである。 The honeycomb-shaped catalyst of the present invention includes a honeycomb-shaped base material, and two or more types of catalyst layers arranged separately in the direction along the inner periphery of the cell on the inner wall of each cell of the honeycomb-shaped base material. It is what.
(ハニカム状基材)
本発明に用いられるハニカム状基材としては、隔壁で区画された多数のセル(ガス通路)を有するものであれば特に制限はない。また、セルの長軸方向(ガスの流れ方向)に垂直な方向のセルの断面形状としては特に制限はなく、例えば、四角形状(好ましくは正四角形状)、六角形状(好ましくは正六角形状)等の多角形状(好ましくは正多角形状)、円形状、楕円形状等が挙げられる。
(Honeycomb substrate)
The honeycomb substrate used in the present invention is not particularly limited as long as it has a large number of cells (gas passages) partitioned by partition walls. Moreover, there is no restriction | limiting in particular as a cross-sectional shape of the cell of the direction perpendicular | vertical to the major axis direction (gas flow direction) of a cell, For example, square shape (preferably regular square shape), hexagon shape (preferably regular hexagon shape) And the like (preferably regular polygonal shape), circular shape, elliptical shape and the like.
このようなハニカム状基材の材質としては特に制限はなく、例えば、コージェライト、炭化ケイ素、ムライト、アルミナ、チタン酸アルミニウム、窒化ケイ素、ステンレス鋼、20%Cr−5%Al合金ステンレス鋼等が挙げられる。特に、本発明のハニカム状触媒を自動車用排ガス浄化触媒として使用する場合には、コージェライト製ハニカム状基材、ステンレス箔基材が好ましい。 The material of such a honeycomb substrate is not particularly limited, and examples thereof include cordierite, silicon carbide, mullite, alumina, aluminum titanate, silicon nitride, stainless steel, 20% Cr-5% Al alloy stainless steel, and the like. Can be mentioned. In particular, when the honeycomb catalyst of the present invention is used as an exhaust gas purification catalyst for automobiles, a cordierite honeycomb substrate and a stainless steel foil substrate are preferable.
(触媒層)
本発明に用いられる触媒層を構成する触媒材料としては特に制限はなく、例えば、貴金属(ロジウム(Rh)、パラジウム(Pd)、白金(Pt)等)、塩基性材料(バリウム(Ba)等)、酸化物担体(アルミナ、ジルコニア、シリカ、チタニア、希土類酸化物(例えば、セリア、酸化ランタン)、遷移金属酸化物(例えば、酸化鉄)、これらを2種以上含む複合酸化物(例えば、セリア−ジルコニア複合酸化物、ゼオライト)等)が挙げられる。
(Catalyst layer)
The catalyst material constituting the catalyst layer used in the present invention is not particularly limited. For example, noble metals (rhodium (Rh), palladium (Pd), platinum (Pt), etc.), basic materials (barium (Ba), etc.) , Oxide carriers (alumina, zirconia, silica, titania, rare earth oxides (for example, ceria, lanthanum oxide), transition metal oxides (for example, iron oxide), and complex oxides (for example, ceria- Zirconia composite oxide, zeolite) and the like.
本発明のハニカム状触媒においては、このような触媒材料のうちの2種以上をそれぞれ独立に使用して形成された2種以上の触媒層が、前記ハニカム状基材の各セルの内壁にセルの内周方向に分離した状態で配置されている。本発明にかかる2種以上の触媒材料(触媒層)の組み合わせとしては特に制限はないが、触媒材料を混合した場合に酸化/還元の高温熱処理により触媒材料の拡散・固溶・反応・シンタリング(粒成長)等が起こり、活性点や比表面積の減少、融点の低下によって触媒性能が十分に発揮されない触媒材料(該触媒材料からなる触媒層)の組み合わせが好ましく、ロジウム(Rh)を含有する触媒材料(触媒層)とパラジウム(Pd)を含有する触媒材料(触媒層)の組み合わせ、ロジウム(Rh)を含有する触媒材料(触媒層)と白金(Pt)を含有する触媒材料(触媒層)の組み合わせ、ロジウム(Rh)を含有する触媒材料(触媒層)とセリアを含有する触媒材料(触媒層)の組み合わせ、ロジウム(Rh)を含有する触媒材料(触媒層)と酸化鉄を含有する触媒材料(触媒層)の組み合わせ、セリアを含有する触媒材料(触媒層)と酸化鉄を含有する触媒材料(触媒層)の組み合わせ、アルミナを含有する触媒材料(触媒層)と酸化鉄を含有する触媒材料(触媒層)の組み合わせ、チタニアを含有する触媒材料(触媒層)とアルミナを含有する触媒材料(触媒層)の組み合わせがより好ましい。これらの触媒材料の組み合わせは、それぞれ独立に使用してセルの内周方向に分離した状態の2種以上の触媒層を形成した場合に、酸化/還元の高温熱処理を施しても触媒材料の拡散・固溶・反応・シンタリング(粒成長)等が起こりにくくなり、活性点や比表面積の減少、融点の低下が抑制され、混合した場合に比べて優れた触媒性能が発現する。 In the honeycomb-shaped catalyst of the present invention, two or more types of catalyst layers formed by using two or more types of such catalyst materials independently are provided on the inner wall of each cell of the honeycomb-shaped substrate. It is arrange | positioned in the state isolate | separated in the inner peripheral direction. The combination of two or more kinds of catalyst materials (catalyst layers) according to the present invention is not particularly limited. However, when the catalyst materials are mixed, diffusion, solid solution, reaction, and sintering of the catalyst material by high-temperature oxidation / reduction heat treatment. A combination of a catalyst material (catalyst layer made of the catalyst material) in which the catalyst performance is not sufficiently exhibited due to the occurrence of (granular growth) or the like, due to a decrease in active site, specific surface area, or melting point, is preferable, and contains rhodium (Rh) Combination of catalyst material (catalyst layer) and catalyst material (catalyst layer) containing palladium (Pd), catalyst material (catalyst layer) containing rhodium (Rh) and catalyst material (catalyst layer) containing platinum (Pt) A combination of a catalyst material (catalyst layer) containing rhodium (Rh) and a catalyst material (catalyst layer) containing ceria, a catalyst material (catalyst layer) containing rhodium (Rh) And catalyst material (catalyst layer) containing iron oxide, catalyst material containing ceria (catalyst layer) and catalyst material containing iron oxide (catalyst layer), catalyst material containing alumina (catalyst layer) And a combination of a catalyst material (catalyst layer) containing iron oxide and a combination of a catalyst material (catalyst layer) containing titania and a catalyst material (catalyst layer) containing alumina. The combination of these catalyst materials is used independently, and when two or more types of catalyst layers separated in the inner circumferential direction of the cell are formed, the catalyst material can be diffused even when subjected to high temperature heat treatment for oxidation / reduction.・ Solid solution / reaction / sintering (grain growth) is less likely to occur, and the reduction of active sites, specific surface area, and melting point is suppressed, and excellent catalytic performance is achieved compared to the case of mixing.
また、本発明にかかる2種以上の触媒材料(触媒層)の組み合わせとしては、触媒材料を混合した場合にコーキングが起こりやすい触媒材料の組み合わせも好ましく、貴金属を含有する触媒材料(触媒層)とシリカを含有する触媒材料(触媒層)の組み合わせ、貴金属を含有する触媒材料(触媒層)とゼオライトを含有する触媒材料(触媒層)の組み合わせがより好ましい。これらの触媒材料の組み合わせは、それぞれ独立に使用してセルの内周方向に分離した状態の2種以上の触媒層を形成した場合に、コーキングが起こりにくくなり、混合した場合に比べて優れた触媒性能(例えば、炭化水素(HC)吸着能)が発現する。 In addition, as a combination of two or more kinds of catalyst materials (catalyst layers) according to the present invention, a combination of catalyst materials that easily cause coking when mixed with the catalyst materials is preferable, and a catalyst material containing a noble metal (catalyst layer) and A combination of a catalyst material containing silica (catalyst layer) and a combination of a catalyst material containing noble metal (catalyst layer) and a catalyst material containing zeolite (catalyst layer) are more preferred. The combination of these catalyst materials is used independently, and when two or more catalyst layers separated in the inner circumferential direction of the cell are formed, coking is less likely to occur and is superior to the case of mixing. Catalytic performance (for example, hydrocarbon (HC) adsorption ability) is developed.
さらに、本発明にかかる2種以上の触媒材料(触媒層)の組み合わせとしては、触媒材料を混合した場合に触媒材料の拡散や移動・反応が起こりやすい触媒材料の組み合わせも好ましく、塩基性材料を含有する触媒材料(触媒層)と貴金属を含有する触媒材料(触媒層)の組み合わせがより好ましい。これらの触媒材料の組み合わせは、それぞれ独立に使用してセルの内周方向に分離した状態の2種以上の触媒層を形成した場合に、触媒材料の拡散や移動・反応が起こりにくくなり、混合した場合に比べて優れた触媒性能(例えば、NOx吸着能やNOx浄化性能)が発現する。 Further, as a combination of two or more kinds of catalyst materials (catalyst layers) according to the present invention, a combination of catalyst materials that are likely to cause diffusion, movement and reaction when the catalyst materials are mixed is also preferable. A combination of the catalyst material containing (catalyst layer) and the catalyst material containing noble metal (catalyst layer) is more preferred. The combination of these catalyst materials is used independently, and when two or more types of catalyst layers separated in the inner circumferential direction of the cell are formed, the diffusion, movement and reaction of the catalyst materials are less likely to occur. The catalyst performance (for example, NOx adsorption ability and NOx purification performance) superior to that of the case is exhibited.
(ハニカム状触媒の構造)
本発明のハニカム状触媒は、前記ハニカム状基材と、このハニカム状基材の各セルの内壁にセルの内周方向に分離して配置されている2種以上の触媒層とを備えているものである。図1A〜図1Lは、このような本発明のハニカム状触媒の好適な実施態様の例を示す、セルの長軸方向(ガスの流れ方向)に垂直な断面の模式図である。2種以上の触媒層をハニカム状基材の各セルの内壁にセルの内周方向に分離して配置することによって、酸化/還元の高温熱処理を施しても触媒材料の拡散・固溶・反応・シンタリング(粒成長)が起こりにくくなり、各触媒層の性能が十分に発現し、2種以上の触媒材料を混合した場合に比べて優れた触媒性能を示す。また、各触媒層は、全体及び/又は一部分が隣の触媒層と接触していてもよいし、離れていてもよい。
(Structure of honeycomb catalyst)
The honeycomb-shaped catalyst of the present invention includes the honeycomb-shaped base material, and two or more types of catalyst layers arranged separately on the inner wall of each cell of the honeycomb-shaped base material in the inner circumferential direction of the cell. Is. 1A to 1L are schematic views of a cross section perpendicular to the major axis direction (gas flow direction) of a cell, showing an example of a preferred embodiment of such a honeycomb catalyst of the present invention. By disposing two or more types of catalyst layers separately on the inner wall of each cell of the honeycomb substrate in the inner circumferential direction of the cell, the catalyst material can be diffused, dissolved, and reacted even when subjected to high temperature oxidation / reduction heat treatment. -Sintering (grain growth) is less likely to occur, the performance of each catalyst layer is fully expressed, and shows superior catalyst performance compared to the case where two or more catalyst materials are mixed. In addition, each catalyst layer may be in contact with the next catalyst layer as a whole and / or a part thereof, or may be separated from each other.
図1A及び図1Gに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正四角形のものであって、このセル1aの内壁1bをセルの内周方向に2分割した領域のうちの一方に触媒A層101Aが、他方に触媒B層101Bがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、1つの触媒A層101Aと1つの触媒B層101Bとがセルの内周方向に分離した状態で配置されているものである。 The honeycomb-shaped catalyst of the present invention shown in FIGS. 1A and 1G has a square-shaped cross section of the cell 1a of the honeycomb substrate, and the inner wall 1b of the cell 1a is divided into two in the inner circumferential direction of the cell. The catalyst A layer 101A is arranged in one of the regions, and the catalyst B layer 101B is arranged in the other, that is, one catalyst A layer 101A and one catalyst B layer 101B are formed on the inner wall 1b of the cell 1a. The cells are arranged in a state separated in the inner peripheral direction of the cell.
図1B及び図1Hに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正四角形のものであって、このセル1aの内壁1bをセルの内周方向に4分割した領域のうちの1つに触媒A層101Aが、この触媒A層101Aに隣接する2つの領域に触媒B層101Bが、前記触媒A層101Aに対向する領域に触媒A層101Aがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、2つの触媒A層101Aと2つの触媒B層101Bとがセルの内周方向に分離した状態で交互に配置されているものである。 The honeycomb-shaped catalyst of the present invention shown in FIGS. 1B and 1H has a square-shaped cross section of the cell 1a of the honeycomb-shaped substrate, and the inner wall 1b of the cell 1a is divided into four in the inner peripheral direction of the cell. The catalyst A layer 101A is disposed in one of the regions, the catalyst B layer 101B is disposed in two regions adjacent to the catalyst A layer 101A, and the catalyst A layer 101A is disposed in a region facing the catalyst A layer 101A. In other words, the two catalyst A layers 101A and the two catalyst B layers 101B are alternately arranged on the inner wall 1b of the cell 1a while being separated in the inner circumferential direction of the cell.
