JP6826969B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6826969B2
JP6826969B2 JP2017201112A JP2017201112A JP6826969B2 JP 6826969 B2 JP6826969 B2 JP 6826969B2 JP 2017201112 A JP2017201112 A JP 2017201112A JP 2017201112 A JP2017201112 A JP 2017201112A JP 6826969 B2 JP6826969 B2 JP 6826969B2
Authority
JP
Japan
Prior art keywords
heat medium
cell
heat
peripheral wall
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201112A
Other languages
Japanese (ja)
Other versions
JP2019074264A (en
Inventor
祥啓 古賀
祥啓 古賀
健太 吉田
健太 吉田
村田 登志朗
登志朗 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Toyota Motor Corp
Original Assignee
Ibiden Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd, Toyota Motor Corp filed Critical Ibiden Co Ltd
Priority to JP2017201112A priority Critical patent/JP6826969B2/en
Priority to CN201880066884.7A priority patent/CN111201412A/en
Priority to PCT/JP2018/038572 priority patent/WO2019078224A1/en
Priority to US16/756,121 priority patent/US20200292252A1/en
Priority to EP18868949.1A priority patent/EP3699536A4/en
Publication of JP2019074264A publication Critical patent/JP2019074264A/en
Application granted granted Critical
Publication of JP6826969B2 publication Critical patent/JP6826969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に関する。 The present invention relates to a heat exchanger.

図14に示すように、特許文献1の熱交換器40は、矩形筒状の周壁41と、周壁41の内部を周壁41の軸方向に延びる複数の第1セル42及び第2セル43に区画する区画壁44とを備えている。周壁41の軸方向に直交する断面において、第1セル42及び第2セル43はそれぞれ、縦方向に列をなすように配置されている。具体的には、図14の紙面左側から1列目、3列目、5列目及び7列目に第1セル42が配置され、2列目、4列目、6列目及び8列目に第2セル43が配置されている。こうした熱交換器40では、第1セル42を流れる第1流体と第2セル43を流れる第2流体との間で熱交換が行われる。 As shown in FIG. 14, the heat exchanger 40 of Patent Document 1 is divided into a rectangular tubular peripheral wall 41 and a plurality of first cells 42 and second cells 43 extending in the axial direction of the peripheral wall 41 inside the peripheral wall 41. It is provided with a partition wall 44 to be used. In the cross section orthogonal to the axial direction of the peripheral wall 41, the first cell 42 and the second cell 43 are arranged so as to form a row in the vertical direction, respectively. Specifically, the first cell 42 is arranged in the first row, the third row, the fifth row, and the seventh row from the left side of the paper in FIG. 14, and the second row, the fourth row, the sixth row, and the eighth row. The second cell 43 is arranged in. In such a heat exchanger 40, heat exchange is performed between the first fluid flowing through the first cell 42 and the second fluid flowing through the second cell 43.

また、特許文献1の熱交換器40では、第2セル43の流路断面積を、第1セル42の流路断面積よりも大きくしている。そして、熱容量の異なる流体間で熱交換を行う場合に、流路断面積の大きい第2セル43側に、より熱容量の小さな第2流体を流して、熱交換器40内により多くの第2流体が存在するようにすることにより、熱交換器40内における第1流体全体の熱容量と第2流体全体の熱容量とを合わせて、熱交換効率を高めている。 Further, in the heat exchanger 40 of Patent Document 1, the flow path cross-sectional area of the second cell 43 is made larger than the flow path cross-sectional area of the first cell 42. Then, when heat exchange is performed between fluids having different heat capacities, a second fluid having a smaller heat capacity is flowed to the second cell 43 side having a large flow path cross-sectional area, and more second fluids are flown in the heat exchanger 40. Is present so that the heat capacity of the entire first fluid and the heat capacity of the entire second fluid in the heat exchanger 40 are combined to improve the heat exchange efficiency.

特開2015−140960号公報JP-A-2015-140960

ところで、図14に示すような熱交換器は、排気ガス等のガスと、冷却水等の液状の熱媒体との間の熱交換に用いられる場合がある。この場合、ガスの熱が熱交換器の区画壁を介して液状の熱媒体に伝わることになるが、ガスの熱が区画壁に伝わり難いことにより、熱交換器の熱交換効率を向上させることが難しいという課題があった。本発明は、こうした事情に鑑みてなされたものであり、その目的は、熱交換効率の高い熱交換器を提供することにある。 By the way, a heat exchanger as shown in FIG. 14 may be used for heat exchange between a gas such as exhaust gas and a liquid heat medium such as cooling water. In this case, the heat of the gas is transferred to the liquid heat medium through the partition wall of the heat exchanger, but the heat of the gas is difficult to be transferred to the partition wall, so that the heat exchange efficiency of the heat exchanger is improved. There was a problem that it was difficult. The present invention has been made in view of these circumstances, and an object of the present invention is to provide a heat exchanger having high heat exchange efficiency.

上記課題を解決するための本発明の熱交換器は、筒状の周壁と、上記周壁の内部を上記周壁の軸方向に延びる複数の熱媒体流通セル及び複数のガス流通セルに区画する区画壁とを備え、上記熱媒体流通セルを流通する液状の熱媒体と、上記ガス流通セルを流通するガスとの間で熱交換が行われる熱交換器であって、上記熱媒体流通セルと、上記ガス流通セルとの個数比が、1:3〜1:6であることを要旨とする。 The heat exchanger of the present invention for solving the above problems has a tubular peripheral wall and a partition wall that divides the inside of the peripheral wall into a plurality of heat medium flow cells extending in the axial direction of the peripheral wall and a plurality of gas flow cells. A heat exchanger in which heat exchange is performed between a liquid heat medium that circulates in the heat medium distribution cell and a gas that circulates in the gas flow cell. The gist is that the number ratio with the gas flow cell is 1: 3 to 1: 6.

この構成によれば、熱媒体流通セルの個数に対してガス流通セルの個数が3倍以上であることにより、ガス流通セルの総流路断面積が大きくなって、ガス流通セルを通過するガスの流速が低下する。これにより、ガスと区画壁との接触時間が長くなる。さらに、ガスと区画壁との接触面積も大きくなるため、ガスの熱が区画壁に伝わり易くなる。また、熱媒体流通セルの個数に対してガス流通セルの個数が6倍以下であることにより、熱媒体流通セルを流通する液状の熱媒体で区画壁全体を冷却することができる。区画壁全体が冷却されることにより、ガスの熱を素早く伝達することができる。これらの結果、熱交換器の熱交換効率を向上させることができる。 According to this configuration, since the number of gas flow cells is three times or more the number of heat medium flow cells, the total flow path cross-sectional area of the gas flow cells becomes large, and the gas passing through the gas flow cells The flow velocity of As a result, the contact time between the gas and the partition wall becomes long. Further, since the contact area between the gas and the partition wall is also large, the heat of the gas is easily transferred to the partition wall. Further, since the number of gas distribution cells is 6 times or less with respect to the number of heat medium distribution cells, the entire partition wall can be cooled by the liquid heat medium flowing through the heat medium distribution cells. By cooling the entire partition wall, the heat of the gas can be transferred quickly. As a result, the heat exchange efficiency of the heat exchanger can be improved.