図1C及び図1Iに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正四角形のものであって、このセル1aの内壁1bをセルの内周方向に4分割した領域のうちの1つに触媒A層101Aが、この触媒A層101Aに隣接する一方の領域に触媒B層101Bが、前記触媒A層101Aに隣接する他方の領域に触媒D層101D(又は触媒C層101C)が、前記触媒A層101Aに対向する領域に触媒C層101C(又は触媒D層101D)がそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、触媒A層101Aと触媒B層101Bと触媒C層101Cと触媒D層101Dと(又は触媒A層101Aと触媒B層101Bと触媒D層101Dと触媒C層101Cと)がセルの内周方向に分離した状態で順に配置されているものである。 The honeycomb-shaped catalyst of the present invention shown in FIGS. 1C and 1I has a honeycomb substrate base cell 1a having a square cross section, and the inner wall 1b of the cell 1a is divided into four in the inner circumferential direction of the cell. The catalyst A layer 101A is in one of the regions, the catalyst B layer 101B is in one region adjacent to the catalyst A layer 101A, and the catalyst D layer 101D (or the catalyst is in the other region adjacent to the catalyst A layer 101A). C layer 101C) has a catalyst C layer 101C (or catalyst D layer 101D) disposed in a region facing the catalyst A layer 101A, that is, the catalyst A layer 101A and the catalyst on the inner wall 1b of the cell 1a. In a state where the B layer 101B, the catalyst C layer 101C, and the catalyst D layer 101D (or the catalyst A layer 101A, the catalyst B layer 101B, the catalyst D layer 101D, and the catalyst C layer 101C) are separated in the inner circumferential direction of the cell. In which is disposed.
図1D及び図1Jに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正六角形のものであって、このセル1aの内壁1bをセルの内周方向に2分割した領域のうちの一方に触媒A層101Aが、他方に触媒B層101Bがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、1つの触媒A層101Aと1つの触媒B層101Bとがセルの内周方向に分離した状態で配置されているものである。 The honeycomb catalyst of the present invention shown in FIGS. 1D and 1J has a regular hexagonal cross-sectional shape of the cell 1a of the honeycomb substrate, and the inner wall 1b of the cell 1a is divided into two in the inner circumferential direction of the cell. The catalyst A layer 101A is arranged in one of the regions, and the catalyst B layer 101B is arranged in the other, that is, one catalyst A layer 101A and one catalyst B layer 101B are formed on the inner wall 1b of the cell 1a. The cells are arranged in a state separated in the inner peripheral direction of the cell.
図1E及び図1Kに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正六角形のものであって、このセル1aの内壁1bをセルの内周方向に6分割した領域のうちの1つに触媒A層101Aが、この触媒A層101Aに隣接する2つの領域に触媒B層101Bが、前記触媒A層101Aに対向する領域に触媒B層101Bが、この触媒B層101Bに隣接する2つの領域に触媒A層101Aがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、3つの触媒A層101Aと3つの触媒B層101Bがセルの内周方向に分離した状態で交互に配置されているものである。 The honeycomb catalyst of the present invention shown in FIGS. 1E and 1K has a regular hexagonal cross-sectional shape of the cell 1a of the honeycomb substrate, and the inner wall 1b of the cell 1a is divided into six in the inner circumferential direction of the cell. The catalyst A layer 101A is in one of the regions, the catalyst B layer 101B is in two regions adjacent to the catalyst A layer 101A, and the catalyst B layer 101B is in the region facing the catalyst A layer 101A. The catalyst A layer 101A is disposed in two regions adjacent to the layer 101B, that is, three catalyst A layers 101A and three catalyst B layers 101B are arranged in the inner circumferential direction of the cell on the inner wall 1b of the cell 1a. They are alternately arranged in a separated state.
図1Fに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正六角形のものであって、このセル1aの内壁1bをセルの内周方向に3分割した領域のうちの1つに触媒A層101Aが、この触媒A層101Aに隣接する一方の領域に触媒B層101Bが、前記触媒A層101Aに隣接する他方の領域に触媒C層101Cがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、触媒A層101Aと触媒B層101Bと触媒C層101Cとがセルの内周方向に分離した状態で順に配置されているものである。 In the honeycomb-shaped catalyst of the present invention shown in FIG. 1F, the cell 1a of the honeycomb-shaped base material has a regular hexagonal cross section, and the inner wall 1b of the cell 1a is divided into three in the inner circumferential direction of the cell. One of them is a catalyst A layer 101A, a catalyst B layer 101B in one region adjacent to the catalyst A layer 101A, and a catalyst C layer 101C in the other region adjacent to the catalyst A layer 101A. That is, the catalyst A layer 101A, the catalyst B layer 101B, and the catalyst C layer 101C are sequentially arranged on the inner wall 1b of the cell 1a while being separated in the inner circumferential direction of the cell.
図1Lに示す本発明のハニカム状触媒は、ハニカム状基材のセル1aの断面形状が正六角形のものであって、このセル1aの内壁1bをセルの内周方向に4分割した領域のうちの1つに触媒A層101Aが、この触媒A層101Aに隣接する2つの領域に触媒C層101Cが、前記触媒A層101Aに対向する領域に触媒B層101Bがそれぞれ配置されているもの、すなわち、セル1aの内壁1bに、触媒A層101Aと触媒C層101Cと触媒B層101Bと触媒C層101Cとがセルの内周方向に分離した状態で順に配置されているものである。 The honeycomb-shaped catalyst of the present invention shown in FIG. 1L has a regular hexagonal cross-sectional shape of the cell 1a of the honeycomb-shaped substrate, and the inner wall 1b of the cell 1a is divided into four in the inner circumferential direction of the cell. One of the catalyst A layer 101A, the catalyst C layer 101C is disposed in two regions adjacent to the catalyst A layer 101A, and the catalyst B layer 101B is disposed in a region facing the catalyst A layer 101A, That is, the catalyst A layer 101A, the catalyst C layer 101C, the catalyst B layer 101B, and the catalyst C layer 101C are sequentially arranged on the inner wall 1b of the cell 1a while being separated in the inner circumferential direction of the cell.
また、ハニカム状基材のセルの断面形状が正四角形や正六角形等の多角形の場合において、塗布する触媒材料や触媒材料スラリーの粘度が高くなると、図1G〜図1Lに示すように、触媒層の内周は円くなる。このため、セルの断面形状における辺(多角形の辺)の中央部の触媒層の厚さがコーナー部(多角形の頂点部分)に比べて薄くなる。そこで、図1G〜図1Lに示すように、隣接する触媒層の境界部分をセルの断面形状における辺(多角形の辺)(好ましくは辺の中央部(多角形の辺の中央部))に配置することによって、図1A〜図1Fに示すハニカム状触媒に比べて、触媒材料の拡散・固溶・反応・シンタリング(粒成長)等が更に起こりにくくすることができる。また、図1Lに示すように、触媒A層101Aと触媒B層101Bとの間にバッファー層としての触媒C層101Cを配置することによって、触媒A層101Aと触媒B層101Bとを分離する効果を更に高めることができる。 Moreover, when the cross-sectional shape of the cells of the honeycomb-shaped substrate is a polygon such as a regular square or a regular hexagon, when the viscosity of the catalyst material or catalyst material slurry to be applied increases, as shown in FIG. 1G to FIG. The inner circumference of the layer becomes a circle. For this reason, the thickness of the catalyst layer at the center of the side (polygonal side) in the cell cross-sectional shape is thinner than the corner (polygonal apex part). Therefore, as shown in FIGS. 1G to 1L, the boundary part of the adjacent catalyst layer is set to a side (polygonal side) (preferably the central part of the side (central part of the polygonal side)) in the cross-sectional shape of the cell. By disposing, compared with the honeycomb-shaped catalyst shown in FIGS. 1A to 1F, diffusion, solid solution, reaction, sintering (grain growth), etc. of the catalyst material can be further prevented. 1L, the catalyst A layer 101A and the catalyst B layer 101B are separated from each other by disposing the catalyst C layer 101C as a buffer layer between the catalyst A layer 101A and the catalyst B layer 101B. Can be further increased.
また、図1A〜図1Lに示す本発明のハニカム状触媒においては、触媒A層101A、触媒B層101B、触媒C層101C及び触媒D層101Dの組成がそれぞれセルの長軸方向に均一であることが好ましい。これにより、セル内を流通するガスに対する圧力損失を低減することができる。 In the honeycomb catalyst of the present invention shown in FIGS. 1A to 1L, the composition of the catalyst A layer 101A, the catalyst B layer 101B, the catalyst C layer 101C, and the catalyst D layer 101D is uniform in the long axis direction of the cell. It is preferable. Thereby, the pressure loss with respect to the gas which distribute | circulates the inside of a cell can be reduced.
本発明のハニカム状触媒において、触媒層の幅(触媒層表面における短軸方向長さ)としては0.05〜5mmが好ましく、0.3〜2mmがより好ましい。触媒層の幅が前記下限未満になると、触媒層の分離が十分ではなく、触媒性能が十分に発現しない傾向にあり、他方、前記上限を超えると、2種類以上の触媒層の共存効果が十分に得られにくい傾向にある。 In the honeycomb catalyst of the present invention, the width of the catalyst layer (the length in the minor axis direction on the surface of the catalyst layer) is preferably 0.05 to 5 mm, more preferably 0.3 to 2 mm. When the width of the catalyst layer is less than the lower limit, separation of the catalyst layer is not sufficient, and the catalyst performance tends to be insufficient. On the other hand, when the upper limit is exceeded, the coexistence effect of two or more types of catalyst layers is sufficient. Tend to be difficult to obtain.
また、触媒層の厚さとしては5〜200μmが好ましく、10〜50μmがより好ましい。触媒層の厚さが前記下限未満になると、十分な量の触媒材料を担持できないため、触媒性能が十分に発現しない傾向にあり、他方、前記上限を超えると、ガスの流路が十分に確保できないため、セル内を流通するガスに対する圧力損失が増加し、例えば、排ガス浄化用触媒の場合には自動車の燃費が悪化する傾向にある。 Moreover, as thickness of a catalyst layer, 5-200 micrometers is preferable and 10-50 micrometers is more preferable. When the thickness of the catalyst layer is less than the lower limit, a sufficient amount of the catalyst material cannot be supported, and thus the catalyst performance tends to be insufficient. On the other hand, when the upper limit is exceeded, a gas flow path is sufficiently secured. Since this is not possible, the pressure loss with respect to the gas flowing in the cell increases. For example, in the case of an exhaust gas purifying catalyst, the fuel consumption of an automobile tends to deteriorate.
このような本発明のハニカム状触媒の製造方法を、触媒材料A及び触媒材料Bを塗布して触媒層A及び触媒層Bを形成する場合を例として以下に説明する。 Such a method for manufacturing a honeycomb-shaped catalyst of the present invention will be described below by taking as an example the case where the catalyst material A and the catalyst material B are applied to form the catalyst layer A and the catalyst layer B.
先ず、シリンジ等の吐出管をハニカム状基材の一方の端面からセルに挿入し、吐出管の先端部をハニカム状基材の他方の端面に達するまで移動させる。次に、吐出管をハニカム状基材のセルの長軸方向に沿って前記他方の端面から前記一方の端面に向かって移動させながら、触媒材料Aを吐出管に供給して吐出管の先端部に設けられた材料吐出口から吐出させる。このとき、吐出管の先端部の外周面の一部に材料吐出口を設けることによって、セルの内壁の内周方向の一部の領域に触媒材料Aを塗布することができる。これらの一連の操作を各セルについて行い、各セルの内壁の内周方向の一部の領域に触媒材料Aを塗布する。その後、塗布された触媒材料Aを焼成することによって、各セルの内壁の内周方向の一部の領域に触媒層Aが形成される。 First, a discharge tube such as a syringe is inserted into the cell from one end face of the honeycomb-shaped substrate, and the tip of the discharge tube is moved until it reaches the other end surface of the honeycomb-shaped substrate. Next, the catalyst material A is supplied to the discharge pipe while moving the discharge pipe from the other end face toward the one end face along the long axis direction of the cells of the honeycomb substrate, and the tip end of the discharge pipe It discharges from the material discharge port provided in this. At this time, the catalyst material A can be applied to a partial region in the inner peripheral direction of the inner wall of the cell by providing a material discharge port on a part of the outer peripheral surface of the distal end portion of the discharge pipe. A series of these operations is performed for each cell, and the catalyst material A is applied to a partial region of the inner wall direction of the inner wall of each cell. Thereafter, the applied catalyst material A is baked to form the catalyst layer A in a partial region in the inner peripheral direction of the inner wall of each cell.
次に、セルの内壁の触媒層Aが形成されていない所定の領域に触媒材料Bが塗布されるように、長軸方向を回転軸として吐出管を回転させて材料吐出口の向きをセットする。その後、吐出管をハニカム状基材の一方の端面からセルに挿入し、吐出管の先端部をハニカム状基材の他方の端面に達するまで移動させる。次いで、吐出管をハニカム状基材のセルの長軸方向に沿って前記他方の端面から前記一方の端面に向かって移動させながら、触媒材料Bを吐出管に供給して吐出管の先端部に設けられた材料吐出口から吐出させる。これにより、セルの内壁の触媒層Aが形成されていない領域のうちの内周方向の少なくとも一部の領域に触媒材料Bが塗布される。これらの一連の操作を各セルについて行い、各セルの内壁の内周方向の一部の領域に触媒材料Aを塗布する。その後、塗布された触媒材料Bを焼成することによって、各セルの内壁の触媒層Aが形成されていない領域のうちの内周方向の少なくとも一部の領域に触媒層Bが形成される。 Next, the direction of the material discharge port is set by rotating the discharge pipe with the major axis direction as the rotation axis so that the catalyst material B is applied to a predetermined region where the catalyst layer A on the inner wall of the cell is not formed. . Thereafter, the discharge pipe is inserted into the cell from one end face of the honeycomb substrate, and the tip of the discharge pipe is moved until it reaches the other end face of the honeycomb substrate. Next, the catalyst material B is supplied to the discharge pipe while moving the discharge pipe from the other end face toward the one end face along the long axis direction of the cells of the honeycomb-shaped base material, and the tip of the discharge pipe is supplied. It discharges from the provided material discharge port. Thereby, the catalyst material B is apply | coated to the area | region of the inner peripheral direction of the area | region where the catalyst layer A of the inner wall of a cell is not formed. A series of these operations is performed for each cell, and the catalyst material A is applied to a partial region of the inner wall direction of the inner wall of each cell. Thereafter, the applied catalyst material B is baked, so that the catalyst layer B is formed in at least a part of the inner peripheral direction of the inner wall of each cell in the region where the catalyst layer A is not formed.
このように、触媒材料Aと触媒材料Bの塗布及び焼成を順次行うことによって、例えば、図1A、図1D、図1G及び図1Jに示すような、ハニカム状基材のセルの内壁に2種類の触媒層がセルの内周方向に分離した状態で配置されている本発明のハニカム状触媒を得ることができる。また、上記のような触媒材料Aと触媒材料Bの塗布及び焼成を順次繰り返すことによって、例えば、図1B、図1E、図1H及び図1Kに示すような、ハニカム状基材のセルの内壁に2種類の触媒層がセルの内周方向に分離した状態で交互に配置されている本発明のハニカム状触媒を得ることができる。さらに、上記のように触媒層A及び触媒層Bを形成した後、さらに、触媒材料C等の塗布及び焼成を行うことによって、例えば、図1C、図1F、図1I及び図1Lに示すような、ハニカム状基材のセルの内壁に3種以上の触媒層がセルの内周方向に分離した状態で交互に配置されている本発明のハニカム状触媒を得ることができる。 In this way, by sequentially applying and firing the catalyst material A and the catalyst material B, for example, two types can be formed on the inner wall of the cell of the honeycomb substrate as shown in FIGS. 1A, 1D, 1G, and 1J. Thus, the honeycomb catalyst of the present invention can be obtained in which the catalyst layers are separated in the inner circumferential direction of the cell. Further, by sequentially repeating the application and firing of the catalyst material A and the catalyst material B as described above, for example, on the inner wall of the cell of the honeycomb substrate as shown in FIGS. 1B, 1E, 1H and 1K. The honeycomb-shaped catalyst of the present invention in which two types of catalyst layers are alternately arranged in a state where they are separated in the inner peripheral direction of the cell can be obtained. Furthermore, after the catalyst layer A and the catalyst layer B are formed as described above, the catalyst material C and the like are further applied and baked, for example, as shown in FIGS. 1C, 1F, 1I, and 1L. In addition, the honeycomb catalyst of the present invention can be obtained in which three or more kinds of catalyst layers are alternately arranged on the inner wall of the cell of the honeycomb substrate in the state of being separated in the inner circumferential direction of the cell.
このようなハニカム状触媒の製造方法において、触媒材料として触媒材料スラリーを用いる場合、その粘度としては、触媒材料が材料吐出口から吐出される限り、特に制限はなく、吐出装置の種類を選択することにより、1000mPa・s程度のスラリーを用いることもできるが、上記の方法によって容易に触媒材料をセルの内壁に塗布することができるという観点から、300mPa・s以下が好ましく、200mPa・s以下がより好ましく、100mPa・s以下が特に好ましい。 In such a honeycomb catalyst manufacturing method, when a catalyst material slurry is used as a catalyst material, the viscosity is not particularly limited as long as the catalyst material is discharged from the material discharge port, and the type of discharge device is selected. Thus, a slurry of about 1000 mPa · s can be used, but from the viewpoint that the catalyst material can be easily applied to the inner wall of the cell by the above method, 300 mPa · s or less is preferable, and 200 mPa · s or less is preferable. More preferred is 100 mPa · s or less.
また、前記ハニカム状触媒の製造方法において、触媒材料を吐出管に供給する方法としては特に制限はなく、例えば、エア式、バルブ式、スクリュー式、一軸偏心ねじ式等の各種送液ポンプを用いる方法が挙げられる。 In the method for manufacturing the honeycomb-shaped catalyst, the method for supplying the catalyst material to the discharge pipe is not particularly limited. For example, various liquid feed pumps such as an air type, a valve type, a screw type, and a uniaxial eccentric screw type are used. A method is mentioned.
さらに、前記ハニカム状触媒の製造方法においては、空気等の気体を、気体供給装置から気体流路に供給し、吐出管の先端部に設けられた気体吐出口から吹き付けながら、触媒材料を塗布することが好ましい。これにより、触媒材料をセルの内壁に確実に密着させることができ、さらに、余分な触媒材料が除去されてセルの内壁が平滑となり、圧力損失が少なく、内壁が滑らかな流路(セル)を有するハニカム状触媒を得ることが可能となる。 Furthermore, in the method for manufacturing the honeycomb-shaped catalyst, a gas such as air is supplied from the gas supply device to the gas flow path, and the catalyst material is applied while being blown from the gas discharge port provided at the tip of the discharge pipe. It is preferable. As a result, the catalyst material can be reliably adhered to the inner wall of the cell, and the excess catalyst material is removed, the inner wall of the cell becomes smooth, the pressure loss is small, and the flow path (cell) with a smooth inner wall is formed. It becomes possible to obtain a honeycomb-shaped catalyst.
また、前記ハニカム状触媒の製造方法においては、吸引装置を用いてハニカム状基材の吐出管を挿入した端面と反対側の端面からセル内を吸引しながら、触媒材料を塗布することが好ましい。これにより、余分な触媒材料が除去されてセルの内壁が平滑となり、圧力損失が少なく、内壁が滑らかな流路(セル)を有するハニカム状触媒を製造することが可能となる。 In the method for manufacturing the honeycomb-shaped catalyst, it is preferable to apply the catalyst material while sucking the inside of the cell from the end surface opposite to the end surface where the discharge pipe of the honeycomb-shaped base material is inserted using a suction device. As a result, excess catalyst material is removed, the inner wall of the cell becomes smooth, pressure loss is small, and a honeycomb catalyst having a flow path (cell) with a smooth inner wall can be manufactured.
さらに、前記ハニカム状触媒の製造方法においては、水等の液体を、液体供給装置から液体流路に供給し、吐出管の先端部に設けられた液体吐出口から吹き付けながら、触媒材料を塗布することも可能である。これにより、材料吐出口付近での触媒材料の乾燥、固化を防止することができる。 Furthermore, in the method for manufacturing the honeycomb-shaped catalyst, a liquid such as water is supplied from the liquid supply device to the liquid flow path, and the catalyst material is applied while spraying from the liquid discharge port provided at the tip of the discharge pipe. It is also possible. Thereby, drying and solidification of the catalyst material in the vicinity of the material discharge port can be prevented.
以上、本発明のハニカム状触媒の製造方法について説明したが、本発明のハニカム状触媒は前記方法によって製造されたものに限定されない。例えば、前記方法においては、1本の吐出管を1つのセル内に挿入して触媒材料の塗布及び焼成を行い、この操作を各セルについて繰り返すことによって、複数のセル内に触媒層を形成しているが、複数の吐出管を同時に複数のセル内に挿入して触媒材料の塗布及び焼成を行い、複数のセル内に同時に触媒層を形成してもよい。これにより、総塗布時間を短縮することができる。 Although the honeycomb catalyst manufacturing method of the present invention has been described above, the honeycomb catalyst of the present invention is not limited to the one manufactured by the above method. For example, in the above method, a catalyst layer is formed in a plurality of cells by inserting one discharge pipe into one cell, applying and baking the catalyst material, and repeating this operation for each cell. However, a plurality of discharge pipes may be simultaneously inserted into a plurality of cells to apply and burn the catalyst material, and a catalyst layer may be simultaneously formed in the plurality of cells. Thereby, the total application time can be shortened.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用した触媒材料スラリーは以下の方法により調製した。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The catalyst material slurry used in Examples and Comparative Examples was prepared by the following method.
(調製例1)
<酸化鉄−ジルコニア系複合酸化物粉末の調製>
クエン酸鉄(III)アンモニウム(和光純薬工業(株)製、試薬、褐色、鉄含量:16〜19%)333.8g、水分散型のイットリア含有アルカリ性ジルコニアゾル(日産化学工業(株)製「ナノユースZR30−BS」、ゾル粒子径:30〜80nm、ZrO2固形分濃度:30.8%、Zr:Y(原子比)=1:0.109、テトラメチルアンモニウムヒドロキシド(TMAH)を含有。)223.5g、及び蒸留水179.1gを容量1Lのポリエチレン製ビーカーに仕込んだ。これらの仕込量から算出した複合酸化物の原子比はFe:Zr:Y=2.00:1.00:0.109であり、Fe2O3、ZrO2及びY2O3の含有量はFe2O3:ZrO2:Y2O3(質量%)=54.09:41.74:4.17であった。
(Preparation Example 1)
<Preparation of iron oxide-zirconia composite oxide powder>
333.8 g of iron (III) ammonium citrate (manufactured by Wako Pure Chemical Industries, reagent, brown, iron content: 16-19%), water-dispersed yttria-containing alkaline zirconia sol (manufactured by Nissan Chemical Industries, Ltd.) “Nanouse ZR30-BS”, sol particle diameter: 30 to 80 nm, ZrO 2 solid content concentration: 30.8%, Zr: Y (atomic ratio) = 1: 0.109, containing tetramethylammonium hydroxide (TMAH) .) 223.5 g and 179.1 g of distilled water were charged into a 1 L polyethylene beaker. The atomic ratio of the composite oxide calculated from these charges is Fe: Zr: Y = 2.00: 1.00: 0.109, and the contents of Fe 2 O 3 , ZrO 2 and Y 2 O 3 are Fe 2 O 3: ZrO 2: Y 2 O 3 ( wt%) = 54.09: 41.74: was 4.17.
この混合物をプロペラ攪拌機で十分に撹拌し、さらにホモジナイザー(IKA社製「T25」、シャフトジェネレータはIKA社製「S25N−25F」を使用)を用いて回転数20000rpmで1回あたり1分間の撹拌を3回行なった。その後、ろ紙(5種C、粒子保持能:2.5μm、直径:70mmφ)を用いて吸引ろ過を行い、不純物を除去し、クエン酸鉄(III)アンモニウムが溶解したイットリア含有ジルコニアゾル水懸濁液をガラス製ビーカーに回収した。 This mixture is sufficiently stirred with a propeller stirrer, and further stirred with a homogenizer (IKA "T25", shaft generator using IKA "S25N-25F") at a rotation speed of 20000 rpm for 1 minute. Performed 3 times. Then, suction filtration is performed using filter paper (5 types C, particle retention capacity: 2.5 μm, diameter: 70 mmφ) to remove impurities, and yttria-containing zirconia sol water suspension in which iron (III) ammonium citrate is dissolved. The liquid was collected in a glass beaker.
この水懸濁液をテフロン(登録商標)で被覆されたプロペラ攪拌機を用いて撹拌しながら、250℃に設定したホットスターラーで加熱することにより濃縮した。水懸濁液の粘度が高くなり撹拌が困難となる手前で撹拌を停止し、濃縮物をプロペラ翼とともに120℃の乾燥機に入れ、12時間以上乾燥させた。得られた粉末をるつぼに入れ、粉末を完全に酸化させるために、るつぼの蓋を1/10〜1/5程度開けた状態で鞘鉢に入れた。この鞘鉢を大気の流通が可能な脱脂炉に入れ、大気中、150℃で3時間→250℃で2時間→400℃で2時間→500℃で5時間の条件で粉末を仮焼成した。 The aqueous suspension was concentrated by heating with a hot stirrer set to 250 ° C. while stirring with a propeller stirrer coated with Teflon (registered trademark). Stirring was stopped before the viscosity of the aqueous suspension became high and stirring became difficult, and the concentrate was placed in a dryer at 120 ° C. together with a propeller blade and dried for 12 hours or more. The obtained powder was put into a crucible, and in order to oxidize the powder completely, it was put in a sheath pot with the lid of the crucible opened about 1/10 to 1/5. The sheath pot was placed in a degreasing furnace capable of circulating air, and the powder was calcined in the air at 150 ° C. for 3 hours → 250 ° C. for 2 hours → 400 ° C. for 2 hours → 500 ° C. for 5 hours.