本発明の熱交換器について、上記周壁は、対向する一対の第1側壁と対向する一対の第2側壁とを有する矩形筒状をなし、上記熱媒体流通セル及び上記ガス流通セルは、上記周壁の軸方向に直交する断面において、上記第1側壁に平行に配列した複数の熱媒体流通セル列及び複数のガス流通セル列を備え、上記第2側壁に沿った方向において、隣り合う上記熱媒体流通セル列同士の間に、3〜6列の上記ガス流通セル列が配置されていることが好ましい。この構成によれば、熱媒体流通セルが固まって配置されること、及び大部分のガス流通セルについて、一定範囲内に熱媒体流通セルが配置されることにより、区画壁全体が冷却された状態になりやすく、また圧力損失を低減することができる。 In the heat exchanger of the present invention, the peripheral wall has a rectangular tubular shape having a pair of facing first side walls and a pair of facing second side walls, and the heat medium flow cell and the gas flow cell have the peripheral wall. A plurality of heat medium flow cell rows and a plurality of gas flow cell rows arranged in parallel with the first side wall are provided in a cross section orthogonal to the axial direction of the above, and the heat media adjacent to each other in the direction along the second side wall. It is preferable that the gas distribution cell rows of 3 to 6 are arranged between the distribution cell rows. According to this configuration, the entire partition wall is cooled by arranging the heat medium flow cells in a solid state and by arranging the heat medium flow cells within a certain range for most of the gas flow cells. And the pressure loss can be reduced.

本発明の熱交換器について、上記周壁の同一面に、上記熱媒体流通セルに連通する熱媒体の流入口及び流出口が設けられていることが好ましい。この構成によれば、熱媒体の流入部口及び流出口を熱交換器の片側に設けることで、熱媒体が流れるパイプ等を接続した際のトータル容積を小さくすることができる。 In the heat exchanger of the present invention, it is preferable that the inlet and outlet of the heat medium communicating with the heat medium flow cell are provided on the same surface of the peripheral wall. According to this configuration, by providing the inflow port and the outflow port of the heat medium on one side of the heat exchanger, the total volume when the pipe or the like through which the heat medium flows is connected can be reduced.

本発明の熱交換器について、複数の上記熱媒体流通セルは、それぞれ同じ断面形状を有するとともに、複数の上記ガス流通セルは、それぞれ同じ断面形状を有することが好ましい。この構成によれば、断面形状が異なることによって生じるガス流通セル間の熱交換効率のバラツキ、及び熱媒体流通セル間の熱交換効率のバラツキを抑制することができ、またガス流通セルの圧力損失を低減することができる。 Regarding the heat exchanger of the present invention, it is preferable that the plurality of heat medium flow cells each have the same cross-sectional shape, and the plurality of gas flow cells each have the same cross-sectional shape. According to this configuration, it is possible to suppress variations in heat exchange efficiency between gas flow cells and heat exchange efficiency between heat medium flow cells caused by different cross-sectional shapes, and it is possible to suppress pressure loss in gas flow cells. Can be reduced.

本発明の熱交換器について、上記周壁の軸方向に直交する断面において、それぞれの上記熱媒体流通セルは、それぞれの上記ガス流通セルよりも大きな断面形状を有することが好ましい。熱媒体流通セルを流通する熱媒体は、液状であるため、ガスと比較してセルを流通する際の流通抵抗が大きい。この構成によれば、流通抵抗の高い熱媒体を流通し易くすることができる。 Regarding the heat exchanger of the present invention, it is preferable that each of the heat medium flow cells has a larger cross-sectional shape than each of the gas flow cells in a cross section orthogonal to the axial direction of the peripheral wall. Heat medium distribution Since the heat medium that circulates in the cell is liquid, the distribution resistance when circulating the cell is larger than that in gas. According to this configuration, it is possible to facilitate the distribution of a heat medium having a high distribution resistance.

本発明の熱交換器について、上記区画壁は、炭化ケイ素を主成分として含むことが好ましい。この構成によれば、炭化ケイ素は、セラミック材料の中でも熱伝導率が高い材料であるため、区画壁の熱伝導率を高くすることができる。これにより、熱交換器の熱交換効率を向上させることができる。 Regarding the heat exchanger of the present invention, it is preferable that the partition wall contains silicon carbide as a main component. According to this configuration, since silicon carbide is a material having a high thermal conductivity among ceramic materials, the thermal conductivity of the partition wall can be increased. As a result, the heat exchange efficiency of the heat exchanger can be improved.

本発明によれば、熱交換効率を向上させることができる。 According to the present invention, the heat exchange efficiency can be improved.

熱交換器の斜視図。Perspective view of the heat exchanger. 図1の2−2線断面図。2-2 sectional view of FIG. 図2の3−3線断面図。FIG. 2 is a sectional view taken along line 3-3 of FIG. 図2の4−4線断面図。FIG. 2 is a sectional view taken along line 4-4 of FIG. 成形工程の説明図。Explanatory drawing of molding process. 加工工程の説明図(第1加工の加工治具を挿入した状態の説明図)。Explanatory drawing of the processing process (explanatory drawing of the state in which the processing jig of the first processing is inserted). 加工工程の説明図(第1加工の加工治具を挿入した後の説明図)。Explanatory drawing of the processing process (explanatory drawing after inserting the processing jig of the first processing). 加工工程の説明図(第2加工の説明図)。Explanatory drawing of processing process (explanatory drawing of 2nd processing). 脱脂工程の説明図。Explanatory drawing of degreasing process. 含浸工程の説明図。Explanatory drawing of impregnation process. 変更例の熱交換器の正面図。Front view of the heat exchanger of the modified example. シミュレーションにおける寸法測定箇所を示す模式図。The schematic diagram which shows the dimensional measurement point in a simulation. シミュレーションによる温度分布図。Simulation temperature distribution map. 従来技術の熱交換器の断面図。Sectional view of the prior art heat exchanger.

以下、熱交換器の一実施形態を説明する。
図1、2に示すように、本実施形態の熱交換器10は、矩形筒状の周壁11と、周壁11の内部を周壁11の軸方向に延びる複数の熱媒体流通セル13a及び複数のガス流通セル13bに区画する区画壁12とを備えている。矩形筒状の周壁11は、対向する一対の縦側壁11a(第1側壁)と対向する一対の横側壁11b(第2側壁)とを有し、周壁11の軸方向に直交する断面形状が横長の長方形をなすように構成されている。
Hereinafter, an embodiment of the heat exchanger will be described.
As shown in FIGS. 1 and 2, the heat exchanger 10 of the present embodiment has a rectangular tubular peripheral wall 11, a plurality of heat medium flow cells 13a extending inside the peripheral wall 11 in the axial direction of the peripheral wall 11, and a plurality of gases. It is provided with a partition wall 12 for partitioning the distribution cell 13b. The rectangular tubular peripheral wall 11 has a pair of vertical side walls 11a (first side wall) facing each other and a pair of lateral side walls 11b (second side wall) facing each other, and the cross-sectional shape orthogonal to the axial direction of the peripheral wall 11 is horizontally long. It is configured to form a rectangle.

図2に示すように、区画壁12は、周壁11の軸方向に直交する断面において、縦側壁11aと平行な区画壁12と、横側壁11bに平行な区画壁12とで格子状をなすように構成されている。区画壁12が構成するセル構造は特に限定されるものではないが、例えば、区画壁12の壁厚が0.1〜0.5mmであり、セル密度が、周壁11の軸方向に直交する断面1cmあたり15〜93セルであるセル構造とすることができる。 As shown in FIG. 2, the partition wall 12 has a cross section orthogonal to the axial direction of the peripheral wall 11 so that the partition wall 12 parallel to the vertical side wall 11a and the partition wall 12 parallel to the horizontal side wall 11b form a grid pattern. It is configured in. The cell structure formed by the partition wall 12 is not particularly limited. For example, a cross section in which the wall thickness of the partition wall 12 is 0.1 to 0.5 mm and the cell density is orthogonal to the axial direction of the peripheral wall 11. It can have a cell structure of 15 to 93 cells per 1 cm 2 .

図3に示すように、熱媒体流通セル13aは、熱媒体を流通させるセルであり、その両端部が共に封止部22によって封止されている。図4に示すように、ガス流通セル13bは、処理対象のガスを流通させるセルであり、その両端部が共に開放されている。熱媒体としては特に限定されず、公知の液状の熱媒体を用いることができる。公知の熱媒体としては、例えば、冷却水(Long Life Coolant:LLC)や、エチレングリコール等の有機溶剤が挙げられる。処理対象のガスとしては、例えば、内燃機関の排気ガスが挙げられる。 As shown in FIG. 3, the heat medium distribution cell 13a is a cell for distributing a heat medium, and both ends thereof are sealed by a sealing portion 22. As shown in FIG. 4, the gas distribution cell 13b is a cell for distributing the gas to be processed, and both ends thereof are open. The heat medium is not particularly limited, and a known liquid heat medium can be used. Known heat media include, for example, cooling water (Long Life Coolant: LLC) and an organic solvent such as ethylene glycol. Examples of the gas to be processed include the exhaust gas of an internal combustion engine.

図2に示すように、周壁11の軸方向に直交する断面において、熱媒体流通セル13aの断面形状とガス流通セル13bの断面形状は、全て同じである。
図2に示すように、熱交換器10は、周壁11の縦側壁11aに平行に熱媒体流通セル13aのみが配列した複数の熱媒体流通セル列14aと、縦側壁11aに平行にガス流通セル13bのみが配列したガス流通セル列14bとを備える。
As shown in FIG. 2, in the cross section orthogonal to the axial direction of the peripheral wall 11, the cross-sectional shape of the heat medium flow cell 13a and the cross-sectional shape of the gas flow cell 13b are all the same.
As shown in FIG. 2, the heat exchanger 10 includes a plurality of heat medium flow cell rows 14a in which only the heat medium flow cell 13a is arranged parallel to the vertical side wall 11a of the peripheral wall 11, and a gas flow cell parallel to the vertical side wall 11a. It includes a gas distribution cell row 14b in which only 13b is arranged.

ここで、熱交換器10は、熱媒体流通セル13aとガス流通セル13bとの個数比が特定範囲に設定されている。上記個数比(熱媒体流通セル13a:ガス流通セル13b)は、1:3〜1:6であり、1:4〜1:5であることが好ましい。 Here, in the heat exchanger 10, the number ratio of the heat medium flow cell 13a and the gas flow cell 13b is set in a specific range. The number ratio (heat medium distribution cell 13a: gas distribution cell 13b) is 1: 3 to 1: 6, and preferably 1: 4 to 1: 5.

本実施形態においては、熱媒体流通セル列14a及びガス流通セル列14bの配置によって、上記個数比を調整している。すなわち、周壁11の横側壁11bに沿った方向において、隣り合う熱媒体流通セル列14a同士の間に、複数列のガス流通セル列14bが配置され、この配置が繰り返された配置パターンが形成されている。そして、隣り合う2つの熱媒体流通セル列14aの間に配置されるガス流通セル列14bの数を3〜6列とすることにより、上記個数比が、1:3〜1:6となる。また、ガス流通セル列14bの数は、4〜5列であることが好ましい。 In the present embodiment, the number ratio is adjusted by arranging the heat medium flow cell row 14a and the gas flow cell row 14b. That is, in the direction along the lateral side wall 11b of the peripheral wall 11, a plurality of rows of gas flow cell rows 14b are arranged between adjacent heat medium flow cell rows 14a, and an arrangement pattern in which this arrangement is repeated is formed. ing. Then, by setting the number of gas distribution cell rows 14b arranged between the two adjacent heat medium distribution cell rows 14a to 3 to 6 rows, the number ratio becomes 1: 3 to 1: 6. Further, the number of gas distribution cell rows 14b is preferably 4 to 5 rows.

図1、3に示すように、熱交換器10において、熱媒体流通セル列14aには、縦方向に延びるように形成されて、隣接する熱媒体流通セル13a同士を区画する区画壁12を貫通して、熱媒体流通セル列14aを構成する各セルを連通する連通部15が設けられている。連通部15における縦方向の一方側(図3の上側)の端部は、周壁11(横側壁11b)に開口するとともに、同他方側(図3の下側)の端部は、縦方向において最も他方側に位置する熱媒体流通セル13aにまで達している。熱交換器10は、連通部15として、熱交換器10の軸方向の一方の端部である第1端部10a側に設けられた第1連通部15aと、熱交換器10の軸方向の他方の端部である第2端部10b側に設けられた第2連通部15bとを有している。 As shown in FIGS. 1 and 3, in the heat exchanger 10, the heat medium flow cell row 14a is formed so as to extend in the vertical direction and penetrates the partition wall 12 that partitions the adjacent heat medium flow cells 13a. Therefore, a communication unit 15 for communicating each cell constituting the heat medium distribution cell row 14a is provided. The end of the communication portion 15 on one side (upper side in FIG. 3) in the vertical direction opens to the peripheral wall 11 (horizontal side wall 11b), and the end on the other side (lower side in FIG. 3) is in the vertical direction. It reaches the heat medium distribution cell 13a located on the farthest side. The heat exchanger 10 has, as the communication portion 15, the first communication portion 15a provided on the side of the first end portion 10a, which is one end in the axial direction of the heat exchanger 10, and the heat exchanger 10 in the axial direction. It has a second communication portion 15b provided on the second end portion 10b side, which is the other end portion.

図3に示すように、熱交換器10の内部には、熱媒体流通セル13a、第1連通部15a及び第2連通部15bにより構成され、熱交換器10の周壁11に形成された、第1連通部15a及び第2連通部15bの各開口を流入口又は流出口とする熱媒体流路16が形成されている。また、図4に示すように、熱交換器10の内部には、ガス流通セル13bにより構成され、軸方向両端部10a、10bを流入口又は流出口とするガス流路17が形成されている。上記構成の熱交換器10は、熱媒体流路16を流れる熱媒体と、ガス流路17を流れるガスとの間で、区画壁12を介して熱交換を行うことができる。 As shown in FIG. 3, the inside of the heat exchanger 10 is composed of a heat medium flow cell 13a, a first communication portion 15a, and a second communication portion 15b, and is formed on the peripheral wall 11 of the heat exchanger 10. A heat medium flow path 16 is formed in which each opening of the first communication portion 15a and the second communication portion 15b is used as an inlet or an outlet. Further, as shown in FIG. 4, a gas flow path 17 is formed inside the heat exchanger 10 and is composed of gas flow cells 13b and has both ends 10a and 10b in the axial direction as inlets or outlets. .. The heat exchanger 10 having the above configuration can exchange heat between the heat medium flowing through the heat medium flow path 16 and the gas flowing through the gas flow path 17 via the partition wall 12.

熱交換器10の矩形筒状の周壁11と、区画壁12とを構成する材料は特に限定されるものではなく、公知の熱交換器に用いられる材料を用いることができ、例えば、炭化ケイ素、炭化タンタル、炭化タングステン等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物が挙げられる。これらの中でも、炭化ケイ素を主成分として含む材料は、他のセラミック材料に比べて熱伝導率が高く、熱交換効率を高くすることができるため好ましい。ここで、「主成分」とは、50質量%以上を意味するものとする。炭化ケイ素を主成分として含む材料としては、例えば、炭化ケイ素の粒子と金属ケイ素を含む材料が挙げられる。 The material constituting the rectangular tubular peripheral wall 11 of the heat exchanger 10 and the partition wall 12 is not particularly limited, and materials used in known heat exchangers can be used, for example, silicon carbide. Examples thereof include carbides such as tantalum carbide and tungsten carbide, and nitrides such as silicon nitride and boron nitride. Among these, a material containing silicon carbide as a main component is preferable because it has a higher thermal conductivity than other ceramic materials and can increase the heat exchange efficiency. Here, the "main component" is assumed to mean 50% by mass or more. Examples of the material containing silicon carbide as a main component include materials containing silicon carbide particles and metallic silicon.