その後、脱脂炉の温度が150℃以下になった時点で脱脂炉から鞘鉢を取り出し、粉末を75μm以下の大きさになるまでメノウ乳鉢を用いて粉砕した。得られた粉砕物をるつぼに入れ、るつぼの蓋を1/10〜1/5程度開けた状態で箱型電気炉に入れ、大気中、900℃で5時間焼成して酸化鉄−ジルコニア系複合酸化物粉末(以下、「FZ粉末」という。)を得た。このFZ粉末の体積基準の粒度分布を動的光散乱法により測定し、平均粒径D50(累積頻度50%における粒径)を求めたところ、34μmであった。 Thereafter, when the temperature of the degreasing furnace became 150 ° C. or lower, the sheath mortar was taken out from the degreasing furnace, and the powder was pulverized using an agate mortar until the size became 75 μm or smaller. The obtained pulverized product is put in a crucible, put in a box-type electric furnace with the lid of the crucible opened about 1/10 to 1/5, and baked in the atmosphere at 900 ° C. for 5 hours to obtain an iron oxide-zirconia composite. An oxide powder (hereinafter referred to as “FZ powder”) was obtained. The volume-based particle size distribution of the FZ powder was measured by a dynamic light scattering method, and the average particle size D50 (particle size at a cumulative frequency of 50%) was determined to be 34 μm.
(調製例2)
<酸化鉄−ジルコニア系複合酸化物スラリーの調製>
調製例1で得られたFZ粉末100質量部、酢酸安定化アルミナゾル(日産化学工業(株)製「AS200」、固形分濃度:10.8%)10質量部及び水を固形分濃度が40質量%となるように混合した後、ホモジナイザーを用いて2分間撹拌して酸化鉄−ジルコニア系複合酸化物スラリー(以下、「FZスラリー」という。)を得た。このFZスラリーの体積基準の粒度分布を動的光散乱法により測定し、平均粒径D50(累積頻度50%における粒径)を求めたところ、11μmであった。また、E型粘度計(東機産業(株)製「TVE−35H型」)を用いて25℃における粘度を測定したところ、図2に示すように、ずり速度10〜300/秒の範囲において100mPa・s以下であった。
(Preparation Example 2)
<Preparation of iron oxide-zirconia composite oxide slurry>
100 parts by mass of the FZ powder obtained in Preparation Example 1, 10 parts by mass of acetic acid-stabilized alumina sol (“AS200” manufactured by Nissan Chemical Industries, Ltd., solid content concentration: 10.8%) and water with a solid content concentration of 40 masses %, And then stirred for 2 minutes using a homogenizer to obtain an iron oxide-zirconia composite oxide slurry (hereinafter referred to as “FZ slurry”). The volume-based particle size distribution of this FZ slurry was measured by a dynamic light scattering method, and the average particle size D50 (particle size at a cumulative frequency of 50%) was determined to be 11 μm. Further, when the viscosity at 25 ° C. was measured using an E-type viscometer (“TVE-35H type” manufactured by Toki Sangyo Co., Ltd.), as shown in FIG. It was 100 mPa · s or less.
(調製例3)
<ロジウム担持アルミナ粉末の調製>
ランタン安定化Θ−アルミナ粉末((株)キャタラー製、ランタン含有量:1質量%、比表面積:約100m2/g)を粉砕機(アズワン(株)製「ワンダーブレンダー」)を用いて篩で粒径が25μm以下となるように粉砕した。得られた粉砕物40gに蒸留水100mlを添加し、さらに、ロジウム(Rh)を金属換算で0.06009g含有する硝酸ロジウム溶液2.114mlを添加して、La安定化Θ−アルミナ粉末に硝酸ロジウム溶液を含浸させた後、110〜150℃に徐々に温度を高めながらセットしたホットスターラー上で蒸発乾固させ、さらに、大気中、110℃で16時間乾燥させ、凝固物を得た(蒸発乾固)。次いで、500℃で1時間焼成することにより、Rhが担持されたLa安定化Θ−アルミナ粉末(以下、「Rh/Θ−アルミナ粉末」という。)を得た。得られたRh/Θ−アルミナ粉末を75μm以下の大きさになるまでメノウ乳鉢を用いて粉砕した。得られた粉砕物の体積基準の粒度分布を動的光散乱法により測定し、平均粒径D50(累積頻度50%における粒径)を求めたところ、13μmであった。なお、得られたRh/Θ−アルミナ粉末におけるロジウム担持量は0.15質量%であった。
(Preparation Example 3)
<Preparation of rhodium-supported alumina powder>
Lanthanum-stabilized Θ-alumina powder (Cataler Co., Ltd., lanthanum content: 1% by mass, specific surface area: about 100 m 2 / g) is sieved using a pulverizer (A Wonder Co., Ltd. “Wonder Blender”). It grind | pulverized so that a particle size might be 25 micrometers or less. 100 ml of distilled water was added to 40 g of the pulverized product, and 2.114 ml of a rhodium nitrate solution containing 0.060009 g of rhodium (Rh) in terms of metal was added to the La stabilized Θ-alumina powder. After impregnating the solution, it was evaporated to dryness on a hot stirrer set while gradually raising the temperature to 110 to 150 ° C., and further dried in the atmosphere at 110 ° C. for 16 hours to obtain a coagulated product (evaporation drying). Hard). Subsequently, La stabilized Θ-alumina powder (hereinafter referred to as “Rh / Θ-alumina powder”) carrying Rh was obtained by firing at 500 ° C. for 1 hour. The obtained Rh / Θ-alumina powder was pulverized using an agate mortar until the size became 75 μm or less. The volume-based particle size distribution of the obtained pulverized product was measured by a dynamic light scattering method, and the average particle size D50 (particle size at a cumulative frequency of 50%) was determined to be 13 μm. In addition, the rhodium carrying amount in the obtained Rh / Θ-alumina powder was 0.15% by mass.
(調製例4)
<ロジウム担持アルミナスラリーの調製>
調製例3で得られたRh/Θ−アルミナ粉末100質量部、酢酸安定化アルミナゾル(日産化学工業(株)製「AS200」、固形分濃度:10.8%)10質量部及び水を固形分濃度が30質量%となるように混合した後、ホモジナイザーを用いて2分間撹拌してロジウム担持アルミナスラリー(以下、「Rh/アルミナスラリー」という。)を得た。このRh/アルミナスラリーの体積基準の粒度分布を動的光散乱法により測定し、平均粒径D50(累積頻度50%における粒径)を求めたところ、12μmであった。また、調製例2と同様に、25℃における粘度を測定したところ、図2に示すように、ずり速度10〜300/秒の範囲において100mPa・s以下であった。
(Preparation Example 4)
<Preparation of rhodium-supported alumina slurry>
100 parts by mass of Rh / Θ-alumina powder obtained in Preparation Example 3, 10 parts by mass of acetic acid stabilized alumina sol (“AS200” manufactured by Nissan Chemical Industries, Ltd., solid content concentration: 10.8%) and water as solid content After mixing to a concentration of 30% by mass, the mixture was stirred for 2 minutes using a homogenizer to obtain a rhodium-supported alumina slurry (hereinafter referred to as “Rh / alumina slurry”). The volume-based particle size distribution of the Rh / alumina slurry was measured by a dynamic light scattering method, and the average particle size D50 (particle size at a cumulative frequency of 50%) was determined to be 12 μm. Further, when the viscosity at 25 ° C. was measured in the same manner as in Preparation Example 2, as shown in FIG. 2, it was 100 mPa · s or less in a shear rate range of 10 to 300 / sec.
(調製例5)
<パラジウム担持セリア−ジルコニア複合酸化物粉末の調製>
硝酸酸性のパラジウム担持水溶液((株)キャタラー製、Pd含有量:8.2質量%)12.195g(Pdとして1g)に、25μm以下の大きさに粉砕したセリア−ジルコニアを含む複合酸化物粉末(平均粒径(D50):7.5μm、CeO2:ZrO2:その他の希土類酸化物=60質量%:30質量%:10質量%、以下、「CZ粉末」という。)99gを浸漬してCZ粉末に硝酸酸性のパラジウム担持水溶液を含浸させた後、120〜220℃に徐々に温度を高めながらセットしたホットスターラー上で蒸発乾固させ、さらに、大気中、500℃で1時間焼成することにより、Pdが担持されたセリア−ジルコニア複合酸化物粉末(以下、「Pd/CZ粉末」という。)を得た。なお、前記CZ粉末の平均粒径(D50)は、動的光散乱法により測定したCZ粉末の体積基準の粒度分布の累積頻度50%における粒径である。
(Preparation Example 5)
<Preparation of palladium-supported ceria-zirconia composite oxide powder>
Complex oxide powder containing ceria-zirconia pulverized to 12.195 g (1 g as Pd) in a nitric acid acidic palladium-supporting aqueous solution (Pat content: 8.2 mass%, manufactured by Cataler, Inc.) to a size of 25 μm or less (Average particle diameter (D50): 7.5 μm, CeO 2 : ZrO 2 : other rare earth oxide = 60% by mass: 30% by mass: 10% by mass, hereinafter referred to as “CZ powder”) After impregnating CZ powder with an aqueous solution carrying palladium nitrate that is acidic, evaporate to dryness on a hot stirrer set while gradually raising the temperature to 120 to 220 ° C., and further calcinate at 500 ° C. for 1 hour in the air. Thus, a ceria-zirconia composite oxide powder (hereinafter referred to as “Pd / CZ powder”) carrying Pd was obtained. The average particle size (D50) of the CZ powder is a particle size at a cumulative frequency of 50% of the volume-based particle size distribution of the CZ powder measured by a dynamic light scattering method.
(調製例6)
<パラジウム担持セリア−ジルコニア複合酸化物粉末とアルミナ粉末との混合スラリーの調製>
調製例5で得られたPd/CZ粉末100質量部、25μm以下の大きさに粉砕したランタン安定化Θ−アルミナ粉末((株)キャタラー製、平均粒径(D50):約17μm、ランタン含有量:4質量%、比表面積:約100m2/g)100質量部、酢酸安定化アルミナゾル(日産化学工業(株)製「AS200」、固形分濃度:10.8%)20質量部及び水を固形分濃度が30質量%となるように混合した後、ホモジナイザーを用いて2分間撹拌してPd/CZ粉末とΘ−アルミナ粉末とを含有する混合スラリー(以下、「Pd/CZ+アルミナ混合スラリー」という。)を得た。なお、前記ランタン安定化Θ−アルミナ粉末の平均粒径(D50)は、動的光散乱法により測定したCZ粉末の体積基準の粒度分布の累積頻度50%における粒径である。
(Preparation Example 6)
<Preparation of mixed slurry of palladium-supported ceria-zirconia composite oxide powder and alumina powder>
100 parts by mass of Pd / CZ powder obtained in Preparation Example 5, lanthanum stabilized Θ-alumina powder pulverized to a size of 25 μm or less (manufactured by Cataler, Inc., average particle size (D50): about 17 μm, lanthanum content : 4% by mass, specific surface area: about 100 m 2 / g) 100 parts by mass, acetic acid stabilized alumina sol (Nissan Chemical Industries, Ltd. “AS200”, solid content concentration: 10.8%) 20 parts by mass and water After mixing so that the partial concentration becomes 30% by mass, the mixture is stirred for 2 minutes using a homogenizer and mixed slurry containing Pd / CZ powder and Θ-alumina powder (hereinafter referred to as “Pd / CZ + alumina mixed slurry”). .) The average particle size (D50) of the lanthanum-stabilized Θ-alumina powder is the particle size at a cumulative frequency of 50% of the volume-based particle size distribution of the CZ powder measured by the dynamic light scattering method.
(調製例7)
<酸化鉄−ジルコニア系複合酸化物粉末とロジウム担持アルミナ粉末との混合スラリーの調製>
調製例1で得られたFZ粉末125質量部、調製例3で得られたRh/Θ−アルミナ粉末100質量部、酢酸安定化アルミナゾル(日産化学工業(株)製「AS200」、固形分濃度:10.8%)22.5質量部及び水を固形分濃度が36質量%となるように混合した後、ホモジナイザーを用いて2分間撹拌してFZ粉末とRh/Θ−アルミナ粉末とを含有する混合スラリー(以下、「FZ+Rh/アルミナ混合スラリー」という。)を得た。このFZ+Rh/アルミナ混合スラリーの体積基準の粒度分布を動的光散乱法により測定し、平均粒径D50(累積頻度50%における粒径)を求めたところ、15.5μmであった。また、調製例2と同様に、25℃における粘度を測定したところ、図2に示すように、ずり速度10〜300/秒の範囲において100mPa・s以下であった。
(Preparation Example 7)
<Preparation of mixed slurry of iron oxide-zirconia composite oxide powder and rhodium-supported alumina powder>
125 parts by mass of FZ powder obtained in Preparation Example 1, 100 parts by mass of Rh / Θ-alumina powder obtained in Preparation Example 3, acetic acid stabilized alumina sol (“AS200” manufactured by Nissan Chemical Industries, Ltd.), solid content concentration: 10.8%) After mixing 22.5 parts by mass and water so that the solid content concentration becomes 36% by mass, the mixture is stirred for 2 minutes using a homogenizer and contains FZ powder and Rh / Θ-alumina powder. A mixed slurry (hereinafter referred to as “FZ + Rh / alumina mixed slurry”) was obtained. The volume-based particle size distribution of this FZ + Rh / alumina mixed slurry was measured by a dynamic light scattering method, and the average particle size D50 (particle size at a cumulative frequency of 50%) was determined to be 15.5 μm. Further, when the viscosity at 25 ° C. was measured in the same manner as in Preparation Example 2, as shown in FIG. 2, it was 100 mPa · s or less in a shear rate range of 10 to 300 / sec.
(調製例8)
<パラジウム担持セリア−ジルコニア複合酸化物粉末とロジウム担持アルミナ粉末との混合スラリーの調製>
調製例4で得られたRh/アルミナスラリー60質量部と調製例6で得られたPd/CZ+アルミナ混合スラリー80質量部とを混合した後、撹拌してPd/CZ粉末とRh/Θ−アルミナ粉末とを含有する混合スラリー(以下、「Pd/CZ+Rh/アルミナ混合スラリー」という。)を得た。
(Preparation Example 8)
<Preparation of mixed slurry of palladium-supported ceria-zirconia composite oxide powder and rhodium-supported alumina powder>
After mixing 60 parts by mass of the Rh / alumina slurry obtained in Preparation Example 4 and 80 parts by mass of the Pd / CZ + alumina mixed slurry obtained in Preparation Example 6, the mixture was stirred and Pd / CZ powder and Rh / Θ-alumina were mixed. A mixed slurry containing the powder (hereinafter referred to as “Pd / CZ + Rh / alumina mixed slurry”) was obtained.
(実施例1)
図3に示すように、ハニカム状基材(コージェライト製、基材サイズ:縦10mm×横10mm×長さ49mm、容量:約5ml、セル形状:4角セル、セル数:200セル/インチ、セル厚:12ミル、セルピッチ:1.9mm×1.9mm)の25個のセルの内壁1bの内周方向の約半分の領域にFZ層(触媒A層101A)を形成し、このFZ層に対向する残りの領域にRh/アルミナ層(触媒B層101B)を形成した。これらの分離コート触媒層は、合計コート量が約0.6g(ハニカム状基材1Lに対して約120g/L−cat)であった。また、FZ層とRh/アルミナ層との質量比はFZ:Rh/アルミナ=5:4となるように形成した。
Example 1
As shown in FIG. 3, a honeycomb substrate (made by cordierite, substrate size: length 10 mm × width 10 mm × length 49 mm, capacity: about 5 ml, cell shape: square cell, number of cells: 200 cells / inch, An FZ layer (catalyst A layer 101A) is formed in an approximately half region in the inner circumferential direction of the inner wall 1b of 25 cells having a cell thickness of 12 mils and a cell pitch of 1.9 mm × 1.9 mm. An Rh / alumina layer (catalyst B layer 101B) was formed in the remaining regions facing each other. These separation coat catalyst layers had a total coating amount of about 0.6 g (about 120 g / L-cat with respect to 1 L of the honeycomb substrate). The mass ratio between the FZ layer and the Rh / alumina layer was FZ: Rh / alumina = 5: 4.
先ず、前記ハニカム状基材を水洗し、乾燥後、大気中、1000℃で3時間焼成した。図4Aに示すように、先端部の外周面の一部に材料吐出口2が設けられている吐出管3(外径:1.07mm、内径:0.69mm)を、前記ハニカム状基材1の一方の端面4からセル1a内に挿入し、先端部が他方の端面5に達するまで移動させた。次に、図4Bに示すように、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例2で得られたFZスラリーを0.03mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の約半分の領域にFZスラリーが塗布され、FZスラリー層(触媒材料A層102A)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の約半分の領域にFZスラリーを塗布し、FZスラリー層(触媒材料A層102A)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材1のセルの内壁1bの内周方向の約半分の領域に幅が約1.5mmのFZ層(触媒A層101A)が形成された。 First, the honeycomb-shaped substrate was washed with water, dried, and then fired in air at 1000 ° C. for 3 hours. As shown in FIG. 4A, a discharge pipe 3 (outer diameter: 1.07 mm, inner diameter: 0.69 mm) in which a material discharge port 2 is provided in a part of the outer peripheral surface of the tip is connected to the honeycomb substrate 1 Was inserted into the cell 1a from one end face 4 and moved until the tip portion reached the other end face 5. Next, as shown in FIG. 4B, the discharge pipe 3 is moved from the end surface 5 to the end surface 4 at a speed of 5.0 mm / second along the long axis direction of the cell 1a, and the inside of the cell 1a is sucked. While, the FZ slurry obtained in Preparation Example 2 was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.03 mm / second, and discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, the FZ slurry is applied to an approximately half region in the inner peripheral direction of the inner wall 1b of the cell, and the FZ slurry layer (Catalyst material A layer 102A) was formed. This operation was performed for 25 cells, and the FZ slurry was applied to about a half region in the inner peripheral direction of the inner wall 1b of each cell to form an FZ slurry layer (catalyst material A layer 102A). Thereafter, by firing at 500 ° C. for 1 hour in the air, an FZ layer (catalyst A layer 101A) having a width of about 1.5 mm is formed in about a half region in the inner peripheral direction of the inner wall 1b of the cell of the honeycomb substrate 1. ) Was formed.
次に、吐出管3の材料吐出口2の向きを180°回転させた後、図4Cに示すように、吐出管3を前記ハニカム状基材1の一方の端面4からセル内に挿入し、先端部が他方の端面5に達するまで移動させた。次いで、図4Dに示すように、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例4で得られたRh/アルミナスラリーを0.06mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の前記FZ層に対向する残りの領域にRh/アルミナスラリーが塗布され、Rh/アルミナスラリー層(触媒材料B層102B)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の前記FZ層に対向する残りの領域にRh/アルミナスラリーを塗布し、Rh/アルミナスラリー層(触媒材料B層102B)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材1のセルの内壁1bの内周方向の前記FZ層(触媒A層101A)に対向する残りの領域に幅が約1.5mmのRh/アルミナ層(触媒B層101B)が形成された。 Next, after rotating the direction of the material discharge port 2 of the discharge pipe 3 by 180 °, as shown in FIG. 4C, the discharge pipe 3 is inserted into the cell from one end face 4 of the honeycomb-shaped substrate 1, The tip was moved until it reached the other end face 5. Next, as shown in FIG. 4D, the discharge pipe 3 is moved from the end surface 5 to the end surface 4 at a speed of 5.0 mm / second along the long axis direction of the cell 1a, and the inside of the cell 1a is sucked. However, the Rh / alumina slurry obtained in Preparation Example 4 was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.06 mm / second and discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, the Rh / alumina slurry is formed in the remaining region facing the FZ layer in the inner peripheral direction of the inner wall 1b of the cell. Was applied to form an Rh / alumina slurry layer (catalyst material B layer 102B). This operation is performed for 25 cells, and Rh / alumina slurry is applied to the remaining region facing the FZ layer in the inner circumferential direction of the inner wall 1b of each cell, and the Rh / alumina slurry layer (catalyst material B layer 102B) Formed. Thereafter, the remaining area facing the FZ layer (catalyst A layer 101A) in the inner peripheral direction of the inner wall 1b of the cell of the honeycomb-shaped substrate 1 is reduced in width by firing at 500 ° C. for 1 hour in the atmosphere. A 1.5 mm Rh / alumina layer (catalyst B layer 101B) was formed.
(比較例1)
図5に示すように、ハニカム状基材(コージェライト製、基材サイズ:縦10mm×横10mm×長さ49mm、容量:約5ml、セル形状:4角セル、セル数:200セル/インチ、セル厚:12ミル、セルピッチ:1.9mm×1.9mm)の25個のセルの内壁1bに、実施例1と同様の方法を用いて、2本のFZ+Rh/アルミナ混合層(混合触媒層104A及び104B)を、これらの層が対向するように形成した。これらの混合触媒層は、合計コート量が約0.55g(ハニカム状基材1Lに対して約110g/L−cat)であった。また、混合層中のFZとRh/アルミナとの質量比はFZ:Rh/アルミナ=5:4となるように形成した。
(Comparative Example 1)
As shown in FIG. 5, a honeycomb substrate (made of cordierite, substrate size: length 10 mm × width 10 mm × length 49 mm, capacity: about 5 ml, cell shape: square cell, number of cells: 200 cells / inch, Using the same method as in Example 1, two FZ + Rh / alumina mixed layers (mixed catalyst layer 104A) were formed on the inner walls 1b of 25 cells having a cell thickness of 12 mil and a cell pitch of 1.9 mm × 1.9 mm. And 104B) were formed with these layers facing each other. These mixed catalyst layers had a total coating amount of about 0.55 g (about 110 g / L-cat with respect to 1 L of the honeycomb substrate). Moreover, it formed so that mass ratio of FZ and Rh / alumina in a mixed layer might become FZ: Rh / alumina = 5: 4.
先ず、前記ハニカム状基材を水洗し、乾燥後、大気中、1000℃で3時間焼成した。図4Aに示すように、先端部の外周面の一部に材料吐出口2が設けられている吐出管3(外径:1.07mm、内径:0.69mm)を前記ハニカム状基材1の一方の端面4からセル1a内に挿入し、先端部が他方の端面5に達するまで移動させた。次に、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例7で得られたFZ+Rh/アルミナ混合スラリーを0.04mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の約半分の領域にFZ+Rh/アルミナ混合スラリーが塗布され、FZ+Rh/アルミナ混合スラリー層(混合触媒材料層)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の約半分の領域にFZ+Rh/アルミナ混合スラリーを塗布し、FZ+Rh/アルミナ混合スラリー層(混合触媒材料層)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材のセルの内壁1bの内周方向の約半分の領域に幅が約1.5mmのFZ+Rh/アルミナ混合層(混合触媒層104A)が形成された。 First, the honeycomb-shaped substrate was washed with water, dried, and then fired in air at 1000 ° C. for 3 hours. As shown in FIG. 4A, a discharge pipe 3 (outer diameter: 1.07 mm, inner diameter: 0.69 mm) provided with a material discharge port 2 in a part of the outer peripheral surface of the tip is connected to the honeycomb substrate 1. It was inserted into the cell 1 a from one end face 4 and moved until the tip end reached the other end face 5. Next, in Preparation Example 7, while moving the discharge pipe 3 in the direction from the end face 5 to the end face 4 at a speed of 5.0 mm / sec along the long axis direction of the cell 1a, and suctioning the inside of the cell 1a, The obtained FZ + Rh / alumina mixed slurry was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.04 mm / second, and was discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, the FZ + Rh / alumina mixed slurry is applied to about a half region in the inner peripheral direction of the inner wall 1b of the cell, An FZ + Rh / alumina mixed slurry layer (mixed catalyst material layer) was formed. This operation was performed for 25 cells, and the FZ + Rh / alumina mixed slurry was applied to about half of the inner circumferential direction of the inner wall 1b of each cell to form an FZ + Rh / alumina mixed slurry layer (mixed catalyst material layer). Thereafter, by firing in the atmosphere at 500 ° C. for 1 hour, an FZ + Rh / alumina mixed layer (mixed catalyst) having a width of about 1.5 mm is formed in about a half region in the inner circumferential direction of the inner wall 1b of the cell of the honeycomb substrate. Layer 104A) was formed.