次に、図5〜10に基づいて、本実施形態の熱交換器の一製造方法について説明する。熱交換器は、以下に記載する成形工程、加工工程、脱脂工程、含浸工程を順に経ることにより製造される。 Next, one manufacturing method of the heat exchanger of the present embodiment will be described with reference to FIGS. 5 to 10. The heat exchanger is manufactured by going through the molding step, the processing step, the degreasing step, and the impregnation step described below in this order.

(成形工程)
熱交換器の成形に用いる原料として、炭化ケイ素の粒子と、有機バインダーと、分散媒とを含有する粘土状の混合物を調製する。図5に示すように、この粘土状の混合物を用いて、矩形筒状の周壁11と、周壁11の内部を周壁11の軸方向に延びる複数のセル13に区画する区画壁12とを備える成形体20を成形する。この成形体20は、全てのセル13について、その両端が開放された状態となっている。成形体20は、例えば、押し出し成形により成形することができる。得られた成形体20に対して、成形体20を乾燥させる乾燥処理を行う。
(Molding process)
A clay-like mixture containing silicon carbide particles, an organic binder, and a dispersion medium is prepared as a raw material used for molding the heat exchanger. As shown in FIG. 5, this clay-like mixture is used to form a rectangular tubular peripheral wall 11 and a partition wall 12 for partitioning the inside of the peripheral wall 11 into a plurality of cells 13 extending in the axial direction of the peripheral wall 11. Mold the body 20. Both ends of the molded body 20 are open for all cells 13. The molded body 20 can be molded by, for example, extrusion molding. The obtained molded product 20 is subjected to a drying treatment for drying the molded product 20.

(加工工程)
加工工程では、成形体に第1連通部及び第2連通部を形成する第1加工、及び成形体における一部のセルの両端部を封止する第2加工を行う。
(Processing process)
In the processing step, the first processing for forming the first communication portion and the second communication portion in the molded body and the second processing for sealing both ends of some cells in the molded body are performed.

図6に示すように、第1加工では、例えば、加熱された加工具21を成形体に接触させる方法を用いて、成形体20における周壁11及び区画壁12の一部を除去して、第1連通部15a及び第2連通部15bを形成する。 As shown in FIG. 6, in the first processing, for example, by using a method of bringing the heated processing tool 21 into contact with the molded body, a part of the peripheral wall 11 and the partition wall 12 in the molded body 20 is removed, and the first processing is performed. The first communication portion 15a and the second communication portion 15b are formed.

具体的には、図6に示すように、加工具21として、第1連通部15a及び第2連通部15bに対応する外形状を有するブレードを用意する。このブレードは、耐熱性の金属(例えば、ステンレス鋼)により形成され、その厚さは、熱媒体流通セル13aの幅を超えない厚さに設定されている。次に、成形体20に含まれる有機バインダーが焼失する温度となるようにブレードを加熱する。例えば、有機バインダーがメチルセルロースである場合には、ブレードを400℃以上に加熱する。 Specifically, as shown in FIG. 6, as the processing tool 21, a blade having an outer shape corresponding to the first communication portion 15a and the second communication portion 15b is prepared. The blade is made of a heat-resistant metal (for example, stainless steel), and its thickness is set so as not to exceed the width of the heat medium flow cell 13a. Next, the blade is heated so that the temperature at which the organic binder contained in the molded product 20 is burned out is reached. For example, when the organic binder is methyl cellulose, the blade is heated to 400 ° C. or higher.

図7に示すように、加熱されたブレードを周方向外方から成形体20に差し込んだ後、これを引き抜くことによって、第1連通部15a及び第2連通部15bを形成する。このとき、加熱されたブレードと成形体20とが接触すると、その接触部分において成形体20に含まれる有機バインダーが燃焼して焼失する。そのため、成形体20に対するブレードの挿入抵抗は非常に小さいものとなり、ブレードの挿入時に、挿入された部分の周辺部分に変形や破壊が生じ難い。また、有機バインダーが焼失することによって、発生する加工屑の量が減少する。 As shown in FIG. 7, the heated blade is inserted into the molded body 20 from the outside in the circumferential direction and then pulled out to form the first communication portion 15a and the second communication portion 15b. At this time, when the heated blade comes into contact with the molded body 20, the organic binder contained in the molded body 20 burns and burns out at the contact portion. Therefore, the insertion resistance of the blade to the molded body 20 is very small, and when the blade is inserted, the peripheral portion of the inserted portion is unlikely to be deformed or broken. In addition, the amount of processing waste generated is reduced by burning the organic binder.

図8に示すように、第2加工では、成形体20に形成される複数のセル13のうち、熱媒体流通セル13aを構成するセル13の両端部に対して、成形工程において用いた粘土状の混合物を充填して、当該セル13の両端部を封止する封止部22を形成する。その後、成形体20に対して、封止部22を乾燥させる乾燥処理を行う。 As shown in FIG. 8, in the second processing, of the plurality of cells 13 formed on the molded body 20, both ends of the cells 13 constituting the heat medium flow cell 13a are clay-like used in the molding step. The mixture of the above is filled to form a sealing portion 22 that seals both ends of the cell 13. After that, the molded body 20 is subjected to a drying treatment for drying the sealing portion 22.

上記の第1加工、及び、第2加工からなる加工工程を経ることにより、加工成形体が得られる。第1加工と第2加工の順序は特に限定されず、第2加工を行った後、第1加工を行ってもよい。 A processed molded product can be obtained by undergoing the above-mentioned processing steps including the first processing and the second processing. The order of the first processing and the second processing is not particularly limited, and the first processing may be performed after the second processing.

(脱脂工程)
脱脂工程は、加工成形体を加熱することによって、加工成形体に含まれる有機バインダーを焼失させることにより、加工成形体から有機バインダーが除去された脱脂体を得る工程である。図9に示すように、脱脂工程を経ることにより、加工成形体から有機バインダーが除去されて、炭化ケイ素の粒子同士が接触した状態で配置された骨格部分を有する脱脂体30が得られる。
(Degreasing process)
The degreasing step is a step of obtaining a degreased body from which the organic binder has been removed from the processed molded product by burning the organic binder contained in the processed molded product by heating the processed molded product. As shown in FIG. 9, by going through the degreasing step, the organic binder is removed from the processed molded body, and a degreasing body 30 having a skeleton portion arranged in a state where the silicon carbide particles are in contact with each other is obtained.

(含浸工程)
含浸工程は、脱脂体の各壁の内部に金属ケイ素を含浸させる工程である。含浸工程においては、脱脂体に対して金属ケイ素の塊を接触させた状態として、金属ケイ素の融点以上(例えば、1450℃以上)に加熱する。これにより、図10に示すように、溶融した金属ケイ素が毛細管現象によって、脱脂体の骨格部分を構成する粒子間の隙間へ入り込み、同隙間に金属ケイ素が含浸される。
(Immersion process)
The impregnation step is a step of impregnating the inside of each wall of the degreased body with metallic silicon. In the impregnation step, the metal silicon lumps are brought into contact with the degreased body and heated to a temperature equal to or higher than the melting point of the metallic silicon (for example, 1450 ° C. or higher). As a result, as shown in FIG. 10, the molten metallic silicon enters the gaps between the particles constituting the skeleton portion of the degreased body by the capillary phenomenon, and the metallic silicon is impregnated in the gaps.

含浸工程の加熱処理は、脱脂工程の加熱処理から連続して行ってもよい。例えば、加工成形体に対して金属ケイ素の塊を接触させた状態として、金属ケイ素の融点未満の温度で加熱することにより有機バインダーを除去して脱脂体とした後、加熱温度を金属ケイ素の融点以上に上昇させ、溶融した金属ケイ素を脱脂体に含浸させる。 The heat treatment of the impregnation step may be performed continuously from the heat treatment of the degreasing step. For example, in a state where a mass of metallic silicon is in contact with a processed molded body, the organic binder is removed by heating at a temperature lower than the melting point of metallic silicon to form a degreased body, and then the heating temperature is set to the melting point of metallic silicon. It is raised above and the degreased body is impregnated with the molten metallic silicon.

上記の含浸工程を経ることにより、熱交換器が得られる。
ここで、本実施形態においては、脱脂工程以降の工程において特別な温度管理を行っている。すなわち、脱脂工程以降の工程においては、成形工程に用いた混合物に含まれる炭化ケイ素の焼結温度未満の温度下にて実施し、加工成形体、脱脂体を上記焼結温度以上の温度下に曝さないようにしている。したがって、脱脂工程においては、有機バインダーが焼失可能な温度以上、かつ上記焼結温度未満の温度で加熱を行う。同様に、含浸工程においては、金属ケイ素の融点以上、かつ上記焼結温度未満の温度で加熱を行う。
A heat exchanger can be obtained by going through the above impregnation step.
Here, in the present embodiment, special temperature control is performed in the steps after the degreasing step. That is, in the steps after the degreasing step, the process is carried out at a temperature lower than the sintering temperature of silicon carbide contained in the mixture used in the molding step, and the processed molded body and the degreased body are kept at a temperature equal to or higher than the above sintering temperature. I try not to expose it. Therefore, in the degreasing step, heating is performed at a temperature equal to or higher than the temperature at which the organic binder can be burnt and lower than the above sintering temperature. Similarly, in the impregnation step, heating is performed at a temperature equal to or higher than the melting point of metallic silicon and lower than the above sintering temperature.

次に、本実施形態の作用及び効果について記載する。
(1)熱媒体流通セルと、ガス流通セルとの個数比が、1:3〜1:6である。熱媒体流通セルの個数に対してガス流通セルの個数が3倍以上であることにより、ガス流通セルの総流路断面積が大きくなって、ガス流通セルを通過するガスの流速が低下する。これにより、ガスと区画壁との接触時間が長くなる。さらに、ガスと区画壁との接触面積も大きくなるため、ガスの熱が区画壁に伝わり易くなる。また、熱媒体流通セルの個数に対してガス流通セルの個数が6倍以下であることにより、熱媒体流通セルを流通する液状の熱媒体で区画壁全体を冷却することができる。区画壁全体が冷却されることにより、ガスの熱を素早く伝達することができる。これらの結果、熱交換器の熱交換効率を向上させることができる。
Next, the operation and effect of this embodiment will be described.
(1) The number ratio of the heat medium distribution cell to the gas distribution cell is 1: 3 to 1: 6. When the number of gas distribution cells is three times or more the number of heat medium distribution cells, the total flow path cross-sectional area of the gas distribution cells becomes large, and the flow velocity of the gas passing through the gas distribution cells decreases. As a result, the contact time between the gas and the partition wall becomes long. Further, since the contact area between the gas and the partition wall is also large, the heat of the gas is easily transferred to the partition wall. Further, since the number of gas distribution cells is 6 times or less with respect to the number of heat medium distribution cells, the entire partition wall can be cooled by the liquid heat medium flowing through the heat medium distribution cells. By cooling the entire partition wall, the heat of the gas can be transferred quickly. As a result, the heat exchange efficiency of the heat exchanger can be improved.

(2)隣り合う熱媒体流通セル列同士の間に、3〜6列のガス流通セル列が配置されている。熱媒体流通セルが固まって配置されること、及び大部分のガス流通セルについて、一定範囲内に熱媒体流通セルが配置されることにより、区画壁全体が冷却された状態になりやすく、また圧力損失を低減することができる。 (2) Three to six rows of gas distribution cells are arranged between adjacent rows of heat medium distribution cells. By arranging the heat medium flow cells in a solid state and arranging the heat medium flow cells within a certain range for most gas flow cells, the entire partition wall tends to be in a cooled state, and the pressure The loss can be reduced.

(3)周壁の同一面に、熱媒体流通セルに連通する熱媒体の流入口及び流出口が設けられている。熱媒体の流入口及び流出口を熱交換器の片側に設けることで、熱媒体が流れるパイプ等を接続した際のトータル容積を小さくすることができる。 (3) On the same surface of the peripheral wall, an inlet and an outlet of the heat medium communicating with the heat medium distribution cell are provided. By providing the inflow port and the outflow port of the heat medium on one side of the heat exchanger, the total volume when the pipe or the like through which the heat medium flows is connected can be reduced.

(4)周壁の軸方向に直交する断面において、複数の熱媒体流通セルが、それぞれ同じ断面形状を有するとともに、複数のガス流通セルが、それぞれ同じ断面形状を有する。したがって、断面形状が異なることによって生じるガス流通セル間の熱交換効率のバラツキ、及び熱媒体流通セル間の熱交換効率のバラツキを抑制することができる。 (4) In a cross section orthogonal to the axial direction of the peripheral wall, the plurality of heat medium flow cells each have the same cross-sectional shape, and the plurality of gas flow cells each have the same cross-sectional shape. Therefore, it is possible to suppress the variation in heat exchange efficiency between gas flow cells and the variation in heat exchange efficiency between heat medium flow cells caused by the difference in cross-sectional shape.

(5)区画壁は、炭化ケイ素を主成分として含む。炭化ケイ素は、セラミック材料の中でも熱伝導率が高い材料であるため、区画壁が炭化ケイ素を主成分として含むことにより、区画壁の熱伝導率を高くすることができる。したがって、熱交換器の熱交換効率を向上させることができる。 (5) The partition wall contains silicon carbide as a main component. Since silicon carbide is a material having a high thermal conductivity among ceramic materials, the thermal conductivity of the partition wall can be increased by containing silicon carbide as a main component in the partition wall. Therefore, the heat exchange efficiency of the heat exchanger can be improved.

(6)本実施形態の熱交換器は、上記のような温度管理下で製造されることにより、炭化ケイ素の粒子同士が接触した状態で配置されて骨格部分が形成され、この骨格部分の隙間に金属ケイ素が充填されて形状が保持されたものとなる。すなわち、炭化ケイ素の粒子同士は、焼結による結合部(ネック)を有していない状態となっている。これにより、熱交換器の使用中に、内部の温度差に起因して区画壁の内部にひずみが生じても、炭化ケイ素の粒子間のネックに亀裂が生じることを抑制することができる。また、ネックを介して亀裂が伸展することを抑制することができる。 (6) The heat exchanger of the present embodiment is manufactured under the temperature control as described above, so that the silicon carbide particles are arranged in contact with each other to form a skeleton portion, and a gap in the skeleton portion is formed. Is filled with metallic silicon to maintain its shape. That is, the silicon carbide particles do not have a bonded portion (neck) due to sintering. This makes it possible to prevent cracks in the neck between the silicon carbide particles even if strain occurs inside the partition wall due to the internal temperature difference during use of the heat exchanger. In addition, it is possible to prevent the crack from extending through the neck.