次に、吐出管3の材料吐出口2の向きを180°回転させた後、吐出管3を前記ハニカム状基材1の一方の端面4からセル内に挿入し、先端部が他方の端面5に達するまで移動させた。次いで、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例7で得られたFZ+Rh/アルミナ混合スラリーを0.04mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の前記FZ+Rh/アルミナ混合層(混合触媒層104A)に対向する残りの領域にFZ+Rh/アルミナ混合スラリーが塗布され、FZ+Rh/アルミナ混合スラリー層(混合触媒材料層)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の前記FZ+Rh/アルミナ混合層(混合触媒層104A)に対向する残りの領域にFZ+Rh/アルミナ混合スラリーを塗布し、FZ+Rh/アルミナ混合スラリー層(混合触媒材料層)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材のセルの内壁1bの内周方向の前記FZ+Rh/アルミナ混合層(混合触媒層104A)に対向する残りの領域に幅が約1.5mmのFZ+Rh/アルミナ混合層(混合触媒層104B)が形成された。これにより、幅が約1.5mmの2本のFZ+Rh/アルミナ混合層(混合触媒層104A及び104B)が対向するように前記ハニカム状基材のセルの内壁1bに形成された。 Next, after the direction of the material discharge port 2 of the discharge pipe 3 is rotated by 180 °, the discharge pipe 3 is inserted into the cell from one end face 4 of the honeycomb substrate 1, and the tip is the other end face 5. Moved until it reached. Next, the discharge pipe 3 is moved in the direction from the end face 5 to the end face 4 at a speed of 5.0 mm / sec along the major axis direction of the cell 1a, and the inside of the cell 1a is sucked and obtained in Preparation Example 7. The obtained FZ + Rh / alumina mixed slurry was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.04 mm / second, and was discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, it faces the FZ + Rh / alumina mixed layer (mixed catalyst layer 104A) in the inner peripheral direction of the inner wall 1b of the cell. The FZ + Rh / alumina mixed slurry was applied to the remaining region to form an FZ + Rh / alumina mixed slurry layer (mixed catalyst material layer). This operation is performed for 25 cells, FZ + Rh / alumina mixed slurry is applied to the remaining area facing the FZ + Rh / alumina mixed layer (mixed catalyst layer 104A) in the inner circumferential direction of the inner wall 1b of each cell, and FZ + Rh / An alumina mixed slurry layer (mixed catalyst material layer) was formed. Thereafter, by firing in the atmosphere at 500 ° C. for 1 hour, the width of the remaining region facing the FZ + Rh / alumina mixed layer (mixed catalyst layer 104A) in the inner peripheral direction of the inner wall 1b of the cell of the honeycomb-shaped substrate is widened. A FZ + Rh / alumina mixed layer (mixed catalyst layer 104B) having a thickness of about 1.5 mm was formed. As a result, two FZ + Rh / alumina mixed layers (mixed catalyst layers 104A and 104B) having a width of about 1.5 mm were formed on the inner wall 1b of the cell of the honeycomb substrate so as to face each other.
<耐熱試験(1)>
内径約30mmの反応管に、実施例1及び比較例1で得られたハニカム状触媒を同時に4本装着した。このとき、反応管に導入されるガスがハニカム状触媒内を十分に流通するように、反応管とハニカム状触媒との間の隙間を石英ウールで充填した。還元ガス〔CO(1容量%)+H2O(3容量%)+N2(残部)〕を10L/分で流通させながら、前記反応管を1000℃で5時間加熱して、還元雰囲気下でハニカム状触媒に耐熱試験を施した。
<Heat resistance test (1)>
Four honeycomb-shaped catalysts obtained in Example 1 and Comparative Example 1 were simultaneously mounted on a reaction tube having an inner diameter of about 30 mm. At this time, the gap between the reaction tube and the honeycomb catalyst was filled with quartz wool so that the gas introduced into the reaction tube could sufficiently flow through the honeycomb catalyst. The reaction tube was heated at 1000 ° C. for 5 hours while reducing gas [CO (1 vol%) + H 2 O (3 vol%) + N 2 (remainder)] was circulated at 10 L / min. The catalyst was subjected to a heat resistance test.
<CO及びNOの50%浄化温度>
耐熱試験(1)後のハニカム状触媒を装着した前記反応管に、評価ガス〔NO(約0.1容量%)+CO(約0.45容量%)+H2O(3容量%)+O2(所定流量)+N2(残部)〕を、150℃から600℃まで24℃/分の昇温速度で加熱しながら、15L/分で流通させ、各触媒入りガス温度において触媒入りガス及び触媒出ガス中のCO及びNOの濃度を測定してそれらの浄化率を算出し、CO及びNOが50%浄化された時点の触媒温度(CO及びNOの50%浄化温度)を求めた。その結果を図6及び表1に示す。なお、O2ガスの流量は、触媒入りガスの空燃比が約0.999になるように適宜調整した。
<CO and NO 50% purification temperature>
An evaluation gas [NO (about 0.1 vol%) + CO (about 0.45 vol%) + H 2 O (3 vol%) + O 2 ( (Predetermined flow rate) + N 2 (remainder)] is circulated at 15 L / min while heating from 150 ° C. to 600 ° C. at a rate of temperature increase of 24 ° C./min. The concentration of CO and NO in the catalyst was measured to calculate the purification rate thereof, and the catalyst temperature (50% purification temperature of CO and NO) when CO and NO were purified by 50% was determined. The results are shown in FIG. The flow rate of O 2 gas was appropriately adjusted so that the air-fuel ratio of the catalyst-containing gas was about 0.999.
<CO及びNOの平均浄化率>
耐熱試験(1)後のハニカム状触媒を装着した前記反応管に、触媒入りガス温度280℃で、定常ガス〔NO(約0.045容量%)+H2O(3容量%)+N2(残部)〕を15L/分で流通させながら、リッチガス(CO(約0.2容量%)+N2(残部))を15L/分で1分間流通させた後、リーンガス(O2(約0.05容量%)+N2(残部))を15L/分で1分間流通させた。この操作を2回繰り返し、合計4分間(2周期分)の触媒入りガス及び触媒出ガス中のCO及びNOの平均濃度を測定してCO及びNOの平均浄化率を算出した。その結果を表1に示す。
<Average CO and NO purification rate>
In the reaction tube equipped with the honeycomb catalyst after the heat resistance test (1), the temperature of the gas containing the catalyst was 280 ° C., and the steady gas [NO (about 0.045 vol%) + H 2 O (3 vol%) + N 2 (remainder) )] Is circulated at 15 L / min, rich gas (CO (about 0.2 vol%) + N 2 (remainder)) is circulated at 15 L / min for 1 minute, and then lean gas (O 2 (about 0.05 vol. %) + N 2 (remainder)) was allowed to flow at 15 L / min for 1 minute. This operation was repeated twice, and the average concentration of CO and NO in the catalyst-containing gas and the catalyst output gas for a total of 4 minutes (2 cycles) was measured to calculate the average purification rate of CO and NO. The results are shown in Table 1.
図6及び表1に示した結果から明らかなように、FZ層とRh/アルミナ層とをセルの内壁に内周方向に分離して形成した本発明のハニカム状触媒(実施例1:分離コート)は、2本のFZ+Rh/アルミナ混合層を対向するようにセルの内壁に形成したハニカム状触媒(比較例1:混合スラリーコート)に比べて、低い触媒入りガス温度でCO及びNOを浄化することができ、触媒活性に優れていることがわかった。 As apparent from the results shown in FIG. 6 and Table 1, the honeycomb catalyst of the present invention formed by separating the FZ layer and the Rh / alumina layer on the inner wall of the cell in the inner circumferential direction (Example 1: Separation coat) ) Purifies CO and NO at a lower catalyst-containing gas temperature than a honeycomb catalyst (Comparative Example 1: Mixed slurry coating) formed on the inner wall of a cell so that two FZ + Rh / alumina mixed layers face each other. It was found that the catalyst activity was excellent.
また、表1に示した結果から明らかなように、FZ層とRh/アルミナ層とをセルの内壁に内周方向に分離して形成した本発明のハニカム状触媒(実施例1:分離コート)は、2本のFZ+Rh/アルミナ混合層を対向するようにセルの内壁に形成したハニカム状触媒(比較例1:混合スラリーコート)に比べて、CO及びNOの平均浄化率が高く、排ガス浄化性能に優れていることがわかった。 Further, as apparent from the results shown in Table 1, the honeycomb catalyst of the present invention formed by separating the FZ layer and the Rh / alumina layer on the inner wall of the cell in the inner circumferential direction (Example 1: Separation coat) Compared with the honeycomb catalyst (Comparative Example 1: Mixed slurry coating) formed on the inner wall of the cell so that two FZ + Rh / alumina mixed layers face each other, the average purification rate of CO and NO is high, and the exhaust gas purification performance It was found to be excellent.
<触媒層のX線回折測定>
ハニカム状基材(コージェライト製、セル形状:6角セル、セル間隔:1.3mm)から切り出したハニカム状平板(20mm×50mm)上に、図7に示すように、FZ層105Aとアルミナ層105Bとを交互に形成した。すなわち、前記ハニカム状平板上に、調製例2で得られたFZスラリーとRhが担持されていないランタン安定化Θ−アルミナ粉末((株)キャタラー製、ランタン含有量:1質量%、比表面積:約100m2/g)を含有するスラリーとを1セル分ずつ交互に塗布し、大気中、500℃で1時間焼成した。これにより、前記ハニカム状平板上に、セルの長軸方向に垂直な方向にFZ層とアルミナ層とが1セル分ずつ交互に分離して配置されている試験片(以下、「分離コート試験片」という。)を得た。
<X-ray diffraction measurement of catalyst layer>
As shown in FIG. 7, an FZ layer 105A and an alumina layer are formed on a honeycomb-shaped flat plate (20 mm × 50 mm) cut out from a honeycomb substrate (made of cordierite, cell shape: hexagonal cell, cell interval: 1.3 mm). 105B were alternately formed. That is, on the honeycomb-shaped flat plate, the FZ slurry obtained in Preparation Example 2 and the lanthanum stabilized Θ-alumina powder in which Rh is not supported (manufactured by Cataler, Inc., lanthanum content: 1 mass%, specific surface area: The slurry containing about 100 m 2 / g) was alternately applied by one cell at a time and fired at 500 ° C. for 1 hour in the air. As a result, on the honeycomb-shaped flat plate, a test piece in which FZ layers and alumina layers are alternately separated by one cell in a direction perpendicular to the long axis direction of the cells (hereinafter referred to as “separation coat test piece”). ").
また、前記ハニカム状平板上の全面に、調製例1で得られたFZ粉末とRhが担持されていないランタン安定化Θ−アルミナ粉末((株)キャタラー製、ランタン含有量:1質量%、比表面積:約100m2/g)とを質量比2:1で含有する混合スラリーを塗布し、大気中、500℃で1時間焼成した。これにより、前記ハニカム状平板上の全面に、FZ+アルミナ混合層が配置されている試験片(以下、「混合スラリーコート試験片」という。)を得た。 Moreover, the FZ powder obtained in Preparation Example 1 and Rh-stabilized Θ-alumina powder in which Rh was not supported (made by Cataler, Inc., lanthanum content: 1% by mass, ratio) A mixed slurry containing a surface area of about 100 m 2 / g) at a mass ratio of 2: 1 was applied and fired at 500 ° C. for 1 hour in the air. Thereby, a test piece (hereinafter referred to as “mixed slurry coat test piece”) in which an FZ + alumina mixed layer was disposed on the entire surface of the honeycomb-shaped flat plate was obtained.
また、前記ハニカム状平板上の全面に、Rhが担持されていないランタン安定化Θ−アルミナ粉末((株)キャタラー製、ランタン含有量:1質量%、比表面積:約100m2/g)を含有するスラリーを塗布し、大気中、500℃で1時間焼成した。これにより、前記ハニカム状平板上の全面に、アルミナ層が配置されている試験片(以下、「アルミナスラリーコート試験片」という。)を得た。 Further, the entire surface of the honeycomb-shaped flat plate contains lanthanum-stabilized Θ-alumina powder (made by Cataler, Inc., lanthanum content: 1 mass%, specific surface area: about 100 m 2 / g) on which Rh is not supported. The slurry to be applied was applied and baked at 500 ° C. for 1 hour in the air. As a result, a test piece (hereinafter referred to as “alumina slurry coat test piece”) having an alumina layer disposed on the entire surface of the honeycomb-shaped flat plate was obtained.
また、前記ハニカム状平板上の全面に、調製例2で得られたFZスラリーを塗布し、大気中、500℃で1時間焼成した。これにより、前記ハニカム状平板上の全面に、FZ層が配置されている試験片(以下、「FZスラリーコート試験片」という。)を得た。 Further, the FZ slurry obtained in Preparation Example 2 was applied to the entire surface of the honeycomb-shaped flat plate and fired at 500 ° C. for 1 hour in the air. As a result, a test piece (hereinafter referred to as “FZ slurry coat test piece”) in which the FZ layer is disposed on the entire surface of the honeycomb-shaped flat plate was obtained.
各試験片に前記耐熱試験(1)を施した後、触媒層を掻きとって回収し、得られた触媒粉末について粉末X線回折測定を行なった。その結果を図8に示す。図8に示したように、混合スラリーコート試験片においては、FeAl2O4に由来するX線回折ピークが見られ、FeとAlが反応してスピネル相(FeAl2O4)が形成していることが確認された。一方、分離コート試験片においては、FZスラリーコート試験片と同様に、Fe3O4に由来するX線回折ピークが見られたが、FeAl2O4に由来するX線回折ピークは見られなかった。これらの結果から、FZ+Rh/アルミナ混合層を備えるハニカム状触媒(比較例1:混合スラリーコート)においては、スピネル相(FeAl2O4)が生成してRhが失活し、触媒活性や排ガス浄化性能が低下したと考えられる。一方、分離コート試験片においては、FeAl2O4に由来するX線回折ピークが見られなかったことから、Rhが失活せず、優れた触媒活性や排ガス浄化性能が発現したと考えられる。 After subjecting each test piece to the heat resistance test (1), the catalyst layer was scraped and collected, and the obtained catalyst powder was subjected to powder X-ray diffraction measurement. The result is shown in FIG. As shown in FIG. 8, in the mixed slurry-coated specimen, an X-ray diffraction peak derived from FeAl 2 O 4 is observed, and Fe and Al react to form a spinel phase (FeAl 2 O 4 ). It was confirmed that On the other hand, in the separation coat test piece, an X-ray diffraction peak derived from Fe 3 O 4 was observed as in the FZ slurry coat test piece, but no X-ray diffraction peak derived from FeAl 2 O 4 was observed. It was. From these results, in the honeycomb catalyst having the FZ + Rh / alumina mixed layer (Comparative Example 1: Mixed slurry coating), the spinel phase (FeAl 2 O 4 ) is generated and Rh is deactivated, and the catalytic activity and exhaust gas purification are reduced. The performance is thought to have declined. On the other hand, since no X-ray diffraction peak derived from FeAl 2 O 4 was observed in the separation coat test piece, Rh was not deactivated, and it was considered that excellent catalytic activity and exhaust gas purification performance were expressed.
(実施例2)
FZスラリーの代わりに調製例6で得られたPd/CZ+アルミナ混合スラリーを用いた以外は実施例1と同様にして、図3に示すように、ハニカム状基材の25個のセルの内壁1bの内周方向の約半分の領域に幅が約1.5mmのPd/CZ+アルミナ混合層(触媒A層101A)を形成し、このPd/CZ+アルミナ混合層に対向する残りの領域に幅が約1.5mmのRh/アルミナ層(触媒B層101B)を形成した。これらの分離コート触媒層は、合計コート量が約0.7g(ハニカム状基材1Lに対して約140g/L−cat)であった。また、Pd/CZ+アルミナ混合層とRh/アルミナ層との質量比はPd/CZ+アルミナ:Rh/アルミナ=4:3となるように形成した。
(Example 2)
In the same manner as in Example 1 except that the Pd / CZ + alumina mixed slurry obtained in Preparation Example 6 was used instead of the FZ slurry, as shown in FIG. A Pd / CZ + alumina mixed layer (catalyst A layer 101A) having a width of about 1.5 mm is formed in an approximately half region in the inner circumferential direction, and the remaining region facing the Pd / CZ + alumina mixed layer has a width of about A 1.5 mm Rh / alumina layer (catalyst B layer 101B) was formed. These separation coat catalyst layers had a total coat amount of about 0.7 g (about 140 g / L-cat with respect to 1 L of the honeycomb substrate 1). Further, the mass ratio of the Pd / CZ + alumina mixed layer and the Rh / alumina layer was formed to be Pd / CZ + alumina: Rh / alumina = 4: 3.
(比較例2)
図9に示すように、ハニカム状基材(コージェライト製、基材サイズ:縦10mm×横10mm×長さ49mm、容量:約5ml、セル形状:4角セル、セル数:200セル/インチ、セル厚:12ミル、セルピッチ:1.9mm×1.9mm)の25個のセルの内壁1bの内周方向の約半分の領域にPd/CZ+アルミナ混合層(触媒A層101A)を形成し、このPd/CZ+アルミナ混合層の上にRh/アルミナ層を積層した。これらの積層触媒層は、合計コート量が約0.7g(ハニカム状基材1Lに対して約140g/L−cat)であった。また、Pd/CZ+アルミナ混合層とRh/アルミナ層との質量比はPd/CZ+アルミナ:Rh/アルミナ=4:3となるように形成した。
(Comparative Example 2)
As shown in FIG. 9, a honeycomb substrate (made of cordierite, substrate size: length 10 mm × width 10 mm × length 49 mm, capacity: about 5 ml, cell shape: square cell, number of cells: 200 cells / inch, A Pd / CZ + alumina mixed layer (catalyst A layer 101A) is formed in an approximately half region in the inner circumferential direction of the inner wall 1b of 25 cells having a cell thickness of 12 mils and a cell pitch of 1.9 mm × 1.9 mm. An Rh / alumina layer was laminated on the Pd / CZ + alumina mixed layer. These laminated catalyst layers had a total coating amount of about 0.7 g (about 140 g / L-cat for 1 L of honeycomb-shaped substrate). Further, the mass ratio of the Pd / CZ + alumina mixed layer and the Rh / alumina layer was formed to be Pd / CZ + alumina: Rh / alumina = 4: 3.
先ず、前記ハニカム状基材を水洗し、乾燥後、大気中、1000℃で3時間焼成した。図4Aに示すように、先端部の外周面の一部に材料吐出口2が設けられている吐出管3(外径:1.07mm、内径:0.69mm)を、前記ハニカム状基材1の一方の端面4からセル1a内に挿入し、先端部が他方の端面5に達するまで移動させた。次に、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例6で得られたPd/CZ+アルミナ混合スラリーを0.03mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の約半分の領域にPd/CZ+アルミナ混合スラリーが塗布され、Pd/CZ+アルミナ混合スラリー層(触媒材料A層)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の約半分の領域にPd/CZ+アルミナ混合スラリーを塗布し、Pd/CZ+アルミナ混合スラリー層(触媒材料A層)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材1のセルの内壁1bの内周方向の約半分の領域に幅が約1.5mmのPd/CZ+アルミナ混合層(触媒A層101A)が形成された。 First, the honeycomb-shaped substrate was washed with water, dried, and then fired in air at 1000 ° C. for 3 hours. As shown in FIG. 4A, a discharge pipe 3 (outer diameter: 1.07 mm, inner diameter: 0.69 mm) in which a material discharge port 2 is provided in a part of the outer peripheral surface of the tip is connected to the honeycomb substrate 1 Was inserted into the cell 1a from one end face 4 and moved until the tip portion reached the other end face 5. Next, in Preparation Example 6, while moving the discharge pipe 3 from the end face 5 to the end face 4 at a speed of 5.0 mm / sec along the major axis direction of the cell 1a, and sucking the inside of the cell 1a, The obtained Pd / CZ + alumina mixed slurry was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.03 mm / second and discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, the Pd / CZ + alumina mixed slurry is applied to about a half region in the inner peripheral direction of the inner wall 1b of the cell. A Pd / CZ + alumina mixed slurry layer (catalyst material A layer) was formed. This operation is performed for 25 cells, and Pd / CZ + alumina mixed slurry is applied to about half of the inner circumferential direction of the inner wall 1b of each cell to form a Pd / CZ + alumina mixed slurry layer (catalyst material A layer). did. Thereafter, the Pd / CZ + alumina mixed layer having a width of about 1.5 mm is formed in about half of the inner circumferential direction of the inner wall 1b of the cell of the honeycomb-shaped substrate 1 by firing at 500 ° C. for 1 hour in the atmosphere. Catalyst A layer 101A) was formed.
次に、吐出管3を、材料吐出口2の向きを変更せずに、前記ハニカム状基材1の一方の端面4からセル内に挿入し、先端部が他方の端面5に達するまで移動させた。次いで、吐出管3をセル1aの長軸方向に沿って5.0mm/秒の速さで端面5から端面4の方向に移動させ、かつ、セル1a内を吸引しながら、調製例4で得られたRh/アルミナスラリーを0.06mm/秒の速度でスラリー供給装置6から吐出管3に供給し、吐出管3の先端部の材料吐出口2から吐出させた。このとき、材料吐出口2が吐出管3の先端部の外周面の一部に設けられているため、セルの内壁1bの内周方向の前記Pd/CZ+アルミナ混合層の上にRh/アルミナスラリーが塗布され、Rh/アルミナスラリー層(触媒材料B層)が形成された。この操作を25個のセルについて行い、各セルの内壁1bの内周方向の前記Pd/CZ+アルミナ混合層上にRh/アルミナスラリーを塗布し、Rh/アルミナスラリー層(触媒材料B層)を形成した。その後、大気中、500℃で1時間焼成することにより、前記ハニカム状基材1のセルの内壁1bの内周方向の前記Pd/CZ+アルミナ混合層(触媒A層101A)上に幅が約1.5mmのRh/アルミナ層(触媒B層101B)が形成された。これにより、前記ハニカム状基材のセルの内壁1bに幅が約1.5mmのPd/CZ+アルミナ混合層(触媒A層101A)と幅が約1.5mmのRh/アルミナ層(触媒B層101B)とが積層された触媒層が形成された。 Next, the discharge pipe 3 is inserted into the cell from one end face 4 of the honeycomb-shaped substrate 1 without changing the direction of the material discharge port 2 and moved until the tip reaches the other end face 5. It was. Next, the discharge pipe 3 is moved in the direction from the end face 5 to the end face 4 at a speed of 5.0 mm / second along the major axis direction of the cell 1a, and the inside of the cell 1a is sucked and obtained in Preparation Example 4. The obtained Rh / alumina slurry was supplied from the slurry supply device 6 to the discharge pipe 3 at a speed of 0.06 mm / second and discharged from the material discharge port 2 at the tip of the discharge pipe 3. At this time, since the material discharge port 2 is provided in a part of the outer peripheral surface of the distal end portion of the discharge pipe 3, the Rh / alumina slurry is formed on the Pd / CZ + alumina mixed layer in the inner peripheral direction of the inner wall 1b of the cell. Was applied to form an Rh / alumina slurry layer (catalyst material B layer). This operation is performed for 25 cells, and Rh / alumina slurry is applied onto the Pd / CZ + alumina mixed layer in the inner circumferential direction of the inner wall 1b of each cell to form an Rh / alumina slurry layer (catalyst material B layer). did. Thereafter, by firing at 500 ° C. for 1 hour in the atmosphere, the width is about 1 on the Pd / CZ + alumina mixed layer (catalyst A layer 101A) in the inner peripheral direction of the inner wall 1b of the cell of the honeycomb substrate 1. A 5 mm Rh / alumina layer (catalyst B layer 101B) was formed. As a result, a Pd / CZ + alumina mixed layer (catalyst A layer 101A) having a width of about 1.5 mm and an Rh / alumina layer (catalyst B layer 101B) having a width of about 1.5 mm are formed on the inner wall 1b of the cell of the honeycomb substrate. ) And a catalyst layer laminated.
(比較例3)
FZ+Rh/アルミナ混合スラリーの代わりに調製例8で得られたPd/CZ+Rh/アルミナ混合スラリーを用いた以外は比較例1と同様にして、図5に示すように、ハニカム状基材の25個のセルの内壁1bに、2本のPd/CZ+Rh/アルミナ混合層(混合触媒層104A及び104B)を、これらの層が対向するように形成した。これらの混合触媒層は、合計コート量が約0.7g(ハニカム状基材1Lに対して約140g/L−cat)であった。また、混合層中のPd/CZとRh/アルミナとの質量比はPd/CZ:Rh/アルミナ=4:3となるように形成した。
(Comparative Example 3)
In the same manner as in Comparative Example 1 except that the Pd / CZ + Rh / alumina mixed slurry obtained in Preparation Example 8 was used instead of the FZ + Rh / alumina mixed slurry, as shown in FIG. Two Pd / CZ + Rh / alumina mixed layers (mixed catalyst layers 104A and 104B) were formed on the inner wall 1b of the cell so that these layers face each other. These mixed catalyst layers had a total coating amount of about 0.7 g (about 140 g / L-cat with respect to 1 L of honeycomb substrate). Further, the mass ratio of Pd / CZ and Rh / alumina in the mixed layer was formed to be Pd / CZ: Rh / alumina = 4: 3.
<耐熱試験(2)>
内径約30mmの反応管に、実施例2及び比較例2〜3で得られたハニカム状触媒を同時に4本装着した。このとき、反応管に導入されるガスがハニカム状触媒内を十分に流通するように、反応管とハニカム状触媒との間の隙間を石英ウールで充填した。リッチガス〔CO(1容量%)+H2O(3容量%)+N2(残部)〕とリーンガス〔O2(1容量%)+H2O(3容量%)+N2(残部)〕を20L/分で1分毎に交互に流通させながら、前記反応管を1050℃で10時間加熱して、ハニカム状触媒に耐熱試験を施した。
<Heat resistance test (2)>
Four honeycomb-shaped catalysts obtained in Example 2 and Comparative Examples 2 to 3 were simultaneously mounted on a reaction tube having an inner diameter of about 30 mm. At this time, the gap between the reaction tube and the honeycomb catalyst was filled with quartz wool so that the gas introduced into the reaction tube could sufficiently flow through the honeycomb catalyst. Rich gas [CO (1 vol%) + H 2 O (3 vol%) + N 2 (remainder)] and lean gas [O 2 (1 vol%) + H 2 O (3 vol%) + N 2 (remainder)] are 20 L / min. Then, the reaction tube was heated at 1050 ° C. for 10 hours while being alternately circulated every 1 minute to conduct a heat resistance test on the honeycomb catalyst.
<酸素貯蔵量(OSC)>
耐熱試験(2)後のハニカム状触媒を1種類ずつ装着した内径15mmの反応管に、触媒入りガス温度600℃で、リッチガス〔CO(2容量%)+N2(残部)〕を15L/分で1分間流通させた後、リーンガス〔O2(1容量%)+N2(残部)〕を15L/分で1分間流通させた。この操作を4回繰り返し、触媒入りガス中のCO量を100として後半2回(2周期)の合計4分間の触媒出ガス中のCO2量を求め、これを酸素吸蔵量(OSC)の相対値として評価した。その結果を表2に示す。
<Oxygen storage amount (OSC)>
In a reaction tube with an inner diameter of 15 mm in which one type of each honeycomb-shaped catalyst after the heat resistance test (2) is mounted, the catalyst-containing gas temperature is 600 ° C., and rich gas [CO (2 vol%) + N 2 (remainder)] is 15 L / min. After flowing for 1 minute, lean gas [O 2 (1% by volume) + N 2 (remainder)] was allowed to flow at 15 L / min for 1 minute. This operation is repeated four times, and the amount of CO 2 in the catalyst outgas for a total of 4 minutes in the latter half (two cycles) is determined with the amount of CO in the catalyst-containing gas as 100, and this is calculated as the relative oxygen storage amount (OSC). Evaluated as a value. The results are shown in Table 2.