本実施形態は、次のように変更して実施することも可能である。また、上記実施形態の構成や以下の変更例に示す構成を適宜組み合わせて実施することも可能である。
・本実施形態では、複数のセル列が矩形筒状の周壁の縦方向に配列された構成であったが、セルの配列は縦方向に限定されない。熱交換器を横向きで使用して、セルの配列が横方向になっていてもよい。
This embodiment can also be modified and implemented as follows. It is also possible to appropriately combine the configurations of the above-described embodiment and the configurations shown in the following modified examples.
-In the present embodiment, a plurality of cell rows are arranged in the vertical direction of the rectangular tubular peripheral wall, but the cell arrangement is not limited to the vertical direction. The heat exchanger may be used sideways and the cell arrangement may be sideways.

・熱媒体流通セル列は、熱媒体流通セルのみが配列した態様に限定されず、80%以上のセルが熱媒体流通セルで構成された態様であってもよい。また、ガス流通セル列は、ガス流通セルのみが配列した態様に限定されず、80%以上のセルがガス流通セルで構成された態様であってもよい。すなわち、熱媒体流通セル列には、20%以下の割合でガス流通セルが含まれていてもよい。また、ガス流通セル列には、20%以下の割合で熱媒体流通セルが含まれていてもよい。 The heat medium distribution cell row is not limited to the mode in which only the heat medium distribution cells are arranged, and may be a mode in which 80% or more of the cells are composed of the heat medium distribution cells. Further, the gas distribution cell row is not limited to the mode in which only the gas distribution cells are arranged, and may be a mode in which 80% or more of the cells are composed of gas distribution cells. That is, the heat medium distribution cell row may include gas distribution cells at a ratio of 20% or less. Further, the gas distribution cell row may include heat medium distribution cells at a ratio of 20% or less.

・周壁は、矩形筒状に限定されない。円筒状や、断面が楕円形の筒状に構成されていてもよい。また、区画壁は、区画壁同士が約90°で交差した格子状に限定されない。セルの断面が菱形となるように構成されていてもよく、四角形以外の多角形となるように構成されていてもよい。例えば、区画壁が、断面六角形状を有するように構成されていてもよい。周壁が矩形筒状でない場合や、区画壁が約90°で交差した格子状でない場合において、周壁と区画壁とで形成されるセルの形状が、その他のセルの形状と異なっていてもよい。例えば、区画壁が断面六角形状等のセルを有する態様において、周壁と区画壁とで形成されるセルの形状が、断面五角形状や断面四角形状等で形成されていてもよい。 -The peripheral wall is not limited to a rectangular cylinder. It may be formed in a cylindrical shape or a tubular shape having an elliptical cross section. Further, the partition wall is not limited to a grid pattern in which the partition walls intersect at about 90 °. The cross section of the cell may be configured to be a rhombus, or may be configured to be a polygon other than a quadrangle. For example, the partition wall may be configured to have a hexagonal cross section. When the peripheral wall is not rectangular or cylindrical, or when the partition walls are not in a grid pattern intersecting at about 90 °, the shape of the cell formed by the peripheral wall and the partition wall may be different from the shape of other cells. For example, in the embodiment in which the partition wall has a cell having a hexagonal cross section or the like, the shape of the cell formed by the peripheral wall and the partition wall may be formed into a pentagonal cross section, a quadrangular cross section, or the like.

・熱媒体流通セルは、それぞれ異なる断面形状を有していてもよい。また、ガス流通セルは、それぞれ異なる断面形状を有していてもよい。
・本実施形態では、周壁と区画壁とが、炭化ケイ素を主成分として含む材料で構成されていたが、この態様に限定されない。区画壁のみが、炭化ケイ素を主成分として含む材料で構成されていてもよく、周壁と区画壁とが、炭化ケイ素を主成分として含む材料以外で構成されていてもよい。
-The heat medium distribution cells may have different cross-sectional shapes. Further, the gas distribution cells may have different cross-sectional shapes.
-In the present embodiment, the peripheral wall and the partition wall are made of a material containing silicon carbide as a main component, but the present invention is not limited to this embodiment. Only the partition wall may be composed of a material containing silicon carbide as a main component, and the peripheral wall and the partition wall may be composed of a material other than the material containing silicon carbide as a main component.

・熱媒体流通セルとガス流通セルとは、周壁の軸方向に直交する断面において、断面形状の大きさが異なっていてもよい。例えば、図11に示すように、熱媒体流通セル13aが、ガス流通セル13bよりも幅方向の寸法が大きく構成され、断面形状が大きくなるように構成されていてもよい。熱媒体流通セルを流通する液状の熱媒体は、ガスと比較してセルを流通する際の流通抵抗が大きい。そのため、それぞれの熱媒体流通セルが、それぞれのガス流通セルよりも大きな断面形状を有することにより、熱媒体を流通しやすくすることができる。例えば、図11に示す態様において、幅方向の寸法は、熱媒体流通セルでは、1.0〜5.0mm、ガス流通セルでは、0.9〜2.5mmとすることができる。また、熱媒体流通セルが、ガス流通セルよりも幅方向の寸法が小さく構成されていてもよい。 -The size of the cross-sectional shape of the heat medium flow cell and the gas flow cell may be different in the cross section orthogonal to the axial direction of the peripheral wall. For example, as shown in FIG. 11, the heat medium flow cell 13a may be configured to have a larger dimension in the width direction and a larger cross-sectional shape than the gas flow cell 13b. The liquid heat medium that circulates in the heat medium distribution cell has a larger distribution resistance when the cell is circulated than the gas. Therefore, each heat medium distribution cell has a larger cross-sectional shape than each gas distribution cell, so that the heat medium can be easily distributed. For example, in the embodiment shown in FIG. 11, the dimensions in the width direction can be 1.0 to 5.0 mm in the heat medium flow cell and 0.9 to 2.5 mm in the gas flow cell. Further, the heat medium distribution cell may be configured to have a smaller width direction than the gas distribution cell.

・隣り合う熱媒体セル列同士の間に、3〜6列のガス流通セル列が配置されている態様において、ガス流通セル列の数は、3〜6列の間で一定でなくてもよい。すなわち、ガス流通セル列の数は、3〜6列の間で変動していてもよい。 -In the embodiment in which 3 to 6 rows of gas flow cell rows are arranged between adjacent heat medium cell rows, the number of gas flow cell rows does not have to be constant between 3 to 6 rows. .. That is, the number of gas flow cell rows may vary between 3 and 6 rows.

・熱媒体流通セルと、ガス流通セルとの個数比が、1:3〜1:6であれば、熱媒体流通セル及びガス流通セルの配置は、隣り合う熱媒体セル列同士の間に、3〜6列のガス流通セル列が配置された態様に限定されない。なお、ガス流通セルとの個数比が、1:3〜1:6であるとは、例えば、縦横4×7の任意のセルの集合を見た場合に、熱媒体流通セルの個数が4〜7である。 -If the number ratio of the heat medium distribution cell to the gas distribution cell is 1: 3 to 1: 6, the arrangement of the heat medium distribution cell and the gas distribution cell is such that between adjacent heat medium cell rows. The mode is not limited to the mode in which the gas flow cell rows of 3 to 6 rows are arranged. The number ratio with the gas distribution cell is 1: 3 to 1: 6, for example, when looking at an arbitrary set of 4 × 7 cells in the vertical and horizontal directions, the number of heat medium distribution cells is 4 to 4. It is 7.

以下、上記実施形態をさらに具体化した実施例について説明する。
(実施例1)
まず、下記組成の混合物を調製した。
Hereinafter, an example in which the above embodiment is further embodied will be described.
(Example 1)
First, a mixture having the following composition was prepared.

平均粒子径15μmの炭化ケイ素の粒子(大粒子):52.5質量部
平均粒子径0.5μmの炭化ケイ素の粒子(小粒子):23.6質量部
メチルセルロース(有機バインダー):5.4質量部
グリセリン(潤滑剤):1.1質量部
ポリオキシアルキレン系化合物(可塑剤):3.2質量部
水(分散媒):11.5質量部
この混合物を用いて、縦50mm、横100mm、長さ100mm、周壁の厚さ0.3mm、区画壁の厚さ0.25mm、セル幅1.2mmのハニカム構造を有する成形体を成形した。
Silicon carbide particles with an average particle diameter of 15 μm (large particles): 52.5 parts by mass Silicon carbide particles with an average particle size of 0.5 μm (small particles): 23.6 parts by mass Methyl cellulose (organic binder): 5.4 parts by mass Parts Glycerin (lubricating agent): 1.1 parts by mass Polyoxyalkylene compound (plasticizer): 3.2 parts by mass Water (dispersion medium): 11.5 parts by mass Using this mixture, length 50 mm, width 100 mm, A molded body having a honeycomb structure having a length of 100 mm, a peripheral wall thickness of 0.3 mm, a partition wall thickness of 0.25 mm, and a cell width of 1.2 mm was molded.

次に、成形体の周壁に400℃に加熱した板状の治具を挿入して、第1連通部及び第2連通部を形成した。また、上記混合物と同じ組成を有する粘土状の混合物を用いて、所定のセルを封止し、隣り合う熱媒体流通セルの間に、4列のガス流通セル列を有する加工成形体を作成した。すなわち、加工成形体において、熱媒体流通セルと、ガス流通セルとの個数比は、1:4とした。次に、加工成形体を450℃で5時間加熱することにより、有機バインダーが除去された脱脂体を得た。その後、脱脂体の上に金属ケイ素の板材20gを載置した状態として、真空下、1550℃で7時間、加熱することにより、金属ケイ素を含浸させて、実施例1の熱交換器を得た。 Next, a plate-shaped jig heated to 400 ° C. was inserted into the peripheral wall of the molded body to form the first communication portion and the second communication portion. Further, a clay-like mixture having the same composition as the above mixture was used to seal a predetermined cell, and a processed molded product having four rows of gas flow cells was prepared between adjacent heat medium flow cells. .. That is, in the processed molded product, the number ratio of the heat medium distribution cell and the gas distribution cell was 1: 4. Next, the processed molded product was heated at 450 ° C. for 5 hours to obtain a degreased product from which the organic binder had been removed. Then, 20 g of the metal silicon plate was placed on the degreased body, and the heat exchanger was impregnated with the metal silicon by heating at 1550 ° C. for 7 hours under vacuum to obtain the heat exchanger of Example 1. ..

(評価試験)
実施例1の熱交換器について、シミュレーションにより、熱媒体流通セルとガス流通セルの温度分布を評価した。また、実施例2〜4として、隣り合う熱媒体流通セル列の間のガス流通セル列を、3、5、6列に設定し、すなわち、熱媒体流通セルとガス流通セルとの個数比を、1:3、1:5、1:6に設定して、それ以外は実施例1と同じ条件で温度分布を評価した。また、比較例1、2として、隣り合う熱媒体流通セル列の間のガス流通セル列を、2、8列に設定し、すなわち、熱媒体流通セルとガス流通セルとの個数比を、1:2、1:8に設定して、それ以外は実施例1と同じ条件で温度分布を評価した。
(Evaluation test)
For the heat exchanger of Example 1, the temperature distributions of the heat medium flow cell and the gas flow cell were evaluated by simulation. Further, as Examples 2 to 4, the gas distribution cell rows between the adjacent heat medium distribution cell rows are set to 3, 5, and 6, that is, the number ratio of the heat medium distribution cells and the gas distribution cells is set. , 1: 3, 1: 5, 1: 6, and the temperature distribution was evaluated under the same conditions as in Example 1 except for the above. Further, as Comparative Examples 1 and 2, the gas distribution cell rows between the adjacent heat medium distribution cell rows are set to 2 and 8 rows, that is, the number ratio of the heat medium distribution cell and the gas distribution cell is set to 1. The temperature distribution was evaluated under the same conditions as in Example 1 except that the values were set to 2: 2 and 1: 8.

(シミュレーション条件)
シミュレーション条件を以下に示す。セルの寸法については、図12に測定箇所を示す。
(Simulation conditions)
The simulation conditions are shown below. The measurement points are shown in FIG. 12 for the cell dimensions.

・セルの縦幅T;1.2mm、セルの横幅H;1.2mm、熱媒体流通セルの長さ;100mm、ガス流通セルの長さ100mm
・区画壁の厚さW;0.25mm、区画壁の熱伝導率190W/m・K
・熱媒体の温度40℃、熱媒体の流量10L/min
・ガスの温度400℃、ガスの流量10g/sec
・シミュレーションソフト名;Fluent(登録商標)(ANSYS社製)
図13にシミュレーションの結果を示す。
Cell length T; 1.2 mm, cell width H; 1.2 mm, heat medium distribution cell length; 100 mm, gas distribution cell length 100 mm
-Thickness W of the partition wall; 0.25 mm, thermal conductivity of the partition wall 190 W / m · K
-The temperature of the heat medium is 40 ° C., and the flow rate of the heat medium is 10 L / min.
-Gas temperature 400 ° C, gas flow rate 10 g / sec
-Simulation software name; Fluent (registered trademark) (manufactured by Ansys)
FIG. 13 shows the result of the simulation.

図13の左側の列に、熱交換器の軸方向中央側(軸方向端部から10mm)における温度分布図を示し、図13の右側の列に、熱交換器の出口側(軸方向端部から90mm)における温度分布図を示す。セル内の温度分布は、色分けして表示されている。 The left column of FIG. 13 shows the temperature distribution diagram on the axial center side (10 mm from the axial end) of the heat exchanger, and the right column of FIG. 13 shows the outlet side (axial end) of the heat exchanger. The temperature distribution map at 90 mm) is shown. The temperature distribution in the cell is color-coded.

まず、実施例1の温度分布を例に挙げて説明する。左側に熱媒体流通セルを半分(1/2セル分)配置し、この熱媒体流通セルの右側に、2列分のガス流通セルを配置して、セルの個数比が、1:4となるように設定されている。そして、熱媒体とガスとを所定の条件で流通させた際の、熱媒体流通セル、区画壁、及び、ガス流通セルの温度分布を示している。 First, the temperature distribution of Example 1 will be described as an example. Half (1/2 cell) of the heat medium distribution cell is arranged on the left side, and two rows of gas distribution cells are arranged on the right side of the heat medium distribution cell, so that the number ratio of cells is 1: 4. Is set to. The temperature distributions of the heat medium flow cell, the partition wall, and the gas flow cell when the heat medium and the gas are circulated under predetermined conditions are shown.

図13に示すように、実施例1〜4では、いずれも熱媒体流通セルと区画壁とが50℃以下であり、区画壁全体が冷却されていた。また、熱交換器の軸方向中央側において、ガス流通セル内の最高温度は120℃以下であった。また、熱交換器の出口側において、ガス流通セル内の最高温度は58℃以下であった。特に、実施例1、3では、熱交換器の出口側において、温度が58℃に近い領域が小さくなっていた。これらにより、ガス流通セル内のガスが好適に冷却されており、熱交換効率が高いことが確認された。 As shown in FIG. 13, in each of Examples 1 to 4, the heat medium flow cell and the partition wall were at 50 ° C. or lower, and the entire partition wall was cooled. Further, on the axial center side of the heat exchanger, the maximum temperature in the gas flow cell was 120 ° C. or lower. Further, on the outlet side of the heat exchanger, the maximum temperature in the gas flow cell was 58 ° C. or lower. In particular, in Examples 1 and 3, the region where the temperature was close to 58 ° C. was small on the outlet side of the heat exchanger. From these, it was confirmed that the gas in the gas distribution cell was suitably cooled and the heat exchange efficiency was high.

これに対し、比較例1、2では、熱交換器の軸方向中央側において、ガス流通セル内の最高温度は120℃以上であった。また、熱交換器の出口側において、ガス流通セル内の最高温度は58℃以上であった。さらに、比較例2では、熱交換器の軸方向中央側において、区画壁の温度が50℃以上となる領域が存在しており、区画壁全体が冷却されていなかった。これらにより、熱交換効率が低いことが確認された。 On the other hand, in Comparative Examples 1 and 2, the maximum temperature in the gas flow cell was 120 ° C. or higher on the axial center side of the heat exchanger. Further, on the outlet side of the heat exchanger, the maximum temperature in the gas flow cell was 58 ° C. or higher. Further, in Comparative Example 2, on the axial center side of the heat exchanger, there was a region where the temperature of the partition wall was 50 ° C. or higher, and the entire partition wall was not cooled. From these, it was confirmed that the heat exchange efficiency was low.

10…熱交換器、11…周壁、12…区画壁、13a…熱媒体流通セル、13b…ガス流通セル。 10 ... heat exchanger, 11 ... peripheral wall, 12 ... partition wall, 13a ... heat medium distribution cell, 13b ... gas distribution cell.

Claims (4)

筒状の周壁と、前記周壁の内部を前記周壁の軸方向に延びる複数の熱媒体流通セル及び複数のガス流通セルに区画する区画壁とを備え、前記熱媒体流通セルを流通する液状の熱媒体と、前記ガス流通セルを流通するガスとの間で熱交換が行われる熱交換器であって、
前記熱媒体流通セルと、前記ガス流通セルとの個数比が、1:3〜1:6であり、
前記周壁は、対向する一対の第1側壁と対向する一対の第2側壁とを有する矩形筒状をなし、前記熱媒体流通セル及び前記ガス流通セルは、前記周壁の軸方向に直交する断面において、前記第1側壁に平行に配列した複数の熱媒体流通セル列及び複数のガス流通セル列を備え、
前記第2側壁に沿った方向において、隣り合う前記熱媒体流通セル列同士の間に、3〜6列の前記ガス流通セル列が配置されており、
前記周壁の同一面に、前記熱媒体流通セルに連通する熱媒体の流入口及び流出口が設けられていることを特徴とする熱交換器。
A liquid heat flowing through the heat medium flow cell is provided with a tubular peripheral wall and a partition wall that divides the inside of the peripheral wall into a plurality of heat medium flow cells extending in the axial direction of the peripheral wall and a plurality of gas flow cells. A heat exchanger in which heat is exchanged between the medium and the gas flowing through the gas distribution cell.
And the heat medium circulation cell, the number ratio of the gas flow cell is 1: 3 to 1: 6 der is,
The peripheral wall has a rectangular tubular shape having a pair of facing first side walls and a pair of facing second side walls, and the heat medium flow cell and the gas flow cell have a cross section orthogonal to the axial direction of the peripheral wall. A plurality of heat medium flow cell rows and a plurality of gas flow cell rows arranged in parallel with the first side wall are provided.
In the direction along the second side wall, 3 to 6 rows of the gas flow cell rows are arranged between the adjacent heat medium flow cell rows.
On the same surface of the peripheral wall, the heat exchanger, characterized that you have inlet and outlet of the heat medium communicated is provided in the heat medium circulating cells.
前記周壁の軸方向に直交する断面において、複数の前記熱媒体流通セルは、それぞれ同じ断面形状を有するとともに、複数の前記ガス流通セルは、それぞれ同じ断面形状を有する請求項1に記載の熱交換器。 The heat exchange according to claim 1, wherein in a cross section orthogonal to the axial direction of the peripheral wall, the plurality of heat medium flow cells each have the same cross-sectional shape, and the plurality of gas flow cells each have the same cross-sectional shape. vessel. 前記周壁の軸方向に直交する断面において、それぞれの前記熱媒体流通セルは、それぞれの前記ガス流通セルよりも大きな断面形状を有する請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2 , wherein each of the heat medium flow cells has a cross-sectional shape larger than that of the gas flow cell in a cross section orthogonal to the axial direction of the peripheral wall. 前記区画壁は、炭化ケイ素を主成分として含む請求項1〜のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3 , wherein the partition wall contains silicon carbide as a main component.
JP2017201112A 2017-10-17 2017-10-17 Heat exchanger Active JP6826969B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017201112A JP6826969B2 (en) 2017-10-17 2017-10-17 Heat exchanger
CN201880066884.7A CN111201412A (en) 2017-10-17 2018-10-17 Heat exchanger
PCT/JP2018/038572 WO2019078224A1 (en) 2017-10-17 2018-10-17 Heat exchanger
US16/756,121 US20200292252A1 (en) 2017-10-17 2018-10-17 Heat exchanger
EP18868949.1A EP3699536A4 (en) 2017-10-17 2018-10-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201112A JP6826969B2 (en) 2017-10-17 2017-10-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019074264A JP2019074264A (en) 2019-05-16
JP6826969B2 true JP6826969B2 (en) 2021-02-10

Family

ID=66173346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201112A Active JP6826969B2 (en) 2017-10-17 2017-10-17 Heat exchanger

Country Status (5)

Country Link
US (1) US20200292252A1 (en)
EP (1) EP3699536A4 (en)
JP (1) JP6826969B2 (en)
CN (1) CN111201412A (en)
WO (1) WO2019078224A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064188A (en) * 1983-09-16 1985-04-12 Ngk Insulators Ltd Heat exchanger
JPS61285391A (en) * 1985-06-11 1986-12-16 Matsushita Electric Ind Co Ltd Heat exchanger
CN2513065Y (en) * 2001-10-30 2002-09-25 姚玉明 High efficiency composite laminated tubulation heat exchange device
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
TW201109078A (en) * 2009-04-30 2011-03-16 Corning Inc Minireactor array
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same
WO2013132679A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2015140959A (en) * 2014-01-28 2015-08-03 イビデン株式会社 heat exchanger
JP2015140960A (en) 2014-01-28 2015-08-03 イビデン株式会社 heat exchanger

Also Published As

Publication number Publication date
CN111201412A (en) 2020-05-26
WO2019078224A1 (en) 2019-04-25
EP3699536A4 (en) 2021-06-16
JP2019074264A (en) 2019-05-16
EP3699536A1 (en) 2020-08-26
US20200292252A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6763699B2 (en) Manufacturing method of honeycomb structure
JP6144937B2 (en) Heat exchange member
US10690419B2 (en) Heat exchanger
JP6826969B2 (en) Heat exchanger
WO2019176898A1 (en) Heat exchanger production method
WO2017213088A1 (en) Honeycomb structure
JP6857589B2 (en) Heat exchanger
WO2017159306A1 (en) Method for producing honeycomb structure
WO2019176897A1 (en) Method for producing honeycomb structure
CN204006121U (en) A kind of large depth-to-width ratio variable cross-section heat exchanger channels
JP2021124268A (en) Heat exchanger
WO2015133435A1 (en) Honeycomb filter
JP2021124269A (en) Heat exchanger
JP7018342B2 (en) Heat exchanger
JP2021124270A (en) Heat exchanger
JP2019074267A (en) Heat exchanger
JP6815966B2 (en) Heat exchanger
JP6854229B2 (en) Heat exchanger
JP2019074265A (en) Heat exchanger
JP2019174012A (en) Heat exchanger
JP2021025730A (en) Heat exchanger
JP2021025731A (en) Heat exchanger
RU165848U1 (en) HEAT EXCHANGER "PIPE IN PIPE"
JP2019174013A (en) Method for manufacturing heat exchanger
JP2017164690A (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150