<NOの平均浄化率>
耐熱試験(2)後のハニカム状触媒を1種類ずつ装着した内径15mmの反応管に、触媒入りガス温度500℃、流量15L/分、空間速度18万/時間の条件で、定常ガス〔CO(0.65容量%)+NO(0.15容量%)+H2O(5容量%)+CO2(10容量%)+N2(残部)〕を流通させながら、リッチガス〔O2(0容量%)〕を3分間流通させた後、リーンガス〔O2(0.65容量%)〕を3分間流通させた。この操作を繰り返し、安定した周期の次の周期のリッチガス流通開始から100秒間の触媒入りガス及び触媒出ガス中のNOの平均濃度を測定してNOの平均浄化率を算出した。その結果を表2に示す。
<Average purification rate of NO>
In a reaction tube with an inner diameter of 15 mm, each having a honeycomb-shaped catalyst after the heat resistance test (2) mounted, a gas with a catalyst temperature of 500 ° C., a flow rate of 15 L / min, and a space velocity of 180,000 / hr. 0.65% by volume) + NO (0.15% by volume) + H 2 O (5% by volume) + CO 2 (10% by volume) + N 2 (remainder)] while circulating rich gas [O 2 (0% by volume)] Was circulated for 3 minutes, and then lean gas [O 2 (0.65 vol%)] was circulated for 3 minutes. This operation was repeated, and the average purification rate of NO was calculated by measuring the average concentration of NO in the catalyst-containing gas and the catalyst-out gas for 100 seconds from the start of the flow of the rich gas in the next cycle after the stable cycle. The results are shown in Table 2.
表2に示した結果から明らかなように、Pd/CZ+アルミナ混合層とRh/アルミナ層とをセルの内壁に内周方向に分離して形成した本発明のハニカム状触媒(実施例2:分離コート)は、Pd/CZ+アルミナ混合層とRh/アルミナ層とが積層されたハニカム状触媒(比較例2:積層コート)に比べて、酸素貯蔵能に優れていることがわかった。 As is apparent from the results shown in Table 2, the honeycomb catalyst of the present invention formed by separating the Pd / CZ + alumina mixed layer and the Rh / alumina layer on the inner wall of the cell in the inner circumferential direction (Example 2: Separation) The coating) was found to be superior in oxygen storage capacity compared to the honeycomb catalyst (Comparative Example 2: Multilayer coating) in which the Pd / CZ + alumina mixed layer and the Rh / alumina layer were laminated.
また、表2に示した結果から明らかなように、Pd/CZ+アルミナ混合層とRh/アルミナ層とをセルの内壁に内周方向に分離して形成した本発明のハニカム状触媒(実施例2:分離コート)は、2本のPd/CZ+Rh/アルミナ混合層を対向するようにセルの内壁に形成したハニカム状触媒(比較例3:混合スラリーコート)に比べて、NOの平均浄化率が高く、排ガス浄化性能に優れていることがわかった。 Further, as is apparent from the results shown in Table 2, the honeycomb catalyst of the present invention (Example 2) in which the Pd / CZ + alumina mixed layer and the Rh / alumina layer were formed on the inner wall of the cell separately in the inner circumferential direction. : Separation coat) has a higher average purification rate of NO than a honeycomb catalyst (Comparative Example 3: Mixed slurry coat) formed on the inner wall of the cell so that two Pd / CZ + Rh / alumina mixed layers face each other. The exhaust gas purification performance was found to be excellent.
以上の結果から、ハニカム状基材のセルの内壁にFZ層とRh/アルミナ層とを、又は、Pd/CZ+アルミナ混合層とRh/アルミナ層とを、分離して配置することによって、高温で熱処理を施してもFeとAlとの反応やRhとPdやCZとの固溶や反応を抑制することができ、Rhの失活が抑制されることがわかった。 From the above results, the FZ layer and the Rh / alumina layer, or the Pd / CZ + alumina mixed layer and the Rh / alumina layer are separately disposed on the inner wall of the cell of the honeycomb-shaped substrate, so that the It has been found that even when heat treatment is performed, the reaction between Fe and Al and the solid solution and reaction between Rh, Pd, and CZ can be suppressed, and the deactivation of Rh can be suppressed.
以上説明したように、本発明によれば、複数の触媒材料を併用した触媒層を備えており、従来の複数の触媒材料を混合して形成された混合触媒層を備えるハニカム状触媒に比べて優れた触媒性能を示すハニカム状触媒を得ることが可能となる。特に、混合した場合に一部の触媒性能が低下するような触媒材料の組み合わせに対して本発明を適用することによって前記触媒性能の低下を抑制することが可能となる。例えば、混合した場合に触媒活性は向上するものの、耐熱性が低下するような触媒材料の組み合わせに対して本発明を適用することによって、触媒活性が向上するだけでなく、耐熱性の低下を抑制する(又は耐熱性を向上させる)ことが可能となる。 As described above, according to the present invention, it is provided with a catalyst layer in which a plurality of catalyst materials are used in combination, compared to a conventional honeycomb catalyst having a mixed catalyst layer formed by mixing a plurality of catalyst materials. It becomes possible to obtain a honeycomb-shaped catalyst exhibiting excellent catalyst performance. In particular, when the present invention is applied to a combination of catalyst materials in which a part of the catalyst performance decreases when mixed, it is possible to suppress the decrease in the catalyst performance. For example, the catalyst activity is improved when mixed, but by applying the present invention to a combination of catalyst materials that lowers the heat resistance, not only the catalyst activity is improved but also the heat resistance is suppressed. (Or improved heat resistance).
したがって、本発明のハニカム状触媒は、ガソリン車用の三元触媒、吸蔵還元型のNOx浄化用触媒、フロースルー貫通孔を有するガソリン車用の粒子状物質(パーティキュレート)浄化用触媒、片端ずつ交互に端面が目づめされたフィルター型のディーゼル車用の粒子状物質(パーティキュレート)浄化用触媒、HC及びCO浄化用触媒、燃料改質触媒、燃料電池用触媒、都市ガスや水素燃料用触媒等の、2種以上の触媒材料を併用する触媒において有用である。 Therefore, the honeycomb catalyst of the present invention includes a three-way catalyst for gasoline vehicles, an NOx purification catalyst for storage reduction type, a particulate matter (particulate) purification catalyst for gasoline vehicles having flow-through through holes, one end at a time. Filter-type diesel vehicle particulate matter (particulate) purification catalyst, HC and CO purification catalyst, fuel reforming catalyst, fuel cell catalyst, city gas and hydrogen fuel catalyst with alternately end faces clogged It is useful in a catalyst using two or more kinds of catalyst materials in combination.
1:ハニカム状基材、1a:ハニカム状基材1のセル、1b:ハニカム状基材1の内壁、2:材料吐出口、3:吐出管、4:ハニカム状基材の、吐出管3が挿入される側の端面、5:ハニカム状基材の端面4とは反対側の端面、6.材料供給装置、101A:触媒A層、101B:触媒B層、101C:触媒C層、101D:触媒D層、102A:触媒材料A層、102B:触媒材料B層、103A:除去された余分な触媒材料A、103B:除去された余分な触媒材料B、104A及び104B:混合触媒層、105A:FZ層、105B:アルミナ層。 1: honeycomb-shaped substrate, 1a: cell of honeycomb-shaped substrate 1, 1b: inner wall of honeycomb-shaped substrate 1, 2: material discharge port, 3: discharge tube, 4: discharge tube 3 of honeycomb-shaped substrate 5. End face to be inserted, 5: End face opposite to the end face 4 of the honeycomb substrate, 101A: Catalyst A layer, 101B: Catalyst B layer, 101C: Catalyst C layer, 101D: Catalyst D layer, 102A: Catalyst material A layer, 102B: Catalyst material B layer, 103A: Excess catalyst removed Material A, 103B: Excess catalyst material B removed, 104A and 104B: Mixed catalyst layer, 105A: FZ layer, 105B: Alumina layer.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064594A JP6311944B2 (en) | 2016-03-28 | 2016-03-28 | Honeycomb catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064594A JP6311944B2 (en) | 2016-03-28 | 2016-03-28 | Honeycomb catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017176939A true JP2017176939A (en) | 2017-10-05 |
JP6311944B2 JP6311944B2 (en) | 2018-04-18 |
Family
ID=60003355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016064594A Active JP6311944B2 (en) | 2016-03-28 | 2016-03-28 | Honeycomb catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6311944B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190319286A1 (en) * | 2018-04-13 | 2019-10-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Honeycomb-shaped reaction vessel |
JP2019181395A (en) * | 2018-04-13 | 2019-10-24 | 株式会社豊田中央研究所 | Device of coating inside of cell and manufacturing method of reaction vessel using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005118747A (en) * | 2003-10-20 | 2005-05-12 | Ibiden Co Ltd | Honeycomb structure |
JP2006326476A (en) * | 2005-05-25 | 2006-12-07 | Toyota Motor Corp | Emission gas cleaning catalyst |
JP2007501107A (en) * | 2003-08-05 | 2007-01-25 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions |
JP2014018724A (en) * | 2012-07-17 | 2014-02-03 | Nissan Motor Co Ltd | Catalytic structure for cleaning exhaust gas |
JP2014226651A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
-
2016
- 2016-03-28 JP JP2016064594A patent/JP6311944B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007501107A (en) * | 2003-08-05 | 2007-01-25 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions |
JP2005118747A (en) * | 2003-10-20 | 2005-05-12 | Ibiden Co Ltd | Honeycomb structure |
JP2006326476A (en) * | 2005-05-25 | 2006-12-07 | Toyota Motor Corp | Emission gas cleaning catalyst |
JP2014018724A (en) * | 2012-07-17 | 2014-02-03 | Nissan Motor Co Ltd | Catalytic structure for cleaning exhaust gas |
JP2014226651A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190319286A1 (en) * | 2018-04-13 | 2019-10-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Honeycomb-shaped reaction vessel |
JP2019181395A (en) * | 2018-04-13 | 2019-10-24 | 株式会社豊田中央研究所 | Device of coating inside of cell and manufacturing method of reaction vessel using the same |
JP2019181468A (en) * | 2018-04-13 | 2019-10-24 | 株式会社豊田中央研究所 | Honeycomb reaction vessel |
US10804555B2 (en) | 2018-04-13 | 2020-10-13 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Honeycomb-shaped reaction vessel |
JP7015456B2 (en) | 2018-04-13 | 2022-02-03 | 株式会社豊田中央研究所 | Honeycomb reaction vessel |
Also Published As
Publication number | Publication date |
---|---|
JP6311944B2 (en) | 2018-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10018095B2 (en) | Exhaust gas purification device | |
JP5376261B2 (en) | Exhaust gas purification catalyst | |
JP5651685B2 (en) | Improved lean HC conversion of TWC for lean burn gasoline engine | |
JP5240275B2 (en) | Exhaust gas purification catalyst | |
JP6594149B2 (en) | Exhaust gas purification device | |
CN107073447A (en) | Exhaust gas purification catalyst | |
WO2017163984A1 (en) | Exhaust gas purification device | |
JP2007021456A (en) | Catalyst for cleaning exhaust gas | |
JP2007038072A (en) | Catalyst for cleaning exhaust gas | |
KR20130105644A (en) | Catalyst for gasoline lean burn engines with improved no oxidation activity | |
JP2020535960A (en) | SCR catalyst composition, catalyst, and catalyst system incorporating such catalyst | |
BR112019002270B1 (en) | EMISSION TREATMENT SYSTEM, CATALYZED PARTICLE FILTER, METHODS FOR TREATMENT OF AN EXHAUST GAS AND FOR MANUFACTURING A CATALYZED PARTICLE FILTER | |
JPWO2019058948A1 (en) | Exhaust gas purification catalyst body | |
JP5954159B2 (en) | Particulate filter with catalyst | |
JP6311944B2 (en) | Honeycomb catalyst | |
CN112218719B (en) | Exhaust gas purifying catalyst | |
JP5966594B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
CN112218718B (en) | Exhaust gas purifying catalyst | |
JP6575482B2 (en) | Method for producing exhaust gas purification catalyst | |
CN111699039A (en) | Exhaust gas purifying catalyst | |
JP5949520B2 (en) | Particulate filter with catalyst | |
JP6135624B2 (en) | Particulate filter with catalyst | |
JP7319293B2 (en) | Exhaust gas purification catalyst and its manufacturing method | |
US20220105493A1 (en) | Binder composition for enhanced catalyst washcoat adhesion | |
KR20240108379A (en) | Zoned three-way conversion catalyst containing platinum, palladium, and rhodium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6311944 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |